1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/init.h> 65 #include <linux/dmi.h> 66 #include <linux/string.h> 67 #include <linux/ctype.h> 68 #include <linux/pnp.h> 69 70 #ifdef CONFIG_PPC_OF 71 #include <linux/of_device.h> 72 #include <linux/of_platform.h> 73 #include <linux/of_address.h> 74 #include <linux/of_irq.h> 75 #endif 76 77 #define PFX "ipmi_si: " 78 79 /* Measure times between events in the driver. */ 80 #undef DEBUG_TIMING 81 82 /* Call every 10 ms. */ 83 #define SI_TIMEOUT_TIME_USEC 10000 84 #define SI_USEC_PER_JIFFY (1000000/HZ) 85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 87 short timeout */ 88 89 enum si_intf_state { 90 SI_NORMAL, 91 SI_GETTING_FLAGS, 92 SI_GETTING_EVENTS, 93 SI_CLEARING_FLAGS, 94 SI_CLEARING_FLAGS_THEN_SET_IRQ, 95 SI_GETTING_MESSAGES, 96 SI_ENABLE_INTERRUPTS1, 97 SI_ENABLE_INTERRUPTS2, 98 SI_DISABLE_INTERRUPTS1, 99 SI_DISABLE_INTERRUPTS2 100 /* FIXME - add watchdog stuff. */ 101 }; 102 103 /* Some BT-specific defines we need here. */ 104 #define IPMI_BT_INTMASK_REG 2 105 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 106 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 107 108 enum si_type { 109 SI_KCS, SI_SMIC, SI_BT 110 }; 111 static char *si_to_str[] = { "kcs", "smic", "bt" }; 112 113 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 114 "ACPI", "SMBIOS", "PCI", 115 "device-tree", "default" }; 116 117 #define DEVICE_NAME "ipmi_si" 118 119 static struct platform_driver ipmi_driver = { 120 .driver = { 121 .name = DEVICE_NAME, 122 .bus = &platform_bus_type 123 } 124 }; 125 126 127 /* 128 * Indexes into stats[] in smi_info below. 129 */ 130 enum si_stat_indexes { 131 /* 132 * Number of times the driver requested a timer while an operation 133 * was in progress. 134 */ 135 SI_STAT_short_timeouts = 0, 136 137 /* 138 * Number of times the driver requested a timer while nothing was in 139 * progress. 140 */ 141 SI_STAT_long_timeouts, 142 143 /* Number of times the interface was idle while being polled. */ 144 SI_STAT_idles, 145 146 /* Number of interrupts the driver handled. */ 147 SI_STAT_interrupts, 148 149 /* Number of time the driver got an ATTN from the hardware. */ 150 SI_STAT_attentions, 151 152 /* Number of times the driver requested flags from the hardware. */ 153 SI_STAT_flag_fetches, 154 155 /* Number of times the hardware didn't follow the state machine. */ 156 SI_STAT_hosed_count, 157 158 /* Number of completed messages. */ 159 SI_STAT_complete_transactions, 160 161 /* Number of IPMI events received from the hardware. */ 162 SI_STAT_events, 163 164 /* Number of watchdog pretimeouts. */ 165 SI_STAT_watchdog_pretimeouts, 166 167 /* Number of asyncronous messages received. */ 168 SI_STAT_incoming_messages, 169 170 171 /* This *must* remain last, add new values above this. */ 172 SI_NUM_STATS 173 }; 174 175 struct smi_info { 176 int intf_num; 177 ipmi_smi_t intf; 178 struct si_sm_data *si_sm; 179 struct si_sm_handlers *handlers; 180 enum si_type si_type; 181 spinlock_t si_lock; 182 spinlock_t msg_lock; 183 struct list_head xmit_msgs; 184 struct list_head hp_xmit_msgs; 185 struct ipmi_smi_msg *curr_msg; 186 enum si_intf_state si_state; 187 188 /* 189 * Used to handle the various types of I/O that can occur with 190 * IPMI 191 */ 192 struct si_sm_io io; 193 int (*io_setup)(struct smi_info *info); 194 void (*io_cleanup)(struct smi_info *info); 195 int (*irq_setup)(struct smi_info *info); 196 void (*irq_cleanup)(struct smi_info *info); 197 unsigned int io_size; 198 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 199 void (*addr_source_cleanup)(struct smi_info *info); 200 void *addr_source_data; 201 202 /* 203 * Per-OEM handler, called from handle_flags(). Returns 1 204 * when handle_flags() needs to be re-run or 0 indicating it 205 * set si_state itself. 206 */ 207 int (*oem_data_avail_handler)(struct smi_info *smi_info); 208 209 /* 210 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 211 * is set to hold the flags until we are done handling everything 212 * from the flags. 213 */ 214 #define RECEIVE_MSG_AVAIL 0x01 215 #define EVENT_MSG_BUFFER_FULL 0x02 216 #define WDT_PRE_TIMEOUT_INT 0x08 217 #define OEM0_DATA_AVAIL 0x20 218 #define OEM1_DATA_AVAIL 0x40 219 #define OEM2_DATA_AVAIL 0x80 220 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 221 OEM1_DATA_AVAIL | \ 222 OEM2_DATA_AVAIL) 223 unsigned char msg_flags; 224 225 /* Does the BMC have an event buffer? */ 226 char has_event_buffer; 227 228 /* 229 * If set to true, this will request events the next time the 230 * state machine is idle. 231 */ 232 atomic_t req_events; 233 234 /* 235 * If true, run the state machine to completion on every send 236 * call. Generally used after a panic to make sure stuff goes 237 * out. 238 */ 239 int run_to_completion; 240 241 /* The I/O port of an SI interface. */ 242 int port; 243 244 /* 245 * The space between start addresses of the two ports. For 246 * instance, if the first port is 0xca2 and the spacing is 4, then 247 * the second port is 0xca6. 248 */ 249 unsigned int spacing; 250 251 /* zero if no irq; */ 252 int irq; 253 254 /* The timer for this si. */ 255 struct timer_list si_timer; 256 257 /* The time (in jiffies) the last timeout occurred at. */ 258 unsigned long last_timeout_jiffies; 259 260 /* Used to gracefully stop the timer without race conditions. */ 261 atomic_t stop_operation; 262 263 /* 264 * The driver will disable interrupts when it gets into a 265 * situation where it cannot handle messages due to lack of 266 * memory. Once that situation clears up, it will re-enable 267 * interrupts. 268 */ 269 int interrupt_disabled; 270 271 /* From the get device id response... */ 272 struct ipmi_device_id device_id; 273 274 /* Driver model stuff. */ 275 struct device *dev; 276 struct platform_device *pdev; 277 278 /* 279 * True if we allocated the device, false if it came from 280 * someplace else (like PCI). 281 */ 282 int dev_registered; 283 284 /* Slave address, could be reported from DMI. */ 285 unsigned char slave_addr; 286 287 /* Counters and things for the proc filesystem. */ 288 atomic_t stats[SI_NUM_STATS]; 289 290 struct task_struct *thread; 291 292 struct list_head link; 293 union ipmi_smi_info_union addr_info; 294 }; 295 296 #define smi_inc_stat(smi, stat) \ 297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 298 #define smi_get_stat(smi, stat) \ 299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 300 301 #define SI_MAX_PARMS 4 302 303 static int force_kipmid[SI_MAX_PARMS]; 304 static int num_force_kipmid; 305 #ifdef CONFIG_PCI 306 static int pci_registered; 307 #endif 308 #ifdef CONFIG_ACPI 309 static int pnp_registered; 310 #endif 311 #ifdef CONFIG_PPC_OF 312 static int of_registered; 313 #endif 314 315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 316 static int num_max_busy_us; 317 318 static int unload_when_empty = 1; 319 320 static int add_smi(struct smi_info *smi); 321 static int try_smi_init(struct smi_info *smi); 322 static void cleanup_one_si(struct smi_info *to_clean); 323 static void cleanup_ipmi_si(void); 324 325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 326 static int register_xaction_notifier(struct notifier_block *nb) 327 { 328 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 329 } 330 331 static void deliver_recv_msg(struct smi_info *smi_info, 332 struct ipmi_smi_msg *msg) 333 { 334 /* Deliver the message to the upper layer with the lock 335 released. */ 336 337 if (smi_info->run_to_completion) { 338 ipmi_smi_msg_received(smi_info->intf, msg); 339 } else { 340 spin_unlock(&(smi_info->si_lock)); 341 ipmi_smi_msg_received(smi_info->intf, msg); 342 spin_lock(&(smi_info->si_lock)); 343 } 344 } 345 346 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 347 { 348 struct ipmi_smi_msg *msg = smi_info->curr_msg; 349 350 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 351 cCode = IPMI_ERR_UNSPECIFIED; 352 /* else use it as is */ 353 354 /* Make it a reponse */ 355 msg->rsp[0] = msg->data[0] | 4; 356 msg->rsp[1] = msg->data[1]; 357 msg->rsp[2] = cCode; 358 msg->rsp_size = 3; 359 360 smi_info->curr_msg = NULL; 361 deliver_recv_msg(smi_info, msg); 362 } 363 364 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 365 { 366 int rv; 367 struct list_head *entry = NULL; 368 #ifdef DEBUG_TIMING 369 struct timeval t; 370 #endif 371 372 /* 373 * No need to save flags, we aleady have interrupts off and we 374 * already hold the SMI lock. 375 */ 376 if (!smi_info->run_to_completion) 377 spin_lock(&(smi_info->msg_lock)); 378 379 /* Pick the high priority queue first. */ 380 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 381 entry = smi_info->hp_xmit_msgs.next; 382 } else if (!list_empty(&(smi_info->xmit_msgs))) { 383 entry = smi_info->xmit_msgs.next; 384 } 385 386 if (!entry) { 387 smi_info->curr_msg = NULL; 388 rv = SI_SM_IDLE; 389 } else { 390 int err; 391 392 list_del(entry); 393 smi_info->curr_msg = list_entry(entry, 394 struct ipmi_smi_msg, 395 link); 396 #ifdef DEBUG_TIMING 397 do_gettimeofday(&t); 398 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 399 #endif 400 err = atomic_notifier_call_chain(&xaction_notifier_list, 401 0, smi_info); 402 if (err & NOTIFY_STOP_MASK) { 403 rv = SI_SM_CALL_WITHOUT_DELAY; 404 goto out; 405 } 406 err = smi_info->handlers->start_transaction( 407 smi_info->si_sm, 408 smi_info->curr_msg->data, 409 smi_info->curr_msg->data_size); 410 if (err) 411 return_hosed_msg(smi_info, err); 412 413 rv = SI_SM_CALL_WITHOUT_DELAY; 414 } 415 out: 416 if (!smi_info->run_to_completion) 417 spin_unlock(&(smi_info->msg_lock)); 418 419 return rv; 420 } 421 422 static void start_enable_irq(struct smi_info *smi_info) 423 { 424 unsigned char msg[2]; 425 426 /* 427 * If we are enabling interrupts, we have to tell the 428 * BMC to use them. 429 */ 430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 432 433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 434 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 435 } 436 437 static void start_disable_irq(struct smi_info *smi_info) 438 { 439 unsigned char msg[2]; 440 441 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 442 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 443 444 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 445 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 446 } 447 448 static void start_clear_flags(struct smi_info *smi_info) 449 { 450 unsigned char msg[3]; 451 452 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 453 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 454 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 455 msg[2] = WDT_PRE_TIMEOUT_INT; 456 457 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 458 smi_info->si_state = SI_CLEARING_FLAGS; 459 } 460 461 /* 462 * When we have a situtaion where we run out of memory and cannot 463 * allocate messages, we just leave them in the BMC and run the system 464 * polled until we can allocate some memory. Once we have some 465 * memory, we will re-enable the interrupt. 