1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_ssif.c 4 * 5 * The interface to the IPMI driver for SMBus access to a SMBus 6 * compliant device. Called SSIF by the IPMI spec. 7 * 8 * Author: Intel Corporation 9 * Todd Davis <todd.c.davis@intel.com> 10 * 11 * Rewritten by Corey Minyard <minyard@acm.org> to support the 12 * non-blocking I2C interface, add support for multi-part 13 * transactions, add PEC support, and general clenaup. 14 * 15 * Copyright 2003 Intel Corporation 16 * Copyright 2005 MontaVista Software 17 */ 18 19 /* 20 * This file holds the "policy" for the interface to the SSIF state 21 * machine. It does the configuration, handles timers and interrupts, 22 * and drives the real SSIF state machine. 23 */ 24 25 #define pr_fmt(fmt) "ipmi_ssif: " fmt 26 #define dev_fmt(fmt) "ipmi_ssif: " fmt 27 28 #if defined(MODVERSIONS) 29 #include <linux/modversions.h> 30 #endif 31 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/sched.h> 35 #include <linux/seq_file.h> 36 #include <linux/timer.h> 37 #include <linux/delay.h> 38 #include <linux/errno.h> 39 #include <linux/spinlock.h> 40 #include <linux/slab.h> 41 #include <linux/list.h> 42 #include <linux/i2c.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/init.h> 45 #include <linux/dmi.h> 46 #include <linux/kthread.h> 47 #include <linux/acpi.h> 48 #include <linux/ctype.h> 49 #include <linux/time64.h> 50 #include "ipmi_dmi.h" 51 52 #define DEVICE_NAME "ipmi_ssif" 53 54 #define IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD 0x57 55 56 #define SSIF_IPMI_REQUEST 2 57 #define SSIF_IPMI_MULTI_PART_REQUEST_START 6 58 #define SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE 7 59 #define SSIF_IPMI_MULTI_PART_REQUEST_END 8 60 #define SSIF_IPMI_RESPONSE 3 61 #define SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE 9 62 63 /* ssif_debug is a bit-field 64 * SSIF_DEBUG_MSG - commands and their responses 65 * SSIF_DEBUG_STATES - message states 66 * SSIF_DEBUG_TIMING - Measure times between events in the driver 67 */ 68 #define SSIF_DEBUG_TIMING 4 69 #define SSIF_DEBUG_STATE 2 70 #define SSIF_DEBUG_MSG 1 71 #define SSIF_NODEBUG 0 72 #define SSIF_DEFAULT_DEBUG (SSIF_NODEBUG) 73 74 /* 75 * Timer values 76 */ 77 #define SSIF_MSG_USEC 20000 /* 20ms between message tries. */ 78 #define SSIF_MSG_PART_USEC 5000 /* 5ms for a message part */ 79 80 /* How many times to we retry sending/receiving the message. */ 81 #define SSIF_SEND_RETRIES 5 82 #define SSIF_RECV_RETRIES 250 83 84 #define SSIF_MSG_MSEC (SSIF_MSG_USEC / 1000) 85 #define SSIF_MSG_JIFFIES ((SSIF_MSG_USEC * 1000) / TICK_NSEC) 86 #define SSIF_MSG_PART_JIFFIES ((SSIF_MSG_PART_USEC * 1000) / TICK_NSEC) 87 88 /* 89 * Timeout for the watch, only used for get flag timer. 90 */ 91 #define SSIF_WATCH_MSG_TIMEOUT msecs_to_jiffies(10) 92 #define SSIF_WATCH_WATCHDOG_TIMEOUT msecs_to_jiffies(250) 93 94 enum ssif_intf_state { 95 SSIF_NORMAL, 96 SSIF_GETTING_FLAGS, 97 SSIF_GETTING_EVENTS, 98 SSIF_CLEARING_FLAGS, 99 SSIF_GETTING_MESSAGES, 100 /* FIXME - add watchdog stuff. */ 101 }; 102 103 #define SSIF_IDLE(ssif) ((ssif)->ssif_state == SSIF_NORMAL \ 104 && (ssif)->curr_msg == NULL) 105 106 /* 107 * Indexes into stats[] in ssif_info below. 108 */ 109 enum ssif_stat_indexes { 110 /* Number of total messages sent. */ 111 SSIF_STAT_sent_messages = 0, 112 113 /* 114 * Number of message parts sent. Messages may be broken into 115 * parts if they are long. 116 */ 117 SSIF_STAT_sent_messages_parts, 118 119 /* 120 * Number of time a message was retried. 121 */ 122 SSIF_STAT_send_retries, 123 124 /* 125 * Number of times the send of a message failed. 126 */ 127 SSIF_STAT_send_errors, 128 129 /* 130 * Number of message responses received. 131 */ 132 SSIF_STAT_received_messages, 133 134 /* 135 * Number of message fragments received. 136 */ 137 SSIF_STAT_received_message_parts, 138 139 /* 140 * Number of times the receive of a message was retried. 141 */ 142 SSIF_STAT_receive_retries, 143 144 /* 145 * Number of errors receiving messages. 146 */ 147 SSIF_STAT_receive_errors, 148 149 /* 150 * Number of times a flag fetch was requested. 151 */ 152 SSIF_STAT_flag_fetches, 153 154 /* 155 * Number of times the hardware didn't follow the state machine. 156 */ 157 SSIF_STAT_hosed, 158 159 /* 160 * Number of received events. 161 */ 162 SSIF_STAT_events, 163 164 /* Number of asyncronous messages received. */ 165 SSIF_STAT_incoming_messages, 166 167 /* Number of watchdog pretimeouts. */ 168 SSIF_STAT_watchdog_pretimeouts, 169 170 /* Number of alers received. */ 171 SSIF_STAT_alerts, 172 173 /* Always add statistics before this value, it must be last. */ 174 SSIF_NUM_STATS 175 }; 176 177 struct ssif_addr_info { 178 struct i2c_board_info binfo; 179 char *adapter_name; 180 int debug; 181 int slave_addr; 182 enum ipmi_addr_src addr_src; 183 union ipmi_smi_info_union addr_info; 184 struct device *dev; 185 struct i2c_client *client; 186 187 struct mutex clients_mutex; 188 struct list_head clients; 189 190 struct list_head link; 191 }; 192 193 struct ssif_info; 194 195 typedef void (*ssif_i2c_done)(struct ssif_info *ssif_info, int result, 196 unsigned char *data, unsigned int len); 197 198 struct ssif_info { 199 struct ipmi_smi *intf; 200 spinlock_t lock; 201 struct ipmi_smi_msg *waiting_msg; 202 struct ipmi_smi_msg *curr_msg; 203 enum ssif_intf_state ssif_state; 204 unsigned long ssif_debug; 205 206 struct ipmi_smi_handlers handlers; 207 208 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 209 union ipmi_smi_info_union addr_info; 210 211 /* 212 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 213 * is set to hold the flags until we are done handling everything 214 * from the flags. 215 */ 216 #define RECEIVE_MSG_AVAIL 0x01 217 #define EVENT_MSG_BUFFER_FULL 0x02 218 #define WDT_PRE_TIMEOUT_INT 0x08 219 unsigned char msg_flags; 220 221 u8 global_enables; 222 bool has_event_buffer; 223 bool supports_alert; 224 225 /* 226 * Used to tell what we should do with alerts. If we are 227 * waiting on a response, read the data immediately. 228 */ 229 bool got_alert; 230 bool waiting_alert; 231 232 /* 233 * If set to true, this will request events the next time the 234 * state machine is idle. 235 */ 236 bool req_events; 237 238 /* 239 * If set to true, this will request flags the next time the 240 * state machine is idle. 241 */ 242 bool req_flags; 243 244 /* 245 * Used to perform timer operations when run-to-completion 246 * mode is on. This is a countdown timer. 247 */ 248 int rtc_us_timer; 249 250 /* Used for sending/receiving data. +1 for the length. */ 251 unsigned char data[IPMI_MAX_MSG_LENGTH + 1]; 252 unsigned int data_len; 253 254 /* Temp receive buffer, gets copied into data. */ 255 unsigned char recv[I2C_SMBUS_BLOCK_MAX]; 256 257 struct i2c_client *client; 258 ssif_i2c_done done_handler; 259 260 /* Thread interface handling */ 261 struct task_struct *thread; 262 struct completion wake_thread; 263 bool stopping; 264 int i2c_read_write; 265 int i2c_command; 266 unsigned char *i2c_data; 267 unsigned int i2c_size; 268 269 struct timer_list retry_timer; 270 int retries_left; 271 272 long watch_timeout; /* Timeout for flags check, 0 if off. */ 273 struct timer_list watch_timer; /* Flag fetch timer. */ 274 275 /* Info from SSIF cmd */ 276 unsigned char max_xmit_msg_size; 277 unsigned char max_recv_msg_size; 278 bool cmd8_works; /* See test_multipart_messages() for details. */ 279 unsigned int multi_support; 280 int supports_pec; 281 282 #define SSIF_NO_MULTI 0 283 #define SSIF_MULTI_2_PART 1 284 #define SSIF_MULTI_n_PART 2 285 unsigned char *multi_data; 286 unsigned int multi_len; 287 unsigned int multi_pos; 288 289 atomic_t stats[SSIF_NUM_STATS]; 290 }; 291 292 #define ssif_inc_stat(ssif, stat) \ 293 atomic_inc(&(ssif)->stats[SSIF_STAT_ ## stat]) 294 #define ssif_get_stat(ssif, stat) \ 295 ((unsigned int) atomic_read(&(ssif)->stats[SSIF_STAT_ ## stat])) 296 297 static bool initialized; 298 static bool platform_registered; 299 300 static void return_hosed_msg(struct ssif_info *ssif_info, 301 struct ipmi_smi_msg *msg); 302 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags); 303 static int start_send(struct ssif_info *ssif_info, 304 unsigned char *data, 305 unsigned int len); 306 307 static unsigned long *ipmi_ssif_lock_cond(struct ssif_info *ssif_info, 308 unsigned long *flags) 309 __acquires(&ssif_info->lock) 310 { 311 spin_lock_irqsave(&ssif_info->lock, *flags); 312 return flags; 313 } 314 315 static void ipmi_ssif_unlock_cond(struct ssif_info *ssif_info, 316 unsigned long *flags) 317 __releases(&ssif_info->lock) 318 { 319 spin_unlock_irqrestore(&ssif_info->lock, *flags); 320 } 321 322 static void deliver_recv_msg(struct ssif_info *ssif_info, 323 struct ipmi_smi_msg *msg) 324 { 325 if (msg->rsp_size < 0) { 326 return_hosed_msg(ssif_info, msg); 327 dev_err(&ssif_info->client->dev, 328 "%s: Malformed message: rsp_size = %d\n", 329 __func__, msg->rsp_size); 330 } else { 331 ipmi_smi_msg_received(ssif_info->intf, msg); 332 } 333 } 334 335 static void return_hosed_msg(struct ssif_info *ssif_info, 336 struct ipmi_smi_msg *msg) 337 { 338 ssif_inc_stat(ssif_info, hosed); 339 340 /* Make it a response */ 341 msg->rsp[0] = msg->data[0] | 4; 342 msg->rsp[1] = msg->data[1]; 343 msg->rsp[2] = 0xFF; /* Unknown error. */ 344 msg->rsp_size = 3; 345 346 deliver_recv_msg(ssif_info, msg); 347 } 348 349 /* 350 * Must be called with the message lock held. This will release the 351 * message lock. Note that the caller will check SSIF_IDLE and start a 352 * new operation, so there is no need to check for new messages to 353 * start in here. 354 */ 355 static void start_clear_flags(struct ssif_info *ssif_info, unsigned long *flags) 356 { 357 unsigned char msg[3]; 358 359 ssif_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 360 ssif_info->ssif_state = SSIF_CLEARING_FLAGS; 361 ipmi_ssif_unlock_cond(ssif_info, flags); 362 363 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 364 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 365 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 366 msg[2] = WDT_PRE_TIMEOUT_INT; 367 368 if (start_send(ssif_info, msg, 3) != 0) { 369 /* Error, just go to normal state. */ 370 ssif_info->ssif_state = SSIF_NORMAL; 371 } 372 } 373 374 static void start_flag_fetch(struct ssif_info *ssif_info, unsigned long *flags) 375 { 376 unsigned char mb[2]; 377 378 ssif_info->req_flags = false; 379 ssif_info->ssif_state = SSIF_GETTING_FLAGS; 380 ipmi_ssif_unlock_cond(ssif_info, flags); 381 382 mb[0] = (IPMI_NETFN_APP_REQUEST << 2); 383 mb[1] = IPMI_GET_MSG_FLAGS_CMD; 384 if (start_send(ssif_info, mb, 2) != 0) 385 ssif_info->ssif_state = SSIF_NORMAL; 386 } 387 388 static void check_start_send(struct ssif_info *ssif_info, unsigned long *flags, 389 struct ipmi_smi_msg *msg) 390 { 391 if (start_send(ssif_info, msg->data, msg->data_size) != 0) { 392 unsigned long oflags; 393 394 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 395 ssif_info->curr_msg = NULL; 396 ssif_info->ssif_state = SSIF_NORMAL; 397 ipmi_ssif_unlock_cond(ssif_info, flags); 398 ipmi_free_smi_msg(msg); 399 } 400 } 401 402 static void start_event_fetch(struct ssif_info *ssif_info, unsigned long *flags) 403 { 404 struct ipmi_smi_msg *msg; 405 406 ssif_info->req_events = false; 407 408 msg = ipmi_alloc_smi_msg(); 409 if (!msg) { 410 ssif_info->ssif_state = SSIF_NORMAL; 411 ipmi_ssif_unlock_cond(ssif_info, flags); 412 return; 413 } 414 415 ssif_info->curr_msg = msg; 416 ssif_info->ssif_state = SSIF_GETTING_EVENTS; 417 ipmi_ssif_unlock_cond(ssif_info, flags); 418 419 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 420 msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 421 msg->data_size = 2; 422 423 check_start_send(ssif_info, flags, msg); 424 } 425 426 static void start_recv_msg_fetch(struct ssif_info *ssif_info, 427 unsigned long *flags) 428 { 429 struct ipmi_smi_msg *msg; 430 431 msg = ipmi_alloc_smi_msg(); 432 if (!msg) { 433 ssif_info->ssif_state = SSIF_NORMAL; 434 ipmi_ssif_unlock_cond(ssif_info, flags); 435 return; 436 } 437 438 ssif_info->curr_msg = msg; 439 ssif_info->ssif_state = SSIF_GETTING_MESSAGES; 440 ipmi_ssif_unlock_cond(ssif_info, flags); 441 442 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg->data[1] = IPMI_GET_MSG_CMD; 444 msg->data_size = 2; 445 446 check_start_send(ssif_info, flags, msg); 447 } 448 449 /* 450 * Must be called with the message lock held. This will release the 451 * message lock. Note that the caller will check SSIF_IDLE and start a 452 * new operation, so there is no need to check for new messages to 453 * start in here. 454 */ 455 static void handle_flags(struct ssif_info *ssif_info, unsigned long *flags) 456 { 457 if (ssif_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 458 /* Watchdog pre-timeout */ 459 ssif_inc_stat(ssif_info, watchdog_pretimeouts); 460 start_clear_flags(ssif_info, flags); 461 ipmi_smi_watchdog_pretimeout(ssif_info->intf); 462 } else if (ssif_info->msg_flags & RECEIVE_MSG_AVAIL) 463 /* Messages available. */ 464 start_recv_msg_fetch(ssif_info, flags); 465 else if (ssif_info->msg_flags & EVENT_MSG_BUFFER_FULL) 466 /* Events available. */ 467 start_event_fetch(ssif_info, flags); 468 else { 469 ssif_info->ssif_state = SSIF_NORMAL; 470 ipmi_ssif_unlock_cond(ssif_info, flags); 471 } 472 } 473 474 static int ipmi_ssif_thread(void *data) 475 { 476 struct ssif_info *ssif_info = data; 477 478 while (!kthread_should_stop()) { 479 int result; 480 481 /* Wait for something to do */ 482 result = wait_for_completion_interruptible( 483 &ssif_info->wake_thread); 484 if (ssif_info->stopping) 485 break; 486 if (result == -ERESTARTSYS) 487 continue; 488 init_completion(&ssif_info->wake_thread); 489 490 if (ssif_info->i2c_read_write == I2C_SMBUS_WRITE) { 491 result = i2c_smbus_write_block_data( 492 ssif_info->client, ssif_info->i2c_command, 493 ssif_info->i2c_data[0], 494 ssif_info->i2c_data + 1); 495 ssif_info->done_handler(ssif_info, result, NULL, 0); 496 } else { 497 result = i2c_smbus_read_block_data( 498 ssif_info->client, ssif_info->i2c_command, 499 ssif_info->i2c_data); 500 if (result < 0) 501 ssif_info->done_handler(ssif_info, result, 502 NULL, 0); 503 else 504 ssif_info->done_handler(ssif_info, 0, 505 ssif_info->i2c_data, 506 result); 507 } 508 } 509 510 return 0; 511 } 512 513 static int ssif_i2c_send(struct ssif_info *ssif_info, 514 ssif_i2c_done handler, 515 int read_write, int command, 516 unsigned char *data, unsigned int size) 517 { 518 ssif_info->done_handler = handler; 519 520 ssif_info->i2c_read_write = read_write; 521 ssif_info->i2c_command = command; 522 ssif_info->i2c_data = data; 523 ssif_info->i2c_size = size; 524 complete(&ssif_info->wake_thread); 525 return 0; 526 } 527 528 529 static void msg_done_handler(struct ssif_info *ssif_info, int result, 530 unsigned char *data, unsigned int len); 531 532 static void start_get(struct ssif_info *ssif_info) 533 { 534 int rv; 535 536 ssif_info->rtc_us_timer = 0; 537 ssif_info->multi_pos = 0; 538 539 rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 540 SSIF_IPMI_RESPONSE, 541 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 542 if (rv < 0) { 543 /* request failed, just return the error. */ 544 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 545 dev_dbg(&ssif_info->client->dev, 546 "Error from i2c_non_blocking_op(5)\n"); 547 548 msg_done_handler(ssif_info, -EIO, NULL, 0); 549 } 550 } 551 552 static void retry_timeout(struct timer_list *t) 553 { 554 struct ssif_info *ssif_info = from_timer(ssif_info, t, retry_timer); 555 unsigned long oflags, *flags; 556 bool waiting; 557 558 if (ssif_info->stopping) 559 return; 560 561 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 562 waiting = ssif_info->waiting_alert; 