1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/of_device.h> 68 #include <linux/of_platform.h> 69 #include <linux/of_address.h> 70 #include <linux/of_irq.h> 71 #include <linux/acpi.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_GETTING_MESSAGES, 96 SI_CHECKING_ENABLES, 97 SI_SETTING_ENABLES 98 /* FIXME - add watchdog stuff. */ 99 }; 100 101 /* Some BT-specific defines we need here. */ 102 #define IPMI_BT_INTMASK_REG 2 103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106 enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108 }; 109 110 static const char * const si_to_str[] = { "kcs", "smic", "bt" }; 111 112 #define DEVICE_NAME "ipmi_si" 113 114 static struct platform_driver ipmi_driver; 115 116 /* 117 * Indexes into stats[] in smi_info below. 118 */ 119 enum si_stat_indexes { 120 /* 121 * Number of times the driver requested a timer while an operation 122 * was in progress. 123 */ 124 SI_STAT_short_timeouts = 0, 125 126 /* 127 * Number of times the driver requested a timer while nothing was in 128 * progress. 129 */ 130 SI_STAT_long_timeouts, 131 132 /* Number of times the interface was idle while being polled. */ 133 SI_STAT_idles, 134 135 /* Number of interrupts the driver handled. */ 136 SI_STAT_interrupts, 137 138 /* Number of time the driver got an ATTN from the hardware. */ 139 SI_STAT_attentions, 140 141 /* Number of times the driver requested flags from the hardware. */ 142 SI_STAT_flag_fetches, 143 144 /* Number of times the hardware didn't follow the state machine. */ 145 SI_STAT_hosed_count, 146 147 /* Number of completed messages. */ 148 SI_STAT_complete_transactions, 149 150 /* Number of IPMI events received from the hardware. */ 151 SI_STAT_events, 152 153 /* Number of watchdog pretimeouts. */ 154 SI_STAT_watchdog_pretimeouts, 155 156 /* Number of asynchronous messages received. */ 157 SI_STAT_incoming_messages, 158 159 160 /* This *must* remain last, add new values above this. */ 161 SI_NUM_STATS 162 }; 163 164 struct smi_info { 165 int intf_num; 166 ipmi_smi_t intf; 167 struct si_sm_data *si_sm; 168 const struct si_sm_handlers *handlers; 169 enum si_type si_type; 170 spinlock_t si_lock; 171 struct ipmi_smi_msg *waiting_msg; 172 struct ipmi_smi_msg *curr_msg; 173 enum si_intf_state si_state; 174 175 /* 176 * Used to handle the various types of I/O that can occur with 177 * IPMI 178 */ 179 struct si_sm_io io; 180 int (*io_setup)(struct smi_info *info); 181 void (*io_cleanup)(struct smi_info *info); 182 int (*irq_setup)(struct smi_info *info); 183 void (*irq_cleanup)(struct smi_info *info); 184 unsigned int io_size; 185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 186 void (*addr_source_cleanup)(struct smi_info *info); 187 void *addr_source_data; 188 189 /* 190 * Per-OEM handler, called from handle_flags(). Returns 1 191 * when handle_flags() needs to be re-run or 0 indicating it 192 * set si_state itself. 193 */ 194 int (*oem_data_avail_handler)(struct smi_info *smi_info); 195 196 /* 197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 198 * is set to hold the flags until we are done handling everything 199 * from the flags. 200 */ 201 #define RECEIVE_MSG_AVAIL 0x01 202 #define EVENT_MSG_BUFFER_FULL 0x02 203 #define WDT_PRE_TIMEOUT_INT 0x08 204 #define OEM0_DATA_AVAIL 0x20 205 #define OEM1_DATA_AVAIL 0x40 206 #define OEM2_DATA_AVAIL 0x80 207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 208 OEM1_DATA_AVAIL | \ 209 OEM2_DATA_AVAIL) 210 unsigned char msg_flags; 211 212 /* Does the BMC have an event buffer? */ 213 bool has_event_buffer; 214 215 /* 216 * If set to true, this will request events the next time the 217 * state machine is idle. 218 */ 219 atomic_t req_events; 220 221 /* 222 * If true, run the state machine to completion on every send 223 * call. Generally used after a panic to make sure stuff goes 224 * out. 225 */ 226 bool run_to_completion; 227 228 /* The I/O port of an SI interface. */ 229 int port; 230 231 /* 232 * The space between start addresses of the two ports. For 233 * instance, if the first port is 0xca2 and the spacing is 4, then 234 * the second port is 0xca6. 235 */ 236 unsigned int spacing; 237 238 /* zero if no irq; */ 239 int irq; 240 241 /* The timer for this si. */ 242 struct timer_list si_timer; 243 244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 245 bool timer_running; 246 247 /* The time (in jiffies) the last timeout occurred at. */ 248 unsigned long last_timeout_jiffies; 249 250 /* Are we waiting for the events, pretimeouts, received msgs? */ 251 atomic_t need_watch; 252 253 /* 254 * The driver will disable interrupts when it gets into a 255 * situation where it cannot handle messages due to lack of 256 * memory. Once that situation clears up, it will re-enable 257 * interrupts. 258 */ 259 bool interrupt_disabled; 260 261 /* 262 * Does the BMC support events? 263 */ 264 bool supports_event_msg_buff; 265 266 /* 267 * Can we disable interrupts the global enables receive irq 268 * bit? There are currently two forms of brokenness, some 269 * systems cannot disable the bit (which is technically within 270 * the spec but a bad idea) and some systems have the bit 271 * forced to zero even though interrupts work (which is 272 * clearly outside the spec). The next bool tells which form 273 * of brokenness is present. 274 */ 275 bool cannot_disable_irq; 276 277 /* 278 * Some systems are broken and cannot set the irq enable 279 * bit, even if they support interrupts. 280 */ 281 bool irq_enable_broken; 282 283 /* 284 * Did we get an attention that we did not handle? 285 */ 286 bool got_attn; 287 288 /* From the get device id response... */ 289 struct ipmi_device_id device_id; 290 291 /* Driver model stuff. */ 292 struct device *dev; 293 struct platform_device *pdev; 294 295 /* 296 * True if we allocated the device, false if it came from 297 * someplace else (like PCI). 298 */ 299 bool dev_registered; 300 301 /* Slave address, could be reported from DMI. */ 302 unsigned char slave_addr; 303 304 /* Counters and things for the proc filesystem. */ 305 atomic_t stats[SI_NUM_STATS]; 306 307 struct task_struct *thread; 308 309 struct list_head link; 310 union ipmi_smi_info_union addr_info; 311 }; 312 313 #define smi_inc_stat(smi, stat) \ 314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 315 #define smi_get_stat(smi, stat) \ 316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 317 318 #define SI_MAX_PARMS 4 319 320 static int force_kipmid[SI_MAX_PARMS]; 321 static int num_force_kipmid; 322 #ifdef CONFIG_PCI 323 static bool pci_registered; 324 #endif 325 #ifdef CONFIG_PARISC 326 static bool parisc_registered; 327 #endif 328 329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 330 static int num_max_busy_us; 331 332 static bool unload_when_empty = true; 333 334 static int add_smi(struct smi_info *smi); 335 static int try_smi_init(struct smi_info *smi); 336 static void cleanup_one_si(struct smi_info *to_clean); 337 static void cleanup_ipmi_si(void); 338 339 #ifdef DEBUG_TIMING 340 void debug_timestamp(char *msg) 341 { 342 struct timespec64 t; 343 344 getnstimeofday64(&t); 345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 346 } 347 #else 348 #define debug_timestamp(x) 349 #endif 350 351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 352 static int register_xaction_notifier(struct notifier_block *nb) 353 { 354 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 355 } 356 357 static void deliver_recv_msg(struct smi_info *smi_info, 358 struct ipmi_smi_msg *msg) 359 { 360 /* Deliver the message to the upper layer. */ 361 if (smi_info->intf) 362 ipmi_smi_msg_received(smi_info->intf, msg); 363 else 364 ipmi_free_smi_msg(msg); 365 } 366 367 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 368 { 369 struct ipmi_smi_msg *msg = smi_info->curr_msg; 370 371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 372 cCode = IPMI_ERR_UNSPECIFIED; 373 /* else use it as is */ 374 375 /* Make it a response */ 376 msg->rsp[0] = msg->data[0] | 4; 377 msg->rsp[1] = msg->data[1]; 378 msg->rsp[2] = cCode; 379 msg->rsp_size = 3; 380 381 smi_info->curr_msg = NULL; 382 deliver_recv_msg(smi_info, msg); 383 } 384 385 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 386 { 387 int rv; 388 389 if (!smi_info->waiting_msg) { 390 smi_info->curr_msg = NULL; 391 rv = SI_SM_IDLE; 392 } else { 393 int err; 394 395 smi_info->curr_msg = smi_info->waiting_msg; 396 smi_info->waiting_msg = NULL; 397 debug_timestamp("Start2"); 398 err = atomic_notifier_call_chain(&xaction_notifier_list, 399 0, smi_info); 400 if (err & NOTIFY_STOP_MASK) { 401 rv = SI_SM_CALL_WITHOUT_DELAY; 402 goto out; 403 } 404 err = smi_info->handlers->start_transaction( 405 smi_info->si_sm, 406 smi_info->curr_msg->data, 407 smi_info->curr_msg->data_size); 408 if (err) 409 return_hosed_msg(smi_info, err); 410 411 rv = SI_SM_CALL_WITHOUT_DELAY; 412 } 413 out: 414 return rv; 415 } 416 417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 418 { 419 smi_info->last_timeout_jiffies = jiffies; 420 mod_timer(&smi_info->si_timer, new_val); 421 smi_info->timer_running = true; 422 } 423 424 /* 425 * Start a new message and (re)start the timer and thread. 426 */ 427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 428 unsigned int size) 429 { 430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 431 432 if (smi_info->thread) 433 wake_up_process(smi_info->thread); 434 435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 436 } 437 438 static void start_check_enables(struct smi_info *smi_info, bool start_timer) 439 { 440 unsigned char msg[2]; 441 442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 444 445 if (start_timer) 446 start_new_msg(smi_info, msg, 2); 447 else 448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 449 smi_info->si_state = SI_CHECKING_ENABLES; 450 } 451 452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer) 453 { 454 unsigned char msg[3]; 455 456 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 459 msg[2] = WDT_PRE_TIMEOUT_INT; 460 461 if (start_timer) 462 start_new_msg(smi_info, msg, 3); 463 else 464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 465 smi_info->si_state = SI_CLEARING_FLAGS; 466 } 467 468 static void start_getting_msg_queue(struct smi_info *smi_info) 469 { 470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 472 smi_info->curr_msg->data_size = 2; 473 474 start_new_msg(smi_info, smi_info->curr_msg->data, 475 smi_info->curr_msg->data_size); 476 smi_info->si_state = SI_GETTING_MESSAGES; 477 } 478 479 static void start_getting_events(struct smi_info *smi_info) 480 { 481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 483 smi_info->curr_msg->data_size = 2; 484 485 start_new_msg(smi_info, smi_info->curr_msg->data, 486 smi_info->curr_msg->data_size); 487 smi_info->si_state = SI_GETTING_EVENTS; 488 } 489 490 /* 491 * When we have a situtaion where we run out of memory and cannot 492 * allocate messages, we just leave them in the BMC and run the system 493 * polled until we can allocate some memory. Once we have some 494 * memory, we will re-enable the interrupt. 495 * 496 * Note that we cannot just use disable_irq(), since the interrupt may 497 * be shared. 498 */ 499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer) 500 { 501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 502 smi_info->interrupt_disabled = true; 503 start_check_enables(smi_info, start_timer); 504 return true; 505 } 506 return false; 507 } 508 509 static inline bool enable_si_irq(struct smi_info *smi_info) 510 { 511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 512 smi_info->interrupt_disabled = false; 513 start_check_enables(smi_info, true); 514 return true; 515 } 516 return false; 517 } 518 519 /* 520 * Allocate a message. If unable to allocate, start the interrupt 521 * disable process and return NULL. If able to allocate but 522 * interrupts are disabled, free the message and return NULL after 523 * starting the interrupt enable process. 524 */ 525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 526 { 527 struct ipmi_smi_msg *msg; 528 529 msg = ipmi_alloc_smi_msg(); 530 if (!msg) { 531 if (!disable_si_irq(smi_info, true)) 532 smi_info->si_state = SI_NORMAL; 533 } else if (enable_si_irq(smi_info)) { 534 ipmi_free_smi_msg(msg); 535 msg = NULL; 536 } 537 return msg; 538 } 539 540 static void handle_flags(struct smi_info *smi_info) 541 { 542 retry: 543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 544 /* Watchdog pre-timeout */ 545 smi_inc_stat(smi_info, watchdog_pretimeouts); 546 547 start_clear_flags(smi_info, true); 548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 549 if (smi_info->intf) 550 ipmi_smi_watchdog_pretimeout(smi_info->intf); 551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 552 /* Messages available. */ 553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 554 if (!smi_info->curr_msg) 555 return; 556 557 start_getting_msg_queue(smi_info); 558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 559 /* Events available. */ 560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 561 if (!smi_info->curr_msg) 562 return; 563 564 start_getting_events(smi_info); 565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 566 smi_info->oem_data_avail_handler) { 567 if (smi_info->oem_data_avail_handler(smi_info)) 568 goto retry; 569 } else 570 smi_info->si_state = SI_NORMAL; 571 } 572 573 /* 574 * Global enables we care about. 