xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision d3964221)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
73 
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78 
79 #define PFX "ipmi_si: "
80 
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83 
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC	10000
86 #define SI_USEC_PER_JIFFY	(1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89 				      short timeout */
90 
91 enum si_intf_state {
92 	SI_NORMAL,
93 	SI_GETTING_FLAGS,
94 	SI_GETTING_EVENTS,
95 	SI_CLEARING_FLAGS,
96 	SI_GETTING_MESSAGES,
97 	SI_CHECKING_ENABLES,
98 	SI_SETTING_ENABLES
99 	/* FIXME - add watchdog stuff. */
100 };
101 
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG		2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
106 
107 enum si_type {
108 	SI_KCS, SI_SMIC, SI_BT
109 };
110 
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112 
113 #define DEVICE_NAME "ipmi_si"
114 
115 static struct platform_driver ipmi_driver;
116 
117 /*
118  * Indexes into stats[] in smi_info below.
119  */
120 enum si_stat_indexes {
121 	/*
122 	 * Number of times the driver requested a timer while an operation
123 	 * was in progress.
124 	 */
125 	SI_STAT_short_timeouts = 0,
126 
127 	/*
128 	 * Number of times the driver requested a timer while nothing was in
129 	 * progress.
130 	 */
131 	SI_STAT_long_timeouts,
132 
133 	/* Number of times the interface was idle while being polled. */
134 	SI_STAT_idles,
135 
136 	/* Number of interrupts the driver handled. */
137 	SI_STAT_interrupts,
138 
139 	/* Number of time the driver got an ATTN from the hardware. */
140 	SI_STAT_attentions,
141 
142 	/* Number of times the driver requested flags from the hardware. */
143 	SI_STAT_flag_fetches,
144 
145 	/* Number of times the hardware didn't follow the state machine. */
146 	SI_STAT_hosed_count,
147 
148 	/* Number of completed messages. */
149 	SI_STAT_complete_transactions,
150 
151 	/* Number of IPMI events received from the hardware. */
152 	SI_STAT_events,
153 
154 	/* Number of watchdog pretimeouts. */
155 	SI_STAT_watchdog_pretimeouts,
156 
157 	/* Number of asynchronous messages received. */
158 	SI_STAT_incoming_messages,
159 
160 
161 	/* This *must* remain last, add new values above this. */
162 	SI_NUM_STATS
163 };
164 
165 struct smi_info {
166 	int                    intf_num;
167 	ipmi_smi_t             intf;
168 	struct si_sm_data      *si_sm;
169 	const struct si_sm_handlers *handlers;
170 	enum si_type           si_type;
171 	spinlock_t             si_lock;
172 	struct ipmi_smi_msg    *waiting_msg;
173 	struct ipmi_smi_msg    *curr_msg;
174 	enum si_intf_state     si_state;
175 
176 	/*
177 	 * Used to handle the various types of I/O that can occur with
178 	 * IPMI
179 	 */
180 	struct si_sm_io io;
181 	int (*io_setup)(struct smi_info *info);
182 	void (*io_cleanup)(struct smi_info *info);
183 	int (*irq_setup)(struct smi_info *info);
184 	void (*irq_cleanup)(struct smi_info *info);
185 	unsigned int io_size;
186 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187 	void (*addr_source_cleanup)(struct smi_info *info);
188 	void *addr_source_data;
189 
190 	/*
191 	 * Per-OEM handler, called from handle_flags().  Returns 1
192 	 * when handle_flags() needs to be re-run or 0 indicating it
193 	 * set si_state itself.
194 	 */
195 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
196 
197 	/*
198 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199 	 * is set to hold the flags until we are done handling everything
200 	 * from the flags.
201 	 */
202 #define RECEIVE_MSG_AVAIL	0x01
203 #define EVENT_MSG_BUFFER_FULL	0x02
204 #define WDT_PRE_TIMEOUT_INT	0x08
205 #define OEM0_DATA_AVAIL     0x20
206 #define OEM1_DATA_AVAIL     0x40
207 #define OEM2_DATA_AVAIL     0x80
208 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
209 			     OEM1_DATA_AVAIL | \
210 			     OEM2_DATA_AVAIL)
211 	unsigned char       msg_flags;
212 
213 	/* Does the BMC have an event buffer? */
214 	bool		    has_event_buffer;
215 
216 	/*
217 	 * If set to true, this will request events the next time the
218 	 * state machine is idle.
219 	 */
220 	atomic_t            req_events;
221 
222 	/*
223 	 * If true, run the state machine to completion on every send
224 	 * call.  Generally used after a panic to make sure stuff goes
225 	 * out.
226 	 */
227 	bool                run_to_completion;
228 
229 	/* The I/O port of an SI interface. */
230 	int                 port;
231 
232 	/*
233 	 * The space between start addresses of the two ports.  For
234 	 * instance, if the first port is 0xca2 and the spacing is 4, then
235 	 * the second port is 0xca6.
236 	 */
237 	unsigned int        spacing;
238 
239 	/* zero if no irq; */
240 	int                 irq;
241 
242 	/* The timer for this si. */
243 	struct timer_list   si_timer;
244 
245 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
246 	bool		    timer_running;
247 
248 	/* The time (in jiffies) the last timeout occurred at. */
249 	unsigned long       last_timeout_jiffies;
250 
251 	/* Are we waiting for the events, pretimeouts, received msgs? */
252 	atomic_t            need_watch;
253 
254 	/*
255 	 * The driver will disable interrupts when it gets into a
256 	 * situation where it cannot handle messages due to lack of
257 	 * memory.  Once that situation clears up, it will re-enable
258 	 * interrupts.
259 	 */
260 	bool interrupt_disabled;
261 
262 	/*
263 	 * Does the BMC support events?
264 	 */
265 	bool supports_event_msg_buff;
266 
267 	/*
268 	 * Can we disable interrupts the global enables receive irq
269 	 * bit?  There are currently two forms of brokenness, some
270 	 * systems cannot disable the bit (which is technically within
271 	 * the spec but a bad idea) and some systems have the bit
272 	 * forced to zero even though interrupts work (which is
273 	 * clearly outside the spec).  The next bool tells which form
274 	 * of brokenness is present.
275 	 */
276 	bool cannot_disable_irq;
277 
278 	/*
279 	 * Some systems are broken and cannot set the irq enable
280 	 * bit, even if they support interrupts.
281 	 */
282 	bool irq_enable_broken;
283 
284 	/*
285 	 * Did we get an attention that we did not handle?
286 	 */
287 	bool got_attn;
288 
289 	/* From the get device id response... */
290 	struct ipmi_device_id device_id;
291 
292 	/* Driver model stuff. */
293 	struct device *dev;
294 	struct platform_device *pdev;
295 
296 	/*
297 	 * True if we allocated the device, false if it came from
298 	 * someplace else (like PCI).
299 	 */
300 	bool dev_registered;
301 
302 	/* Slave address, could be reported from DMI. */
303 	unsigned char slave_addr;
304 
305 	/* Counters and things for the proc filesystem. */
306 	atomic_t stats[SI_NUM_STATS];
307 
308 	struct task_struct *thread;
309 
310 	struct list_head link;
311 	union ipmi_smi_info_union addr_info;
312 };
313 
314 #define smi_inc_stat(smi, stat) \
315 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
316 #define smi_get_stat(smi, stat) \
317 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
318 
319 #define SI_MAX_PARMS 4
320 
321 static int force_kipmid[SI_MAX_PARMS];
322 static int num_force_kipmid;
323 #ifdef CONFIG_PCI
324 static bool pci_registered;
325 #endif
326 #ifdef CONFIG_PARISC
327 static bool parisc_registered;
328 #endif
329 
330 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
331 static int num_max_busy_us;
332 
333 static bool unload_when_empty = true;
334 
335 static int add_smi(struct smi_info *smi);
336 static int try_smi_init(struct smi_info *smi);
337 static void cleanup_one_si(struct smi_info *to_clean);
338 static void cleanup_ipmi_si(void);
339 
340 #ifdef DEBUG_TIMING
341 void debug_timestamp(char *msg)
342 {
343 	struct timespec64 t;
344 
345 	getnstimeofday64(&t);
346 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
347 }
348 #else
349 #define debug_timestamp(x)
350 #endif
351 
352 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
353 static int register_xaction_notifier(struct notifier_block *nb)
354 {
355 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
356 }
357 
358 static void deliver_recv_msg(struct smi_info *smi_info,
359 			     struct ipmi_smi_msg *msg)
360 {
361 	/* Deliver the message to the upper layer. */
362 	if (smi_info->intf)
363 		ipmi_smi_msg_received(smi_info->intf, msg);
364 	else
365 		ipmi_free_smi_msg(msg);
366 }
367 
368 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
369 {
370 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
371 
372 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
373 		cCode = IPMI_ERR_UNSPECIFIED;
374 	/* else use it as is */
375 
376 	/* Make it a response */
377 	msg->rsp[0] = msg->data[0] | 4;
378 	msg->rsp[1] = msg->data[1];
379 	msg->rsp[2] = cCode;
380 	msg->rsp_size = 3;
381 
382 	smi_info->curr_msg = NULL;
383 	deliver_recv_msg(smi_info, msg);
384 }
385 
386 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
387 {
388 	int              rv;
389 
390 	if (!smi_info->waiting_msg) {
391 		smi_info->curr_msg = NULL;
392 		rv = SI_SM_IDLE;
393 	} else {
394 		int err;
395 
396 		smi_info->curr_msg = smi_info->waiting_msg;
397 		smi_info->waiting_msg = NULL;
398 		debug_timestamp("Start2");
399 		err = atomic_notifier_call_chain(&xaction_notifier_list,
400 				0, smi_info);
401 		if (err & NOTIFY_STOP_MASK) {
402 			rv = SI_SM_CALL_WITHOUT_DELAY;
403 			goto out;
404 		}
405 		err = smi_info->handlers->start_transaction(
406 			smi_info->si_sm,
407 			smi_info->curr_msg->data,
408 			smi_info->curr_msg->data_size);
409 		if (err)
410 			return_hosed_msg(smi_info, err);
411 
412 		rv = SI_SM_CALL_WITHOUT_DELAY;
413 	}
414 out:
415 	return rv;
416 }
417 
418 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
419 {
420 	smi_info->last_timeout_jiffies = jiffies;
421 	mod_timer(&smi_info->si_timer, new_val);
422 	smi_info->timer_running = true;
423 }
424 
425 /*
426  * Start a new message and (re)start the timer and thread.
427  */
428 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
429 			  unsigned int size)
430 {
431 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
432 
433 	if (smi_info->thread)
434 		wake_up_process(smi_info->thread);
435 
436 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
437 }
438 
439 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
440 {
441 	unsigned char msg[2];
442 
443 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
444 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
445 
446 	if (start_timer)
447 		start_new_msg(smi_info, msg, 2);
448 	else
449 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
450 	smi_info->si_state = SI_CHECKING_ENABLES;
451 }
452 
453 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
454 {
455 	unsigned char msg[3];
456 
457 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
458 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
459 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
460 	msg[2] = WDT_PRE_TIMEOUT_INT;
461 
462 	if (start_timer)
463 		start_new_msg(smi_info, msg, 3);
464 	else
465 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
466 	smi_info->si_state = SI_CLEARING_FLAGS;
467 }
468 
469 static void start_getting_msg_queue(struct smi_info *smi_info)
470 {
471 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
473 	smi_info->curr_msg->data_size = 2;
474 
475 	start_new_msg(smi_info, smi_info->curr_msg->data,
476 		      smi_info->curr_msg->data_size);
477 	smi_info->si_state = SI_GETTING_MESSAGES;
478 }
479 
480 static void start_getting_events(struct smi_info *smi_info)
481 {
482 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
483 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
484 	smi_info->curr_msg->data_size = 2;
485 
486 	start_new_msg(smi_info, smi_info->curr_msg->data,
487 		      smi_info->curr_msg->data_size);
488 	smi_info->si_state = SI_GETTING_EVENTS;
489 }
490 
491 /*
492  * When we have a situtaion where we run out of memory and cannot
493  * allocate messages, we just leave them in the BMC and run the system
494  * polled until we can allocate some memory.  Once we have some
495  * memory, we will re-enable the interrupt.
496  *
497  * Note that we cannot just use disable_irq(), since the interrupt may
498  * be shared.
499  */
500 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
501 {
502 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
503 		smi_info->interrupt_disabled = true;
504 		start_check_enables(smi_info, start_timer);
505 		return true;
506 	}
507 	return false;
508 }
509 
510 static inline bool enable_si_irq(struct smi_info *smi_info)
511 {
512 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
513 		smi_info->interrupt_disabled = false;
514 		start_check_enables(smi_info, true);
515 		return true;
516 	}
517 	return false;
518 }
519 
520 /*
521  * Allocate a message.  If unable to allocate, start the interrupt
522  * disable process and return NULL.  If able to allocate but
523  * interrupts are disabled, free the message and return NULL after
524  * starting the interrupt enable process.
525  */
526 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
527 {
528 	struct ipmi_smi_msg *msg;
529 
530 	msg = ipmi_alloc_smi_msg();
531 	if (!msg) {
532 		if (!disable_si_irq(smi_info, true))
533 			smi_info->si_state = SI_NORMAL;
534 	} else if (enable_si_irq(smi_info)) {
535 		ipmi_free_smi_msg(msg);
536 		msg = NULL;
537 	}
538 	return msg;
539 }
540 
541 static void handle_flags(struct smi_info *smi_info)
542 {
543 retry:
544 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
545 		/* Watchdog pre-timeout */
546 		smi_inc_stat(smi_info, watchdog_pretimeouts);
547 
548 		start_clear_flags(smi_info, true);
549 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
550 		if (smi_info->intf)
551 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
552 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
553 		/* Messages available. */
554 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
555 		if (!smi_info->curr_msg)
556 			return;
557 
558 		start_getting_msg_queue(smi_info);
559 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
560 		/* Events available. */
561 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
562 		if (!smi_info->curr_msg)
563 			return;
564 
565 		start_getting_events(smi_info);
566 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
567 		   smi_info->oem_data_avail_handler) {
568 		if (smi_info->oem_data_avail_handler(smi_info))
569 			goto retry;
570 	} else
571 		smi_info->si_state = SI_NORMAL;
572 }
573 
574 /*
575  * Global enables we care about.
