xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 
70 #ifdef CONFIG_PPC_OF
71 #include <linux/of_device.h>
72 #include <linux/of_platform.h>
73 #include <linux/of_address.h>
74 #include <linux/of_irq.h>
75 #endif
76 
77 #define PFX "ipmi_si: "
78 
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81 
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC	10000
84 #define SI_USEC_PER_JIFFY	(1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87 				      short timeout */
88 
89 enum si_intf_state {
90 	SI_NORMAL,
91 	SI_GETTING_FLAGS,
92 	SI_GETTING_EVENTS,
93 	SI_CLEARING_FLAGS,
94 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
95 	SI_GETTING_MESSAGES,
96 	SI_ENABLE_INTERRUPTS1,
97 	SI_ENABLE_INTERRUPTS2,
98 	SI_DISABLE_INTERRUPTS1,
99 	SI_DISABLE_INTERRUPTS2
100 	/* FIXME - add watchdog stuff. */
101 };
102 
103 /* Some BT-specific defines we need here. */
104 #define IPMI_BT_INTMASK_REG		2
105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
107 
108 enum si_type {
109     SI_KCS, SI_SMIC, SI_BT
110 };
111 static char *si_to_str[] = { "kcs", "smic", "bt" };
112 
113 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
114 					"ACPI", "SMBIOS", "PCI",
115 					"device-tree", "default" };
116 
117 #define DEVICE_NAME "ipmi_si"
118 
119 static struct platform_driver ipmi_driver = {
120 	.driver = {
121 		.name = DEVICE_NAME,
122 		.bus = &platform_bus_type
123 	}
124 };
125 
126 
127 /*
128  * Indexes into stats[] in smi_info below.
129  */
130 enum si_stat_indexes {
131 	/*
132 	 * Number of times the driver requested a timer while an operation
133 	 * was in progress.
134 	 */
135 	SI_STAT_short_timeouts = 0,
136 
137 	/*
138 	 * Number of times the driver requested a timer while nothing was in
139 	 * progress.
140 	 */
141 	SI_STAT_long_timeouts,
142 
143 	/* Number of times the interface was idle while being polled. */
144 	SI_STAT_idles,
145 
146 	/* Number of interrupts the driver handled. */
147 	SI_STAT_interrupts,
148 
149 	/* Number of time the driver got an ATTN from the hardware. */
150 	SI_STAT_attentions,
151 
152 	/* Number of times the driver requested flags from the hardware. */
153 	SI_STAT_flag_fetches,
154 
155 	/* Number of times the hardware didn't follow the state machine. */
156 	SI_STAT_hosed_count,
157 
158 	/* Number of completed messages. */
159 	SI_STAT_complete_transactions,
160 
161 	/* Number of IPMI events received from the hardware. */
162 	SI_STAT_events,
163 
164 	/* Number of watchdog pretimeouts. */
165 	SI_STAT_watchdog_pretimeouts,
166 
167 	/* Number of asyncronous messages received. */
168 	SI_STAT_incoming_messages,
169 
170 
171 	/* This *must* remain last, add new values above this. */
172 	SI_NUM_STATS
173 };
174 
175 struct smi_info {
176 	int                    intf_num;
177 	ipmi_smi_t             intf;
178 	struct si_sm_data      *si_sm;
179 	struct si_sm_handlers  *handlers;
180 	enum si_type           si_type;
181 	spinlock_t             si_lock;
182 	spinlock_t             msg_lock;
183 	struct list_head       xmit_msgs;
184 	struct list_head       hp_xmit_msgs;
185 	struct ipmi_smi_msg    *curr_msg;
186 	enum si_intf_state     si_state;
187 
188 	/*
189 	 * Used to handle the various types of I/O that can occur with
190 	 * IPMI
191 	 */
192 	struct si_sm_io io;
193 	int (*io_setup)(struct smi_info *info);
194 	void (*io_cleanup)(struct smi_info *info);
195 	int (*irq_setup)(struct smi_info *info);
196 	void (*irq_cleanup)(struct smi_info *info);
197 	unsigned int io_size;
198 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
199 	void (*addr_source_cleanup)(struct smi_info *info);
200 	void *addr_source_data;
201 
202 	/*
203 	 * Per-OEM handler, called from handle_flags().  Returns 1
204 	 * when handle_flags() needs to be re-run or 0 indicating it
205 	 * set si_state itself.
206 	 */
207 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
208 
209 	/*
210 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
211 	 * is set to hold the flags until we are done handling everything
212 	 * from the flags.
213 	 */
214 #define RECEIVE_MSG_AVAIL	0x01
215 #define EVENT_MSG_BUFFER_FULL	0x02
216 #define WDT_PRE_TIMEOUT_INT	0x08
217 #define OEM0_DATA_AVAIL     0x20
218 #define OEM1_DATA_AVAIL     0x40
219 #define OEM2_DATA_AVAIL     0x80
220 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
221 			     OEM1_DATA_AVAIL | \
222 			     OEM2_DATA_AVAIL)
223 	unsigned char       msg_flags;
224 
225 	/* Does the BMC have an event buffer? */
226 	char		    has_event_buffer;
227 
228 	/*
229 	 * If set to true, this will request events the next time the
230 	 * state machine is idle.
231 	 */
232 	atomic_t            req_events;
233 
234 	/*
235 	 * If true, run the state machine to completion on every send
236 	 * call.  Generally used after a panic to make sure stuff goes
237 	 * out.
238 	 */
239 	int                 run_to_completion;
240 
241 	/* The I/O port of an SI interface. */
242 	int                 port;
243 
244 	/*
245 	 * The space between start addresses of the two ports.  For
246 	 * instance, if the first port is 0xca2 and the spacing is 4, then
247 	 * the second port is 0xca6.
248 	 */
249 	unsigned int        spacing;
250 
251 	/* zero if no irq; */
252 	int                 irq;
253 
254 	/* The timer for this si. */
255 	struct timer_list   si_timer;
256 
257 	/* The time (in jiffies) the last timeout occurred at. */
258 	unsigned long       last_timeout_jiffies;
259 
260 	/* Used to gracefully stop the timer without race conditions. */
261 	atomic_t            stop_operation;
262 
263 	/*
264 	 * The driver will disable interrupts when it gets into a
265 	 * situation where it cannot handle messages due to lack of
266 	 * memory.  Once that situation clears up, it will re-enable
267 	 * interrupts.
268 	 */
269 	int interrupt_disabled;
270 
271 	/* From the get device id response... */
272 	struct ipmi_device_id device_id;
273 
274 	/* Driver model stuff. */
275 	struct device *dev;
276 	struct platform_device *pdev;
277 
278 	/*
279 	 * True if we allocated the device, false if it came from
280 	 * someplace else (like PCI).
281 	 */
282 	int dev_registered;
283 
284 	/* Slave address, could be reported from DMI. */
285 	unsigned char slave_addr;
286 
287 	/* Counters and things for the proc filesystem. */
288 	atomic_t stats[SI_NUM_STATS];
289 
290 	struct task_struct *thread;
291 
292 	struct list_head link;
293 	union ipmi_smi_info_union addr_info;
294 };
295 
296 #define smi_inc_stat(smi, stat) \
297 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300 
301 #define SI_MAX_PARMS 4
302 
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314 
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317 
318 static int unload_when_empty = 1;
319 
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 static void cleanup_ipmi_si(void);
324 
325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
326 static int register_xaction_notifier(struct notifier_block *nb)
327 {
328 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
329 }
330 
331 static void deliver_recv_msg(struct smi_info *smi_info,
332 			     struct ipmi_smi_msg *msg)
333 {
334 	/* Deliver the message to the upper layer with the lock
335 	   released. */
336 
337 	if (smi_info->run_to_completion) {
338 		ipmi_smi_msg_received(smi_info->intf, msg);
339 	} else {
340 		spin_unlock(&(smi_info->si_lock));
341 		ipmi_smi_msg_received(smi_info->intf, msg);
342 		spin_lock(&(smi_info->si_lock));
343 	}
344 }
345 
346 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
347 {
348 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
349 
350 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
351 		cCode = IPMI_ERR_UNSPECIFIED;
352 	/* else use it as is */
353 
354 	/* Make it a reponse */
355 	msg->rsp[0] = msg->data[0] | 4;
356 	msg->rsp[1] = msg->data[1];
357 	msg->rsp[2] = cCode;
358 	msg->rsp_size = 3;
359 
360 	smi_info->curr_msg = NULL;
361 	deliver_recv_msg(smi_info, msg);
362 }
363 
364 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
365 {
366 	int              rv;
367 	struct list_head *entry = NULL;
368 #ifdef DEBUG_TIMING
369 	struct timeval t;
370 #endif
371 
372 	/*
373 	 * No need to save flags, we aleady have interrupts off and we
374 	 * already hold the SMI lock.
375 	 */
376 	if (!smi_info->run_to_completion)
377 		spin_lock(&(smi_info->msg_lock));
378 
379 	/* Pick the high priority queue first. */
380 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
381 		entry = smi_info->hp_xmit_msgs.next;
382 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
383 		entry = smi_info->xmit_msgs.next;
384 	}
385 
386 	if (!entry) {
387 		smi_info->curr_msg = NULL;
388 		rv = SI_SM_IDLE;
389 	} else {
390 		int err;
391 
392 		list_del(entry);
393 		smi_info->curr_msg = list_entry(entry,
394 						struct ipmi_smi_msg,
395 						link);
396 #ifdef DEBUG_TIMING
397 		do_gettimeofday(&t);
398 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
399 #endif
400 		err = atomic_notifier_call_chain(&xaction_notifier_list,
401 				0, smi_info);
402 		if (err & NOTIFY_STOP_MASK) {
403 			rv = SI_SM_CALL_WITHOUT_DELAY;
404 			goto out;
405 		}
406 		err = smi_info->handlers->start_transaction(
407 			smi_info->si_sm,
408 			smi_info->curr_msg->data,
409 			smi_info->curr_msg->data_size);
410 		if (err)
411 			return_hosed_msg(smi_info, err);
412 
413 		rv = SI_SM_CALL_WITHOUT_DELAY;
414 	}
415  out:
416 	if (!smi_info->run_to_completion)
417 		spin_unlock(&(smi_info->msg_lock));
418 
419 	return rv;
420 }
421 
422 static void start_enable_irq(struct smi_info *smi_info)
423 {
424 	unsigned char msg[2];
425 
426 	/*
427 	 * If we are enabling interrupts, we have to tell the
428 	 * BMC to use them.
429 	 */
430 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
431 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
432 
433 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
434 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
435 }
436 
437 static void start_disable_irq(struct smi_info *smi_info)
438 {
439 	unsigned char msg[2];
440 
441 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443 
444 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
445 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
446 }
447 
448 static void start_clear_flags(struct smi_info *smi_info)
449 {
450 	unsigned char msg[3];
451 
452 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
453 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
454 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
455 	msg[2] = WDT_PRE_TIMEOUT_INT;
456 
457 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
458 	smi_info->si_state = SI_CLEARING_FLAGS;
459 }
460 
461 /*
462  * When we have a situtaion where we run out of memory and cannot
463  * allocate messages, we just leave them in the BMC and run the system
464  * polled until we can allocate some memory.  Once we have some
465  * memory, we will re-enable the interrupt.
466  */
467 static inline void disable_si_irq(struct smi_info *smi_info)
468 {
469 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
470 		start_disable_irq(smi_info);
471 		smi_info->interrupt_disabled = 1;
472 		if (!atomic_read(&smi_info->stop_operation))
473 			mod_timer(&smi_info->si_timer,
474 				  jiffies + SI_TIMEOUT_JIFFIES);
475 	}
476 }
477 
478 static inline void enable_si_irq(struct smi_info *smi_info)
479 {
480 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
481 		start_enable_irq(smi_info);
482 		smi_info->interrupt_disabled = 0;
483 	}
484 }
485 
486 static void handle_flags(struct smi_info *smi_info)
487 {
488  retry:
489 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
490 		/* Watchdog pre-timeout */
491 		smi_inc_stat(smi_info, watchdog_pretimeouts);
492 
493 		start_clear_flags(smi_info);
494 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
495 		spin_unlock(&(smi_info->si_lock));
496 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
497 		spin_lock(&(smi_info->si_lock));
498 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
499 		/* Messages available. */
500 		smi_info->curr_msg = ipmi_alloc_smi_msg();
501 		if (!smi_info->curr_msg) {
502 			disable_si_irq(smi_info);
503 			smi_info->si_state = SI_NORMAL;
504 			return;
505 		}
506 		enable_si_irq(smi_info);
507 
508 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
510 		smi_info->curr_msg->data_size = 2;
511 
512 		smi_info->handlers->start_transaction(
513 			smi_info->si_sm,
514 			smi_info->curr_msg->data,
515 			smi_info->curr_msg->data_size);
516 		smi_info->si_state = SI_GETTING_MESSAGES;
517 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
518 		/* Events available. */
519 		smi_info->curr_msg = ipmi_alloc_smi_msg();
520 		if (!smi_info->curr_msg) {
521 			disable_si_irq(smi_info);
522 			smi_info->si_state = SI_NORMAL;
523 			return;
524 		}
525 		enable_si_irq(smi_info);
526 
527 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
528 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
529 		smi_info->curr_msg->data_size = 2;
530 
531 		smi_info->handlers->start_transaction(
532 			smi_info->si_sm,
533 			smi_info->curr_msg->data,
534 			smi_info->curr_msg->data_size);
535 		smi_info->si_state = SI_GETTING_EVENTS;
536 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
537 		   smi_info->oem_data_avail_handler) {
538 		if (smi_info->oem_data_avail_handler(smi_info))
539 			goto retry;
540 	} else
541 		smi_info->si_state = SI_NORMAL;
542 }
543 
544 static void handle_transaction_done(struct smi_info *smi_info)
545 {
546 	struct ipmi_smi_msg *msg;
547 #ifdef DEBUG_TIMING
548 	struct timeval t;
549 
550 	do_gettimeofday(&t);
551 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
552 #endif
553 	switch (smi_info->si_state) {
554 	case SI_NORMAL:
555 		if (!smi_info->curr_msg)
556 			break;
557 
558 		smi_info->curr_msg->rsp_size
559 			= smi_info->handlers->get_result(
560 				smi_info->si_sm,
561 				smi_info->curr_msg->rsp,
562 				IPMI_MAX_MSG_LENGTH);
563 
564 		/*
565 		 * Do this here becase deliver_recv_msg() releases the
566 		 * lock, and a new message can be put in during the
567 		 * time the lock is released.