466 */ 467 static inline void disable_si_irq(struct smi_info *smi_info) 468 { 469 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 470 start_disable_irq(smi_info); 471 smi_info->interrupt_disabled = 1; 472 if (!atomic_read(&smi_info->stop_operation)) 473 mod_timer(&smi_info->si_timer, 474 jiffies + SI_TIMEOUT_JIFFIES); 475 } 476 } 477 478 static inline void enable_si_irq(struct smi_info *smi_info) 479 { 480 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 481 start_enable_irq(smi_info); 482 smi_info->interrupt_disabled = 0; 483 } 484 } 485 486 static void handle_flags(struct smi_info *smi_info) 487 { 488 retry: 489 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 490 /* Watchdog pre-timeout */ 491 smi_inc_stat(smi_info, watchdog_pretimeouts); 492 493 start_clear_flags(smi_info); 494 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 495 spin_unlock(&(smi_info->si_lock)); 496 ipmi_smi_watchdog_pretimeout(smi_info->intf); 497 spin_lock(&(smi_info->si_lock)); 498 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 499 /* Messages available. */ 500 smi_info->curr_msg = ipmi_alloc_smi_msg(); 501 if (!smi_info->curr_msg) { 502 disable_si_irq(smi_info); 503 smi_info->si_state = SI_NORMAL; 504 return; 505 } 506 enable_si_irq(smi_info); 507 508 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 509 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 510 smi_info->curr_msg->data_size = 2; 511 512 smi_info->handlers->start_transaction( 513 smi_info->si_sm, 514 smi_info->curr_msg->data, 515 smi_info->curr_msg->data_size); 516 smi_info->si_state = SI_GETTING_MESSAGES; 517 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 518 /* Events available. */ 519 smi_info->curr_msg = ipmi_alloc_smi_msg(); 520 if (!smi_info->curr_msg) { 521 disable_si_irq(smi_info); 522 smi_info->si_state = SI_NORMAL; 523 return; 524 } 525 enable_si_irq(smi_info); 526 527 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 528 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 529 smi_info->curr_msg->data_size = 2; 530 531 smi_info->handlers->start_transaction( 532 smi_info->si_sm, 533 smi_info->curr_msg->data, 534 smi_info->curr_msg->data_size); 535 smi_info->si_state = SI_GETTING_EVENTS; 536 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 537 smi_info->oem_data_avail_handler) { 538 if (smi_info->oem_data_avail_handler(smi_info)) 539 goto retry; 540 } else 541 smi_info->si_state = SI_NORMAL; 542 } 543 544 static void handle_transaction_done(struct smi_info *smi_info) 545 { 546 struct ipmi_smi_msg *msg; 547 #ifdef DEBUG_TIMING 548 struct timeval t; 549 550 do_gettimeofday(&t); 551 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 552 #endif 553 switch (smi_info->si_state) { 554 case SI_NORMAL: 555 if (!smi_info->curr_msg) 556 break; 557 558 smi_info->curr_msg->rsp_size 559 = smi_info->handlers->get_result( 560 smi_info->si_sm, 561 smi_info->curr_msg->rsp, 562 IPMI_MAX_MSG_LENGTH); 563 564 /* 565 * Do this here becase deliver_recv_msg() releases the 566 * lock, and a new message can be put in during the 567 * time the lock is released. 568 */ 569 msg = smi_info->curr_msg; 570 smi_info->curr_msg = NULL; 571 deliver_recv_msg(smi_info, msg); 572 break; 573 574 case SI_GETTING_FLAGS: 575 { 576 unsigned char msg[4]; 577 unsigned int len; 578 579 /* We got the flags from the SMI, now handle them. */ 580 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 581 if (msg[2] != 0) { 582 /* Error fetching flags, just give up for now. */ 583 smi_info->si_state = SI_NORMAL; 584 } else if (len < 4) { 585 /* 586 * Hmm, no flags. That's technically illegal, but 587 * don't use uninitialized data. 588 */ 589 smi_info->si_state = SI_NORMAL; 590 } else { 591 smi_info->msg_flags = msg[3]; 592 handle_flags(smi_info); 593 } 594 break; 595 } 596 597 case SI_CLEARING_FLAGS: 598 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 599 { 600 unsigned char msg[3]; 601 602 /* We cleared the flags. */ 603 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 604 if (msg[2] != 0) { 605 /* Error clearing flags */ 606 dev_warn(smi_info->dev, 607 "Error clearing flags: %2.2x\n", msg[2]); 608 } 609 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 610 start_enable_irq(smi_info); 611 else 612 smi_info->si_state = SI_NORMAL; 613 break; 614 } 615 616 case SI_GETTING_EVENTS: 617 { 618 smi_info->curr_msg->rsp_size 619 = smi_info->handlers->get_result( 620 smi_info->si_sm, 621 smi_info->curr_msg->rsp, 622 IPMI_MAX_MSG_LENGTH); 623 624 /* 625 * Do this here becase deliver_recv_msg() releases the 626 * lock, and a new message can be put in during the 627 * time the lock is released. 628 */ 629 msg = smi_info->curr_msg; 630 smi_info->curr_msg = NULL; 631 if (msg->rsp[2] != 0) { 632 /* Error getting event, probably done. */ 633 msg->done(msg); 634 635 /* Take off the event flag. */ 636 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 637 handle_flags(smi_info); 638 } else { 639 smi_inc_stat(smi_info, events); 640 641 /* 642 * Do this before we deliver the message 643 * because delivering the message releases the 644 * lock and something else can mess with the 645 * state. 646 */ 647 handle_flags(smi_info); 648 649 deliver_recv_msg(smi_info, msg); 650 } 651 break; 652 } 653 654 case SI_GETTING_MESSAGES: 655 { 656 smi_info->curr_msg->rsp_size 657 = smi_info->handlers->get_result( 658 smi_info->si_sm, 659 smi_info->curr_msg->rsp, 660 IPMI_MAX_MSG_LENGTH); 661 662 /* 663 * Do this here becase deliver_recv_msg() releases the 664 * lock, and a new message can be put in during the 665 * time the lock is released. 666 */ 667 msg = smi_info->curr_msg; 668 smi_info->curr_msg = NULL; 669 if (msg->rsp[2] != 0) { 670 /* Error getting event, probably done. */ 671 msg->done(msg); 672 673 /* Take off the msg flag. */ 674 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 675 handle_flags(smi_info); 676 } else { 677 smi_inc_stat(smi_info, incoming_messages); 678 679 /* 680 * Do this before we deliver the message 681 * because delivering the message releases the 682 * lock and something else can mess with the 683 * state. 684 */ 685 handle_flags(smi_info); 686 687 deliver_recv_msg(smi_info, msg); 688 } 689 break; 690 } 691 692 case SI_ENABLE_INTERRUPTS1: 693 { 694 unsigned char msg[4]; 695 696 /* We got the flags from the SMI, now handle them. */ 697 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 698 if (msg[2] != 0) { 699 dev_warn(smi_info->dev, "Could not enable interrupts" 700 ", failed get, using polled mode.\n"); 701 smi_info->si_state = SI_NORMAL; 702 } else { 703 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 704 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 705 msg[2] = (msg[3] | 706 IPMI_BMC_RCV_MSG_INTR | 707 IPMI_BMC_EVT_MSG_INTR); 708 smi_info->handlers->start_transaction( 709 smi_info->si_sm, msg, 3); 710 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 711 } 712 break; 713 } 714 715 case SI_ENABLE_INTERRUPTS2: 716 { 717 unsigned char msg[4]; 718 719 /* We got the flags from the SMI, now handle them. */ 720 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 721 if (msg[2] != 0) 722 dev_warn(smi_info->dev, "Could not enable interrupts" 723 ", failed set, using polled mode.\n"); 724 else 725 smi_info->interrupt_disabled = 0; 726 smi_info->si_state = SI_NORMAL; 727 break; 728 } 729 730 case SI_DISABLE_INTERRUPTS1: 731 { 732 unsigned char msg[4]; 733 734 /* We got the flags from the SMI, now handle them. */ 735 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 736 if (msg[2] != 0) { 737 dev_warn(smi_info->dev, "Could not disable interrupts" 738 ", failed get.\n"); 739 smi_info->si_state = SI_NORMAL; 740 } else { 741 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 742 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 743 msg[2] = (msg[3] & 744 ~(IPMI_BMC_RCV_MSG_INTR | 745 IPMI_BMC_EVT_MSG_INTR)); 746 smi_info->handlers->start_transaction( 747 smi_info->si_sm, msg, 3); 748 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 749 } 750 break; 751 } 752 753 case SI_DISABLE_INTERRUPTS2: 754 { 755 unsigned char msg[4]; 756 757 /* We got the flags from the SMI, now handle them. */ 758 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 759 if (msg[2] != 0) { 760 dev_warn(smi_info->dev, "Could not disable interrupts" 761 ", failed set.\n"); 762 } 763 smi_info->si_state = SI_NORMAL; 764 break; 765 } 766 } 767 } 768 769 /* 770 * Called on timeouts and events. Timeouts should pass the elapsed 771 * time, interrupts should pass in zero. Must be called with 772 * si_lock held and interrupts disabled. 773 */ 774 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 775 int time) 776 { 777 enum si_sm_result si_sm_result; 778 779 restart: 780 /* 781 * There used to be a loop here that waited a little while 782 * (around 25us) before giving up. That turned out to be 783 * pointless, the minimum delays I was seeing were in the 300us 784 * range, which is far too long to wait in an interrupt. So 785 * we just run until the state machine tells us something 786 * happened or it needs a delay. 787 */ 788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 789 time = 0; 790 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 791 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 792 793 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 794 smi_inc_stat(smi_info, complete_transactions); 795 796 handle_transaction_done(smi_info); 797 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 798 } else if (si_sm_result == SI_SM_HOSED) { 799 smi_inc_stat(smi_info, hosed_count); 800 801 /* 802 * Do the before return_hosed_msg, because that 803 * releases the lock. 804 */ 805 smi_info->si_state = SI_NORMAL; 806 if (smi_info->curr_msg != NULL) { 807 /* 808 * If we were handling a user message, format 809 * a response to send to the upper layer to 810 * tell it about the error. 811 */ 812 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 813 } 814 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 815 } 816 817 /* 818 * We prefer handling attn over new messages. But don't do 819 * this if there is not yet an upper layer to handle anything. 820 */ 821 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 822 unsigned char msg[2]; 823 824 smi_inc_stat(smi_info, attentions); 825 826 /* 827 * Got a attn, send down a get message flags to see 828 * what's causing it. It would be better to handle 829 * this in the upper layer, but due to the way 830 * interrupts work with the SMI, that's not really 831 * possible. 832 */ 833 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 834 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 835 836 smi_info->handlers->start_transaction( 837 smi_info->si_sm, msg, 2); 838 smi_info->si_state = SI_GETTING_FLAGS; 839 goto restart; 840 } 841 842 /* If we are currently idle, try to start the next message. */ 843 if (si_sm_result == SI_SM_IDLE) { 844 smi_inc_stat(smi_info, idles); 845 846 si_sm_result = start_next_msg(smi_info); 847 if (si_sm_result != SI_SM_IDLE) 848 goto restart; 849 } 850 851 if ((si_sm_result == SI_SM_IDLE) 852 && (atomic_read(&smi_info->req_events))) { 853 /* 854 * We are idle and the upper layer requested that I fetch 855 * events, so do so. 856 */ 857 atomic_set(&smi_info->req_events, 0); 858 859 smi_info->curr_msg = ipmi_alloc_smi_msg(); 860 if (!smi_info->curr_msg) 861 goto out; 862 863 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 864 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 865 smi_info->curr_msg->data_size = 2; 866 867 smi_info->handlers->start_transaction( 868 smi_info->si_sm, 869 smi_info->curr_msg->data, 870 smi_info->curr_msg->data_size); 871 smi_info->si_state = SI_GETTING_EVENTS; 872 goto restart; 873 } 874 out: 875 return si_sm_result; 876 } 877 878 static void sender(void *send_info, 879 struct ipmi_smi_msg *msg, 880 int priority) 881 { 882 struct smi_info *smi_info = send_info; 883 enum si_sm_result result; 884 unsigned long flags; 885 #ifdef DEBUG_TIMING 886 struct timeval t; 887 #endif 888 889 if (atomic_read(&smi_info->stop_operation)) { 890 msg->rsp[0] = msg->data[0] | 4; 891 msg->rsp[1] = msg->data[1]; 892 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 893 msg->rsp_size = 3; 894 deliver_recv_msg(smi_info, msg); 895 return; 896 } 897 898 #ifdef DEBUG_TIMING 899 do_gettimeofday(&t); 900 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 901 #endif 902 903 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 904 905 if (smi_info->thread) 906 wake_up_process(smi_info->thread); 907 908 if (smi_info->run_to_completion) { 909 /* 910 * If we are running to completion, then throw it in 911 * the list and run transactions until everything is 912 * clear. Priority doesn't matter here. 913 */ 914 915 /* 916 * Run to completion means we are single-threaded, no 917 * need for locks. 