576  */
577 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
578 			     IPMI_BMC_EVT_MSG_INTR)
579 
580 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
581 				 bool *irq_on)
582 {
583 	u8 enables = 0;
584 
585 	if (smi_info->supports_event_msg_buff)
586 		enables |= IPMI_BMC_EVT_MSG_BUFF;
587 
588 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
589 	     smi_info->cannot_disable_irq) &&
590 	    !smi_info->irq_enable_broken)
591 		enables |= IPMI_BMC_RCV_MSG_INTR;
592 
593 	if (smi_info->supports_event_msg_buff &&
594 	    smi_info->irq && !smi_info->interrupt_disabled &&
595 	    !smi_info->irq_enable_broken)
596 		enables |= IPMI_BMC_EVT_MSG_INTR;
597 
598 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
599 
600 	return enables;
601 }
602 
603 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
604 {
605 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
606 
607 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
608 
609 	if ((bool)irqstate == irq_on)
610 		return;
611 
612 	if (irq_on)
613 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
614 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
615 	else
616 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
617 }
618 
619 static void handle_transaction_done(struct smi_info *smi_info)
620 {
621 	struct ipmi_smi_msg *msg;
622 
623 	debug_timestamp("Done");
624 	switch (smi_info->si_state) {
625 	case SI_NORMAL:
626 		if (!smi_info->curr_msg)
627 			break;
628 
629 		smi_info->curr_msg->rsp_size
630 			= smi_info->handlers->get_result(
631 				smi_info->si_sm,
632 				smi_info->curr_msg->rsp,
633 				IPMI_MAX_MSG_LENGTH);
634 
635 		/*
636 		 * Do this here becase deliver_recv_msg() releases the
637 		 * lock, and a new message can be put in during the
638 		 * time the lock is released.
639 		 */
640 		msg = smi_info->curr_msg;
641 		smi_info->curr_msg = NULL;
642 		deliver_recv_msg(smi_info, msg);
643 		break;
644 
645 	case SI_GETTING_FLAGS:
646 	{
647 		unsigned char msg[4];
648 		unsigned int  len;
649 
650 		/* We got the flags from the SMI, now handle them. */
651 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
652 		if (msg[2] != 0) {
653 			/* Error fetching flags, just give up for now. */
654 			smi_info->si_state = SI_NORMAL;
655 		} else if (len < 4) {
656 			/*
657 			 * Hmm, no flags.  That's technically illegal, but
658 			 * don't use uninitialized data.
659 			 */
660 			smi_info->si_state = SI_NORMAL;
661 		} else {
662 			smi_info->msg_flags = msg[3];
663 			handle_flags(smi_info);
664 		}
665 		break;
666 	}
667 
668 	case SI_CLEARING_FLAGS:
669 	{
670 		unsigned char msg[3];
671 
672 		/* We cleared the flags. */
673 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
674 		if (msg[2] != 0) {
675 			/* Error clearing flags */
676 			dev_warn(smi_info->dev,
677 				 "Error clearing flags: %2.2x\n", msg[2]);
678 		}
679 		smi_info->si_state = SI_NORMAL;
680 		break;
681 	}
682 
683 	case SI_GETTING_EVENTS:
684 	{
685 		smi_info->curr_msg->rsp_size
686 			= smi_info->handlers->get_result(
687 				smi_info->si_sm,
688 				smi_info->curr_msg->rsp,
689 				IPMI_MAX_MSG_LENGTH);
690 
691 		/*
692 		 * Do this here becase deliver_recv_msg() releases the
693 		 * lock, and a new message can be put in during the
694 		 * time the lock is released.
695 		 */
696 		msg = smi_info->curr_msg;
697 		smi_info->curr_msg = NULL;
698 		if (msg->rsp[2] != 0) {
699 			/* Error getting event, probably done. */
700 			msg->done(msg);
701 
702 			/* Take off the event flag. */
703 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
704 			handle_flags(smi_info);
705 		} else {
706 			smi_inc_stat(smi_info, events);
707 
708 			/*
709 			 * Do this before we deliver the message
710 			 * because delivering the message releases the
711 			 * lock and something else can mess with the
712 			 * state.
713 			 */
714 			handle_flags(smi_info);
715 
716 			deliver_recv_msg(smi_info, msg);
717 		}
718 		break;
719 	}
720 
721 	case SI_GETTING_MESSAGES:
722 	{
723 		smi_info->curr_msg->rsp_size
724 			= smi_info->handlers->get_result(
725 				smi_info->si_sm,
726 				smi_info->curr_msg->rsp,
727 				IPMI_MAX_MSG_LENGTH);
728 
729 		/*
730 		 * Do this here becase deliver_recv_msg() releases the
731 		 * lock, and a new message can be put in during the
732 		 * time the lock is released.
733 		 */
734 		msg = smi_info->curr_msg;
735 		smi_info->curr_msg = NULL;
736 		if (msg->rsp[2] != 0) {
737 			/* Error getting event, probably done. */
738 			msg->done(msg);
739 
740 			/* Take off the msg flag. */
741 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
742 			handle_flags(smi_info);
743 		} else {
744 			smi_inc_stat(smi_info, incoming_messages);
745 
746 			/*
747 			 * Do this before we deliver the message
748 			 * because delivering the message releases the
749 			 * lock and something else can mess with the
750 			 * state.
751 			 */
752 			handle_flags(smi_info);
753 
754 			deliver_recv_msg(smi_info, msg);
755 		}
756 		break;
757 	}
758 
759 	case SI_CHECKING_ENABLES:
760 	{
761 		unsigned char msg[4];
762 		u8 enables;
763 		bool irq_on;
764 
765 		/* We got the flags from the SMI, now handle them. */
766 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
767 		if (msg[2] != 0) {
768 			dev_warn(smi_info->dev,
769 				 "Couldn't get irq info: %x.\n", msg[2]);
770 			dev_warn(smi_info->dev,
771 				 "Maybe ok, but ipmi might run very slowly.\n");
772 			smi_info->si_state = SI_NORMAL;
773 			break;
774 		}
775 		enables = current_global_enables(smi_info, 0, &irq_on);
776 		if (smi_info->si_type == SI_BT)
777 			/* BT has its own interrupt enable bit. */
778 			check_bt_irq(smi_info, irq_on);
779 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
780 			/* Enables are not correct, fix them. */
781 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
782 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
783 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
784 			smi_info->handlers->start_transaction(
785 				smi_info->si_sm, msg, 3);
786 			smi_info->si_state = SI_SETTING_ENABLES;
787 		} else if (smi_info->supports_event_msg_buff) {
788 			smi_info->curr_msg = ipmi_alloc_smi_msg();
789 			if (!smi_info->curr_msg) {
790 				smi_info->si_state = SI_NORMAL;
791 				break;
792 			}
793 			start_getting_events(smi_info);
794 		} else {
795 			smi_info->si_state = SI_NORMAL;
796 		}
797 		break;
798 	}
799 
800 	case SI_SETTING_ENABLES:
801 	{
802 		unsigned char msg[4];
803 
804 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
805 		if (msg[2] != 0)
806 			dev_warn(smi_info->dev,
807 				 "Could not set the global enables: 0x%x.\n",
808 				 msg[2]);
809 
810 		if (smi_info->supports_event_msg_buff) {
811 			smi_info->curr_msg = ipmi_alloc_smi_msg();
812 			if (!smi_info->curr_msg) {
813 				smi_info->si_state = SI_NORMAL;
814 				break;
815 			}
816 			start_getting_events(smi_info);
817 		} else {
818 			smi_info->si_state = SI_NORMAL;
819 		}
820 		break;
821 	}
822 	}
823 }
824 
825 /*
826  * Called on timeouts and events.  Timeouts should pass the elapsed
827  * time, interrupts should pass in zero.  Must be called with
828  * si_lock held and interrupts disabled.
829  */
830 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
831 					   int time)
832 {
833 	enum si_sm_result si_sm_result;
834 
835 restart:
836 	/*
837 	 * There used to be a loop here that waited a little while
838 	 * (around 25us) before giving up.  That turned out to be
839 	 * pointless, the minimum delays I was seeing were in the 300us
840 	 * range, which is far too long to wait in an interrupt.  So
841 	 * we just run until the state machine tells us something
842 	 * happened or it needs a delay.
843 	 */
844 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
845 	time = 0;
846 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
847 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
848 
849 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
850 		smi_inc_stat(smi_info, complete_transactions);
851 
852 		handle_transaction_done(smi_info);
853 		goto restart;
854 	} else if (si_sm_result == SI_SM_HOSED) {
855 		smi_inc_stat(smi_info, hosed_count);
856 
857 		/*
858 		 * Do the before return_hosed_msg, because that
859 		 * releases the lock.
860 		 */
861 		smi_info->si_state = SI_NORMAL;
862 		if (smi_info->curr_msg != NULL) {
863 			/*
864 			 * If we were handling a user message, format
865 			 * a response to send to the upper layer to
866 			 * tell it about the error.
867 			 */
868 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
869 		}
870 		goto restart;
871 	}
872 
873 	/*
874 	 * We prefer handling attn over new messages.  But don't do
875 	 * this if there is not yet an upper layer to handle anything.
876 	 */
877 	if (likely(smi_info->intf) &&
878 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
879 		unsigned char msg[2];
880 
881 		if (smi_info->si_state != SI_NORMAL) {
882 			/*
883 			 * We got an ATTN, but we are doing something else.
884 			 * Handle the ATTN later.
885 			 */
886 			smi_info->got_attn = true;
887 		} else {
888 			smi_info->got_attn = false;
889 			smi_inc_stat(smi_info, attentions);
890 
891 			/*
892 			 * Got a attn, send down a get message flags to see
893 			 * what's causing it.  It would be better to handle
894 			 * this in the upper layer, but due to the way
895 			 * interrupts work with the SMI, that's not really
896 			 * possible.
897 			 */
898 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
899 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
900 
901 			start_new_msg(smi_info, msg, 2);
902 			smi_info->si_state = SI_GETTING_FLAGS;
903 			goto restart;
904 		}
905 	}
906 
907 	/* If we are currently idle, try to start the next message. */
908 	if (si_sm_result == SI_SM_IDLE) {
909 		smi_inc_stat(smi_info, idles);
910 
911 		si_sm_result = start_next_msg(smi_info);
912 		if (si_sm_result != SI_SM_IDLE)
913 			goto restart;
914 	}
915 
916 	if ((si_sm_result == SI_SM_IDLE)
917 	    && (atomic_read(&smi_info->req_events))) {
918 		/*
919 		 * We are idle and the upper layer requested that I fetch
920 		 * events, so do so.
921 		 */
922 		atomic_set(&smi_info->req_events, 0);
923 
924 		/*
925 		 * Take this opportunity to check the interrupt and
926 		 * message enable state for the BMC.  The BMC can be
927 		 * asynchronously reset, and may thus get interrupts
928 		 * disable and messages disabled.
929 		 */
930 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
931 			start_check_enables(smi_info, true);
932 		} else {
933 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
934 			if (!smi_info->curr_msg)
935 				goto out;
936 
937 			start_getting_events(smi_info);
938 		}
939 		goto restart;
940 	}
941 
942 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
943 		/* Ok it if fails, the timer will just go off. */
944 		if (del_timer(&smi_info->si_timer))
945 			smi_info->timer_running = false;
946 	}
947 
948 out:
949 	return si_sm_result;
950 }
951 
952 static void check_start_timer_thread(struct smi_info *smi_info)
953 {
954 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
955 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
956 
957 		if (smi_info->thread)
958 			wake_up_process(smi_info->thread);
959 
960 		start_next_msg(smi_info);
961 		smi_event_handler(smi_info, 0);
962 	}
963 }
964 
965 static void flush_messages(void *send_info)
966 {
967 	struct smi_info *smi_info = send_info;
968 	enum si_sm_result result;
969 
970 	/*
971 	 * Currently, this function is called only in run-to-completion
972 	 * mode.  This means we are single-threaded, no need for locks.
973 	 */
974 	result = smi_event_handler(smi_info, 0);
975 	while (result != SI_SM_IDLE) {
976 		udelay(SI_SHORT_TIMEOUT_USEC);
977 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
978 	}
979 }
980 
981 static void sender(void                *send_info,
982 		   struct ipmi_smi_msg *msg)
983 {
984 	struct smi_info   *smi_info = send_info;
985 	unsigned long     flags;
986 
987 	debug_timestamp("Enqueue");
988 
989 	if (smi_info->run_to_completion) {
990 		/*
991 		 * If we are running to completion, start it.  Upper
992 		 * layer will call flush_messages to clear it out.
993 		 */
994 		smi_info->waiting_msg = msg;
995 		return;
996 	}
997 
998 	spin_lock_irqsave(&smi_info->si_lock, flags);
999 	/*
1000 	 * The following two lines don't need to be under the lock for
1001 	 * the lock's sake, but they do need SMP memory barriers to
1002 	 * avoid getting things out of order.  We are already claiming
1003 	 * the lock, anyway, so just do it under the lock to avoid the
1004 	 * ordering problem.
1005 	 */
1006 	BUG_ON(smi_info->waiting_msg);
1007 	smi_info->waiting_msg = msg;
1008 	check_start_timer_thread(smi_info);
1009 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1010 }
1011 
1012 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1013 {
1014 	struct smi_info   *smi_info = send_info;
1015 
1016 	smi_info->run_to_completion = i_run_to_completion;
1017 	if (i_run_to_completion)
1018 		flush_messages(smi_info);
1019 }
1020 
1021 /*
1022  * Use -1 in the nsec value of the busy waiting timespec to tell that
1023  * we are spinning in kipmid looking for something and not delaying
1024  * between checks
1025  */
1026 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1027 {
1028 	ts->tv_nsec = -1;
1029 }
1030 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1031 {
1032 	return ts->tv_nsec != -1;
1033 }
1034 
1035 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1036 					const struct smi_info *smi_info,
1037 					struct timespec64 *busy_until)
1038 {
1039 	unsigned int max_busy_us = 0;
1040 
1041 	if (smi_info->intf_num < num_max_busy_us)
1042 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1043 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1044 		ipmi_si_set_not_busy(busy_until);
1045 	else if (!ipmi_si_is_busy(busy_until)) {
1046 		getnstimeofday64(busy_until);
1047 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1048 	} else {
1049 		struct timespec64 now;
1050 
1051 		getnstimeofday64(&now);
1052 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1053 			ipmi_si_set_not_busy(busy_until);
1054 			return 0;
1055 		}
1056 	}
1057 	return 1;
1058 }
1059 
1060 
1061 /*
1062  * A busy-waiting loop for speeding up IPMI operation.