568 		 */
569 		msg = smi_info->curr_msg;
570 		smi_info->curr_msg = NULL;
571 		deliver_recv_msg(smi_info, msg);
572 		break;
573 
574 	case SI_GETTING_FLAGS:
575 	{
576 		unsigned char msg[4];
577 		unsigned int  len;
578 
579 		/* We got the flags from the SMI, now handle them. */
580 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
581 		if (msg[2] != 0) {
582 			/* Error fetching flags, just give up for now. */
583 			smi_info->si_state = SI_NORMAL;
584 		} else if (len < 4) {
585 			/*
586 			 * Hmm, no flags.  That's technically illegal, but
587 			 * don't use uninitialized data.
588 			 */
589 			smi_info->si_state = SI_NORMAL;
590 		} else {
591 			smi_info->msg_flags = msg[3];
592 			handle_flags(smi_info);
593 		}
594 		break;
595 	}
596 
597 	case SI_CLEARING_FLAGS:
598 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
599 	{
600 		unsigned char msg[3];
601 
602 		/* We cleared the flags. */
603 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
604 		if (msg[2] != 0) {
605 			/* Error clearing flags */
606 			dev_warn(smi_info->dev,
607 				 "Error clearing flags: %2.2x\n", msg[2]);
608 		}
609 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
610 			start_enable_irq(smi_info);
611 		else
612 			smi_info->si_state = SI_NORMAL;
613 		break;
614 	}
615 
616 	case SI_GETTING_EVENTS:
617 	{
618 		smi_info->curr_msg->rsp_size
619 			= smi_info->handlers->get_result(
620 				smi_info->si_sm,
621 				smi_info->curr_msg->rsp,
622 				IPMI_MAX_MSG_LENGTH);
623 
624 		/*
625 		 * Do this here becase deliver_recv_msg() releases the
626 		 * lock, and a new message can be put in during the
627 		 * time the lock is released.
628 		 */
629 		msg = smi_info->curr_msg;
630 		smi_info->curr_msg = NULL;
631 		if (msg->rsp[2] != 0) {
632 			/* Error getting event, probably done. */
633 			msg->done(msg);
634 
635 			/* Take off the event flag. */
636 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
637 			handle_flags(smi_info);
638 		} else {
639 			smi_inc_stat(smi_info, events);
640 
641 			/*
642 			 * Do this before we deliver the message
643 			 * because delivering the message releases the
644 			 * lock and something else can mess with the
645 			 * state.
646 			 */
647 			handle_flags(smi_info);
648 
649 			deliver_recv_msg(smi_info, msg);
650 		}
651 		break;
652 	}
653 
654 	case SI_GETTING_MESSAGES:
655 	{
656 		smi_info->curr_msg->rsp_size
657 			= smi_info->handlers->get_result(
658 				smi_info->si_sm,
659 				smi_info->curr_msg->rsp,
660 				IPMI_MAX_MSG_LENGTH);
661 
662 		/*
663 		 * Do this here becase deliver_recv_msg() releases the
664 		 * lock, and a new message can be put in during the
665 		 * time the lock is released.
666 		 */
667 		msg = smi_info->curr_msg;
668 		smi_info->curr_msg = NULL;
669 		if (msg->rsp[2] != 0) {
670 			/* Error getting event, probably done. */
671 			msg->done(msg);
672 
673 			/* Take off the msg flag. */
674 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
675 			handle_flags(smi_info);
676 		} else {
677 			smi_inc_stat(smi_info, incoming_messages);
678 
679 			/*
680 			 * Do this before we deliver the message
681 			 * because delivering the message releases the
682 			 * lock and something else can mess with the
683 			 * state.
684 			 */
685 			handle_flags(smi_info);
686 
687 			deliver_recv_msg(smi_info, msg);
688 		}
689 		break;
690 	}
691 
692 	case SI_ENABLE_INTERRUPTS1:
693 	{
694 		unsigned char msg[4];
695 
696 		/* We got the flags from the SMI, now handle them. */
697 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
698 		if (msg[2] != 0) {
699 			dev_warn(smi_info->dev, "Could not enable interrupts"
700 				 ", failed get, using polled mode.\n");
701 			smi_info->si_state = SI_NORMAL;
702 		} else {
703 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
704 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
705 			msg[2] = (msg[3] |
706 				  IPMI_BMC_RCV_MSG_INTR |
707 				  IPMI_BMC_EVT_MSG_INTR);
708 			smi_info->handlers->start_transaction(
709 				smi_info->si_sm, msg, 3);
710 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
711 		}
712 		break;
713 	}
714 
715 	case SI_ENABLE_INTERRUPTS2:
716 	{
717 		unsigned char msg[4];
718 
719 		/* We got the flags from the SMI, now handle them. */
720 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
721 		if (msg[2] != 0)
722 			dev_warn(smi_info->dev, "Could not enable interrupts"
723 				 ", failed set, using polled mode.\n");
724 		else
725 			smi_info->interrupt_disabled = 0;
726 		smi_info->si_state = SI_NORMAL;
727 		break;
728 	}
729 
730 	case SI_DISABLE_INTERRUPTS1:
731 	{
732 		unsigned char msg[4];
733 
734 		/* We got the flags from the SMI, now handle them. */
735 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 		if (msg[2] != 0) {
737 			dev_warn(smi_info->dev, "Could not disable interrupts"
738 				 ", failed get.\n");
739 			smi_info->si_state = SI_NORMAL;
740 		} else {
741 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
742 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
743 			msg[2] = (msg[3] &
744 				  ~(IPMI_BMC_RCV_MSG_INTR |
745 				    IPMI_BMC_EVT_MSG_INTR));
746 			smi_info->handlers->start_transaction(
747 				smi_info->si_sm, msg, 3);
748 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
749 		}
750 		break;
751 	}
752 
753 	case SI_DISABLE_INTERRUPTS2:
754 	{
755 		unsigned char msg[4];
756 
757 		/* We got the flags from the SMI, now handle them. */
758 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
759 		if (msg[2] != 0) {
760 			dev_warn(smi_info->dev, "Could not disable interrupts"
761 				 ", failed set.\n");
762 		}
763 		smi_info->si_state = SI_NORMAL;
764 		break;
765 	}
766 	}
767 }
768 
769 /*
770  * Called on timeouts and events.  Timeouts should pass the elapsed
771  * time, interrupts should pass in zero.  Must be called with
772  * si_lock held and interrupts disabled.
773  */
774 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
775 					   int time)
776 {
777 	enum si_sm_result si_sm_result;
778 
779  restart:
780 	/*
781 	 * There used to be a loop here that waited a little while
782 	 * (around 25us) before giving up.  That turned out to be
783 	 * pointless, the minimum delays I was seeing were in the 300us
784 	 * range, which is far too long to wait in an interrupt.  So
785 	 * we just run until the state machine tells us something
786 	 * happened or it needs a delay.
787 	 */
788 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
789 	time = 0;
790 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
791 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792 
793 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
794 		smi_inc_stat(smi_info, complete_transactions);
795 
796 		handle_transaction_done(smi_info);
797 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
798 	} else if (si_sm_result == SI_SM_HOSED) {
799 		smi_inc_stat(smi_info, hosed_count);
800 
801 		/*
802 		 * Do the before return_hosed_msg, because that
803 		 * releases the lock.
804 		 */
805 		smi_info->si_state = SI_NORMAL;
806 		if (smi_info->curr_msg != NULL) {
807 			/*
808 			 * If we were handling a user message, format
809 			 * a response to send to the upper layer to
810 			 * tell it about the error.
811 			 */
812 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
813 		}
814 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
815 	}
816 
817 	/*
818 	 * We prefer handling attn over new messages.  But don't do
819 	 * this if there is not yet an upper layer to handle anything.
820 	 */
821 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
822 		unsigned char msg[2];
823 
824 		smi_inc_stat(smi_info, attentions);
825 
826 		/*
827 		 * Got a attn, send down a get message flags to see
828 		 * what's causing it.  It would be better to handle
829 		 * this in the upper layer, but due to the way
830 		 * interrupts work with the SMI, that's not really
831 		 * possible.
832 		 */
833 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
834 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
835 
836 		smi_info->handlers->start_transaction(
837 			smi_info->si_sm, msg, 2);
838 		smi_info->si_state = SI_GETTING_FLAGS;
839 		goto restart;
840 	}
841 
842 	/* If we are currently idle, try to start the next message. */
843 	if (si_sm_result == SI_SM_IDLE) {
844 		smi_inc_stat(smi_info, idles);
845 
846 		si_sm_result = start_next_msg(smi_info);
847 		if (si_sm_result != SI_SM_IDLE)
848 			goto restart;
849 	}
850 
851 	if ((si_sm_result == SI_SM_IDLE)
852 	    && (atomic_read(&smi_info->req_events))) {
853 		/*
854 		 * We are idle and the upper layer requested that I fetch
855 		 * events, so do so.
856 		 */
857 		atomic_set(&smi_info->req_events, 0);
858 
859 		smi_info->curr_msg = ipmi_alloc_smi_msg();
860 		if (!smi_info->curr_msg)
861 			goto out;
862 
863 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
864 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
865 		smi_info->curr_msg->data_size = 2;
866 
867 		smi_info->handlers->start_transaction(
868 			smi_info->si_sm,
869 			smi_info->curr_msg->data,
870 			smi_info->curr_msg->data_size);
871 		smi_info->si_state = SI_GETTING_EVENTS;
872 		goto restart;
873 	}
874  out:
875 	return si_sm_result;
876 }
877 
878 static void sender(void                *send_info,
879 		   struct ipmi_smi_msg *msg,
880 		   int                 priority)
881 {
882 	struct smi_info   *smi_info = send_info;
883 	enum si_sm_result result;
884 	unsigned long     flags;
885 #ifdef DEBUG_TIMING
886 	struct timeval    t;
887 #endif
888 
889 	if (atomic_read(&smi_info->stop_operation)) {
890 		msg->rsp[0] = msg->data[0] | 4;
891 		msg->rsp[1] = msg->data[1];
892 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
893 		msg->rsp_size = 3;
894 		deliver_recv_msg(smi_info, msg);
895 		return;
896 	}
897 
898 #ifdef DEBUG_TIMING
899 	do_gettimeofday(&t);
900 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
901 #endif
902 
903 	mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
904 
905 	if (smi_info->thread)
906 		wake_up_process(smi_info->thread);
907 
908 	if (smi_info->run_to_completion) {
909 		/*
910 		 * If we are running to completion, then throw it in
911 		 * the list and run transactions until everything is
912 		 * clear.  Priority doesn't matter here.
913 		 */
914 
915 		/*
916 		 * Run to completion means we are single-threaded, no
917 		 * need for locks.
918 		 */
919 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
920 
921 		result = smi_event_handler(smi_info, 0);
922 		while (result != SI_SM_IDLE) {
923 			udelay(SI_SHORT_TIMEOUT_USEC);
924 			result = smi_event_handler(smi_info,
925 						   SI_SHORT_TIMEOUT_USEC);
926 		}
927 		return;
928 	}
929 
930 	spin_lock_irqsave(&smi_info->msg_lock, flags);
931 	if (priority > 0)
932 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
933 	else
934 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
935 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
936 
937 	spin_lock_irqsave(&smi_info->si_lock, flags);
938 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
939 		start_next_msg(smi_info);
940 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
941 }
942 
943 static void set_run_to_completion(void *send_info, int i_run_to_completion)
944 {
945 	struct smi_info   *smi_info = send_info;
946 	enum si_sm_result result;
947 
948 	smi_info->run_to_completion = i_run_to_completion;
949 	if (i_run_to_completion) {
950 		result = smi_event_handler(smi_info, 0);
951 		while (result != SI_SM_IDLE) {
952 			udelay(SI_SHORT_TIMEOUT_USEC);
953 			result = smi_event_handler(smi_info,
954 						   SI_SHORT_TIMEOUT_USEC);
955 		}
956 	}
957 }
958 
959 /*
960  * Use -1 in the nsec value of the busy waiting timespec to tell that
961  * we are spinning in kipmid looking for something and not delaying
962  * between checks
963  */
964 static inline void ipmi_si_set_not_busy(struct timespec *ts)
965 {
966 	ts->tv_nsec = -1;
967 }
968 static inline int ipmi_si_is_busy(struct timespec *ts)
969 {
970 	return ts->tv_nsec != -1;
971 }
972 
973 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
974 				 const struct smi_info *smi_info,
975 				 struct timespec *busy_until)
976 {
977 	unsigned int max_busy_us = 0;
978 
979 	if (smi_info->intf_num < num_max_busy_us)
980 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
981 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
982 		ipmi_si_set_not_busy(busy_until);
983 	else if (!ipmi_si_is_busy(busy_until)) {
984 		getnstimeofday(busy_until);
985 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
986 	} else {
987 		struct timespec now;
988 		getnstimeofday(&now);
989 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
990 			ipmi_si_set_not_busy(busy_until);
991 			return 0;
992 		}
993 	}
994 	return 1;
995 }
996 
997 
998 /*
999  * A busy-waiting loop for speeding up IPMI operation.