575 */ 576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 577 IPMI_BMC_EVT_MSG_INTR) 578 579 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 580 bool *irq_on) 581 { 582 u8 enables = 0; 583 584 if (smi_info->supports_event_msg_buff) 585 enables |= IPMI_BMC_EVT_MSG_BUFF; 586 587 if (((smi_info->irq && !smi_info->interrupt_disabled) || 588 smi_info->cannot_disable_irq) && 589 !smi_info->irq_enable_broken) 590 enables |= IPMI_BMC_RCV_MSG_INTR; 591 592 if (smi_info->supports_event_msg_buff && 593 smi_info->irq && !smi_info->interrupt_disabled && 594 !smi_info->irq_enable_broken) 595 enables |= IPMI_BMC_EVT_MSG_INTR; 596 597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 598 599 return enables; 600 } 601 602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 603 { 604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 605 606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 607 608 if ((bool)irqstate == irq_on) 609 return; 610 611 if (irq_on) 612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 614 else 615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 616 } 617 618 static void handle_transaction_done(struct smi_info *smi_info) 619 { 620 struct ipmi_smi_msg *msg; 621 622 debug_timestamp("Done"); 623 switch (smi_info->si_state) { 624 case SI_NORMAL: 625 if (!smi_info->curr_msg) 626 break; 627 628 smi_info->curr_msg->rsp_size 629 = smi_info->handlers->get_result( 630 smi_info->si_sm, 631 smi_info->curr_msg->rsp, 632 IPMI_MAX_MSG_LENGTH); 633 634 /* 635 * Do this here becase deliver_recv_msg() releases the 636 * lock, and a new message can be put in during the 637 * time the lock is released. 638 */ 639 msg = smi_info->curr_msg; 640 smi_info->curr_msg = NULL; 641 deliver_recv_msg(smi_info, msg); 642 break; 643 644 case SI_GETTING_FLAGS: 645 { 646 unsigned char msg[4]; 647 unsigned int len; 648 649 /* We got the flags from the SMI, now handle them. */ 650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 651 if (msg[2] != 0) { 652 /* Error fetching flags, just give up for now. */ 653 smi_info->si_state = SI_NORMAL; 654 } else if (len < 4) { 655 /* 656 * Hmm, no flags. That's technically illegal, but 657 * don't use uninitialized data. 658 */ 659 smi_info->si_state = SI_NORMAL; 660 } else { 661 smi_info->msg_flags = msg[3]; 662 handle_flags(smi_info); 663 } 664 break; 665 } 666 667 case SI_CLEARING_FLAGS: 668 { 669 unsigned char msg[3]; 670 671 /* We cleared the flags. */ 672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 673 if (msg[2] != 0) { 674 /* Error clearing flags */ 675 dev_warn(smi_info->dev, 676 "Error clearing flags: %2.2x\n", msg[2]); 677 } 678 smi_info->si_state = SI_NORMAL; 679 break; 680 } 681 682 case SI_GETTING_EVENTS: 683 { 684 smi_info->curr_msg->rsp_size 685 = smi_info->handlers->get_result( 686 smi_info->si_sm, 687 smi_info->curr_msg->rsp, 688 IPMI_MAX_MSG_LENGTH); 689 690 /* 691 * Do this here becase deliver_recv_msg() releases the 692 * lock, and a new message can be put in during the 693 * time the lock is released. 694 */ 695 msg = smi_info->curr_msg; 696 smi_info->curr_msg = NULL; 697 if (msg->rsp[2] != 0) { 698 /* Error getting event, probably done. */ 699 msg->done(msg); 700 701 /* Take off the event flag. */ 702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 703 handle_flags(smi_info); 704 } else { 705 smi_inc_stat(smi_info, events); 706 707 /* 708 * Do this before we deliver the message 709 * because delivering the message releases the 710 * lock and something else can mess with the 711 * state. 712 */ 713 handle_flags(smi_info); 714 715 deliver_recv_msg(smi_info, msg); 716 } 717 break; 718 } 719 720 case SI_GETTING_MESSAGES: 721 { 722 smi_info->curr_msg->rsp_size 723 = smi_info->handlers->get_result( 724 smi_info->si_sm, 725 smi_info->curr_msg->rsp, 726 IPMI_MAX_MSG_LENGTH); 727 728 /* 729 * Do this here becase deliver_recv_msg() releases the 730 * lock, and a new message can be put in during the 731 * time the lock is released. 732 */ 733 msg = smi_info->curr_msg; 734 smi_info->curr_msg = NULL; 735 if (msg->rsp[2] != 0) { 736 /* Error getting event, probably done. */ 737 msg->done(msg); 738 739 /* Take off the msg flag. */ 740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 741 handle_flags(smi_info); 742 } else { 743 smi_inc_stat(smi_info, incoming_messages); 744 745 /* 746 * Do this before we deliver the message 747 * because delivering the message releases the 748 * lock and something else can mess with the 749 * state. 750 */ 751 handle_flags(smi_info); 752 753 deliver_recv_msg(smi_info, msg); 754 } 755 break; 756 } 757 758 case SI_CHECKING_ENABLES: 759 { 760 unsigned char msg[4]; 761 u8 enables; 762 bool irq_on; 763 764 /* We got the flags from the SMI, now handle them. */ 765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 766 if (msg[2] != 0) { 767 dev_warn(smi_info->dev, 768 "Couldn't get irq info: %x.\n", msg[2]); 769 dev_warn(smi_info->dev, 770 "Maybe ok, but ipmi might run very slowly.\n"); 771 smi_info->si_state = SI_NORMAL; 772 break; 773 } 774 enables = current_global_enables(smi_info, 0, &irq_on); 775 if (smi_info->si_type == SI_BT) 776 /* BT has its own interrupt enable bit. */ 777 check_bt_irq(smi_info, irq_on); 778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 779 /* Enables are not correct, fix them. */ 780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 783 smi_info->handlers->start_transaction( 784 smi_info->si_sm, msg, 3); 785 smi_info->si_state = SI_SETTING_ENABLES; 786 } else if (smi_info->supports_event_msg_buff) { 787 smi_info->curr_msg = ipmi_alloc_smi_msg(); 788 if (!smi_info->curr_msg) { 789 smi_info->si_state = SI_NORMAL; 790 break; 791 } 792 start_getting_events(smi_info); 793 } else { 794 smi_info->si_state = SI_NORMAL; 795 } 796 break; 797 } 798 799 case SI_SETTING_ENABLES: 800 { 801 unsigned char msg[4]; 802 803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 804 if (msg[2] != 0) 805 dev_warn(smi_info->dev, 806 "Could not set the global enables: 0x%x.\n", 807 msg[2]); 808 809 if (smi_info->supports_event_msg_buff) { 810 smi_info->curr_msg = ipmi_alloc_smi_msg(); 811 if (!smi_info->curr_msg) { 812 smi_info->si_state = SI_NORMAL; 813 break; 814 } 815 start_getting_events(smi_info); 816 } else { 817 smi_info->si_state = SI_NORMAL; 818 } 819 break; 820 } 821 } 822 } 823 824 /* 825 * Called on timeouts and events. Timeouts should pass the elapsed 826 * time, interrupts should pass in zero. Must be called with 827 * si_lock held and interrupts disabled. 828 */ 829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 830 int time) 831 { 832 enum si_sm_result si_sm_result; 833 834 restart: 835 /* 836 * There used to be a loop here that waited a little while 837 * (around 25us) before giving up. That turned out to be 838 * pointless, the minimum delays I was seeing were in the 300us 839 * range, which is far too long to wait in an interrupt. So 840 * we just run until the state machine tells us something 841 * happened or it needs a delay. 842 */ 843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 844 time = 0; 845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 847 848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 849 smi_inc_stat(smi_info, complete_transactions); 850 851 handle_transaction_done(smi_info); 852 goto restart; 853 } else if (si_sm_result == SI_SM_HOSED) { 854 smi_inc_stat(smi_info, hosed_count); 855 856 /* 857 * Do the before return_hosed_msg, because that 858 * releases the lock. 859 */ 860 smi_info->si_state = SI_NORMAL; 861 if (smi_info->curr_msg != NULL) { 862 /* 863 * If we were handling a user message, format 864 * a response to send to the upper layer to 865 * tell it about the error. 866 */ 867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 868 } 869 goto restart; 870 } 871 872 /* 873 * We prefer handling attn over new messages. But don't do 874 * this if there is not yet an upper layer to handle anything. 875 */ 876 if (likely(smi_info->intf) && 877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 878 unsigned char msg[2]; 879 880 if (smi_info->si_state != SI_NORMAL) { 881 /* 882 * We got an ATTN, but we are doing something else. 883 * Handle the ATTN later. 884 */ 885 smi_info->got_attn = true; 886 } else { 887 smi_info->got_attn = false; 888 smi_inc_stat(smi_info, attentions); 889 890 /* 891 * Got a attn, send down a get message flags to see 892 * what's causing it. It would be better to handle 893 * this in the upper layer, but due to the way 894 * interrupts work with the SMI, that's not really 895 * possible. 896 */ 897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 898 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 899 900 start_new_msg(smi_info, msg, 2); 901 smi_info->si_state = SI_GETTING_FLAGS; 902 goto restart; 903 } 904 } 905 906 /* If we are currently idle, try to start the next message. */ 907 if (si_sm_result == SI_SM_IDLE) { 908 smi_inc_stat(smi_info, idles); 909 910 si_sm_result = start_next_msg(smi_info); 911 if (si_sm_result != SI_SM_IDLE) 912 goto restart; 913 } 914 915 if ((si_sm_result == SI_SM_IDLE) 916 && (atomic_read(&smi_info->req_events))) { 917 /* 918 * We are idle and the upper layer requested that I fetch 919 * events, so do so. 920 */ 921 atomic_set(&smi_info->req_events, 0); 922 923 /* 924 * Take this opportunity to check the interrupt and 925 * message enable state for the BMC. The BMC can be 926 * asynchronously reset, and may thus get interrupts 927 * disable and messages disabled. 928 */ 929 if (smi_info->supports_event_msg_buff || smi_info->irq) { 930 start_check_enables(smi_info, true); 931 } else { 932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 933 if (!smi_info->curr_msg) 934 goto out; 935 936 start_getting_events(smi_info); 937 } 938 goto restart; 939 } 940 941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 942 /* Ok it if fails, the timer will just go off. */ 943 if (del_timer(&smi_info->si_timer)) 944 smi_info->timer_running = false; 945 } 946 947 out: 948 return si_sm_result; 949 } 950 951 static void check_start_timer_thread(struct smi_info *smi_info) 952 { 953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 955 956 if (smi_info->thread) 957 wake_up_process(smi_info->thread); 958 959 start_next_msg(smi_info); 960 smi_event_handler(smi_info, 0); 961 } 962 } 963 964 static void flush_messages(void *send_info) 965 { 966 struct smi_info *smi_info = send_info; 967 enum si_sm_result result; 968 969 /* 970 * Currently, this function is called only in run-to-completion 971 * mode. This means we are single-threaded, no need for locks. 972 */ 973 result = smi_event_handler(smi_info, 0); 974 while (result != SI_SM_IDLE) { 975 udelay(SI_SHORT_TIMEOUT_USEC); 976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 977 } 978 } 979 980 static void sender(void *send_info, 981 struct ipmi_smi_msg *msg) 982 { 983 struct smi_info *smi_info = send_info; 984 unsigned long flags; 985 986 debug_timestamp("Enqueue"); 987 988 if (smi_info->run_to_completion) { 989 /* 990 * If we are running to completion, start it. Upper 991 * layer will call flush_messages to clear it out. 992 */ 993 smi_info->waiting_msg = msg; 994 return; 995 } 996 997 spin_lock_irqsave(&smi_info->si_lock, flags); 998 /* 999 * The following two lines don't need to be under the lock for 1000 * the lock's sake, but they do need SMP memory barriers to 1001 * avoid getting things out of order. We are already claiming 1002 * the lock, anyway, so just do it under the lock to avoid the 1003 * ordering problem. 1004 */ 1005 BUG_ON(smi_info->waiting_msg); 1006 smi_info->waiting_msg = msg; 1007 check_start_timer_thread(smi_info); 1008 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1009 } 1010 1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 1012 { 1013 struct smi_info *smi_info = send_info; 1014 1015 smi_info->run_to_completion = i_run_to_completion; 1016 if (i_run_to_completion) 1017 flush_messages(smi_info); 1018 } 1019 1020 /* 1021 * Use -1 in the nsec value of the busy waiting timespec to tell that 1022 * we are spinning in kipmid looking for something and not delaying 1023 * between checks 1024 */ 1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 1026 { 1027 ts->tv_nsec = -1; 1028 } 1029 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1030 { 1031 return ts->tv_nsec != -1; 1032 } 1033 1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1035 const struct smi_info *smi_info, 1036 struct timespec64 *busy_until) 1037 { 1038 unsigned int max_busy_us = 0; 1039 1040 if (smi_info->intf_num < num_max_busy_us) 1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1043 ipmi_si_set_not_busy(busy_until); 1044 else if (!ipmi_si_is_busy(busy_until)) { 1045 getnstimeofday64(busy_until); 1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1047 } else { 1048 struct timespec64 now; 1049 1050 getnstimeofday64(&now); 1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1052 ipmi_si_set_not_busy(busy_until); 1053 return 0; 1054 } 1055 } 1056 return 1; 1057 } 1058 1059 1060 /* 1061 * A busy-waiting loop for speeding up IPMI operation. 