1063  *
1064  * Lousy hardware makes this hard.  This is only enabled for systems
1065  * that are not BT and do not have interrupts.  It starts spinning
1066  * when an operation is complete or until max_busy tells it to stop
1067  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1068  * Documentation/IPMI.txt for details.
1069  */
1070 static int ipmi_thread(void *data)
1071 {
1072 	struct smi_info *smi_info = data;
1073 	unsigned long flags;
1074 	enum si_sm_result smi_result;
1075 	struct timespec64 busy_until;
1076 
1077 	ipmi_si_set_not_busy(&busy_until);
1078 	set_user_nice(current, MAX_NICE);
1079 	while (!kthread_should_stop()) {
1080 		int busy_wait;
1081 
1082 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1083 		smi_result = smi_event_handler(smi_info, 0);
1084 
1085 		/*
1086 		 * If the driver is doing something, there is a possible
1087 		 * race with the timer.  If the timer handler see idle,
1088 		 * and the thread here sees something else, the timer
1089 		 * handler won't restart the timer even though it is
1090 		 * required.  So start it here if necessary.
1091 		 */
1092 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1093 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1094 
1095 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1096 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1097 						  &busy_until);
1098 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1099 			; /* do nothing */
1100 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1101 			schedule();
1102 		else if (smi_result == SI_SM_IDLE) {
1103 			if (atomic_read(&smi_info->need_watch)) {
1104 				schedule_timeout_interruptible(100);
1105 			} else {
1106 				/* Wait to be woken up when we are needed. */
1107 				__set_current_state(TASK_INTERRUPTIBLE);
1108 				schedule();
1109 			}
1110 		} else
1111 			schedule_timeout_interruptible(1);
1112 	}
1113 	return 0;
1114 }
1115 
1116 
1117 static void poll(void *send_info)
1118 {
1119 	struct smi_info *smi_info = send_info;
1120 	unsigned long flags = 0;
1121 	bool run_to_completion = smi_info->run_to_completion;
1122 
1123 	/*
1124 	 * Make sure there is some delay in the poll loop so we can
1125 	 * drive time forward and timeout things.
1126 	 */
1127 	udelay(10);
1128 	if (!run_to_completion)
1129 		spin_lock_irqsave(&smi_info->si_lock, flags);
1130 	smi_event_handler(smi_info, 10);
1131 	if (!run_to_completion)
1132 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1133 }
1134 
1135 static void request_events(void *send_info)
1136 {
1137 	struct smi_info *smi_info = send_info;
1138 
1139 	if (!smi_info->has_event_buffer)
1140 		return;
1141 
1142 	atomic_set(&smi_info->req_events, 1);
1143 }
1144 
1145 static void set_need_watch(void *send_info, bool enable)
1146 {
1147 	struct smi_info *smi_info = send_info;
1148 	unsigned long flags;
1149 
1150 	atomic_set(&smi_info->need_watch, enable);
1151 	spin_lock_irqsave(&smi_info->si_lock, flags);
1152 	check_start_timer_thread(smi_info);
1153 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1154 }
1155 
1156 static int initialized;
1157 
1158 static void smi_timeout(unsigned long data)
1159 {
1160 	struct smi_info   *smi_info = (struct smi_info *) data;
1161 	enum si_sm_result smi_result;
1162 	unsigned long     flags;
1163 	unsigned long     jiffies_now;
1164 	long              time_diff;
1165 	long		  timeout;
1166 
1167 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1168 	debug_timestamp("Timer");
1169 
1170 	jiffies_now = jiffies;
1171 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1172 		     * SI_USEC_PER_JIFFY);
1173 	smi_result = smi_event_handler(smi_info, time_diff);
1174 
1175 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1176 		/* Running with interrupts, only do long timeouts. */
1177 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1178 		smi_inc_stat(smi_info, long_timeouts);
1179 		goto do_mod_timer;
1180 	}
1181 
1182 	/*
1183 	 * If the state machine asks for a short delay, then shorten
1184 	 * the timer timeout.
1185 	 */
1186 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1187 		smi_inc_stat(smi_info, short_timeouts);
1188 		timeout = jiffies + 1;
1189 	} else {
1190 		smi_inc_stat(smi_info, long_timeouts);
1191 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1192 	}
1193 
1194 do_mod_timer:
1195 	if (smi_result != SI_SM_IDLE)
1196 		smi_mod_timer(smi_info, timeout);
1197 	else
1198 		smi_info->timer_running = false;
1199 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200 }
1201 
1202 static irqreturn_t si_irq_handler(int irq, void *data)
1203 {
1204 	struct smi_info *smi_info = data;
1205 	unsigned long   flags;
1206 
1207 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1208 
1209 	smi_inc_stat(smi_info, interrupts);
1210 
1211 	debug_timestamp("Interrupt");
1212 
1213 	smi_event_handler(smi_info, 0);
1214 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1215 	return IRQ_HANDLED;
1216 }
1217 
1218 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1219 {
1220 	struct smi_info *smi_info = data;
1221 	/* We need to clear the IRQ flag for the BT interface. */
1222 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1223 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1224 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1225 	return si_irq_handler(irq, data);
1226 }
1227 
1228 static int smi_start_processing(void       *send_info,
1229 				ipmi_smi_t intf)
1230 {
1231 	struct smi_info *new_smi = send_info;
1232 	int             enable = 0;
1233 
1234 	new_smi->intf = intf;
1235 
1236 	/* Set up the timer that drives the interface. */
1237 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1238 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1239 
1240 	/* Try to claim any interrupts. */
1241 	if (new_smi->irq_setup)
1242 		new_smi->irq_setup(new_smi);
1243 
1244 	/*
1245 	 * Check if the user forcefully enabled the daemon.
1246 	 */
1247 	if (new_smi->intf_num < num_force_kipmid)
1248 		enable = force_kipmid[new_smi->intf_num];
1249 	/*
1250 	 * The BT interface is efficient enough to not need a thread,
1251 	 * and there is no need for a thread if we have interrupts.
1252 	 */
1253 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1254 		enable = 1;
1255 
1256 	if (enable) {
1257 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1258 					      "kipmi%d", new_smi->intf_num);
1259 		if (IS_ERR(new_smi->thread)) {
1260 			dev_notice(new_smi->dev, "Could not start"
1261 				   " kernel thread due to error %ld, only using"
1262 				   " timers to drive the interface\n",
1263 				   PTR_ERR(new_smi->thread));
1264 			new_smi->thread = NULL;
1265 		}
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1272 {
1273 	struct smi_info *smi = send_info;
1274 
1275 	data->addr_src = smi->addr_source;
1276 	data->dev = smi->dev;
1277 	data->addr_info = smi->addr_info;
1278 	get_device(smi->dev);
1279 
1280 	return 0;
1281 }
1282 
1283 static void set_maintenance_mode(void *send_info, bool enable)
1284 {
1285 	struct smi_info   *smi_info = send_info;
1286 
1287 	if (!enable)
1288 		atomic_set(&smi_info->req_events, 0);
1289 }
1290 
1291 static const struct ipmi_smi_handlers handlers = {
1292 	.owner                  = THIS_MODULE,
1293 	.start_processing       = smi_start_processing,
1294 	.get_smi_info		= get_smi_info,
1295 	.sender			= sender,
1296 	.request_events		= request_events,
1297 	.set_need_watch		= set_need_watch,
1298 	.set_maintenance_mode   = set_maintenance_mode,
1299 	.set_run_to_completion  = set_run_to_completion,
1300 	.flush_messages		= flush_messages,
1301 	.poll			= poll,
1302 };
1303 
1304 /*
1305  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1306  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1307  */
1308 
1309 static LIST_HEAD(smi_infos);
1310 static DEFINE_MUTEX(smi_infos_lock);
1311 static int smi_num; /* Used to sequence the SMIs */
1312 
1313 #define DEFAULT_REGSPACING	1
1314 #define DEFAULT_REGSIZE		1
1315 
1316 #ifdef CONFIG_ACPI
1317 static bool          si_tryacpi = true;
1318 #endif
1319 #ifdef CONFIG_DMI
1320 static bool          si_trydmi = true;
1321 #endif
1322 static bool          si_tryplatform = true;
1323 #ifdef CONFIG_PCI
1324 static bool          si_trypci = true;
1325 #endif
1326 static char          *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char          si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int  ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int           irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int           regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int           regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int           regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343 
1344 #define IPMI_IO_ADDR_SPACE  0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347 
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349 
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352 		 " Documentation/IPMI.txt in the kernel sources for the"
1353 		 " gory details.");
1354 
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 		 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 		 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 		 " default scan of the interfaces identified via platform"
1368 		 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 		 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1375 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1376 		 " interface separated by commas.  The types are 'kcs',"
1377 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1378 		 " the first interface to kcs and the second to bt");
1379 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1380 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1381 		 " addresses separated by commas.  Only use if an interface"
1382 		 " is in memory.  Otherwise, set it to zero or leave"
1383 		 " it blank.");
1384 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1385 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1386 		 " addresses separated by commas.  Only use if an interface"
1387 		 " is a port.  Otherwise, set it to zero or leave"
1388 		 " it blank.");
1389 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1390 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1391 		 " addresses separated by commas.  Only use if an interface"
1392 		 " has an interrupt.  Otherwise, set it to zero or leave"
1393 		 " it blank.");
1394 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1395 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1396 		 " and each successive register used by the interface.  For"
1397 		 " instance, if the start address is 0xca2 and the spacing"
1398 		 " is 2, then the second address is at 0xca4.  Defaults"
1399 		 " to 1.");
1400 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1401 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1402 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1403 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1404 		 " the 8-bit IPMI register has to be read from a larger"
1405 		 " register.");
1406 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1407 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1408 		 " IPMI register, in bits.  For instance, if the data"
1409 		 " is read from a 32-bit word and the IPMI data is in"
1410 		 " bit 8-15, then the shift would be 8");
1411 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1412 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1413 		 " the controller.  Normally this is 0x20, but can be"
1414 		 " overridden by this parm.  This is an array indexed"
1415 		 " by interface number.");
1416 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1417 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1418 		 " disabled(0).  Normally the IPMI driver auto-detects"
1419 		 " this, but the value may be overridden by this parm.");
1420 module_param(unload_when_empty, bool, 0);
1421 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1422 		 " specified or found, default is 1.  Setting to 0"
1423 		 " is useful for hot add of devices using hotmod.");
1424 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1425 MODULE_PARM_DESC(kipmid_max_busy_us,
1426 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1427 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1428 		 " if kipmid is using up a lot of CPU time.");
1429 
1430 
1431 static void std_irq_cleanup(struct smi_info *info)
1432 {
1433 	if (info->si_type == SI_BT)
1434 		/* Disable the interrupt in the BT interface. */
1435 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1436 	free_irq(info->irq, info);
1437 }
1438 
1439 static int std_irq_setup(struct smi_info *info)
1440 {
1441 	int rv;
1442 
1443 	if (!info->irq)
1444 		return 0;
1445 
1446 	if (info->si_type == SI_BT) {
1447 		rv = request_irq(info->irq,
1448 				 si_bt_irq_handler,
1449 				 IRQF_SHARED,
1450 				 DEVICE_NAME,
1451 				 info);
1452 		if (!rv)
1453 			/* Enable the interrupt in the BT interface. */
1454 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1455 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1456 	} else
1457 		rv = request_irq(info->irq,
1458 				 si_irq_handler,
1459 				 IRQF_SHARED,
1460 				 DEVICE_NAME,
1461 				 info);
1462 	if (rv) {
1463 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1464 			 " running polled\n",
1465 			 DEVICE_NAME, info->irq);
1466 		info->irq = 0;
1467 	} else {
1468 		info->irq_cleanup = std_irq_cleanup;
1469 		dev_info(info->dev, "Using irq %d\n", info->irq);
1470 	}
1471 
1472 	return rv;
1473 }
1474 
1475 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1476 {
1477 	unsigned int addr = io->addr_data;
1478 
1479 	return inb(addr + (offset * io->regspacing));
1480 }
1481 
1482 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1483 		      unsigned char b)
1484 {
1485 	unsigned int addr = io->addr_data;
1486 
1487 	outb(b, addr + (offset * io->regspacing));
1488 }
1489 
1490 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1491 {
1492 	unsigned int addr = io->addr_data;
1493 
1494 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1495 }
1496 
1497 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1498 		      unsigned char b)
1499 {
1500 	unsigned int addr = io->addr_data;
1501 
1502 	outw(b << io->regshift, addr + (offset * io->regspacing));
1503 }
1504 
1505 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1506 {
1507 	unsigned int addr = io->addr_data;
1508 
1509 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1510 }
1511 
1512 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1513 		      unsigned char b)
1514 {
1515 	unsigned int addr = io->addr_data;
1516 
1517 	outl(b << io->regshift, addr+(offset * io->regspacing));
1518 }
1519 
1520 static void port_cleanup(struct smi_info *info)
1521 {
1522 	unsigned int addr = info->io.addr_data;
1523 	int          idx;
1524 
1525 	if (addr) {
1526 		for (idx = 0; idx < info->io_size; idx++)
1527 			release_region(addr + idx * info->io.regspacing,
1528 				       info->io.regsize);
1529 	}
1530 }
1531 
1532 static int port_setup(struct smi_info *info)
1533 {
1534 	unsigned int addr = info->io.addr_data;
1535 	int          idx;
1536 
1537 	if (!addr)
1538 		return -ENODEV;
1539 
1540 	info->io_cleanup = port_cleanup;
1541 
1542 	/*
1543 	 * Figure out the actual inb/inw/inl/etc routine to use based
1544 	 * upon the register size.