1000  *
1001  * Lousy hardware makes this hard.  This is only enabled for systems
1002  * that are not BT and do not have interrupts.  It starts spinning
1003  * when an operation is complete or until max_busy tells it to stop
1004  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1005  * Documentation/IPMI.txt for details.
1006  */
1007 static int ipmi_thread(void *data)
1008 {
1009 	struct smi_info *smi_info = data;
1010 	unsigned long flags;
1011 	enum si_sm_result smi_result;
1012 	struct timespec busy_until;
1013 
1014 	ipmi_si_set_not_busy(&busy_until);
1015 	set_user_nice(current, 19);
1016 	while (!kthread_should_stop()) {
1017 		int busy_wait;
1018 
1019 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1020 		smi_result = smi_event_handler(smi_info, 0);
1021 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1022 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1023 						  &busy_until);
1024 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1025 			; /* do nothing */
1026 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1027 			schedule();
1028 		else if (smi_result == SI_SM_IDLE)
1029 			schedule_timeout_interruptible(100);
1030 		else
1031 			schedule_timeout_interruptible(1);
1032 	}
1033 	return 0;
1034 }
1035 
1036 
1037 static void poll(void *send_info)
1038 {
1039 	struct smi_info *smi_info = send_info;
1040 	unsigned long flags;
1041 
1042 	/*
1043 	 * Make sure there is some delay in the poll loop so we can
1044 	 * drive time forward and timeout things.
1045 	 */
1046 	udelay(10);
1047 	spin_lock_irqsave(&smi_info->si_lock, flags);
1048 	smi_event_handler(smi_info, 10);
1049 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1050 }
1051 
1052 static void request_events(void *send_info)
1053 {
1054 	struct smi_info *smi_info = send_info;
1055 
1056 	if (atomic_read(&smi_info->stop_operation) ||
1057 				!smi_info->has_event_buffer)
1058 		return;
1059 
1060 	atomic_set(&smi_info->req_events, 1);
1061 }
1062 
1063 static int initialized;
1064 
1065 static void smi_timeout(unsigned long data)
1066 {
1067 	struct smi_info   *smi_info = (struct smi_info *) data;
1068 	enum si_sm_result smi_result;
1069 	unsigned long     flags;
1070 	unsigned long     jiffies_now;
1071 	long              time_diff;
1072 	long		  timeout;
1073 #ifdef DEBUG_TIMING
1074 	struct timeval    t;
1075 #endif
1076 
1077 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1078 #ifdef DEBUG_TIMING
1079 	do_gettimeofday(&t);
1080 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1081 #endif
1082 	jiffies_now = jiffies;
1083 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1084 		     * SI_USEC_PER_JIFFY);
1085 	smi_result = smi_event_handler(smi_info, time_diff);
1086 
1087 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1088 
1089 	smi_info->last_timeout_jiffies = jiffies_now;
1090 
1091 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1092 		/* Running with interrupts, only do long timeouts. */
1093 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1094 		smi_inc_stat(smi_info, long_timeouts);
1095 		goto do_mod_timer;
1096 	}
1097 
1098 	/*
1099 	 * If the state machine asks for a short delay, then shorten
1100 	 * the timer timeout.
1101 	 */
1102 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1103 		smi_inc_stat(smi_info, short_timeouts);
1104 		timeout = jiffies + 1;
1105 	} else {
1106 		smi_inc_stat(smi_info, long_timeouts);
1107 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1108 	}
1109 
1110  do_mod_timer:
1111 	if (smi_result != SI_SM_IDLE)
1112 		mod_timer(&(smi_info->si_timer), timeout);
1113 }
1114 
1115 static irqreturn_t si_irq_handler(int irq, void *data)
1116 {
1117 	struct smi_info *smi_info = data;
1118 	unsigned long   flags;
1119 #ifdef DEBUG_TIMING
1120 	struct timeval  t;
1121 #endif
1122 
1123 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1124 
1125 	smi_inc_stat(smi_info, interrupts);
1126 
1127 #ifdef DEBUG_TIMING
1128 	do_gettimeofday(&t);
1129 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1130 #endif
1131 	smi_event_handler(smi_info, 0);
1132 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1133 	return IRQ_HANDLED;
1134 }
1135 
1136 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1137 {
1138 	struct smi_info *smi_info = data;
1139 	/* We need to clear the IRQ flag for the BT interface. */
1140 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1141 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1142 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1143 	return si_irq_handler(irq, data);
1144 }
1145 
1146 static int smi_start_processing(void       *send_info,
1147 				ipmi_smi_t intf)
1148 {
1149 	struct smi_info *new_smi = send_info;
1150 	int             enable = 0;
1151 
1152 	new_smi->intf = intf;
1153 
1154 	/* Try to claim any interrupts. */
1155 	if (new_smi->irq_setup)
1156 		new_smi->irq_setup(new_smi);
1157 
1158 	/* Set up the timer that drives the interface. */
1159 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1160 	new_smi->last_timeout_jiffies = jiffies;
1161 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1162 
1163 	/*
1164 	 * Check if the user forcefully enabled the daemon.
1165 	 */
1166 	if (new_smi->intf_num < num_force_kipmid)
1167 		enable = force_kipmid[new_smi->intf_num];
1168 	/*
1169 	 * The BT interface is efficient enough to not need a thread,
1170 	 * and there is no need for a thread if we have interrupts.
1171 	 */
1172 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1173 		enable = 1;
1174 
1175 	if (enable) {
1176 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1177 					      "kipmi%d", new_smi->intf_num);
1178 		if (IS_ERR(new_smi->thread)) {
1179 			dev_notice(new_smi->dev, "Could not start"
1180 				   " kernel thread due to error %ld, only using"
1181 				   " timers to drive the interface\n",
1182 				   PTR_ERR(new_smi->thread));
1183 			new_smi->thread = NULL;
1184 		}
1185 	}
1186 
1187 	return 0;
1188 }
1189 
1190 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1191 {
1192 	struct smi_info *smi = send_info;
1193 
1194 	data->addr_src = smi->addr_source;
1195 	data->dev = smi->dev;
1196 	data->addr_info = smi->addr_info;
1197 	get_device(smi->dev);
1198 
1199 	return 0;
1200 }
1201 
1202 static void set_maintenance_mode(void *send_info, int enable)
1203 {
1204 	struct smi_info   *smi_info = send_info;
1205 
1206 	if (!enable)
1207 		atomic_set(&smi_info->req_events, 0);
1208 }
1209 
1210 static struct ipmi_smi_handlers handlers = {
1211 	.owner                  = THIS_MODULE,
1212 	.start_processing       = smi_start_processing,
1213 	.get_smi_info		= get_smi_info,
1214 	.sender			= sender,
1215 	.request_events		= request_events,
1216 	.set_maintenance_mode   = set_maintenance_mode,
1217 	.set_run_to_completion  = set_run_to_completion,
1218 	.poll			= poll,
1219 };
1220 
1221 /*
1222  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1223  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1224  */
1225 
1226 static LIST_HEAD(smi_infos);
1227 static DEFINE_MUTEX(smi_infos_lock);
1228 static int smi_num; /* Used to sequence the SMIs */
1229 
1230 #define DEFAULT_REGSPACING	1
1231 #define DEFAULT_REGSIZE		1
1232 
1233 static int           si_trydefaults = 1;
1234 static char          *si_type[SI_MAX_PARMS];
1235 #define MAX_SI_TYPE_STR 30
1236 static char          si_type_str[MAX_SI_TYPE_STR];
1237 static unsigned long addrs[SI_MAX_PARMS];
1238 static unsigned int num_addrs;
1239 static unsigned int  ports[SI_MAX_PARMS];
1240 static unsigned int num_ports;
1241 static int           irqs[SI_MAX_PARMS];
1242 static unsigned int num_irqs;
1243 static int           regspacings[SI_MAX_PARMS];
1244 static unsigned int num_regspacings;
1245 static int           regsizes[SI_MAX_PARMS];
1246 static unsigned int num_regsizes;
1247 static int           regshifts[SI_MAX_PARMS];
1248 static unsigned int num_regshifts;
1249 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1250 static unsigned int num_slave_addrs;
1251 
1252 #define IPMI_IO_ADDR_SPACE  0
1253 #define IPMI_MEM_ADDR_SPACE 1
1254 static char *addr_space_to_str[] = { "i/o", "mem" };
1255 
1256 static int hotmod_handler(const char *val, struct kernel_param *kp);
1257 
1258 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1259 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1260 		 " Documentation/IPMI.txt in the kernel sources for the"
1261 		 " gory details.");
1262 
1263 module_param_named(trydefaults, si_trydefaults, bool, 0);
1264 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1265 		 " default scan of the KCS and SMIC interface at the standard"
1266 		 " address");
1267 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1268 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1269 		 " interface separated by commas.  The types are 'kcs',"
1270 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1271 		 " the first interface to kcs and the second to bt");
1272 module_param_array(addrs, ulong, &num_addrs, 0);
1273 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1274 		 " addresses separated by commas.  Only use if an interface"
1275 		 " is in memory.  Otherwise, set it to zero or leave"
1276 		 " it blank.");
1277 module_param_array(ports, uint, &num_ports, 0);
1278 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1279 		 " addresses separated by commas.  Only use if an interface"
1280 		 " is a port.  Otherwise, set it to zero or leave"
1281 		 " it blank.");
1282 module_param_array(irqs, int, &num_irqs, 0);
1283 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1284 		 " addresses separated by commas.  Only use if an interface"
1285 		 " has an interrupt.  Otherwise, set it to zero or leave"
1286 		 " it blank.");
1287 module_param_array(regspacings, int, &num_regspacings, 0);
1288 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1289 		 " and each successive register used by the interface.  For"
1290 		 " instance, if the start address is 0xca2 and the spacing"
1291 		 " is 2, then the second address is at 0xca4.  Defaults"
1292 		 " to 1.");
1293 module_param_array(regsizes, int, &num_regsizes, 0);
1294 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1295 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1296 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1297 		 " the 8-bit IPMI register has to be read from a larger"
1298 		 " register.");
1299 module_param_array(regshifts, int, &num_regshifts, 0);
1300 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1301 		 " IPMI register, in bits.  For instance, if the data"
1302 		 " is read from a 32-bit word and the IPMI data is in"
1303 		 " bit 8-15, then the shift would be 8");
1304 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1305 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1306 		 " the controller.  Normally this is 0x20, but can be"
1307 		 " overridden by this parm.  This is an array indexed"
1308 		 " by interface number.");
1309 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1310 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1311 		 " disabled(0).  Normally the IPMI driver auto-detects"
1312 		 " this, but the value may be overridden by this parm.");
1313 module_param(unload_when_empty, int, 0);
1314 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1315 		 " specified or found, default is 1.  Setting to 0"
1316 		 " is useful for hot add of devices using hotmod.");
1317 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1318 MODULE_PARM_DESC(kipmid_max_busy_us,
1319 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1320 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1321 		 " if kipmid is using up a lot of CPU time.");
1322 
1323 
1324 static void std_irq_cleanup(struct smi_info *info)
1325 {
1326 	if (info->si_type == SI_BT)
1327 		/* Disable the interrupt in the BT interface. */
1328 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1329 	free_irq(info->irq, info);
1330 }
1331 
1332 static int std_irq_setup(struct smi_info *info)
1333 {
1334 	int rv;
1335 
1336 	if (!info->irq)
1337 		return 0;
1338 
1339 	if (info->si_type == SI_BT) {
1340 		rv = request_irq(info->irq,
1341 				 si_bt_irq_handler,
1342 				 IRQF_SHARED | IRQF_DISABLED,
1343 				 DEVICE_NAME,
1344 				 info);
1345 		if (!rv)
1346 			/* Enable the interrupt in the BT interface. */
1347 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1348 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1349 	} else
1350 		rv = request_irq(info->irq,
1351 				 si_irq_handler,
1352 				 IRQF_SHARED | IRQF_DISABLED,
1353 				 DEVICE_NAME,
1354 				 info);
1355 	if (rv) {
1356 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1357 			 " running polled\n",
1358 			 DEVICE_NAME, info->irq);
1359 		info->irq = 0;
1360 	} else {
1361 		info->irq_cleanup = std_irq_cleanup;
1362 		dev_info(info->dev, "Using irq %d\n", info->irq);
1363 	}
1364 
1365 	return rv;
1366 }
1367 
1368 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1369 {
1370 	unsigned int addr = io->addr_data;
1371 
1372 	return inb(addr + (offset * io->regspacing));
1373 }
1374 
1375 static void port_outb(struct si_sm_io *io, unsigned int offset,
1376 		      unsigned char b)
1377 {
1378 	unsigned int addr = io->addr_data;
1379 
1380 	outb(b, addr + (offset * io->regspacing));
1381 }
1382 
1383 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1384 {
1385 	unsigned int addr = io->addr_data;
1386 
1387 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1388 }
1389 
1390 static void port_outw(struct si_sm_io *io, unsigned int offset,
1391 		      unsigned char b)
1392 {
1393 	unsigned int addr = io->addr_data;
1394 
1395 	outw(b << io->regshift, addr + (offset * io->regspacing));
1396 }
1397 
1398 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1399 {
1400 	unsigned int addr = io->addr_data;
1401 
1402 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1403 }
1404 
1405 static void port_outl(struct si_sm_io *io, unsigned int offset,
1406 		      unsigned char b)
1407 {
1408 	unsigned int addr = io->addr_data;
1409 
1410 	outl(b << io->regshift, addr+(offset * io->regspacing));
1411 }
1412 
1413 static void port_cleanup(struct smi_info *info)
1414 {
1415 	unsigned int addr = info->io.addr_data;
1416 	int          idx;
1417 
1418 	if (addr) {
1419 		for (idx = 0; idx < info->io_size; idx++)
1420 			release_region(addr + idx * info->io.regspacing,
1421 				       info->io.regsize);
1422 	}
1423 }
1424 
1425 static int port_setup(struct smi_info *info)
1426 {
1427 	unsigned int addr = info->io.addr_data;
1428 	int          idx;
1429 
1430 	if (!addr)
1431 		return -ENODEV;
1432 
1433 	info->io_cleanup = port_cleanup;
1434 
1435 	/*
1436 	 * Figure out the actual inb/inw/inl/etc routine to use based
1437 	 * upon the register size.