1062 * 1063 * Lousy hardware makes this hard. This is only enabled for systems 1064 * that are not BT and do not have interrupts. It starts spinning 1065 * when an operation is complete or until max_busy tells it to stop 1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1067 * Documentation/IPMI.txt for details. 1068 */ 1069 static int ipmi_thread(void *data) 1070 { 1071 struct smi_info *smi_info = data; 1072 unsigned long flags; 1073 enum si_sm_result smi_result; 1074 struct timespec64 busy_until; 1075 1076 ipmi_si_set_not_busy(&busy_until); 1077 set_user_nice(current, MAX_NICE); 1078 while (!kthread_should_stop()) { 1079 int busy_wait; 1080 1081 spin_lock_irqsave(&(smi_info->si_lock), flags); 1082 smi_result = smi_event_handler(smi_info, 0); 1083 1084 /* 1085 * If the driver is doing something, there is a possible 1086 * race with the timer. If the timer handler see idle, 1087 * and the thread here sees something else, the timer 1088 * handler won't restart the timer even though it is 1089 * required. So start it here if necessary. 1090 */ 1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1093 1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1096 &busy_until); 1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1098 ; /* do nothing */ 1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1100 schedule(); 1101 else if (smi_result == SI_SM_IDLE) { 1102 if (atomic_read(&smi_info->need_watch)) { 1103 schedule_timeout_interruptible(100); 1104 } else { 1105 /* Wait to be woken up when we are needed. */ 1106 __set_current_state(TASK_INTERRUPTIBLE); 1107 schedule(); 1108 } 1109 } else 1110 schedule_timeout_interruptible(1); 1111 } 1112 return 0; 1113 } 1114 1115 1116 static void poll(void *send_info) 1117 { 1118 struct smi_info *smi_info = send_info; 1119 unsigned long flags = 0; 1120 bool run_to_completion = smi_info->run_to_completion; 1121 1122 /* 1123 * Make sure there is some delay in the poll loop so we can 1124 * drive time forward and timeout things. 1125 */ 1126 udelay(10); 1127 if (!run_to_completion) 1128 spin_lock_irqsave(&smi_info->si_lock, flags); 1129 smi_event_handler(smi_info, 10); 1130 if (!run_to_completion) 1131 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1132 } 1133 1134 static void request_events(void *send_info) 1135 { 1136 struct smi_info *smi_info = send_info; 1137 1138 if (!smi_info->has_event_buffer) 1139 return; 1140 1141 atomic_set(&smi_info->req_events, 1); 1142 } 1143 1144 static void set_need_watch(void *send_info, bool enable) 1145 { 1146 struct smi_info *smi_info = send_info; 1147 unsigned long flags; 1148 1149 atomic_set(&smi_info->need_watch, enable); 1150 spin_lock_irqsave(&smi_info->si_lock, flags); 1151 check_start_timer_thread(smi_info); 1152 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1153 } 1154 1155 static int initialized; 1156 1157 static void smi_timeout(unsigned long data) 1158 { 1159 struct smi_info *smi_info = (struct smi_info *) data; 1160 enum si_sm_result smi_result; 1161 unsigned long flags; 1162 unsigned long jiffies_now; 1163 long time_diff; 1164 long timeout; 1165 1166 spin_lock_irqsave(&(smi_info->si_lock), flags); 1167 debug_timestamp("Timer"); 1168 1169 jiffies_now = jiffies; 1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1171 * SI_USEC_PER_JIFFY); 1172 smi_result = smi_event_handler(smi_info, time_diff); 1173 1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1175 /* Running with interrupts, only do long timeouts. */ 1176 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1177 smi_inc_stat(smi_info, long_timeouts); 1178 goto do_mod_timer; 1179 } 1180 1181 /* 1182 * If the state machine asks for a short delay, then shorten 1183 * the timer timeout. 1184 */ 1185 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1186 smi_inc_stat(smi_info, short_timeouts); 1187 timeout = jiffies + 1; 1188 } else { 1189 smi_inc_stat(smi_info, long_timeouts); 1190 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1191 } 1192 1193 do_mod_timer: 1194 if (smi_result != SI_SM_IDLE) 1195 smi_mod_timer(smi_info, timeout); 1196 else 1197 smi_info->timer_running = false; 1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1199 } 1200 1201 static irqreturn_t si_irq_handler(int irq, void *data) 1202 { 1203 struct smi_info *smi_info = data; 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(&(smi_info->si_lock), flags); 1207 1208 smi_inc_stat(smi_info, interrupts); 1209 1210 debug_timestamp("Interrupt"); 1211 1212 smi_event_handler(smi_info, 0); 1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1214 return IRQ_HANDLED; 1215 } 1216 1217 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1218 { 1219 struct smi_info *smi_info = data; 1220 /* We need to clear the IRQ flag for the BT interface. */ 1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1224 return si_irq_handler(irq, data); 1225 } 1226 1227 static int smi_start_processing(void *send_info, 1228 ipmi_smi_t intf) 1229 { 1230 struct smi_info *new_smi = send_info; 1231 int enable = 0; 1232 1233 new_smi->intf = intf; 1234 1235 /* Set up the timer that drives the interface. */ 1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1238 1239 /* Try to claim any interrupts. */ 1240 if (new_smi->irq_setup) 1241 new_smi->irq_setup(new_smi); 1242 1243 /* 1244 * Check if the user forcefully enabled the daemon. 1245 */ 1246 if (new_smi->intf_num < num_force_kipmid) 1247 enable = force_kipmid[new_smi->intf_num]; 1248 /* 1249 * The BT interface is efficient enough to not need a thread, 1250 * and there is no need for a thread if we have interrupts. 1251 */ 1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1253 enable = 1; 1254 1255 if (enable) { 1256 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1257 "kipmi%d", new_smi->intf_num); 1258 if (IS_ERR(new_smi->thread)) { 1259 dev_notice(new_smi->dev, "Could not start" 1260 " kernel thread due to error %ld, only using" 1261 " timers to drive the interface\n", 1262 PTR_ERR(new_smi->thread)); 1263 new_smi->thread = NULL; 1264 } 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1271 { 1272 struct smi_info *smi = send_info; 1273 1274 data->addr_src = smi->addr_source; 1275 data->dev = smi->dev; 1276 data->addr_info = smi->addr_info; 1277 get_device(smi->dev); 1278 1279 return 0; 1280 } 1281 1282 static void set_maintenance_mode(void *send_info, bool enable) 1283 { 1284 struct smi_info *smi_info = send_info; 1285 1286 if (!enable) 1287 atomic_set(&smi_info->req_events, 0); 1288 } 1289 1290 static const struct ipmi_smi_handlers handlers = { 1291 .owner = THIS_MODULE, 1292 .start_processing = smi_start_processing, 1293 .get_smi_info = get_smi_info, 1294 .sender = sender, 1295 .request_events = request_events, 1296 .set_need_watch = set_need_watch, 1297 .set_maintenance_mode = set_maintenance_mode, 1298 .set_run_to_completion = set_run_to_completion, 1299 .flush_messages = flush_messages, 1300 .poll = poll, 1301 }; 1302 1303 /* 1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1306 */ 1307 1308 static LIST_HEAD(smi_infos); 1309 static DEFINE_MUTEX(smi_infos_lock); 1310 static int smi_num; /* Used to sequence the SMIs */ 1311 1312 #define DEFAULT_REGSPACING 1 1313 #define DEFAULT_REGSIZE 1 1314 1315 #ifdef CONFIG_ACPI 1316 static bool si_tryacpi = true; 1317 #endif 1318 #ifdef CONFIG_DMI 1319 static bool si_trydmi = true; 1320 #endif 1321 static bool si_tryplatform = true; 1322 #ifdef CONFIG_PCI 1323 static bool si_trypci = true; 1324 #endif 1325 static char *si_type[SI_MAX_PARMS]; 1326 #define MAX_SI_TYPE_STR 30 1327 static char si_type_str[MAX_SI_TYPE_STR]; 1328 static unsigned long addrs[SI_MAX_PARMS]; 1329 static unsigned int num_addrs; 1330 static unsigned int ports[SI_MAX_PARMS]; 1331 static unsigned int num_ports; 1332 static int irqs[SI_MAX_PARMS]; 1333 static unsigned int num_irqs; 1334 static int regspacings[SI_MAX_PARMS]; 1335 static unsigned int num_regspacings; 1336 static int regsizes[SI_MAX_PARMS]; 1337 static unsigned int num_regsizes; 1338 static int regshifts[SI_MAX_PARMS]; 1339 static unsigned int num_regshifts; 1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1341 static unsigned int num_slave_addrs; 1342 1343 #define IPMI_IO_ADDR_SPACE 0 1344 #define IPMI_MEM_ADDR_SPACE 1 1345 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1346 1347 static int hotmod_handler(const char *val, struct kernel_param *kp); 1348 1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1351 " Documentation/IPMI.txt in the kernel sources for the" 1352 " gory details."); 1353 1354 #ifdef CONFIG_ACPI 1355 module_param_named(tryacpi, si_tryacpi, bool, 0); 1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1357 " default scan of the interfaces identified via ACPI"); 1358 #endif 1359 #ifdef CONFIG_DMI 1360 module_param_named(trydmi, si_trydmi, bool, 0); 1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1362 " default scan of the interfaces identified via DMI"); 1363 #endif 1364 module_param_named(tryplatform, si_tryplatform, bool, 0); 1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the" 1366 " default scan of the interfaces identified via platform" 1367 " interfaces like openfirmware"); 1368 #ifdef CONFIG_PCI 1369 module_param_named(trypci, si_trypci, bool, 0); 1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the" 1371 " default scan of the interfaces identified via pci"); 1372 #endif 1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1375 " interface separated by commas. The types are 'kcs'," 1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1377 " the first interface to kcs and the second to bt"); 1378 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0); 1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1380 " addresses separated by commas. Only use if an interface" 1381 " is in memory. Otherwise, set it to zero or leave" 1382 " it blank."); 1383 module_param_hw_array(ports, uint, ioport, &num_ports, 0); 1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1385 " addresses separated by commas. Only use if an interface" 1386 " is a port. Otherwise, set it to zero or leave" 1387 " it blank."); 1388 module_param_hw_array(irqs, int, irq, &num_irqs, 0); 1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1390 " addresses separated by commas. Only use if an interface" 1391 " has an interrupt. Otherwise, set it to zero or leave" 1392 " it blank."); 1393 module_param_hw_array(regspacings, int, other, &num_regspacings, 0); 1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1395 " and each successive register used by the interface. For" 1396 " instance, if the start address is 0xca2 and the spacing" 1397 " is 2, then the second address is at 0xca4. Defaults" 1398 " to 1."); 1399 module_param_hw_array(regsizes, int, other, &num_regsizes, 0); 1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1401 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1402 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1403 " the 8-bit IPMI register has to be read from a larger" 1404 " register."); 1405 module_param_hw_array(regshifts, int, other, &num_regshifts, 0); 1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1407 " IPMI register, in bits. For instance, if the data" 1408 " is read from a 32-bit word and the IPMI data is in" 1409 " bit 8-15, then the shift would be 8"); 1410 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0); 1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1412 " the controller. Normally this is 0x20, but can be" 1413 " overridden by this parm. This is an array indexed" 1414 " by interface number."); 1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1417 " disabled(0). Normally the IPMI driver auto-detects" 1418 " this, but the value may be overridden by this parm."); 1419 module_param(unload_when_empty, bool, 0); 1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1421 " specified or found, default is 1. Setting to 0" 1422 " is useful for hot add of devices using hotmod."); 1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1424 MODULE_PARM_DESC(kipmid_max_busy_us, 1425 "Max time (in microseconds) to busy-wait for IPMI data before" 1426 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1427 " if kipmid is using up a lot of CPU time."); 1428 1429 1430 static void std_irq_cleanup(struct smi_info *info) 1431 { 1432 if (info->si_type == SI_BT) 1433 /* Disable the interrupt in the BT interface. */ 1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1435 free_irq(info->irq, info); 1436 } 1437 1438 static int std_irq_setup(struct smi_info *info) 1439 { 1440 int rv; 1441 1442 if (!info->irq) 1443 return 0; 1444 1445 if (info->si_type == SI_BT) { 1446 rv = request_irq(info->irq, 1447 si_bt_irq_handler, 1448 IRQF_SHARED, 1449 DEVICE_NAME, 1450 info); 1451 if (!rv) 1452 /* Enable the interrupt in the BT interface. */ 1453 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1455 } else 1456 rv = request_irq(info->irq, 1457 si_irq_handler, 1458 IRQF_SHARED, 1459 DEVICE_NAME, 1460 info); 1461 if (rv) { 1462 dev_warn(info->dev, "%s unable to claim interrupt %d," 1463 " running polled\n", 1464 DEVICE_NAME, info->irq); 1465 info->irq = 0; 1466 } else { 1467 info->irq_cleanup = std_irq_cleanup; 1468 dev_info(info->dev, "Using irq %d\n", info->irq); 1469 } 1470 1471 return rv; 1472 } 1473 1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) 1475 { 1476 unsigned int addr = io->addr_data; 1477 1478 return inb(addr + (offset * io->regspacing)); 1479 } 1480 1481 static void port_outb(const struct si_sm_io *io, unsigned int offset, 1482 unsigned char b) 1483 { 1484 unsigned int addr = io->addr_data; 1485 1486 outb(b, addr + (offset * io->regspacing)); 1487 } 1488 1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) 1490 { 1491 unsigned int addr = io->addr_data; 1492 1493 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1494 } 1495 1496 static void port_outw(const struct si_sm_io *io, unsigned int offset, 1497 unsigned char b) 1498 { 1499 unsigned int addr = io->addr_data; 1500 1501 outw(b << io->regshift, addr + (offset * io->regspacing)); 1502 } 1503 1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) 1505 { 1506 unsigned int addr = io->addr_data; 1507 1508 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1509 } 1510 1511 static void port_outl(const struct si_sm_io *io, unsigned int offset, 1512 unsigned char b) 1513 { 1514 unsigned int addr = io->addr_data; 1515 1516 outl(b << io->regshift, addr+(offset * io->regspacing)); 1517 } 1518 1519 static void port_cleanup(struct smi_info *info) 1520 { 1521 unsigned int addr = info->io.addr_data; 1522 int idx; 1523 1524 if (addr) { 1525 for (idx = 0; idx < info->io_size; idx++) 1526 release_region(addr + idx * info->io.regspacing, 1527 info->io.regsize); 1528 } 1529 } 1530 1531 static int port_setup(struct smi_info *info) 1532 { 1533 unsigned int addr = info->io.addr_data; 1534 int idx; 1535 1536 if (!addr) 1537 return -ENODEV; 1538 1539 info->io_cleanup = port_cleanup; 1540 1541 /* 1542 * Figure out the actual inb/inw/inl/etc routine to use based 1543 * upon the register size. 1544 */ 1545 switch (info->io.regsize) { 1546 case 1: 1547 info->io.inputb = port_inb; 1548 info->io.outputb = port_outb; 1549 break; 1550 case 2: 1551 info->io.inputb = port_inw; 1552 info->io.outputb = port_outw; 1553 break; 1554 case 4: 1555 info->io.inputb = port_inl; 1556 info->io.outputb = port_outl; 1557 break; 1558 default: 1559 dev_warn(info->dev, "Invalid register size: %d\n", 1560 info->io.regsize); 1561 return -EINVAL; 1562 } 1563 1564 /* 1565 * Some BIOSes reserve disjoint I/O regions in their ACPI 1566 * tables. This causes problems when trying to register the 1567 * entire I/O region. Therefore we must register each I/O 1568 * port separately. 1569 */ 1570 for (idx = 0; idx < info->io_size; idx++) { 1571 if (request_region(addr + idx * info->io.regspacing, 1572 info->io.regsize, DEVICE_NAME) == NULL) { 1573 /* Undo allocations */ 1574 while (idx--) 1575 release_region(addr + idx * info->io.regspacing, 1576 info->io.regsize); 1577 return -EIO; 1578 } 1579 } 1580 return 0; 1581 } 1582 1583 static unsigned char intf_mem_inb(const struct si_sm_io *io, 1584 unsigned int offset) 1585 { 1586 return readb((io->addr)+(offset * io->regspacing)); 1587 } 1588 1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, 1590 unsigned char b) 1591 { 1592 writeb(b, (io->addr)+(offset * io->regspacing)); 1593 } 1594 1595 static unsigned char intf_mem_inw(const struct si_sm_io *io, 1596 unsigned int offset) 1597 { 1598 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1599 & 0xff; 1600 } 1601 1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, 1603 unsigned char b) 1604 { 1605 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1606 } 1607 1608 static unsigned char intf_mem_inl(const struct si_sm_io *io, 1609 unsigned int offset) 1610 { 1611 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1612 & 0xff; 1613 } 1614 1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, 1616 unsigned char b) 1617 { 1618 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1619 } 1620 1621 #ifdef readq 1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) 1623 { 1624 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1625 & 0xff; 1626 } 1627 1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset, 1629 unsigned char b) 1630 { 1631 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1632 } 1633 #endif 1634 1635 static void mem_region_cleanup(struct smi_info *info, int num) 1636 { 1637 unsigned long addr = info->io.addr_data; 1638 int idx; 1639 1640 for (idx = 0; idx < num; idx++) 1641 release_mem_region(addr + idx * info->io.regspacing, 1642 info->io.regsize); 1643 } 1644 1645 static void mem_cleanup(struct smi_info *info) 1646 { 1647 if (info->io.addr) { 1648 iounmap(info->io.addr); 1649 mem_region_cleanup(info, info->io_size); 1650 } 1651 } 1652 1653 static int mem_setup(struct smi_info *info) 1654 { 1655 unsigned long addr = info->io.addr_data; 1656 int mapsize, idx; 1657 1658 if (!addr) 1659 return -ENODEV; 1660 1661 info->io_cleanup = mem_cleanup; 1662 1663 /* 1664 * Figure out the actual readb/readw/readl/etc routine to use based 1665 * upon the register size. 1666 */ 1667 switch (info->io.regsize) { 1668 case 1: 1669 info->io.inputb = intf_mem_inb; 1670 info->io.outputb = intf_mem_outb; 1671 break; 1672 case 2: 1673 info->io.inputb = intf_mem_inw; 1674 info->io.outputb = intf_mem_outw; 1675 break; 1676 case 4: 1677 info->io.inputb = intf_mem_inl; 1678 info->io.outputb = intf_mem_outl; 1679 break; 1680 #ifdef readq 1681 case 8: 1682 info->io.inputb = mem_inq; 1683 info->io.outputb = mem_outq; 1684 break; 1685 #endif 1686 default: 1687 dev_warn(info->dev, "Invalid register size: %d\n", 1688 info->io.regsize); 1689 return -EINVAL; 1690 } 1691 1692 /* 1693 * Some BIOSes reserve disjoint memory regions in their ACPI 1694 * tables. This causes problems when trying to request the 1695 * entire region. Therefore we must request each register 1696 * separately. 1697 */ 1698 for (idx = 0; idx < info->io_size; idx++) { 1699 if (request_mem_region(addr + idx * info->io.regspacing, 1700 info->io.regsize, DEVICE_NAME) == NULL) { 1701 /* Undo allocations */ 1702 mem_region_cleanup(info, idx); 1703 return -EIO; 1704 } 1705 } 1706 1707 /* 1708 * Calculate the total amount of memory to claim. This is an 1709 * unusual looking calculation, but it avoids claiming any 1710 * more memory than it has to. It will claim everything 1711 * between the first address to the end of the last full 1712 * register. 1713 */ 1714 mapsize = ((info->io_size * info->io.regspacing) 1715 - (info->io.regspacing - info->io.regsize)); 1716 info->io.addr = ioremap(addr, mapsize); 1717 if (info->io.addr == NULL) { 1718 mem_region_cleanup(info, info->io_size); 1719 return -EIO; 1720 } 1721 return 0; 1722 } 1723 1724 /* 1725 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1727 * Options are: 1728 * rsp=<regspacing> 1729 * rsi=<regsize> 1730 * rsh=<regshift> 1731 * irq=<irq> 1732 * ipmb=<ipmb addr> 1733 */ 1734 enum hotmod_op { HM_ADD, HM_REMOVE }; 1735 struct hotmod_vals { 1736 const char *name; 1737 const int val; 1738 }; 1739 1740 static const struct hotmod_vals hotmod_ops[] = { 1741 { "add", HM_ADD }, 1742 { "remove", HM_REMOVE }, 1743 { NULL } 1744 }; 1745 1746 static const struct hotmod_vals hotmod_si[] = { 1747 { "kcs", SI_KCS }, 1748 { "smic", SI_SMIC }, 1749 { "bt", SI_BT }, 1750 { NULL } 1751 }; 1752 1753 static const struct hotmod_vals hotmod_as[] = { 1754 { "mem", IPMI_MEM_ADDR_SPACE }, 1755 { "i/o", IPMI_IO_ADDR_SPACE }, 1756 { NULL } 1757 }; 1758 1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name, 1760 char **curr) 1761 { 1762 char *s; 1763 int i; 1764 1765 s = strchr(*curr, ','); 1766 if (!s) { 1767 pr_warn(PFX "No hotmod %s given.\n", name); 1768 return -EINVAL; 1769 } 1770 *s = '\0'; 1771 s++; 1772 for (i = 0; v[i].name; i++) { 1773 if (strcmp(*curr, v[i].name) == 0) { 1774 *val = v[i].val; 1775 *curr = s; 1776 return 0; 1777 } 1778 } 1779 1780 pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr); 1781 return -EINVAL; 1782 } 1783 1784 static int check_hotmod_int_op(const char *curr, const char *option, 1785 const char *name, int *val) 1786 { 1787 char *n; 1788 1789 if (strcmp(curr, name) == 0) { 1790 if (!option) { 1791 pr_warn(PFX "No option given for '%s'\n", curr); 1792 return -EINVAL; 1793 } 1794 *val = simple_strtoul(option, &n, 0); 1795 if ((*n != '\0') || (*option == '\0')) { 1796 pr_warn(PFX "Bad option given for '%s'\n", curr); 1797 return -EINVAL; 1798 } 1799 return 1; 1800 } 1801 return 0; 1802 } 1803 1804 static struct smi_info *smi_info_alloc(void) 1805 { 1806 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1807 1808 if (info) 1809 spin_lock_init(&info->si_lock); 1810 return info; 1811 } 1812 1813 static int hotmod_handler(const char *val, struct kernel_param *kp) 1814 { 1815 char *str = kstrdup(val, GFP_KERNEL); 1816 int rv; 1817 char *next, *curr, *s, *n, *o; 1818 enum hotmod_op op; 1819 enum si_type si_type; 1820 int addr_space; 1821 unsigned long addr; 1822 int regspacing; 1823 int regsize; 1824 int regshift; 1825 int irq; 1826 int ipmb; 1827 int ival; 1828 int len; 1829 struct smi_info *info; 1830 1831 if (!str) 1832 return -ENOMEM; 1833 1834 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1835 len = strlen(str); 1836 ival = len - 1; 1837 while ((ival >= 0) && isspace(str[ival])) { 1838 str[ival] = '\0'; 1839 ival--; 1840 } 1841 1842 for (curr = str; curr; curr = next) { 1843 regspacing = 1; 1844 regsize = 1; 1845 regshift = 0; 1846 irq = 0; 1847 ipmb = 0; /* Choose the default if not specified */ 1848 1849 next = strchr(curr, ':'); 1850 if (next) { 1851 *next = '\0'; 1852 next++; 1853 } 1854 1855 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1856 if (rv) 1857 break; 1858 op = ival; 1859 1860 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1861 if (rv) 1862 break; 1863 si_type = ival; 1864 1865 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1866 if (rv) 1867 break; 1868 1869 s = strchr(curr, ','); 1870 if (s) { 1871 *s = '\0'; 1872 s++; 1873 } 1874 addr = simple_strtoul(curr, &n, 0); 1875 if ((*n != '\0') || (*curr == '\0')) { 1876 pr_warn(PFX "Invalid hotmod address '%s'\n", curr); 1877 break; 1878 } 1879 1880 while (s) { 1881 curr = s; 1882 s = strchr(curr, ','); 1883 if (s) { 1884 *s = '\0'; 1885 s++; 1886 } 1887 o = strchr(curr, '='); 1888 if (o) { 1889 *o = '\0'; 1890 o++; 1891 } 1892 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1893 if (rv < 0) 1894 goto out; 1895 else if (rv) 1896 continue; 1897 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1898 if (rv < 0) 1899 goto out; 1900 else if (rv) 1901 continue; 1902 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1903 if (rv < 0) 1904 goto out; 1905 else if (rv) 1906 continue; 1907 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1908 if (rv < 0) 1909 goto out; 1910 else if (rv) 1911 continue; 1912 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1913 if (rv < 0) 1914 goto out; 1915 else if (rv) 1916 continue; 1917 1918 rv = -EINVAL; 1919 pr_warn(PFX "Invalid hotmod option '%s'\n", curr); 1920 goto out; 1921 } 1922 1923 if (op == HM_ADD) { 1924 info = smi_info_alloc(); 1925 if (!info) { 1926 rv = -ENOMEM; 1927 goto out; 1928 } 1929 1930 info->addr_source = SI_HOTMOD; 1931 info->si_type = si_type; 1932 info->io.addr_data = addr; 1933 info->io.addr_type = addr_space; 1934 if (addr_space == IPMI_MEM_ADDR_SPACE) 1935 info->io_setup = mem_setup; 1936 else 1937 info->io_setup = port_setup; 1938 1939 info->io.addr = NULL; 1940 info->io.regspacing = regspacing; 1941 if (!info->io.regspacing) 1942 info->io.regspacing = DEFAULT_REGSPACING; 1943 info->io.regsize = regsize; 1944 if (!info->io.regsize) 1945 info->io.regsize = DEFAULT_REGSPACING; 1946 info->io.regshift = regshift; 1947 info->irq = irq; 1948 if (info->irq) 1949 info->irq_setup = std_irq_setup; 1950 info->slave_addr = ipmb; 1951 1952 rv = add_smi(info); 1953 if (rv) { 1954 kfree(info); 1955 goto out; 1956 } 1957 mutex_lock(&smi_infos_lock); 1958 rv = try_smi_init(info); 1959 mutex_unlock(&smi_infos_lock); 1960 if (rv) { 1961 cleanup_one_si(info); 1962 goto out; 1963 } 1964 } else { 1965 /* remove */ 1966 struct smi_info *e, *tmp_e; 