1545 	 */
1546 	switch (info->io.regsize) {
1547 	case 1:
1548 		info->io.inputb = port_inb;
1549 		info->io.outputb = port_outb;
1550 		break;
1551 	case 2:
1552 		info->io.inputb = port_inw;
1553 		info->io.outputb = port_outw;
1554 		break;
1555 	case 4:
1556 		info->io.inputb = port_inl;
1557 		info->io.outputb = port_outl;
1558 		break;
1559 	default:
1560 		dev_warn(info->dev, "Invalid register size: %d\n",
1561 			 info->io.regsize);
1562 		return -EINVAL;
1563 	}
1564 
1565 	/*
1566 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1567 	 * tables.  This causes problems when trying to register the
1568 	 * entire I/O region.  Therefore we must register each I/O
1569 	 * port separately.
1570 	 */
1571 	for (idx = 0; idx < info->io_size; idx++) {
1572 		if (request_region(addr + idx * info->io.regspacing,
1573 				   info->io.regsize, DEVICE_NAME) == NULL) {
1574 			/* Undo allocations */
1575 			while (idx--)
1576 				release_region(addr + idx * info->io.regspacing,
1577 					       info->io.regsize);
1578 			return -EIO;
1579 		}
1580 	}
1581 	return 0;
1582 }
1583 
1584 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1585 				  unsigned int offset)
1586 {
1587 	return readb((io->addr)+(offset * io->regspacing));
1588 }
1589 
1590 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1591 			  unsigned char b)
1592 {
1593 	writeb(b, (io->addr)+(offset * io->regspacing));
1594 }
1595 
1596 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1597 				  unsigned int offset)
1598 {
1599 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600 		& 0xff;
1601 }
1602 
1603 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1604 			  unsigned char b)
1605 {
1606 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607 }
1608 
1609 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1610 				  unsigned int offset)
1611 {
1612 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613 		& 0xff;
1614 }
1615 
1616 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1617 			  unsigned char b)
1618 {
1619 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621 
1622 #ifdef readq
1623 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1624 {
1625 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1626 		& 0xff;
1627 }
1628 
1629 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1630 		     unsigned char b)
1631 {
1632 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 }
1634 #endif
1635 
1636 static void mem_region_cleanup(struct smi_info *info, int num)
1637 {
1638 	unsigned long addr = info->io.addr_data;
1639 	int idx;
1640 
1641 	for (idx = 0; idx < num; idx++)
1642 		release_mem_region(addr + idx * info->io.regspacing,
1643 				   info->io.regsize);
1644 }
1645 
1646 static void mem_cleanup(struct smi_info *info)
1647 {
1648 	if (info->io.addr) {
1649 		iounmap(info->io.addr);
1650 		mem_region_cleanup(info, info->io_size);
1651 	}
1652 }
1653 
1654 static int mem_setup(struct smi_info *info)
1655 {
1656 	unsigned long addr = info->io.addr_data;
1657 	int           mapsize, idx;
1658 
1659 	if (!addr)
1660 		return -ENODEV;
1661 
1662 	info->io_cleanup = mem_cleanup;
1663 
1664 	/*
1665 	 * Figure out the actual readb/readw/readl/etc routine to use based
1666 	 * upon the register size.
1667 	 */
1668 	switch (info->io.regsize) {
1669 	case 1:
1670 		info->io.inputb = intf_mem_inb;
1671 		info->io.outputb = intf_mem_outb;
1672 		break;
1673 	case 2:
1674 		info->io.inputb = intf_mem_inw;
1675 		info->io.outputb = intf_mem_outw;
1676 		break;
1677 	case 4:
1678 		info->io.inputb = intf_mem_inl;
1679 		info->io.outputb = intf_mem_outl;
1680 		break;
1681 #ifdef readq
1682 	case 8:
1683 		info->io.inputb = mem_inq;
1684 		info->io.outputb = mem_outq;
1685 		break;
1686 #endif
1687 	default:
1688 		dev_warn(info->dev, "Invalid register size: %d\n",
1689 			 info->io.regsize);
1690 		return -EINVAL;
1691 	}
1692 
1693 	/*
1694 	 * Some BIOSes reserve disjoint memory regions in their ACPI
1695 	 * tables.  This causes problems when trying to request the
1696 	 * entire region.  Therefore we must request each register
1697 	 * separately.
1698 	 */
1699 	for (idx = 0; idx < info->io_size; idx++) {
1700 		if (request_mem_region(addr + idx * info->io.regspacing,
1701 				       info->io.regsize, DEVICE_NAME) == NULL) {
1702 			/* Undo allocations */
1703 			mem_region_cleanup(info, idx);
1704 			return -EIO;
1705 		}
1706 	}
1707 
1708 	/*
1709 	 * Calculate the total amount of memory to claim.  This is an
1710 	 * unusual looking calculation, but it avoids claiming any
1711 	 * more memory than it has to.  It will claim everything
1712 	 * between the first address to the end of the last full
1713 	 * register.
1714 	 */
1715 	mapsize = ((info->io_size * info->io.regspacing)
1716 		   - (info->io.regspacing - info->io.regsize));
1717 	info->io.addr = ioremap(addr, mapsize);
1718 	if (info->io.addr == NULL) {
1719 		mem_region_cleanup(info, info->io_size);
1720 		return -EIO;
1721 	}
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1727  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1728  * Options are:
1729  *   rsp=<regspacing>
1730  *   rsi=<regsize>
1731  *   rsh=<regshift>
1732  *   irq=<irq>
1733  *   ipmb=<ipmb addr>
1734  */
1735 enum hotmod_op { HM_ADD, HM_REMOVE };
1736 struct hotmod_vals {
1737 	const char *name;
1738 	const int  val;
1739 };
1740 
1741 static const struct hotmod_vals hotmod_ops[] = {
1742 	{ "add",	HM_ADD },
1743 	{ "remove",	HM_REMOVE },
1744 	{ NULL }
1745 };
1746 
1747 static const struct hotmod_vals hotmod_si[] = {
1748 	{ "kcs",	SI_KCS },
1749 	{ "smic",	SI_SMIC },
1750 	{ "bt",		SI_BT },
1751 	{ NULL }
1752 };
1753 
1754 static const struct hotmod_vals hotmod_as[] = {
1755 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1756 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1757 	{ NULL }
1758 };
1759 
1760 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1761 		     char **curr)
1762 {
1763 	char *s;
1764 	int  i;
1765 
1766 	s = strchr(*curr, ',');
1767 	if (!s) {
1768 		pr_warn(PFX "No hotmod %s given.\n", name);
1769 		return -EINVAL;
1770 	}
1771 	*s = '\0';
1772 	s++;
1773 	for (i = 0; v[i].name; i++) {
1774 		if (strcmp(*curr, v[i].name) == 0) {
1775 			*val = v[i].val;
1776 			*curr = s;
1777 			return 0;
1778 		}
1779 	}
1780 
1781 	pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1782 	return -EINVAL;
1783 }
1784 
1785 static int check_hotmod_int_op(const char *curr, const char *option,
1786 			       const char *name, int *val)
1787 {
1788 	char *n;
1789 
1790 	if (strcmp(curr, name) == 0) {
1791 		if (!option) {
1792 			pr_warn(PFX "No option given for '%s'\n", curr);
1793 			return -EINVAL;
1794 		}
1795 		*val = simple_strtoul(option, &n, 0);
1796 		if ((*n != '\0') || (*option == '\0')) {
1797 			pr_warn(PFX "Bad option given for '%s'\n", curr);
1798 			return -EINVAL;
1799 		}
1800 		return 1;
1801 	}
1802 	return 0;
1803 }
1804 
1805 static struct smi_info *smi_info_alloc(void)
1806 {
1807 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1808 
1809 	if (info)
1810 		spin_lock_init(&info->si_lock);
1811 	return info;
1812 }
1813 
1814 static int hotmod_handler(const char *val, struct kernel_param *kp)
1815 {
1816 	char *str = kstrdup(val, GFP_KERNEL);
1817 	int  rv;
1818 	char *next, *curr, *s, *n, *o;
1819 	enum hotmod_op op;
1820 	enum si_type si_type;
1821 	int  addr_space;
1822 	unsigned long addr;
1823 	int regspacing;
1824 	int regsize;
1825 	int regshift;
1826 	int irq;
1827 	int ipmb;
1828 	int ival;
1829 	int len;
1830 	struct smi_info *info;
1831 
1832 	if (!str)
1833 		return -ENOMEM;
1834 
1835 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1836 	len = strlen(str);
1837 	ival = len - 1;
1838 	while ((ival >= 0) && isspace(str[ival])) {
1839 		str[ival] = '\0';
1840 		ival--;
1841 	}
1842 
1843 	for (curr = str; curr; curr = next) {
1844 		regspacing = 1;
1845 		regsize = 1;
1846 		regshift = 0;
1847 		irq = 0;
1848 		ipmb = 0; /* Choose the default if not specified */
1849 
1850 		next = strchr(curr, ':');
1851 		if (next) {
1852 			*next = '\0';
1853 			next++;
1854 		}
1855 
1856 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1857 		if (rv)
1858 			break;
1859 		op = ival;
1860 
1861 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1862 		if (rv)
1863 			break;
1864 		si_type = ival;
1865 
1866 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1867 		if (rv)
1868 			break;
1869 
1870 		s = strchr(curr, ',');
1871 		if (s) {
1872 			*s = '\0';
1873 			s++;
1874 		}
1875 		addr = simple_strtoul(curr, &n, 0);
1876 		if ((*n != '\0') || (*curr == '\0')) {
1877 			pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1878 			break;
1879 		}
1880 
1881 		while (s) {
1882 			curr = s;
1883 			s = strchr(curr, ',');
1884 			if (s) {
1885 				*s = '\0';
1886 				s++;
1887 			}
1888 			o = strchr(curr, '=');
1889 			if (o) {
1890 				*o = '\0';
1891 				o++;
1892 			}
1893 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1894 			if (rv < 0)
1895 				goto out;
1896 			else if (rv)
1897 				continue;
1898 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1899 			if (rv < 0)
1900 				goto out;
1901 			else if (rv)
1902 				continue;
1903 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1904 			if (rv < 0)
1905 				goto out;
1906 			else if (rv)
1907 				continue;
1908 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1909 			if (rv < 0)
1910 				goto out;
1911 			else if (rv)
1912 				continue;
1913 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1914 			if (rv < 0)
1915 				goto out;
1916 			else if (rv)
1917 				continue;
1918 
1919 			rv = -EINVAL;
1920 			pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1921 			goto out;
1922 		}
1923 
1924 		if (op == HM_ADD) {
1925 			info = smi_info_alloc();
1926 			if (!info) {
1927 				rv = -ENOMEM;
1928 				goto out;
1929 			}
1930 
1931 			info->addr_source = SI_HOTMOD;
1932 			info->si_type = si_type;
1933 			info->io.addr_data = addr;
1934 			info->io.addr_type = addr_space;
1935 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1936 				info->io_setup = mem_setup;
1937 			else
1938 				info->io_setup = port_setup;
1939 
1940 			info->io.addr = NULL;
1941 			info->io.regspacing = regspacing;
1942 			if (!info->io.regspacing)
1943 				info->io.regspacing = DEFAULT_REGSPACING;
1944 			info->io.regsize = regsize;
1945 			if (!info->io.regsize)
1946 				info->io.regsize = DEFAULT_REGSIZE;
1947 			info->io.regshift = regshift;
1948 			info->irq = irq;
1949 			if (info->irq)
1950 				info->irq_setup = std_irq_setup;
1951 			info->slave_addr = ipmb;
1952 
1953 			rv = add_smi(info);
1954 			if (rv) {
1955 				kfree(info);
1956 				goto out;
1957 			}
1958 			mutex_lock(&smi_infos_lock);
1959 			rv = try_smi_init(info);
1960 			mutex_unlock(&smi_infos_lock);
1961 			if (rv) {
1962 				cleanup_one_si(info);
1963 				goto out;
1964 			}
1965 		} else {
1966 			/* remove */
1967 			struct smi_info *e, *tmp_e;
1968 
1969 			mutex_lock(&smi_infos_lock);
1970 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1971 				if (e->io.addr_type != addr_space)
1972 					continue;
1973 				if (e->si_type != si_type)
1974 					continue;
1975 				if (e->io.addr_data == addr)
1976 					cleanup_one_si(e);
1977 			}
1978 			mutex_unlock(&smi_infos_lock);
1979 		}
1980 	}
1981 	rv = len;
1982 out:
1983 	kfree(str);
1984 	return rv;
1985 }
1986 
1987 static int hardcode_find_bmc(void)
1988 {
1989 	int ret = -ENODEV;
1990 	int             i;
1991 	struct smi_info *info;
1992 
1993 	for (i = 0; i < SI_MAX_PARMS; i++) {
1994 		if (!ports[i] && !addrs[i])
1995 			continue;
1996 
1997 		info = smi_info_alloc();
1998 		if (!info)
1999 			return -ENOMEM;
2000 
2001 		info->addr_source = SI_HARDCODED;
2002 		pr_info(PFX "probing via hardcoded address\n");
2003 
2004 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2005 			info->si_type = SI_KCS;
2006 		} else if (strcmp(si_type[i], "smic") == 0) {
2007 			info->si_type = SI_SMIC;
2008 		} else if (strcmp(si_type[i], "bt") == 0) {
2009 			info->si_type = SI_BT;
2010 		} else {
2011 			pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2012 				i, si_type[i]);
2013 			kfree(info);
2014 			continue;
2015 		}
2016 
2017 		if (ports[i]) {
2018 			/* An I/O port */
2019 			info->io_setup = port_setup;
2020 			info->io.addr_data = ports[i];
2021 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2022 		} else if (addrs[i]) {
2023 			/* A memory port */
2024 			info->io_setup = mem_setup;
2025 			info->io.addr_data = addrs[i];
2026 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2027 		} else {
2028 			pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2029 				i);
2030 			kfree(info);
2031 			continue;
2032 		}
2033 
2034 		info->io.addr = NULL;
2035 		info->io.regspacing = regspacings[i];
2036 		if (!info->io.regspacing)
2037 			info->io.regspacing = DEFAULT_REGSPACING;
2038 		info->io.regsize = regsizes[i];
2039 		if (!info->io.regsize)
2040 			info->io.regsize = DEFAULT_REGSIZE;
2041 		info->io.regshift = regshifts[i];
2042 		info->irq = irqs[i];
2043 		if (info->irq)
2044 			info->irq_setup = std_irq_setup;
2045 		info->slave_addr = slave_addrs[i];
2046 
2047 		if (!add_smi(info)) {
2048 			mutex_lock(&smi_infos_lock);
2049 			if (try_smi_init(info))
2050 				cleanup_one_si(info);
2051 			mutex_unlock(&smi_infos_lock);
2052 			ret = 0;
2053 		} else {
2054 			kfree(info);
2055 		}
2056 	}
2057 	return ret;
2058 }
2059 
2060 #ifdef CONFIG_ACPI
2061 
2062 /*
2063  * Once we get an ACPI failure, we don't try any more, because we go
2064  * through the tables sequentially.  Once we don't find a table, there
2065  * are no more.