1438 	 */
1439 	switch (info->io.regsize) {
1440 	case 1:
1441 		info->io.inputb = port_inb;
1442 		info->io.outputb = port_outb;
1443 		break;
1444 	case 2:
1445 		info->io.inputb = port_inw;
1446 		info->io.outputb = port_outw;
1447 		break;
1448 	case 4:
1449 		info->io.inputb = port_inl;
1450 		info->io.outputb = port_outl;
1451 		break;
1452 	default:
1453 		dev_warn(info->dev, "Invalid register size: %d\n",
1454 			 info->io.regsize);
1455 		return -EINVAL;
1456 	}
1457 
1458 	/*
1459 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1460 	 * tables.  This causes problems when trying to register the
1461 	 * entire I/O region.  Therefore we must register each I/O
1462 	 * port separately.
1463 	 */
1464 	for (idx = 0; idx < info->io_size; idx++) {
1465 		if (request_region(addr + idx * info->io.regspacing,
1466 				   info->io.regsize, DEVICE_NAME) == NULL) {
1467 			/* Undo allocations */
1468 			while (idx--) {
1469 				release_region(addr + idx * info->io.regspacing,
1470 					       info->io.regsize);
1471 			}
1472 			return -EIO;
1473 		}
1474 	}
1475 	return 0;
1476 }
1477 
1478 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1479 {
1480 	return readb((io->addr)+(offset * io->regspacing));
1481 }
1482 
1483 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1484 		     unsigned char b)
1485 {
1486 	writeb(b, (io->addr)+(offset * io->regspacing));
1487 }
1488 
1489 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1490 {
1491 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1492 		& 0xff;
1493 }
1494 
1495 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1496 		     unsigned char b)
1497 {
1498 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1499 }
1500 
1501 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1502 {
1503 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1504 		& 0xff;
1505 }
1506 
1507 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1508 		     unsigned char b)
1509 {
1510 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1511 }
1512 
1513 #ifdef readq
1514 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1515 {
1516 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1517 		& 0xff;
1518 }
1519 
1520 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1521 		     unsigned char b)
1522 {
1523 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1524 }
1525 #endif
1526 
1527 static void mem_cleanup(struct smi_info *info)
1528 {
1529 	unsigned long addr = info->io.addr_data;
1530 	int           mapsize;
1531 
1532 	if (info->io.addr) {
1533 		iounmap(info->io.addr);
1534 
1535 		mapsize = ((info->io_size * info->io.regspacing)
1536 			   - (info->io.regspacing - info->io.regsize));
1537 
1538 		release_mem_region(addr, mapsize);
1539 	}
1540 }
1541 
1542 static int mem_setup(struct smi_info *info)
1543 {
1544 	unsigned long addr = info->io.addr_data;
1545 	int           mapsize;
1546 
1547 	if (!addr)
1548 		return -ENODEV;
1549 
1550 	info->io_cleanup = mem_cleanup;
1551 
1552 	/*
1553 	 * Figure out the actual readb/readw/readl/etc routine to use based
1554 	 * upon the register size.
1555 	 */
1556 	switch (info->io.regsize) {
1557 	case 1:
1558 		info->io.inputb = intf_mem_inb;
1559 		info->io.outputb = intf_mem_outb;
1560 		break;
1561 	case 2:
1562 		info->io.inputb = intf_mem_inw;
1563 		info->io.outputb = intf_mem_outw;
1564 		break;
1565 	case 4:
1566 		info->io.inputb = intf_mem_inl;
1567 		info->io.outputb = intf_mem_outl;
1568 		break;
1569 #ifdef readq
1570 	case 8:
1571 		info->io.inputb = mem_inq;
1572 		info->io.outputb = mem_outq;
1573 		break;
1574 #endif
1575 	default:
1576 		dev_warn(info->dev, "Invalid register size: %d\n",
1577 			 info->io.regsize);
1578 		return -EINVAL;
1579 	}
1580 
1581 	/*
1582 	 * Calculate the total amount of memory to claim.  This is an
1583 	 * unusual looking calculation, but it avoids claiming any
1584 	 * more memory than it has to.  It will claim everything
1585 	 * between the first address to the end of the last full
1586 	 * register.
1587 	 */
1588 	mapsize = ((info->io_size * info->io.regspacing)
1589 		   - (info->io.regspacing - info->io.regsize));
1590 
1591 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1592 		return -EIO;
1593 
1594 	info->io.addr = ioremap(addr, mapsize);
1595 	if (info->io.addr == NULL) {
1596 		release_mem_region(addr, mapsize);
1597 		return -EIO;
1598 	}
1599 	return 0;
1600 }
1601 
1602 /*
1603  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1604  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1605  * Options are:
1606  *   rsp=<regspacing>
1607  *   rsi=<regsize>
1608  *   rsh=<regshift>
1609  *   irq=<irq>
1610  *   ipmb=<ipmb addr>
1611  */
1612 enum hotmod_op { HM_ADD, HM_REMOVE };
1613 struct hotmod_vals {
1614 	char *name;
1615 	int  val;
1616 };
1617 static struct hotmod_vals hotmod_ops[] = {
1618 	{ "add",	HM_ADD },
1619 	{ "remove",	HM_REMOVE },
1620 	{ NULL }
1621 };
1622 static struct hotmod_vals hotmod_si[] = {
1623 	{ "kcs",	SI_KCS },
1624 	{ "smic",	SI_SMIC },
1625 	{ "bt",		SI_BT },
1626 	{ NULL }
1627 };
1628 static struct hotmod_vals hotmod_as[] = {
1629 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1630 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1631 	{ NULL }
1632 };
1633 
1634 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1635 {
1636 	char *s;
1637 	int  i;
1638 
1639 	s = strchr(*curr, ',');
1640 	if (!s) {
1641 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1642 		return -EINVAL;
1643 	}
1644 	*s = '\0';
1645 	s++;
1646 	for (i = 0; hotmod_ops[i].name; i++) {
1647 		if (strcmp(*curr, v[i].name) == 0) {
1648 			*val = v[i].val;
1649 			*curr = s;
1650 			return 0;
1651 		}
1652 	}
1653 
1654 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1655 	return -EINVAL;
1656 }
1657 
1658 static int check_hotmod_int_op(const char *curr, const char *option,
1659 			       const char *name, int *val)
1660 {
1661 	char *n;
1662 
1663 	if (strcmp(curr, name) == 0) {
1664 		if (!option) {
1665 			printk(KERN_WARNING PFX
1666 			       "No option given for '%s'\n",
1667 			       curr);
1668 			return -EINVAL;
1669 		}
1670 		*val = simple_strtoul(option, &n, 0);
1671 		if ((*n != '\0') || (*option == '\0')) {
1672 			printk(KERN_WARNING PFX
1673 			       "Bad option given for '%s'\n",
1674 			       curr);
1675 			return -EINVAL;
1676 		}
1677 		return 1;
1678 	}
1679 	return 0;
1680 }
1681 
1682 static struct smi_info *smi_info_alloc(void)
1683 {
1684 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1685 
1686 	if (info) {
1687 		spin_lock_init(&info->si_lock);
1688 		spin_lock_init(&info->msg_lock);
1689 	}
1690 	return info;
1691 }
1692 
1693 static int hotmod_handler(const char *val, struct kernel_param *kp)
1694 {
1695 	char *str = kstrdup(val, GFP_KERNEL);
1696 	int  rv;
1697 	char *next, *curr, *s, *n, *o;
1698 	enum hotmod_op op;
1699 	enum si_type si_type;
1700 	int  addr_space;
1701 	unsigned long addr;
1702 	int regspacing;
1703 	int regsize;
1704 	int regshift;
1705 	int irq;
1706 	int ipmb;
1707 	int ival;
1708 	int len;
1709 	struct smi_info *info;
1710 
1711 	if (!str)
1712 		return -ENOMEM;
1713 
1714 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1715 	len = strlen(str);
1716 	ival = len - 1;
1717 	while ((ival >= 0) && isspace(str[ival])) {
1718 		str[ival] = '\0';
1719 		ival--;
1720 	}
1721 
1722 	for (curr = str; curr; curr = next) {
1723 		regspacing = 1;
1724 		regsize = 1;
1725 		regshift = 0;
1726 		irq = 0;
1727 		ipmb = 0; /* Choose the default if not specified */
1728 
1729 		next = strchr(curr, ':');
1730 		if (next) {
1731 			*next = '\0';
1732 			next++;
1733 		}
1734 
1735 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1736 		if (rv)
1737 			break;
1738 		op = ival;
1739 
1740 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1741 		if (rv)
1742 			break;
1743 		si_type = ival;
1744 
1745 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1746 		if (rv)
1747 			break;
1748 
1749 		s = strchr(curr, ',');
1750 		if (s) {
1751 			*s = '\0';
1752 			s++;
1753 		}
1754 		addr = simple_strtoul(curr, &n, 0);
1755 		if ((*n != '\0') || (*curr == '\0')) {
1756 			printk(KERN_WARNING PFX "Invalid hotmod address"
1757 			       " '%s'\n", curr);
1758 			break;
1759 		}
1760 
1761 		while (s) {
1762 			curr = s;
1763 			s = strchr(curr, ',');
1764 			if (s) {
1765 				*s = '\0';
1766 				s++;
1767 			}
1768 			o = strchr(curr, '=');
1769 			if (o) {
1770 				*o = '\0';
1771 				o++;
1772 			}
1773 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1774 			if (rv < 0)
1775 				goto out;
1776 			else if (rv)
1777 				continue;
1778 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1779 			if (rv < 0)
1780 				goto out;
1781 			else if (rv)
1782 				continue;
1783 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1784 			if (rv < 0)
1785 				goto out;
1786 			else if (rv)
1787 				continue;
1788 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1789 			if (rv < 0)
1790 				goto out;
1791 			else if (rv)
1792 				continue;
1793 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1794 			if (rv < 0)
1795 				goto out;
1796 			else if (rv)
1797 				continue;
1798 
1799 			rv = -EINVAL;
1800 			printk(KERN_WARNING PFX
1801 			       "Invalid hotmod option '%s'\n",
1802 			       curr);
1803 			goto out;
1804 		}
1805 
1806 		if (op == HM_ADD) {
1807 			info = smi_info_alloc();
1808 			if (!info) {
1809 				rv = -ENOMEM;
1810 				goto out;
1811 			}
1812 
1813 			info->addr_source = SI_HOTMOD;
1814 			info->si_type = si_type;
1815 			info->io.addr_data = addr;
1816 			info->io.addr_type = addr_space;
1817 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1818 				info->io_setup = mem_setup;
1819 			else
1820 				info->io_setup = port_setup;
1821 
1822 			info->io.addr = NULL;
1823 			info->io.regspacing = regspacing;
1824 			if (!info->io.regspacing)
1825 				info->io.regspacing = DEFAULT_REGSPACING;
1826 			info->io.regsize = regsize;
1827 			if (!info->io.regsize)
1828 				info->io.regsize = DEFAULT_REGSPACING;
1829 			info->io.regshift = regshift;
1830 			info->irq = irq;
1831 			if (info->irq)
1832 				info->irq_setup = std_irq_setup;
1833 			info->slave_addr = ipmb;
1834 
1835 			if (!add_smi(info)) {
1836 				if (try_smi_init(info))
1837 					cleanup_one_si(info);
1838 			} else {
1839 				kfree(info);
1840 			}
1841 		} else {
1842 			/* remove */
1843 			struct smi_info *e, *tmp_e;
1844 
1845 			mutex_lock(&smi_infos_lock);
1846 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1847 				if (e->io.addr_type != addr_space)
1848 					continue;
1849 				if (e->si_type != si_type)
1850 					continue;
1851 				if (e->io.addr_data == addr)
1852 					cleanup_one_si(e);
1853 			}
1854 			mutex_unlock(&smi_infos_lock);
1855 		}
1856 	}
1857 	rv = len;
1858  out:
1859 	kfree(str);
1860 	return rv;
1861 }
1862 
1863 static void __devinit hardcode_find_bmc(void)
1864 {
1865 	int             i;
1866 	struct smi_info *info;
1867 
1868 	for (i = 0; i < SI_MAX_PARMS; i++) {
1869 		if (!ports[i] && !addrs[i])
1870 			continue;
1871 
1872 		info = smi_info_alloc();
1873 		if (!info)
1874 			return;
1875 
1876 		info->addr_source = SI_HARDCODED;
1877 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1878 
1879 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1880 			info->si_type = SI_KCS;
1881 		} else if (strcmp(si_type[i], "smic") == 0) {
1882 			info->si_type = SI_SMIC;
1883 		} else if (strcmp(si_type[i], "bt") == 0) {
1884 			info->si_type = SI_BT;
1885 		} else {
1886 			printk(KERN_WARNING PFX "Interface type specified "
1887 			       "for interface %d, was invalid: %s\n",
1888 			       i, si_type[i]);
1889 			kfree(info);
1890 			continue;
1891 		}
1892 
1893 		if (ports[i]) {
1894 			/* An I/O port */
1895 			info->io_setup = port_setup;
1896 			info->io.addr_data = ports[i];
1897 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1898 		} else if (addrs[i]) {
1899 			/* A memory port */
1900 			info->io_setup = mem_setup;
1901 			info->io.addr_data = addrs[i];
1902 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1903 		} else {
1904 			printk(KERN_WARNING PFX "Interface type specified "
1905 			       "for interface %d, but port and address were "
1906 			       "not set or set to zero.\n", i);
1907 			kfree(info);
1908 			continue;
1909 		}
1910 
1911 		info->io.addr = NULL;
1912 		info->io.regspacing = regspacings[i];
1913 		if (!info->io.regspacing)
1914 			info->io.regspacing = DEFAULT_REGSPACING;
1915 		info->io.regsize = regsizes[i];
1916 		if (!info->io.regsize)
1917 			info->io.regsize = DEFAULT_REGSPACING;
1918 		info->io.regshift = regshifts[i];
1919 		info->irq = irqs[i];
1920 		if (info->irq)
1921 			info->irq_setup = std_irq_setup;
1922 		info->slave_addr = slave_addrs[i];
1923 
1924 		if (!add_smi(info)) {
1925 			if (try_smi_init(info))
1926 				cleanup_one_si(info);
1927 		} else {
1928 			kfree(info);
1929 		}
1930 	}
1931 }
1932 
1933 #ifdef CONFIG_ACPI
1934 
1935 #include <linux/acpi.h>
1936 
1937 /*
1938  * Once we get an ACPI failure, we don't try any more, because we go
1939  * through the tables sequentially.  Once we don't find a table, there
1940  * are no more.
