xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision d2999e1b)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
96 	SI_GETTING_MESSAGES,
97 	SI_ENABLE_INTERRUPTS1,
98 	SI_ENABLE_INTERRUPTS2,
99 	SI_DISABLE_INTERRUPTS1,
100 	SI_DISABLE_INTERRUPTS2
101 	/* FIXME - add watchdog stuff. */
102 };
103 
104 /* Some BT-specific defines we need here. */
105 #define IPMI_BT_INTMASK_REG		2
106 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
107 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
108 
109 enum si_type {
110     SI_KCS, SI_SMIC, SI_BT
111 };
112 static char *si_to_str[] = { "kcs", "smic", "bt" };
113 
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 					"ACPI", "SMBIOS", "PCI",
116 					"device-tree", "default" };
117 
118 #define DEVICE_NAME "ipmi_si"
119 
120 static struct platform_driver ipmi_driver;
121 
122 /*
123  * Indexes into stats[] in smi_info below.
124  */
125 enum si_stat_indexes {
126 	/*
127 	 * Number of times the driver requested a timer while an operation
128 	 * was in progress.
129 	 */
130 	SI_STAT_short_timeouts = 0,
131 
132 	/*
133 	 * Number of times the driver requested a timer while nothing was in
134 	 * progress.
135 	 */
136 	SI_STAT_long_timeouts,
137 
138 	/* Number of times the interface was idle while being polled. */
139 	SI_STAT_idles,
140 
141 	/* Number of interrupts the driver handled. */
142 	SI_STAT_interrupts,
143 
144 	/* Number of time the driver got an ATTN from the hardware. */
145 	SI_STAT_attentions,
146 
147 	/* Number of times the driver requested flags from the hardware. */
148 	SI_STAT_flag_fetches,
149 
150 	/* Number of times the hardware didn't follow the state machine. */
151 	SI_STAT_hosed_count,
152 
153 	/* Number of completed messages. */
154 	SI_STAT_complete_transactions,
155 
156 	/* Number of IPMI events received from the hardware. */
157 	SI_STAT_events,
158 
159 	/* Number of watchdog pretimeouts. */
160 	SI_STAT_watchdog_pretimeouts,
161 
162 	/* Number of asynchronous messages received. */
163 	SI_STAT_incoming_messages,
164 
165 
166 	/* This *must* remain last, add new values above this. */
167 	SI_NUM_STATS
168 };
169 
170 struct smi_info {
171 	int                    intf_num;
172 	ipmi_smi_t             intf;
173 	struct si_sm_data      *si_sm;
174 	struct si_sm_handlers  *handlers;
175 	enum si_type           si_type;
176 	spinlock_t             si_lock;
177 	struct list_head       xmit_msgs;
178 	struct list_head       hp_xmit_msgs;
179 	struct ipmi_smi_msg    *curr_msg;
180 	enum si_intf_state     si_state;
181 
182 	/*
183 	 * Used to handle the various types of I/O that can occur with
184 	 * IPMI
185 	 */
186 	struct si_sm_io io;
187 	int (*io_setup)(struct smi_info *info);
188 	void (*io_cleanup)(struct smi_info *info);
189 	int (*irq_setup)(struct smi_info *info);
190 	void (*irq_cleanup)(struct smi_info *info);
191 	unsigned int io_size;
192 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
193 	void (*addr_source_cleanup)(struct smi_info *info);
194 	void *addr_source_data;
195 
196 	/*
197 	 * Per-OEM handler, called from handle_flags().  Returns 1
198 	 * when handle_flags() needs to be re-run or 0 indicating it
199 	 * set si_state itself.
200 	 */
201 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
202 
203 	/*
204 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
205 	 * is set to hold the flags until we are done handling everything
206 	 * from the flags.
207 	 */
208 #define RECEIVE_MSG_AVAIL	0x01
209 #define EVENT_MSG_BUFFER_FULL	0x02
210 #define WDT_PRE_TIMEOUT_INT	0x08
211 #define OEM0_DATA_AVAIL     0x20
212 #define OEM1_DATA_AVAIL     0x40
213 #define OEM2_DATA_AVAIL     0x80
214 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
215 			     OEM1_DATA_AVAIL | \
216 			     OEM2_DATA_AVAIL)
217 	unsigned char       msg_flags;
218 
219 	/* Does the BMC have an event buffer? */
220 	bool		    has_event_buffer;
221 
222 	/*
223 	 * If set to true, this will request events the next time the
224 	 * state machine is idle.
225 	 */
226 	atomic_t            req_events;
227 
228 	/*
229 	 * If true, run the state machine to completion on every send
230 	 * call.  Generally used after a panic to make sure stuff goes
231 	 * out.
232 	 */
233 	bool                run_to_completion;
234 
235 	/* The I/O port of an SI interface. */
236 	int                 port;
237 
238 	/*
239 	 * The space between start addresses of the two ports.  For
240 	 * instance, if the first port is 0xca2 and the spacing is 4, then
241 	 * the second port is 0xca6.
242 	 */
243 	unsigned int        spacing;
244 
245 	/* zero if no irq; */
246 	int                 irq;
247 
248 	/* The timer for this si. */
249 	struct timer_list   si_timer;
250 
251 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
252 	bool		    timer_running;
253 
254 	/* The time (in jiffies) the last timeout occurred at. */
255 	unsigned long       last_timeout_jiffies;
256 
257 	/* Used to gracefully stop the timer without race conditions. */
258 	atomic_t            stop_operation;
259 
260 	/* Are we waiting for the events, pretimeouts, received msgs? */
261 	atomic_t            need_watch;
262 
263 	/*
264 	 * The driver will disable interrupts when it gets into a
265 	 * situation where it cannot handle messages due to lack of
266 	 * memory.  Once that situation clears up, it will re-enable
267 	 * interrupts.
268 	 */
269 	bool interrupt_disabled;
270 
271 	/* From the get device id response... */
272 	struct ipmi_device_id device_id;
273 
274 	/* Driver model stuff. */
275 	struct device *dev;
276 	struct platform_device *pdev;
277 
278 	/*
279 	 * True if we allocated the device, false if it came from
280 	 * someplace else (like PCI).
281 	 */
282 	bool dev_registered;
283 
284 	/* Slave address, could be reported from DMI. */
285 	unsigned char slave_addr;
286 
287 	/* Counters and things for the proc filesystem. */
288 	atomic_t stats[SI_NUM_STATS];
289 
290 	struct task_struct *thread;
291 
292 	struct list_head link;
293 	union ipmi_smi_info_union addr_info;
294 };
295 
296 #define smi_inc_stat(smi, stat) \
297 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300 
301 #define SI_MAX_PARMS 4
302 
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static bool pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static bool pnp_registered;
310 #endif
311 #ifdef CONFIG_PARISC
312 static bool parisc_registered;
313 #endif
314 
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317 
318 static bool unload_when_empty = true;
319 
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 static void cleanup_ipmi_si(void);
324 
325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
326 static int register_xaction_notifier(struct notifier_block *nb)
327 {
328 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
329 }
330 
331 static void deliver_recv_msg(struct smi_info *smi_info,
332 			     struct ipmi_smi_msg *msg)
333 {
334 	/* Deliver the message to the upper layer. */
335 	ipmi_smi_msg_received(smi_info->intf, msg);
336 }
337 
338 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
339 {
340 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
341 
342 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
343 		cCode = IPMI_ERR_UNSPECIFIED;
344 	/* else use it as is */
345 
346 	/* Make it a response */
347 	msg->rsp[0] = msg->data[0] | 4;
348 	msg->rsp[1] = msg->data[1];
349 	msg->rsp[2] = cCode;
350 	msg->rsp_size = 3;
351 
352 	smi_info->curr_msg = NULL;
353 	deliver_recv_msg(smi_info, msg);
354 }
355 
356 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
357 {
358 	int              rv;
359 	struct list_head *entry = NULL;
360 #ifdef DEBUG_TIMING
361 	struct timeval t;
362 #endif
363 
364 	/* Pick the high priority queue first. */
365 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
366 		entry = smi_info->hp_xmit_msgs.next;
367 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
368 		entry = smi_info->xmit_msgs.next;
369 	}
370 
371 	if (!entry) {
372 		smi_info->curr_msg = NULL;
373 		rv = SI_SM_IDLE;
374 	} else {
375 		int err;
376 
377 		list_del(entry);
378 		smi_info->curr_msg = list_entry(entry,
379 						struct ipmi_smi_msg,
380 						link);
381 #ifdef DEBUG_TIMING
382 		do_gettimeofday(&t);
383 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
384 #endif
385 		err = atomic_notifier_call_chain(&xaction_notifier_list,
386 				0, smi_info);
387 		if (err & NOTIFY_STOP_MASK) {
388 			rv = SI_SM_CALL_WITHOUT_DELAY;
389 			goto out;
390 		}
391 		err = smi_info->handlers->start_transaction(
392 			smi_info->si_sm,
393 			smi_info->curr_msg->data,
394 			smi_info->curr_msg->data_size);
395 		if (err)
396 			return_hosed_msg(smi_info, err);
397 
398 		rv = SI_SM_CALL_WITHOUT_DELAY;
399 	}
400  out:
401 	return rv;
402 }
403 
404 static void start_enable_irq(struct smi_info *smi_info)
405 {
406 	unsigned char msg[2];
407 
408 	/*
409 	 * If we are enabling interrupts, we have to tell the
410 	 * BMC to use them.
411 	 */
412 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
413 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
414 
415 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
416 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
417 }
418 
419 static void start_disable_irq(struct smi_info *smi_info)
420 {
421 	unsigned char msg[2];
422 
423 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
425 
426 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
427 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
428 }
429 
430 static void start_clear_flags(struct smi_info *smi_info)
431 {
432 	unsigned char msg[3];
433 
434 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
435 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
436 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
437 	msg[2] = WDT_PRE_TIMEOUT_INT;
438 
439 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
440 	smi_info->si_state = SI_CLEARING_FLAGS;
441 }
442 
443 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
444 {
445 	smi_info->last_timeout_jiffies = jiffies;
446 	mod_timer(&smi_info->si_timer, new_val);
447 	smi_info->timer_running = true;
448 }
449 
450 /*
451  * When we have a situtaion where we run out of memory and cannot
452  * allocate messages, we just leave them in the BMC and run the system
453  * polled until we can allocate some memory.  Once we have some
454  * memory, we will re-enable the interrupt.
455  */
456 static inline void disable_si_irq(struct smi_info *smi_info)
457 {
458 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
459 		start_disable_irq(smi_info);
460 		smi_info->interrupt_disabled = true;
461 		if (!atomic_read(&smi_info->stop_operation))
462 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
463 	}
464 }
465 
466 static inline void enable_si_irq(struct smi_info *smi_info)
467 {
468 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
469 		start_enable_irq(smi_info);
470 		smi_info->interrupt_disabled = false;
471 	}
472 }
473 
474 static void handle_flags(struct smi_info *smi_info)
475 {
476  retry:
477 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
478 		/* Watchdog pre-timeout */
479 		smi_inc_stat(smi_info, watchdog_pretimeouts);
480 
481 		start_clear_flags(smi_info);
482 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
483 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
484 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
485 		/* Messages available. */
486 		smi_info->curr_msg = ipmi_alloc_smi_msg();
487 		if (!smi_info->curr_msg) {
488 			disable_si_irq(smi_info);
489 			smi_info->si_state = SI_NORMAL;
490 			return;
491 		}
492 		enable_si_irq(smi_info);
493 
494 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
496 		smi_info->curr_msg->data_size = 2;
497 
498 		smi_info->handlers->start_transaction(
499 			smi_info->si_sm,
500 			smi_info->curr_msg->data,
501 			smi_info->curr_msg->data_size);
502 		smi_info->si_state = SI_GETTING_MESSAGES;
503 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
504 		/* Events available. */
505 		smi_info->curr_msg = ipmi_alloc_smi_msg();
506 		if (!smi_info->curr_msg) {
507 			disable_si_irq(smi_info);
508 			smi_info->si_state = SI_NORMAL;
509 			return;
510 		}
511 		enable_si_irq(smi_info);
512 
513 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
514 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
515 		smi_info->curr_msg->data_size = 2;
516 
517 		smi_info->handlers->start_transaction(
518 			smi_info->si_sm,
519 			smi_info->curr_msg->data,
520 			smi_info->curr_msg->data_size);
521 		smi_info->si_state = SI_GETTING_EVENTS;
522 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
523 		   smi_info->oem_data_avail_handler) {
524 		if (smi_info->oem_data_avail_handler(smi_info))
525 			goto retry;
526 	} else
527 		smi_info->si_state = SI_NORMAL;
528 }
529 
530 static void handle_transaction_done(struct smi_info *smi_info)
531 {
532 	struct ipmi_smi_msg *msg;
533 #ifdef DEBUG_TIMING
534 	struct timeval t;
535 
536 	do_gettimeofday(&t);
537 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
538 #endif
539 	switch (smi_info->si_state) {
540 	case SI_NORMAL:
541 		if (!smi_info->curr_msg)
542 			break;
543 
544 		smi_info->curr_msg->rsp_size
545 			= smi_info->handlers->get_result(
546 				smi_info->si_sm,
547 				smi_info->curr_msg->rsp,
548 				IPMI_MAX_MSG_LENGTH);
549 
550 		/*
551 		 * Do this here becase deliver_recv_msg() releases the
552 		 * lock, and a new message can be put in during the
553 		 * time the lock is released.
554 		 */
555 		msg = smi_info->curr_msg;
556 		smi_info->curr_msg = NULL;
557 		deliver_recv_msg(smi_info, msg);
558 		break;
559 
560 	case SI_GETTING_FLAGS:
561 	{
562 		unsigned char msg[4];
563 		unsigned int  len;
564 
565 		/* We got the flags from the SMI, now handle them. */
566 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
567 		if (msg[2] != 0) {
568 			/* Error fetching flags, just give up for now. */
569 			smi_info->si_state = SI_NORMAL;
570 		} else if (len < 4) {
571 			/*
572 			 * Hmm, no flags.  That's technically illegal, but
573 			 * don't use uninitialized data.