2066  */
2067 static int acpi_failure;
2068 
2069 /* For GPE-type interrupts. */
2070 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2071 	u32 gpe_number, void *context)
2072 {
2073 	struct smi_info *smi_info = context;
2074 	unsigned long   flags;
2075 
2076 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2077 
2078 	smi_inc_stat(smi_info, interrupts);
2079 
2080 	debug_timestamp("ACPI_GPE");
2081 
2082 	smi_event_handler(smi_info, 0);
2083 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2084 
2085 	return ACPI_INTERRUPT_HANDLED;
2086 }
2087 
2088 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2089 {
2090 	if (!info->irq)
2091 		return;
2092 
2093 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2094 }
2095 
2096 static int acpi_gpe_irq_setup(struct smi_info *info)
2097 {
2098 	acpi_status status;
2099 
2100 	if (!info->irq)
2101 		return 0;
2102 
2103 	status = acpi_install_gpe_handler(NULL,
2104 					  info->irq,
2105 					  ACPI_GPE_LEVEL_TRIGGERED,
2106 					  &ipmi_acpi_gpe,
2107 					  info);
2108 	if (status != AE_OK) {
2109 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2110 			 " running polled\n", DEVICE_NAME, info->irq);
2111 		info->irq = 0;
2112 		return -EINVAL;
2113 	} else {
2114 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2115 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2116 		return 0;
2117 	}
2118 }
2119 
2120 /*
2121  * Defined at
2122  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2123  */
2124 struct SPMITable {
2125 	s8	Signature[4];
2126 	u32	Length;
2127 	u8	Revision;
2128 	u8	Checksum;
2129 	s8	OEMID[6];
2130 	s8	OEMTableID[8];
2131 	s8	OEMRevision[4];
2132 	s8	CreatorID[4];
2133 	s8	CreatorRevision[4];
2134 	u8	InterfaceType;
2135 	u8	IPMIlegacy;
2136 	s16	SpecificationRevision;
2137 
2138 	/*
2139 	 * Bit 0 - SCI interrupt supported
2140 	 * Bit 1 - I/O APIC/SAPIC
2141 	 */
2142 	u8	InterruptType;
2143 
2144 	/*
2145 	 * If bit 0 of InterruptType is set, then this is the SCI
2146 	 * interrupt in the GPEx_STS register.
2147 	 */
2148 	u8	GPE;
2149 
2150 	s16	Reserved;
2151 
2152 	/*
2153 	 * If bit 1 of InterruptType is set, then this is the I/O
2154 	 * APIC/SAPIC interrupt.
2155 	 */
2156 	u32	GlobalSystemInterrupt;
2157 
2158 	/* The actual register address. */
2159 	struct acpi_generic_address addr;
2160 
2161 	u8	UID[4];
2162 
2163 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2164 };
2165 
2166 static int try_init_spmi(struct SPMITable *spmi)
2167 {
2168 	struct smi_info  *info;
2169 	int rv;
2170 
2171 	if (spmi->IPMIlegacy != 1) {
2172 		pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2173 		return -ENODEV;
2174 	}
2175 
2176 	info = smi_info_alloc();
2177 	if (!info) {
2178 		pr_err(PFX "Could not allocate SI data (3)\n");
2179 		return -ENOMEM;
2180 	}
2181 
2182 	info->addr_source = SI_SPMI;
2183 	pr_info(PFX "probing via SPMI\n");
2184 
2185 	/* Figure out the interface type. */
2186 	switch (spmi->InterfaceType) {
2187 	case 1:	/* KCS */
2188 		info->si_type = SI_KCS;
2189 		break;
2190 	case 2:	/* SMIC */
2191 		info->si_type = SI_SMIC;
2192 		break;
2193 	case 3:	/* BT */
2194 		info->si_type = SI_BT;
2195 		break;
2196 	case 4: /* SSIF, just ignore */
2197 		kfree(info);
2198 		return -EIO;
2199 	default:
2200 		pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2201 			spmi->InterfaceType);
2202 		kfree(info);
2203 		return -EIO;
2204 	}
2205 
2206 	if (spmi->InterruptType & 1) {
2207 		/* We've got a GPE interrupt. */
2208 		info->irq = spmi->GPE;
2209 		info->irq_setup = acpi_gpe_irq_setup;
2210 	} else if (spmi->InterruptType & 2) {
2211 		/* We've got an APIC/SAPIC interrupt. */
2212 		info->irq = spmi->GlobalSystemInterrupt;
2213 		info->irq_setup = std_irq_setup;
2214 	} else {
2215 		/* Use the default interrupt setting. */
2216 		info->irq = 0;
2217 		info->irq_setup = NULL;
2218 	}
2219 
2220 	if (spmi->addr.bit_width) {
2221 		/* A (hopefully) properly formed register bit width. */
2222 		info->io.regspacing = spmi->addr.bit_width / 8;
2223 	} else {
2224 		info->io.regspacing = DEFAULT_REGSPACING;
2225 	}
2226 	info->io.regsize = info->io.regspacing;
2227 	info->io.regshift = spmi->addr.bit_offset;
2228 
2229 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2230 		info->io_setup = mem_setup;
2231 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2232 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2233 		info->io_setup = port_setup;
2234 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235 	} else {
2236 		kfree(info);
2237 		pr_warn(PFX "Unknown ACPI I/O Address type\n");
2238 		return -EIO;
2239 	}
2240 	info->io.addr_data = spmi->addr.address;
2241 
2242 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2243 		(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2244 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2245 		info->irq);
2246 
2247 	rv = add_smi(info);
2248 	if (rv)
2249 		kfree(info);
2250 
2251 	return rv;
2252 }
2253 
2254 static void spmi_find_bmc(void)
2255 {
2256 	acpi_status      status;
2257 	struct SPMITable *spmi;
2258 	int              i;
2259 
2260 	if (acpi_disabled)
2261 		return;
2262 
2263 	if (acpi_failure)
2264 		return;
2265 
2266 	for (i = 0; ; i++) {
2267 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2268 					(struct acpi_table_header **)&spmi);
2269 		if (status != AE_OK)
2270 			return;
2271 
2272 		try_init_spmi(spmi);
2273 	}
2274 }
2275 #endif
2276 
2277 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
2278 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2279 					      struct smi_info *info)
2280 {
2281 	struct resource *res, *res_second;
2282 
2283 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2284 	if (res) {
2285 		info->io_setup = port_setup;
2286 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2287 	} else {
2288 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2289 		if (res) {
2290 			info->io_setup = mem_setup;
2291 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2292 		}
2293 	}
2294 	if (!res) {
2295 		dev_err(&pdev->dev, "no I/O or memory address\n");
2296 		return NULL;
2297 	}
2298 	info->io.addr_data = res->start;
2299 
2300 	info->io.regspacing = DEFAULT_REGSPACING;
2301 	res_second = platform_get_resource(pdev,
2302 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2303 					IORESOURCE_IO : IORESOURCE_MEM,
2304 			       1);
2305 	if (res_second) {
2306 		if (res_second->start > info->io.addr_data)
2307 			info->io.regspacing =
2308 				res_second->start - info->io.addr_data;
2309 	}
2310 	info->io.regsize = DEFAULT_REGSIZE;
2311 	info->io.regshift = 0;
2312 
2313 	return res;
2314 }
2315 
2316 #endif
2317 
2318 #ifdef CONFIG_DMI
2319 static int dmi_ipmi_probe(struct platform_device *pdev)
2320 {
2321 	struct smi_info *info;
2322 	u8 type, slave_addr;
2323 	int rv;
2324 
2325 	if (!si_trydmi)
2326 		return -ENODEV;
2327 
2328 	rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2329 	if (rv)
2330 		return -ENODEV;
2331 
2332 	info = smi_info_alloc();
2333 	if (!info) {
2334 		pr_err(PFX "Could not allocate SI data\n");
2335 		return -ENOMEM;
2336 	}
2337 
2338 	info->addr_source = SI_SMBIOS;
2339 	pr_info(PFX "probing via SMBIOS\n");
2340 
2341 	switch (type) {
2342 	case IPMI_DMI_TYPE_KCS:
2343 		info->si_type = SI_KCS;
2344 		break;
2345 	case IPMI_DMI_TYPE_SMIC:
2346 		info->si_type = SI_SMIC;
2347 		break;
2348 	case IPMI_DMI_TYPE_BT:
2349 		info->si_type = SI_BT;
2350 		break;
2351 	default:
2352 		kfree(info);
2353 		return -EINVAL;
2354 	}
2355 
2356 	if (!ipmi_get_info_from_resources(pdev, info)) {
2357 		rv = -EINVAL;
2358 		goto err_free;
2359 	}
2360 
2361 	rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2362 	if (rv) {
2363 		dev_warn(&pdev->dev, "device has no slave-addr property");
2364 		info->slave_addr = 0x20;
2365 	} else {
2366 		info->slave_addr = slave_addr;
2367 	}
2368 
2369 	info->irq = platform_get_irq(pdev, 0);
2370 	if (info->irq > 0)
2371 		info->irq_setup = std_irq_setup;
2372 	else
2373 		info->irq = 0;
2374 
2375 	info->dev = &pdev->dev;
2376 
2377 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378 		(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2379 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2380 		info->irq);
2381 
2382 	if (add_smi(info))
2383 		kfree(info);
2384 
2385 	return 0;
2386 
2387 err_free:
2388 	kfree(info);
2389 	return rv;
2390 }
2391 #else
2392 static int dmi_ipmi_probe(struct platform_device *pdev)
2393 {
2394 	return -ENODEV;
2395 }
2396 #endif /* CONFIG_DMI */
2397 
2398 #ifdef CONFIG_PCI
2399 
2400 #define PCI_ERMC_CLASSCODE		0x0C0700
2401 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2402 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2403 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2404 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2405 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2406 
2407 #define PCI_HP_VENDOR_ID    0x103C
2408 #define PCI_MMC_DEVICE_ID   0x121A
2409 #define PCI_MMC_ADDR_CW     0x10
2410 
2411 static void ipmi_pci_cleanup(struct smi_info *info)
2412 {
2413 	struct pci_dev *pdev = info->addr_source_data;
2414 
2415 	pci_disable_device(pdev);
2416 }
2417 
2418 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2419 {
2420 	if (info->si_type == SI_KCS) {
2421 		unsigned char	status;
2422 		int		regspacing;
2423 
2424 		info->io.regsize = DEFAULT_REGSIZE;
2425 		info->io.regshift = 0;
2426 		info->io_size = 2;
2427 		info->handlers = &kcs_smi_handlers;
2428 
2429 		/* detect 1, 4, 16byte spacing */
2430 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2431 			info->io.regspacing = regspacing;
2432 			if (info->io_setup(info)) {
2433 				dev_err(info->dev,
2434 					"Could not setup I/O space\n");
2435 				return DEFAULT_REGSPACING;
2436 			}
2437 			/* write invalid cmd */
2438 			info->io.outputb(&info->io, 1, 0x10);
2439 			/* read status back */
2440 			status = info->io.inputb(&info->io, 1);
2441 			info->io_cleanup(info);
2442 			if (status)
2443 				return regspacing;
2444 			regspacing *= 4;
2445 		}
2446 	}
2447 	return DEFAULT_REGSPACING;
2448 }
2449 
2450 static int ipmi_pci_probe(struct pci_dev *pdev,
2451 				    const struct pci_device_id *ent)
2452 {
2453 	int rv;
2454 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2455 	struct smi_info *info;
2456 
2457 	info = smi_info_alloc();
2458 	if (!info)
2459 		return -ENOMEM;
2460 
2461 	info->addr_source = SI_PCI;
2462 	dev_info(&pdev->dev, "probing via PCI");
2463 
2464 	switch (class_type) {
2465 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2466 		info->si_type = SI_SMIC;
2467 		break;
2468 
2469 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2470 		info->si_type = SI_KCS;
2471 		break;
2472 
2473 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2474 		info->si_type = SI_BT;
2475 		break;
2476 
2477 	default:
2478 		kfree(info);
2479 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2480 		return -ENOMEM;
2481 	}
2482 
2483 	rv = pci_enable_device(pdev);
2484 	if (rv) {
2485 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2486 		kfree(info);
2487 		return rv;
2488 	}
2489 
2490 	info->addr_source_cleanup = ipmi_pci_cleanup;
2491 	info->addr_source_data = pdev;
2492 
2493 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2494 		info->io_setup = port_setup;
2495 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2496 	} else {
2497 		info->io_setup = mem_setup;
2498 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2499 	}
2500 	info->io.addr_data = pci_resource_start(pdev, 0);
2501 
2502 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2503 	info->io.regsize = DEFAULT_REGSIZE;
2504 	info->io.regshift = 0;
2505 
2506 	info->irq = pdev->irq;
2507 	if (info->irq)
2508 		info->irq_setup = std_irq_setup;
2509 
2510 	info->dev = &pdev->dev;
2511 	pci_set_drvdata(pdev, info);
2512 
2513 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2514 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2515 		info->irq);
2516 
2517 	rv = add_smi(info);
2518 	if (rv) {
2519 		kfree(info);
2520 		pci_disable_device(pdev);
2521 	}
2522 
2523 	return rv;
2524 }
2525 
2526 static void ipmi_pci_remove(struct pci_dev *pdev)
2527 {
2528 	struct smi_info *info = pci_get_drvdata(pdev);
2529 	cleanup_one_si(info);
2530 }
2531 
2532 static const struct pci_device_id ipmi_pci_devices[] = {
2533 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2534 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2535 	{ 0, }
2536 };
2537 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2538 
2539 static struct pci_driver ipmi_pci_driver = {
2540 	.name =         DEVICE_NAME,
2541 	.id_table =     ipmi_pci_devices,
2542 	.probe =        ipmi_pci_probe,
2543 	.remove =       ipmi_pci_remove,
2544 };
2545 #endif /* CONFIG_PCI */
2546 
2547 #ifdef CONFIG_OF
2548 static const struct of_device_id of_ipmi_match[] = {
2549 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2550 	  .data = (void *)(unsigned long) SI_KCS },
2551 	{ .type = "ipmi", .compatible = "ipmi-smic",