1967 1968 mutex_lock(&smi_infos_lock); 1969 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1970 if (e->io.addr_type != addr_space) 1971 continue; 1972 if (e->si_type != si_type) 1973 continue; 1974 if (e->io.addr_data == addr) 1975 cleanup_one_si(e); 1976 } 1977 mutex_unlock(&smi_infos_lock); 1978 } 1979 } 1980 rv = len; 1981 out: 1982 kfree(str); 1983 return rv; 1984 } 1985 1986 static int hardcode_find_bmc(void) 1987 { 1988 int ret = -ENODEV; 1989 int i; 1990 struct smi_info *info; 1991 1992 for (i = 0; i < SI_MAX_PARMS; i++) { 1993 if (!ports[i] && !addrs[i]) 1994 continue; 1995 1996 info = smi_info_alloc(); 1997 if (!info) 1998 return -ENOMEM; 1999 2000 info->addr_source = SI_HARDCODED; 2001 pr_info(PFX "probing via hardcoded address\n"); 2002 2003 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 2004 info->si_type = SI_KCS; 2005 } else if (strcmp(si_type[i], "smic") == 0) { 2006 info->si_type = SI_SMIC; 2007 } else if (strcmp(si_type[i], "bt") == 0) { 2008 info->si_type = SI_BT; 2009 } else { 2010 pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n", 2011 i, si_type[i]); 2012 kfree(info); 2013 continue; 2014 } 2015 2016 if (ports[i]) { 2017 /* An I/O port */ 2018 info->io_setup = port_setup; 2019 info->io.addr_data = ports[i]; 2020 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2021 } else if (addrs[i]) { 2022 /* A memory port */ 2023 info->io_setup = mem_setup; 2024 info->io.addr_data = addrs[i]; 2025 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2026 } else { 2027 pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n", 2028 i); 2029 kfree(info); 2030 continue; 2031 } 2032 2033 info->io.addr = NULL; 2034 info->io.regspacing = regspacings[i]; 2035 if (!info->io.regspacing) 2036 info->io.regspacing = DEFAULT_REGSPACING; 2037 info->io.regsize = regsizes[i]; 2038 if (!info->io.regsize) 2039 info->io.regsize = DEFAULT_REGSPACING; 2040 info->io.regshift = regshifts[i]; 2041 info->irq = irqs[i]; 2042 if (info->irq) 2043 info->irq_setup = std_irq_setup; 2044 info->slave_addr = slave_addrs[i]; 2045 2046 if (!add_smi(info)) { 2047 mutex_lock(&smi_infos_lock); 2048 if (try_smi_init(info)) 2049 cleanup_one_si(info); 2050 mutex_unlock(&smi_infos_lock); 2051 ret = 0; 2052 } else { 2053 kfree(info); 2054 } 2055 } 2056 return ret; 2057 } 2058 2059 #ifdef CONFIG_ACPI 2060 2061 /* 2062 * Once we get an ACPI failure, we don't try any more, because we go 2063 * through the tables sequentially. Once we don't find a table, there 2064 * are no more. 2065 */ 2066 static int acpi_failure; 2067 2068 /* For GPE-type interrupts. */ 2069 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2070 u32 gpe_number, void *context) 2071 { 2072 struct smi_info *smi_info = context; 2073 unsigned long flags; 2074 2075 spin_lock_irqsave(&(smi_info->si_lock), flags); 2076 2077 smi_inc_stat(smi_info, interrupts); 2078 2079 debug_timestamp("ACPI_GPE"); 2080 2081 smi_event_handler(smi_info, 0); 2082 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2083 2084 return ACPI_INTERRUPT_HANDLED; 2085 } 2086 2087 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2088 { 2089 if (!info->irq) 2090 return; 2091 2092 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2093 } 2094 2095 static int acpi_gpe_irq_setup(struct smi_info *info) 2096 { 2097 acpi_status status; 2098 2099 if (!info->irq) 2100 return 0; 2101 2102 status = acpi_install_gpe_handler(NULL, 2103 info->irq, 2104 ACPI_GPE_LEVEL_TRIGGERED, 2105 &ipmi_acpi_gpe, 2106 info); 2107 if (status != AE_OK) { 2108 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2109 " running polled\n", DEVICE_NAME, info->irq); 2110 info->irq = 0; 2111 return -EINVAL; 2112 } else { 2113 info->irq_cleanup = acpi_gpe_irq_cleanup; 2114 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2115 return 0; 2116 } 2117 } 2118 2119 /* 2120 * Defined at 2121 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2122 */ 2123 struct SPMITable { 2124 s8 Signature[4]; 2125 u32 Length; 2126 u8 Revision; 2127 u8 Checksum; 2128 s8 OEMID[6]; 2129 s8 OEMTableID[8]; 2130 s8 OEMRevision[4]; 2131 s8 CreatorID[4]; 2132 s8 CreatorRevision[4]; 2133 u8 InterfaceType; 2134 u8 IPMIlegacy; 2135 s16 SpecificationRevision; 2136 2137 /* 2138 * Bit 0 - SCI interrupt supported 2139 * Bit 1 - I/O APIC/SAPIC 2140 */ 2141 u8 InterruptType; 2142 2143 /* 2144 * If bit 0 of InterruptType is set, then this is the SCI 2145 * interrupt in the GPEx_STS register. 2146 */ 2147 u8 GPE; 2148 2149 s16 Reserved; 2150 2151 /* 2152 * If bit 1 of InterruptType is set, then this is the I/O 2153 * APIC/SAPIC interrupt. 2154 */ 2155 u32 GlobalSystemInterrupt; 2156 2157 /* The actual register address. */ 2158 struct acpi_generic_address addr; 2159 2160 u8 UID[4]; 2161 2162 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2163 }; 2164 2165 static int try_init_spmi(struct SPMITable *spmi) 2166 { 2167 struct smi_info *info; 2168 int rv; 2169 2170 if (spmi->IPMIlegacy != 1) { 2171 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2172 return -ENODEV; 2173 } 2174 2175 info = smi_info_alloc(); 2176 if (!info) { 2177 pr_err(PFX "Could not allocate SI data (3)\n"); 2178 return -ENOMEM; 2179 } 2180 2181 info->addr_source = SI_SPMI; 2182 pr_info(PFX "probing via SPMI\n"); 2183 2184 /* Figure out the interface type. */ 2185 switch (spmi->InterfaceType) { 2186 case 1: /* KCS */ 2187 info->si_type = SI_KCS; 2188 break; 2189 case 2: /* SMIC */ 2190 info->si_type = SI_SMIC; 2191 break; 2192 case 3: /* BT */ 2193 info->si_type = SI_BT; 2194 break; 2195 case 4: /* SSIF, just ignore */ 2196 kfree(info); 2197 return -EIO; 2198 default: 2199 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n", 2200 spmi->InterfaceType); 2201 kfree(info); 2202 return -EIO; 2203 } 2204 2205 if (spmi->InterruptType & 1) { 2206 /* We've got a GPE interrupt. */ 2207 info->irq = spmi->GPE; 2208 info->irq_setup = acpi_gpe_irq_setup; 2209 } else if (spmi->InterruptType & 2) { 2210 /* We've got an APIC/SAPIC interrupt. */ 2211 info->irq = spmi->GlobalSystemInterrupt; 2212 info->irq_setup = std_irq_setup; 2213 } else { 2214 /* Use the default interrupt setting. */ 2215 info->irq = 0; 2216 info->irq_setup = NULL; 2217 } 2218 2219 if (spmi->addr.bit_width) { 2220 /* A (hopefully) properly formed register bit width. */ 2221 info->io.regspacing = spmi->addr.bit_width / 8; 2222 } else { 2223 info->io.regspacing = DEFAULT_REGSPACING; 2224 } 2225 info->io.regsize = info->io.regspacing; 2226 info->io.regshift = spmi->addr.bit_offset; 2227 2228 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2229 info->io_setup = mem_setup; 2230 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2231 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2232 info->io_setup = port_setup; 2233 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2234 } else { 2235 kfree(info); 2236 pr_warn(PFX "Unknown ACPI I/O Address type\n"); 2237 return -EIO; 2238 } 2239 info->io.addr_data = spmi->addr.address; 2240 2241 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2242 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2243 info->io.addr_data, info->io.regsize, info->io.regspacing, 2244 info->irq); 2245 2246 rv = add_smi(info); 2247 if (rv) 2248 kfree(info); 2249 2250 return rv; 2251 } 2252 2253 static void spmi_find_bmc(void) 2254 { 2255 acpi_status status; 2256 struct SPMITable *spmi; 2257 int i; 2258 2259 if (acpi_disabled) 2260 return; 2261 2262 if (acpi_failure) 2263 return; 2264 2265 for (i = 0; ; i++) { 2266 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2267 (struct acpi_table_header **)&spmi); 2268 if (status != AE_OK) 2269 return; 2270 2271 try_init_spmi(spmi); 2272 } 2273 } 2274 #endif 2275 2276 #ifdef CONFIG_DMI 2277 struct dmi_ipmi_data { 2278 u8 type; 2279 u8 addr_space; 2280 unsigned long base_addr; 2281 u8 irq; 2282 u8 offset; 2283 u8 slave_addr; 2284 }; 2285 2286 static int decode_dmi(const struct dmi_header *dm, 2287 struct dmi_ipmi_data *dmi) 2288 { 2289 const u8 *data = (const u8 *)dm; 2290 unsigned long base_addr; 2291 u8 reg_spacing; 2292 u8 len = dm->length; 2293 2294 dmi->type = data[4]; 2295 2296 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2297 if (len >= 0x11) { 2298 if (base_addr & 1) { 2299 /* I/O */ 2300 base_addr &= 0xFFFE; 2301 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2302 } else 2303 /* Memory */ 2304 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2305 2306 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2307 is odd. */ 2308 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2309 2310 dmi->irq = data[0x11]; 2311 2312 /* The top two bits of byte 0x10 hold the register spacing. */ 2313 reg_spacing = (data[0x10] & 0xC0) >> 6; 2314 switch (reg_spacing) { 2315 case 0x00: /* Byte boundaries */ 2316 dmi->offset = 1; 2317 break; 2318 case 0x01: /* 32-bit boundaries */ 2319 dmi->offset = 4; 2320 break; 2321 case 0x02: /* 16-byte boundaries */ 2322 dmi->offset = 16; 2323 break; 2324 default: 2325 /* Some other interface, just ignore it. */ 2326 return -EIO; 2327 } 2328 } else { 2329 /* Old DMI spec. */ 2330 /* 2331 * Note that technically, the lower bit of the base 2332 * address should be 1 if the address is I/O and 0 if 2333 * the address is in memory. So many systems get that 2334 * wrong (and all that I have seen are I/O) so we just 2335 * ignore that bit and assume I/O. Systems that use 2336 * memory should use the newer spec, anyway. 2337 */ 2338 dmi->base_addr = base_addr & 0xfffe; 2339 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2340 dmi->offset = 1; 2341 } 2342 2343 dmi->slave_addr = data[6]; 2344 2345 return 0; 2346 } 2347 2348 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2349 { 2350 struct smi_info *info; 2351 2352 info = smi_info_alloc(); 2353 if (!info) { 2354 pr_err(PFX "Could not allocate SI data\n"); 2355 return; 2356 } 2357 2358 info->addr_source = SI_SMBIOS; 2359 pr_info(PFX "probing via SMBIOS\n"); 2360 2361 switch (ipmi_data->type) { 2362 case 0x01: /* KCS */ 2363 info->si_type = SI_KCS; 2364 break; 2365 case 0x02: /* SMIC */ 2366 info->si_type = SI_SMIC; 2367 break; 2368 case 0x03: /* BT */ 2369 info->si_type = SI_BT; 2370 break; 2371 default: 2372 kfree(info); 2373 return; 2374 } 2375 2376 switch (ipmi_data->addr_space) { 2377 case IPMI_MEM_ADDR_SPACE: 2378 info->io_setup = mem_setup; 2379 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2380 break; 2381 2382 case IPMI_IO_ADDR_SPACE: 2383 info->io_setup = port_setup; 2384 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2385 break; 2386 2387 default: 2388 kfree(info); 2389 pr_warn(PFX "Unknown SMBIOS I/O Address type: %d\n", 2390 ipmi_data->addr_space); 2391 return; 2392 } 2393 info->io.addr_data = ipmi_data->base_addr; 2394 2395 info->io.regspacing = ipmi_data->offset; 2396 if (!info->io.regspacing) 2397 info->io.regspacing = DEFAULT_REGSPACING; 2398 info->io.regsize = DEFAULT_REGSPACING; 2399 info->io.regshift = 0; 2400 2401 info->slave_addr = ipmi_data->slave_addr; 2402 2403 info->irq = ipmi_data->irq; 2404 if (info->irq) 2405 info->irq_setup = std_irq_setup; 2406 2407 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2408 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2409 info->io.addr_data, info->io.regsize, info->io.regspacing, 2410 info->irq); 2411 2412 if (add_smi(info)) 2413 kfree(info); 2414 } 2415 2416 static void dmi_find_bmc(void) 2417 { 2418 const struct dmi_device *dev = NULL; 2419 struct dmi_ipmi_data data; 2420 int rv; 2421 2422 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2423 memset(&data, 0, sizeof(data)); 2424 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2425 &data); 2426 if (!rv) 2427 try_init_dmi(&data); 2428 } 2429 } 2430 #endif /* CONFIG_DMI */ 2431 2432 #ifdef CONFIG_PCI 2433 2434 #define PCI_ERMC_CLASSCODE 0x0C0700 2435 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2436 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2437 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2438 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2439 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2440 2441 #define PCI_HP_VENDOR_ID 0x103C 2442 #define PCI_MMC_DEVICE_ID 0x121A 2443 #define PCI_MMC_ADDR_CW 0x10 2444 2445 static void ipmi_pci_cleanup(struct smi_info *info) 2446 { 2447 struct pci_dev *pdev = info->addr_source_data; 2448 2449 pci_disable_device(pdev); 2450 } 2451 2452 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2453 { 2454 if (info->si_type == SI_KCS) { 2455 unsigned char status; 2456 int regspacing; 2457 2458 info->io.regsize = DEFAULT_REGSIZE; 2459 info->io.regshift = 0; 2460 info->io_size = 2; 2461 info->handlers = &kcs_smi_handlers; 2462 2463 /* detect 1, 4, 16byte spacing */ 2464 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2465 info->io.regspacing = regspacing; 2466 if (info->io_setup(info)) { 2467 dev_err(info->dev, 2468 "Could not setup I/O space\n"); 2469 return DEFAULT_REGSPACING; 2470 } 2471 /* write invalid cmd */ 2472 info->io.outputb(&info->io, 1, 0x10); 2473 /* read status back */ 2474 status = info->io.inputb(&info->io, 1); 2475 info->io_cleanup(info); 2476 if (status) 2477 return regspacing; 2478 regspacing *= 4; 2479 } 2480 } 2481 return DEFAULT_REGSPACING; 2482 } 2483 2484 static int ipmi_pci_probe(struct pci_dev *pdev, 2485 const struct pci_device_id *ent) 2486 { 2487 int rv; 2488 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2489 struct smi_info *info; 2490 2491 info = smi_info_alloc(); 2492 if (!info) 2493 return -ENOMEM; 2494 2495 info->addr_source = SI_PCI; 2496 dev_info(&pdev->dev, "probing via PCI"); 2497 2498 switch (class_type) { 2499 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2500 info->si_type = SI_SMIC; 2501 break; 2502 2503 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2504 info->si_type = SI_KCS; 2505 break; 2506 2507 case PCI_ERMC_CLASSCODE_TYPE_BT: 2508 info->si_type = SI_BT; 2509 break; 2510 2511 default: 2512 kfree(info); 2513 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2514 return -ENOMEM; 2515 } 2516 2517 rv = pci_enable_device(pdev); 2518 if (rv) { 2519 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2520 kfree(info); 2521 return rv; 2522 } 2523 2524 info->addr_source_cleanup = ipmi_pci_cleanup; 2525 info->addr_source_data = pdev; 2526 2527 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2528 info->io_setup = port_setup; 2529 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2530 } else { 2531 info->io_setup = mem_setup; 2532 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2533 } 2534 info->io.addr_data = pci_resource_start(pdev, 0); 2535 2536 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2537 info->io.regsize = DEFAULT_REGSIZE; 2538 info->io.regshift = 0; 2539 2540 info->irq = pdev->irq; 2541 if (info->irq) 2542 info->irq_setup = std_irq_setup; 2543 2544 info->dev = &pdev->dev; 2545 pci_set_drvdata(pdev, info); 2546 2547 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2548 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2549 info->irq); 2550 2551 rv = add_smi(info); 2552 if (rv) { 2553 kfree(info); 2554 pci_disable_device(pdev); 2555 } 2556 2557 return rv; 2558 } 2559 2560 static void ipmi_pci_remove(struct pci_dev *pdev) 2561 { 2562 struct smi_info *info = pci_get_drvdata(pdev); 2563 cleanup_one_si(info); 2564 } 2565 2566 static const struct pci_device_id ipmi_pci_devices[] = { 2567 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2568 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2569 { 0, } 2570 }; 2571 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2572 2573 static struct pci_driver ipmi_pci_driver = { 2574 .name = DEVICE_NAME, 2575 .id_table = ipmi_pci_devices, 2576 .probe = ipmi_pci_probe, 2577 .remove = ipmi_pci_remove, 2578 }; 2579 #endif /* CONFIG_PCI */ 2580 2581 #ifdef CONFIG_OF 2582 static const struct of_device_id of_ipmi_match[] = { 2583 { .type = "ipmi", .compatible = "ipmi-kcs", 2584 .data = (void *)(unsigned long) SI_KCS }, 2585 { .type = "ipmi", .compatible = "ipmi-smic", 2586 .data = (void *)(unsigned long) SI_SMIC }, 2587 { .type = "ipmi", .compatible = "ipmi-bt", 2588 .data = (void *)(unsigned long) SI_BT }, 2589 {}, 2590 }; 2591 MODULE_DEVICE_TABLE(of, of_ipmi_match); 2592 2593 static int of_ipmi_probe(struct platform_device *dev) 2594 { 2595 const struct of_device_id *match; 2596 struct smi_info *info; 2597 struct resource resource; 2598 const __be32 *regsize, *regspacing, *regshift; 2599 struct device_node *np = dev->dev.of_node; 2600 int ret; 2601 int proplen; 2602 2603 dev_info(&dev->dev, "probing via device tree\n"); 2604 2605 match = of_match_device(of_ipmi_match, &dev->dev); 2606 if (!match) 2607 return -ENODEV; 2608 2609 if (!of_device_is_available(np)) 2610 return -EINVAL; 2611 2612 ret = of_address_to_resource(np, 0, &resource); 2613 if (ret) { 2614 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2615 return ret; 2616 } 2617 2618 regsize = of_get_property(np, "reg-size", &proplen); 2619 if (regsize && proplen != 4) { 2620 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2621 return -EINVAL; 2622 } 2623 2624 regspacing = of_get_property(np, "reg-spacing", &proplen); 2625 if (regspacing && proplen != 4) { 2626 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2627 return -EINVAL; 2628 } 2629 2630 regshift = of_get_property(np, "reg-shift", &proplen); 2631 if (regshift && proplen != 4) { 2632 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2633 return -EINVAL; 2634 } 2635 2636 info = smi_info_alloc(); 2637 2638 if (!info) { 2639 dev_err(&dev->dev, 2640 "could not allocate memory for OF probe\n"); 2641 return -ENOMEM; 2642 } 2643 2644 info->si_type = (enum si_type) match->data; 2645 info->addr_source = SI_DEVICETREE; 2646 info->irq_setup = std_irq_setup; 2647 2648 if (resource.flags & IORESOURCE_IO) { 2649 info->io_setup = port_setup; 2650 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2651 } else { 2652 info->io_setup = mem_setup; 2653 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2654 } 2655 2656 info->io.addr_data = resource.start; 2657 2658 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2659 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2660 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2661 2662 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2663 info->dev = &dev->dev; 2664 2665 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2666 info->io.addr_data, info->io.regsize, info->io.regspacing, 2667 info->irq); 2668 2669 dev_set_drvdata(&dev->dev, info); 2670 2671 ret = add_smi(info); 2672 if (ret) { 2673 kfree(info); 2674 return ret; 2675 } 2676 return 0; 2677 } 2678 #else 2679 #define of_ipmi_match NULL 2680 static int of_ipmi_probe(struct platform_device *dev) 2681 { 2682 return -ENODEV; 2683 } 2684 #endif 2685 2686 #ifdef CONFIG_ACPI 2687 static int acpi_ipmi_probe(struct platform_device *dev) 2688 { 2689 struct smi_info *info; 2690 struct resource *res, *res_second; 2691 acpi_handle handle; 2692 acpi_status status; 2693 unsigned long long tmp; 2694 int rv = -EINVAL; 2695 2696 if (!si_tryacpi) 2697 return 0; 2698 2699 handle = ACPI_HANDLE(&dev->dev); 2700 if (!handle) 2701 return -ENODEV; 2702 2703 info = smi_info_alloc(); 2704 if (!info) 2705 return -ENOMEM; 2706 2707 info->addr_source = SI_ACPI; 2708 dev_info(&dev->dev, PFX "probing via ACPI\n"); 2709 2710 info->addr_info.acpi_info.acpi_handle = handle; 2711 2712 /* _IFT tells us the interface type: KCS, BT, etc */ 2713 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2714 if (ACPI_FAILURE(status)) { 2715 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); 2716 goto err_free; 2717 } 2718 2719 switch (tmp) { 2720 case 1: 2721 info->si_type = SI_KCS; 2722 break; 2723 case 2: 2724 info->si_type = SI_SMIC; 2725 break; 2726 case 3: 2727 info->si_type = SI_BT; 2728 break; 2729 case 4: /* SSIF, just ignore */ 2730 rv = -ENODEV; 2731 goto err_free; 2732 default: 2733 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2734 goto err_free; 2735 } 2736 2737 res = platform_get_resource(dev, IORESOURCE_IO, 0); 2738 if (res) { 2739 info->io_setup = port_setup; 2740 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2741 } else { 2742 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2743 if (res) { 2744 info->io_setup = mem_setup; 2745 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2746 } 2747 } 2748 if (!res) { 2749 dev_err(&dev->dev, "no I/O or memory address\n"); 2750 goto err_free; 2751 } 2752 info->io.addr_data = res->start; 2753 2754 info->io.regspacing = DEFAULT_REGSPACING; 2755 res_second = platform_get_resource(dev, 2756 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2757 IORESOURCE_IO : IORESOURCE_MEM, 2758 1); 2759 if (res_second) { 2760 if (res_second->start > info->io.addr_data) 2761 info->io.regspacing = 2762 res_second->start - info->io.addr_data; 2763 } 2764 info->io.regsize = DEFAULT_REGSPACING; 2765 info->io.regshift = 0; 2766 2767 /* If _GPE exists, use it; otherwise use standard interrupts */ 2768 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2769 if (ACPI_SUCCESS(status)) { 2770 info->irq = tmp; 2771 info->irq_setup = acpi_gpe_irq_setup; 2772 } else { 2773 int irq = platform_get_irq(dev, 0); 2774 2775 if (irq > 0) { 2776 info->irq = irq; 2777 info->irq_setup = std_irq_setup; 2778 } 2779 } 2780 2781 info->dev = &dev->dev; 2782 platform_set_drvdata(dev, info); 2783 2784 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2785 res, info->io.regsize, info->io.regspacing, 2786 info->irq); 2787 2788 rv = add_smi(info); 2789 if (rv) 2790 kfree(info); 2791 2792 return rv; 2793 2794 err_free: 2795 kfree(info); 2796 return rv; 2797 } 2798 2799 static const struct acpi_device_id acpi_ipmi_match[] = { 2800 { "IPI0001", 0 }, 2801 { }, 2802 }; 2803 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); 2804 #else 2805 static int acpi_ipmi_probe(struct platform_device *dev) 2806 { 2807 return -ENODEV; 2808 } 2809 #endif 2810 2811 static int ipmi_probe(struct platform_device *dev) 2812 { 2813 if (of_ipmi_probe(dev) == 0) 2814 return 0; 2815 2816 return acpi_ipmi_probe(dev); 2817 } 2818 2819 static int ipmi_remove(struct platform_device *dev) 2820 { 2821 struct smi_info *info = dev_get_drvdata(&dev->dev); 2822 2823 cleanup_one_si(info); 2824 return 0; 2825 } 2826 2827 static struct platform_driver ipmi_driver = { 2828 .driver = { 2829 .name = DEVICE_NAME, 2830 .of_match_table = of_ipmi_match, 2831 .acpi_match_table = ACPI_PTR(acpi_ipmi_match), 2832 }, 2833 .probe = ipmi_probe, 2834 .remove = ipmi_remove, 2835 }; 2836 2837 #ifdef CONFIG_PARISC 2838 static int ipmi_parisc_probe(struct parisc_device *dev) 2839 { 2840 struct smi_info *info; 2841 int rv; 2842 2843 info = smi_info_alloc(); 2844 2845 if (!info) { 2846 dev_err(&dev->dev, 2847 "could not allocate memory for PARISC probe\n"); 2848 return -ENOMEM; 2849 } 2850 2851 info->si_type = SI_KCS; 2852 info->addr_source = SI_DEVICETREE; 2853 info->io_setup = mem_setup; 2854 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2855 info->io.addr_data = dev->hpa.start; 2856 info->io.regsize = 1; 2857 info->io.regspacing = 1; 2858 info->io.regshift = 0; 2859 info->irq = 0; /* no interrupt */ 2860 info->irq_setup = NULL; 2861 info->dev = &dev->dev; 2862 2863 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2864 2865 dev_set_drvdata(&dev->dev, info); 2866 2867 rv = add_smi(info); 2868 if (rv) { 2869 kfree(info); 2870 return rv; 2871 } 2872 2873 return 0; 2874 } 2875 2876 static int ipmi_parisc_remove(struct parisc_device *dev) 2877 { 2878 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2879 return 0; 2880 } 2881 2882 static const struct parisc_device_id ipmi_parisc_tbl[] = { 2883 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2884 { 0, } 2885 }; 2886 2887 static struct parisc_driver ipmi_parisc_driver = { 2888 .name = "ipmi", 2889 .id_table = ipmi_parisc_tbl, 2890 .probe = ipmi_parisc_probe, 2891 .remove = ipmi_parisc_remove, 2892 }; 2893 #endif /* CONFIG_PARISC */ 2894 2895 static int wait_for_msg_done(struct smi_info *smi_info) 2896 { 2897 enum si_sm_result smi_result; 2898 2899 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2900 for (;;) { 2901 if (smi_result == SI_SM_CALL_WITH_DELAY || 2902 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2903 schedule_timeout_uninterruptible(1); 2904 smi_result = smi_info->handlers->event( 2905 smi_info->si_sm, jiffies_to_usecs(1)); 2906 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2907 smi_result = smi_info->handlers->event( 2908 smi_info->si_sm, 0); 2909 } else 2910 break; 2911 } 2912 if (smi_result == SI_SM_HOSED) 2913 /* 2914 * We couldn't get the state machine to run, so whatever's at 2915 * the port is probably not an IPMI SMI interface. 2916 */ 2917 return -ENODEV; 2918 2919 return 0; 2920 } 2921 2922 static int try_get_dev_id(struct smi_info *smi_info) 2923 { 2924 unsigned char msg[2]; 2925 unsigned char *resp; 2926 unsigned long resp_len; 2927 int rv = 0; 2928 2929 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2930 if (!resp) 2931 return -ENOMEM; 2932 2933 /* 2934 * Do a Get Device ID command, since it comes back with some 2935 * useful info. 2936 */ 2937 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2938 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2939 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2940 2941 rv = wait_for_msg_done(smi_info); 2942 if (rv) 2943 goto out; 2944 2945 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2946 resp, IPMI_MAX_MSG_LENGTH); 2947 2948 /* Check and record info from the get device id, in case we need it. */ 2949 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2950 2951 out: 2952 kfree(resp); 2953 return rv; 2954 } 2955 2956 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 2957 { 2958 unsigned char msg[3]; 2959 unsigned char *resp; 2960 unsigned long resp_len; 2961 int rv; 2962 2963 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2964 if (!resp) 2965 return -ENOMEM; 2966 2967 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2968 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2969 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2970 2971 rv = wait_for_msg_done(smi_info); 2972 if (rv) { 2973 dev_warn(smi_info->dev, 2974 "Error getting response from get global enables command: %d\n", 2975 rv); 2976 goto out; 2977 } 2978 2979 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2980 resp, IPMI_MAX_MSG_LENGTH); 2981 2982 if (resp_len < 4 || 2983 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2984 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2985 resp[2] != 0) { 2986 dev_warn(smi_info->dev, 2987 "Invalid return from get global enables command: %ld %x %x %x\n", 2988 resp_len, resp[0], resp[1], resp[2]); 2989 rv = -EINVAL; 2990 goto out; 2991 } else { 2992 *enables = resp[3]; 2993 } 2994 2995 out: 2996 kfree(resp); 2997 return rv; 2998 } 2999 3000 /* 3001 * Returns 1 if it gets an error from the command. 