574 			 */
575 			smi_info->si_state = SI_NORMAL;
576 		} else {
577 			smi_info->msg_flags = msg[3];
578 			handle_flags(smi_info);
579 		}
580 		break;
581 	}
582 
583 	case SI_CLEARING_FLAGS:
584 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
585 	{
586 		unsigned char msg[3];
587 
588 		/* We cleared the flags. */
589 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
590 		if (msg[2] != 0) {
591 			/* Error clearing flags */
592 			dev_warn(smi_info->dev,
593 				 "Error clearing flags: %2.2x\n", msg[2]);
594 		}
595 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
596 			start_enable_irq(smi_info);
597 		else
598 			smi_info->si_state = SI_NORMAL;
599 		break;
600 	}
601 
602 	case SI_GETTING_EVENTS:
603 	{
604 		smi_info->curr_msg->rsp_size
605 			= smi_info->handlers->get_result(
606 				smi_info->si_sm,
607 				smi_info->curr_msg->rsp,
608 				IPMI_MAX_MSG_LENGTH);
609 
610 		/*
611 		 * Do this here becase deliver_recv_msg() releases the
612 		 * lock, and a new message can be put in during the
613 		 * time the lock is released.
614 		 */
615 		msg = smi_info->curr_msg;
616 		smi_info->curr_msg = NULL;
617 		if (msg->rsp[2] != 0) {
618 			/* Error getting event, probably done. */
619 			msg->done(msg);
620 
621 			/* Take off the event flag. */
622 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 			handle_flags(smi_info);
624 		} else {
625 			smi_inc_stat(smi_info, events);
626 
627 			/*
628 			 * Do this before we deliver the message
629 			 * because delivering the message releases the
630 			 * lock and something else can mess with the
631 			 * state.
632 			 */
633 			handle_flags(smi_info);
634 
635 			deliver_recv_msg(smi_info, msg);
636 		}
637 		break;
638 	}
639 
640 	case SI_GETTING_MESSAGES:
641 	{
642 		smi_info->curr_msg->rsp_size
643 			= smi_info->handlers->get_result(
644 				smi_info->si_sm,
645 				smi_info->curr_msg->rsp,
646 				IPMI_MAX_MSG_LENGTH);
647 
648 		/*
649 		 * Do this here becase deliver_recv_msg() releases the
650 		 * lock, and a new message can be put in during the
651 		 * time the lock is released.
652 		 */
653 		msg = smi_info->curr_msg;
654 		smi_info->curr_msg = NULL;
655 		if (msg->rsp[2] != 0) {
656 			/* Error getting event, probably done. */
657 			msg->done(msg);
658 
659 			/* Take off the msg flag. */
660 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 			handle_flags(smi_info);
662 		} else {
663 			smi_inc_stat(smi_info, incoming_messages);
664 
665 			/*
666 			 * Do this before we deliver the message
667 			 * because delivering the message releases the
668 			 * lock and something else can mess with the
669 			 * state.
670 			 */
671 			handle_flags(smi_info);
672 
673 			deliver_recv_msg(smi_info, msg);
674 		}
675 		break;
676 	}
677 
678 	case SI_ENABLE_INTERRUPTS1:
679 	{
680 		unsigned char msg[4];
681 
682 		/* We got the flags from the SMI, now handle them. */
683 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
684 		if (msg[2] != 0) {
685 			dev_warn(smi_info->dev,
686 				 "Couldn't get irq info: %x.\n", msg[2]);
687 			dev_warn(smi_info->dev,
688 				 "Maybe ok, but ipmi might run very slowly.\n");
689 			smi_info->si_state = SI_NORMAL;
690 		} else {
691 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
692 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
693 			msg[2] = (msg[3] |
694 				  IPMI_BMC_RCV_MSG_INTR |
695 				  IPMI_BMC_EVT_MSG_INTR);
696 			smi_info->handlers->start_transaction(
697 				smi_info->si_sm, msg, 3);
698 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
699 		}
700 		break;
701 	}
702 
703 	case SI_ENABLE_INTERRUPTS2:
704 	{
705 		unsigned char msg[4];
706 
707 		/* We got the flags from the SMI, now handle them. */
708 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
709 		if (msg[2] != 0) {
710 			dev_warn(smi_info->dev,
711 				 "Couldn't set irq info: %x.\n", msg[2]);
712 			dev_warn(smi_info->dev,
713 				 "Maybe ok, but ipmi might run very slowly.\n");
714 		} else
715 			smi_info->interrupt_disabled = false;
716 		smi_info->si_state = SI_NORMAL;
717 		break;
718 	}
719 
720 	case SI_DISABLE_INTERRUPTS1:
721 	{
722 		unsigned char msg[4];
723 
724 		/* We got the flags from the SMI, now handle them. */
725 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
726 		if (msg[2] != 0) {
727 			dev_warn(smi_info->dev, "Could not disable interrupts"
728 				 ", failed get.\n");
729 			smi_info->si_state = SI_NORMAL;
730 		} else {
731 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
732 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
733 			msg[2] = (msg[3] &
734 				  ~(IPMI_BMC_RCV_MSG_INTR |
735 				    IPMI_BMC_EVT_MSG_INTR));
736 			smi_info->handlers->start_transaction(
737 				smi_info->si_sm, msg, 3);
738 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
739 		}
740 		break;
741 	}
742 
743 	case SI_DISABLE_INTERRUPTS2:
744 	{
745 		unsigned char msg[4];
746 
747 		/* We got the flags from the SMI, now handle them. */
748 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
749 		if (msg[2] != 0) {
750 			dev_warn(smi_info->dev, "Could not disable interrupts"
751 				 ", failed set.\n");
752 		}
753 		smi_info->si_state = SI_NORMAL;
754 		break;
755 	}
756 	}
757 }
758 
759 /*
760  * Called on timeouts and events.  Timeouts should pass the elapsed
761  * time, interrupts should pass in zero.  Must be called with
762  * si_lock held and interrupts disabled.
763  */
764 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
765 					   int time)
766 {
767 	enum si_sm_result si_sm_result;
768 
769  restart:
770 	/*
771 	 * There used to be a loop here that waited a little while
772 	 * (around 25us) before giving up.  That turned out to be
773 	 * pointless, the minimum delays I was seeing were in the 300us
774 	 * range, which is far too long to wait in an interrupt.  So
775 	 * we just run until the state machine tells us something
776 	 * happened or it needs a delay.
777 	 */
778 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
779 	time = 0;
780 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
781 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
782 
783 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
784 		smi_inc_stat(smi_info, complete_transactions);
785 
786 		handle_transaction_done(smi_info);
787 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788 	} else if (si_sm_result == SI_SM_HOSED) {
789 		smi_inc_stat(smi_info, hosed_count);
790 
791 		/*
792 		 * Do the before return_hosed_msg, because that
793 		 * releases the lock.
794 		 */
795 		smi_info->si_state = SI_NORMAL;
796 		if (smi_info->curr_msg != NULL) {
797 			/*
798 			 * If we were handling a user message, format
799 			 * a response to send to the upper layer to
800 			 * tell it about the error.
801 			 */
802 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
803 		}
804 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
805 	}
806 
807 	/*
808 	 * We prefer handling attn over new messages.  But don't do
809 	 * this if there is not yet an upper layer to handle anything.
810 	 */
811 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
812 		unsigned char msg[2];
813 
814 		smi_inc_stat(smi_info, attentions);
815 
816 		/*
817 		 * Got a attn, send down a get message flags to see
818 		 * what's causing it.  It would be better to handle
819 		 * this in the upper layer, but due to the way
820 		 * interrupts work with the SMI, that's not really
821 		 * possible.
822 		 */
823 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
824 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
825 
826 		smi_info->handlers->start_transaction(
827 			smi_info->si_sm, msg, 2);
828 		smi_info->si_state = SI_GETTING_FLAGS;
829 		goto restart;
830 	}
831 
832 	/* If we are currently idle, try to start the next message. */
833 	if (si_sm_result == SI_SM_IDLE) {
834 		smi_inc_stat(smi_info, idles);
835 
836 		si_sm_result = start_next_msg(smi_info);
837 		if (si_sm_result != SI_SM_IDLE)
838 			goto restart;
839 	}
840 
841 	if ((si_sm_result == SI_SM_IDLE)
842 	    && (atomic_read(&smi_info->req_events))) {
843 		/*
844 		 * We are idle and the upper layer requested that I fetch
845 		 * events, so do so.
846 		 */
847 		atomic_set(&smi_info->req_events, 0);
848 
849 		smi_info->curr_msg = ipmi_alloc_smi_msg();
850 		if (!smi_info->curr_msg)
851 			goto out;
852 
853 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
854 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
855 		smi_info->curr_msg->data_size = 2;
856 
857 		smi_info->handlers->start_transaction(
858 			smi_info->si_sm,
859 			smi_info->curr_msg->data,
860 			smi_info->curr_msg->data_size);
861 		smi_info->si_state = SI_GETTING_EVENTS;
862 		goto restart;
863 	}
864  out:
865 	return si_sm_result;
866 }
867 
868 static void check_start_timer_thread(struct smi_info *smi_info)
869 {
870 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
871 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
872 
873 		if (smi_info->thread)
874 			wake_up_process(smi_info->thread);
875 
876 		start_next_msg(smi_info);
877 		smi_event_handler(smi_info, 0);
878 	}
879 }
880 
881 static void sender(void                *send_info,
882 		   struct ipmi_smi_msg *msg,
883 		   int                 priority)
884 {
885 	struct smi_info   *smi_info = send_info;
886 	enum si_sm_result result;
887 	unsigned long     flags;
888 #ifdef DEBUG_TIMING
889 	struct timeval    t;
890 #endif
891 
892 	if (atomic_read(&smi_info->stop_operation)) {
893 		msg->rsp[0] = msg->data[0] | 4;
894 		msg->rsp[1] = msg->data[1];
895 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
896 		msg->rsp_size = 3;
897 		deliver_recv_msg(smi_info, msg);
898 		return;
899 	}
900 
901 #ifdef DEBUG_TIMING
902 	do_gettimeofday(&t);
903 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
904 #endif
905 
906 	if (smi_info->run_to_completion) {
907 		/*
908 		 * If we are running to completion, then throw it in
909 		 * the list and run transactions until everything is
910 		 * clear.  Priority doesn't matter here.
911 		 */
912 
913 		/*
914 		 * Run to completion means we are single-threaded, no
915 		 * need for locks.
916 		 */
917 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
918 
919 		result = smi_event_handler(smi_info, 0);
920 		while (result != SI_SM_IDLE) {
921 			udelay(SI_SHORT_TIMEOUT_USEC);
922 			result = smi_event_handler(smi_info,
923 						   SI_SHORT_TIMEOUT_USEC);
924 		}
925 		return;
926 	}
927 
928 	spin_lock_irqsave(&smi_info->si_lock, flags);
929 	if (priority > 0)
930 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
931 	else
932 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
933 
934 	check_start_timer_thread(smi_info);
935 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
936 }
937 
938 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
939 {
940 	struct smi_info   *smi_info = send_info;
941 	enum si_sm_result result;
942 
943 	smi_info->run_to_completion = i_run_to_completion;
944 	if (i_run_to_completion) {
945 		result = smi_event_handler(smi_info, 0);
946 		while (result != SI_SM_IDLE) {
947 			udelay(SI_SHORT_TIMEOUT_USEC);
948 			result = smi_event_handler(smi_info,
949 						   SI_SHORT_TIMEOUT_USEC);
950 		}
951 	}
952 }
953 
954 /*
955  * Use -1 in the nsec value of the busy waiting timespec to tell that
956  * we are spinning in kipmid looking for something and not delaying
957  * between checks
958  */
959 static inline void ipmi_si_set_not_busy(struct timespec *ts)
960 {
961 	ts->tv_nsec = -1;
962 }
963 static inline int ipmi_si_is_busy(struct timespec *ts)
964 {
965 	return ts->tv_nsec != -1;
966 }
967 
968 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
969 				 const struct smi_info *smi_info,
970 				 struct timespec *busy_until)
971 {
972 	unsigned int max_busy_us = 0;
973 
974 	if (smi_info->intf_num < num_max_busy_us)
975 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
976 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
977 		ipmi_si_set_not_busy(busy_until);
978 	else if (!ipmi_si_is_busy(busy_until)) {
979 		getnstimeofday(busy_until);
980 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
981 	} else {
982 		struct timespec now;
983 		getnstimeofday(&now);
984 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
985 			ipmi_si_set_not_busy(busy_until);
986 			return 0;
987 		}
988 	}
989 	return 1;
990 }
991 
992 
993 /*
994  * A busy-waiting loop for speeding up IPMI operation.
995  *
996  * Lousy hardware makes this hard.  This is only enabled for systems
997  * that are not BT and do not have interrupts.  It starts spinning
998  * when an operation is complete or until max_busy tells it to stop
999  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1000  * Documentation/IPMI.txt for details.
1001  */
1002 static int ipmi_thread(void *data)
1003 {
1004 	struct smi_info *smi_info = data;
1005 	unsigned long flags;
1006 	enum si_sm_result smi_result;
1007 	struct timespec busy_until;
1008 
1009 	ipmi_si_set_not_busy(&busy_until);
1010 	set_user_nice(current, MAX_NICE);
1011 	while (!kthread_should_stop()) {
1012 		int busy_wait;
1013 
1014 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1015 		smi_result = smi_event_handler(smi_info, 0);
1016 
1017 		/*
1018 		 * If the driver is doing something, there is a possible
1019 		 * race with the timer.  If the timer handler see idle,
1020 		 * and the thread here sees something else, the timer
1021 		 * handler won't restart the timer even though it is
1022 		 * required.  So start it here if necessary.