918 */ 919 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 920 921 result = smi_event_handler(smi_info, 0); 922 while (result != SI_SM_IDLE) { 923 udelay(SI_SHORT_TIMEOUT_USEC); 924 result = smi_event_handler(smi_info, 925 SI_SHORT_TIMEOUT_USEC); 926 } 927 return; 928 } 929 930 spin_lock_irqsave(&smi_info->msg_lock, flags); 931 if (priority > 0) 932 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 933 else 934 list_add_tail(&msg->link, &smi_info->xmit_msgs); 935 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 936 937 spin_lock_irqsave(&smi_info->si_lock, flags); 938 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 939 start_next_msg(smi_info); 940 spin_unlock_irqrestore(&smi_info->si_lock, flags); 941 } 942 943 static void set_run_to_completion(void *send_info, int i_run_to_completion) 944 { 945 struct smi_info *smi_info = send_info; 946 enum si_sm_result result; 947 948 smi_info->run_to_completion = i_run_to_completion; 949 if (i_run_to_completion) { 950 result = smi_event_handler(smi_info, 0); 951 while (result != SI_SM_IDLE) { 952 udelay(SI_SHORT_TIMEOUT_USEC); 953 result = smi_event_handler(smi_info, 954 SI_SHORT_TIMEOUT_USEC); 955 } 956 } 957 } 958 959 /* 960 * Use -1 in the nsec value of the busy waiting timespec to tell that 961 * we are spinning in kipmid looking for something and not delaying 962 * between checks 963 */ 964 static inline void ipmi_si_set_not_busy(struct timespec *ts) 965 { 966 ts->tv_nsec = -1; 967 } 968 static inline int ipmi_si_is_busy(struct timespec *ts) 969 { 970 return ts->tv_nsec != -1; 971 } 972 973 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 974 const struct smi_info *smi_info, 975 struct timespec *busy_until) 976 { 977 unsigned int max_busy_us = 0; 978 979 if (smi_info->intf_num < num_max_busy_us) 980 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 981 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 982 ipmi_si_set_not_busy(busy_until); 983 else if (!ipmi_si_is_busy(busy_until)) { 984 getnstimeofday(busy_until); 985 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 986 } else { 987 struct timespec now; 988 getnstimeofday(&now); 989 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 990 ipmi_si_set_not_busy(busy_until); 991 return 0; 992 } 993 } 994 return 1; 995 } 996 997 998 /* 999 * A busy-waiting loop for speeding up IPMI operation. 1000 * 1001 * Lousy hardware makes this hard. This is only enabled for systems 1002 * that are not BT and do not have interrupts. It starts spinning 1003 * when an operation is complete or until max_busy tells it to stop 1004 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1005 * Documentation/IPMI.txt for details. 1006 */ 1007 static int ipmi_thread(void *data) 1008 { 1009 struct smi_info *smi_info = data; 1010 unsigned long flags; 1011 enum si_sm_result smi_result; 1012 struct timespec busy_until; 1013 1014 ipmi_si_set_not_busy(&busy_until); 1015 set_user_nice(current, 19); 1016 while (!kthread_should_stop()) { 1017 int busy_wait; 1018 1019 spin_lock_irqsave(&(smi_info->si_lock), flags); 1020 smi_result = smi_event_handler(smi_info, 0); 1021 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1022 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1023 &busy_until); 1024 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1025 ; /* do nothing */ 1026 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1027 schedule(); 1028 else if (smi_result == SI_SM_IDLE) 1029 schedule_timeout_interruptible(100); 1030 else 1031 schedule_timeout_interruptible(1); 1032 } 1033 return 0; 1034 } 1035 1036 1037 static void poll(void *send_info) 1038 { 1039 struct smi_info *smi_info = send_info; 1040 unsigned long flags; 1041 1042 /* 1043 * Make sure there is some delay in the poll loop so we can 1044 * drive time forward and timeout things. 1045 */ 1046 udelay(10); 1047 spin_lock_irqsave(&smi_info->si_lock, flags); 1048 smi_event_handler(smi_info, 10); 1049 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1050 } 1051 1052 static void request_events(void *send_info) 1053 { 1054 struct smi_info *smi_info = send_info; 1055 1056 if (atomic_read(&smi_info->stop_operation) || 1057 !smi_info->has_event_buffer) 1058 return; 1059 1060 atomic_set(&smi_info->req_events, 1); 1061 } 1062 1063 static int initialized; 1064 1065 static void smi_timeout(unsigned long data) 1066 { 1067 struct smi_info *smi_info = (struct smi_info *) data; 1068 enum si_sm_result smi_result; 1069 unsigned long flags; 1070 unsigned long jiffies_now; 1071 long time_diff; 1072 long timeout; 1073 #ifdef DEBUG_TIMING 1074 struct timeval t; 1075 #endif 1076 1077 spin_lock_irqsave(&(smi_info->si_lock), flags); 1078 #ifdef DEBUG_TIMING 1079 do_gettimeofday(&t); 1080 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1081 #endif 1082 jiffies_now = jiffies; 1083 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1084 * SI_USEC_PER_JIFFY); 1085 smi_result = smi_event_handler(smi_info, time_diff); 1086 1087 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1088 1089 smi_info->last_timeout_jiffies = jiffies_now; 1090 1091 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1092 /* Running with interrupts, only do long timeouts. */ 1093 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1094 smi_inc_stat(smi_info, long_timeouts); 1095 goto do_mod_timer; 1096 } 1097 1098 /* 1099 * If the state machine asks for a short delay, then shorten 1100 * the timer timeout. 1101 */ 1102 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1103 smi_inc_stat(smi_info, short_timeouts); 1104 timeout = jiffies + 1; 1105 } else { 1106 smi_inc_stat(smi_info, long_timeouts); 1107 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1108 } 1109 1110 do_mod_timer: 1111 if (smi_result != SI_SM_IDLE) 1112 mod_timer(&(smi_info->si_timer), timeout); 1113 } 1114 1115 static irqreturn_t si_irq_handler(int irq, void *data) 1116 { 1117 struct smi_info *smi_info = data; 1118 unsigned long flags; 1119 #ifdef DEBUG_TIMING 1120 struct timeval t; 1121 #endif 1122 1123 spin_lock_irqsave(&(smi_info->si_lock), flags); 1124 1125 smi_inc_stat(smi_info, interrupts); 1126 1127 #ifdef DEBUG_TIMING 1128 do_gettimeofday(&t); 1129 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1130 #endif 1131 smi_event_handler(smi_info, 0); 1132 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1133 return IRQ_HANDLED; 1134 } 1135 1136 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1137 { 1138 struct smi_info *smi_info = data; 1139 /* We need to clear the IRQ flag for the BT interface. */ 1140 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1141 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1142 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1143 return si_irq_handler(irq, data); 1144 } 1145 1146 static int smi_start_processing(void *send_info, 1147 ipmi_smi_t intf) 1148 { 1149 struct smi_info *new_smi = send_info; 1150 int enable = 0; 1151 1152 new_smi->intf = intf; 1153 1154 /* Try to claim any interrupts. */ 1155 if (new_smi->irq_setup) 1156 new_smi->irq_setup(new_smi); 1157 1158 /* Set up the timer that drives the interface. */ 1159 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1160 new_smi->last_timeout_jiffies = jiffies; 1161 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1162 1163 /* 1164 * Check if the user forcefully enabled the daemon. 1165 */ 1166 if (new_smi->intf_num < num_force_kipmid) 1167 enable = force_kipmid[new_smi->intf_num]; 1168 /* 1169 * The BT interface is efficient enough to not need a thread, 1170 * and there is no need for a thread if we have interrupts. 1171 */ 1172 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1173 enable = 1; 1174 1175 if (enable) { 1176 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1177 "kipmi%d", new_smi->intf_num); 1178 if (IS_ERR(new_smi->thread)) { 1179 dev_notice(new_smi->dev, "Could not start" 1180 " kernel thread due to error %ld, only using" 1181 " timers to drive the interface\n", 1182 PTR_ERR(new_smi->thread)); 1183 new_smi->thread = NULL; 1184 } 1185 } 1186 1187 return 0; 1188 } 1189 1190 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1191 { 1192 struct smi_info *smi = send_info; 1193 1194 data->addr_src = smi->addr_source; 1195 data->dev = smi->dev; 1196 data->addr_info = smi->addr_info; 1197 get_device(smi->dev); 1198 1199 return 0; 1200 } 1201 1202 static void set_maintenance_mode(void *send_info, int enable) 1203 { 1204 struct smi_info *smi_info = send_info; 1205 1206 if (!enable) 1207 atomic_set(&smi_info->req_events, 0); 1208 } 1209 1210 static struct ipmi_smi_handlers handlers = { 1211 .owner = THIS_MODULE, 1212 .start_processing = smi_start_processing, 1213 .get_smi_info = get_smi_info, 1214 .sender = sender, 1215 .request_events = request_events, 1216 .set_maintenance_mode = set_maintenance_mode, 1217 .set_run_to_completion = set_run_to_completion, 1218 .poll = poll, 1219 }; 1220 1221 /* 1222 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1223 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1224 */ 1225 1226 static LIST_HEAD(smi_infos); 1227 static DEFINE_MUTEX(smi_infos_lock); 1228 static int smi_num; /* Used to sequence the SMIs */ 1229 1230 #define DEFAULT_REGSPACING 1 1231 #define DEFAULT_REGSIZE 1 1232 1233 static int si_trydefaults = 1; 1234 static char *si_type[SI_MAX_PARMS]; 1235 #define MAX_SI_TYPE_STR 30 1236 static char si_type_str[MAX_SI_TYPE_STR]; 1237 static unsigned long addrs[SI_MAX_PARMS]; 1238 static unsigned int num_addrs; 1239 static unsigned int ports[SI_MAX_PARMS]; 1240 static unsigned int num_ports; 1241 static int irqs[SI_MAX_PARMS]; 1242 static unsigned int num_irqs; 1243 static int regspacings[SI_MAX_PARMS]; 1244 static unsigned int num_regspacings; 1245 static int regsizes[SI_MAX_PARMS]; 1246 static unsigned int num_regsizes; 1247 static int regshifts[SI_MAX_PARMS]; 1248 static unsigned int num_regshifts; 1249 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1250 static unsigned int num_slave_addrs; 1251 1252 #define IPMI_IO_ADDR_SPACE 0 1253 #define IPMI_MEM_ADDR_SPACE 1 1254 static char *addr_space_to_str[] = { "i/o", "mem" }; 1255 1256 static int hotmod_handler(const char *val, struct kernel_param *kp); 1257 1258 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1259 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1260 " Documentation/IPMI.txt in the kernel sources for the" 1261 " gory details."); 1262 1263 module_param_named(trydefaults, si_trydefaults, bool, 0); 1264 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1265 " default scan of the KCS and SMIC interface at the standard" 1266 " address"); 1267 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1268 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1269 " interface separated by commas. The types are 'kcs'," 1270 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1271 " the first interface to kcs and the second to bt"); 1272 module_param_array(addrs, ulong, &num_addrs, 0); 1273 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1274 " addresses separated by commas. Only use if an interface" 1275 " is in memory. Otherwise, set it to zero or leave" 1276 " it blank."); 1277 module_param_array(ports, uint, &num_ports, 0); 1278 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1279 " addresses separated by commas. Only use if an interface" 1280 " is a port. Otherwise, set it to zero or leave" 1281 " it blank."); 1282 module_param_array(irqs, int, &num_irqs, 0); 1283 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1284 " addresses separated by commas. Only use if an interface" 1285 " has an interrupt. Otherwise, set it to zero or leave" 1286 " it blank."); 1287 module_param_array(regspacings, int, &num_regspacings, 0); 1288 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1289 " and each successive register used by the interface. For" 1290 " instance, if the start address is 0xca2 and the spacing" 1291 " is 2, then the second address is at 0xca4. Defaults" 1292 " to 1."); 1293 module_param_array(regsizes, int, &num_regsizes, 0); 1294 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1295 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1296 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1297 " the 8-bit IPMI register has to be read from a larger" 1298 " register."); 1299 module_param_array(regshifts, int, &num_regshifts, 0); 1300 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1301 " IPMI register, in bits. For instance, if the data" 1302 " is read from a 32-bit word and the