2552 	  .data = (void *)(unsigned long) SI_SMIC },
2553 	{ .type = "ipmi", .compatible = "ipmi-bt",
2554 	  .data = (void *)(unsigned long) SI_BT },
2555 	{},
2556 };
2557 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2558 
2559 static int of_ipmi_probe(struct platform_device *dev)
2560 {
2561 	const struct of_device_id *match;
2562 	struct smi_info *info;
2563 	struct resource resource;
2564 	const __be32 *regsize, *regspacing, *regshift;
2565 	struct device_node *np = dev->dev.of_node;
2566 	int ret;
2567 	int proplen;
2568 
2569 	dev_info(&dev->dev, "probing via device tree\n");
2570 
2571 	match = of_match_device(of_ipmi_match, &dev->dev);
2572 	if (!match)
2573 		return -ENODEV;
2574 
2575 	if (!of_device_is_available(np))
2576 		return -EINVAL;
2577 
2578 	ret = of_address_to_resource(np, 0, &resource);
2579 	if (ret) {
2580 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2581 		return ret;
2582 	}
2583 
2584 	regsize = of_get_property(np, "reg-size", &proplen);
2585 	if (regsize && proplen != 4) {
2586 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2587 		return -EINVAL;
2588 	}
2589 
2590 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2591 	if (regspacing && proplen != 4) {
2592 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2593 		return -EINVAL;
2594 	}
2595 
2596 	regshift = of_get_property(np, "reg-shift", &proplen);
2597 	if (regshift && proplen != 4) {
2598 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2599 		return -EINVAL;
2600 	}
2601 
2602 	info = smi_info_alloc();
2603 
2604 	if (!info) {
2605 		dev_err(&dev->dev,
2606 			"could not allocate memory for OF probe\n");
2607 		return -ENOMEM;
2608 	}
2609 
2610 	info->si_type		= (enum si_type) match->data;
2611 	info->addr_source	= SI_DEVICETREE;
2612 	info->irq_setup		= std_irq_setup;
2613 
2614 	if (resource.flags & IORESOURCE_IO) {
2615 		info->io_setup		= port_setup;
2616 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2617 	} else {
2618 		info->io_setup		= mem_setup;
2619 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2620 	}
2621 
2622 	info->io.addr_data	= resource.start;
2623 
2624 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2625 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2626 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2627 
2628 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2629 	info->dev		= &dev->dev;
2630 
2631 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2632 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2633 		info->irq);
2634 
2635 	dev_set_drvdata(&dev->dev, info);
2636 
2637 	ret = add_smi(info);
2638 	if (ret) {
2639 		kfree(info);
2640 		return ret;
2641 	}
2642 	return 0;
2643 }
2644 #else
2645 #define of_ipmi_match NULL
2646 static int of_ipmi_probe(struct platform_device *dev)
2647 {
2648 	return -ENODEV;
2649 }
2650 #endif
2651 
2652 #ifdef CONFIG_ACPI
2653 static int find_slave_address(struct smi_info *info, int slave_addr)
2654 {
2655 #ifdef CONFIG_IPMI_DMI_DECODE
2656 	if (!slave_addr) {
2657 		int type = -1;
2658 		u32 flags = IORESOURCE_IO;
2659 
2660 		switch (info->si_type) {
2661 		case SI_KCS:
2662 			type = IPMI_DMI_TYPE_KCS;
2663 			break;
2664 		case SI_BT:
2665 			type = IPMI_DMI_TYPE_BT;
2666 			break;
2667 		case SI_SMIC:
2668 			type = IPMI_DMI_TYPE_SMIC;
2669 			break;
2670 		}
2671 
2672 		if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2673 			flags = IORESOURCE_MEM;
2674 
2675 		slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2676 						     info->io.addr_data);
2677 	}
2678 #endif
2679 
2680 	return slave_addr;
2681 }
2682 
2683 static int acpi_ipmi_probe(struct platform_device *dev)
2684 {
2685 	struct smi_info *info;
2686 	acpi_handle handle;
2687 	acpi_status status;
2688 	unsigned long long tmp;
2689 	struct resource *res;
2690 	int rv = -EINVAL;
2691 
2692 	if (!si_tryacpi)
2693 		return -ENODEV;
2694 
2695 	handle = ACPI_HANDLE(&dev->dev);
2696 	if (!handle)
2697 		return -ENODEV;
2698 
2699 	info = smi_info_alloc();
2700 	if (!info)
2701 		return -ENOMEM;
2702 
2703 	info->addr_source = SI_ACPI;
2704 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2705 
2706 	info->addr_info.acpi_info.acpi_handle = handle;
2707 
2708 	/* _IFT tells us the interface type: KCS, BT, etc */
2709 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2710 	if (ACPI_FAILURE(status)) {
2711 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2712 		goto err_free;
2713 	}
2714 
2715 	switch (tmp) {
2716 	case 1:
2717 		info->si_type = SI_KCS;
2718 		break;
2719 	case 2:
2720 		info->si_type = SI_SMIC;
2721 		break;
2722 	case 3:
2723 		info->si_type = SI_BT;
2724 		break;
2725 	case 4: /* SSIF, just ignore */
2726 		rv = -ENODEV;
2727 		goto err_free;
2728 	default:
2729 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2730 		goto err_free;
2731 	}
2732 
2733 	res = ipmi_get_info_from_resources(dev, info);
2734 	if (!res) {
2735 		rv = -EINVAL;
2736 		goto err_free;
2737 	}
2738 
2739 	/* If _GPE exists, use it; otherwise use standard interrupts */
2740 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2741 	if (ACPI_SUCCESS(status)) {
2742 		info->irq = tmp;
2743 		info->irq_setup = acpi_gpe_irq_setup;
2744 	} else {
2745 		int irq = platform_get_irq(dev, 0);
2746 
2747 		if (irq > 0) {
2748 			info->irq = irq;
2749 			info->irq_setup = std_irq_setup;
2750 		}
2751 	}
2752 
2753 	info->slave_addr = find_slave_address(info, info->slave_addr);
2754 
2755 	info->dev = &dev->dev;
2756 	platform_set_drvdata(dev, info);
2757 
2758 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2759 		 res, info->io.regsize, info->io.regspacing,
2760 		 info->irq);
2761 
2762 	rv = add_smi(info);
2763 	if (rv)
2764 		kfree(info);
2765 
2766 	return rv;
2767 
2768 err_free:
2769 	kfree(info);
2770 	return rv;
2771 }
2772 
2773 static const struct acpi_device_id acpi_ipmi_match[] = {
2774 	{ "IPI0001", 0 },
2775 	{ },
2776 };
2777 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2778 #else
2779 static int acpi_ipmi_probe(struct platform_device *dev)
2780 {
2781 	return -ENODEV;
2782 }
2783 #endif
2784 
2785 static int ipmi_probe(struct platform_device *dev)
2786 {
2787 	if (of_ipmi_probe(dev) == 0)
2788 		return 0;
2789 
2790 	if (acpi_ipmi_probe(dev) == 0)
2791 		return 0;
2792 
2793 	return dmi_ipmi_probe(dev);
2794 }
2795 
2796 static int ipmi_remove(struct platform_device *dev)
2797 {
2798 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2799 
2800 	cleanup_one_si(info);
2801 	return 0;
2802 }
2803 
2804 static struct platform_driver ipmi_driver = {
2805 	.driver = {
2806 		.name = DEVICE_NAME,
2807 		.of_match_table = of_ipmi_match,
2808 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2809 	},
2810 	.probe		= ipmi_probe,
2811 	.remove		= ipmi_remove,
2812 };
2813 
2814 #ifdef CONFIG_PARISC
2815 static int __init ipmi_parisc_probe(struct parisc_device *dev)
2816 {
2817 	struct smi_info *info;
2818 	int rv;
2819 
2820 	info = smi_info_alloc();
2821 
2822 	if (!info) {
2823 		dev_err(&dev->dev,
2824 			"could not allocate memory for PARISC probe\n");
2825 		return -ENOMEM;
2826 	}
2827 
2828 	info->si_type		= SI_KCS;
2829 	info->addr_source	= SI_DEVICETREE;
2830 	info->io_setup		= mem_setup;
2831 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2832 	info->io.addr_data	= dev->hpa.start;
2833 	info->io.regsize	= 1;
2834 	info->io.regspacing	= 1;
2835 	info->io.regshift	= 0;
2836 	info->irq		= 0; /* no interrupt */
2837 	info->irq_setup		= NULL;
2838 	info->dev		= &dev->dev;
2839 
2840 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2841 
2842 	dev_set_drvdata(&dev->dev, info);
2843 
2844 	rv = add_smi(info);
2845 	if (rv) {
2846 		kfree(info);
2847 		return rv;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 static int __exit ipmi_parisc_remove(struct parisc_device *dev)
2854 {
2855 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2856 	return 0;
2857 }
2858 
2859 static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
2860 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2861 	{ 0, }
2862 };
2863 
2864 MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
2865 
2866 static struct parisc_driver ipmi_parisc_driver __refdata = {
2867 	.name =		"ipmi",
2868 	.id_table =	ipmi_parisc_tbl,
2869 	.probe =	ipmi_parisc_probe,
2870 	.remove =	__exit_p(ipmi_parisc_remove),
2871 };
2872 #endif /* CONFIG_PARISC */
2873 
2874 static int wait_for_msg_done(struct smi_info *smi_info)
2875 {
2876 	enum si_sm_result     smi_result;
2877 
2878 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2879 	for (;;) {
2880 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2881 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2882 			schedule_timeout_uninterruptible(1);
2883 			smi_result = smi_info->handlers->event(
2884 				smi_info->si_sm, jiffies_to_usecs(1));
2885 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2886 			smi_result = smi_info->handlers->event(
2887 				smi_info->si_sm, 0);
2888 		} else
2889 			break;
2890 	}
2891 	if (smi_result == SI_SM_HOSED)
2892 		/*
2893 		 * We couldn't get the state machine to run, so whatever's at
2894 		 * the port is probably not an IPMI SMI interface.
2895 		 */
2896 		return -ENODEV;
2897 
2898 	return 0;
2899 }
2900 
2901 static int try_get_dev_id(struct smi_info *smi_info)
2902 {
2903 	unsigned char         msg[2];
2904 	unsigned char         *resp;
2905 	unsigned long         resp_len;
2906 	int                   rv = 0;
2907 
2908 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2909 	if (!resp)
2910 		return -ENOMEM;
2911 
2912 	/*
2913 	 * Do a Get Device ID command, since it comes back with some
2914 	 * useful info.
2915 	 */
2916 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2917 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2918 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2919 
2920 	rv = wait_for_msg_done(smi_info);
2921 	if (rv)
2922 		goto out;
2923 
2924 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2925 						  resp, IPMI_MAX_MSG_LENGTH);
2926 
2927 	/* Check and record info from the get device id, in case we need it. */
2928 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2929 
2930 out:
2931 	kfree(resp);
2932 	return rv;
2933 }
2934 
2935 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2936 {
2937 	unsigned char         msg[3];
2938 	unsigned char         *resp;
2939 	unsigned long         resp_len;
2940 	int                   rv;
2941 
2942 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2943 	if (!resp)
2944 		return -ENOMEM;
2945 
2946 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2947 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2948 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2949 
2950 	rv = wait_for_msg_done(smi_info);
2951 	if (rv) {
2952 		dev_warn(smi_info->dev,
2953 			 "Error getting response from get global enables command: %d\n",
2954 			 rv);
2955 		goto out;
2956 	}
2957 
2958 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2959 						  resp, IPMI_MAX_MSG_LENGTH);
2960 
2961 	if (resp_len < 4 ||
2962 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2963 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2964 			resp[2] != 0) {
2965 		dev_warn(smi_info->dev,
2966 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2967 			 resp_len, resp[0], resp[1], resp[2]);
2968 		rv = -EINVAL;
2969 		goto out;
2970 	} else {
2971 		*enables = resp[3];
2972 	}
2973 
2974 out:
2975 	kfree(resp);
2976 	return rv;
2977 }
2978 
2979 /*
2980  * Returns 1 if it gets an error from the command.
2981  */
2982 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2983 {
2984 	unsigned char         msg[3];
2985 	unsigned char         *resp;
2986 	unsigned long         resp_len;
2987 	int                   rv;
2988 
2989 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2990 	if (!resp)
2991 		return -ENOMEM;
2992 
2993 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2994 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2995 	msg[2] = enables;
2996 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2997 
2998 	rv = wait_for_msg_done(smi_info);
2999 	if (rv) {
3000 		dev_warn(smi_info->dev,
3001 			 "Error getting response from set global enables command: %d\n",
3002 			 rv);
3003 		goto out;
3004 	}
3005 
3006 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3007 						  resp, IPMI_MAX_MSG_LENGTH);
3008 
3009 	if (resp_len < 3 ||
3010 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3011 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3012 		dev_warn(smi_info->dev,
3013 			 "Invalid return from set global enables command: %ld %x %x\n",
3014 			 resp_len, resp[0], resp[1]);
3015 		rv = -EINVAL;
3016 		goto out;
3017 	}
3018 
3019 	if (resp[2] != 0)
3020 		rv = 1;
3021 
3022 out:
3023 	kfree(resp);
3024 	return rv;
3025 }
3026 
3027 /*
3028  * Some BMCs do not support clearing the receive irq bit in the global
3029  * enables (even if they don't support interrupts on the BMC).  Check
3030  * for this and handle it properly.