1023 		 */
1024 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1025 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1026 
1027 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1028 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1029 						  &busy_until);
1030 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1031 			; /* do nothing */
1032 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1033 			schedule();
1034 		else if (smi_result == SI_SM_IDLE) {
1035 			if (atomic_read(&smi_info->need_watch)) {
1036 				schedule_timeout_interruptible(100);
1037 			} else {
1038 				/* Wait to be woken up when we are needed. */
1039 				__set_current_state(TASK_INTERRUPTIBLE);
1040 				schedule();
1041 			}
1042 		} else
1043 			schedule_timeout_interruptible(1);
1044 	}
1045 	return 0;
1046 }
1047 
1048 
1049 static void poll(void *send_info)
1050 {
1051 	struct smi_info *smi_info = send_info;
1052 	unsigned long flags = 0;
1053 	bool run_to_completion = smi_info->run_to_completion;
1054 
1055 	/*
1056 	 * Make sure there is some delay in the poll loop so we can
1057 	 * drive time forward and timeout things.
1058 	 */
1059 	udelay(10);
1060 	if (!run_to_completion)
1061 		spin_lock_irqsave(&smi_info->si_lock, flags);
1062 	smi_event_handler(smi_info, 10);
1063 	if (!run_to_completion)
1064 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1065 }
1066 
1067 static void request_events(void *send_info)
1068 {
1069 	struct smi_info *smi_info = send_info;
1070 
1071 	if (atomic_read(&smi_info->stop_operation) ||
1072 				!smi_info->has_event_buffer)
1073 		return;
1074 
1075 	atomic_set(&smi_info->req_events, 1);
1076 }
1077 
1078 static void set_need_watch(void *send_info, bool enable)
1079 {
1080 	struct smi_info *smi_info = send_info;
1081 	unsigned long flags;
1082 
1083 	atomic_set(&smi_info->need_watch, enable);
1084 	spin_lock_irqsave(&smi_info->si_lock, flags);
1085 	check_start_timer_thread(smi_info);
1086 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1087 }
1088 
1089 static int initialized;
1090 
1091 static void smi_timeout(unsigned long data)
1092 {
1093 	struct smi_info   *smi_info = (struct smi_info *) data;
1094 	enum si_sm_result smi_result;
1095 	unsigned long     flags;
1096 	unsigned long     jiffies_now;
1097 	long              time_diff;
1098 	long		  timeout;
1099 #ifdef DEBUG_TIMING
1100 	struct timeval    t;
1101 #endif
1102 
1103 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1104 #ifdef DEBUG_TIMING
1105 	do_gettimeofday(&t);
1106 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1107 #endif
1108 	jiffies_now = jiffies;
1109 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1110 		     * SI_USEC_PER_JIFFY);
1111 	smi_result = smi_event_handler(smi_info, time_diff);
1112 
1113 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1114 		/* Running with interrupts, only do long timeouts. */
1115 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1116 		smi_inc_stat(smi_info, long_timeouts);
1117 		goto do_mod_timer;
1118 	}
1119 
1120 	/*
1121 	 * If the state machine asks for a short delay, then shorten
1122 	 * the timer timeout.
1123 	 */
1124 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1125 		smi_inc_stat(smi_info, short_timeouts);
1126 		timeout = jiffies + 1;
1127 	} else {
1128 		smi_inc_stat(smi_info, long_timeouts);
1129 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1130 	}
1131 
1132  do_mod_timer:
1133 	if (smi_result != SI_SM_IDLE)
1134 		smi_mod_timer(smi_info, timeout);
1135 	else
1136 		smi_info->timer_running = false;
1137 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1138 }
1139 
1140 static irqreturn_t si_irq_handler(int irq, void *data)
1141 {
1142 	struct smi_info *smi_info = data;
1143 	unsigned long   flags;
1144 #ifdef DEBUG_TIMING
1145 	struct timeval  t;
1146 #endif
1147 
1148 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1149 
1150 	smi_inc_stat(smi_info, interrupts);
1151 
1152 #ifdef DEBUG_TIMING
1153 	do_gettimeofday(&t);
1154 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1155 #endif
1156 	smi_event_handler(smi_info, 0);
1157 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1158 	return IRQ_HANDLED;
1159 }
1160 
1161 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1162 {
1163 	struct smi_info *smi_info = data;
1164 	/* We need to clear the IRQ flag for the BT interface. */
1165 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1166 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1167 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1168 	return si_irq_handler(irq, data);
1169 }
1170 
1171 static int smi_start_processing(void       *send_info,
1172 				ipmi_smi_t intf)
1173 {
1174 	struct smi_info *new_smi = send_info;
1175 	int             enable = 0;
1176 
1177 	new_smi->intf = intf;
1178 
1179 	/* Try to claim any interrupts. */
1180 	if (new_smi->irq_setup)
1181 		new_smi->irq_setup(new_smi);
1182 
1183 	/* Set up the timer that drives the interface. */
1184 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1185 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1186 
1187 	/*
1188 	 * Check if the user forcefully enabled the daemon.
1189 	 */
1190 	if (new_smi->intf_num < num_force_kipmid)
1191 		enable = force_kipmid[new_smi->intf_num];
1192 	/*
1193 	 * The BT interface is efficient enough to not need a thread,
1194 	 * and there is no need for a thread if we have interrupts.
1195 	 */
1196 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1197 		enable = 1;
1198 
1199 	if (enable) {
1200 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1201 					      "kipmi%d", new_smi->intf_num);
1202 		if (IS_ERR(new_smi->thread)) {
1203 			dev_notice(new_smi->dev, "Could not start"
1204 				   " kernel thread due to error %ld, only using"
1205 				   " timers to drive the interface\n",
1206 				   PTR_ERR(new_smi->thread));
1207 			new_smi->thread = NULL;
1208 		}
1209 	}
1210 
1211 	return 0;
1212 }
1213 
1214 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1215 {
1216 	struct smi_info *smi = send_info;
1217 
1218 	data->addr_src = smi->addr_source;
1219 	data->dev = smi->dev;
1220 	data->addr_info = smi->addr_info;
1221 	get_device(smi->dev);
1222 
1223 	return 0;
1224 }
1225 
1226 static void set_maintenance_mode(void *send_info, bool enable)
1227 {
1228 	struct smi_info   *smi_info = send_info;
1229 
1230 	if (!enable)
1231 		atomic_set(&smi_info->req_events, 0);
1232 }
1233 
1234 static struct ipmi_smi_handlers handlers = {
1235 	.owner                  = THIS_MODULE,
1236 	.start_processing       = smi_start_processing,
1237 	.get_smi_info		= get_smi_info,
1238 	.sender			= sender,
1239 	.request_events		= request_events,
1240 	.set_need_watch		= set_need_watch,
1241 	.set_maintenance_mode   = set_maintenance_mode,
1242 	.set_run_to_completion  = set_run_to_completion,
1243 	.poll			= poll,
1244 };
1245 
1246 /*
1247  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1248  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1249  */
1250 
1251 static LIST_HEAD(smi_infos);
1252 static DEFINE_MUTEX(smi_infos_lock);
1253 static int smi_num; /* Used to sequence the SMIs */
1254 
1255 #define DEFAULT_REGSPACING	1
1256 #define DEFAULT_REGSIZE		1
1257 
1258 #ifdef CONFIG_ACPI
1259 static bool          si_tryacpi = 1;
1260 #endif
1261 #ifdef CONFIG_DMI
1262 static bool          si_trydmi = 1;
1263 #endif
1264 static bool          si_tryplatform = 1;
1265 #ifdef CONFIG_PCI
1266 static bool          si_trypci = 1;
1267 #endif
1268 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1269 static char          *si_type[SI_MAX_PARMS];
1270 #define MAX_SI_TYPE_STR 30
1271 static char          si_type_str[MAX_SI_TYPE_STR];
1272 static unsigned long addrs[SI_MAX_PARMS];
1273 static unsigned int num_addrs;
1274 static unsigned int  ports[SI_MAX_PARMS];
1275 static unsigned int num_ports;
1276 static int           irqs[SI_MAX_PARMS];
1277 static unsigned int num_irqs;
1278 static int           regspacings[SI_MAX_PARMS];
1279 static unsigned int num_regspacings;
1280 static int           regsizes[SI_MAX_PARMS];
1281 static unsigned int num_regsizes;
1282 static int           regshifts[SI_MAX_PARMS];
1283 static unsigned int num_regshifts;
1284 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1285 static unsigned int num_slave_addrs;
1286 
1287 #define IPMI_IO_ADDR_SPACE  0
1288 #define IPMI_MEM_ADDR_SPACE 1
1289 static char *addr_space_to_str[] = { "i/o", "mem" };
1290 
1291 static int hotmod_handler(const char *val, struct kernel_param *kp);
1292 
1293 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1294 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1295 		 " Documentation/IPMI.txt in the kernel sources for the"
1296 		 " gory details.");
1297 
1298 #ifdef CONFIG_ACPI
1299 module_param_named(tryacpi, si_tryacpi, bool, 0);
1300 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1301 		 " default scan of the interfaces identified via ACPI");
1302 #endif
1303 #ifdef CONFIG_DMI
1304 module_param_named(trydmi, si_trydmi, bool, 0);
1305 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1306 		 " default scan of the interfaces identified via DMI");
1307 #endif
1308 module_param_named(tryplatform, si_tryplatform, bool, 0);
1309 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1310 		 " default scan of the interfaces identified via platform"
1311 		 " interfaces like openfirmware");
1312 #ifdef CONFIG_PCI
1313 module_param_named(trypci, si_trypci, bool, 0);
1314 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1315 		 " default scan of the interfaces identified via pci");
1316 #endif
1317 module_param_named(trydefaults, si_trydefaults, bool, 0);
1318 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1319 		 " default scan of the KCS and SMIC interface at the standard"
1320 		 " address");
1321 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1322 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1323 		 " interface separated by commas.  The types are 'kcs',"
1324 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1325 		 " the first interface to kcs and the second to bt");
1326 module_param_array(addrs, ulong, &num_addrs, 0);
1327 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1328 		 " addresses separated by commas.  Only use if an interface"
1329 		 " is in memory.  Otherwise, set it to zero or leave"
1330 		 " it blank.");
1331 module_param_array(ports, uint, &num_ports, 0);
1332 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1333 		 " addresses separated by commas.  Only use if an interface"
1334 		 " is a port.  Otherwise, set it to zero or leave"
1335 		 " it blank.");
1336 module_param_array(irqs, int, &num_irqs, 0);
1337 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1338 		 " addresses separated by commas.  Only use if an interface"
1339 		 " has an interrupt.  Otherwise, set it to zero or leave"
1340 		 " it blank.");
1341 module_param_array(regspacings, int, &num_regspacings, 0);
1342 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1343 		 " and each successive register used by the interface.  For"
1344 		 " instance, if the start address is 0xca2 and the spacing"
1345 		 " is 2, then the second address is at 0xca4.  Defaults"
1346 		 " to 1.");
1347 module_param_array(regsizes, int, &num_regsizes, 0);
1348 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1349 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1350 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1351 		 " the 8-bit IPMI register has to be read from a larger"
1352 		 " register.");
1353 module_param_array(regshifts, int, &num_regshifts, 0);
1354 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1355 		 " IPMI register, in bits.  For instance, if the data"
1356 		 " is read from a 32-bit word and the IPMI data is in"
1357 		 " bit 8-15, then the shift would be 8");
1358 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1359 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1360 		 " the controller.  Normally this is 0x20, but can be"
1361 		 " overridden by this parm.  This is an array indexed"
1362 		 " by interface number.");
1363 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1364 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1365 		 " disabled(0).  Normally the IPMI driver auto-detects"
1366 		 " this, but the value may be overridden by this parm.");
1367 module_param(unload_when_empty, bool, 0);
1368 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1369 		 " specified or found, default is 1.  Setting to 0"
1370 		 " is useful for hot add of devices using hotmod.");
1371 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1372 MODULE_PARM_DESC(kipmid_max_busy_us,
1373 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1374 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1375 		 " if kipmid is using up a lot of CPU time.");
1376 
1377 
1378 static void std_irq_cleanup(struct smi_info *info)
1379 {
1380 	if (info->si_type == SI_BT)
1381 		/* Disable the interrupt in the BT interface. */
1382 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1383 	free_irq(info->irq, info);
1384 }
1385 
1386 static int std_irq_setup(struct smi_info *info)
1387 {
1388 	int rv;
1389 
1390 	if (!info->irq)
1391 		return 0;
1392 
1393 	if (info->si_type == SI_BT) {
1394 		rv = request_irq(info->irq,
1395 				 si_bt_irq_handler,
1396 				 IRQF_SHARED,
1397 				 DEVICE_NAME,
1398 				 info);
1399 		if (!rv)
1400 			/* Enable the interrupt in the BT interface. */
1401 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1402 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1403 	} else
1404 		rv = request_irq(info->irq,
1405 				 si_irq_handler,
1406 				 IRQF_SHARED,
1407 				 DEVICE_NAME,
1408 				 info);
1409 	if (rv) {
1410 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1411 			 " running polled\n",
1412 			 DEVICE_NAME, info->irq);
1413 		info->irq = 0;
1414 	} else {
1415 		info->irq_cleanup = std_irq_cleanup;
1416 		dev_info(info->dev, "Using irq %d\n", info->irq);
1417 	}
1418 
1419 	return rv;
1420 }
1421 
1422 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1423 {
1424 	unsigned int addr = io->addr_data;
1425 
1426 	return inb(addr + (offset * io->regspacing));
1427 }
1428 
1429 static void port_outb(struct si_sm_io *io, unsigned int offset,
1430 		      unsigned char b)
1431 {
1432 	unsigned int addr = io->addr_data;
1433 
1434 	outb(b, addr + (offset * io->regspacing));
1435 }
1436 
1437 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1438 {
1439 	unsigned int addr = io->addr_data;
1440 
1441 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1442 }
1443 
1444 static void port_outw(struct si_sm_io *io, unsigned int offset,
1445 		      unsigned char b)
1446 {
1447 	unsigned int addr = io->addr_data;
1448 
1449 	outw(b << io->regshift, addr + (offset * io->regspacing));
1450 }
1451 
1452 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1453 {
1454 	unsigned int addr = io->addr_data;
1455 
1456 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1457 }
1458 
1459 static void port_outl(struct si_sm_io *io, unsigned int offset,
1460 		      unsigned char b)
1461 {
1462 	unsigned int addr = io->addr_data;
1463 
1464 	outl(b << io->regshift, addr+(offset * io->regspacing));
1465 }
1466 
1467 static void port_cleanup(struct smi_info *info)
1468 {
1469 	unsigned int addr = info->io.addr_data;
1470 	int          idx;
1471 
1472 	if (addr) {
1473 		for (idx = 0; idx < info->io_size; idx++)
1474 			release_region(addr + idx * info->io.regspacing,
1475 				       info->io.regsize);
1476 	}
1477 }
1478 
1479 static int port_setup(struct smi_info *info)
1480 {
1481 	unsigned int addr = info->io.addr_data;
1482 	int          idx;
1483 
1484 	if (!addr)
1485 		return -ENODEV;
1486 
1487 	info->io_cleanup = port_cleanup;
1488 
1489 	/*
1490 	 * Figure out the actual inb/inw/inl/etc routine to use based
1491 	 * upon the register size.