3002 */ 3003 static int set_global_enables(struct smi_info *smi_info, u8 enables) 3004 { 3005 unsigned char msg[3]; 3006 unsigned char *resp; 3007 unsigned long resp_len; 3008 int rv; 3009 3010 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3011 if (!resp) 3012 return -ENOMEM; 3013 3014 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3015 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3016 msg[2] = enables; 3017 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3018 3019 rv = wait_for_msg_done(smi_info); 3020 if (rv) { 3021 dev_warn(smi_info->dev, 3022 "Error getting response from set global enables command: %d\n", 3023 rv); 3024 goto out; 3025 } 3026 3027 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3028 resp, IPMI_MAX_MSG_LENGTH); 3029 3030 if (resp_len < 3 || 3031 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3032 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3033 dev_warn(smi_info->dev, 3034 "Invalid return from set global enables command: %ld %x %x\n", 3035 resp_len, resp[0], resp[1]); 3036 rv = -EINVAL; 3037 goto out; 3038 } 3039 3040 if (resp[2] != 0) 3041 rv = 1; 3042 3043 out: 3044 kfree(resp); 3045 return rv; 3046 } 3047 3048 /* 3049 * Some BMCs do not support clearing the receive irq bit in the global 3050 * enables (even if they don't support interrupts on the BMC). Check 3051 * for this and handle it properly. 3052 */ 3053 static void check_clr_rcv_irq(struct smi_info *smi_info) 3054 { 3055 u8 enables = 0; 3056 int rv; 3057 3058 rv = get_global_enables(smi_info, &enables); 3059 if (!rv) { 3060 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 3061 /* Already clear, should work ok. */ 3062 return; 3063 3064 enables &= ~IPMI_BMC_RCV_MSG_INTR; 3065 rv = set_global_enables(smi_info, enables); 3066 } 3067 3068 if (rv < 0) { 3069 dev_err(smi_info->dev, 3070 "Cannot check clearing the rcv irq: %d\n", rv); 3071 return; 3072 } 3073 3074 if (rv) { 3075 /* 3076 * An error when setting the event buffer bit means 3077 * clearing the bit is not supported. 3078 */ 3079 dev_warn(smi_info->dev, 3080 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3081 smi_info->cannot_disable_irq = true; 3082 } 3083 } 3084 3085 /* 3086 * Some BMCs do not support setting the interrupt bits in the global 3087 * enables even if they support interrupts. Clearly bad, but we can 3088 * compensate. 3089 */ 3090 static void check_set_rcv_irq(struct smi_info *smi_info) 3091 { 3092 u8 enables = 0; 3093 int rv; 3094 3095 if (!smi_info->irq) 3096 return; 3097 3098 rv = get_global_enables(smi_info, &enables); 3099 if (!rv) { 3100 enables |= IPMI_BMC_RCV_MSG_INTR; 3101 rv = set_global_enables(smi_info, enables); 3102 } 3103 3104 if (rv < 0) { 3105 dev_err(smi_info->dev, 3106 "Cannot check setting the rcv irq: %d\n", rv); 3107 return; 3108 } 3109 3110 if (rv) { 3111 /* 3112 * An error when setting the event buffer bit means 3113 * setting the bit is not supported. 3114 */ 3115 dev_warn(smi_info->dev, 3116 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3117 smi_info->cannot_disable_irq = true; 3118 smi_info->irq_enable_broken = true; 3119 } 3120 } 3121 3122 static int try_enable_event_buffer(struct smi_info *smi_info) 3123 { 3124 unsigned char msg[3]; 3125 unsigned char *resp; 3126 unsigned long resp_len; 3127 int rv = 0; 3128 3129 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3130 if (!resp) 3131 return -ENOMEM; 3132 3133 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3134 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3135 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3136 3137 rv = wait_for_msg_done(smi_info); 3138 if (rv) { 3139 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n"); 3140 goto out; 3141 } 3142 3143 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3144 resp, IPMI_MAX_MSG_LENGTH); 3145 3146 if (resp_len < 4 || 3147 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3148 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3149 resp[2] != 0) { 3150 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n"); 3151 rv = -EINVAL; 3152 goto out; 3153 } 3154 3155 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3156 /* buffer is already enabled, nothing to do. */ 3157 smi_info->supports_event_msg_buff = true; 3158 goto out; 3159 } 3160 3161 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3162 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3163 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3164 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3165 3166 rv = wait_for_msg_done(smi_info); 3167 if (rv) { 3168 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n"); 3169 goto out; 3170 } 3171 3172 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3173 resp, IPMI_MAX_MSG_LENGTH); 3174 3175 if (resp_len < 3 || 3176 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3177 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3178 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n"); 3179 rv = -EINVAL; 3180 goto out; 3181 } 3182 3183 if (resp[2] != 0) 3184 /* 3185 * An error when setting the event buffer bit means 3186 * that the event buffer is not supported. 3187 */ 3188 rv = -ENOENT; 3189 else 3190 smi_info->supports_event_msg_buff = true; 3191 3192 out: 3193 kfree(resp); 3194 return rv; 3195 } 3196 3197 static int smi_type_proc_show(struct seq_file *m, void *v) 3198 { 3199 struct smi_info *smi = m->private; 3200 3201 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3202 3203 return 0; 3204 } 3205 3206 static int smi_type_proc_open(struct inode *inode, struct file *file) 3207 { 3208 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3209 } 3210 3211 static const struct file_operations smi_type_proc_ops = { 3212 .open = smi_type_proc_open, 3213 .read = seq_read, 3214 .llseek = seq_lseek, 3215 .release = single_release, 3216 }; 3217 3218 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3219 { 3220 struct smi_info *smi = m->private; 3221 3222 seq_printf(m, "interrupts_enabled: %d\n", 3223 smi->irq && !smi->interrupt_disabled); 3224 seq_printf(m, "short_timeouts: %u\n", 3225 smi_get_stat(smi, short_timeouts)); 3226 seq_printf(m, "long_timeouts: %u\n", 3227 smi_get_stat(smi, long_timeouts)); 3228 seq_printf(m, "idles: %u\n", 3229 smi_get_stat(smi, idles)); 3230 seq_printf(m, "interrupts: %u\n", 3231 smi_get_stat(smi, interrupts)); 3232 seq_printf(m, "attentions: %u\n", 3233 smi_get_stat(smi, attentions)); 3234 seq_printf(m, "flag_fetches: %u\n", 3235 smi_get_stat(smi, flag_fetches)); 3236 seq_printf(m, "hosed_count: %u\n", 3237 smi_get_stat(smi, hosed_count)); 3238 seq_printf(m, "complete_transactions: %u\n", 3239 smi_get_stat(smi, complete_transactions)); 3240 seq_printf(m, "events: %u\n", 3241 smi_get_stat(smi, events)); 3242 seq_printf(m, "watchdog_pretimeouts: %u\n", 3243 smi_get_stat(smi, watchdog_pretimeouts)); 3244 seq_printf(m, "incoming_messages: %u\n", 3245 smi_get_stat(smi, incoming_messages)); 3246 return 0; 3247 } 3248 3249 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3250 { 3251 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3252 } 3253 3254 static const struct file_operations smi_si_stats_proc_ops = { 3255 .open = smi_si_stats_proc_open, 3256 .read = seq_read, 3257 .llseek = seq_lseek, 3258 .release = single_release, 3259 }; 3260 3261 static int smi_params_proc_show(struct seq_file *m, void *v) 3262 { 3263 struct smi_info *smi = m->private; 3264 3265 seq_printf(m, 3266 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3267 si_to_str[smi->si_type], 3268 addr_space_to_str[smi->io.addr_type], 3269 smi->io.addr_data, 3270 smi->io.regspacing, 3271 smi->io.regsize, 3272 smi->io.regshift, 3273 smi->irq, 3274 smi->slave_addr); 3275 3276 return 0; 3277 } 3278 3279 static int smi_params_proc_open(struct inode *inode, struct file *file) 3280 { 3281 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3282 } 3283 3284 static const struct file_operations smi_params_proc_ops = { 3285 .open = smi_params_proc_open, 3286 .read = seq_read, 3287 .llseek = seq_lseek, 3288 .release = single_release, 3289 }; 3290 3291 /* 3292 * oem_data_avail_to_receive_msg_avail 3293 * @info - smi_info structure with msg_flags set 3294 * 3295 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3296 * Returns 1 indicating need to re-run handle_flags(). 3297 */ 3298 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3299 { 3300 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3301 RECEIVE_MSG_AVAIL); 3302 return 1; 3303 } 3304 3305 /* 3306 * setup_dell_poweredge_oem_data_handler 3307 * @info - smi_info.device_id must be populated 3308 * 3309 * Systems that match, but have firmware version < 1.40 may assert 3310 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3311 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3312 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3313 * as RECEIVE_MSG_AVAIL instead. 3314 * 3315 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3316 * assert the OEM[012] bits, and if it did, the driver would have to 3317 * change to handle that properly, we don't actually check for the 3318 * firmware version. 3319 * Device ID = 0x20 BMC on PowerEdge 8G servers 3320 * Device Revision = 0x80 3321 * Firmware Revision1 = 0x01 BMC version 1.40 3322 * Firmware Revision2 = 0x40 BCD encoded 3323 * IPMI Version = 0x51 IPMI 1.5 3324 * Manufacturer ID = A2 02 00 Dell IANA 3325 * 3326 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3327 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3328 * 3329 */ 3330 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3331 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3332 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3333 #define DELL_IANA_MFR_ID 0x0002a2 3334 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3335 { 3336 struct ipmi_device_id *id = &smi_info->device_id; 3337 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3338 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3339 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3340 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3341 smi_info->oem_data_avail_handler = 3342 oem_data_avail_to_receive_msg_avail; 3343 } else if (ipmi_version_major(id) < 1 || 3344 (ipmi_version_major(id) == 1 && 3345 ipmi_version_minor(id) < 5)) { 3346 smi_info->oem_data_avail_handler = 3347 oem_data_avail_to_receive_msg_avail; 3348 } 3349 } 3350 } 3351 3352 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3353 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3354 { 3355 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3356 3357 /* Make it a response */ 3358 msg->rsp[0] = msg->data[0] | 4; 3359 msg->rsp[1] = msg->data[1]; 3360 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3361 msg->rsp_size = 3; 3362 smi_info->curr_msg = NULL; 3363 deliver_recv_msg(smi_info, msg); 3364 } 3365 3366 /* 3367 * dell_poweredge_bt_xaction_handler 3368 * @info - smi_info.device_id must be populated 3369 * 3370 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3371 * not respond to a Get SDR command if the length of the data 3372 * requested is exactly 0x3A, which leads to command timeouts and no 3373 * data returned. This intercepts such commands, and causes userspace 3374 * callers to try again with a different-sized buffer, which succeeds. 3375 */ 3376 3377 #define STORAGE_NETFN 0x0A 3378 #define STORAGE_CMD_GET_SDR 0x23 3379 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3380 unsigned long unused, 3381 void *in) 3382 { 3383 struct smi_info *smi_info = in; 3384 unsigned char *data = smi_info->curr_msg->data; 3385 unsigned int size = smi_info->curr_msg->data_size; 3386 if (size >= 8 && 3387 (data[0]>>2) == STORAGE_NETFN && 3388 data[1] == STORAGE_CMD_GET_SDR && 3389 data[7] == 0x3A) { 3390 return_hosed_msg_badsize(smi_info); 3391 return NOTIFY_STOP; 3392 } 3393 return NOTIFY_DONE; 3394 } 3395 3396 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3397 .notifier_call = dell_poweredge_bt_xaction_handler, 3398 }; 3399 3400 /* 3401 * setup_dell_poweredge_bt_xaction_handler 3402 * @info - smi_info.device_id must be filled in already 3403 * 3404 * Fills in smi_info.device_id.start_transaction_pre_hook 3405 * when we know what function to use there. 