IPMI data is in" 1303 " bit 8-15, then the shift would be 8"); 1304 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1305 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1306 " the controller. Normally this is 0x20, but can be" 1307 " overridden by this parm. This is an array indexed" 1308 " by interface number."); 1309 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1310 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1311 " disabled(0). Normally the IPMI driver auto-detects" 1312 " this, but the value may be overridden by this parm."); 1313 module_param(unload_when_empty, int, 0); 1314 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1315 " specified or found, default is 1. Setting to 0" 1316 " is useful for hot add of devices using hotmod."); 1317 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1318 MODULE_PARM_DESC(kipmid_max_busy_us, 1319 "Max time (in microseconds) to busy-wait for IPMI data before" 1320 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1321 " if kipmid is using up a lot of CPU time."); 1322 1323 1324 static void std_irq_cleanup(struct smi_info *info) 1325 { 1326 if (info->si_type == SI_BT) 1327 /* Disable the interrupt in the BT interface. */ 1328 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1329 free_irq(info->irq, info); 1330 } 1331 1332 static int std_irq_setup(struct smi_info *info) 1333 { 1334 int rv; 1335 1336 if (!info->irq) 1337 return 0; 1338 1339 if (info->si_type == SI_BT) { 1340 rv = request_irq(info->irq, 1341 si_bt_irq_handler, 1342 IRQF_SHARED | IRQF_DISABLED, 1343 DEVICE_NAME, 1344 info); 1345 if (!rv) 1346 /* Enable the interrupt in the BT interface. */ 1347 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1348 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1349 } else 1350 rv = request_irq(info->irq, 1351 si_irq_handler, 1352 IRQF_SHARED | IRQF_DISABLED, 1353 DEVICE_NAME, 1354 info); 1355 if (rv) { 1356 dev_warn(info->dev, "%s unable to claim interrupt %d," 1357 " running polled\n", 1358 DEVICE_NAME, info->irq); 1359 info->irq = 0; 1360 } else { 1361 info->irq_cleanup = std_irq_cleanup; 1362 dev_info(info->dev, "Using irq %d\n", info->irq); 1363 } 1364 1365 return rv; 1366 } 1367 1368 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1369 { 1370 unsigned int addr = io->addr_data; 1371 1372 return inb(addr + (offset * io->regspacing)); 1373 } 1374 1375 static void port_outb(struct si_sm_io *io, unsigned int offset, 1376 unsigned char b) 1377 { 1378 unsigned int addr = io->addr_data; 1379 1380 outb(b, addr + (offset * io->regspacing)); 1381 } 1382 1383 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1384 { 1385 unsigned int addr = io->addr_data; 1386 1387 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1388 } 1389 1390 static void port_outw(struct si_sm_io *io, unsigned int offset, 1391 unsigned char b) 1392 { 1393 unsigned int addr = io->addr_data; 1394 1395 outw(b << io->regshift, addr + (offset * io->regspacing)); 1396 } 1397 1398 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1399 { 1400 unsigned int addr = io->addr_data; 1401 1402 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1403 } 1404 1405 static void port_outl(struct si_sm_io *io, unsigned int offset, 1406 unsigned char b) 1407 { 1408 unsigned int addr = io->addr_data; 1409 1410 outl(b << io->regshift, addr+(offset * io->regspacing)); 1411 } 1412 1413 static void port_cleanup(struct smi_info *info) 1414 { 1415 unsigned int addr = info->io.addr_data; 1416 int idx; 1417 1418 if (addr) { 1419 for (idx = 0; idx < info->io_size; idx++) 1420 release_region(addr + idx * info->io.regspacing, 1421 info->io.regsize); 1422 } 1423 } 1424 1425 static int port_setup(struct smi_info *info) 1426 { 1427 unsigned int addr = info->io.addr_data; 1428 int idx; 1429 1430 if (!addr) 1431 return -ENODEV; 1432 1433 info->io_cleanup = port_cleanup; 1434 1435 /* 1436 * Figure out the actual inb/inw/inl/etc routine to use based 1437 * upon the register size. 1438 */ 1439 switch (info->io.regsize) { 1440 case 1: 1441 info->io.inputb = port_inb; 1442 info->io.outputb = port_outb; 1443 break; 1444 case 2: 1445 info->io.inputb = port_inw; 1446 info->io.outputb = port_outw; 1447 break; 1448 case 4: 1449 info->io.inputb = port_inl; 1450 info->io.outputb = port_outl; 1451 break; 1452 default: 1453 dev_warn(info->dev, "Invalid register size: %d\n", 1454 info->io.regsize); 1455 return -EINVAL; 1456 } 1457 1458 /* 1459 * Some BIOSes reserve disjoint I/O regions in their ACPI 1460 * tables. This causes problems when trying to register the 1461 * entire I/O region. Therefore we must register each I/O 1462 * port separately. 1463 */ 1464 for (idx = 0; idx < info->io_size; idx++) { 1465 if (request_region(addr + idx * info->io.regspacing, 1466 info->io.regsize, DEVICE_NAME) == NULL) { 1467 /* Undo allocations */ 1468 while (idx--) { 1469 release_region(addr + idx * info->io.regspacing, 1470 info->io.regsize); 1471 } 1472 return -EIO; 1473 } 1474 } 1475 return 0; 1476 } 1477 1478 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1479 { 1480 return readb((io->addr)+(offset * io->regspacing)); 1481 } 1482 1483 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1484 unsigned char b) 1485 { 1486 writeb(b, (io->addr)+(offset * io->regspacing)); 1487 } 1488 1489 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1490 { 1491 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1492 & 0xff; 1493 } 1494 1495 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1496 unsigned char b) 1497 { 1498 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1499 } 1500 1501 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1502 { 1503 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1504 & 0xff; 1505 } 1506 1507 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1508 unsigned char b) 1509 { 1510 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1511 } 1512 1513 #ifdef readq 1514 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1515 { 1516 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1517 & 0xff; 1518 } 1519 1520 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1521 unsigned char b) 1522 { 1523 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1524 } 1525 #endif 1526 1527 static void mem_cleanup(struct smi_info *info) 1528 { 1529 unsigned long addr = info->io.addr_data; 1530 int mapsize; 1531 1532 if (info->io.addr) { 1533 iounmap(info->io.addr); 1534 1535 mapsize = ((info->io_size * info->io.regspacing) 1536 - (info->io.regspacing - info->io.regsize)); 1537 1538 release_mem_region(addr, mapsize); 1539 } 1540 } 1541 1542 static int mem_setup(struct smi_info *info) 1543 { 1544 unsigned long addr = info->io.addr_data; 1545 int mapsize; 1546 1547 if (!addr) 1548 return -ENODEV; 1549 1550 info->io_cleanup = mem_cleanup; 1551 1552 /* 1553 * Figure out the actual readb/readw/readl/etc routine to use based 1554 * upon the register size. 1555 */ 1556 switch (info->io.regsize) { 1557 case 1: 1558 info->io.inputb = intf_mem_inb; 1559 info->io.outputb = intf_mem_outb; 1560 break; 1561 case 2: 1562 info->io.inputb = intf_mem_inw; 1563 info->io.outputb = intf_mem_outw; 1564 break; 1565 case 4: 1566 info->io.inputb = intf_mem_inl; 1567 info->io.outputb = intf_mem_outl; 1568 break; 1569 #ifdef readq 1570 case 8: 1571 info->io.inputb = mem_inq; 1572 info->io.outputb = mem_outq; 1573 break; 1574 #endif 1575 default: 1576 dev_warn(info->dev, "Invalid register size: %d\n", 1577 info->io.regsize); 1578 return -EINVAL; 1579 } 1580 1581 /* 1582 * Calculate the total amount of memory to claim. This is an 1583 * unusual looking calculation, but it avoids claiming any 1584 * more memory than it has to. It will claim everything 1585 * between the first address to the end of the last full 1586 * register. 1587 */ 1588 mapsize = ((info->io_size * info->io.regspacing) 1589 - (info->io.regspacing - info->io.regsize)); 1590 1591 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1592 return -EIO; 1593 1594 info->io.addr = ioremap(addr, mapsize); 1595 if (info->io.addr == NULL) { 1596 release_mem_region(addr, mapsize); 1597 return -EIO; 1598 } 1599 return 0; 1600 } 1601 1602 /* 1603 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1604 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1605 * Options are: 1606 * rsp=<regspacing> 1607 * rsi=<regsize> 1608 * rsh=<regshift> 1609 * irq=<irq> 1610 * ipmb=<ipmb addr> 1611 */ 1612 enum hotmod_op { HM_ADD, HM_REMOVE }; 1613 struct hotmod_vals { 1614 char *name; 1615 int val; 1616 }; 1617 static struct hotmod_vals hotmod_ops[] = { 1618 { "add", HM_ADD }, 1619 { "remove", HM_REMOVE }, 1620 { NULL } 1621 }; 1622 static struct hotmod_vals hotmod_si[] = { 1623 { "kcs", SI_KCS }, 1624 { "smic", SI_SMIC }, 1625 { "bt", SI_BT }, 1626 { NULL } 1627 }; 1628 static struct hotmod_vals hotmod_as[] = { 1629 { "mem", IPMI_MEM_ADDR_SPACE }, 1630 { "i/o", IPMI_IO_ADDR_SPACE }, 1631 { NULL } 1632 }; 1633 1634 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1635 { 1636 char *s; 1637 int i; 1638 1639 s = strchr(*curr, ','); 1640 if (!s) { 1641 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1642 return -EINVAL; 1643 } 1644 *s = '\0'; 1645 s++; 1646 for (i = 0; hotmod_ops[i].name; i++) { 1647 if (strcmp(*curr, v[i].name) == 0) { 1648 *val = v[i].val; 1649 *curr = s; 1650 return 0; 1651 } 1652 } 1653 1654 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1655 return -EINVAL; 1656 } 1657 1658 static int check_hotmod_int_op(const char *curr, const char *option, 1659 const char *name, int *val) 1660 { 1661 char *n; 1662 1663 if (strcmp(curr, name) == 0) { 1664 if (!option) { 1665 printk(KERN_WARNING PFX 1666 "No option given for '%s'\n", 1667 curr); 1668 return -EINVAL; 1669 } 1670 *val = simple_strtoul(option, &n, 0); 1671 if ((*n != '\0') || (*option == '\0')) { 1672 printk(KERN_WARNING PFX 1673 "Bad option given for '%s'\n", 1674 curr); 1675 return -EINVAL; 1676 } 1677 return 1; 1678 } 1679 return 0; 1680 } 1681 1682 static struct smi_info *smi_info_alloc(void) 1683 { 1684 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1685 1686 if (info) { 1687 spin_lock_init(&info->si_lock); 1688 spin_lock_init(&info->msg_lock); 1689 } 1690 return info; 1691 } 1692 1693 static int hotmod_handler(const char *val, struct kernel_param *kp) 1694 { 1695 char *str = kstrdup(val, GFP_KERNEL); 1696 int rv; 1697 char *next, *curr, *s, *n, *o; 1698 enum hotmod_op op; 1699 enum si_type si_type; 1700 int addr_space; 1701 unsigned long addr; 1702 int regspacing; 1703 int regsize; 1704 int regshift; 1705 int irq; 1706 int ipmb; 1707 int ival; 1708 int len; 1709 struct smi_info *info; 1710 1711 if (!str) 1712 return -ENOMEM; 1713 1714 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1715 len = strlen(str); 1716 ival = len - 1; 1717 while ((ival >= 0) && isspace(str[ival])) { 1718 str[ival] = '\0'; 1719 ival--; 1720 } 1721 1722 for (curr = str; curr; curr = next) { 1723 regspacing = 1; 1724 regsize = 1; 1725 regshift = 0; 1726 irq = 0; 1727 ipmb = 0; /* Choose the default if not specified */ 1728 1729 next = strchr(curr, ':'); 1730 if (next) { 1731 *next = '\0'; 1732 next++; 1733 } 1734 1735 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1736 if (rv) 1737 break; 1738 op = ival; 1739 1740 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1741 if (rv) 1742 break; 1743 si_type = ival; 1744 1745 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1746 if (rv) 1747 break; 1748 1749 s = strchr(curr, ','); 1750 if (s) { 1751 *s = '\0'; 1752 s++; 1753 } 1754 addr = simple_strtoul(curr, &n, 0); 1755 if ((*n != '\0') || (*curr == '\0')) { 1756 printk(KERN_WARNING PFX "Invalid hotmod address" 1757 " '%s'\n", curr); 1758 break; 1759 } 1760 1761 while (s) { 1762 curr = s; 1763 s = strchr(curr, ','); 1764 if (s) { 1765 *s = '\0'; 1766 s++; 1767 } 1768 o = strchr(curr, '='); 1769 if (o) { 1770 *o = '\0'; 1771 o++; 1772 } 1773 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1774 if (rv < 0) 1775 goto out; 1776 else if (rv) 1777 continue; 1778 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1779 if (rv < 0) 1780 goto out; 1781 else if (rv) 1782 continue; 1783 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1784 if (rv < 0) 1785 goto out; 1786 else if (rv) 1787 continue; 1788 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1789 if (rv < 0) 1790 goto out; 1791 else if (rv) 1792 continue; 1793 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1794 if (rv < 0) 1795 goto out; 1796 else if (rv) 1797 continue; 1798 1799 rv = -EINVAL; 1800 printk(KERN_WARNING PFX 1801 "Invalid hotmod option '%s'\n", 1802 curr); 1803 goto out; 1804 } 1805 1806 if (op == HM_ADD) { 1807 info = smi_info_alloc(); 1808 if (!info) { 1809 rv = -ENOMEM; 1810 goto out; 1811 } 1812 1813 info->addr_source = SI_HOTMOD; 1814 info->si_type = si_type; 1815 info->io.addr_data = addr; 1816 info->io.addr_type = addr_space; 1817 if (addr_space == IPMI_MEM_ADDR_SPACE) 1818 info->io_setup = mem_setup; 1819 else 1820 info->io_setup = port_setup; 1821 1822 info->io.addr = NULL; 1823 info->io.regspacing = regspacing; 1824 if (!info->io.regspacing) 1825 info->io.regspacing = DEFAULT_REGSPACING; 1826 info->io.regsize = regsize; 1827 if (!info->io.regsize) 1828 info->io.regsize = DEFAULT_REGSPACING; 1829 info->io.regshift = regshift; 1830 info->irq = irq; 1831 if (info->irq) 1832 info->irq_setup = std_irq_setup; 1833 info->slave_addr = ipmb; 1834 1835 if (!add_smi(info)) { 1836 if (try_smi_init(info)) 1837 cleanup_one_si(info); 1838 } else { 1839 kfree(info); 1840 } 1841 } else { 1842 /* remove */ 1843 struct smi_info *e, *tmp_e; 1844 1845 mutex_lock(&smi_infos_lock); 1846 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1847 if (e->io.addr_type != addr_space) 1848 continue; 1849 if (e->si_type != si_type) 1850 continue; 1851 if (e->io.addr_data == addr) 1852 cleanup_one_si(e); 1853 } 1854 mutex_unlock(&smi_infos_lock); 1855 } 1856 } 1857 rv = len; 1858 out: 1859 kfree(str); 1860 return rv; 1861 } 1862 1863 static void __devinit hardcode_find_bmc(void) 1864 { 1865 int i; 1866 struct smi_info *info; 1867 1868 for (i = 0; i < SI_MAX_PARMS; i++) { 1869 if (!ports[i] && !addrs[i]) 1870 continue; 1871 1872 info = smi_info_alloc(); 1873 if (!info) 1874 return; 1875 1876 info->addr_source = SI_HARDCODED; 1877 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1878 1879 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1880 info->si_type = SI_KCS; 1881 } else if (strcmp(si_type[i], "smic") == 0) { 1882 info->si_type = SI_SMIC; 1883 } else if (strcmp(si_type[i], "bt") == 0) { 1884 info->si_type = SI_BT; 1885 } else { 1886 printk(KERN_WARNING PFX "Interface type specified " 1887 "for interface %d, was invalid: %s\n", 1888 i, si_type[i]); 1889 kfree(info); 1890 continue; 1891 } 1892 1893 if (ports[i]) { 1894 /* An I/O port */ 1895 info->io_setup = port_setup; 1896 info->io.addr_data = ports[i]; 1897 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1898 } else if (addrs[i]) { 1899 /* A memory port */ 1900 info->io_setup = mem_setup; 1901 info->io.addr_data = addrs[i]; 1902 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1903 } else { 1904 printk(KERN_WARNING PFX "Interface type specified " 1905 "for interface %d, but port and address were " 1906 "not set or set to zero.\n", i); 1907 kfree(info); 1908 continue; 1909 } 1910 1911 info->io.addr = NULL; 1912 info->io.regspacing = regspacings[i]; 1913 if (!info->io.regspacing) 1914 info->io.regspacing = DEFAULT_REGSPACING; 1915 info->io.regsize = regsizes[i]; 1916 if (!info->io.regsize) 1917 info->io.regsize = DEFAULT_REGSPACING; 1918 info->io.regshift = regshifts[i]; 1919 info->irq = irqs[i]; 1920 if (info->irq) 1921 info->irq_setup = std_irq_setup; 1922 info->slave_addr = slave_addrs[i]; 1923 1924 if (!add_smi(info)) { 1925 if (try_smi_init(info)) 1926 cleanup_one_si(info); 1927 } else { 1928 kfree(info); 1929 } 1930 } 1931 } 1932 1933 #ifdef CONFIG_ACPI 1934 1935 #include <linux/acpi.h> 1936 1937 /* 1938 * Once we get an ACPI failure, we don't try any more, because we go 1939 * through the tables sequentially. Once we don't find a table, there 1940 * are no more. 1941 */ 1942 static int acpi_failure; 1943 1944 /* For GPE-type interrupts. */ 1945 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 1946 u32 gpe_number, void *context) 1947 { 1948 struct smi_info *smi_info = context; 1949 unsigned long flags; 1950 #ifdef DEBUG_TIMING 1951 struct timeval t; 1952 #endif 1953 1954 spin_lock_irqsave(&(smi_info->si_lock), flags); 1955 1956 smi_inc_stat(smi_info, interrupts); 1957 1958 #ifdef DEBUG_TIMING 1959 do_gettimeofday(&t); 1960 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1961 #endif 1962 smi_event_handler(smi_info, 0); 1963 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1964 1965 return ACPI_INTERRUPT_HANDLED; 1966 } 1967 1968 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1969 { 1970 if (!info->irq) 1971 return; 1972 1973 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1974 } 1975 1976 static int acpi_gpe_irq_setup(struct smi_info *info) 1977 { 1978 acpi_status status; 1979 1980 if (!info->irq) 1981 return 0; 1982 1983 /* FIXME - is level triggered right? */ 1984 status = acpi_install_gpe_handler(NULL, 1985 info->irq, 1986 ACPI_GPE_LEVEL_TRIGGERED, 1987 &ipmi_acpi_gpe, 1988 info); 1989 if (status != AE_OK) { 1990 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1991 " running polled\n", DEVICE_NAME, info->irq); 1992 info->irq = 0; 1993 return -EINVAL; 1994 } else { 1995 info->irq_cleanup = acpi_gpe_irq_cleanup; 1996 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 1997 return 0; 1998 } 1999 } 2000 2001 /* 2002 * Defined at 2003 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2004 */ 2005 struct SPMITable { 2006 s8 Signature[4]; 2007 u32 Length; 2008 u8 Revision; 2009 u8 Checksum; 2010 s8 OEMID[6]; 2011 s8 OEMTableID[8]; 2012 s8 OEMRevision[4]; 2013 s8 CreatorID[4]; 2014 s8 CreatorRevision[4]; 2015 u8 InterfaceType; 2016 u8 IPMIlegacy; 2017 s16 SpecificationRevision; 2018 2019 /* 2020 * Bit 0 - SCI interrupt supported 2021 * Bit 1 - I/O APIC/SAPIC 2022 */ 2023 u8 InterruptType; 2024 2025 /* 2026 * If bit 0 of InterruptType is set, then this is the SCI 2027 * interrupt in the GPEx_STS register. 2028 */ 2029 u8 GPE; 2030 2031 s16 Reserved; 2032 2033 /* 2034 * If bit 1 of InterruptType is set, then this is the I/O 2035 * APIC/SAPIC interrupt. 2036 */ 2037 u32 GlobalSystemInterrupt; 2038 2039 /* The actual register address. */ 2040 struct acpi_generic_address addr; 2041 2042 u8 UID[4]; 2043 2044 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2045 }; 2046 2047 static int __devinit try_init_spmi(struct SPMITable *spmi) 2048 { 2049 struct smi_info *info; 2050 2051 if (spmi->IPMIlegacy != 1) { 2052 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2053 return -ENODEV; 2054 } 2055 2056 info = smi_info_alloc(); 2057 if (!info) { 2058 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2059 return -ENOMEM; 2060 } 2061 2062 info->addr_source = SI_SPMI; 2063 printk(KERN_INFO PFX "probing via SPMI\n"); 2064 2065 /* Figure out the interface type. */ 2066 switch (spmi->InterfaceType) { 2067 case 1: /* KCS */ 2068 info->si_type = SI_KCS; 2069 break; 2070 case 2: /* SMIC */ 2071 info->si_type = SI_SMIC; 2072 break; 2073 case 3: /* BT */ 2074 info->si_type = SI_BT; 2075 break; 2076 default: 2077 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2078 spmi->InterfaceType); 2079 kfree(info); 2080 return -EIO; 2081 } 2082 2083 if (spmi->InterruptType & 1) { 2084 /* We've got a GPE interrupt. */ 2085 info->irq = spmi->GPE; 2086 info->irq_setup = acpi_gpe_irq_setup; 2087 } else if (spmi->InterruptType & 2) { 2088 /* We've got an APIC/SAPIC interrupt. */ 2089 info->irq = spmi->GlobalSystemInterrupt; 2090 info->irq_setup = std_irq_setup; 2091 } else { 2092 /* Use the default interrupt setting. */ 2093 info->irq = 0; 2094 info->irq_setup = NULL; 2095 } 2096 2097 if (spmi->addr.bit_width) { 2098 /* A (hopefully) properly formed register bit width. */ 2099 info->io.regspacing = spmi->addr.bit_width / 8; 2100 } else { 2101 info->io.regspacing = DEFAULT_REGSPACING; 2102 } 2103 info->io.regsize = info->io.regspacing; 2104 info->io.regshift = spmi->addr.bit_offset; 2105 2106 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2107 info->io_setup = mem_setup; 2108 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2109 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2110 info->io_setup = port_setup; 2111 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2112 } else { 2113 kfree(info); 2114 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2115 return -EIO; 2116 } 2117 info->io.addr_data = spmi->addr.address; 2118 2119 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2120 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2121 info->io.addr_data, info->io.regsize, info->io.regspacing, 2122 info->irq); 2123 2124 if (add_smi(info)) 2125 kfree(info); 2126 2127 return 0; 2128 } 2129 2130 static void __devinit spmi_find_bmc(void) 2131 { 2132 acpi_status status; 2133 struct SPMITable *spmi; 2134 int i; 2135 2136 if (acpi_disabled) 2137 return; 2138 2139 if (acpi_failure) 2140 return; 2141 2142 for (i = 0; ; i++) { 2143 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2144 (struct acpi_table_header **)&spmi); 2145 if (status != AE_OK) 2146 return; 2147 2148 try_init_spmi(spmi); 2149 } 2150 } 2151 2152 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, 2153 const struct pnp_device_id *dev_id) 2154 { 2155 struct acpi_device *acpi_dev; 2156 struct smi_info *info; 2157 struct resource *res, *res_second; 2158 acpi_handle handle; 2159 acpi_status status; 2160 unsigned long long tmp; 2161 2162 acpi_dev = pnp_acpi_device(dev); 2163 if (!acpi_dev) 2164 return -ENODEV; 2165 2166 info = smi_info_alloc(); 2167 if (!info) 2168 return -ENOMEM; 2169 2170 info->addr_source = SI_ACPI; 2171 printk(KERN_INFO PFX "probing via ACPI\n"); 2172 2173 handle = acpi_dev->handle; 2174 info->addr_info.acpi_info.acpi_handle = handle; 2175 2176 /* _IFT tells us the interface type: KCS, BT, etc */ 2177 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2178 if (ACPI_FAILURE(status)) 2179 goto err_free; 2180 2181 switch (tmp) { 2182 case 1: 2183 info->si_type = SI_KCS; 2184 break; 2185 case 2: 2186 info->si_type = SI_SMIC; 2187 break; 2188 case 3: 2189 info->si_type = SI_BT; 2190 break; 2191 default: 2192 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2193 goto err_free; 2194 } 2195 2196 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2197 if (res) { 2198 info->io_setup = port_setup; 2199 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2200 } else { 2201 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2202 if (res) { 2203 info->io_setup = mem_setup; 2204 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2205 } 2206 } 2207 if (!res) { 2208 dev_err(&dev->dev, "no I/O or memory address\n"); 2209 goto err_free; 2210 } 2211 info->io.addr_data = res->start; 2212 2213 info->io.regspacing = DEFAULT_REGSPACING; 2214 res_second = pnp_get_resource(dev, 2215 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2216 IORESOURCE_IO : IORESOURCE_MEM, 2217 1); 2218 if (res_second) { 2219 if (res_second->start > info->io.addr_data) 2220 info->io.regspacing = res_second->start - info->io.addr_data; 2221 } 2222 info->io.regsize = DEFAULT_REGSPACING; 2223 info->io.regshift = 0; 2224 2225 /* If _GPE exists, use it; otherwise use standard interrupts */ 2226 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2227 if (ACPI_SUCCESS(status)) { 2228 info->irq = tmp; 2229 info->irq_setup = acpi_gpe_irq_setup; 2230 } else if (pnp_irq_valid(dev, 0)) { 2231 info->irq = pnp_irq(dev, 0); 2232 info->irq_setup = std_irq_setup; 2233 } 2234 2235 info->dev = &dev->dev; 2236 pnp_set_drvdata(dev, info); 2237 2238 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2239 res, info->io.regsize, info->io.regspacing, 2240 info->irq); 2241 2242 if (add_smi(info)) 2243 goto err_free; 2244 2245 return 0; 2246 2247 err_free: 2248 kfree(info); 2249 return -EINVAL; 2250 } 2251 2252 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) 2253 { 2254 struct smi_info *info = pnp_get_drvdata(dev); 2255 2256 