1492 	 */
1493 	switch (info->io.regsize) {
1494 	case 1:
1495 		info->io.inputb = port_inb;
1496 		info->io.outputb = port_outb;
1497 		break;
1498 	case 2:
1499 		info->io.inputb = port_inw;
1500 		info->io.outputb = port_outw;
1501 		break;
1502 	case 4:
1503 		info->io.inputb = port_inl;
1504 		info->io.outputb = port_outl;
1505 		break;
1506 	default:
1507 		dev_warn(info->dev, "Invalid register size: %d\n",
1508 			 info->io.regsize);
1509 		return -EINVAL;
1510 	}
1511 
1512 	/*
1513 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1514 	 * tables.  This causes problems when trying to register the
1515 	 * entire I/O region.  Therefore we must register each I/O
1516 	 * port separately.
1517 	 */
1518 	for (idx = 0; idx < info->io_size; idx++) {
1519 		if (request_region(addr + idx * info->io.regspacing,
1520 				   info->io.regsize, DEVICE_NAME) == NULL) {
1521 			/* Undo allocations */
1522 			while (idx--) {
1523 				release_region(addr + idx * info->io.regspacing,
1524 					       info->io.regsize);
1525 			}
1526 			return -EIO;
1527 		}
1528 	}
1529 	return 0;
1530 }
1531 
1532 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1533 {
1534 	return readb((io->addr)+(offset * io->regspacing));
1535 }
1536 
1537 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1538 		     unsigned char b)
1539 {
1540 	writeb(b, (io->addr)+(offset * io->regspacing));
1541 }
1542 
1543 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1544 {
1545 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1546 		& 0xff;
1547 }
1548 
1549 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1550 		     unsigned char b)
1551 {
1552 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1553 }
1554 
1555 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1556 {
1557 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1558 		& 0xff;
1559 }
1560 
1561 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1562 		     unsigned char b)
1563 {
1564 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1565 }
1566 
1567 #ifdef readq
1568 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1569 {
1570 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1571 		& 0xff;
1572 }
1573 
1574 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1575 		     unsigned char b)
1576 {
1577 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1578 }
1579 #endif
1580 
1581 static void mem_cleanup(struct smi_info *info)
1582 {
1583 	unsigned long addr = info->io.addr_data;
1584 	int           mapsize;
1585 
1586 	if (info->io.addr) {
1587 		iounmap(info->io.addr);
1588 
1589 		mapsize = ((info->io_size * info->io.regspacing)
1590 			   - (info->io.regspacing - info->io.regsize));
1591 
1592 		release_mem_region(addr, mapsize);
1593 	}
1594 }
1595 
1596 static int mem_setup(struct smi_info *info)
1597 {
1598 	unsigned long addr = info->io.addr_data;
1599 	int           mapsize;
1600 
1601 	if (!addr)
1602 		return -ENODEV;
1603 
1604 	info->io_cleanup = mem_cleanup;
1605 
1606 	/*
1607 	 * Figure out the actual readb/readw/readl/etc routine to use based
1608 	 * upon the register size.
1609 	 */
1610 	switch (info->io.regsize) {
1611 	case 1:
1612 		info->io.inputb = intf_mem_inb;
1613 		info->io.outputb = intf_mem_outb;
1614 		break;
1615 	case 2:
1616 		info->io.inputb = intf_mem_inw;
1617 		info->io.outputb = intf_mem_outw;
1618 		break;
1619 	case 4:
1620 		info->io.inputb = intf_mem_inl;
1621 		info->io.outputb = intf_mem_outl;
1622 		break;
1623 #ifdef readq
1624 	case 8:
1625 		info->io.inputb = mem_inq;
1626 		info->io.outputb = mem_outq;
1627 		break;
1628 #endif
1629 	default:
1630 		dev_warn(info->dev, "Invalid register size: %d\n",
1631 			 info->io.regsize);
1632 		return -EINVAL;
1633 	}
1634 
1635 	/*
1636 	 * Calculate the total amount of memory to claim.  This is an
1637 	 * unusual looking calculation, but it avoids claiming any
1638 	 * more memory than it has to.  It will claim everything
1639 	 * between the first address to the end of the last full
1640 	 * register.
1641 	 */
1642 	mapsize = ((info->io_size * info->io.regspacing)
1643 		   - (info->io.regspacing - info->io.regsize));
1644 
1645 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1646 		return -EIO;
1647 
1648 	info->io.addr = ioremap(addr, mapsize);
1649 	if (info->io.addr == NULL) {
1650 		release_mem_region(addr, mapsize);
1651 		return -EIO;
1652 	}
1653 	return 0;
1654 }
1655 
1656 /*
1657  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1658  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1659  * Options are:
1660  *   rsp=<regspacing>
1661  *   rsi=<regsize>
1662  *   rsh=<regshift>
1663  *   irq=<irq>
1664  *   ipmb=<ipmb addr>
1665  */
1666 enum hotmod_op { HM_ADD, HM_REMOVE };
1667 struct hotmod_vals {
1668 	char *name;
1669 	int  val;
1670 };
1671 static struct hotmod_vals hotmod_ops[] = {
1672 	{ "add",	HM_ADD },
1673 	{ "remove",	HM_REMOVE },
1674 	{ NULL }
1675 };
1676 static struct hotmod_vals hotmod_si[] = {
1677 	{ "kcs",	SI_KCS },
1678 	{ "smic",	SI_SMIC },
1679 	{ "bt",		SI_BT },
1680 	{ NULL }
1681 };
1682 static struct hotmod_vals hotmod_as[] = {
1683 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1684 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1685 	{ NULL }
1686 };
1687 
1688 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1689 {
1690 	char *s;
1691 	int  i;
1692 
1693 	s = strchr(*curr, ',');
1694 	if (!s) {
1695 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1696 		return -EINVAL;
1697 	}
1698 	*s = '\0';
1699 	s++;
1700 	for (i = 0; hotmod_ops[i].name; i++) {
1701 		if (strcmp(*curr, v[i].name) == 0) {
1702 			*val = v[i].val;
1703 			*curr = s;
1704 			return 0;
1705 		}
1706 	}
1707 
1708 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1709 	return -EINVAL;
1710 }
1711 
1712 static int check_hotmod_int_op(const char *curr, const char *option,
1713 			       const char *name, int *val)
1714 {
1715 	char *n;
1716 
1717 	if (strcmp(curr, name) == 0) {
1718 		if (!option) {
1719 			printk(KERN_WARNING PFX
1720 			       "No option given for '%s'\n",
1721 			       curr);
1722 			return -EINVAL;
1723 		}
1724 		*val = simple_strtoul(option, &n, 0);
1725 		if ((*n != '\0') || (*option == '\0')) {
1726 			printk(KERN_WARNING PFX
1727 			       "Bad option given for '%s'\n",
1728 			       curr);
1729 			return -EINVAL;
1730 		}
1731 		return 1;
1732 	}
1733 	return 0;
1734 }
1735 
1736 static struct smi_info *smi_info_alloc(void)
1737 {
1738 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1739 
1740 	if (info)
1741 		spin_lock_init(&info->si_lock);
1742 	return info;
1743 }
1744 
1745 static int hotmod_handler(const char *val, struct kernel_param *kp)
1746 {
1747 	char *str = kstrdup(val, GFP_KERNEL);
1748 	int  rv;
1749 	char *next, *curr, *s, *n, *o;
1750 	enum hotmod_op op;
1751 	enum si_type si_type;
1752 	int  addr_space;
1753 	unsigned long addr;
1754 	int regspacing;
1755 	int regsize;
1756 	int regshift;
1757 	int irq;
1758 	int ipmb;
1759 	int ival;
1760 	int len;
1761 	struct smi_info *info;
1762 
1763 	if (!str)
1764 		return -ENOMEM;
1765 
1766 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1767 	len = strlen(str);
1768 	ival = len - 1;
1769 	while ((ival >= 0) && isspace(str[ival])) {
1770 		str[ival] = '\0';
1771 		ival--;
1772 	}
1773 
1774 	for (curr = str; curr; curr = next) {
1775 		regspacing = 1;
1776 		regsize = 1;
1777 		regshift = 0;
1778 		irq = 0;
1779 		ipmb = 0; /* Choose the default if not specified */
1780 
1781 		next = strchr(curr, ':');
1782 		if (next) {
1783 			*next = '\0';
1784 			next++;
1785 		}
1786 
1787 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1788 		if (rv)
1789 			break;
1790 		op = ival;
1791 
1792 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1793 		if (rv)
1794 			break;
1795 		si_type = ival;
1796 
1797 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1798 		if (rv)
1799 			break;
1800 
1801 		s = strchr(curr, ',');
1802 		if (s) {
1803 			*s = '\0';
1804 			s++;
1805 		}
1806 		addr = simple_strtoul(curr, &n, 0);
1807 		if ((*n != '\0') || (*curr == '\0')) {
1808 			printk(KERN_WARNING PFX "Invalid hotmod address"
1809 			       " '%s'\n", curr);
1810 			break;
1811 		}
1812 
1813 		while (s) {
1814 			curr = s;
1815 			s = strchr(curr, ',');
1816 			if (s) {
1817 				*s = '\0';
1818 				s++;
1819 			}
1820 			o = strchr(curr, '=');
1821 			if (o) {
1822 				*o = '\0';
1823 				o++;
1824 			}
1825 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1826 			if (rv < 0)
1827 				goto out;
1828 			else if (rv)
1829 				continue;
1830 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1831 			if (rv < 0)
1832 				goto out;
1833 			else if (rv)
1834 				continue;
1835 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1836 			if (rv < 0)
1837 				goto out;
1838 			else if (rv)
1839 				continue;
1840 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1841 			if (rv < 0)
1842 				goto out;
1843 			else if (rv)
1844 				continue;
1845 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1846 			if (rv < 0)
1847 				goto out;
1848 			else if (rv)
1849 				continue;
1850 
1851 			rv = -EINVAL;
1852 			printk(KERN_WARNING PFX
1853 			       "Invalid hotmod option '%s'\n",
1854 			       curr);
1855 			goto out;
1856 		}
1857 
1858 		if (op == HM_ADD) {
1859 			info = smi_info_alloc();
1860 			if (!info) {
1861 				rv = -ENOMEM;
1862 				goto out;
1863 			}
1864 
1865 			info->addr_source = SI_HOTMOD;
1866 			info->si_type = si_type;
1867 			info->io.addr_data = addr;
1868 			info->io.addr_type = addr_space;
1869 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1870 				info->io_setup = mem_setup;
1871 			else
1872 				info->io_setup = port_setup;
1873 
1874 			info->io.addr = NULL;
1875 			info->io.regspacing = regspacing;
1876 			if (!info->io.regspacing)
1877 				info->io.regspacing = DEFAULT_REGSPACING;
1878 			info->io.regsize = regsize;
1879 			if (!info->io.regsize)
1880 				info->io.regsize = DEFAULT_REGSPACING;
1881 			info->io.regshift = regshift;
1882 			info->irq = irq;
1883 			if (info->irq)
1884 				info->irq_setup = std_irq_setup;
1885 			info->slave_addr = ipmb;
1886 
1887 			rv = add_smi(info);
1888 			if (rv) {
1889 				kfree(info);
1890 				goto out;
1891 			}
1892 			rv = try_smi_init(info);
1893 			if (rv) {
1894 				cleanup_one_si(info);
1895 				goto out;
1896 			}
1897 		} else {
1898 			/* remove */
1899 			struct smi_info *e, *tmp_e;
1900 
1901 			mutex_lock(&smi_infos_lock);
1902 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1903 				if (e->io.addr_type != addr_space)
1904 					continue;
1905 				if (e->si_type != si_type)
1906 					continue;
1907 				if (e->io.addr_data == addr)
1908 					cleanup_one_si(e);
1909 			}
1910 			mutex_unlock(&smi_infos_lock);
1911 		}
1912 	}
1913 	rv = len;
1914  out:
1915 	kfree(str);
1916 	return rv;
1917 }
1918 
1919 static int hardcode_find_bmc(void)
1920 {
1921 	int ret = -ENODEV;
1922 	int             i;
1923 	struct smi_info *info;
1924 
1925 	for (i = 0; i < SI_MAX_PARMS; i++) {
1926 		if (!ports[i] && !addrs[i])
1927 			continue;
1928 
1929 		info = smi_info_alloc();
1930 		if (!info)
1931 			return -ENOMEM;
1932 
1933 		info->addr_source = SI_HARDCODED;
1934 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1935 
1936 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1937 			info->si_type = SI_KCS;
1938 		} else if (strcmp(si_type[i], "smic") == 0) {
1939 			info->si_type = SI_SMIC;
1940 		} else if (strcmp(si_type[i], "bt") == 0) {
1941 			info->si_type = SI_BT;
1942 		} else {
1943 			printk(KERN_WARNING PFX "Interface type specified "
1944 			       "for interface %d, was invalid: %s\n",
1945 			       i, si_type[i]);
1946 			kfree(info);
1947 			continue;
1948 		}
1949 
1950 		if (ports[i]) {
1951 			/* An I/O port */
1952 			info->io_setup = port_setup;
1953 			info->io.addr_data = ports[i];
1954 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1955 		} else if (addrs[i]) {
1956 			/* A memory port */
1957 			info->io_setup = mem_setup;
1958 			info->io.addr_data = addrs[i];
1959 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1960 		} else {
1961 			printk(KERN_WARNING PFX "Interface type specified "
1962 			       "for interface %d, but port and address were "
1963 			       "not set or set to zero.\n", i);
1964 			kfree(info);
1965 			continue;
1966 		}
1967 
1968 		info->io.addr = NULL;
1969 		info->io.regspacing = regspacings[i];
1970 		if (!info->io.regspacing)
1971 			info->io.regspacing = DEFAULT_REGSPACING;
1972 		info->io.regsize = regsizes[i];
1973 		if (!info->io.regsize)
1974 			info->io.regsize = DEFAULT_REGSPACING;
1975 		info->io.regshift = regshifts[i];
1976 		info->irq = irqs[i];
1977 		if (info->irq)
1978 			info->irq_setup = std_irq_setup;
1979 		info->slave_addr = slave_addrs[i];
1980 
1981 		if (!add_smi(info)) {
1982 			if (try_smi_init(info))
1983 				cleanup_one_si(info);
1984 			ret = 0;
1985 		} else {
1986 			kfree(info);
1987 		}
1988 	}
1989 	return ret;
1990 }
1991 
1992 #ifdef CONFIG_ACPI
1993 
1994 #include <linux/acpi.h>
1995 
1996 /*
1997  * Once we get an ACPI failure, we don't try any more, because we go
1998  * through the tables sequentially.  Once we don't find a table, there
1999  * are no more.