1941  */
1942 static int acpi_failure;
1943 
1944 /* For GPE-type interrupts. */
1945 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1946 	u32 gpe_number, void *context)
1947 {
1948 	struct smi_info *smi_info = context;
1949 	unsigned long   flags;
1950 #ifdef DEBUG_TIMING
1951 	struct timeval t;
1952 #endif
1953 
1954 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1955 
1956 	smi_inc_stat(smi_info, interrupts);
1957 
1958 #ifdef DEBUG_TIMING
1959 	do_gettimeofday(&t);
1960 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1961 #endif
1962 	smi_event_handler(smi_info, 0);
1963 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1964 
1965 	return ACPI_INTERRUPT_HANDLED;
1966 }
1967 
1968 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1969 {
1970 	if (!info->irq)
1971 		return;
1972 
1973 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1974 }
1975 
1976 static int acpi_gpe_irq_setup(struct smi_info *info)
1977 {
1978 	acpi_status status;
1979 
1980 	if (!info->irq)
1981 		return 0;
1982 
1983 	/* FIXME - is level triggered right? */
1984 	status = acpi_install_gpe_handler(NULL,
1985 					  info->irq,
1986 					  ACPI_GPE_LEVEL_TRIGGERED,
1987 					  &ipmi_acpi_gpe,
1988 					  info);
1989 	if (status != AE_OK) {
1990 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1991 			 " running polled\n", DEVICE_NAME, info->irq);
1992 		info->irq = 0;
1993 		return -EINVAL;
1994 	} else {
1995 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1996 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1997 		return 0;
1998 	}
1999 }
2000 
2001 /*
2002  * Defined at
2003  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2004  */
2005 struct SPMITable {
2006 	s8	Signature[4];
2007 	u32	Length;
2008 	u8	Revision;
2009 	u8	Checksum;
2010 	s8	OEMID[6];
2011 	s8	OEMTableID[8];
2012 	s8	OEMRevision[4];
2013 	s8	CreatorID[4];
2014 	s8	CreatorRevision[4];
2015 	u8	InterfaceType;
2016 	u8	IPMIlegacy;
2017 	s16	SpecificationRevision;
2018 
2019 	/*
2020 	 * Bit 0 - SCI interrupt supported
2021 	 * Bit 1 - I/O APIC/SAPIC
2022 	 */
2023 	u8	InterruptType;
2024 
2025 	/*
2026 	 * If bit 0 of InterruptType is set, then this is the SCI
2027 	 * interrupt in the GPEx_STS register.
2028 	 */
2029 	u8	GPE;
2030 
2031 	s16	Reserved;
2032 
2033 	/*
2034 	 * If bit 1 of InterruptType is set, then this is the I/O
2035 	 * APIC/SAPIC interrupt.
2036 	 */
2037 	u32	GlobalSystemInterrupt;
2038 
2039 	/* The actual register address. */
2040 	struct acpi_generic_address addr;
2041 
2042 	u8	UID[4];
2043 
2044 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2045 };
2046 
2047 static int __devinit try_init_spmi(struct SPMITable *spmi)
2048 {
2049 	struct smi_info  *info;
2050 
2051 	if (spmi->IPMIlegacy != 1) {
2052 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2053 		return -ENODEV;
2054 	}
2055 
2056 	info = smi_info_alloc();
2057 	if (!info) {
2058 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2059 		return -ENOMEM;
2060 	}
2061 
2062 	info->addr_source = SI_SPMI;
2063 	printk(KERN_INFO PFX "probing via SPMI\n");
2064 
2065 	/* Figure out the interface type. */
2066 	switch (spmi->InterfaceType) {
2067 	case 1:	/* KCS */
2068 		info->si_type = SI_KCS;
2069 		break;
2070 	case 2:	/* SMIC */
2071 		info->si_type = SI_SMIC;
2072 		break;
2073 	case 3:	/* BT */
2074 		info->si_type = SI_BT;
2075 		break;
2076 	default:
2077 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2078 		       spmi->InterfaceType);
2079 		kfree(info);
2080 		return -EIO;
2081 	}
2082 
2083 	if (spmi->InterruptType & 1) {
2084 		/* We've got a GPE interrupt. */
2085 		info->irq = spmi->GPE;
2086 		info->irq_setup = acpi_gpe_irq_setup;
2087 	} else if (spmi->InterruptType & 2) {
2088 		/* We've got an APIC/SAPIC interrupt. */
2089 		info->irq = spmi->GlobalSystemInterrupt;
2090 		info->irq_setup = std_irq_setup;
2091 	} else {
2092 		/* Use the default interrupt setting. */
2093 		info->irq = 0;
2094 		info->irq_setup = NULL;
2095 	}
2096 
2097 	if (spmi->addr.bit_width) {
2098 		/* A (hopefully) properly formed register bit width. */
2099 		info->io.regspacing = spmi->addr.bit_width / 8;
2100 	} else {
2101 		info->io.regspacing = DEFAULT_REGSPACING;
2102 	}
2103 	info->io.regsize = info->io.regspacing;
2104 	info->io.regshift = spmi->addr.bit_offset;
2105 
2106 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2107 		info->io_setup = mem_setup;
2108 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2109 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2110 		info->io_setup = port_setup;
2111 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2112 	} else {
2113 		kfree(info);
2114 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2115 		return -EIO;
2116 	}
2117 	info->io.addr_data = spmi->addr.address;
2118 
2119 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2120 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2121 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2122 		 info->irq);
2123 
2124 	if (add_smi(info))
2125 		kfree(info);
2126 
2127 	return 0;
2128 }
2129 
2130 static void __devinit spmi_find_bmc(void)
2131 {
2132 	acpi_status      status;
2133 	struct SPMITable *spmi;
2134 	int              i;
2135 
2136 	if (acpi_disabled)
2137 		return;
2138 
2139 	if (acpi_failure)
2140 		return;
2141 
2142 	for (i = 0; ; i++) {
2143 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2144 					(struct acpi_table_header **)&spmi);
2145 		if (status != AE_OK)
2146 			return;
2147 
2148 		try_init_spmi(spmi);
2149 	}
2150 }
2151 
2152 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2153 				    const struct pnp_device_id *dev_id)
2154 {
2155 	struct acpi_device *acpi_dev;
2156 	struct smi_info *info;
2157 	struct resource *res, *res_second;
2158 	acpi_handle handle;
2159 	acpi_status status;
2160 	unsigned long long tmp;
2161 
2162 	acpi_dev = pnp_acpi_device(dev);
2163 	if (!acpi_dev)
2164 		return -ENODEV;
2165 
2166 	info = smi_info_alloc();
2167 	if (!info)
2168 		return -ENOMEM;
2169 
2170 	info->addr_source = SI_ACPI;
2171 	printk(KERN_INFO PFX "probing via ACPI\n");
2172 
2173 	handle = acpi_dev->handle;
2174 	info->addr_info.acpi_info.acpi_handle = handle;
2175 
2176 	/* _IFT tells us the interface type: KCS, BT, etc */
2177 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2178 	if (ACPI_FAILURE(status))
2179 		goto err_free;
2180 
2181 	switch (tmp) {
2182 	case 1:
2183 		info->si_type = SI_KCS;
2184 		break;
2185 	case 2:
2186 		info->si_type = SI_SMIC;
2187 		break;
2188 	case 3:
2189 		info->si_type = SI_BT;
2190 		break;
2191 	default:
2192 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2193 		goto err_free;
2194 	}
2195 
2196 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2197 	if (res) {
2198 		info->io_setup = port_setup;
2199 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2200 	} else {
2201 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2202 		if (res) {
2203 			info->io_setup = mem_setup;
2204 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2205 		}
2206 	}
2207 	if (!res) {
2208 		dev_err(&dev->dev, "no I/O or memory address\n");
2209 		goto err_free;
2210 	}
2211 	info->io.addr_data = res->start;
2212 
2213 	info->io.regspacing = DEFAULT_REGSPACING;
2214 	res_second = pnp_get_resource(dev,
2215 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2216 					IORESOURCE_IO : IORESOURCE_MEM,
2217 			       1);
2218 	if (res_second) {
2219 		if (res_second->start > info->io.addr_data)
2220 			info->io.regspacing = res_second->start - info->io.addr_data;
2221 	}
2222 	info->io.regsize = DEFAULT_REGSPACING;
2223 	info->io.regshift = 0;
2224 
2225 	/* If _GPE exists, use it; otherwise use standard interrupts */
2226 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2227 	if (ACPI_SUCCESS(status)) {
2228 		info->irq = tmp;
2229 		info->irq_setup = acpi_gpe_irq_setup;
2230 	} else if (pnp_irq_valid(dev, 0)) {
2231 		info->irq = pnp_irq(dev, 0);
2232 		info->irq_setup = std_irq_setup;
2233 	}
2234 
2235 	info->dev = &dev->dev;
2236 	pnp_set_drvdata(dev, info);
2237 
2238 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2239 		 res, info->io.regsize, info->io.regspacing,
2240 		 info->irq);
2241 
2242 	if (add_smi(info))
2243 		goto err_free;
2244 
2245 	return 0;
2246 
2247 err_free:
2248 	kfree(info);
2249 	return -EINVAL;
2250 }
2251 
2252 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2253 {
2254 	struct smi_info *info = pnp_get_drvdata(dev);
2255 
2256 	cleanup_one_si(info);
2257 }
2258 
2259 static const struct pnp_device_id pnp_dev_table[] = {
2260 	{"IPI0001", 0},
2261 	{"", 0},
2262 };
2263 
2264 static struct pnp_driver ipmi_pnp_driver = {
2265 	.name		= DEVICE_NAME,
2266 	.probe		= ipmi_pnp_probe,
2267 	.remove		= __devexit_p(ipmi_pnp_remove),
2268 	.id_table	= pnp_dev_table,
2269 };
2270 #endif
2271 
2272 #ifdef CONFIG_DMI
2273 struct dmi_ipmi_data {
2274 	u8   		type;
2275 	u8   		addr_space;
2276 	unsigned long	base_addr;
2277 	u8   		irq;
2278 	u8              offset;
2279 	u8              slave_addr;
2280 };
2281 
2282 static int __devinit decode_dmi(const struct dmi_header *dm,
2283 				struct dmi_ipmi_data *dmi)
2284 {
2285 	const u8	*data = (const u8 *)dm;
2286 	unsigned long  	base_addr;
2287 	u8		reg_spacing;
2288 	u8              len = dm->length;
2289 
2290 	dmi->type = data[4];
2291 
2292 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2293 	if (len >= 0x11) {
2294 		if (base_addr & 1) {
2295 			/* I/O */
2296 			base_addr &= 0xFFFE;
2297 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298 		} else
2299 			/* Memory */
2300 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2301 
2302 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2303 		   is odd. */
2304 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2305 
2306 		dmi->irq = data[0x11];
2307 
2308 		/* The top two bits of byte 0x10 hold the register spacing. */
2309 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2310 		switch (reg_spacing) {
2311 		case 0x00: /* Byte boundaries */
2312 		    dmi->offset = 1;
2313 		    break;
2314 		case 0x01: /* 32-bit boundaries */
2315 		    dmi->offset = 4;
2316 		    break;
2317 		case 0x02: /* 16-byte boundaries */
2318 		    dmi->offset = 16;
2319 		    break;
2320 		default:
2321 		    /* Some other interface, just ignore it. */
2322 		    return -EIO;
2323 		}
2324 	} else {
2325 		/* Old DMI spec. */
2326 		/*
2327 		 * Note that technically, the lower bit of the base
2328 		 * address should be 1 if the address is I/O and 0 if
2329 		 * the address is in memory.  So many systems get that
2330 		 * wrong (and all that I have seen are I/O) so we just
2331 		 * ignore that bit and assume I/O.  Systems that use
2332 		 * memory should use the newer spec, anyway.