3031  */
3032 static void check_clr_rcv_irq(struct smi_info *smi_info)
3033 {
3034 	u8 enables = 0;
3035 	int rv;
3036 
3037 	rv = get_global_enables(smi_info, &enables);
3038 	if (!rv) {
3039 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3040 			/* Already clear, should work ok. */
3041 			return;
3042 
3043 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3044 		rv = set_global_enables(smi_info, enables);
3045 	}
3046 
3047 	if (rv < 0) {
3048 		dev_err(smi_info->dev,
3049 			"Cannot check clearing the rcv irq: %d\n", rv);
3050 		return;
3051 	}
3052 
3053 	if (rv) {
3054 		/*
3055 		 * An error when setting the event buffer bit means
3056 		 * clearing the bit is not supported.
3057 		 */
3058 		dev_warn(smi_info->dev,
3059 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3060 		smi_info->cannot_disable_irq = true;
3061 	}
3062 }
3063 
3064 /*
3065  * Some BMCs do not support setting the interrupt bits in the global
3066  * enables even if they support interrupts.  Clearly bad, but we can
3067  * compensate.
3068  */
3069 static void check_set_rcv_irq(struct smi_info *smi_info)
3070 {
3071 	u8 enables = 0;
3072 	int rv;
3073 
3074 	if (!smi_info->irq)
3075 		return;
3076 
3077 	rv = get_global_enables(smi_info, &enables);
3078 	if (!rv) {
3079 		enables |= IPMI_BMC_RCV_MSG_INTR;
3080 		rv = set_global_enables(smi_info, enables);
3081 	}
3082 
3083 	if (rv < 0) {
3084 		dev_err(smi_info->dev,
3085 			"Cannot check setting the rcv irq: %d\n", rv);
3086 		return;
3087 	}
3088 
3089 	if (rv) {
3090 		/*
3091 		 * An error when setting the event buffer bit means
3092 		 * setting the bit is not supported.
3093 		 */
3094 		dev_warn(smi_info->dev,
3095 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3096 		smi_info->cannot_disable_irq = true;
3097 		smi_info->irq_enable_broken = true;
3098 	}
3099 }
3100 
3101 static int try_enable_event_buffer(struct smi_info *smi_info)
3102 {
3103 	unsigned char         msg[3];
3104 	unsigned char         *resp;
3105 	unsigned long         resp_len;
3106 	int                   rv = 0;
3107 
3108 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3109 	if (!resp)
3110 		return -ENOMEM;
3111 
3112 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3113 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3114 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3115 
3116 	rv = wait_for_msg_done(smi_info);
3117 	if (rv) {
3118 		pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3119 		goto out;
3120 	}
3121 
3122 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3123 						  resp, IPMI_MAX_MSG_LENGTH);
3124 
3125 	if (resp_len < 4 ||
3126 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3127 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3128 			resp[2] != 0) {
3129 		pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3130 		rv = -EINVAL;
3131 		goto out;
3132 	}
3133 
3134 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3135 		/* buffer is already enabled, nothing to do. */
3136 		smi_info->supports_event_msg_buff = true;
3137 		goto out;
3138 	}
3139 
3140 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3141 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3142 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3143 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3144 
3145 	rv = wait_for_msg_done(smi_info);
3146 	if (rv) {
3147 		pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3148 		goto out;
3149 	}
3150 
3151 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3152 						  resp, IPMI_MAX_MSG_LENGTH);
3153 
3154 	if (resp_len < 3 ||
3155 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3156 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3157 		pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3158 		rv = -EINVAL;
3159 		goto out;
3160 	}
3161 
3162 	if (resp[2] != 0)
3163 		/*
3164 		 * An error when setting the event buffer bit means
3165 		 * that the event buffer is not supported.
3166 		 */
3167 		rv = -ENOENT;
3168 	else
3169 		smi_info->supports_event_msg_buff = true;
3170 
3171 out:
3172 	kfree(resp);
3173 	return rv;
3174 }
3175 
3176 static int smi_type_proc_show(struct seq_file *m, void *v)
3177 {
3178 	struct smi_info *smi = m->private;
3179 
3180 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3181 
3182 	return 0;
3183 }
3184 
3185 static int smi_type_proc_open(struct inode *inode, struct file *file)
3186 {
3187 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3188 }
3189 
3190 static const struct file_operations smi_type_proc_ops = {
3191 	.open		= smi_type_proc_open,
3192 	.read		= seq_read,
3193 	.llseek		= seq_lseek,
3194 	.release	= single_release,
3195 };
3196 
3197 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3198 {
3199 	struct smi_info *smi = m->private;
3200 
3201 	seq_printf(m, "interrupts_enabled:    %d\n",
3202 		       smi->irq && !smi->interrupt_disabled);
3203 	seq_printf(m, "short_timeouts:        %u\n",
3204 		       smi_get_stat(smi, short_timeouts));
3205 	seq_printf(m, "long_timeouts:         %u\n",
3206 		       smi_get_stat(smi, long_timeouts));
3207 	seq_printf(m, "idles:                 %u\n",
3208 		       smi_get_stat(smi, idles));
3209 	seq_printf(m, "interrupts:            %u\n",
3210 		       smi_get_stat(smi, interrupts));
3211 	seq_printf(m, "attentions:            %u\n",
3212 		       smi_get_stat(smi, attentions));
3213 	seq_printf(m, "flag_fetches:          %u\n",
3214 		       smi_get_stat(smi, flag_fetches));
3215 	seq_printf(m, "hosed_count:           %u\n",
3216 		       smi_get_stat(smi, hosed_count));
3217 	seq_printf(m, "complete_transactions: %u\n",
3218 		       smi_get_stat(smi, complete_transactions));
3219 	seq_printf(m, "events:                %u\n",
3220 		       smi_get_stat(smi, events));
3221 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3222 		       smi_get_stat(smi, watchdog_pretimeouts));
3223 	seq_printf(m, "incoming_messages:     %u\n",
3224 		       smi_get_stat(smi, incoming_messages));
3225 	return 0;
3226 }
3227 
3228 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3229 {
3230 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3231 }
3232 
3233 static const struct file_operations smi_si_stats_proc_ops = {
3234 	.open		= smi_si_stats_proc_open,
3235 	.read		= seq_read,
3236 	.llseek		= seq_lseek,
3237 	.release	= single_release,
3238 };
3239 
3240 static int smi_params_proc_show(struct seq_file *m, void *v)
3241 {
3242 	struct smi_info *smi = m->private;
3243 
3244 	seq_printf(m,
3245 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3246 		   si_to_str[smi->si_type],
3247 		   addr_space_to_str[smi->io.addr_type],
3248 		   smi->io.addr_data,
3249 		   smi->io.regspacing,
3250 		   smi->io.regsize,
3251 		   smi->io.regshift,
3252 		   smi->irq,
3253 		   smi->slave_addr);
3254 
3255 	return 0;
3256 }
3257 
3258 static int smi_params_proc_open(struct inode *inode, struct file *file)
3259 {
3260 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3261 }
3262 
3263 static const struct file_operations smi_params_proc_ops = {
3264 	.open		= smi_params_proc_open,
3265 	.read		= seq_read,
3266 	.llseek		= seq_lseek,
3267 	.release	= single_release,
3268 };
3269 
3270 /*
3271  * oem_data_avail_to_receive_msg_avail
3272  * @info - smi_info structure with msg_flags set
3273  *
3274  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3275  * Returns 1 indicating need to re-run handle_flags().
3276  */
3277 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3278 {
3279 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3280 			       RECEIVE_MSG_AVAIL);
3281 	return 1;
3282 }
3283 
3284 /*
3285  * setup_dell_poweredge_oem_data_handler
3286  * @info - smi_info.device_id must be populated
3287  *
3288  * Systems that match, but have firmware version < 1.40 may assert
3289  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3290  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3291  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3292  * as RECEIVE_MSG_AVAIL instead.
3293  *
3294  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3295  * assert the OEM[012] bits, and if it did, the driver would have to
3296  * change to handle that properly, we don't actually check for the
3297  * firmware version.
3298  * Device ID = 0x20                BMC on PowerEdge 8G servers
3299  * Device Revision = 0x80
3300  * Firmware Revision1 = 0x01       BMC version 1.40
3301  * Firmware Revision2 = 0x40       BCD encoded
3302  * IPMI Version = 0x51             IPMI 1.5
3303  * Manufacturer ID = A2 02 00      Dell IANA
3304  *
3305  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3306  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3307  *
3308  */
3309 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3310 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3311 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3312 #define DELL_IANA_MFR_ID 0x0002a2
3313 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3314 {
3315 	struct ipmi_device_id *id = &smi_info->device_id;
3316 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3317 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3318 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3319 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3320 			smi_info->oem_data_avail_handler =
3321 				oem_data_avail_to_receive_msg_avail;
3322 		} else if (ipmi_version_major(id) < 1 ||
3323 			   (ipmi_version_major(id) == 1 &&
3324 			    ipmi_version_minor(id) < 5)) {
3325 			smi_info->oem_data_avail_handler =
3326 				oem_data_avail_to_receive_msg_avail;
3327 		}
3328 	}
3329 }
3330 
3331 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3332 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3333 {
3334 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3335 
3336 	/* Make it a response */
3337 	msg->rsp[0] = msg->data[0] | 4;
3338 	msg->rsp[1] = msg->data[1];
3339 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3340 	msg->rsp_size = 3;
3341 	smi_info->curr_msg = NULL;
3342 	deliver_recv_msg(smi_info, msg);
3343 }
3344 
3345 /*
3346  * dell_poweredge_bt_xaction_handler
3347  * @info - smi_info.device_id must be populated
3348  *
3349  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3350  * not respond to a Get SDR command if the length of the data
3351  * requested is exactly 0x3A, which leads to command timeouts and no
3352  * data returned.  This intercepts such commands, and causes userspace
3353  * callers to try again with a different-sized buffer, which succeeds.
3354  */
3355 
3356 #define STORAGE_NETFN 0x0A
3357 #define STORAGE_CMD_GET_SDR 0x23
3358 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3359 					     unsigned long unused,
3360 					     void *in)
3361 {
3362 	struct smi_info *smi_info = in;
3363 	unsigned char *data = smi_info->curr_msg->data;
3364 	unsigned int size   = smi_info->curr_msg->data_size;
3365 	if (size >= 8 &&
3366 	    (data[0]>>2) == STORAGE_NETFN &&
3367 	    data[1] == STORAGE_CMD_GET_SDR &&
3368 	    data[7] == 0x3A) {
3369 		return_hosed_msg_badsize(smi_info);
3370 		return NOTIFY_STOP;
3371 	}
3372 	return NOTIFY_DONE;
3373 }
3374 
3375 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3376 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3377 };
3378 
3379 /*
3380  * setup_dell_poweredge_bt_xaction_handler
3381  * @info - smi_info.device_id must be filled in already
3382  *
3383  * Fills in smi_info.device_id.start_transaction_pre_hook
3384  * when we know what function to use there.
3385  */
3386 static void
3387 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3388 {
3389 	struct ipmi_device_id *id = &smi_info->device_id;
3390 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3391 	    smi_info->si_type == SI_BT)
3392 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3393 }
3394 
3395 /*
3396  * setup_oem_data_handler
3397  * @info - smi_info.device_id must be filled in already
3398  *
3399  * Fills in smi_info.device_id.oem_data_available_handler
3400  * when we know what function to use there.
3401  */
3402 
3403 static void setup_oem_data_handler(struct smi_info *smi_info)
3404 {
3405 	setup_dell_poweredge_oem_data_handler(smi_info);
3406 }
3407 
3408 static void setup_xaction_handlers(struct smi_info *smi_info)
3409 {
3410 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3411 }
3412 
3413 static void check_for_broken_irqs(struct smi_info *smi_info)
3414 {
3415 	check_clr_rcv_irq(smi_info);
3416 	check_set_rcv_irq(smi_info);
3417 }
3418 
3419 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3420 {
3421 	if (smi_info->thread != NULL)
3422 		kthread_stop(smi_info->thread);
3423 	if (smi_info->timer_running)
3424 		del_timer_sync(&smi_info->si_timer);
3425 }
3426 
3427 static int is_new_interface(struct smi_info *info)
3428 {
3429 	struct smi_info *e;
3430 
3431 	list_for_each_entry(e, &smi_infos, link) {
3432 		if (e->io.addr_type != info->io.addr_type)
3433 			continue;
3434 		if (e->io.addr_data == info->io.addr_data) {
3435 			/*
3436 			 * This is a cheap hack, ACPI doesn't have a defined
3437 			 * slave address but SMBIOS does.  Pick it up from
3438 			 * any source that has it available.
3439 			 */
3440 			if (info->slave_addr && !e->slave_addr)
3441 				e->slave_addr = info->slave_addr;
3442 			return 0;
3443 		}
3444 	}
3445 
3446 	return 1;
3447 }
3448 
3449 static int add_smi(struct smi_info *new_smi)
3450 {
3451 	int rv = 0;
3452 
3453 	mutex_lock(&smi_infos_lock);
3454 	if (!is_new_interface(new_smi)) {
3455 		pr_info(PFX "%s-specified %s state machine: duplicate\n",
3456 			ipmi_addr_src_to_str(new_smi->addr_source),
3457 			si_to_str[new_smi->si_type]);
3458 		rv = -EBUSY;
3459 		goto out_err;
3460 	}
3461 
3462 	pr_info(PFX "Adding %s-specified %s state machine\n",
3463 		ipmi_addr_src_to_str(new_smi->addr_source),
3464 		si_to_str[new_smi->si_type]);
3465 
3466 	/* So we know not to free it unless we have allocated one. */
3467 	new_smi->intf = NULL;
3468 	new_smi->si_sm = NULL;
3469 	new_smi->handlers = NULL;
3470 
3471 	list_add_tail(&new_smi->link, &smi_infos);
3472 
3473 out_err:
3474 	mutex_unlock(&smi_infos_lock);
3475 	return rv;
3476 }
3477 
3478 /*
3479  * Try to start up an interface.  Must be called with smi_infos_lock
3480  * held, primarily to keep smi_num consistent, we only one to do these
3481  * one at a time.