2000  */
2001 static int acpi_failure;
2002 
2003 /* For GPE-type interrupts. */
2004 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2005 	u32 gpe_number, void *context)
2006 {
2007 	struct smi_info *smi_info = context;
2008 	unsigned long   flags;
2009 #ifdef DEBUG_TIMING
2010 	struct timeval t;
2011 #endif
2012 
2013 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2014 
2015 	smi_inc_stat(smi_info, interrupts);
2016 
2017 #ifdef DEBUG_TIMING
2018 	do_gettimeofday(&t);
2019 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2020 #endif
2021 	smi_event_handler(smi_info, 0);
2022 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2023 
2024 	return ACPI_INTERRUPT_HANDLED;
2025 }
2026 
2027 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2028 {
2029 	if (!info->irq)
2030 		return;
2031 
2032 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2033 }
2034 
2035 static int acpi_gpe_irq_setup(struct smi_info *info)
2036 {
2037 	acpi_status status;
2038 
2039 	if (!info->irq)
2040 		return 0;
2041 
2042 	/* FIXME - is level triggered right? */
2043 	status = acpi_install_gpe_handler(NULL,
2044 					  info->irq,
2045 					  ACPI_GPE_LEVEL_TRIGGERED,
2046 					  &ipmi_acpi_gpe,
2047 					  info);
2048 	if (status != AE_OK) {
2049 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2050 			 " running polled\n", DEVICE_NAME, info->irq);
2051 		info->irq = 0;
2052 		return -EINVAL;
2053 	} else {
2054 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2055 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2056 		return 0;
2057 	}
2058 }
2059 
2060 /*
2061  * Defined at
2062  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2063  */
2064 struct SPMITable {
2065 	s8	Signature[4];
2066 	u32	Length;
2067 	u8	Revision;
2068 	u8	Checksum;
2069 	s8	OEMID[6];
2070 	s8	OEMTableID[8];
2071 	s8	OEMRevision[4];
2072 	s8	CreatorID[4];
2073 	s8	CreatorRevision[4];
2074 	u8	InterfaceType;
2075 	u8	IPMIlegacy;
2076 	s16	SpecificationRevision;
2077 
2078 	/*
2079 	 * Bit 0 - SCI interrupt supported
2080 	 * Bit 1 - I/O APIC/SAPIC
2081 	 */
2082 	u8	InterruptType;
2083 
2084 	/*
2085 	 * If bit 0 of InterruptType is set, then this is the SCI
2086 	 * interrupt in the GPEx_STS register.
2087 	 */
2088 	u8	GPE;
2089 
2090 	s16	Reserved;
2091 
2092 	/*
2093 	 * If bit 1 of InterruptType is set, then this is the I/O
2094 	 * APIC/SAPIC interrupt.
2095 	 */
2096 	u32	GlobalSystemInterrupt;
2097 
2098 	/* The actual register address. */
2099 	struct acpi_generic_address addr;
2100 
2101 	u8	UID[4];
2102 
2103 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2104 };
2105 
2106 static int try_init_spmi(struct SPMITable *spmi)
2107 {
2108 	struct smi_info  *info;
2109 	int rv;
2110 
2111 	if (spmi->IPMIlegacy != 1) {
2112 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2113 		return -ENODEV;
2114 	}
2115 
2116 	info = smi_info_alloc();
2117 	if (!info) {
2118 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2119 		return -ENOMEM;
2120 	}
2121 
2122 	info->addr_source = SI_SPMI;
2123 	printk(KERN_INFO PFX "probing via SPMI\n");
2124 
2125 	/* Figure out the interface type. */
2126 	switch (spmi->InterfaceType) {
2127 	case 1:	/* KCS */
2128 		info->si_type = SI_KCS;
2129 		break;
2130 	case 2:	/* SMIC */
2131 		info->si_type = SI_SMIC;
2132 		break;
2133 	case 3:	/* BT */
2134 		info->si_type = SI_BT;
2135 		break;
2136 	default:
2137 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2138 		       spmi->InterfaceType);
2139 		kfree(info);
2140 		return -EIO;
2141 	}
2142 
2143 	if (spmi->InterruptType & 1) {
2144 		/* We've got a GPE interrupt. */
2145 		info->irq = spmi->GPE;
2146 		info->irq_setup = acpi_gpe_irq_setup;
2147 	} else if (spmi->InterruptType & 2) {
2148 		/* We've got an APIC/SAPIC interrupt. */
2149 		info->irq = spmi->GlobalSystemInterrupt;
2150 		info->irq_setup = std_irq_setup;
2151 	} else {
2152 		/* Use the default interrupt setting. */
2153 		info->irq = 0;
2154 		info->irq_setup = NULL;
2155 	}
2156 
2157 	if (spmi->addr.bit_width) {
2158 		/* A (hopefully) properly formed register bit width. */
2159 		info->io.regspacing = spmi->addr.bit_width / 8;
2160 	} else {
2161 		info->io.regspacing = DEFAULT_REGSPACING;
2162 	}
2163 	info->io.regsize = info->io.regspacing;
2164 	info->io.regshift = spmi->addr.bit_offset;
2165 
2166 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2167 		info->io_setup = mem_setup;
2168 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2169 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2170 		info->io_setup = port_setup;
2171 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2172 	} else {
2173 		kfree(info);
2174 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2175 		return -EIO;
2176 	}
2177 	info->io.addr_data = spmi->addr.address;
2178 
2179 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2180 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2181 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2182 		 info->irq);
2183 
2184 	rv = add_smi(info);
2185 	if (rv)
2186 		kfree(info);
2187 
2188 	return rv;
2189 }
2190 
2191 static void spmi_find_bmc(void)
2192 {
2193 	acpi_status      status;
2194 	struct SPMITable *spmi;
2195 	int              i;
2196 
2197 	if (acpi_disabled)
2198 		return;
2199 
2200 	if (acpi_failure)
2201 		return;
2202 
2203 	for (i = 0; ; i++) {
2204 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2205 					(struct acpi_table_header **)&spmi);
2206 		if (status != AE_OK)
2207 			return;
2208 
2209 		try_init_spmi(spmi);
2210 	}
2211 }
2212 
2213 static int ipmi_pnp_probe(struct pnp_dev *dev,
2214 				    const struct pnp_device_id *dev_id)
2215 {
2216 	struct acpi_device *acpi_dev;
2217 	struct smi_info *info;
2218 	struct resource *res, *res_second;
2219 	acpi_handle handle;
2220 	acpi_status status;
2221 	unsigned long long tmp;
2222 	int rv;
2223 
2224 	acpi_dev = pnp_acpi_device(dev);
2225 	if (!acpi_dev)
2226 		return -ENODEV;
2227 
2228 	info = smi_info_alloc();
2229 	if (!info)
2230 		return -ENOMEM;
2231 
2232 	info->addr_source = SI_ACPI;
2233 	printk(KERN_INFO PFX "probing via ACPI\n");
2234 
2235 	handle = acpi_dev->handle;
2236 	info->addr_info.acpi_info.acpi_handle = handle;
2237 
2238 	/* _IFT tells us the interface type: KCS, BT, etc */
2239 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2240 	if (ACPI_FAILURE(status))
2241 		goto err_free;
2242 
2243 	switch (tmp) {
2244 	case 1:
2245 		info->si_type = SI_KCS;
2246 		break;
2247 	case 2:
2248 		info->si_type = SI_SMIC;
2249 		break;
2250 	case 3:
2251 		info->si_type = SI_BT;
2252 		break;
2253 	default:
2254 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2255 		goto err_free;
2256 	}
2257 
2258 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2259 	if (res) {
2260 		info->io_setup = port_setup;
2261 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2262 	} else {
2263 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2264 		if (res) {
2265 			info->io_setup = mem_setup;
2266 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2267 		}
2268 	}
2269 	if (!res) {
2270 		dev_err(&dev->dev, "no I/O or memory address\n");
2271 		goto err_free;
2272 	}
2273 	info->io.addr_data = res->start;
2274 
2275 	info->io.regspacing = DEFAULT_REGSPACING;
2276 	res_second = pnp_get_resource(dev,
2277 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2278 					IORESOURCE_IO : IORESOURCE_MEM,
2279 			       1);
2280 	if (res_second) {
2281 		if (res_second->start > info->io.addr_data)
2282 			info->io.regspacing = res_second->start - info->io.addr_data;
2283 	}
2284 	info->io.regsize = DEFAULT_REGSPACING;
2285 	info->io.regshift = 0;
2286 
2287 	/* If _GPE exists, use it; otherwise use standard interrupts */
2288 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2289 	if (ACPI_SUCCESS(status)) {
2290 		info->irq = tmp;
2291 		info->irq_setup = acpi_gpe_irq_setup;
2292 	} else if (pnp_irq_valid(dev, 0)) {
2293 		info->irq = pnp_irq(dev, 0);
2294 		info->irq_setup = std_irq_setup;
2295 	}
2296 
2297 	info->dev = &dev->dev;
2298 	pnp_set_drvdata(dev, info);
2299 
2300 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2301 		 res, info->io.regsize, info->io.regspacing,
2302 		 info->irq);
2303 
2304 	rv = add_smi(info);
2305 	if (rv)
2306 		kfree(info);
2307 
2308 	return rv;
2309 
2310 err_free:
2311 	kfree(info);
2312 	return -EINVAL;
2313 }
2314 
2315 static void ipmi_pnp_remove(struct pnp_dev *dev)
2316 {
2317 	struct smi_info *info = pnp_get_drvdata(dev);
2318 
2319 	cleanup_one_si(info);
2320 }
2321 
2322 static const struct pnp_device_id pnp_dev_table[] = {
2323 	{"IPI0001", 0},
2324 	{"", 0},
2325 };
2326 
2327 static struct pnp_driver ipmi_pnp_driver = {
2328 	.name		= DEVICE_NAME,
2329 	.probe		= ipmi_pnp_probe,
2330 	.remove		= ipmi_pnp_remove,
2331 	.id_table	= pnp_dev_table,
2332 };
2333 
2334 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2335 #endif
2336 
2337 #ifdef CONFIG_DMI
2338 struct dmi_ipmi_data {
2339 	u8   		type;
2340 	u8   		addr_space;
2341 	unsigned long	base_addr;
2342 	u8   		irq;
2343 	u8              offset;
2344 	u8              slave_addr;
2345 };
2346 
2347 static int decode_dmi(const struct dmi_header *dm,
2348 				struct dmi_ipmi_data *dmi)
2349 {
2350 	const u8	*data = (const u8 *)dm;
2351 	unsigned long  	base_addr;
2352 	u8		reg_spacing;
2353 	u8              len = dm->length;
2354 
2355 	dmi->type = data[4];
2356 
2357 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2358 	if (len >= 0x11) {
2359 		if (base_addr & 1) {
2360 			/* I/O */
2361 			base_addr &= 0xFFFE;
2362 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2363 		} else
2364 			/* Memory */
2365 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2366 
2367 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2368 		   is odd. */
2369 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2370 
2371 		dmi->irq = data[0x11];
2372 
2373 		/* The top two bits of byte 0x10 hold the register spacing. */
2374 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2375 		switch (reg_spacing) {
2376 		case 0x00: /* Byte boundaries */
2377 		    dmi->offset = 1;
2378 		    break;
2379 		case 0x01: /* 32-bit boundaries */
2380 		    dmi->offset = 4;
2381 		    break;
2382 		case 0x02: /* 16-byte boundaries */
2383 		    dmi->offset = 16;
2384 		    break;
2385 		default:
2386 		    /* Some other interface, just ignore it. */
2387 		    return -EIO;
2388 		}
2389 	} else {
2390 		/* Old DMI spec. */
2391 		/*
2392 		 * Note that technically, the lower bit of the base
2393 		 * address should be 1 if the address is I/O and 0 if
2394 		 * the address is in memory.  So many systems get that
2395 		 * wrong (and all that I have seen are I/O) so we just
2396 		 * ignore that bit and assume I/O.  Systems that use
2397 		 * memory should use the newer spec, anyway.