563 ssif_info->waiting_alert = false; 564 ipmi_ssif_unlock_cond(ssif_info, flags); 565 566 if (waiting) 567 start_get(ssif_info); 568 } 569 570 static void watch_timeout(struct timer_list *t) 571 { 572 struct ssif_info *ssif_info = from_timer(ssif_info, t, watch_timer); 573 unsigned long oflags, *flags; 574 575 if (ssif_info->stopping) 576 return; 577 578 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 579 if (ssif_info->watch_timeout) { 580 mod_timer(&ssif_info->watch_timer, 581 jiffies + ssif_info->watch_timeout); 582 if (SSIF_IDLE(ssif_info)) { 583 start_flag_fetch(ssif_info, flags); /* Releases lock */ 584 return; 585 } 586 ssif_info->req_flags = true; 587 } 588 ipmi_ssif_unlock_cond(ssif_info, flags); 589 } 590 591 static void ssif_alert(struct i2c_client *client, enum i2c_alert_protocol type, 592 unsigned int data) 593 { 594 struct ssif_info *ssif_info = i2c_get_clientdata(client); 595 unsigned long oflags, *flags; 596 bool do_get = false; 597 598 if (type != I2C_PROTOCOL_SMBUS_ALERT) 599 return; 600 601 ssif_inc_stat(ssif_info, alerts); 602 603 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 604 if (ssif_info->waiting_alert) { 605 ssif_info->waiting_alert = false; 606 del_timer(&ssif_info->retry_timer); 607 do_get = true; 608 } else if (ssif_info->curr_msg) { 609 ssif_info->got_alert = true; 610 } 611 ipmi_ssif_unlock_cond(ssif_info, flags); 612 if (do_get) 613 start_get(ssif_info); 614 } 615 616 static int start_resend(struct ssif_info *ssif_info); 617 618 static void msg_done_handler(struct ssif_info *ssif_info, int result, 619 unsigned char *data, unsigned int len) 620 { 621 struct ipmi_smi_msg *msg; 622 unsigned long oflags, *flags; 623 int rv; 624 625 /* 626 * We are single-threaded here, so no need for a lock until we 627 * start messing with driver states or the queues. 628 */ 629 630 if (result < 0) { 631 ssif_info->retries_left--; 632 if (ssif_info->retries_left > 0) { 633 ssif_inc_stat(ssif_info, receive_retries); 634 635 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 636 ssif_info->waiting_alert = true; 637 ssif_info->rtc_us_timer = SSIF_MSG_USEC; 638 if (!ssif_info->stopping) 639 mod_timer(&ssif_info->retry_timer, 640 jiffies + SSIF_MSG_JIFFIES); 641 ipmi_ssif_unlock_cond(ssif_info, flags); 642 return; 643 } 644 645 ssif_inc_stat(ssif_info, receive_errors); 646 647 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 648 dev_dbg(&ssif_info->client->dev, 649 "%s: Error %d\n", __func__, result); 650 len = 0; 651 goto continue_op; 652 } 653 654 if ((len > 1) && (ssif_info->multi_pos == 0) 655 && (data[0] == 0x00) && (data[1] == 0x01)) { 656 /* Start of multi-part read. Start the next transaction. */ 657 int i; 658 659 ssif_inc_stat(ssif_info, received_message_parts); 660 661 /* Remove the multi-part read marker. */ 662 len -= 2; 663 data += 2; 664 for (i = 0; i < len; i++) 665 ssif_info->data[i] = data[i]; 666 ssif_info->multi_len = len; 667 ssif_info->multi_pos = 1; 668 669 rv = ssif_i2c_send(ssif_info, msg_done_handler, I2C_SMBUS_READ, 670 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 671 ssif_info->recv, I2C_SMBUS_BLOCK_DATA); 672 if (rv < 0) { 673 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 674 dev_dbg(&ssif_info->client->dev, 675 "Error from i2c_non_blocking_op(1)\n"); 676 677 result = -EIO; 678 } else 679 return; 680 } else if (ssif_info->multi_pos) { 681 /* Middle of multi-part read. Start the next transaction. */ 682 int i; 683 unsigned char blocknum; 684 685 if (len == 0) { 686 result = -EIO; 687 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 688 dev_dbg(&ssif_info->client->dev, 689 "Middle message with no data\n"); 690 691 goto continue_op; 692 } 693 694 blocknum = data[0]; 695 len--; 696 data++; 697 698 if (blocknum != 0xff && len != 31) { 699 /* All blocks but the last must have 31 data bytes. */ 700 result = -EIO; 701 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 702 dev_dbg(&ssif_info->client->dev, 703 "Received middle message <31\n"); 704 705 goto continue_op; 706 } 707 708 if (ssif_info->multi_len + len > IPMI_MAX_MSG_LENGTH) { 709 /* Received message too big, abort the operation. */ 710 result = -E2BIG; 711 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 712 dev_dbg(&ssif_info->client->dev, 713 "Received message too big\n"); 714 715 goto continue_op; 716 } 717 718 for (i = 0; i < len; i++) 719 ssif_info->data[i + ssif_info->multi_len] = data[i]; 720 ssif_info->multi_len += len; 721 if (blocknum == 0xff) { 722 /* End of read */ 723 len = ssif_info->multi_len; 724 data = ssif_info->data; 725 } else if (blocknum + 1 != ssif_info->multi_pos) { 726 /* 727 * Out of sequence block, just abort. Block 728 * numbers start at zero for the second block, 729 * but multi_pos starts at one, so the +1. 730 */ 731 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 732 dev_dbg(&ssif_info->client->dev, 733 "Received message out of sequence, expected %u, got %u\n", 734 ssif_info->multi_pos - 1, blocknum); 735 result = -EIO; 736 } else { 737 ssif_inc_stat(ssif_info, received_message_parts); 738 739 ssif_info->multi_pos++; 740 741 rv = ssif_i2c_send(ssif_info, msg_done_handler, 742 I2C_SMBUS_READ, 743 SSIF_IPMI_MULTI_PART_RESPONSE_MIDDLE, 744 ssif_info->recv, 745 I2C_SMBUS_BLOCK_DATA); 746 if (rv < 0) { 747 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 748 dev_dbg(&ssif_info->client->dev, 749 "Error from ssif_i2c_send\n"); 750 751 result = -EIO; 752 } else 753 return; 754 } 755 } 756 757 continue_op: 758 if (result < 0) { 759 ssif_inc_stat(ssif_info, receive_errors); 760 } else { 761 ssif_inc_stat(ssif_info, received_messages); 762 ssif_inc_stat(ssif_info, received_message_parts); 763 } 764 765 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 766 dev_dbg(&ssif_info->client->dev, 767 "DONE 1: state = %d, result=%d\n", 768 ssif_info->ssif_state, result); 769 770 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 771 msg = ssif_info->curr_msg; 772 if (msg) { 773 if (data) { 774 if (len > IPMI_MAX_MSG_LENGTH) 775 len = IPMI_MAX_MSG_LENGTH; 776 memcpy(msg->rsp, data, len); 777 } else { 778 len = 0; 779 } 780 msg->rsp_size = len; 781 ssif_info->curr_msg = NULL; 782 } 783 784 switch (ssif_info->ssif_state) { 785 case SSIF_NORMAL: 786 ipmi_ssif_unlock_cond(ssif_info, flags); 787 if (!msg) 788 break; 789 790 if (result < 0) 791 return_hosed_msg(ssif_info, msg); 792 else 793 deliver_recv_msg(ssif_info, msg); 794 break; 795 796 case SSIF_GETTING_FLAGS: 797 /* We got the flags from the SSIF, now handle them. */ 798 if ((result < 0) || (len < 4) || (data[2] != 0)) { 799 /* 800 * Error fetching flags, or invalid length, 801 * just give up for now. 802 */ 803 ssif_info->ssif_state = SSIF_NORMAL; 804 ipmi_ssif_unlock_cond(ssif_info, flags); 805 dev_warn(&ssif_info->client->dev, 806 "Error getting flags: %d %d, %x\n", 807 result, len, (len >= 3) ? data[2] : 0); 808 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 809 || data[1] != IPMI_GET_MSG_FLAGS_CMD) { 810 /* 811 * Don't abort here, maybe it was a queued 812 * response to a previous command. 