cleanup_one_si(info); 2257 } 2258 2259 static const struct pnp_device_id pnp_dev_table[] = { 2260 {"IPI0001", 0}, 2261 {"", 0}, 2262 }; 2263 2264 static struct pnp_driver ipmi_pnp_driver = { 2265 .name = DEVICE_NAME, 2266 .probe = ipmi_pnp_probe, 2267 .remove = __devexit_p(ipmi_pnp_remove), 2268 .id_table = pnp_dev_table, 2269 }; 2270 #endif 2271 2272 #ifdef CONFIG_DMI 2273 struct dmi_ipmi_data { 2274 u8 type; 2275 u8 addr_space; 2276 unsigned long base_addr; 2277 u8 irq; 2278 u8 offset; 2279 u8 slave_addr; 2280 }; 2281 2282 static int __devinit decode_dmi(const struct dmi_header *dm, 2283 struct dmi_ipmi_data *dmi) 2284 { 2285 const u8 *data = (const u8 *)dm; 2286 unsigned long base_addr; 2287 u8 reg_spacing; 2288 u8 len = dm->length; 2289 2290 dmi->type = data[4]; 2291 2292 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2293 if (len >= 0x11) { 2294 if (base_addr & 1) { 2295 /* I/O */ 2296 base_addr &= 0xFFFE; 2297 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2298 } else 2299 /* Memory */ 2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2301 2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2303 is odd. */ 2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2305 2306 dmi->irq = data[0x11]; 2307 2308 /* The top two bits of byte 0x10 hold the register spacing. */ 2309 reg_spacing = (data[0x10] & 0xC0) >> 6; 2310 switch (reg_spacing) { 2311 case 0x00: /* Byte boundaries */ 2312 dmi->offset = 1; 2313 break; 2314 case 0x01: /* 32-bit boundaries */ 2315 dmi->offset = 4; 2316 break; 2317 case 0x02: /* 16-byte boundaries */ 2318 dmi->offset = 16; 2319 break; 2320 default: 2321 /* Some other interface, just ignore it. */ 2322 return -EIO; 2323 } 2324 } else { 2325 /* Old DMI spec. */ 2326 /* 2327 * Note that technically, the lower bit of the base 2328 * address should be 1 if the address is I/O and 0 if 2329 * the address is in memory. So many systems get that 2330 * wrong (and all that I have seen are I/O) so we just 2331 * ignore that bit and assume I/O. Systems that use 2332 * memory should use the newer spec, anyway. 2333 */ 2334 dmi->base_addr = base_addr & 0xfffe; 2335 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2336 dmi->offset = 1; 2337 } 2338 2339 dmi->slave_addr = data[6]; 2340 2341 return 0; 2342 } 2343 2344 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2345 { 2346 struct smi_info *info; 2347 2348 info = smi_info_alloc(); 2349 if (!info) { 2350 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2351 return; 2352 } 2353 2354 info->addr_source = SI_SMBIOS; 2355 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2356 2357 switch (ipmi_data->type) { 2358 case 0x01: /* KCS */ 2359 info->si_type = SI_KCS; 2360 break; 2361 case 0x02: /* SMIC */ 2362 info->si_type = SI_SMIC; 2363 break; 2364 case 0x03: /* BT */ 2365 info->si_type = SI_BT; 2366 break; 2367 default: 2368 kfree(info); 2369 return; 2370 } 2371 2372 switch (ipmi_data->addr_space) { 2373 case IPMI_MEM_ADDR_SPACE: 2374 info->io_setup = mem_setup; 2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2376 break; 2377 2378 case IPMI_IO_ADDR_SPACE: 2379 info->io_setup = port_setup; 2380 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2381 break; 2382 2383 default: 2384 kfree(info); 2385 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2386 ipmi_data->addr_space); 2387 return; 2388 } 2389 info->io.addr_data = ipmi_data->base_addr; 2390 2391 info->io.regspacing = ipmi_data->offset; 2392 if (!info->io.regspacing) 2393 info->io.regspacing = DEFAULT_REGSPACING; 2394 info->io.regsize = DEFAULT_REGSPACING; 2395 info->io.regshift = 0; 2396 2397 info->slave_addr = ipmi_data->slave_addr; 2398 2399 info->irq = ipmi_data->irq; 2400 if (info->irq) 2401 info->irq_setup = std_irq_setup; 2402 2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2405 info->io.addr_data, info->io.regsize, info->io.regspacing, 2406 info->irq); 2407 2408 if (add_smi(info)) 2409 kfree(info); 2410 } 2411 2412 static void __devinit dmi_find_bmc(void) 2413 { 2414 const struct dmi_device *dev = NULL; 2415 struct dmi_ipmi_data data; 2416 int rv; 2417 2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2419 memset(&data, 0, sizeof(data)); 2420 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2421 &data); 2422 if (!rv) 2423 try_init_dmi(&data); 2424 } 2425 } 2426 #endif /* CONFIG_DMI */ 2427 2428 #ifdef CONFIG_PCI 2429 2430 #define PCI_ERMC_CLASSCODE 0x0C0700 2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2436 2437 #define PCI_HP_VENDOR_ID 0x103C 2438 #define PCI_MMC_DEVICE_ID 0x121A 2439 #define PCI_MMC_ADDR_CW 0x10 2440 2441 static void ipmi_pci_cleanup(struct smi_info *info) 2442 { 2443 struct pci_dev *pdev = info->addr_source_data; 2444 2445 pci_disable_device(pdev); 2446 } 2447 2448 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2449 const struct pci_device_id *ent) 2450 { 2451 int rv; 2452 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2453 struct smi_info *info; 2454 2455 info = smi_info_alloc(); 2456 if (!info) 2457 return -ENOMEM; 2458 2459 info->addr_source = SI_PCI; 2460 dev_info(&pdev->dev, "probing via PCI"); 2461 2462 switch (class_type) { 2463 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2464 info->si_type = SI_SMIC; 2465 break; 2466 2467 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2468 info->si_type = SI_KCS; 2469 break; 2470 2471 case PCI_ERMC_CLASSCODE_TYPE_BT: 2472 info->si_type = SI_BT; 2473 break; 2474 2475 default: 2476 kfree(info); 2477 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2478 return -ENOMEM; 2479 } 2480 2481 rv = pci_enable_device(pdev); 2482 if (rv) { 2483 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2484 kfree(info); 2485 return rv; 2486 } 2487 2488 info->addr_source_cleanup = ipmi_pci_cleanup; 2489 info->addr_source_data = pdev; 2490 2491 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2492 info->io_setup = port_setup; 2493 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2494 } else { 2495 info->io_setup = mem_setup; 2496 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2497 } 2498 info->io.addr_data = pci_resource_start(pdev, 0); 2499 2500 info->io.regspacing = DEFAULT_REGSPACING; 2501 info->io.regsize = DEFAULT_REGSPACING; 2502 info->io.regshift = 0; 2503 2504 info->irq = pdev->irq; 2505 if (info->irq) 2506 info->irq_setup = std_irq_setup; 2507 2508 info->dev = &pdev->dev; 2509 pci_set_drvdata(pdev, info); 2510 2511 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2512 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2513 info->irq); 2514 2515 if (add_smi(info)) 2516 kfree(info); 2517 2518 return 0; 2519 } 2520 2521 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2522 { 2523 struct smi_info *info = pci_get_drvdata(pdev); 2524 cleanup_one_si(info); 2525 } 2526 2527 #ifdef CONFIG_PM 2528 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2529 { 2530 return 0; 2531 } 2532 2533 static int ipmi_pci_resume(struct pci_dev *pdev) 2534 { 2535 return 0; 2536 } 2537 #endif 2538 2539 static struct pci_device_id ipmi_pci_devices[] = { 2540 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2541 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2542 { 0, } 2543 }; 2544 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2545 2546 static struct pci_driver ipmi_pci_driver = { 2547 .name = DEVICE_NAME, 2548 .id_table = ipmi_pci_devices, 2549 .probe = ipmi_pci_probe, 2550 .remove = __devexit_p(ipmi_pci_remove), 2551 #ifdef CONFIG_PM 2552 .suspend = ipmi_pci_suspend, 2553 .resume = ipmi_pci_resume, 2554 #endif 2555 }; 2556 #endif /* CONFIG_PCI */ 2557 2558 2559 #ifdef CONFIG_PPC_OF 2560 static int __devinit ipmi_of_probe(struct platform_device *dev, 2561 const struct of_device_id *match) 2562 { 2563 struct smi_info *info; 2564 struct resource resource; 2565 const __be32 *regsize, *regspacing, *regshift; 2566 struct device_node *np = dev->dev.of_node; 2567 int ret; 2568 int proplen; 2569 2570 dev_info(&dev->dev, "probing via device tree\n"); 2571 2572 ret = of_address_to_resource(np, 0, &resource); 2573 if (ret) { 2574 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2575 return ret; 2576 } 2577 2578 regsize = of_get_property(np, "reg-size", &proplen); 2579 if (regsize && proplen != 4) { 2580 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2581 return -EINVAL; 2582 } 2583 2584 regspacing = of_get_property(np, "reg-spacing", &proplen); 2585 if (regspacing && proplen != 4) { 2586 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2587 return -EINVAL; 2588 } 2589 2590 regshift = of_get_property(np, "reg-shift", &proplen); 2591 if (regshift && proplen != 4) { 2592 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2593 return -EINVAL; 2594 } 2595 2596 info = smi_info_alloc(); 2597 2598 if (!info) { 2599 dev_err(&dev->dev, 2600 "could not allocate memory for OF probe\n"); 2601 return -ENOMEM; 2602 } 2603 2604 info->si_type = (enum si_type) match->data; 2605 info->addr_source = SI_DEVICETREE; 2606 info->irq_setup = std_irq_setup; 2607 2608 if (resource.flags & IORESOURCE_IO) { 2609 info->io_setup = port_setup; 2610 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2611 } else { 2612 info->io_setup = mem_setup; 2613 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2614 } 2615 2616 info->io.addr_data = resource.start; 2617 2618 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2619 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2620 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2621 2622 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2623 info->dev = &dev->dev; 2624 2625 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2626 info->io.addr_data, info->io.regsize, info->io.regspacing, 2627 info->irq); 2628 2629 dev_set_drvdata(&dev->dev, info); 2630 2631 if (add_smi(info)) { 2632 kfree(info); 2633 return -EBUSY; 2634 } 2635 2636 return 0; 2637 } 2638 2639 static int __devexit ipmi_of_remove(struct platform_device *dev) 2640 { 2641 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2642 return 0; 2643 } 2644 2645 static struct of_device_id ipmi_match[] = 2646 { 2647 { .type = "ipmi", .compatible = "ipmi-kcs", 2648 .data = (void *)(unsigned long) SI_KCS }, 2649 { .type = "ipmi", .compatible = "ipmi-smic", 2650 .data = (void *)(unsigned long) SI_SMIC }, 2651 { .type = "ipmi", .compatible = "ipmi-bt", 2652 .data = (void *)(unsigned long) SI_BT }, 2653 {}, 2654 }; 2655 2656 static struct of_platform_driver ipmi_of_platform_driver = { 2657 .driver = { 2658 .name = "ipmi", 2659 .owner = THIS_MODULE, 2660 .of_match_table = ipmi_match, 2661 }, 2662 .probe = ipmi_of_probe, 2663 .remove = __devexit_p(ipmi_of_remove), 2664 }; 2665 #endif /* CONFIG_PPC_OF */ 2666 2667 static int wait_for_msg_done(struct smi_info *smi_info) 2668 { 2669 enum si_sm_result smi_result; 2670 2671 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2672 for (;;) { 2673 if (smi_result == SI_SM_CALL_WITH_DELAY || 2674 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2675 schedule_timeout_uninterruptible(1); 2676 smi_result = smi_info->handlers->event( 2677 smi_info->si_sm, 100); 2678 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2679 smi_result = smi_info->handlers->event( 2680 smi_info->si_sm, 0); 2681 } else 2682 break; 2683 } 2684 if (smi_result == SI_SM_HOSED) 2685 /* 2686 * We couldn't get the state machine to run, so whatever's at 2687 * the port is probably not an IPMI SMI interface. 