3482  */
3483 static int try_smi_init(struct smi_info *new_smi)
3484 {
3485 	int rv = 0;
3486 	int i;
3487 	char *init_name = NULL;
3488 
3489 	pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3490 		ipmi_addr_src_to_str(new_smi->addr_source),
3491 		si_to_str[new_smi->si_type],
3492 		addr_space_to_str[new_smi->io.addr_type],
3493 		new_smi->io.addr_data,
3494 		new_smi->slave_addr, new_smi->irq);
3495 
3496 	switch (new_smi->si_type) {
3497 	case SI_KCS:
3498 		new_smi->handlers = &kcs_smi_handlers;
3499 		break;
3500 
3501 	case SI_SMIC:
3502 		new_smi->handlers = &smic_smi_handlers;
3503 		break;
3504 
3505 	case SI_BT:
3506 		new_smi->handlers = &bt_smi_handlers;
3507 		break;
3508 
3509 	default:
3510 		/* No support for anything else yet. */
3511 		rv = -EIO;
3512 		goto out_err;
3513 	}
3514 
3515 	new_smi->intf_num = smi_num;
3516 
3517 	/* Do this early so it's available for logs. */
3518 	if (!new_smi->dev) {
3519 		init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3520 				      new_smi->intf_num);
3521 
3522 		/*
3523 		 * If we don't already have a device from something
3524 		 * else (like PCI), then register a new one.
3525 		 */
3526 		new_smi->pdev = platform_device_alloc("ipmi_si",
3527 						      new_smi->intf_num);
3528 		if (!new_smi->pdev) {
3529 			pr_err(PFX "Unable to allocate platform device\n");
3530 			goto out_err;
3531 		}
3532 		new_smi->dev = &new_smi->pdev->dev;
3533 		new_smi->dev->driver = &ipmi_driver.driver;
3534 		/* Nulled by device_add() */
3535 		new_smi->dev->init_name = init_name;
3536 	}
3537 
3538 	/* Allocate the state machine's data and initialize it. */
3539 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3540 	if (!new_smi->si_sm) {
3541 		pr_err(PFX "Could not allocate state machine memory\n");
3542 		rv = -ENOMEM;
3543 		goto out_err;
3544 	}
3545 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3546 							&new_smi->io);
3547 
3548 	/* Now that we know the I/O size, we can set up the I/O. */
3549 	rv = new_smi->io_setup(new_smi);
3550 	if (rv) {
3551 		dev_err(new_smi->dev, "Could not set up I/O space\n");
3552 		goto out_err;
3553 	}
3554 
3555 	/* Do low-level detection first. */
3556 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3557 		if (new_smi->addr_source)
3558 			dev_err(new_smi->dev, "Interface detection failed\n");
3559 		rv = -ENODEV;
3560 		goto out_err;
3561 	}
3562 
3563 	/*
3564 	 * Attempt a get device id command.  If it fails, we probably
3565 	 * don't have a BMC here.
3566 	 */
3567 	rv = try_get_dev_id(new_smi);
3568 	if (rv) {
3569 		if (new_smi->addr_source)
3570 			dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3571 		goto out_err;
3572 	}
3573 
3574 	setup_oem_data_handler(new_smi);
3575 	setup_xaction_handlers(new_smi);
3576 	check_for_broken_irqs(new_smi);
3577 
3578 	new_smi->waiting_msg = NULL;
3579 	new_smi->curr_msg = NULL;
3580 	atomic_set(&new_smi->req_events, 0);
3581 	new_smi->run_to_completion = false;
3582 	for (i = 0; i < SI_NUM_STATS; i++)
3583 		atomic_set(&new_smi->stats[i], 0);
3584 
3585 	new_smi->interrupt_disabled = true;
3586 	atomic_set(&new_smi->need_watch, 0);
3587 
3588 	rv = try_enable_event_buffer(new_smi);
3589 	if (rv == 0)
3590 		new_smi->has_event_buffer = true;
3591 
3592 	/*
3593 	 * Start clearing the flags before we enable interrupts or the
3594 	 * timer to avoid racing with the timer.
3595 	 */
3596 	start_clear_flags(new_smi, false);
3597 
3598 	/*
3599 	 * IRQ is defined to be set when non-zero.  req_events will
3600 	 * cause a global flags check that will enable interrupts.
3601 	 */
3602 	if (new_smi->irq) {
3603 		new_smi->interrupt_disabled = false;
3604 		atomic_set(&new_smi->req_events, 1);
3605 	}
3606 
3607 	if (new_smi->pdev) {
3608 		rv = platform_device_add(new_smi->pdev);
3609 		if (rv) {
3610 			dev_err(new_smi->dev,
3611 				"Unable to register system interface device: %d\n",
3612 				rv);
3613 			goto out_err;
3614 		}
3615 		new_smi->dev_registered = true;
3616 	}
3617 
3618 	rv = ipmi_register_smi(&handlers,
3619 			       new_smi,
3620 			       &new_smi->device_id,
3621 			       new_smi->dev,
3622 			       new_smi->slave_addr);
3623 	if (rv) {
3624 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3625 			rv);
3626 		goto out_err_stop_timer;
3627 	}
3628 
3629 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3630 				     &smi_type_proc_ops,
3631 				     new_smi);
3632 	if (rv) {
3633 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3634 		goto out_err_stop_timer;
3635 	}
3636 
3637 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3638 				     &smi_si_stats_proc_ops,
3639 				     new_smi);
3640 	if (rv) {
3641 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3642 		goto out_err_stop_timer;
3643 	}
3644 
3645 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3646 				     &smi_params_proc_ops,
3647 				     new_smi);
3648 	if (rv) {
3649 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3650 		goto out_err_stop_timer;
3651 	}
3652 
3653 	/* Don't increment till we know we have succeeded. */
3654 	smi_num++;
3655 
3656 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3657 		 si_to_str[new_smi->si_type]);
3658 
3659 	WARN_ON(new_smi->dev->init_name != NULL);
3660 	kfree(init_name);
3661 
3662 	return 0;
3663 
3664 out_err_stop_timer:
3665 	wait_for_timer_and_thread(new_smi);
3666 
3667 out_err:
3668 	new_smi->interrupt_disabled = true;
3669 
3670 	if (new_smi->intf) {
3671 		ipmi_smi_t intf = new_smi->intf;
3672 		new_smi->intf = NULL;
3673 		ipmi_unregister_smi(intf);
3674 	}
3675 
3676 	if (new_smi->irq_cleanup) {
3677 		new_smi->irq_cleanup(new_smi);
3678 		new_smi->irq_cleanup = NULL;
3679 	}
3680 
3681 	/*
3682 	 * Wait until we know that we are out of any interrupt
3683 	 * handlers might have been running before we freed the
3684 	 * interrupt.
3685 	 */
3686 	synchronize_sched();
3687 
3688 	if (new_smi->si_sm) {
3689 		if (new_smi->handlers)
3690 			new_smi->handlers->cleanup(new_smi->si_sm);
3691 		kfree(new_smi->si_sm);
3692 		new_smi->si_sm = NULL;
3693 	}
3694 	if (new_smi->addr_source_cleanup) {
3695 		new_smi->addr_source_cleanup(new_smi);
3696 		new_smi->addr_source_cleanup = NULL;
3697 	}
3698 	if (new_smi->io_cleanup) {
3699 		new_smi->io_cleanup(new_smi);
3700 		new_smi->io_cleanup = NULL;
3701 	}
3702 
3703 	if (new_smi->dev_registered) {
3704 		platform_device_unregister(new_smi->pdev);
3705 		new_smi->dev_registered = false;
3706 		new_smi->pdev = NULL;
3707 	} else if (new_smi->pdev) {
3708 		platform_device_put(new_smi->pdev);
3709 		new_smi->pdev = NULL;
3710 	}
3711 
3712 	kfree(init_name);
3713 
3714 	return rv;
3715 }
3716 
3717 static int init_ipmi_si(void)
3718 {
3719 	int  i;
3720 	char *str;
3721 	int  rv;
3722 	struct smi_info *e;
3723 	enum ipmi_addr_src type = SI_INVALID;
3724 
3725 	if (initialized)
3726 		return 0;
3727 	initialized = 1;
3728 
3729 	if (si_tryplatform) {
3730 		rv = platform_driver_register(&ipmi_driver);
3731 		if (rv) {
3732 			pr_err(PFX "Unable to register driver: %d\n", rv);
3733 			return rv;
3734 		}
3735 	}
3736 
3737 	/* Parse out the si_type string into its components. */
3738 	str = si_type_str;
3739 	if (*str != '\0') {
3740 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3741 			si_type[i] = str;
3742 			str = strchr(str, ',');
3743 			if (str) {
3744 				*str = '\0';
3745 				str++;
3746 			} else {
3747 				break;
3748 			}
3749 		}
3750 	}
3751 
3752 	pr_info("IPMI System Interface driver.\n");
3753 
3754 	/* If the user gave us a device, they presumably want us to use it */
3755 	if (!hardcode_find_bmc())
3756 		return 0;
3757 
3758 #ifdef CONFIG_PCI
3759 	if (si_trypci) {
3760 		rv = pci_register_driver(&ipmi_pci_driver);
3761 		if (rv)
3762 			pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3763 		else
3764 			pci_registered = true;
3765 	}
3766 #endif
3767 
3768 #ifdef CONFIG_ACPI
3769 	if (si_tryacpi)
3770 		spmi_find_bmc();
3771 #endif
3772 
3773 #ifdef CONFIG_PARISC
3774 	register_parisc_driver(&ipmi_parisc_driver);
3775 	parisc_registered = true;
3776 #endif
3777 
3778 	/* We prefer devices with interrupts, but in the case of a machine
3779 	   with multiple BMCs we assume that there will be several instances
3780 	   of a given type so if we succeed in registering a type then also
3781 	   try to register everything else of the same type */
3782 
3783 	mutex_lock(&smi_infos_lock);
3784 	list_for_each_entry(e, &smi_infos, link) {
3785 		/* Try to register a device if it has an IRQ and we either
3786 		   haven't successfully registered a device yet or this
3787 		   device has the same type as one we successfully registered */
3788 		if (e->irq && (!type || e->addr_source == type)) {
3789 			if (!try_smi_init(e)) {
3790 				type = e->addr_source;
3791 			}
3792 		}
3793 	}
3794 
3795 	/* type will only have been set if we successfully registered an si */
3796 	if (type) {
3797 		mutex_unlock(&smi_infos_lock);
3798 		return 0;
3799 	}
3800 
3801 	/* Fall back to the preferred device */
3802 
3803 	list_for_each_entry(e, &smi_infos, link) {
3804 		if (!e->irq && (!type || e->addr_source == type)) {
3805 			if (!try_smi_init(e)) {
3806 				type = e->addr_source;
3807 			}
3808 		}
3809 	}
3810 	mutex_unlock(&smi_infos_lock);
3811 
3812 	if (type)
3813 		return 0;
3814 
3815 	mutex_lock(&smi_infos_lock);
3816 	if (unload_when_empty && list_empty(&smi_infos)) {
3817 		mutex_unlock(&smi_infos_lock);
3818 		cleanup_ipmi_si();
3819 		pr_warn(PFX "Unable to find any System Interface(s)\n");
3820 		return -ENODEV;
3821 	} else {
3822 		mutex_unlock(&smi_infos_lock);
3823 		return 0;
3824 	}
3825 }
3826 module_init(init_ipmi_si);
3827 
3828 static void cleanup_one_si(struct smi_info *to_clean)
3829 {
3830 	int           rv = 0;
3831 
3832 	if (!to_clean)
3833 		return;
3834 
3835 	if (to_clean->intf) {
3836 		ipmi_smi_t intf = to_clean->intf;
3837 
3838 		to_clean->intf = NULL;
3839 		rv = ipmi_unregister_smi(intf);
3840 		if (rv) {
3841 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3842 			       rv);
3843 		}
3844 	}
3845 
3846 	if (to_clean->dev)
3847 		dev_set_drvdata(to_clean->dev, NULL);
3848 
3849 	list_del(&to_clean->link);
3850 
3851 	/*
3852 	 * Make sure that interrupts, the timer and the thread are
3853 	 * stopped and will not run again.
3854 	 */
3855 	if (to_clean->irq_cleanup)
3856 		to_clean->irq_cleanup(to_clean);
3857 	wait_for_timer_and_thread(to_clean);
3858 
3859 	/*
3860 	 * Timeouts are stopped, now make sure the interrupts are off
3861 	 * in the BMC.  Note that timers and CPU interrupts are off,
3862 	 * so no need for locks.
3863 	 */
3864 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3865 		poll(to_clean);
3866 		schedule_timeout_uninterruptible(1);
3867 	}
3868 	disable_si_irq(to_clean, false);
3869 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3870 		poll(to_clean);
3871 		schedule_timeout_uninterruptible(1);
3872 	}
3873 
3874 	if (to_clean->handlers)
3875 		to_clean->handlers->cleanup(to_clean->si_sm);
3876 
3877 	kfree(to_clean->si_sm);
3878 
3879 	if (to_clean->addr_source_cleanup)
3880 		to_clean->addr_source_cleanup(to_clean);
3881 	if (to_clean->io_cleanup)
3882 		to_clean->io_cleanup(to_clean);
3883 
3884 	if (to_clean->dev_registered)
3885 		platform_device_unregister(to_clean->pdev);
3886 
3887 	kfree(to_clean);
3888 }
3889 
3890 static void cleanup_ipmi_si(void)
3891 {
3892 	struct smi_info *e, *tmp_e;
3893 
3894 	if (!initialized)
3895 		return;
3896 
3897 #ifdef CONFIG_PCI
3898 	if (pci_registered)
3899 		pci_unregister_driver(&ipmi_pci_driver);
3900 #endif
3901 #ifdef CONFIG_PARISC
3902 	if (parisc_registered)
3903 		unregister_parisc_driver(&ipmi_parisc_driver);
3904 #endif
3905 
3906 	platform_driver_unregister(&ipmi_driver);
3907 
3908 	mutex_lock(&smi_infos_lock);
3909 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3910 		cleanup_one_si(e);
3911 	mutex_unlock(&smi_infos_lock);
3912 }
3913 module_exit(cleanup_ipmi_si);
3914 
3915 MODULE_ALIAS("platform:dmi-ipmi-si");
3916 MODULE_LICENSE("GPL");
3917 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3918 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3919 		   " system interfaces.");
3920