813 */ 814 ipmi_ssif_unlock_cond(ssif_info, flags); 815 dev_warn(&ssif_info->client->dev, 816 "Invalid response getting flags: %x %x\n", 817 data[0], data[1]); 818 } else { 819 ssif_inc_stat(ssif_info, flag_fetches); 820 ssif_info->msg_flags = data[3]; 821 handle_flags(ssif_info, flags); 822 } 823 break; 824 825 case SSIF_CLEARING_FLAGS: 826 /* We cleared the flags. */ 827 if ((result < 0) || (len < 3) || (data[2] != 0)) { 828 /* Error clearing flags */ 829 dev_warn(&ssif_info->client->dev, 830 "Error clearing flags: %d %d, %x\n", 831 result, len, (len >= 3) ? data[2] : 0); 832 } else if (data[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 833 || data[1] != IPMI_CLEAR_MSG_FLAGS_CMD) { 834 dev_warn(&ssif_info->client->dev, 835 "Invalid response clearing flags: %x %x\n", 836 data[0], data[1]); 837 } 838 ssif_info->ssif_state = SSIF_NORMAL; 839 ipmi_ssif_unlock_cond(ssif_info, flags); 840 break; 841 842 case SSIF_GETTING_EVENTS: 843 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 844 /* Error getting event, probably done. */ 845 msg->done(msg); 846 847 /* Take off the event flag. */ 848 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 849 handle_flags(ssif_info, flags); 850 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 851 || msg->rsp[1] != IPMI_READ_EVENT_MSG_BUFFER_CMD) { 852 dev_warn(&ssif_info->client->dev, 853 "Invalid response getting events: %x %x\n", 854 msg->rsp[0], msg->rsp[1]); 855 msg->done(msg); 856 /* Take off the event flag. */ 857 ssif_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 858 handle_flags(ssif_info, flags); 859 } else { 860 handle_flags(ssif_info, flags); 861 ssif_inc_stat(ssif_info, events); 862 deliver_recv_msg(ssif_info, msg); 863 } 864 break; 865 866 case SSIF_GETTING_MESSAGES: 867 if ((result < 0) || (len < 3) || (msg->rsp[2] != 0)) { 868 /* Error getting event, probably done. */ 869 msg->done(msg); 870 871 /* Take off the msg flag. */ 872 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 873 handle_flags(ssif_info, flags); 874 } else if (msg->rsp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 875 || msg->rsp[1] != IPMI_GET_MSG_CMD) { 876 dev_warn(&ssif_info->client->dev, 877 "Invalid response clearing flags: %x %x\n", 878 msg->rsp[0], msg->rsp[1]); 879 msg->done(msg); 880 881 /* Take off the msg flag. */ 882 ssif_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 883 handle_flags(ssif_info, flags); 884 } else { 885 ssif_inc_stat(ssif_info, incoming_messages); 886 handle_flags(ssif_info, flags); 887 deliver_recv_msg(ssif_info, msg); 888 } 889 break; 890 } 891 892 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 893 if (SSIF_IDLE(ssif_info) && !ssif_info->stopping) { 894 if (ssif_info->req_events) 895 start_event_fetch(ssif_info, flags); 896 else if (ssif_info->req_flags) 897 start_flag_fetch(ssif_info, flags); 898 else 899 start_next_msg(ssif_info, flags); 900 } else 901 ipmi_ssif_unlock_cond(ssif_info, flags); 902 903 if (ssif_info->ssif_debug & SSIF_DEBUG_STATE) 904 dev_dbg(&ssif_info->client->dev, 905 "DONE 2: state = %d.\n", ssif_info->ssif_state); 906 } 907 908 static void msg_written_handler(struct ssif_info *ssif_info, int result, 909 unsigned char *data, unsigned int len) 910 { 911 int rv; 912 913 /* We are single-threaded here, so no need for a lock. */ 914 if (result < 0) { 915 ssif_info->retries_left--; 916 if (ssif_info->retries_left > 0) { 917 if (!start_resend(ssif_info)) { 918 ssif_inc_stat(ssif_info, send_retries); 919 return; 920 } 921 /* request failed, just return the error. */ 922 ssif_inc_stat(ssif_info, send_errors); 923 924 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 925 dev_dbg(&ssif_info->client->dev, 926 "%s: Out of retries\n", __func__); 927 msg_done_handler(ssif_info, -EIO, NULL, 0); 928 return; 929 } 930 931 ssif_inc_stat(ssif_info, send_errors); 932 933 /* 934 * Got an error on transmit, let the done routine 935 * handle it. 936 */ 937 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 938 dev_dbg(&ssif_info->client->dev, 939 "%s: Error %d\n", __func__, result); 940 941 msg_done_handler(ssif_info, result, NULL, 0); 942 return; 943 } 944 945 if (ssif_info->multi_data) { 946 /* 947 * In the middle of a multi-data write. See the comment 948 * in the SSIF_MULTI_n_PART case in the probe function 949 * for details on the intricacies of this. 950 */ 951 int left, to_write; 952 unsigned char *data_to_send; 953 unsigned char cmd; 954 955 ssif_inc_stat(ssif_info, sent_messages_parts); 956 957 left = ssif_info->multi_len - ssif_info->multi_pos; 958 to_write = left; 959 if (to_write > 32) 960 to_write = 32; 961 /* Length byte. */ 962 ssif_info->multi_data[ssif_info->multi_pos] = to_write; 963 data_to_send = ssif_info->multi_data + ssif_info->multi_pos; 964 ssif_info->multi_pos += to_write; 965 cmd = SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE; 966 if (ssif_info->cmd8_works) { 967 if (left == to_write) { 968 cmd = SSIF_IPMI_MULTI_PART_REQUEST_END; 969 ssif_info->multi_data = NULL; 970 } 971 } else if (to_write < 32) { 972 ssif_info->multi_data = NULL; 973 } 974 975 rv = ssif_i2c_send(ssif_info, msg_written_handler, 976 I2C_SMBUS_WRITE, cmd, 977 data_to_send, I2C_SMBUS_BLOCK_DATA); 978 if (rv < 0) { 979 /* request failed, just return the error. */ 980 ssif_inc_stat(ssif_info, send_errors); 981 982 if (ssif_info->ssif_debug & SSIF_DEBUG_MSG) 983 dev_dbg(&ssif_info->client->dev, 984 "Error from i2c_non_blocking_op(3)\n"); 985 msg_done_handler(ssif_info, -EIO, NULL, 0); 986 } 987 } else { 988 /* Ready to request the result. */ 989 unsigned long oflags, *flags; 990 991 ssif_inc_stat(ssif_info, sent_messages); 992 ssif_inc_stat(ssif_info, sent_messages_parts); 993 994 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 995 if (ssif_info->got_alert) { 996 /* The result is already ready, just start it. */ 997 ssif_info->got_alert = false; 998 ipmi_ssif_unlock_cond(ssif_info, flags); 999 start_get(ssif_info); 1000 } else { 1001 /* Wait a jiffie then request the next message */ 1002 ssif_info->waiting_alert = true; 1003 ssif_info->retries_left = SSIF_RECV_RETRIES; 1004 ssif_info->rtc_us_timer = SSIF_MSG_PART_USEC; 1005 if (!ssif_info->stopping) 1006 mod_timer(&ssif_info->retry_timer, 1007 jiffies + SSIF_MSG_PART_JIFFIES); 1008 ipmi_ssif_unlock_cond(ssif_info, flags); 1009 } 1010 } 1011 } 1012 1013 static int start_resend(struct ssif_info *ssif_info) 1014 { 1015 int rv; 1016 int command; 1017 1018 ssif_info->got_alert = false; 1019 1020 if (ssif_info->data_len > 32) { 1021 command = SSIF_IPMI_MULTI_PART_REQUEST_START; 1022 ssif_info->multi_data = ssif_info->data; 1023 ssif_info->multi_len = ssif_info->data_len; 1024 /* 1025 * Subtle thing, this is 32, not 33, because we will 1026 * overwrite the thing at position 32 (which was just 1027 * transmitted) with the new length. 1028 */ 1029 ssif_info->multi_pos = 32; 1030 ssif_info->data[0] = 32; 1031 } else { 1032 ssif_info->multi_data = NULL; 1033 command = SSIF_IPMI_REQUEST; 1034 ssif_info->data[0] = ssif_info->data_len; 1035 } 1036 1037 rv = ssif_i2c_send(ssif_info, msg_written_handler, I2C_SMBUS_WRITE, 1038 command, ssif_info->data, I2C_SMBUS_BLOCK_DATA); 1039 if (rv && (ssif_info->ssif_debug & SSIF_DEBUG_MSG)) 1040 dev_dbg(&ssif_info->client->dev, 1041 "Error from i2c_non_blocking_op(4)\n"); 1042 return rv; 1043 } 1044 1045 static int start_send(struct ssif_info *ssif_info, 1046 unsigned char *data, 1047 unsigned int len) 1048 { 1049 if (len > IPMI_MAX_MSG_LENGTH) 1050 return -E2BIG; 1051 if (len > ssif_info->max_xmit_msg_size) 1052 return -E2BIG; 1053 1054 ssif_info->retries_left = SSIF_SEND_RETRIES; 1055 memcpy(ssif_info->data + 1, data, len); 1056 ssif_info->data_len = len; 1057 return start_resend(ssif_info); 1058 } 1059 1060 /* Must be called with the message lock held. */ 1061 static void start_next_msg(struct ssif_info *ssif_info, unsigned long *flags) 1062 { 1063 struct ipmi_smi_msg *msg; 1064 unsigned long oflags; 1065 1066 restart: 1067 if (!SSIF_IDLE(ssif_info)) { 1068 ipmi_ssif_unlock_cond(ssif_info, flags); 1069 return; 1070 } 1071 1072 if (!ssif_info->waiting_msg) { 1073 ssif_info->curr_msg = NULL; 1074 ipmi_ssif_unlock_cond(ssif_info, flags); 1075 } else { 1076 int rv; 1077 1078 ssif_info->curr_msg = ssif_info->waiting_msg; 1079 ssif_info->waiting_msg = NULL; 1080 ipmi_ssif_unlock_cond(ssif_info, flags); 1081 rv = start_send(ssif_info, 1082 ssif_info->curr_msg->data, 1083 ssif_info->curr_msg->data_size); 1084 if (rv) { 1085 msg = ssif_info->curr_msg; 1086 ssif_info->curr_msg = NULL; 1087 return_hosed_msg(ssif_info, msg); 1088 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1089 goto restart; 1090 } 1091 } 1092 } 1093 1094 static void sender(void *send_info, 1095 struct ipmi_smi_msg *msg) 1096 { 1097 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1098 unsigned long oflags, *flags; 1099 1100 BUG_ON(ssif_info->waiting_msg); 1101 ssif_info->waiting_msg = msg; 1102 1103 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1104 start_next_msg(ssif_info, flags); 1105 1106 if (ssif_info->ssif_debug & SSIF_DEBUG_TIMING) { 1107 struct timespec64 t; 1108 1109 ktime_get_real_ts64(&t); 1110 dev_dbg(&ssif_info->client->dev, 1111 "**Enqueue %02x %02x: %lld.