2333 		 */
2334 		dmi->base_addr = base_addr & 0xfffe;
2335 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336 		dmi->offset = 1;
2337 	}
2338 
2339 	dmi->slave_addr = data[6];
2340 
2341 	return 0;
2342 }
2343 
2344 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2345 {
2346 	struct smi_info *info;
2347 
2348 	info = smi_info_alloc();
2349 	if (!info) {
2350 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2351 		return;
2352 	}
2353 
2354 	info->addr_source = SI_SMBIOS;
2355 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2356 
2357 	switch (ipmi_data->type) {
2358 	case 0x01: /* KCS */
2359 		info->si_type = SI_KCS;
2360 		break;
2361 	case 0x02: /* SMIC */
2362 		info->si_type = SI_SMIC;
2363 		break;
2364 	case 0x03: /* BT */
2365 		info->si_type = SI_BT;
2366 		break;
2367 	default:
2368 		kfree(info);
2369 		return;
2370 	}
2371 
2372 	switch (ipmi_data->addr_space) {
2373 	case IPMI_MEM_ADDR_SPACE:
2374 		info->io_setup = mem_setup;
2375 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376 		break;
2377 
2378 	case IPMI_IO_ADDR_SPACE:
2379 		info->io_setup = port_setup;
2380 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381 		break;
2382 
2383 	default:
2384 		kfree(info);
2385 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2386 		       ipmi_data->addr_space);
2387 		return;
2388 	}
2389 	info->io.addr_data = ipmi_data->base_addr;
2390 
2391 	info->io.regspacing = ipmi_data->offset;
2392 	if (!info->io.regspacing)
2393 		info->io.regspacing = DEFAULT_REGSPACING;
2394 	info->io.regsize = DEFAULT_REGSPACING;
2395 	info->io.regshift = 0;
2396 
2397 	info->slave_addr = ipmi_data->slave_addr;
2398 
2399 	info->irq = ipmi_data->irq;
2400 	if (info->irq)
2401 		info->irq_setup = std_irq_setup;
2402 
2403 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2406 		 info->irq);
2407 
2408 	if (add_smi(info))
2409 		kfree(info);
2410 }
2411 
2412 static void __devinit dmi_find_bmc(void)
2413 {
2414 	const struct dmi_device *dev = NULL;
2415 	struct dmi_ipmi_data data;
2416 	int                  rv;
2417 
2418 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419 		memset(&data, 0, sizeof(data));
2420 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421 				&data);
2422 		if (!rv)
2423 			try_init_dmi(&data);
2424 	}
2425 }
2426 #endif /* CONFIG_DMI */
2427 
2428 #ifdef CONFIG_PCI
2429 
2430 #define PCI_ERMC_CLASSCODE		0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2436 
2437 #define PCI_HP_VENDOR_ID    0x103C
2438 #define PCI_MMC_DEVICE_ID   0x121A
2439 #define PCI_MMC_ADDR_CW     0x10
2440 
2441 static void ipmi_pci_cleanup(struct smi_info *info)
2442 {
2443 	struct pci_dev *pdev = info->addr_source_data;
2444 
2445 	pci_disable_device(pdev);
2446 }
2447 
2448 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2449 				    const struct pci_device_id *ent)
2450 {
2451 	int rv;
2452 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2453 	struct smi_info *info;
2454 
2455 	info = smi_info_alloc();
2456 	if (!info)
2457 		return -ENOMEM;
2458 
2459 	info->addr_source = SI_PCI;
2460 	dev_info(&pdev->dev, "probing via PCI");
2461 
2462 	switch (class_type) {
2463 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2464 		info->si_type = SI_SMIC;
2465 		break;
2466 
2467 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2468 		info->si_type = SI_KCS;
2469 		break;
2470 
2471 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2472 		info->si_type = SI_BT;
2473 		break;
2474 
2475 	default:
2476 		kfree(info);
2477 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2478 		return -ENOMEM;
2479 	}
2480 
2481 	rv = pci_enable_device(pdev);
2482 	if (rv) {
2483 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2484 		kfree(info);
2485 		return rv;
2486 	}
2487 
2488 	info->addr_source_cleanup = ipmi_pci_cleanup;
2489 	info->addr_source_data = pdev;
2490 
2491 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2492 		info->io_setup = port_setup;
2493 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2494 	} else {
2495 		info->io_setup = mem_setup;
2496 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2497 	}
2498 	info->io.addr_data = pci_resource_start(pdev, 0);
2499 
2500 	info->io.regspacing = DEFAULT_REGSPACING;
2501 	info->io.regsize = DEFAULT_REGSPACING;
2502 	info->io.regshift = 0;
2503 
2504 	info->irq = pdev->irq;
2505 	if (info->irq)
2506 		info->irq_setup = std_irq_setup;
2507 
2508 	info->dev = &pdev->dev;
2509 	pci_set_drvdata(pdev, info);
2510 
2511 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2512 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2513 		info->irq);
2514 
2515 	if (add_smi(info))
2516 		kfree(info);
2517 
2518 	return 0;
2519 }
2520 
2521 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2522 {
2523 	struct smi_info *info = pci_get_drvdata(pdev);
2524 	cleanup_one_si(info);
2525 }
2526 
2527 #ifdef CONFIG_PM
2528 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2529 {
2530 	return 0;
2531 }
2532 
2533 static int ipmi_pci_resume(struct pci_dev *pdev)
2534 {
2535 	return 0;
2536 }
2537 #endif
2538 
2539 static struct pci_device_id ipmi_pci_devices[] = {
2540 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2541 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2542 	{ 0, }
2543 };
2544 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2545 
2546 static struct pci_driver ipmi_pci_driver = {
2547 	.name =         DEVICE_NAME,
2548 	.id_table =     ipmi_pci_devices,
2549 	.probe =        ipmi_pci_probe,
2550 	.remove =       __devexit_p(ipmi_pci_remove),
2551 #ifdef CONFIG_PM
2552 	.suspend =      ipmi_pci_suspend,
2553 	.resume =       ipmi_pci_resume,
2554 #endif
2555 };
2556 #endif /* CONFIG_PCI */
2557 
2558 
2559 #ifdef CONFIG_PPC_OF
2560 static int __devinit ipmi_of_probe(struct platform_device *dev,
2561 			 const struct of_device_id *match)
2562 {
2563 	struct smi_info *info;
2564 	struct resource resource;
2565 	const __be32 *regsize, *regspacing, *regshift;
2566 	struct device_node *np = dev->dev.of_node;
2567 	int ret;
2568 	int proplen;
2569 
2570 	dev_info(&dev->dev, "probing via device tree\n");
2571 
2572 	ret = of_address_to_resource(np, 0, &resource);
2573 	if (ret) {
2574 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2575 		return ret;
2576 	}
2577 
2578 	regsize = of_get_property(np, "reg-size", &proplen);
2579 	if (regsize && proplen != 4) {
2580 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2581 		return -EINVAL;
2582 	}
2583 
2584 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2585 	if (regspacing && proplen != 4) {
2586 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2587 		return -EINVAL;
2588 	}
2589 
2590 	regshift = of_get_property(np, "reg-shift", &proplen);
2591 	if (regshift && proplen != 4) {
2592 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2593 		return -EINVAL;
2594 	}
2595 
2596 	info = smi_info_alloc();
2597 
2598 	if (!info) {
2599 		dev_err(&dev->dev,
2600 			"could not allocate memory for OF probe\n");
2601 		return -ENOMEM;
2602 	}
2603 
2604 	info->si_type		= (enum si_type) match->data;
2605 	info->addr_source	= SI_DEVICETREE;
2606 	info->irq_setup		= std_irq_setup;
2607 
2608 	if (resource.flags & IORESOURCE_IO) {
2609 		info->io_setup		= port_setup;
2610 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2611 	} else {
2612 		info->io_setup		= mem_setup;
2613 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2614 	}
2615 
2616 	info->io.addr_data	= resource.start;
2617 
2618 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2619 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2620 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2621 
2622 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2623 	info->dev		= &dev->dev;
2624 
2625 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2626 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2627 		info->irq);
2628 
2629 	dev_set_drvdata(&dev->dev, info);
2630 
2631 	if (add_smi(info)) {
2632 		kfree(info);
2633 		return -EBUSY;
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static int __devexit ipmi_of_remove(struct platform_device *dev)
2640 {
2641 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2642 	return 0;
2643 }
2644 
2645 static struct of_device_id ipmi_match[] =
2646 {
2647 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2648 	  .data = (void *)(unsigned long) SI_KCS },
2649 	{ .type = "ipmi", .compatible = "ipmi-smic",
2650 	  .data = (void *)(unsigned long) SI_SMIC },
2651 	{ .type = "ipmi", .compatible = "ipmi-bt",
2652 	  .data = (void *)(unsigned long) SI_BT },
2653 	{},
2654 };
2655 
2656 static struct of_platform_driver ipmi_of_platform_driver = {
2657 	.driver = {
2658 		.name = "ipmi",
2659 		.owner = THIS_MODULE,
2660 		.of_match_table = ipmi_match,
2661 	},
2662 	.probe		= ipmi_of_probe,
2663 	.remove		= __devexit_p(ipmi_of_remove),
2664 };
2665 #endif /* CONFIG_PPC_OF */
2666 
2667 static int wait_for_msg_done(struct smi_info *smi_info)
2668 {
2669 	enum si_sm_result     smi_result;
2670 
2671 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2672 	for (;;) {
2673 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2674 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2675 			schedule_timeout_uninterruptible(1);
2676 			smi_result = smi_info->handlers->event(
2677 				smi_info->si_sm, 100);
2678 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2679 			smi_result = smi_info->handlers->event(
2680 				smi_info->si_sm, 0);
2681 		} else
2682 			break;
2683 	}
2684 	if (smi_result == SI_SM_HOSED)
2685 		/*
2686 		 * We couldn't get the state machine to run, so whatever's at
2687 		 * the port is probably not an IPMI SMI interface.
2688 		 */
2689 		return -ENODEV;
2690 
2691 	return 0;
2692 }
2693 
2694 static int try_get_dev_id(struct smi_info *smi_info)
2695 {
2696 	unsigned char         msg[2];
2697 	unsigned char         *resp;
2698 	unsigned long         resp_len;
2699 	int                   rv = 0;
2700 
2701 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2702 	if (!resp)
2703 		return -ENOMEM;
2704 
2705 	/*
2706 	 * Do a Get Device ID command, since it comes back with some
2707 	 * useful info.
2708 	 */
2709 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2710 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2711 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2712 
2713 	rv = wait_for_msg_done(smi_info);
2714 	if (rv)
2715 		goto out;
2716 
2717 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2718 						  resp, IPMI_MAX_MSG_LENGTH);
2719 
2720 	/* Check and record info from the get device id, in case we need it. */
2721 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2722 
2723  out:
2724 	kfree(resp);
2725 	return rv;
2726 }
2727 
2728 static int try_enable_event_buffer(struct smi_info *smi_info)
2729 {
2730 	unsigned char         msg[3];
2731 	unsigned char         *resp;
2732 	unsigned long         resp_len;
2733 	int                   rv = 0;
2734 
2735 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2736 	if (!resp)
2737 		return -ENOMEM;
2738 
2739 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2740 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2741 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2742 
2743 	rv = wait_for_msg_done(smi_info);
2744 	if (rv) {
2745 		printk(KERN_WARNING PFX "Error getting response from get"
2746 		       " global enables command, the event buffer is not"
2747 		       " enabled.\n");
2748 		goto out;
2749 	}
2750 
2751 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2752 						  resp, IPMI_MAX_MSG_LENGTH);
2753 
2754 	if (resp_len < 4 ||
2755 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2756 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2757 			resp[2] != 0) {
2758 		printk(KERN_WARNING PFX "Invalid return from get global"
2759 		       " enables command, cannot enable the event buffer.\n");
2760 		rv = -EINVAL;
2761 		goto out;
2762 	}
2763 
2764 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2765 		/* buffer is already enabled, nothing to do. */
2766 		goto out;
2767 
2768 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2769 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2770 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2771 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2772 
2773 	rv = wait_for_msg_done(smi_info);
2774 	if (rv) {
2775 		printk(KERN_WARNING PFX "Error getting response from set"
2776 		       " global, enables command, the event buffer is not"
2777 		       " enabled.\n");
2778 		goto out;
2779 	}
2780 
2781 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2782 						  resp, IPMI_MAX_MSG_LENGTH);
2783 
2784 	if (resp_len < 3 ||
2785 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2786 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2787 		printk(KERN_WARNING PFX "Invalid return from get global,"
2788 		       "enables command, not enable the event buffer.\n");
2789 		rv = -EINVAL;
2790 		goto out;
2791 	}
2792 
2793 	if (resp[2] != 0)
2794 		/*
2795 		 * An error when setting the event buffer bit means
2796 		 * that the event buffer is not supported.