2688 */ 2689 return -ENODEV; 2690 2691 return 0; 2692 } 2693 2694 static int try_get_dev_id(struct smi_info *smi_info) 2695 { 2696 unsigned char msg[2]; 2697 unsigned char *resp; 2698 unsigned long resp_len; 2699 int rv = 0; 2700 2701 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2702 if (!resp) 2703 return -ENOMEM; 2704 2705 /* 2706 * Do a Get Device ID command, since it comes back with some 2707 * useful info. 2708 */ 2709 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2710 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2711 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2712 2713 rv = wait_for_msg_done(smi_info); 2714 if (rv) 2715 goto out; 2716 2717 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2718 resp, IPMI_MAX_MSG_LENGTH); 2719 2720 /* Check and record info from the get device id, in case we need it. */ 2721 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2722 2723 out: 2724 kfree(resp); 2725 return rv; 2726 } 2727 2728 static int try_enable_event_buffer(struct smi_info *smi_info) 2729 { 2730 unsigned char msg[3]; 2731 unsigned char *resp; 2732 unsigned long resp_len; 2733 int rv = 0; 2734 2735 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2736 if (!resp) 2737 return -ENOMEM; 2738 2739 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2740 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2741 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2742 2743 rv = wait_for_msg_done(smi_info); 2744 if (rv) { 2745 printk(KERN_WARNING PFX "Error getting response from get" 2746 " global enables command, the event buffer is not" 2747 " enabled.\n"); 2748 goto out; 2749 } 2750 2751 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2752 resp, IPMI_MAX_MSG_LENGTH); 2753 2754 if (resp_len < 4 || 2755 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2756 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2757 resp[2] != 0) { 2758 printk(KERN_WARNING PFX "Invalid return from get global" 2759 " enables command, cannot enable the event buffer.\n"); 2760 rv = -EINVAL; 2761 goto out; 2762 } 2763 2764 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2765 /* buffer is already enabled, nothing to do. */ 2766 goto out; 2767 2768 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2769 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2770 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2771 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2772 2773 rv = wait_for_msg_done(smi_info); 2774 if (rv) { 2775 printk(KERN_WARNING PFX "Error getting response from set" 2776 " global, enables command, the event buffer is not" 2777 " enabled.\n"); 2778 goto out; 2779 } 2780 2781 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2782 resp, IPMI_MAX_MSG_LENGTH); 2783 2784 if (resp_len < 3 || 2785 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2786 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2787 printk(KERN_WARNING PFX "Invalid return from get global," 2788 "enables command, not enable the event buffer.\n"); 2789 rv = -EINVAL; 2790 goto out; 2791 } 2792 2793 if (resp[2] != 0) 2794 /* 2795 * An error when setting the event buffer bit means 2796 * that the event buffer is not supported. 2797 */ 2798 rv = -ENOENT; 2799 out: 2800 kfree(resp); 2801 return rv; 2802 } 2803 2804 static int type_file_read_proc(char *page, char **start, off_t off, 2805 int count, int *eof, void *data) 2806 { 2807 struct smi_info *smi = data; 2808 2809 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2810 } 2811 2812 static int stat_file_read_proc(char *page, char **start, off_t off, 2813 int count, int *eof, void *data) 2814 { 2815 char *out = (char *) page; 2816 struct smi_info *smi = data; 2817 2818 out += sprintf(out, "interrupts_enabled: %d\n", 2819 smi->irq && !smi->interrupt_disabled); 2820 out += sprintf(out, "short_timeouts: %u\n", 2821 smi_get_stat(smi, short_timeouts)); 2822 out += sprintf(out, "long_timeouts: %u\n", 2823 smi_get_stat(smi, long_timeouts)); 2824 out += sprintf(out, "idles: %u\n", 2825 smi_get_stat(smi, idles)); 2826 out += sprintf(out, "interrupts: %u\n", 2827 smi_get_stat(smi, interrupts)); 2828 out += sprintf(out, "attentions: %u\n", 2829 smi_get_stat(smi, attentions)); 2830 out += sprintf(out, "flag_fetches: %u\n", 2831 smi_get_stat(smi, flag_fetches)); 2832 out += sprintf(out, "hosed_count: %u\n", 2833 smi_get_stat(smi, hosed_count)); 2834 out += sprintf(out, "complete_transactions: %u\n", 2835 smi_get_stat(smi, complete_transactions)); 2836 out += sprintf(out, "events: %u\n", 2837 smi_get_stat(smi, events)); 2838 out += sprintf(out, "watchdog_pretimeouts: %u\n", 2839 smi_get_stat(smi, watchdog_pretimeouts)); 2840 out += sprintf(out, "incoming_messages: %u\n", 2841 smi_get_stat(smi, incoming_messages)); 2842 2843 return out - page; 2844 } 2845 2846 static int param_read_proc(char *page, char **start, off_t off, 2847 int count, int *eof, void *data) 2848 { 2849 struct smi_info *smi = data; 2850 2851 return sprintf(page, 2852 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2853 si_to_str[smi->si_type], 2854 addr_space_to_str[smi->io.addr_type], 2855 smi->io.addr_data, 2856 smi->io.regspacing, 2857 smi->io.regsize, 2858 smi->io.regshift, 2859 smi->irq, 2860 smi->slave_addr); 2861 } 2862 2863 /* 2864 * oem_data_avail_to_receive_msg_avail 2865 * @info - smi_info structure with msg_flags set 2866 * 2867 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2868 * Returns 1 indicating need to re-run handle_flags(). 2869 */ 2870 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2871 { 2872 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2873 RECEIVE_MSG_AVAIL); 2874 return 1; 2875 } 2876 2877 /* 2878 * setup_dell_poweredge_oem_data_handler 2879 * @info - smi_info.device_id must be populated 2880 * 2881 * Systems that match, but have firmware version < 1.40 may assert 2882 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2883 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2884 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2885 * as RECEIVE_MSG_AVAIL instead. 2886 * 2887 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2888 * assert the OEM[012] bits, and if it did, the driver would have to 2889 * change to handle that properly, we don't actually check for the 2890 * firmware version. 2891 * Device ID = 0x20 BMC on PowerEdge 8G servers 2892 * Device Revision = 0x80 2893 * Firmware Revision1 = 0x01 BMC version 1.40 2894 * Firmware Revision2 = 0x40 BCD encoded 2895 * IPMI Version = 0x51 IPMI 1.5 2896 * Manufacturer ID = A2 02 00 Dell IANA 2897 * 2898 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2899 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2900 * 2901 */ 2902 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2903 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2904 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2905 #define DELL_IANA_MFR_ID 0x0002a2 2906 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2907 { 2908 struct ipmi_device_id *id = &smi_info->device_id; 2909 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2910 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2911 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2912 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2913 smi_info->oem_data_avail_handler = 2914 oem_data_avail_to_receive_msg_avail; 2915 } else if (ipmi_version_major(id) < 1 || 2916 (ipmi_version_major(id) == 1 && 2917 ipmi_version_minor(id) < 5)) { 2918 smi_info->oem_data_avail_handler = 2919 oem_data_avail_to_receive_msg_avail; 2920 } 2921 } 2922 } 2923 2924 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2925 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2926 { 2927 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2928 2929 /* Make it a reponse */ 2930 msg->rsp[0] = msg->data[0] | 4; 2931 msg->rsp[1] = msg->data[1]; 2932 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2933 msg->rsp_size = 3; 2934 smi_info->curr_msg = NULL; 2935 deliver_recv_msg(smi_info, msg); 2936 } 2937 2938 /* 2939 * dell_poweredge_bt_xaction_handler 2940 * @info - smi_info.device_id must be populated 2941 * 2942 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2943 * not respond to a Get SDR command if the length of the data 2944 * requested is exactly 0x3A, which leads to command timeouts and no 2945 * data returned. This intercepts such commands, and causes userspace 2946 * callers to try again with a different-sized buffer, which succeeds. 2947 */ 2948 2949 #define STORAGE_NETFN 0x0A 2950 #define STORAGE_CMD_GET_SDR 0x23 2951 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2952 unsigned long unused, 2953 void *in) 2954 { 2955 struct smi_info *smi_info = in; 2956 unsigned char *data = smi_info->curr_msg->data; 2957 unsigned int size = smi_info->curr_msg->data_size; 2958 if (size >= 8 && 2959 (data[0]>>2) == STORAGE_NETFN && 2960 data[1] == STORAGE_CMD_GET_SDR && 2961 data[7] == 0x3A) { 2962 return_hosed_msg_badsize(smi_info); 2963 return NOTIFY_STOP; 2964 } 2965 return NOTIFY_DONE; 2966 } 2967 2968 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2969 .notifier_call = dell_poweredge_bt_xaction_handler, 2970 }; 2971 2972 /* 2973 * setup_dell_poweredge_bt_xaction_handler 2974 * @info - smi_info.device_id must be filled in already 2975 * 2976 * Fills in smi_info.device_id.start_transaction_pre_hook 2977 * when we know what function to use there. 2978 */ 2979 static void 2980 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2981 { 2982 struct ipmi_device_id *id = &smi_info->device_id; 2983 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2984 smi_info->si_type == SI_BT) 2985 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2986 } 2987 2988 /* 2989 * setup_oem_data_handler 2990 * @info - smi_info.device_id must be filled in already 2991 * 2992 * Fills in smi_info.device_id.oem_data_available_handler 2993 * when we know what function to use there. 2994 */ 2995 2996 static void setup_oem_data_handler(struct smi_info *smi_info) 2997 { 2998 setup_dell_poweredge_oem_data_handler(smi_info); 2999 } 3000 3001 static void setup_xaction_handlers(struct smi_info *smi_info) 3002 { 3003 setup_dell_poweredge_bt_xaction_handler(smi_info); 3004 } 3005 3006 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3007 { 3008 if (smi_info->intf) { 3009 /* 3010 * The timer and thread are only running if the 3011 * interface has been started up and registered. 3012 */ 3013 if (smi_info->thread != NULL) 3014 kthread_stop(smi_info->thread); 3015 del_timer_sync(&smi_info->si_timer); 3016 } 3017 } 3018 3019 static __devinitdata struct ipmi_default_vals 3020 { 3021 int type; 3022 int port; 3023 } ipmi_defaults[] = 3024 { 3025 { .type = SI_KCS, .port = 0xca2 }, 3026 { .type = SI_SMIC, .port = 0xca9 }, 3027 { .type = SI_BT, .port = 0xe4 }, 3028 { .port = 0 } 3029 }; 3030 3031 static void __devinit default_find_bmc(void) 3032 { 3033 struct smi_info *info; 3034 int i; 3035 3036 for (i = 0; ; i++) { 3037 if (!ipmi_defaults[i].port) 3038 break; 3039 #ifdef CONFIG_PPC 3040 if (check_legacy_ioport(ipmi_defaults[i].port)) 3041 continue; 3042 #endif 3043 info = smi_info_alloc(); 3044 if (!info) 3045 return; 3046 3047 info->addr_source = SI_DEFAULT; 3048 3049 info->si_type = ipmi_defaults[i].type; 3050 info->io_setup = port_setup; 3051 info->io.addr_data = ipmi_defaults[i].port; 3052 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3053 3054 info->io.addr = NULL; 3055 info->io.regspacing = DEFAULT_REGSPACING; 3056 info->io.regsize = DEFAULT_REGSPACING; 3057 info->io.regshift = 0; 3058 3059 if (add_smi(info) == 0) { 3060 if ((try_smi_init(info)) == 0) { 3061 /* Found one... */ 3062 printk(KERN_INFO PFX "Found default %s" 3063 " state machine at %s address 0x%lx\n", 3064 si_to_str[info->si_type], 3065 addr_space_to_str[info->io.addr_type], 3066 info->io.addr_data); 3067 } else 3068 cleanup_one_si(info); 3069 } else { 3070 kfree(info); 3071 } 3072 } 3073 } 3074 3075 static int is_new_interface(struct smi_info *info) 3076 { 3077 struct smi_info *e; 3078 3079 list_for_each_entry(e, &smi_infos, link) { 3080 if (e->io.addr_type != info->io.addr_type) 3081 continue; 3082 if (e->io.addr_data == info->io.addr_data) 3083 return 0; 3084 } 3085 3086 return 1; 3087 } 3088 3089 static int add_smi(struct smi_info *new_smi) 3090 { 3091 int rv = 0; 3092 3093 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3094 ipmi_addr_src_to_str[new_smi->addr_source], 3095 si_to_str[new_smi->si_type]); 3096 mutex_lock(&smi_infos_lock); 3097 if (!is_new_interface(new_smi)) { 3098 printk(KERN_CONT " duplicate interface\n"); 3099 rv = -EBUSY; 3100 goto out_err; 3101 } 3102 3103 printk(KERN_CONT "\n"); 3104 3105 /* So we know not to free it unless we have allocated one. */ 3106 new_smi->intf = NULL; 3107 new_smi->si_sm = NULL; 3108 new_smi->handlers = NULL; 3109 