%6.6ld\n", 1112 msg->data[0], msg->data[1], 1113 (long long)t.tv_sec, (long)t.tv_nsec / NSEC_PER_USEC); 1114 } 1115 } 1116 1117 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1118 { 1119 struct ssif_info *ssif_info = send_info; 1120 1121 data->addr_src = ssif_info->addr_source; 1122 data->dev = &ssif_info->client->dev; 1123 data->addr_info = ssif_info->addr_info; 1124 get_device(data->dev); 1125 1126 return 0; 1127 } 1128 1129 /* 1130 * Upper layer wants us to request events. 1131 */ 1132 static void request_events(void *send_info) 1133 { 1134 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1135 unsigned long oflags, *flags; 1136 1137 if (!ssif_info->has_event_buffer) 1138 return; 1139 1140 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1141 ssif_info->req_events = true; 1142 ipmi_ssif_unlock_cond(ssif_info, flags); 1143 } 1144 1145 /* 1146 * Upper layer is changing the flag saying whether we need to request 1147 * flags periodically or not. 1148 */ 1149 static void ssif_set_need_watch(void *send_info, unsigned int watch_mask) 1150 { 1151 struct ssif_info *ssif_info = (struct ssif_info *) send_info; 1152 unsigned long oflags, *flags; 1153 long timeout = 0; 1154 1155 if (watch_mask & IPMI_WATCH_MASK_CHECK_MESSAGES) 1156 timeout = SSIF_WATCH_MSG_TIMEOUT; 1157 else if (watch_mask) 1158 timeout = SSIF_WATCH_WATCHDOG_TIMEOUT; 1159 1160 flags = ipmi_ssif_lock_cond(ssif_info, &oflags); 1161 if (timeout != ssif_info->watch_timeout) { 1162 ssif_info->watch_timeout = timeout; 1163 if (ssif_info->watch_timeout) 1164 mod_timer(&ssif_info->watch_timer, 1165 jiffies + ssif_info->watch_timeout); 1166 } 1167 ipmi_ssif_unlock_cond(ssif_info, flags); 1168 } 1169 1170 static int ssif_start_processing(void *send_info, 1171 struct ipmi_smi *intf) 1172 { 1173 struct ssif_info *ssif_info = send_info; 1174 1175 ssif_info->intf = intf; 1176 1177 return 0; 1178 } 1179 1180 #define MAX_SSIF_BMCS 4 1181 1182 static unsigned short addr[MAX_SSIF_BMCS]; 1183 static int num_addrs; 1184 module_param_array(addr, ushort, &num_addrs, 0); 1185 MODULE_PARM_DESC(addr, "The addresses to scan for IPMI BMCs on the SSIFs."); 1186 1187 static char *adapter_name[MAX_SSIF_BMCS]; 1188 static int num_adapter_names; 1189 module_param_array(adapter_name, charp, &num_adapter_names, 0); 1190 MODULE_PARM_DESC(adapter_name, "The string name of the I2C device that has the BMC. By default all devices are scanned."); 1191 1192 static int slave_addrs[MAX_SSIF_BMCS]; 1193 static int num_slave_addrs; 1194 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1195 MODULE_PARM_DESC(slave_addrs, 1196 "The default IPMB slave address for the controller."); 1197 1198 static bool alerts_broken; 1199 module_param(alerts_broken, bool, 0); 1200 MODULE_PARM_DESC(alerts_broken, "Don't enable alerts for the controller."); 1201 1202 /* 1203 * Bit 0 enables message debugging, bit 1 enables state debugging, and 1204 * bit 2 enables timing debugging. This is an array indexed by 1205 * interface number" 1206 */ 1207 static int dbg[MAX_SSIF_BMCS]; 1208 static int num_dbg; 1209 module_param_array(dbg, int, &num_dbg, 0); 1210 MODULE_PARM_DESC(dbg, "Turn on debugging."); 1211 1212 static bool ssif_dbg_probe; 1213 module_param_named(dbg_probe, ssif_dbg_probe, bool, 0); 1214 MODULE_PARM_DESC(dbg_probe, "Enable debugging of probing of adapters."); 1215 1216 static bool ssif_tryacpi = true; 1217 module_param_named(tryacpi, ssif_tryacpi, bool, 0); 1218 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the default scan of the interfaces identified via ACPI"); 1219 1220 static bool ssif_trydmi = true; 1221 module_param_named(trydmi, ssif_trydmi, bool, 0); 1222 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the default scan of the interfaces identified via DMI (SMBIOS)"); 1223 1224 static DEFINE_MUTEX(ssif_infos_mutex); 1225 static LIST_HEAD(ssif_infos); 1226 1227 #define IPMI_SSIF_ATTR(name) \ 1228 static ssize_t ipmi_##name##_show(struct device *dev, \ 1229 struct device_attribute *attr, \ 1230 char *buf) \ 1231 { \ 1232 struct ssif_info *ssif_info = dev_get_drvdata(dev); \ 1233 \ 1234 return snprintf(buf, 10, "%u\n", ssif_get_stat(ssif_info, name));\ 1235 } \ 1236 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1237 1238 static ssize_t ipmi_type_show(struct device *dev, 1239 struct device_attribute *attr, 1240 char *buf) 1241 { 1242 return snprintf(buf, 10, "ssif\n"); 1243 } 1244 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1245 1246 IPMI_SSIF_ATTR(sent_messages); 1247 IPMI_SSIF_ATTR(sent_messages_parts); 1248 IPMI_SSIF_ATTR(send_retries); 1249 IPMI_SSIF_ATTR(send_errors); 1250 IPMI_SSIF_ATTR(received_messages); 1251 IPMI_SSIF_ATTR(received_message_parts); 1252 IPMI_SSIF_ATTR(receive_retries); 1253 IPMI_SSIF_ATTR(receive_errors); 1254 IPMI_SSIF_ATTR(flag_fetches); 1255 IPMI_SSIF_ATTR(hosed); 1256 IPMI_SSIF_ATTR(events); 1257 IPMI_SSIF_ATTR(watchdog_pretimeouts); 1258 IPMI_SSIF_ATTR(alerts); 1259 1260 static struct attribute *ipmi_ssif_dev_attrs[] = { 1261 &dev_attr_type.attr, 1262 &dev_attr_sent_messages.attr, 1263 &dev_attr_sent_messages_parts.attr, 1264 &dev_attr_send_retries.attr, 1265 &dev_attr_send_errors.attr, 1266 &dev_attr_received_messages.attr, 1267 &dev_attr_received_message_parts.attr, 1268 &dev_attr_receive_retries.attr, 1269 &dev_attr_receive_errors.attr, 1270 &dev_attr_flag_fetches.attr, 1271 &dev_attr_hosed.attr, 1272 &dev_attr_events.attr, 1273 &dev_attr_watchdog_pretimeouts.attr, 1274 &dev_attr_alerts.attr, 1275 NULL 1276 }; 1277 1278 static const struct attribute_group ipmi_ssif_dev_attr_group = { 1279 .attrs = ipmi_ssif_dev_attrs, 1280 }; 1281 1282 static void shutdown_ssif(void *send_info) 1283 { 1284 struct ssif_info *ssif_info = send_info; 1285 1286 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1287 dev_set_drvdata(&ssif_info->client->dev, NULL); 1288 1289 /* make sure the driver is not looking for flags any more. */ 1290 while (ssif_info->ssif_state != SSIF_NORMAL) 1291 schedule_timeout(1); 1292 1293 ssif_info->stopping = true; 1294 del_timer_sync(&ssif_info->watch_timer); 1295 del_timer_sync(&ssif_info->retry_timer); 1296 if (ssif_info->thread) { 1297 complete(&ssif_info->wake_thread); 1298 kthread_stop(ssif_info->thread); 1299 } 1300 } 1301 1302 static int ssif_remove(struct i2c_client *client) 1303 { 1304 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1305 struct ssif_addr_info *addr_info; 1306 1307 if (!ssif_info) 1308 return 0; 1309 1310 /* 1311 * After this point, we won't deliver anything asychronously 1312 * to the message handler. We can unregister ourself. 