2797 		 */
2798 		rv = -ENOENT;
2799  out:
2800 	kfree(resp);
2801 	return rv;
2802 }
2803 
2804 static int type_file_read_proc(char *page, char **start, off_t off,
2805 			       int count, int *eof, void *data)
2806 {
2807 	struct smi_info *smi = data;
2808 
2809 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2810 }
2811 
2812 static int stat_file_read_proc(char *page, char **start, off_t off,
2813 			       int count, int *eof, void *data)
2814 {
2815 	char            *out = (char *) page;
2816 	struct smi_info *smi = data;
2817 
2818 	out += sprintf(out, "interrupts_enabled:    %d\n",
2819 		       smi->irq && !smi->interrupt_disabled);
2820 	out += sprintf(out, "short_timeouts:        %u\n",
2821 		       smi_get_stat(smi, short_timeouts));
2822 	out += sprintf(out, "long_timeouts:         %u\n",
2823 		       smi_get_stat(smi, long_timeouts));
2824 	out += sprintf(out, "idles:                 %u\n",
2825 		       smi_get_stat(smi, idles));
2826 	out += sprintf(out, "interrupts:            %u\n",
2827 		       smi_get_stat(smi, interrupts));
2828 	out += sprintf(out, "attentions:            %u\n",
2829 		       smi_get_stat(smi, attentions));
2830 	out += sprintf(out, "flag_fetches:          %u\n",
2831 		       smi_get_stat(smi, flag_fetches));
2832 	out += sprintf(out, "hosed_count:           %u\n",
2833 		       smi_get_stat(smi, hosed_count));
2834 	out += sprintf(out, "complete_transactions: %u\n",
2835 		       smi_get_stat(smi, complete_transactions));
2836 	out += sprintf(out, "events:                %u\n",
2837 		       smi_get_stat(smi, events));
2838 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2839 		       smi_get_stat(smi, watchdog_pretimeouts));
2840 	out += sprintf(out, "incoming_messages:     %u\n",
2841 		       smi_get_stat(smi, incoming_messages));
2842 
2843 	return out - page;
2844 }
2845 
2846 static int param_read_proc(char *page, char **start, off_t off,
2847 			   int count, int *eof, void *data)
2848 {
2849 	struct smi_info *smi = data;
2850 
2851 	return sprintf(page,
2852 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2853 		       si_to_str[smi->si_type],
2854 		       addr_space_to_str[smi->io.addr_type],
2855 		       smi->io.addr_data,
2856 		       smi->io.regspacing,
2857 		       smi->io.regsize,
2858 		       smi->io.regshift,
2859 		       smi->irq,
2860 		       smi->slave_addr);
2861 }
2862 
2863 /*
2864  * oem_data_avail_to_receive_msg_avail
2865  * @info - smi_info structure with msg_flags set
2866  *
2867  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2868  * Returns 1 indicating need to re-run handle_flags().
2869  */
2870 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2871 {
2872 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2873 			       RECEIVE_MSG_AVAIL);
2874 	return 1;
2875 }
2876 
2877 /*
2878  * setup_dell_poweredge_oem_data_handler
2879  * @info - smi_info.device_id must be populated
2880  *
2881  * Systems that match, but have firmware version < 1.40 may assert
2882  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2883  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2884  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2885  * as RECEIVE_MSG_AVAIL instead.
2886  *
2887  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2888  * assert the OEM[012] bits, and if it did, the driver would have to
2889  * change to handle that properly, we don't actually check for the
2890  * firmware version.
2891  * Device ID = 0x20                BMC on PowerEdge 8G servers
2892  * Device Revision = 0x80
2893  * Firmware Revision1 = 0x01       BMC version 1.40
2894  * Firmware Revision2 = 0x40       BCD encoded
2895  * IPMI Version = 0x51             IPMI 1.5
2896  * Manufacturer ID = A2 02 00      Dell IANA
2897  *
2898  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2899  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2900  *
2901  */
2902 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2903 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2904 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2905 #define DELL_IANA_MFR_ID 0x0002a2
2906 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2907 {
2908 	struct ipmi_device_id *id = &smi_info->device_id;
2909 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2910 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2911 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2912 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2913 			smi_info->oem_data_avail_handler =
2914 				oem_data_avail_to_receive_msg_avail;
2915 		} else if (ipmi_version_major(id) < 1 ||
2916 			   (ipmi_version_major(id) == 1 &&
2917 			    ipmi_version_minor(id) < 5)) {
2918 			smi_info->oem_data_avail_handler =
2919 				oem_data_avail_to_receive_msg_avail;
2920 		}
2921 	}
2922 }
2923 
2924 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2925 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2926 {
2927 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2928 
2929 	/* Make it a reponse */
2930 	msg->rsp[0] = msg->data[0] | 4;
2931 	msg->rsp[1] = msg->data[1];
2932 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2933 	msg->rsp_size = 3;
2934 	smi_info->curr_msg = NULL;
2935 	deliver_recv_msg(smi_info, msg);
2936 }
2937 
2938 /*
2939  * dell_poweredge_bt_xaction_handler
2940  * @info - smi_info.device_id must be populated
2941  *
2942  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2943  * not respond to a Get SDR command if the length of the data
2944  * requested is exactly 0x3A, which leads to command timeouts and no
2945  * data returned.  This intercepts such commands, and causes userspace
2946  * callers to try again with a different-sized buffer, which succeeds.
2947  */
2948 
2949 #define STORAGE_NETFN 0x0A
2950 #define STORAGE_CMD_GET_SDR 0x23
2951 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2952 					     unsigned long unused,
2953 					     void *in)
2954 {
2955 	struct smi_info *smi_info = in;
2956 	unsigned char *data = smi_info->curr_msg->data;
2957 	unsigned int size   = smi_info->curr_msg->data_size;
2958 	if (size >= 8 &&
2959 	    (data[0]>>2) == STORAGE_NETFN &&
2960 	    data[1] == STORAGE_CMD_GET_SDR &&
2961 	    data[7] == 0x3A) {
2962 		return_hosed_msg_badsize(smi_info);
2963 		return NOTIFY_STOP;
2964 	}
2965 	return NOTIFY_DONE;
2966 }
2967 
2968 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2969 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2970 };
2971 
2972 /*
2973  * setup_dell_poweredge_bt_xaction_handler
2974  * @info - smi_info.device_id must be filled in already
2975  *
2976  * Fills in smi_info.device_id.start_transaction_pre_hook
2977  * when we know what function to use there.
2978  */
2979 static void
2980 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2981 {
2982 	struct ipmi_device_id *id = &smi_info->device_id;
2983 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2984 	    smi_info->si_type == SI_BT)
2985 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2986 }
2987 
2988 /*
2989  * setup_oem_data_handler
2990  * @info - smi_info.device_id must be filled in already
2991  *
2992  * Fills in smi_info.device_id.oem_data_available_handler
2993  * when we know what function to use there.
2994  */
2995 
2996 static void setup_oem_data_handler(struct smi_info *smi_info)
2997 {
2998 	setup_dell_poweredge_oem_data_handler(smi_info);
2999 }
3000 
3001 static void setup_xaction_handlers(struct smi_info *smi_info)
3002 {
3003 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3004 }
3005 
3006 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3007 {
3008 	if (smi_info->intf) {
3009 		/*
3010 		 * The timer and thread are only running if the
3011 		 * interface has been started up and registered.
3012 		 */
3013 		if (smi_info->thread != NULL)
3014 			kthread_stop(smi_info->thread);
3015 		del_timer_sync(&smi_info->si_timer);
3016 	}
3017 }
3018 
3019 static __devinitdata struct ipmi_default_vals
3020 {
3021 	int type;
3022 	int port;
3023 } ipmi_defaults[] =
3024 {
3025 	{ .type = SI_KCS, .port = 0xca2 },
3026 	{ .type = SI_SMIC, .port = 0xca9 },
3027 	{ .type = SI_BT, .port = 0xe4 },
3028 	{ .port = 0 }
3029 };
3030 
3031 static void __devinit default_find_bmc(void)
3032 {
3033 	struct smi_info *info;
3034 	int             i;
3035 
3036 	for (i = 0; ; i++) {
3037 		if (!ipmi_defaults[i].port)
3038 			break;
3039 #ifdef CONFIG_PPC
3040 		if (check_legacy_ioport(ipmi_defaults[i].port))
3041 			continue;
3042 #endif
3043 		info = smi_info_alloc();
3044 		if (!info)
3045 			return;
3046 
3047 		info->addr_source = SI_DEFAULT;
3048 
3049 		info->si_type = ipmi_defaults[i].type;
3050 		info->io_setup = port_setup;
3051 		info->io.addr_data = ipmi_defaults[i].port;
3052 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3053 
3054 		info->io.addr = NULL;
3055 		info->io.regspacing = DEFAULT_REGSPACING;
3056 		info->io.regsize = DEFAULT_REGSPACING;
3057 		info->io.regshift = 0;
3058 
3059 		if (add_smi(info) == 0) {
3060 			if ((try_smi_init(info)) == 0) {
3061 				/* Found one... */
3062 				printk(KERN_INFO PFX "Found default %s"
3063 				" state machine at %s address 0x%lx\n",
3064 				si_to_str[info->si_type],
3065 				addr_space_to_str[info->io.addr_type],
3066 				info->io.addr_data);
3067 			} else
3068 				cleanup_one_si(info);
3069 		} else {
3070 			kfree(info);
3071 		}
3072 	}
3073 }
3074 
3075 static int is_new_interface(struct smi_info *info)
3076 {
3077 	struct smi_info *e;
3078 
3079 	list_for_each_entry(e, &smi_infos, link) {
3080 		if (e->io.addr_type != info->io.addr_type)
3081 			continue;
3082 		if (e->io.addr_data == info->io.addr_data)
3083 			return 0;
3084 	}
3085 
3086 	return 1;
3087 }
3088 
3089 static int add_smi(struct smi_info *new_smi)
3090 {
3091 	int rv = 0;
3092 
3093 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3094 			ipmi_addr_src_to_str[new_smi->addr_source],
3095 			si_to_str[new_smi->si_type]);
3096 	mutex_lock(&smi_infos_lock);
3097 	if (!is_new_interface(new_smi)) {
3098 		printk(KERN_CONT " duplicate interface\n");
3099 		rv = -EBUSY;
3100 		goto out_err;
3101 	}
3102 
3103 	printk(KERN_CONT "\n");
3104 
3105 	/* So we know not to free it unless we have allocated one. */
3106 	new_smi->intf = NULL;
3107 	new_smi->si_sm = NULL;
3108 	new_smi->handlers = NULL;
3109 
3110 	list_add_tail(&new_smi->link, &smi_infos);
3111 
3112 out_err:
3113 	mutex_unlock(&smi_infos_lock);
3114 	return rv;
3115 }
3116 
3117 static int try_smi_init(struct smi_info *new_smi)
3118 {
3119 	int rv = 0;
3120 	int i;
3121 
3122 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3123 	       " machine at %s address 0x%lx, slave address 0x%x,"
3124 	       " irq %d\n",
3125 	       ipmi_addr_src_to_str[new_smi->addr_source],
3126 	       si_to_str[new_smi->si_type],
3127 	       addr_space_to_str[new_smi->io.addr_type],
3128 	       new_smi->io.addr_data,
3129 	       new_smi->slave_addr, new_smi->irq);
3130 
3131 	switch (new_smi->si_type) {
3132 	case SI_KCS:
3133 		new_smi->handlers = &kcs_smi_handlers;
3134 		break;
3135 
3136 	case SI_SMIC:
3137 		new_smi->handlers = &smic_smi_handlers;
3138 		break;
3139 
3140 	case SI_BT:
3141 		new_smi->handlers = &bt_smi_handlers;
3142 		break;
3143 
3144 	default:
3145 		/* No support for anything else yet. */
3146 		rv = -EIO;
3147 		goto out_err;
3148 	}
3149 
3150 	/* Allocate the state machine's data and initialize it. */
3151 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3152 	if (!new_smi->si_sm) {
3153 		printk(KERN_ERR PFX
3154 		       "Could not allocate state machine memory\n");
3155 		rv = -ENOMEM;
3156 		goto out_err;
3157 	}
3158 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3159 							&new_smi->io);
3160 
3161 	/* Now that we know the I/O size, we can set up the I/O. */
3162 	rv = new_smi->io_setup(new_smi);
3163 	if (rv) {
3164 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3165 		goto out_err;
3166 	}
3167 
3168 	/* Do low-level detection first. */
3169 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3170 		if (new_smi->addr_source)
3171 			printk(KERN_INFO PFX "Interface detection failed\n");
3172 		rv = -ENODEV;
3173 		goto out_err;
3174 	}
3175 
3176 	/*
3177 	 * Attempt a get device id command.  If it fails, we probably
3178 	 * don't have a BMC here.