2398 		 */
2399 		dmi->base_addr = base_addr & 0xfffe;
2400 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2401 		dmi->offset = 1;
2402 	}
2403 
2404 	dmi->slave_addr = data[6];
2405 
2406 	return 0;
2407 }
2408 
2409 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2410 {
2411 	struct smi_info *info;
2412 
2413 	info = smi_info_alloc();
2414 	if (!info) {
2415 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2416 		return;
2417 	}
2418 
2419 	info->addr_source = SI_SMBIOS;
2420 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2421 
2422 	switch (ipmi_data->type) {
2423 	case 0x01: /* KCS */
2424 		info->si_type = SI_KCS;
2425 		break;
2426 	case 0x02: /* SMIC */
2427 		info->si_type = SI_SMIC;
2428 		break;
2429 	case 0x03: /* BT */
2430 		info->si_type = SI_BT;
2431 		break;
2432 	default:
2433 		kfree(info);
2434 		return;
2435 	}
2436 
2437 	switch (ipmi_data->addr_space) {
2438 	case IPMI_MEM_ADDR_SPACE:
2439 		info->io_setup = mem_setup;
2440 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2441 		break;
2442 
2443 	case IPMI_IO_ADDR_SPACE:
2444 		info->io_setup = port_setup;
2445 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2446 		break;
2447 
2448 	default:
2449 		kfree(info);
2450 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2451 		       ipmi_data->addr_space);
2452 		return;
2453 	}
2454 	info->io.addr_data = ipmi_data->base_addr;
2455 
2456 	info->io.regspacing = ipmi_data->offset;
2457 	if (!info->io.regspacing)
2458 		info->io.regspacing = DEFAULT_REGSPACING;
2459 	info->io.regsize = DEFAULT_REGSPACING;
2460 	info->io.regshift = 0;
2461 
2462 	info->slave_addr = ipmi_data->slave_addr;
2463 
2464 	info->irq = ipmi_data->irq;
2465 	if (info->irq)
2466 		info->irq_setup = std_irq_setup;
2467 
2468 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2469 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2470 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2471 		 info->irq);
2472 
2473 	if (add_smi(info))
2474 		kfree(info);
2475 }
2476 
2477 static void dmi_find_bmc(void)
2478 {
2479 	const struct dmi_device *dev = NULL;
2480 	struct dmi_ipmi_data data;
2481 	int                  rv;
2482 
2483 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2484 		memset(&data, 0, sizeof(data));
2485 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2486 				&data);
2487 		if (!rv)
2488 			try_init_dmi(&data);
2489 	}
2490 }
2491 #endif /* CONFIG_DMI */
2492 
2493 #ifdef CONFIG_PCI
2494 
2495 #define PCI_ERMC_CLASSCODE		0x0C0700
2496 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2497 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2498 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2499 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2500 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2501 
2502 #define PCI_HP_VENDOR_ID    0x103C
2503 #define PCI_MMC_DEVICE_ID   0x121A
2504 #define PCI_MMC_ADDR_CW     0x10
2505 
2506 static void ipmi_pci_cleanup(struct smi_info *info)
2507 {
2508 	struct pci_dev *pdev = info->addr_source_data;
2509 
2510 	pci_disable_device(pdev);
2511 }
2512 
2513 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2514 {
2515 	if (info->si_type == SI_KCS) {
2516 		unsigned char	status;
2517 		int		regspacing;
2518 
2519 		info->io.regsize = DEFAULT_REGSIZE;
2520 		info->io.regshift = 0;
2521 		info->io_size = 2;
2522 		info->handlers = &kcs_smi_handlers;
2523 
2524 		/* detect 1, 4, 16byte spacing */
2525 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2526 			info->io.regspacing = regspacing;
2527 			if (info->io_setup(info)) {
2528 				dev_err(info->dev,
2529 					"Could not setup I/O space\n");
2530 				return DEFAULT_REGSPACING;
2531 			}
2532 			/* write invalid cmd */
2533 			info->io.outputb(&info->io, 1, 0x10);
2534 			/* read status back */
2535 			status = info->io.inputb(&info->io, 1);
2536 			info->io_cleanup(info);
2537 			if (status)
2538 				return regspacing;
2539 			regspacing *= 4;
2540 		}
2541 	}
2542 	return DEFAULT_REGSPACING;
2543 }
2544 
2545 static int ipmi_pci_probe(struct pci_dev *pdev,
2546 				    const struct pci_device_id *ent)
2547 {
2548 	int rv;
2549 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2550 	struct smi_info *info;
2551 
2552 	info = smi_info_alloc();
2553 	if (!info)
2554 		return -ENOMEM;
2555 
2556 	info->addr_source = SI_PCI;
2557 	dev_info(&pdev->dev, "probing via PCI");
2558 
2559 	switch (class_type) {
2560 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2561 		info->si_type = SI_SMIC;
2562 		break;
2563 
2564 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2565 		info->si_type = SI_KCS;
2566 		break;
2567 
2568 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2569 		info->si_type = SI_BT;
2570 		break;
2571 
2572 	default:
2573 		kfree(info);
2574 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2575 		return -ENOMEM;
2576 	}
2577 
2578 	rv = pci_enable_device(pdev);
2579 	if (rv) {
2580 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2581 		kfree(info);
2582 		return rv;
2583 	}
2584 
2585 	info->addr_source_cleanup = ipmi_pci_cleanup;
2586 	info->addr_source_data = pdev;
2587 
2588 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2589 		info->io_setup = port_setup;
2590 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2591 	} else {
2592 		info->io_setup = mem_setup;
2593 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2594 	}
2595 	info->io.addr_data = pci_resource_start(pdev, 0);
2596 
2597 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2598 	info->io.regsize = DEFAULT_REGSIZE;
2599 	info->io.regshift = 0;
2600 
2601 	info->irq = pdev->irq;
2602 	if (info->irq)
2603 		info->irq_setup = std_irq_setup;
2604 
2605 	info->dev = &pdev->dev;
2606 	pci_set_drvdata(pdev, info);
2607 
2608 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2609 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2610 		info->irq);
2611 
2612 	rv = add_smi(info);
2613 	if (rv) {
2614 		kfree(info);
2615 		pci_disable_device(pdev);
2616 	}
2617 
2618 	return rv;
2619 }
2620 
2621 static void ipmi_pci_remove(struct pci_dev *pdev)
2622 {
2623 	struct smi_info *info = pci_get_drvdata(pdev);
2624 	cleanup_one_si(info);
2625 	pci_disable_device(pdev);
2626 }
2627 
2628 static struct pci_device_id ipmi_pci_devices[] = {
2629 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2630 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2631 	{ 0, }
2632 };
2633 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2634 
2635 static struct pci_driver ipmi_pci_driver = {
2636 	.name =         DEVICE_NAME,
2637 	.id_table =     ipmi_pci_devices,
2638 	.probe =        ipmi_pci_probe,
2639 	.remove =       ipmi_pci_remove,
2640 };
2641 #endif /* CONFIG_PCI */
2642 
2643 static struct of_device_id ipmi_match[];
2644 static int ipmi_probe(struct platform_device *dev)
2645 {
2646 #ifdef CONFIG_OF
2647 	const struct of_device_id *match;
2648 	struct smi_info *info;
2649 	struct resource resource;
2650 	const __be32 *regsize, *regspacing, *regshift;
2651 	struct device_node *np = dev->dev.of_node;
2652 	int ret;
2653 	int proplen;
2654 
2655 	dev_info(&dev->dev, "probing via device tree\n");
2656 
2657 	match = of_match_device(ipmi_match, &dev->dev);
2658 	if (!match)
2659 		return -EINVAL;
2660 
2661 	ret = of_address_to_resource(np, 0, &resource);
2662 	if (ret) {
2663 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2664 		return ret;
2665 	}
2666 
2667 	regsize = of_get_property(np, "reg-size", &proplen);
2668 	if (regsize && proplen != 4) {
2669 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2670 		return -EINVAL;
2671 	}
2672 
2673 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2674 	if (regspacing && proplen != 4) {
2675 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2676 		return -EINVAL;
2677 	}
2678 
2679 	regshift = of_get_property(np, "reg-shift", &proplen);
2680 	if (regshift && proplen != 4) {
2681 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2682 		return -EINVAL;
2683 	}
2684 
2685 	info = smi_info_alloc();
2686 
2687 	if (!info) {
2688 		dev_err(&dev->dev,
2689 			"could not allocate memory for OF probe\n");
2690 		return -ENOMEM;
2691 	}
2692 
2693 	info->si_type		= (enum si_type) match->data;
2694 	info->addr_source	= SI_DEVICETREE;
2695 	info->irq_setup		= std_irq_setup;
2696 
2697 	if (resource.flags & IORESOURCE_IO) {
2698 		info->io_setup		= port_setup;
2699 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2700 	} else {
2701 		info->io_setup		= mem_setup;
2702 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2703 	}
2704 
2705 	info->io.addr_data	= resource.start;
2706 
2707 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2708 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2709 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2710 
2711 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2712 	info->dev		= &dev->dev;
2713 
2714 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2715 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2716 		info->irq);
2717 
2718 	dev_set_drvdata(&dev->dev, info);
2719 
2720 	ret = add_smi(info);
2721 	if (ret) {
2722 		kfree(info);
2723 		return ret;
2724 	}
2725 #endif
2726 	return 0;
2727 }
2728 
2729 static int ipmi_remove(struct platform_device *dev)
2730 {
2731 #ifdef CONFIG_OF
2732 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2733 #endif
2734 	return 0;
2735 }
2736 
2737 static struct of_device_id ipmi_match[] =
2738 {
2739 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2740 	  .data = (void *)(unsigned long) SI_KCS },
2741 	{ .type = "ipmi", .compatible = "ipmi-smic",
2742 	  .data = (void *)(unsigned long) SI_SMIC },
2743 	{ .type = "ipmi", .compatible = "ipmi-bt",
2744 	  .data = (void *)(unsigned long) SI_BT },
2745 	{},
2746 };
2747 
2748 static struct platform_driver ipmi_driver = {
2749 	.driver = {
2750 		.name = DEVICE_NAME,
2751 		.owner = THIS_MODULE,
2752 		.of_match_table = ipmi_match,
2753 	},
2754 	.probe		= ipmi_probe,
2755 	.remove		= ipmi_remove,
2756 };
2757 
2758 #ifdef CONFIG_PARISC
2759 static int ipmi_parisc_probe(struct parisc_device *dev)
2760 {
2761 	struct smi_info *info;
2762 	int rv;
2763 
2764 	info = smi_info_alloc();
2765 
2766 	if (!info) {
2767 		dev_err(&dev->dev,
2768 			"could not allocate memory for PARISC probe\n");
2769 		return -ENOMEM;
2770 	}
2771 
2772 	info->si_type		= SI_KCS;
2773 	info->addr_source	= SI_DEVICETREE;
2774 	info->io_setup		= mem_setup;
2775 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2776 	info->io.addr_data	= dev->hpa.start;
2777 	info->io.regsize	= 1;
2778 	info->io.regspacing	= 1;
2779 	info->io.regshift	= 0;
2780 	info->irq		= 0; /* no interrupt */
2781 	info->irq_setup		= NULL;
2782 	info->dev		= &dev->dev;
2783 
2784 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2785 
2786 	dev_set_drvdata(&dev->dev, info);
2787 
2788 	rv = add_smi(info);
2789 	if (rv) {
2790 		kfree(info);
2791 		return rv;
2792 	}
2793 
2794 	return 0;
2795 }
2796 
2797 static int ipmi_parisc_remove(struct parisc_device *dev)
2798 {
2799 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2800 	return 0;
2801 }
2802 
2803 static struct parisc_device_id ipmi_parisc_tbl[] = {
2804 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2805 	{ 0, }
2806 };
2807 
2808 static struct parisc_driver ipmi_parisc_driver = {
2809 	.name =		"ipmi",
2810 	.id_table =	ipmi_parisc_tbl,
2811 	.probe =	ipmi_parisc_probe,
2812 	.remove =	ipmi_parisc_remove,
2813 };
2814 #endif /* CONFIG_PARISC */
2815 
2816 static int wait_for_msg_done(struct smi_info *smi_info)
2817 {
2818 	enum si_sm_result     smi_result;
2819 
2820 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2821 	for (;;) {
2822 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2823 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2824 			schedule_timeout_uninterruptible(1);
2825 			smi_result = smi_info->handlers->event(
2826 				smi_info->si_sm, jiffies_to_usecs(1));
2827 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2828 			smi_result = smi_info->handlers->event(
2829 				smi_info->si_sm, 0);
2830 		} else
2831 			break;
2832 	}
2833 	if (smi_result == SI_SM_HOSED)
2834 		/*
2835 		 * We couldn't get the state machine to run, so whatever's at
2836 		 * the port is probably not an IPMI SMI interface.
2837 		 */
2838 		return -ENODEV;
2839 
2840 	return 0;
2841 }
2842 
2843 static int try_get_dev_id(struct smi_info *smi_info)
2844 {
2845 	unsigned char         msg[2];
2846 	unsigned char         *resp;
2847 	unsigned long         resp_len;
2848 	int                   rv = 0;
2849 
2850 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2851 	if (!resp)
2852 		return -ENOMEM;
2853 
2854 	/*
2855 	 * Do a Get Device ID command, since it comes back with some
2856 	 * useful info.