1313 */ 1314 ipmi_unregister_smi(ssif_info->intf); 1315 1316 list_for_each_entry(addr_info, &ssif_infos, link) { 1317 if (addr_info->client == client) { 1318 addr_info->client = NULL; 1319 break; 1320 } 1321 } 1322 1323 kfree(ssif_info); 1324 1325 return 0; 1326 } 1327 1328 static int read_response(struct i2c_client *client, unsigned char *resp) 1329 { 1330 int ret = -ENODEV, retry_cnt = SSIF_RECV_RETRIES; 1331 1332 while (retry_cnt > 0) { 1333 ret = i2c_smbus_read_block_data(client, SSIF_IPMI_RESPONSE, 1334 resp); 1335 if (ret > 0) 1336 break; 1337 msleep(SSIF_MSG_MSEC); 1338 retry_cnt--; 1339 if (retry_cnt <= 0) 1340 break; 1341 } 1342 1343 return ret; 1344 } 1345 1346 static int do_cmd(struct i2c_client *client, int len, unsigned char *msg, 1347 int *resp_len, unsigned char *resp) 1348 { 1349 int retry_cnt; 1350 int ret; 1351 1352 retry_cnt = SSIF_SEND_RETRIES; 1353 retry1: 1354 ret = i2c_smbus_write_block_data(client, SSIF_IPMI_REQUEST, len, msg); 1355 if (ret) { 1356 retry_cnt--; 1357 if (retry_cnt > 0) 1358 goto retry1; 1359 return -ENODEV; 1360 } 1361 1362 ret = read_response(client, resp); 1363 if (ret > 0) { 1364 /* Validate that the response is correct. */ 1365 if (ret < 3 || 1366 (resp[0] != (msg[0] | (1 << 2))) || 1367 (resp[1] != msg[1])) 1368 ret = -EINVAL; 1369 else if (ret > IPMI_MAX_MSG_LENGTH) { 1370 ret = -E2BIG; 1371 } else { 1372 *resp_len = ret; 1373 ret = 0; 1374 } 1375 } 1376 1377 return ret; 1378 } 1379 1380 static int ssif_detect(struct i2c_client *client, struct i2c_board_info *info) 1381 { 1382 unsigned char *resp; 1383 unsigned char msg[3]; 1384 int rv; 1385 int len; 1386 1387 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1388 if (!resp) 1389 return -ENOMEM; 1390 1391 /* Do a Get Device ID command, since it is required. */ 1392 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1393 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1394 rv = do_cmd(client, 2, msg, &len, resp); 1395 if (rv) 1396 rv = -ENODEV; 1397 else 1398 strlcpy(info->type, DEVICE_NAME, I2C_NAME_SIZE); 1399 kfree(resp); 1400 return rv; 1401 } 1402 1403 static int strcmp_nospace(char *s1, char *s2) 1404 { 1405 while (*s1 && *s2) { 1406 while (isspace(*s1)) 1407 s1++; 1408 while (isspace(*s2)) 1409 s2++; 1410 if (*s1 > *s2) 1411 return 1; 1412 if (*s1 < *s2) 1413 return -1; 1414 s1++; 1415 s2++; 1416 } 1417 return 0; 1418 } 1419 1420 static struct ssif_addr_info *ssif_info_find(unsigned short addr, 1421 char *adapter_name, 1422 bool match_null_name) 1423 { 1424 struct ssif_addr_info *info, *found = NULL; 1425 1426 restart: 1427 list_for_each_entry(info, &ssif_infos, link) { 1428 if (info->binfo.addr == addr) { 1429 if (info->addr_src == SI_SMBIOS) 1430 info->adapter_name = kstrdup(adapter_name, 1431 GFP_KERNEL); 1432 1433 if (info->adapter_name || adapter_name) { 1434 if (!info->adapter_name != !adapter_name) { 1435 /* One is NULL and one is not */ 1436 continue; 1437 } 1438 if (adapter_name && 1439 strcmp_nospace(info->adapter_name, 1440 adapter_name)) 1441 /* Names do not match */ 1442 continue; 1443 } 1444 found = info; 1445 break; 1446 } 1447 } 1448 1449 if (!found && match_null_name) { 1450 /* Try to get an exact match first, then try with a NULL name */ 1451 adapter_name = NULL; 1452 match_null_name = false; 1453 goto restart; 1454 } 1455 1456 return found; 1457 } 1458 1459 static bool check_acpi(struct ssif_info *ssif_info, struct device *dev) 1460 { 1461 #ifdef CONFIG_ACPI 1462 acpi_handle acpi_handle; 1463 1464 acpi_handle = ACPI_HANDLE(dev); 1465 if (acpi_handle) { 1466 ssif_info->addr_source = SI_ACPI; 1467 ssif_info->addr_info.acpi_info.acpi_handle = acpi_handle; 1468 request_module("acpi_ipmi"); 1469 return true; 1470 } 1471 #endif 1472 return false; 1473 } 1474 1475 static int find_slave_address(struct i2c_client *client, int slave_addr) 1476 { 1477 #ifdef CONFIG_IPMI_DMI_DECODE 1478 if (!slave_addr) 1479 slave_addr = ipmi_dmi_get_slave_addr( 1480 SI_TYPE_INVALID, 1481 i2c_adapter_id(client->adapter), 1482 client->addr); 1483 #endif 1484 1485 return slave_addr; 1486 } 1487 1488 static int start_multipart_test(struct i2c_client *client, 1489 unsigned char *msg, bool do_middle) 1490 { 1491 int retry_cnt = SSIF_SEND_RETRIES, ret; 1492 1493 retry_write: 1494 ret = i2c_smbus_write_block_data(client, 1495 SSIF_IPMI_MULTI_PART_REQUEST_START, 1496 32, msg); 1497 if (ret) { 1498 retry_cnt--; 1499 if (retry_cnt > 0) 1500 goto retry_write; 1501 dev_err(&client->dev, "Could not write multi-part start, though the BMC said it could handle it. Just limit sends to one part.\n"); 1502 return ret; 1503 } 1504 1505 if (!do_middle) 1506 return 0; 1507 1508 ret = i2c_smbus_write_block_data(client, 1509 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 1510 32, msg + 32); 1511 if (ret) { 1512 dev_err(&client->dev, "Could not write multi-part middle, though the BMC said it could handle it. Just limit sends to one part.\n"); 1513 return ret; 1514 } 1515 1516 return 0; 1517 } 1518 1519 static void test_multipart_messages(struct i2c_client *client, 1520 struct ssif_info *ssif_info, 1521 unsigned char *resp) 1522 { 1523 unsigned char msg[65]; 1524 int ret; 1525 bool do_middle; 1526 1527 if (ssif_info->max_xmit_msg_size <= 32) 1528 return; 1529 1530 do_middle = ssif_info->max_xmit_msg_size > 63; 1531 1532 memset(msg, 0, sizeof(msg)); 1533 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1534 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1535 1536 /* 1537 * The specification is all messed up dealing with sending 1538 * multi-part messages. Per what the specification says, it 1539 * is impossible to send a message that is a multiple of 32 1540 * bytes, except for 32 itself. It talks about a "start" 1541 * transaction (cmd=6) that must be 32 bytes, "middle" 1542 * transaction (cmd=7) that must be 32 bytes, and an "end" 1543 * transaction. The "end" transaction is shown as cmd=7 in 1544 * the text, but if that's the case there is no way to 1545 * differentiate between a middle and end part except the 1546 * length being less than 32. But there is a table at the far 1547 * end of the section (that I had never noticed until someone 1548 * pointed it out to me) that mentions it as cmd=8. 1549 * 1550 * After some thought, I think the example is wrong and the 1551 * end transaction should be cmd=8. But some systems don't 1552 * implement cmd=8, they use a zero-length end transaction, 1553 * even though that violates the SMBus specification. 1554 * 1555 * So, to work around this, this code tests if cmd=8 works. 1556 * If it does, then we use that. If not, it tests zero- 1557 * byte end transactions. If that works, good. If not, 1558 * we only allow 63-byte transactions max. 1559 */ 1560 1561 ret = start_multipart_test(client, msg, do_middle); 1562 if (ret) 1563 goto out_no_multi_part; 1564 1565 ret = i2c_smbus_write_block_data(client, 1566 SSIF_IPMI_MULTI_PART_REQUEST_END, 1567 1, msg + 64); 1568 1569 if (!ret) 1570 ret = read_response(client, resp); 1571 1572 if (ret > 0) { 1573 /* End transactions work, we are good. */ 1574 ssif_info->cmd8_works = true; 1575 return; 1576 } 1577 1578 ret = start_multipart_test(client, msg, do_middle); 1579 if (ret) { 1580 dev_err(&client->dev, "Second multipart test failed.\n"); 1581 goto out_no_multi_part; 1582 } 1583 1584 ret = i2c_smbus_write_block_data(client, 1585 SSIF_IPMI_MULTI_PART_REQUEST_MIDDLE, 1586 0, msg + 64); 1587 if (!ret) 1588 ret = read_response(client, resp); 1589 if (ret > 0) 1590 /* Zero-size end parts work, use those. */ 1591 return; 1592 1593 /* Limit to 63 bytes and use a short middle command to mark the end. */ 1594 if (ssif_info->max_xmit_msg_size > 63) 1595 ssif_info->max_xmit_msg_size = 63; 1596 return; 1597 1598 out_no_multi_part: 1599 ssif_info->max_xmit_msg_size = 32; 1600 return; 1601 } 1602 1603 /* 1604 * Global enables we care about. 1605 */ 1606 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 1607 IPMI_BMC_EVT_MSG_INTR) 1608 1609 static void ssif_remove_dup(struct i2c_client *client) 1610 { 1611 struct ssif_info *ssif_info = i2c_get_clientdata(client); 1612 1613 ipmi_unregister_smi(ssif_info->intf); 1614 kfree(ssif_info); 1615 } 1616 1617 static int ssif_add_infos(struct i2c_client *client) 1618 { 1619 struct ssif_addr_info *info; 1620 1621 info = kzalloc(sizeof(*info), GFP_KERNEL); 1622 if (!info) 1623 return -ENOMEM; 1624 info->addr_src = SI_ACPI; 1625 info->client = client; 1626 info->adapter_name = kstrdup(client->adapter->name, GFP_KERNEL); 1627 info->binfo.addr = client->addr; 1628 list_add_tail(&info->link, &ssif_infos); 1629 return 0; 1630 } 1631 1632 /* 1633 * Prefer ACPI over SMBIOS, if both are available. 