3110 list_add_tail(&new_smi->link, &smi_infos); 3111 3112 out_err: 3113 mutex_unlock(&smi_infos_lock); 3114 return rv; 3115 } 3116 3117 static int try_smi_init(struct smi_info *new_smi) 3118 { 3119 int rv = 0; 3120 int i; 3121 3122 printk(KERN_INFO PFX "Trying %s-specified %s state" 3123 " machine at %s address 0x%lx, slave address 0x%x," 3124 " irq %d\n", 3125 ipmi_addr_src_to_str[new_smi->addr_source], 3126 si_to_str[new_smi->si_type], 3127 addr_space_to_str[new_smi->io.addr_type], 3128 new_smi->io.addr_data, 3129 new_smi->slave_addr, new_smi->irq); 3130 3131 switch (new_smi->si_type) { 3132 case SI_KCS: 3133 new_smi->handlers = &kcs_smi_handlers; 3134 break; 3135 3136 case SI_SMIC: 3137 new_smi->handlers = &smic_smi_handlers; 3138 break; 3139 3140 case SI_BT: 3141 new_smi->handlers = &bt_smi_handlers; 3142 break; 3143 3144 default: 3145 /* No support for anything else yet. */ 3146 rv = -EIO; 3147 goto out_err; 3148 } 3149 3150 /* Allocate the state machine's data and initialize it. */ 3151 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3152 if (!new_smi->si_sm) { 3153 printk(KERN_ERR PFX 3154 "Could not allocate state machine memory\n"); 3155 rv = -ENOMEM; 3156 goto out_err; 3157 } 3158 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3159 &new_smi->io); 3160 3161 /* Now that we know the I/O size, we can set up the I/O. */ 3162 rv = new_smi->io_setup(new_smi); 3163 if (rv) { 3164 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3165 goto out_err; 3166 } 3167 3168 /* Do low-level detection first. */ 3169 if (new_smi->handlers->detect(new_smi->si_sm)) { 3170 if (new_smi->addr_source) 3171 printk(KERN_INFO PFX "Interface detection failed\n"); 3172 rv = -ENODEV; 3173 goto out_err; 3174 } 3175 3176 /* 3177 * Attempt a get device id command. If it fails, we probably 3178 * don't have a BMC here. 3179 */ 3180 rv = try_get_dev_id(new_smi); 3181 if (rv) { 3182 if (new_smi->addr_source) 3183 printk(KERN_INFO PFX "There appears to be no BMC" 3184 " at this location\n"); 3185 goto out_err; 3186 } 3187 3188 setup_oem_data_handler(new_smi); 3189 setup_xaction_handlers(new_smi); 3190 3191 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3192 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3193 new_smi->curr_msg = NULL; 3194 atomic_set(&new_smi->req_events, 0); 3195 new_smi->run_to_completion = 0; 3196 for (i = 0; i < SI_NUM_STATS; i++) 3197 atomic_set(&new_smi->stats[i], 0); 3198 3199 new_smi->interrupt_disabled = 1; 3200 atomic_set(&new_smi->stop_operation, 0); 3201 new_smi->intf_num = smi_num; 3202 smi_num++; 3203 3204 rv = try_enable_event_buffer(new_smi); 3205 if (rv == 0) 3206 new_smi->has_event_buffer = 1; 3207 3208 /* 3209 * Start clearing the flags before we enable interrupts or the 3210 * timer to avoid racing with the timer. 3211 */ 3212 start_clear_flags(new_smi); 3213 /* IRQ is defined to be set when non-zero. */ 3214 if (new_smi->irq) 3215 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3216 3217 if (!new_smi->dev) { 3218 /* 3219 * If we don't already have a device from something 3220 * else (like PCI), then register a new one. 3221 */ 3222 new_smi->pdev = platform_device_alloc("ipmi_si", 3223 new_smi->intf_num); 3224 if (!new_smi->pdev) { 3225 printk(KERN_ERR PFX 3226 "Unable to allocate platform device\n"); 3227 goto out_err; 3228 } 3229 new_smi->dev = &new_smi->pdev->dev; 3230 new_smi->dev->driver = &ipmi_driver.driver; 3231 3232 rv = platform_device_add(new_smi->pdev); 3233 if (rv) { 3234 printk(KERN_ERR PFX 3235 "Unable to register system interface device:" 3236 " %d\n", 3237 rv); 3238 goto out_err; 3239 } 3240 new_smi->dev_registered = 1; 3241 } 3242 3243 rv = ipmi_register_smi(&handlers, 3244 new_smi, 3245 &new_smi->device_id, 3246 new_smi->dev, 3247 "bmc", 3248 new_smi->slave_addr); 3249 if (rv) { 3250 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3251 rv); 3252 goto out_err_stop_timer; 3253 } 3254 3255 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3256 type_file_read_proc, 3257 new_smi); 3258 if (rv) { 3259 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3260 goto out_err_stop_timer; 3261 } 3262 3263 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3264 stat_file_read_proc, 3265 new_smi); 3266 if (rv) { 3267 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3268 goto out_err_stop_timer; 3269 } 3270 3271 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3272 param_read_proc, 3273 new_smi); 3274 if (rv) { 3275 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3276 goto out_err_stop_timer; 3277 } 3278 3279 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3280 si_to_str[new_smi->si_type]); 3281 3282 return 0; 3283 3284 out_err_stop_timer: 3285 atomic_inc(&new_smi->stop_operation); 3286 wait_for_timer_and_thread(new_smi); 3287 3288 out_err: 3289 new_smi->interrupt_disabled = 1; 3290 3291 if (new_smi->intf) { 3292 ipmi_unregister_smi(new_smi->intf); 3293 new_smi->intf = NULL; 3294 } 3295 3296 if (new_smi->irq_cleanup) { 3297 new_smi->irq_cleanup(new_smi); 3298 new_smi->irq_cleanup = NULL; 3299 } 3300 3301 /* 3302 * Wait until we know that we are out of any interrupt 3303 * handlers might have been running before we freed the 3304 * interrupt. 3305 */ 3306 synchronize_sched(); 3307 3308 if (new_smi->si_sm) { 3309 if (new_smi->handlers) 3310 new_smi->handlers->cleanup(new_smi->si_sm); 3311 kfree(new_smi->si_sm); 3312 new_smi->si_sm = NULL; 3313 } 3314 if (new_smi->addr_source_cleanup) { 3315 new_smi->addr_source_cleanup(new_smi); 3316 new_smi->addr_source_cleanup = NULL; 3317 } 3318 if (new_smi->io_cleanup) { 3319 new_smi->io_cleanup(new_smi); 3320 new_smi->io_cleanup = NULL; 3321 } 3322 3323 if (new_smi->dev_registered) { 3324 platform_device_unregister(new_smi->pdev); 3325 new_smi->dev_registered = 0; 3326 } 3327 3328 return rv; 3329 } 3330 3331 static int __devinit init_ipmi_si(void) 3332 { 3333 int i; 3334 char *str; 3335 int rv; 3336 struct smi_info *e; 3337 enum ipmi_addr_src type = SI_INVALID; 3338 3339 if (initialized) 3340 return 0; 3341 initialized = 1; 3342 3343 /* Register the device drivers. */ 3344 rv = driver_register(&ipmi_driver.driver); 3345 if (rv) { 3346 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); 3347 return rv; 3348 } 3349 3350 3351 /* Parse out the si_type string into its components. */ 3352 str = si_type_str; 3353 if (*str != '\0') { 3354 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3355 si_type[i] = str; 3356 str = strchr(str, ','); 3357 if (str) { 3358 *str = '\0'; 3359 str++; 3360 } else { 3361 break; 3362 } 3363 } 3364 } 3365 3366 printk(KERN_INFO "IPMI System Interface driver.\n"); 3367 3368 hardcode_find_bmc(); 3369 3370 /* If the user gave us a device, they presumably want us to use it */ 3371 mutex_lock(&smi_infos_lock); 3372 if (!list_empty(&smi_infos)) { 3373 mutex_unlock(&smi_infos_lock); 3374 return 0; 3375 } 3376 mutex_unlock(&smi_infos_lock); 3377 3378 #ifdef CONFIG_PCI 3379 rv = pci_register_driver(&ipmi_pci_driver); 3380 if (rv) 3381 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); 3382 else 3383 pci_registered = 1; 3384 #endif 3385 3386 #ifdef CONFIG_ACPI 3387 pnp_register_driver(&ipmi_pnp_driver); 3388 pnp_registered = 1; 3389 #endif 3390 3391 #ifdef CONFIG_DMI 3392 dmi_find_bmc(); 3393 #endif 3394 3395 #ifdef CONFIG_ACPI 3396 spmi_find_bmc(); 3397 #endif 3398 3399 #ifdef CONFIG_PPC_OF 3400 of_register_platform_driver(&ipmi_of_platform_driver); 3401 of_registered = 1; 3402 #endif 3403 3404 /* We prefer devices with interrupts, but in the case of a machine 3405 with multiple BMCs we assume that there will be several instances 3406 of a given type so if we succeed in registering a type then also 3407 try to register everything else of the same type */ 3408 3409 mutex_lock(&smi_infos_lock); 3410 list_for_each_entry(e, &smi_infos, link) { 3411 /* Try to register a device if it has an IRQ and we either 3412 haven't successfully registered a device yet or this 3413 device has the same type as one we successfully registered */ 3414 if (e->irq && (!type || e->addr_source == type)) { 3415 if (!try_smi_init(e)) { 3416 type = e->addr_source; 3417 } 3418 } 3419 } 3420 3421 /* type will only have been set if we successfully registered an si */ 3422 if (type) { 3423 mutex_unlock(&smi_infos_lock); 3424 return 0; 3425 } 3426 3427 /* Fall back to the preferred device */ 3428 3429 list_for_each_entry(e, &smi_infos, link) { 3430 if (!e->irq && (!type || e->addr_source == type)) { 3431 if (!try_smi_init(e)) { 3432 type = e->addr_source; 3433 } 3434 } 3435 } 3436 mutex_unlock(&smi_infos_lock); 3437 3438 if (type) 3439 return 0; 3440 3441 if (si_trydefaults) { 3442 mutex_lock(&smi_infos_lock); 3443 if (list_empty(&smi_infos)) { 3444 /* No BMC was found, try defaults. */ 3445 mutex_unlock(&smi_infos_lock); 3446 default_find_bmc(); 3447 } else 3448 mutex_unlock(&smi_infos_lock); 3449 } 3450 3451 mutex_lock(&smi_infos_lock); 3452 if (unload_when_empty && list_empty(&smi_infos)) { 3453 mutex_unlock(&smi_infos_lock); 3454 cleanup_ipmi_si(); 3455 printk(KERN_WARNING PFX 3456 "Unable to find any System Interface(s)\n"); 3457 return -ENODEV; 3458 } else { 3459 mutex_unlock(&smi_infos_lock); 3460 return 0; 3461 } 3462 } 3463 module_init(init_ipmi_si); 3464 3465 static void cleanup_one_si(struct smi_info *to_clean) 3466 { 3467 int rv = 0; 3468 unsigned long flags; 3469 3470 if (!to_clean) 3471 return; 3472 3473 list_del(&to_clean->link); 3474 3475 /* Tell the driver that we are shutting down. */ 3476 atomic_inc(&to_clean->stop_operation); 3477 3478 /* 3479 * Make sure the timer and thread are stopped and will not run 3480 * again. 3481 */ 3482 wait_for_timer_and_thread(to_clean); 3483 3484 /* 3485 * Timeouts are stopped, now make sure the interrupts are off 3486 * for the device. A little tricky with locks to make sure 3487 * there are no races. 3488 */ 3489 spin_lock_irqsave(&to_clean->si_lock, flags); 3490 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3491 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3492 poll(to_clean); 3493 schedule_timeout_uninterruptible(1); 3494 spin_lock_irqsave(&to_clean->si_lock, flags); 3495 } 3496 disable_si_irq(to_clean); 3497 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3498 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3499 poll(to_clean); 3500 schedule_timeout_uninterruptible(1); 3501 } 3502 3503 /* Clean up interrupts and make sure that everything is done. */ 3504 if (to_clean->irq_cleanup) 3505 to_clean->irq_cleanup(to_clean); 3506 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3507 poll(to_clean); 3508 schedule_timeout_uninterruptible(1); 3509 } 3510 3511 if (to_clean->intf) 3512 rv = ipmi_unregister_smi(to_clean->intf); 3513 3514 if (rv) { 3515 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3516 rv); 3517 } 3518 3519 if (to_clean->handlers) 3520 to_clean->handlers->cleanup(to_clean->si_sm); 3521 3522 kfree(to_clean->si_sm); 3523 3524 if (to_clean->addr_source_cleanup) 3525 to_clean->addr_source_cleanup(to_clean); 3526 if (to_clean->io_cleanup) 3527 to_clean->io_cleanup(to_clean); 3528 3529 if (to_clean->dev_registered) 3530 platform_device_unregister(to_clean->pdev); 3531 3532 kfree(to_clean); 3533 } 3534 3535 static void __exit cleanup_ipmi_si(void) 3536 { 3537 struct smi_info *e, *tmp_e; 3538 3539 if (!initialized) 3540 return; 3541 3542 #ifdef CONFIG_PCI 3543 if (pci_registered) 3544 pci_unregister_driver(&ipmi_pci_driver); 3545 #endif 3546 #ifdef CONFIG_ACPI 3547 if (pnp_registered) 3548 pnp_unregister_driver(&ipmi_pnp_driver); 3549 #endif 3550 3551 #ifdef CONFIG_PPC_OF 3552 if (of_registered) 3553 of_unregister_platform_driver(&ipmi_of_platform_driver); 3554 #endif 3555 3556 mutex_lock(&smi_infos_lock); 3557 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3558 cleanup_one_si(e); 3559 mutex_unlock(&smi_infos_lock); 3560 3561 driver_unregister(&ipmi_driver.driver); 3562 } 3563 module_exit(cleanup_ipmi_si); 3564 3565 MODULE_LICENSE("GPL"); 3566 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3567 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3568 " system interfaces."); 3569