2857 	 */
2858 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2859 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2860 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2861 
2862 	rv = wait_for_msg_done(smi_info);
2863 	if (rv)
2864 		goto out;
2865 
2866 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2867 						  resp, IPMI_MAX_MSG_LENGTH);
2868 
2869 	/* Check and record info from the get device id, in case we need it. */
2870 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2871 
2872  out:
2873 	kfree(resp);
2874 	return rv;
2875 }
2876 
2877 static int try_enable_event_buffer(struct smi_info *smi_info)
2878 {
2879 	unsigned char         msg[3];
2880 	unsigned char         *resp;
2881 	unsigned long         resp_len;
2882 	int                   rv = 0;
2883 
2884 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2885 	if (!resp)
2886 		return -ENOMEM;
2887 
2888 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2889 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2890 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2891 
2892 	rv = wait_for_msg_done(smi_info);
2893 	if (rv) {
2894 		printk(KERN_WARNING PFX "Error getting response from get"
2895 		       " global enables command, the event buffer is not"
2896 		       " enabled.\n");
2897 		goto out;
2898 	}
2899 
2900 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2901 						  resp, IPMI_MAX_MSG_LENGTH);
2902 
2903 	if (resp_len < 4 ||
2904 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2905 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2906 			resp[2] != 0) {
2907 		printk(KERN_WARNING PFX "Invalid return from get global"
2908 		       " enables command, cannot enable the event buffer.\n");
2909 		rv = -EINVAL;
2910 		goto out;
2911 	}
2912 
2913 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2914 		/* buffer is already enabled, nothing to do. */
2915 		goto out;
2916 
2917 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2918 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2919 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2920 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2921 
2922 	rv = wait_for_msg_done(smi_info);
2923 	if (rv) {
2924 		printk(KERN_WARNING PFX "Error getting response from set"
2925 		       " global, enables command, the event buffer is not"
2926 		       " enabled.\n");
2927 		goto out;
2928 	}
2929 
2930 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2931 						  resp, IPMI_MAX_MSG_LENGTH);
2932 
2933 	if (resp_len < 3 ||
2934 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2935 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2936 		printk(KERN_WARNING PFX "Invalid return from get global,"
2937 		       "enables command, not enable the event buffer.\n");
2938 		rv = -EINVAL;
2939 		goto out;
2940 	}
2941 
2942 	if (resp[2] != 0)
2943 		/*
2944 		 * An error when setting the event buffer bit means
2945 		 * that the event buffer is not supported.
2946 		 */
2947 		rv = -ENOENT;
2948  out:
2949 	kfree(resp);
2950 	return rv;
2951 }
2952 
2953 static int smi_type_proc_show(struct seq_file *m, void *v)
2954 {
2955 	struct smi_info *smi = m->private;
2956 
2957 	return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2958 }
2959 
2960 static int smi_type_proc_open(struct inode *inode, struct file *file)
2961 {
2962 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2963 }
2964 
2965 static const struct file_operations smi_type_proc_ops = {
2966 	.open		= smi_type_proc_open,
2967 	.read		= seq_read,
2968 	.llseek		= seq_lseek,
2969 	.release	= single_release,
2970 };
2971 
2972 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2973 {
2974 	struct smi_info *smi = m->private;
2975 
2976 	seq_printf(m, "interrupts_enabled:    %d\n",
2977 		       smi->irq && !smi->interrupt_disabled);
2978 	seq_printf(m, "short_timeouts:        %u\n",
2979 		       smi_get_stat(smi, short_timeouts));
2980 	seq_printf(m, "long_timeouts:         %u\n",
2981 		       smi_get_stat(smi, long_timeouts));
2982 	seq_printf(m, "idles:                 %u\n",
2983 		       smi_get_stat(smi, idles));
2984 	seq_printf(m, "interrupts:            %u\n",
2985 		       smi_get_stat(smi, interrupts));
2986 	seq_printf(m, "attentions:            %u\n",
2987 		       smi_get_stat(smi, attentions));
2988 	seq_printf(m, "flag_fetches:          %u\n",
2989 		       smi_get_stat(smi, flag_fetches));
2990 	seq_printf(m, "hosed_count:           %u\n",
2991 		       smi_get_stat(smi, hosed_count));
2992 	seq_printf(m, "complete_transactions: %u\n",
2993 		       smi_get_stat(smi, complete_transactions));
2994 	seq_printf(m, "events:                %u\n",
2995 		       smi_get_stat(smi, events));
2996 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
2997 		       smi_get_stat(smi, watchdog_pretimeouts));
2998 	seq_printf(m, "incoming_messages:     %u\n",
2999 		       smi_get_stat(smi, incoming_messages));
3000 	return 0;
3001 }
3002 
3003 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3004 {
3005 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3006 }
3007 
3008 static const struct file_operations smi_si_stats_proc_ops = {
3009 	.open		= smi_si_stats_proc_open,
3010 	.read		= seq_read,
3011 	.llseek		= seq_lseek,
3012 	.release	= single_release,
3013 };
3014 
3015 static int smi_params_proc_show(struct seq_file *m, void *v)
3016 {
3017 	struct smi_info *smi = m->private;
3018 
3019 	return seq_printf(m,
3020 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3021 		       si_to_str[smi->si_type],
3022 		       addr_space_to_str[smi->io.addr_type],
3023 		       smi->io.addr_data,
3024 		       smi->io.regspacing,
3025 		       smi->io.regsize,
3026 		       smi->io.regshift,
3027 		       smi->irq,
3028 		       smi->slave_addr);
3029 }
3030 
3031 static int smi_params_proc_open(struct inode *inode, struct file *file)
3032 {
3033 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3034 }
3035 
3036 static const struct file_operations smi_params_proc_ops = {
3037 	.open		= smi_params_proc_open,
3038 	.read		= seq_read,
3039 	.llseek		= seq_lseek,
3040 	.release	= single_release,
3041 };
3042 
3043 /*
3044  * oem_data_avail_to_receive_msg_avail
3045  * @info - smi_info structure with msg_flags set
3046  *
3047  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3048  * Returns 1 indicating need to re-run handle_flags().
3049  */
3050 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3051 {
3052 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3053 			       RECEIVE_MSG_AVAIL);
3054 	return 1;
3055 }
3056 
3057 /*
3058  * setup_dell_poweredge_oem_data_handler
3059  * @info - smi_info.device_id must be populated
3060  *
3061  * Systems that match, but have firmware version < 1.40 may assert
3062  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3063  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3064  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3065  * as RECEIVE_MSG_AVAIL instead.
3066  *
3067  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3068  * assert the OEM[012] bits, and if it did, the driver would have to
3069  * change to handle that properly, we don't actually check for the
3070  * firmware version.
3071  * Device ID = 0x20                BMC on PowerEdge 8G servers
3072  * Device Revision = 0x80
3073  * Firmware Revision1 = 0x01       BMC version 1.40
3074  * Firmware Revision2 = 0x40       BCD encoded
3075  * IPMI Version = 0x51             IPMI 1.5
3076  * Manufacturer ID = A2 02 00      Dell IANA
3077  *
3078  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3079  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3080  *
3081  */
3082 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3083 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3084 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3085 #define DELL_IANA_MFR_ID 0x0002a2
3086 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3087 {
3088 	struct ipmi_device_id *id = &smi_info->device_id;
3089 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3090 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3091 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3092 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3093 			smi_info->oem_data_avail_handler =
3094 				oem_data_avail_to_receive_msg_avail;
3095 		} else if (ipmi_version_major(id) < 1 ||
3096 			   (ipmi_version_major(id) == 1 &&
3097 			    ipmi_version_minor(id) < 5)) {
3098 			smi_info->oem_data_avail_handler =
3099 				oem_data_avail_to_receive_msg_avail;
3100 		}
3101 	}
3102 }
3103 
3104 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3105 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3106 {
3107 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3108 
3109 	/* Make it a response */
3110 	msg->rsp[0] = msg->data[0] | 4;
3111 	msg->rsp[1] = msg->data[1];
3112 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3113 	msg->rsp_size = 3;
3114 	smi_info->curr_msg = NULL;
3115 	deliver_recv_msg(smi_info, msg);
3116 }
3117 
3118 /*
3119  * dell_poweredge_bt_xaction_handler
3120  * @info - smi_info.device_id must be populated
3121  *
3122  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3123  * not respond to a Get SDR command if the length of the data
3124  * requested is exactly 0x3A, which leads to command timeouts and no
3125  * data returned.  This intercepts such commands, and causes userspace
3126  * callers to try again with a different-sized buffer, which succeeds.
3127  */
3128 
3129 #define STORAGE_NETFN 0x0A
3130 #define STORAGE_CMD_GET_SDR 0x23
3131 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3132 					     unsigned long unused,
3133 					     void *in)
3134 {
3135 	struct smi_info *smi_info = in;
3136 	unsigned char *data = smi_info->curr_msg->data;
3137 	unsigned int size   = smi_info->curr_msg->data_size;
3138 	if (size >= 8 &&
3139 	    (data[0]>>2) == STORAGE_NETFN &&
3140 	    data[1] == STORAGE_CMD_GET_SDR &&
3141 	    data[7] == 0x3A) {
3142 		return_hosed_msg_badsize(smi_info);
3143 		return NOTIFY_STOP;
3144 	}
3145 	return NOTIFY_DONE;
3146 }
3147 
3148 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3149 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3150 };
3151 
3152 /*
3153  * setup_dell_poweredge_bt_xaction_handler
3154  * @info - smi_info.device_id must be filled in already
3155  *
3156  * Fills in smi_info.device_id.start_transaction_pre_hook
3157  * when we know what function to use there.
3158  */
3159 static void
3160 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3161 {
3162 	struct ipmi_device_id *id = &smi_info->device_id;
3163 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3164 	    smi_info->si_type == SI_BT)
3165 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3166 }
3167 
3168 /*
3169  * setup_oem_data_handler
3170  * @info - smi_info.device_id must be filled in already
3171  *
3172  * Fills in smi_info.device_id.oem_data_available_handler
3173  * when we know what function to use there.
3174  */
3175 
3176 static void setup_oem_data_handler(struct smi_info *smi_info)
3177 {
3178 	setup_dell_poweredge_oem_data_handler(smi_info);
3179 }
3180 
3181 static void setup_xaction_handlers(struct smi_info *smi_info)
3182 {
3183 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3184 }
3185 
3186 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3187 {
3188 	if (smi_info->intf) {
3189 		/*
3190 		 * The timer and thread are only running if the
3191 		 * interface has been started up and registered.
3192 		 */
3193 		if (smi_info->thread != NULL)
3194 			kthread_stop(smi_info->thread);
3195 		del_timer_sync(&smi_info->si_timer);
3196 	}
3197 }
3198 
3199 static struct ipmi_default_vals
3200 {
3201 	int type;
3202 	int port;
3203 } ipmi_defaults[] =
3204 {
3205 	{ .type = SI_KCS, .port = 0xca2 },
3206 	{ .type = SI_SMIC, .port = 0xca9 },
3207 	{ .type = SI_BT, .port = 0xe4 },
3208 	{ .port = 0 }
3209 };
3210 
3211 static void default_find_bmc(void)
3212 {
3213 	struct smi_info *info;
3214 	int             i;
3215 
3216 	for (i = 0; ; i++) {
3217 		if (!ipmi_defaults[i].port)
3218 			break;
3219 #ifdef CONFIG_PPC
3220 		if (check_legacy_ioport(ipmi_defaults[i].port))
3221 			continue;
3222 #endif
3223 		info = smi_info_alloc();
3224 		if (!info)
3225 			return;
3226 
3227 		info->addr_source = SI_DEFAULT;
3228 
3229 		info->si_type = ipmi_defaults[i].type;
3230 		info->io_setup = port_setup;
3231 		info->io.addr_data = ipmi_defaults[i].port;
3232 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3233 
3234 		info->io.addr = NULL;
3235 		info->io.regspacing = DEFAULT_REGSPACING;
3236 		info->io.regsize = DEFAULT_REGSPACING;
3237 		info->io.regshift = 0;
3238 
3239 		if (add_smi(info) == 0) {
3240 			if ((try_smi_init(info)) == 0) {
3241 				/* Found one... */
3242 				printk(KERN_INFO PFX "Found default %s"
3243 				" state machine at %s address 0x%lx\n",
3244 				si_to_str[info->si_type],
3245 				addr_space_to_str[info->io.addr_type],
3246 				info->io.addr_data);
3247 			} else
3248 				cleanup_one_si(info);
3249 		} else {
3250 			kfree(info);
3251 		}
3252 	}
3253 }
3254 
3255 static int is_new_interface(struct smi_info *info)
3256 {
3257 	struct smi_info *e;
3258 
3259 	list_for_each_entry(e, &smi_infos, link) {
3260 		if (e->io.addr_type != info->io.addr_type)
3261 			continue;
3262 		if (e->io.addr_data == info->io.addr_data)
3263 			return 0;
3264 	}
3265 
3266 	return 1;
3267 }
3268 
3269 static int add_smi(struct smi_info *new_smi)
3270 {
3271 	int rv = 0;
3272 
3273 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3274 			ipmi_addr_src_to_str[new_smi->addr_source],
3275 			si_to_str[new_smi->si_type]);
3276 	mutex_lock(&smi_infos_lock);
3277 	if (!is_new_interface(new_smi)) {
3278 		printk(KERN_CONT " duplicate interface\n");
3279 		rv = -EBUSY;
3280 		goto out_err;
3281 	}
3282 
3283 	printk(KERN_CONT "\n");
3284 
3285 	/* So we know not to free it unless we have allocated one. */
3286 	new_smi->intf = NULL;
3287 	new_smi->si_sm = NULL;
3288 	new_smi->handlers = NULL;
3289 
3290 	list_add_tail(&new_smi->link, &smi_infos);
3291 
3292 out_err:
3293 	mutex_unlock(&smi_infos_lock);
3294 	return rv;
3295 }
3296 
3297 static int try_smi_init(struct smi_info *new_smi)
3298 {
3299 	int rv = 0;
3300 	int i;
3301 
3302 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3303 	       " machine at %s address 0x%lx, slave address 0x%x,"
3304 	       " irq %d\n",
3305 	       ipmi_addr_src_to_str[new_smi->addr_source],
3306 	       si_to_str[new_smi->si_type],
3307 	       addr_space_to_str[new_smi->io.addr_type],
3308 	       new_smi->io.addr_data,
3309 	       new_smi->slave_addr, new_smi->irq);
3310 
3311 	switch (new_smi->si_type) {
3312 	case SI_KCS:
3313 		new_smi->handlers = &kcs_smi_handlers;
3314 		break;
3315 
3316 	case SI_SMIC:
3317 		new_smi->handlers = &smic_smi_handlers;
3318 		break;
3319 
3320 	case SI_BT:
3321 		new_smi->handlers = &bt_smi_handlers;
3322 		break;
3323 
3324 	default:
3325 		/* No support for anything else yet. */
3326 		rv = -EIO;
3327 		goto out_err;
3328 	}
3329 
3330 	/* Allocate the state machine's data and initialize it. */
3331 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3332 	if (!new_smi->si_sm) {
3333 		printk(KERN_ERR PFX
3334 		       "Could not allocate state machine memory\n");
3335 		rv = -ENOMEM;
3336 		goto out_err;
3337 	}
3338 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3339 							&new_smi->io);
3340 
3341 	/* Now that we know the I/O size, we can set up the I/O. */
3342 	rv = new_smi->io_setup(new_smi);
3343 	if (rv) {
3344 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3345 		goto out_err;
3346 	}
3347 
3348 	/* Do low-level detection first. */
3349 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3350 		if (new_smi->addr_source)
3351 			printk(KERN_INFO PFX "Interface detection failed\n");
3352 		rv = -ENODEV;
3353 		goto out_err;
3354 	}
3355 
3356 	/*
3357 	 * Attempt a get device id command.  If it fails, we probably
3358 	 * don't have a BMC here.