1634 * So if we get an ACPI interface and have already registered a SMBIOS 1635 * interface at the same address, remove the SMBIOS and add the ACPI one. 1636 */ 1637 static int ssif_check_and_remove(struct i2c_client *client, 1638 struct ssif_info *ssif_info) 1639 { 1640 struct ssif_addr_info *info; 1641 1642 list_for_each_entry(info, &ssif_infos, link) { 1643 if (!info->client) 1644 return 0; 1645 if (!strcmp(info->adapter_name, client->adapter->name) && 1646 info->binfo.addr == client->addr) { 1647 if (info->addr_src == SI_ACPI) 1648 return -EEXIST; 1649 1650 if (ssif_info->addr_source == SI_ACPI && 1651 info->addr_src == SI_SMBIOS) { 1652 dev_info(&client->dev, 1653 "Removing %s-specified SSIF interface in favor of ACPI\n", 1654 ipmi_addr_src_to_str(info->addr_src)); 1655 ssif_remove_dup(info->client); 1656 return 0; 1657 } 1658 } 1659 } 1660 return 0; 1661 } 1662 1663 static int ssif_probe(struct i2c_client *client, const struct i2c_device_id *id) 1664 { 1665 unsigned char msg[3]; 1666 unsigned char *resp; 1667 struct ssif_info *ssif_info; 1668 int rv = 0; 1669 int len; 1670 int i; 1671 u8 slave_addr = 0; 1672 struct ssif_addr_info *addr_info = NULL; 1673 1674 mutex_lock(&ssif_infos_mutex); 1675 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1676 if (!resp) { 1677 mutex_unlock(&ssif_infos_mutex); 1678 return -ENOMEM; 1679 } 1680 1681 ssif_info = kzalloc(sizeof(*ssif_info), GFP_KERNEL); 1682 if (!ssif_info) { 1683 kfree(resp); 1684 mutex_unlock(&ssif_infos_mutex); 1685 return -ENOMEM; 1686 } 1687 1688 if (!check_acpi(ssif_info, &client->dev)) { 1689 addr_info = ssif_info_find(client->addr, client->adapter->name, 1690 true); 1691 if (!addr_info) { 1692 /* Must have come in through sysfs. */ 1693 ssif_info->addr_source = SI_HOTMOD; 1694 } else { 1695 ssif_info->addr_source = addr_info->addr_src; 1696 ssif_info->ssif_debug = addr_info->debug; 1697 ssif_info->addr_info = addr_info->addr_info; 1698 addr_info->client = client; 1699 slave_addr = addr_info->slave_addr; 1700 } 1701 } 1702 1703 rv = ssif_check_and_remove(client, ssif_info); 1704 /* If rv is 0 and addr source is not SI_ACPI, continue probing */ 1705 if (!rv && ssif_info->addr_source == SI_ACPI) { 1706 rv = ssif_add_infos(client); 1707 if (rv) { 1708 dev_err(&client->dev, "Out of memory!, exiting ..\n"); 1709 goto out; 1710 } 1711 } else if (rv) { 1712 dev_err(&client->dev, "Not probing, Interface already present\n"); 1713 goto out; 1714 } 1715 1716 slave_addr = find_slave_address(client, slave_addr); 1717 1718 dev_info(&client->dev, 1719 "Trying %s-specified SSIF interface at i2c address 0x%x, adapter %s, slave address 0x%x\n", 1720 ipmi_addr_src_to_str(ssif_info->addr_source), 1721 client->addr, client->adapter->name, slave_addr); 1722 1723 ssif_info->client = client; 1724 i2c_set_clientdata(client, ssif_info); 1725 1726 /* Now check for system interface capabilities */ 1727 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1728 msg[1] = IPMI_GET_SYSTEM_INTERFACE_CAPABILITIES_CMD; 1729 msg[2] = 0; /* SSIF */ 1730 rv = do_cmd(client, 3, msg, &len, resp); 1731 if (!rv && (len >= 3) && (resp[2] == 0)) { 1732 if (len < 7) { 1733 if (ssif_dbg_probe) 1734 dev_dbg(&ssif_info->client->dev, 1735 "SSIF info too short: %d\n", len); 1736 goto no_support; 1737 } 1738 1739 /* Got a good SSIF response, handle it. */ 1740 ssif_info->max_xmit_msg_size = resp[5]; 1741 ssif_info->max_recv_msg_size = resp[6]; 1742 ssif_info->multi_support = (resp[4] >> 6) & 0x3; 1743 ssif_info->supports_pec = (resp[4] >> 3) & 0x1; 1744 1745 /* Sanitize the data */ 1746 switch (ssif_info->multi_support) { 1747 case SSIF_NO_MULTI: 1748 if (ssif_info->max_xmit_msg_size > 32) 1749 ssif_info->max_xmit_msg_size = 32; 1750 if (ssif_info->max_recv_msg_size > 32) 1751 ssif_info->max_recv_msg_size = 32; 1752 break; 1753 1754 case SSIF_MULTI_2_PART: 1755 if (ssif_info->max_xmit_msg_size > 63) 1756 ssif_info->max_xmit_msg_size = 63; 1757 if (ssif_info->max_recv_msg_size > 62) 1758 ssif_info->max_recv_msg_size = 62; 1759 break; 1760 1761 case SSIF_MULTI_n_PART: 1762 /* We take whatever size given, but do some testing. */ 1763 break; 1764 1765 default: 1766 /* Data is not sane, just give up. */ 1767 goto no_support; 1768 } 1769 } else { 1770 no_support: 1771 /* Assume no multi-part or PEC support */ 1772 dev_info(&ssif_info->client->dev, 1773 "Error fetching SSIF: %d %d %2.2x, your system probably doesn't support this command so using defaults\n", 1774 rv, len, resp[2]); 1775 1776 ssif_info->max_xmit_msg_size = 32; 1777 ssif_info->max_recv_msg_size = 32; 1778 ssif_info->multi_support = SSIF_NO_MULTI; 1779 ssif_info->supports_pec = 0; 1780 } 1781 1782 test_multipart_messages(client, ssif_info, resp); 1783 1784 /* Make sure the NMI timeout is cleared. */ 1785 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1786 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 1787 msg[2] = WDT_PRE_TIMEOUT_INT; 1788 rv = do_cmd(client, 3, msg, &len, resp); 1789 if (rv || (len < 3) || (resp[2] != 0)) 1790 dev_warn(&ssif_info->client->dev, 1791 "Unable to clear message flags: %d %d %2.2x\n", 1792 rv, len, resp[2]); 1793 1794 /* Attempt to enable the event buffer. */ 1795 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1796 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1797 rv = do_cmd(client, 2, msg, &len, resp); 1798 if (rv || (len < 4) || (resp[2] != 0)) { 1799 dev_warn(&ssif_info->client->dev, 1800 "Error getting global enables: %d %d %2.2x\n", 1801 rv, len, resp[2]); 1802 rv = 0; /* Not fatal */ 1803 goto found; 1804 } 1805 1806 ssif_info->global_enables = resp[3]; 1807 1808 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1809 ssif_info->has_event_buffer = true; 1810 /* buffer is already enabled, nothing to do. */ 1811 goto found; 1812 } 1813 1814 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1815 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1816 msg[2] = ssif_info->global_enables | IPMI_BMC_EVT_MSG_BUFF; 1817 rv = do_cmd(client, 3, msg, &len, resp); 1818 if (rv || (len < 2)) { 1819 dev_warn(&ssif_info->client->dev, 1820 "Error setting global enables: %d %d %2.2x\n", 1821 rv, len, resp[2]); 1822 rv = 0; /* Not fatal */ 1823 goto found; 1824 } 1825 1826 if (resp[2] == 0) { 1827 /* A successful return means the event buffer is supported. */ 1828 ssif_info->has_event_buffer = true; 1829 ssif_info->global_enables |= IPMI_BMC_EVT_MSG_BUFF; 1830 } 1831 1832 /* Some systems don't behave well if you enable alerts. */ 1833 if (alerts_broken) 1834 goto found; 1835 1836 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1837 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1838 msg[2] = ssif_info->global_enables | IPMI_BMC_RCV_MSG_INTR; 1839 rv = do_cmd(client, 3, msg, &len, resp); 1840 if (rv || (len < 2)) { 1841 dev_warn(&ssif_info->client->dev, 1842 "Error setting global enables: %d %d %2.2x\n", 1843 rv, len, resp[2]); 1844 rv = 0; /* Not fatal */ 1845 goto found; 1846 } 1847 1848 if (resp[2] == 0) { 1849 /* A successful return means the alert is supported. */ 1850 ssif_info->supports_alert = true; 1851 ssif_info->global_enables |= IPMI_BMC_RCV_MSG_INTR; 1852 } 1853 1854 found: 1855 if (ssif_dbg_probe) { 1856 dev_dbg(&ssif_info->client->dev, 1857 "%s: i2c_probe found device at i2c address %x\n", 1858 __func__, client->addr); 1859 } 1860 1861 spin_lock_init(&ssif_info->lock); 1862 ssif_info->ssif_state = SSIF_NORMAL; 1863 timer_setup(&ssif_info->retry_timer, retry_timeout, 0); 1864 timer_setup(&ssif_info->watch_timer, watch_timeout, 0); 1865 1866 for (i = 0; i < SSIF_NUM_STATS; i++) 1867 atomic_set(&ssif_info->stats[i], 0); 1868 1869 if (ssif_info->supports_pec) 1870 ssif_info->client->flags |= I2C_CLIENT_PEC; 1871 1872 ssif_info->handlers.owner = THIS_MODULE; 1873 ssif_info->handlers.start_processing = ssif_start_processing; 1874 ssif_info->handlers.shutdown = shutdown_ssif; 1875 ssif_info->handlers.get_smi_info = get_smi_info; 1876 ssif_info->handlers.sender = sender; 1877 ssif_info->handlers.request_events = request_events; 1878 ssif_info->handlers.set_need_watch = ssif_set_need_watch; 1879 1880 { 1881 unsigned int thread_num; 1882 1883 thread_num = ((i2c_adapter_id(ssif_info->client->adapter) 1884 << 8) | 1885 ssif_info->client->addr); 1886 init_completion(&ssif_info->wake_thread); 1887 ssif_info->thread = kthread_run(ipmi_ssif_thread, ssif_info, 1888 "kssif%4.4x", thread_num); 1889 if (IS_ERR(ssif_info->thread)) { 1890 rv = PTR_ERR(ssif_info->thread); 1891 dev_notice(&ssif_info->client->dev, 1892 "Could not start kernel thread: error %d\n", 1893 rv); 1894 goto out; 1895 } 1896 } 1897 1898 dev_set_drvdata(&ssif_info->client->dev, ssif_info); 1899 rv = device_add_group(&ssif_info->client->dev, 1900 &ipmi_ssif_dev_attr_group); 1901 if (rv) { 1902 dev_err(&ssif_info->client->dev, 1903 "Unable to add device attributes: error %d\n", 1904 rv); 1905 goto out; 1906 } 1907 1908 rv = ipmi_register_smi(&ssif_info->handlers, 1909 ssif_info, 1910 &ssif_info->client->dev, 1911 slave_addr); 1912 if (rv) { 1913 dev_err(&ssif_info->client->dev, 1914 "Unable to register device: error %d\n", rv); 1915 goto out_remove_attr; 1916 } 1917 1918 out: 1919 if (rv) { 1920 if (addr_info) 1921 addr_info->client = NULL; 1922 1923 dev_err(&ssif_info->client->dev, 1924 "Unable to start IPMI SSIF: %d\n", rv); 1925 kfree(ssif_info); 1926 } 1927 kfree(resp); 1928 mutex_unlock(&ssif_infos_mutex); 1929 return rv; 1930 1931 out_remove_attr: 1932 device_remove_group(&ssif_info->client->dev, &ipmi_ssif_dev_attr_group); 1933 dev_set_drvdata(&ssif_info->client->dev, NULL); 1934 goto out; 1935 } 1936 1937 static int new_ssif_client(int addr, char *adapter_name, 1938 int debug, int slave_addr, 1939 enum ipmi_addr_src addr_src, 1940 struct device *dev) 1941 { 1942 struct ssif_addr_info *addr_info; 1943 int rv = 0; 1944 1945 mutex_lock(&ssif_infos_mutex); 1946 if (ssif_info_find(addr, adapter_name, false)) { 1947 rv = -EEXIST; 1948 goto out_unlock; 1949 } 1950 1951 addr_info = kzalloc(sizeof(*addr_info), GFP_KERNEL); 1952 if (!addr_info) { 1953 rv = -ENOMEM; 1954 goto out_unlock; 1955 } 1956 1957 if (adapter_name) { 1958 addr_info->adapter_name = kstrdup(adapter_name, GFP_KERNEL); 1959 if (!addr_info->adapter_name) { 1960 kfree(addr_info); 1961 rv = -ENOMEM; 1962 goto out_unlock; 1963 } 1964 } 1965 1966 strncpy(addr_info->binfo.type, DEVICE_NAME, 1967 sizeof(addr_info->binfo.type)); 1968 addr_info->binfo.addr = addr; 1969 addr_info->binfo.platform_data = addr_info; 1970 addr_info->debug = debug; 1971 addr_info->slave_addr = slave_addr; 1972 addr_info->addr_src = addr_src; 1973 addr_info->dev = dev; 1974 1975 if (dev) 1976 dev_set_drvdata(dev, addr_info); 1977 1978 list_add_tail(&addr_info->link, &ssif_infos); 1979 1980 /* Address list will get it */ 1981 1982 out_unlock: 1983 mutex_unlock(&ssif_infos_mutex); 1984 return rv; 1985 } 1986 1987 static void free_ssif_clients(void) 1988 { 1989 struct ssif_addr_info *info, *tmp; 1990 1991 mutex_lock(&ssif_infos_mutex); 1992 list_for_each_entry_safe(info, tmp, &ssif_infos, link) { 1993 list_del(&info->link); 1994 kfree(info->adapter_name); 1995 kfree(info); 1996 } 1997 mutex_unlock(&ssif_infos_mutex); 1998 } 1999 2000 static unsigned short *ssif_address_list(void) 2001 { 2002 struct ssif_addr_info *info; 2003 unsigned int count = 0, i = 0; 2004 unsigned short *address_list; 2005 2006 list_for_each_entry(info, &ssif_infos, link) 2007 count++; 2008 2009 address_list = kcalloc(count + 1, sizeof(*address_list), 2010 GFP_KERNEL); 2011 if (!address_list) 2012 return NULL; 2013 2014 list_for_each_entry(info, &ssif_infos, link) { 2015 unsigned short addr = info->binfo.addr; 2016 int j; 2017 2018 for (j = 0; j < i; j++) { 2019 if (address_list[j] == addr) 2020 /* Found a dup. */ 2021 break; 2022 } 2023 if (j == i) /* Didn't find it in the list. */ 2024 address_list[i++] = addr; 2025 } 2026 address_list[i] = I2C_CLIENT_END; 2027 2028 return address_list; 2029 } 2030 2031 #ifdef CONFIG_ACPI 2032 static const struct acpi_device_id ssif_acpi_match[] = { 2033 { "IPI0001", 0 }, 2034 { }, 2035 }; 2036 MODULE_DEVICE_TABLE(acpi, ssif_acpi_match); 2037 #endif 2038 2039 #ifdef CONFIG_DMI 2040 static int dmi_ipmi_probe(struct platform_device *pdev) 2041 { 2042 u8 slave_addr = 0; 2043 u16 i2c_addr; 2044 int rv; 2045 2046 if (!ssif_trydmi) 2047 return -ENODEV; 2048 2049 rv = device_property_read_u16(&pdev->dev, "i2c-addr", &i2c_addr); 2050 if (rv) { 2051 dev_warn(&pdev->dev, "No i2c-addr property\n"); 2052 return -ENODEV; 2053 } 2054 2055 rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr); 2056 if (rv) 2057 slave_addr = 0x20; 2058 2059 return new_ssif_client(i2c_addr, NULL, 0, 2060 slave_addr, SI_SMBIOS, &pdev->dev); 2061 } 2062 #else 2063 static int dmi_ipmi_probe(struct platform_device *pdev) 2064 { 2065 return -ENODEV; 2066 } 2067 #endif 2068 2069 static const struct i2c_device_id ssif_id[] = { 2070 { DEVICE_NAME, 0 }, 2071 { } 2072 }; 2073 MODULE_DEVICE_TABLE(i2c, ssif_id); 2074 2075 static struct i2c_driver ssif_i2c_driver = { 2076 .class = I2C_CLASS_HWMON, 2077 .driver = { 2078 .name = DEVICE_NAME 2079 }, 2080 .probe = ssif_probe, 2081 .remove = ssif_remove, 2082 .alert = ssif_alert, 2083 .id_table = ssif_id, 2084 .detect = ssif_detect 2085 }; 2086 2087 static int ssif_platform_probe(struct platform_device *dev) 2088 { 2089 return dmi_ipmi_probe(dev); 2090 } 2091 2092 static int ssif_platform_remove(struct platform_device *dev) 2093 { 2094 struct ssif_addr_info *addr_info = dev_get_drvdata(&dev->dev); 2095 2096 if (!addr_info) 2097 return 0; 2098 2099 mutex_lock(&ssif_infos_mutex); 2100 list_del(&addr_info->link); 2101 kfree(addr_info); 2102 mutex_unlock(&ssif_infos_mutex); 2103 return 0; 2104 } 2105 2106 static const struct platform_device_id ssif_plat_ids[] = { 2107 { "dmi-ipmi-ssif", 0 }, 2108 { } 2109 }; 2110 2111 static struct platform_driver ipmi_driver = { 2112 .driver = { 2113 .name = DEVICE_NAME, 2114 }, 2115 .probe = ssif_platform_probe, 2116 .remove = ssif_platform_remove, 2117 .id_table = ssif_plat_ids 2118 }; 2119 2120 static int init_ipmi_ssif(void) 2121 { 2122 int i; 2123 int rv; 2124 2125 if (initialized) 2126 return 0; 2127 2128 pr_info("IPMI SSIF Interface driver\n"); 2129 2130 /* build list for i2c from addr list */ 2131 for (i = 0; i < num_addrs; i++) { 2132 rv = new_ssif_client(addr[i], adapter_name[i], 2133 dbg[i], slave_addrs[i], 2134 SI_HARDCODED, NULL); 2135 if (rv) 2136 pr_err("Couldn't add hardcoded device at addr 0x%x\n", 2137 addr[i]); 2138 } 2139 2140 if (ssif_tryacpi) 2141 ssif_i2c_driver.driver.acpi_match_table = 2142 ACPI_PTR(ssif_acpi_match); 2143 2144 if (ssif_trydmi) { 2145 rv = platform_driver_register(&ipmi_driver); 2146 if (rv) 2147 pr_err("Unable to register driver: %d\n", rv); 2148 else 2149 platform_registered = true; 2150 } 2151 2152 ssif_i2c_driver.address_list = ssif_address_list(); 2153 2154 rv = i2c_add_driver(&ssif_i2c_driver); 2155 if (!rv) 2156 initialized = true; 2157 2158 return rv; 2159 } 2160 module_init(init_ipmi_ssif); 2161 2162 static void cleanup_ipmi_ssif(void) 2163 { 2164 if (!initialized) 2165 return; 2166 2167 initialized = false; 2168 2169 i2c_del_driver(&ssif_i2c_driver); 2170 2171 kfree(ssif_i2c_driver.address_list); 2172 2173 if (ssif_trydmi && platform_registered) 2174 platform_driver_unregister(&ipmi_driver); 2175 2176 free_ssif_clients(); 2177 } 2178 module_exit(cleanup_ipmi_ssif); 2179 2180 MODULE_ALIAS("platform:dmi-ipmi-ssif"); 2181 MODULE_AUTHOR("Todd C Davis <todd.c.davis@intel.com>, Corey Minyard <minyard@acm.org>"); 2182 MODULE_DESCRIPTION("IPMI driver for management controllers on a SMBus"); 2183 MODULE_LICENSE("GPL"); 2184