3179 	 */
3180 	rv = try_get_dev_id(new_smi);
3181 	if (rv) {
3182 		if (new_smi->addr_source)
3183 			printk(KERN_INFO PFX "There appears to be no BMC"
3184 			       " at this location\n");
3185 		goto out_err;
3186 	}
3187 
3188 	setup_oem_data_handler(new_smi);
3189 	setup_xaction_handlers(new_smi);
3190 
3191 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3192 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3193 	new_smi->curr_msg = NULL;
3194 	atomic_set(&new_smi->req_events, 0);
3195 	new_smi->run_to_completion = 0;
3196 	for (i = 0; i < SI_NUM_STATS; i++)
3197 		atomic_set(&new_smi->stats[i], 0);
3198 
3199 	new_smi->interrupt_disabled = 1;
3200 	atomic_set(&new_smi->stop_operation, 0);
3201 	new_smi->intf_num = smi_num;
3202 	smi_num++;
3203 
3204 	rv = try_enable_event_buffer(new_smi);
3205 	if (rv == 0)
3206 		new_smi->has_event_buffer = 1;
3207 
3208 	/*
3209 	 * Start clearing the flags before we enable interrupts or the
3210 	 * timer to avoid racing with the timer.
3211 	 */
3212 	start_clear_flags(new_smi);
3213 	/* IRQ is defined to be set when non-zero. */
3214 	if (new_smi->irq)
3215 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3216 
3217 	if (!new_smi->dev) {
3218 		/*
3219 		 * If we don't already have a device from something
3220 		 * else (like PCI), then register a new one.
3221 		 */
3222 		new_smi->pdev = platform_device_alloc("ipmi_si",
3223 						      new_smi->intf_num);
3224 		if (!new_smi->pdev) {
3225 			printk(KERN_ERR PFX
3226 			       "Unable to allocate platform device\n");
3227 			goto out_err;
3228 		}
3229 		new_smi->dev = &new_smi->pdev->dev;
3230 		new_smi->dev->driver = &ipmi_driver.driver;
3231 
3232 		rv = platform_device_add(new_smi->pdev);
3233 		if (rv) {
3234 			printk(KERN_ERR PFX
3235 			       "Unable to register system interface device:"
3236 			       " %d\n",
3237 			       rv);
3238 			goto out_err;
3239 		}
3240 		new_smi->dev_registered = 1;
3241 	}
3242 
3243 	rv = ipmi_register_smi(&handlers,
3244 			       new_smi,
3245 			       &new_smi->device_id,
3246 			       new_smi->dev,
3247 			       "bmc",
3248 			       new_smi->slave_addr);
3249 	if (rv) {
3250 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3251 			rv);
3252 		goto out_err_stop_timer;
3253 	}
3254 
3255 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3256 				     type_file_read_proc,
3257 				     new_smi);
3258 	if (rv) {
3259 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3260 		goto out_err_stop_timer;
3261 	}
3262 
3263 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3264 				     stat_file_read_proc,
3265 				     new_smi);
3266 	if (rv) {
3267 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3268 		goto out_err_stop_timer;
3269 	}
3270 
3271 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3272 				     param_read_proc,
3273 				     new_smi);
3274 	if (rv) {
3275 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3276 		goto out_err_stop_timer;
3277 	}
3278 
3279 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3280 		 si_to_str[new_smi->si_type]);
3281 
3282 	return 0;
3283 
3284  out_err_stop_timer:
3285 	atomic_inc(&new_smi->stop_operation);
3286 	wait_for_timer_and_thread(new_smi);
3287 
3288  out_err:
3289 	new_smi->interrupt_disabled = 1;
3290 
3291 	if (new_smi->intf) {
3292 		ipmi_unregister_smi(new_smi->intf);
3293 		new_smi->intf = NULL;
3294 	}
3295 
3296 	if (new_smi->irq_cleanup) {
3297 		new_smi->irq_cleanup(new_smi);
3298 		new_smi->irq_cleanup = NULL;
3299 	}
3300 
3301 	/*
3302 	 * Wait until we know that we are out of any interrupt
3303 	 * handlers might have been running before we freed the
3304 	 * interrupt.
3305 	 */
3306 	synchronize_sched();
3307 
3308 	if (new_smi->si_sm) {
3309 		if (new_smi->handlers)
3310 			new_smi->handlers->cleanup(new_smi->si_sm);
3311 		kfree(new_smi->si_sm);
3312 		new_smi->si_sm = NULL;
3313 	}
3314 	if (new_smi->addr_source_cleanup) {
3315 		new_smi->addr_source_cleanup(new_smi);
3316 		new_smi->addr_source_cleanup = NULL;
3317 	}
3318 	if (new_smi->io_cleanup) {
3319 		new_smi->io_cleanup(new_smi);
3320 		new_smi->io_cleanup = NULL;
3321 	}
3322 
3323 	if (new_smi->dev_registered) {
3324 		platform_device_unregister(new_smi->pdev);
3325 		new_smi->dev_registered = 0;
3326 	}
3327 
3328 	return rv;
3329 }
3330 
3331 static int __devinit init_ipmi_si(void)
3332 {
3333 	int  i;
3334 	char *str;
3335 	int  rv;
3336 	struct smi_info *e;
3337 	enum ipmi_addr_src type = SI_INVALID;
3338 
3339 	if (initialized)
3340 		return 0;
3341 	initialized = 1;
3342 
3343 	/* Register the device drivers. */
3344 	rv = driver_register(&ipmi_driver.driver);
3345 	if (rv) {
3346 		printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3347 		return rv;
3348 	}
3349 
3350 
3351 	/* Parse out the si_type string into its components. */
3352 	str = si_type_str;
3353 	if (*str != '\0') {
3354 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3355 			si_type[i] = str;
3356 			str = strchr(str, ',');
3357 			if (str) {
3358 				*str = '\0';
3359 				str++;
3360 			} else {
3361 				break;
3362 			}
3363 		}
3364 	}
3365 
3366 	printk(KERN_INFO "IPMI System Interface driver.\n");
3367 
3368 	hardcode_find_bmc();
3369 
3370 	/* If the user gave us a device, they presumably want us to use it */
3371 	mutex_lock(&smi_infos_lock);
3372 	if (!list_empty(&smi_infos)) {
3373 		mutex_unlock(&smi_infos_lock);
3374 		return 0;
3375 	}
3376 	mutex_unlock(&smi_infos_lock);
3377 
3378 #ifdef CONFIG_PCI
3379 	rv = pci_register_driver(&ipmi_pci_driver);
3380 	if (rv)
3381 		printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3382 	else
3383 		pci_registered = 1;
3384 #endif
3385 
3386 #ifdef CONFIG_ACPI
3387 	pnp_register_driver(&ipmi_pnp_driver);
3388 	pnp_registered = 1;
3389 #endif
3390 
3391 #ifdef CONFIG_DMI
3392 	dmi_find_bmc();
3393 #endif
3394 
3395 #ifdef CONFIG_ACPI
3396 	spmi_find_bmc();
3397 #endif
3398 
3399 #ifdef CONFIG_PPC_OF
3400 	of_register_platform_driver(&ipmi_of_platform_driver);
3401 	of_registered = 1;
3402 #endif
3403 
3404 	/* We prefer devices with interrupts, but in the case of a machine
3405 	   with multiple BMCs we assume that there will be several instances
3406 	   of a given type so if we succeed in registering a type then also
3407 	   try to register everything else of the same type */
3408 
3409 	mutex_lock(&smi_infos_lock);
3410 	list_for_each_entry(e, &smi_infos, link) {
3411 		/* Try to register a device if it has an IRQ and we either
3412 		   haven't successfully registered a device yet or this
3413 		   device has the same type as one we successfully registered */
3414 		if (e->irq && (!type || e->addr_source == type)) {
3415 			if (!try_smi_init(e)) {
3416 				type = e->addr_source;
3417 			}
3418 		}
3419 	}
3420 
3421 	/* type will only have been set if we successfully registered an si */
3422 	if (type) {
3423 		mutex_unlock(&smi_infos_lock);
3424 		return 0;
3425 	}
3426 
3427 	/* Fall back to the preferred device */
3428 
3429 	list_for_each_entry(e, &smi_infos, link) {
3430 		if (!e->irq && (!type || e->addr_source == type)) {
3431 			if (!try_smi_init(e)) {
3432 				type = e->addr_source;
3433 			}
3434 		}
3435 	}
3436 	mutex_unlock(&smi_infos_lock);
3437 
3438 	if (type)
3439 		return 0;
3440 
3441 	if (si_trydefaults) {
3442 		mutex_lock(&smi_infos_lock);
3443 		if (list_empty(&smi_infos)) {
3444 			/* No BMC was found, try defaults. */
3445 			mutex_unlock(&smi_infos_lock);
3446 			default_find_bmc();
3447 		} else
3448 			mutex_unlock(&smi_infos_lock);
3449 	}
3450 
3451 	mutex_lock(&smi_infos_lock);
3452 	if (unload_when_empty && list_empty(&smi_infos)) {
3453 		mutex_unlock(&smi_infos_lock);
3454 		cleanup_ipmi_si();
3455 		printk(KERN_WARNING PFX
3456 		       "Unable to find any System Interface(s)\n");
3457 		return -ENODEV;
3458 	} else {
3459 		mutex_unlock(&smi_infos_lock);
3460 		return 0;
3461 	}
3462 }
3463 module_init(init_ipmi_si);
3464 
3465 static void cleanup_one_si(struct smi_info *to_clean)
3466 {
3467 	int           rv = 0;
3468 	unsigned long flags;
3469 
3470 	if (!to_clean)
3471 		return;
3472 
3473 	list_del(&to_clean->link);
3474 
3475 	/* Tell the driver that we are shutting down. */
3476 	atomic_inc(&to_clean->stop_operation);
3477 
3478 	/*
3479 	 * Make sure the timer and thread are stopped and will not run
3480 	 * again.
3481 	 */
3482 	wait_for_timer_and_thread(to_clean);
3483 
3484 	/*
3485 	 * Timeouts are stopped, now make sure the interrupts are off
3486 	 * for the device.  A little tricky with locks to make sure
3487 	 * there are no races.
3488 	 */
3489 	spin_lock_irqsave(&to_clean->si_lock, flags);
3490 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3491 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3492 		poll(to_clean);
3493 		schedule_timeout_uninterruptible(1);
3494 		spin_lock_irqsave(&to_clean->si_lock, flags);
3495 	}
3496 	disable_si_irq(to_clean);
3497 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3498 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3499 		poll(to_clean);
3500 		schedule_timeout_uninterruptible(1);
3501 	}
3502 
3503 	/* Clean up interrupts and make sure that everything is done. */
3504 	if (to_clean->irq_cleanup)
3505 		to_clean->irq_cleanup(to_clean);
3506 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3507 		poll(to_clean);
3508 		schedule_timeout_uninterruptible(1);
3509 	}
3510 
3511 	if (to_clean->intf)
3512 		rv = ipmi_unregister_smi(to_clean->intf);
3513 
3514 	if (rv) {
3515 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3516 		       rv);
3517 	}
3518 
3519 	if (to_clean->handlers)
3520 		to_clean->handlers->cleanup(to_clean->si_sm);
3521 
3522 	kfree(to_clean->si_sm);
3523 
3524 	if (to_clean->addr_source_cleanup)
3525 		to_clean->addr_source_cleanup(to_clean);
3526 	if (to_clean->io_cleanup)
3527 		to_clean->io_cleanup(to_clean);
3528 
3529 	if (to_clean->dev_registered)
3530 		platform_device_unregister(to_clean->pdev);
3531 
3532 	kfree(to_clean);
3533 }
3534 
3535 static void __exit cleanup_ipmi_si(void)
3536 {
3537 	struct smi_info *e, *tmp_e;
3538 
3539 	if (!initialized)
3540 		return;
3541 
3542 #ifdef CONFIG_PCI
3543 	if (pci_registered)
3544 		pci_unregister_driver(&ipmi_pci_driver);
3545 #endif
3546 #ifdef CONFIG_ACPI
3547 	if (pnp_registered)
3548 		pnp_unregister_driver(&ipmi_pnp_driver);
3549 #endif
3550 
3551 #ifdef CONFIG_PPC_OF
3552 	if (of_registered)
3553 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3554 #endif
3555 
3556 	mutex_lock(&smi_infos_lock);
3557 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3558 		cleanup_one_si(e);
3559 	mutex_unlock(&smi_infos_lock);
3560 
3561 	driver_unregister(&ipmi_driver.driver);
3562 }
3563 module_exit(cleanup_ipmi_si);
3564 
3565 MODULE_LICENSE("GPL");
3566 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3567 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3568 		   " system interfaces.");
3569