3359 	 */
3360 	rv = try_get_dev_id(new_smi);
3361 	if (rv) {
3362 		if (new_smi->addr_source)
3363 			printk(KERN_INFO PFX "There appears to be no BMC"
3364 			       " at this location\n");
3365 		goto out_err;
3366 	}
3367 
3368 	setup_oem_data_handler(new_smi);
3369 	setup_xaction_handlers(new_smi);
3370 
3371 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3372 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3373 	new_smi->curr_msg = NULL;
3374 	atomic_set(&new_smi->req_events, 0);
3375 	new_smi->run_to_completion = false;
3376 	for (i = 0; i < SI_NUM_STATS; i++)
3377 		atomic_set(&new_smi->stats[i], 0);
3378 
3379 	new_smi->interrupt_disabled = true;
3380 	atomic_set(&new_smi->stop_operation, 0);
3381 	atomic_set(&new_smi->need_watch, 0);
3382 	new_smi->intf_num = smi_num;
3383 	smi_num++;
3384 
3385 	rv = try_enable_event_buffer(new_smi);
3386 	if (rv == 0)
3387 		new_smi->has_event_buffer = true;
3388 
3389 	/*
3390 	 * Start clearing the flags before we enable interrupts or the
3391 	 * timer to avoid racing with the timer.
3392 	 */
3393 	start_clear_flags(new_smi);
3394 	/* IRQ is defined to be set when non-zero. */
3395 	if (new_smi->irq)
3396 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3397 
3398 	if (!new_smi->dev) {
3399 		/*
3400 		 * If we don't already have a device from something
3401 		 * else (like PCI), then register a new one.
3402 		 */
3403 		new_smi->pdev = platform_device_alloc("ipmi_si",
3404 						      new_smi->intf_num);
3405 		if (!new_smi->pdev) {
3406 			printk(KERN_ERR PFX
3407 			       "Unable to allocate platform device\n");
3408 			goto out_err;
3409 		}
3410 		new_smi->dev = &new_smi->pdev->dev;
3411 		new_smi->dev->driver = &ipmi_driver.driver;
3412 
3413 		rv = platform_device_add(new_smi->pdev);
3414 		if (rv) {
3415 			printk(KERN_ERR PFX
3416 			       "Unable to register system interface device:"
3417 			       " %d\n",
3418 			       rv);
3419 			goto out_err;
3420 		}
3421 		new_smi->dev_registered = true;
3422 	}
3423 
3424 	rv = ipmi_register_smi(&handlers,
3425 			       new_smi,
3426 			       &new_smi->device_id,
3427 			       new_smi->dev,
3428 			       "bmc",
3429 			       new_smi->slave_addr);
3430 	if (rv) {
3431 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3432 			rv);
3433 		goto out_err_stop_timer;
3434 	}
3435 
3436 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3437 				     &smi_type_proc_ops,
3438 				     new_smi);
3439 	if (rv) {
3440 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3441 		goto out_err_stop_timer;
3442 	}
3443 
3444 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3445 				     &smi_si_stats_proc_ops,
3446 				     new_smi);
3447 	if (rv) {
3448 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3449 		goto out_err_stop_timer;
3450 	}
3451 
3452 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3453 				     &smi_params_proc_ops,
3454 				     new_smi);
3455 	if (rv) {
3456 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3457 		goto out_err_stop_timer;
3458 	}
3459 
3460 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3461 		 si_to_str[new_smi->si_type]);
3462 
3463 	return 0;
3464 
3465  out_err_stop_timer:
3466 	atomic_inc(&new_smi->stop_operation);
3467 	wait_for_timer_and_thread(new_smi);
3468 
3469  out_err:
3470 	new_smi->interrupt_disabled = true;
3471 
3472 	if (new_smi->intf) {
3473 		ipmi_unregister_smi(new_smi->intf);
3474 		new_smi->intf = NULL;
3475 	}
3476 
3477 	if (new_smi->irq_cleanup) {
3478 		new_smi->irq_cleanup(new_smi);
3479 		new_smi->irq_cleanup = NULL;
3480 	}
3481 
3482 	/*
3483 	 * Wait until we know that we are out of any interrupt
3484 	 * handlers might have been running before we freed the
3485 	 * interrupt.
3486 	 */
3487 	synchronize_sched();
3488 
3489 	if (new_smi->si_sm) {
3490 		if (new_smi->handlers)
3491 			new_smi->handlers->cleanup(new_smi->si_sm);
3492 		kfree(new_smi->si_sm);
3493 		new_smi->si_sm = NULL;
3494 	}
3495 	if (new_smi->addr_source_cleanup) {
3496 		new_smi->addr_source_cleanup(new_smi);
3497 		new_smi->addr_source_cleanup = NULL;
3498 	}
3499 	if (new_smi->io_cleanup) {
3500 		new_smi->io_cleanup(new_smi);
3501 		new_smi->io_cleanup = NULL;
3502 	}
3503 
3504 	if (new_smi->dev_registered) {
3505 		platform_device_unregister(new_smi->pdev);
3506 		new_smi->dev_registered = false;
3507 	}
3508 
3509 	return rv;
3510 }
3511 
3512 static int init_ipmi_si(void)
3513 {
3514 	int  i;
3515 	char *str;
3516 	int  rv;
3517 	struct smi_info *e;
3518 	enum ipmi_addr_src type = SI_INVALID;
3519 
3520 	if (initialized)
3521 		return 0;
3522 	initialized = 1;
3523 
3524 	if (si_tryplatform) {
3525 		rv = platform_driver_register(&ipmi_driver);
3526 		if (rv) {
3527 			printk(KERN_ERR PFX "Unable to register "
3528 			       "driver: %d\n", rv);
3529 			return rv;
3530 		}
3531 	}
3532 
3533 	/* Parse out the si_type string into its components. */
3534 	str = si_type_str;
3535 	if (*str != '\0') {
3536 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3537 			si_type[i] = str;
3538 			str = strchr(str, ',');
3539 			if (str) {
3540 				*str = '\0';
3541 				str++;
3542 			} else {
3543 				break;
3544 			}
3545 		}
3546 	}
3547 
3548 	printk(KERN_INFO "IPMI System Interface driver.\n");
3549 
3550 	/* If the user gave us a device, they presumably want us to use it */
3551 	if (!hardcode_find_bmc())
3552 		return 0;
3553 
3554 #ifdef CONFIG_PCI
3555 	if (si_trypci) {
3556 		rv = pci_register_driver(&ipmi_pci_driver);
3557 		if (rv)
3558 			printk(KERN_ERR PFX "Unable to register "
3559 			       "PCI driver: %d\n", rv);
3560 		else
3561 			pci_registered = true;
3562 	}
3563 #endif
3564 
3565 #ifdef CONFIG_ACPI
3566 	if (si_tryacpi) {
3567 		pnp_register_driver(&ipmi_pnp_driver);
3568 		pnp_registered = true;
3569 	}
3570 #endif
3571 
3572 #ifdef CONFIG_DMI
3573 	if (si_trydmi)
3574 		dmi_find_bmc();
3575 #endif
3576 
3577 #ifdef CONFIG_ACPI
3578 	if (si_tryacpi)
3579 		spmi_find_bmc();
3580 #endif
3581 
3582 #ifdef CONFIG_PARISC
3583 	register_parisc_driver(&ipmi_parisc_driver);
3584 	parisc_registered = true;
3585 	/* poking PC IO addresses will crash machine, don't do it */
3586 	si_trydefaults = 0;
3587 #endif
3588 
3589 	/* We prefer devices with interrupts, but in the case of a machine
3590 	   with multiple BMCs we assume that there will be several instances
3591 	   of a given type so if we succeed in registering a type then also
3592 	   try to register everything else of the same type */
3593 
3594 	mutex_lock(&smi_infos_lock);
3595 	list_for_each_entry(e, &smi_infos, link) {
3596 		/* Try to register a device if it has an IRQ and we either
3597 		   haven't successfully registered a device yet or this
3598 		   device has the same type as one we successfully registered */
3599 		if (e->irq && (!type || e->addr_source == type)) {
3600 			if (!try_smi_init(e)) {
3601 				type = e->addr_source;
3602 			}
3603 		}
3604 	}
3605 
3606 	/* type will only have been set if we successfully registered an si */
3607 	if (type) {
3608 		mutex_unlock(&smi_infos_lock);
3609 		return 0;
3610 	}
3611 
3612 	/* Fall back to the preferred device */
3613 
3614 	list_for_each_entry(e, &smi_infos, link) {
3615 		if (!e->irq && (!type || e->addr_source == type)) {
3616 			if (!try_smi_init(e)) {
3617 				type = e->addr_source;
3618 			}
3619 		}
3620 	}
3621 	mutex_unlock(&smi_infos_lock);
3622 
3623 	if (type)
3624 		return 0;
3625 
3626 	if (si_trydefaults) {
3627 		mutex_lock(&smi_infos_lock);
3628 		if (list_empty(&smi_infos)) {
3629 			/* No BMC was found, try defaults. */
3630 			mutex_unlock(&smi_infos_lock);
3631 			default_find_bmc();
3632 		} else
3633 			mutex_unlock(&smi_infos_lock);
3634 	}
3635 
3636 	mutex_lock(&smi_infos_lock);
3637 	if (unload_when_empty && list_empty(&smi_infos)) {
3638 		mutex_unlock(&smi_infos_lock);
3639 		cleanup_ipmi_si();
3640 		printk(KERN_WARNING PFX
3641 		       "Unable to find any System Interface(s)\n");
3642 		return -ENODEV;
3643 	} else {
3644 		mutex_unlock(&smi_infos_lock);
3645 		return 0;
3646 	}
3647 }
3648 module_init(init_ipmi_si);
3649 
3650 static void cleanup_one_si(struct smi_info *to_clean)
3651 {
3652 	int           rv = 0;
3653 	unsigned long flags;
3654 
3655 	if (!to_clean)
3656 		return;
3657 
3658 	list_del(&to_clean->link);
3659 
3660 	/* Tell the driver that we are shutting down. */
3661 	atomic_inc(&to_clean->stop_operation);
3662 
3663 	/*
3664 	 * Make sure the timer and thread are stopped and will not run
3665 	 * again.
3666 	 */
3667 	wait_for_timer_and_thread(to_clean);
3668 
3669 	/*
3670 	 * Timeouts are stopped, now make sure the interrupts are off
3671 	 * for the device.  A little tricky with locks to make sure
3672 	 * there are no races.
3673 	 */
3674 	spin_lock_irqsave(&to_clean->si_lock, flags);
3675 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3676 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3677 		poll(to_clean);
3678 		schedule_timeout_uninterruptible(1);
3679 		spin_lock_irqsave(&to_clean->si_lock, flags);
3680 	}
3681 	disable_si_irq(to_clean);
3682 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3683 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3684 		poll(to_clean);
3685 		schedule_timeout_uninterruptible(1);
3686 	}
3687 
3688 	/* Clean up interrupts and make sure that everything is done. */
3689 	if (to_clean->irq_cleanup)
3690 		to_clean->irq_cleanup(to_clean);
3691 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3692 		poll(to_clean);
3693 		schedule_timeout_uninterruptible(1);
3694 	}
3695 
3696 	if (to_clean->intf)
3697 		rv = ipmi_unregister_smi(to_clean->intf);
3698 
3699 	if (rv) {
3700 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3701 		       rv);
3702 	}
3703 
3704 	if (to_clean->handlers)
3705 		to_clean->handlers->cleanup(to_clean->si_sm);
3706 
3707 	kfree(to_clean->si_sm);
3708 
3709 	if (to_clean->addr_source_cleanup)
3710 		to_clean->addr_source_cleanup(to_clean);
3711 	if (to_clean->io_cleanup)
3712 		to_clean->io_cleanup(to_clean);
3713 
3714 	if (to_clean->dev_registered)
3715 		platform_device_unregister(to_clean->pdev);
3716 
3717 	kfree(to_clean);
3718 }
3719 
3720 static void cleanup_ipmi_si(void)
3721 {
3722 	struct smi_info *e, *tmp_e;
3723 
3724 	if (!initialized)
3725 		return;
3726 
3727 #ifdef CONFIG_PCI
3728 	if (pci_registered)
3729 		pci_unregister_driver(&ipmi_pci_driver);
3730 #endif
3731 #ifdef CONFIG_ACPI
3732 	if (pnp_registered)
3733 		pnp_unregister_driver(&ipmi_pnp_driver);
3734 #endif
3735 #ifdef CONFIG_PARISC
3736 	if (parisc_registered)
3737 		unregister_parisc_driver(&ipmi_parisc_driver);
3738 #endif
3739 
3740 	platform_driver_unregister(&ipmi_driver);
3741 
3742 	mutex_lock(&smi_infos_lock);
3743 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3744 		cleanup_one_si(e);
3745 	mutex_unlock(&smi_infos_lock);
3746 }
3747 module_exit(cleanup_ipmi_si);
3748 
3749 MODULE_LICENSE("GPL");
3750 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3751 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3752 		   " system interfaces.");
3753