3406 */ 3407 static void 3408 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3409 { 3410 struct ipmi_device_id *id = &smi_info->device_id; 3411 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3412 smi_info->si_type == SI_BT) 3413 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3414 } 3415 3416 /* 3417 * setup_oem_data_handler 3418 * @info - smi_info.device_id must be filled in already 3419 * 3420 * Fills in smi_info.device_id.oem_data_available_handler 3421 * when we know what function to use there. 3422 */ 3423 3424 static void setup_oem_data_handler(struct smi_info *smi_info) 3425 { 3426 setup_dell_poweredge_oem_data_handler(smi_info); 3427 } 3428 3429 static void setup_xaction_handlers(struct smi_info *smi_info) 3430 { 3431 setup_dell_poweredge_bt_xaction_handler(smi_info); 3432 } 3433 3434 static void check_for_broken_irqs(struct smi_info *smi_info) 3435 { 3436 check_clr_rcv_irq(smi_info); 3437 check_set_rcv_irq(smi_info); 3438 } 3439 3440 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3441 { 3442 if (smi_info->thread != NULL) 3443 kthread_stop(smi_info->thread); 3444 if (smi_info->timer_running) 3445 del_timer_sync(&smi_info->si_timer); 3446 } 3447 3448 static int is_new_interface(struct smi_info *info) 3449 { 3450 struct smi_info *e; 3451 3452 list_for_each_entry(e, &smi_infos, link) { 3453 if (e->io.addr_type != info->io.addr_type) 3454 continue; 3455 if (e->io.addr_data == info->io.addr_data) { 3456 /* 3457 * This is a cheap hack, ACPI doesn't have a defined 3458 * slave address but SMBIOS does. Pick it up from 3459 * any source that has it available. 3460 */ 3461 if (info->slave_addr && !e->slave_addr) 3462 e->slave_addr = info->slave_addr; 3463 return 0; 3464 } 3465 } 3466 3467 return 1; 3468 } 3469 3470 static int add_smi(struct smi_info *new_smi) 3471 { 3472 int rv = 0; 3473 3474 mutex_lock(&smi_infos_lock); 3475 if (!is_new_interface(new_smi)) { 3476 pr_info(PFX "%s-specified %s state machine: duplicate\n", 3477 ipmi_addr_src_to_str(new_smi->addr_source), 3478 si_to_str[new_smi->si_type]); 3479 rv = -EBUSY; 3480 goto out_err; 3481 } 3482 3483 pr_info(PFX "Adding %s-specified %s state machine\n", 3484 ipmi_addr_src_to_str(new_smi->addr_source), 3485 si_to_str[new_smi->si_type]); 3486 3487 /* So we know not to free it unless we have allocated one. */ 3488 new_smi->intf = NULL; 3489 new_smi->si_sm = NULL; 3490 new_smi->handlers = NULL; 3491 3492 list_add_tail(&new_smi->link, &smi_infos); 3493 3494 out_err: 3495 mutex_unlock(&smi_infos_lock); 3496 return rv; 3497 } 3498 3499 /* 3500 * Try to start up an interface. Must be called with smi_infos_lock 3501 * held, primarily to keep smi_num consistent, we only one to do these 3502 * one at a time. 3503 */ 3504 static int try_smi_init(struct smi_info *new_smi) 3505 { 3506 int rv = 0; 3507 int i; 3508 char *init_name = NULL; 3509 3510 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", 3511 ipmi_addr_src_to_str(new_smi->addr_source), 3512 si_to_str[new_smi->si_type], 3513 addr_space_to_str[new_smi->io.addr_type], 3514 new_smi->io.addr_data, 3515 new_smi->slave_addr, new_smi->irq); 3516 3517 switch (new_smi->si_type) { 3518 case SI_KCS: 3519 new_smi->handlers = &kcs_smi_handlers; 3520 break; 3521 3522 case SI_SMIC: 3523 new_smi->handlers = &smic_smi_handlers; 3524 break; 3525 3526 case SI_BT: 3527 new_smi->handlers = &bt_smi_handlers; 3528 break; 3529 3530 default: 3531 /* No support for anything else yet. */ 3532 rv = -EIO; 3533 goto out_err; 3534 } 3535 3536 new_smi->intf_num = smi_num; 3537 3538 /* Do this early so it's available for logs. */ 3539 if (!new_smi->dev) { 3540 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 3541 new_smi->intf_num); 3542 3543 /* 3544 * If we don't already have a device from something 3545 * else (like PCI), then register a new one. 3546 */ 3547 new_smi->pdev = platform_device_alloc("ipmi_si", 3548 new_smi->intf_num); 3549 if (!new_smi->pdev) { 3550 pr_err(PFX "Unable to allocate platform device\n"); 3551 goto out_err; 3552 } 3553 new_smi->dev = &new_smi->pdev->dev; 3554 new_smi->dev->driver = &ipmi_driver.driver; 3555 /* Nulled by device_add() */ 3556 new_smi->dev->init_name = init_name; 3557 } 3558 3559 /* Allocate the state machine's data and initialize it. */ 3560 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3561 if (!new_smi->si_sm) { 3562 pr_err(PFX "Could not allocate state machine memory\n"); 3563 rv = -ENOMEM; 3564 goto out_err; 3565 } 3566 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3567 &new_smi->io); 3568 3569 /* Now that we know the I/O size, we can set up the I/O. */ 3570 rv = new_smi->io_setup(new_smi); 3571 if (rv) { 3572 dev_err(new_smi->dev, "Could not set up I/O space\n"); 3573 goto out_err; 3574 } 3575 3576 /* Do low-level detection first. */ 3577 if (new_smi->handlers->detect(new_smi->si_sm)) { 3578 if (new_smi->addr_source) 3579 dev_err(new_smi->dev, "Interface detection failed\n"); 3580 rv = -ENODEV; 3581 goto out_err; 3582 } 3583 3584 /* 3585 * Attempt a get device id command. If it fails, we probably 3586 * don't have a BMC here. 3587 */ 3588 rv = try_get_dev_id(new_smi); 3589 if (rv) { 3590 if (new_smi->addr_source) 3591 dev_err(new_smi->dev, "There appears to be no BMC at this location\n"); 3592 goto out_err; 3593 } 3594 3595 setup_oem_data_handler(new_smi); 3596 setup_xaction_handlers(new_smi); 3597 check_for_broken_irqs(new_smi); 3598 3599 new_smi->waiting_msg = NULL; 3600 new_smi->curr_msg = NULL; 3601 atomic_set(&new_smi->req_events, 0); 3602 new_smi->run_to_completion = false; 3603 for (i = 0; i < SI_NUM_STATS; i++) 3604 atomic_set(&new_smi->stats[i], 0); 3605 3606 new_smi->interrupt_disabled = true; 3607 atomic_set(&new_smi->need_watch, 0); 3608 3609 rv = try_enable_event_buffer(new_smi); 3610 if (rv == 0) 3611 new_smi->has_event_buffer = true; 3612 3613 /* 3614 * Start clearing the flags before we enable interrupts or the 3615 * timer to avoid racing with the timer. 3616 */ 3617 start_clear_flags(new_smi, false); 3618 3619 /* 3620 * IRQ is defined to be set when non-zero. req_events will 3621 * cause a global flags check that will enable interrupts. 3622 */ 3623 if (new_smi->irq) { 3624 new_smi->interrupt_disabled = false; 3625 atomic_set(&new_smi->req_events, 1); 3626 } 3627 3628 if (new_smi->pdev) { 3629 rv = platform_device_add(new_smi->pdev); 3630 if (rv) { 3631 dev_err(new_smi->dev, 3632 "Unable to register system interface device: %d\n", 3633 rv); 3634 goto out_err; 3635 } 3636 new_smi->dev_registered = true; 3637 } 3638 3639 rv = ipmi_register_smi(&handlers, 3640 new_smi, 3641 &new_smi->device_id, 3642 new_smi->dev, 3643 new_smi->slave_addr); 3644 if (rv) { 3645 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3646 rv); 3647 goto out_err_stop_timer; 3648 } 3649 3650 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3651 &smi_type_proc_ops, 3652 new_smi); 3653 if (rv) { 3654 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3655 goto out_err_stop_timer; 3656 } 3657 3658 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3659 &smi_si_stats_proc_ops, 3660 new_smi); 3661 if (rv) { 3662 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3663 goto out_err_stop_timer; 3664 } 3665 3666 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3667 &smi_params_proc_ops, 3668 new_smi); 3669 if (rv) { 3670 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3671 goto out_err_stop_timer; 3672 } 3673 3674 /* Don't increment till we know we have succeeded. */ 3675 smi_num++; 3676 3677 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3678 si_to_str[new_smi->si_type]); 3679 3680 WARN_ON(new_smi->dev->init_name != NULL); 3681 kfree(init_name); 3682 3683 return 0; 3684 3685 out_err_stop_timer: 3686 wait_for_timer_and_thread(new_smi); 3687 3688 out_err: 3689 new_smi->interrupt_disabled = true; 3690 3691 if (new_smi->intf) { 3692 ipmi_smi_t intf = new_smi->intf; 3693 new_smi->intf = NULL; 3694 ipmi_unregister_smi(intf); 3695 } 3696 3697 if (new_smi->irq_cleanup) { 3698 new_smi->irq_cleanup(new_smi); 3699 new_smi->irq_cleanup = NULL; 3700 } 3701 3702 /* 3703 * Wait until we know that we are out of any interrupt 3704 * handlers might have been running before we freed the 3705 * interrupt. 3706 */ 3707 synchronize_sched(); 3708 3709 if (new_smi->si_sm) { 3710 if (new_smi->handlers) 3711 new_smi->handlers->cleanup(new_smi->si_sm); 3712 kfree(new_smi->si_sm); 3713 new_smi->si_sm = NULL; 3714 } 3715 if (new_smi->addr_source_cleanup) { 3716 new_smi->addr_source_cleanup(new_smi); 3717 new_smi->addr_source_cleanup = NULL; 3718 } 3719 if (new_smi->io_cleanup) { 3720 new_smi->io_cleanup(new_smi); 3721 new_smi->io_cleanup = NULL; 3722 } 3723 3724 if (new_smi->dev_registered) { 3725 platform_device_unregister(new_smi->pdev); 3726 new_smi->dev_registered = false; 3727 new_smi->pdev = NULL; 3728 } else if (new_smi->pdev) { 3729 platform_device_put(new_smi->pdev); 3730 new_smi->pdev = NULL; 3731 } 3732 3733 kfree(init_name); 3734 3735 return rv; 3736 } 3737 3738 static int init_ipmi_si(void) 3739 { 3740 int i; 3741 char *str; 3742 int rv; 3743 struct smi_info *e; 3744 enum ipmi_addr_src type = SI_INVALID; 3745 3746 if (initialized) 3747 return 0; 3748 initialized = 1; 3749 3750 if (si_tryplatform) { 3751 rv = platform_driver_register(&ipmi_driver); 3752 if (rv) { 3753 pr_err(PFX "Unable to register driver: %d\n", rv); 3754 return rv; 3755 } 3756 } 3757 3758 /* Parse out the si_type string into its components. */ 3759 str = si_type_str; 3760 if (*str != '\0') { 3761 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3762 si_type[i] = str; 3763 str = strchr(str, ','); 3764 if (str) { 3765 *str = '\0'; 3766 str++; 3767 } else { 3768 break; 3769 } 3770 } 3771 } 3772 3773 pr_info("IPMI System Interface driver.\n"); 3774 3775 /* If the user gave us a device, they presumably want us to use it */ 3776 if (!hardcode_find_bmc()) 3777 return 0; 3778 3779 #ifdef CONFIG_PCI 3780 if (si_trypci) { 3781 rv = pci_register_driver(&ipmi_pci_driver); 3782 if (rv) 3783 pr_err(PFX "Unable to register PCI driver: %d\n", rv); 3784 else 3785 pci_registered = true; 3786 } 3787 #endif 3788 3789 #ifdef CONFIG_DMI 3790 if (si_trydmi) 3791 dmi_find_bmc(); 3792 #endif 3793 3794 #ifdef CONFIG_ACPI 3795 if (si_tryacpi) 3796 spmi_find_bmc(); 3797 #endif 3798 3799 #ifdef CONFIG_PARISC 3800 register_parisc_driver(&ipmi_parisc_driver); 3801 parisc_registered = true; 3802 #endif 3803 3804 /* We prefer devices with interrupts, but in the case of a machine 3805 with multiple BMCs we assume that there will be several instances 3806 of a given type so if we succeed in registering a type then also 3807 try to register everything else of the same type */ 3808 3809 mutex_lock(&smi_infos_lock); 3810 list_for_each_entry(e, &smi_infos, link) { 3811 /* Try to register a device if it has an IRQ and we either 3812 haven't successfully registered a device yet or this 3813 device has the same type as one we successfully registered */ 3814 if (e->irq && (!type || e->addr_source == type)) { 3815 if (!try_smi_init(e)) { 3816 type = e->addr_source; 3817 } 3818 } 3819 } 3820 3821 /* type will only have been set if we successfully registered an si */ 3822 if (type) { 3823 mutex_unlock(&smi_infos_lock); 3824 return 0; 3825 } 3826 3827 /* Fall back to the preferred device */ 3828 3829 list_for_each_entry(e, &smi_infos, link) { 3830 if (!e->irq && (!type || e->addr_source == type)) { 3831 if (!try_smi_init(e)) { 3832 type = e->addr_source; 3833 } 3834 } 3835 } 3836 mutex_unlock(&smi_infos_lock); 3837 3838 if (type) 3839 return 0; 3840 3841 mutex_lock(&smi_infos_lock); 3842 if (unload_when_empty && list_empty(&smi_infos)) { 3843 mutex_unlock(&smi_infos_lock); 3844 cleanup_ipmi_si(); 3845 pr_warn(PFX "Unable to find any System Interface(s)\n"); 3846 return -ENODEV; 3847 } else { 3848 mutex_unlock(&smi_infos_lock); 3849 return 0; 3850 } 3851 } 3852 module_init(init_ipmi_si); 3853 3854 static void cleanup_one_si(struct smi_info *to_clean) 3855 { 3856 int rv = 0; 3857 3858 if (!to_clean) 3859 return; 3860 3861 if (to_clean->intf) { 3862 ipmi_smi_t intf = to_clean->intf; 3863 3864 to_clean->intf = NULL; 3865 rv = ipmi_unregister_smi(intf); 3866 if (rv) { 3867 pr_err(PFX "Unable to unregister device: errno=%d\n", 3868 rv); 3869 } 3870 } 3871 3872 if (to_clean->dev) 3873 dev_set_drvdata(to_clean->dev, NULL); 3874 3875 list_del(&to_clean->link); 3876 3877 /* 3878 * Make sure that interrupts, the timer and the thread are 3879 * stopped and will not run again. 3880 */ 3881 if (to_clean->irq_cleanup) 3882 to_clean->irq_cleanup(to_clean); 3883 wait_for_timer_and_thread(to_clean); 3884 3885 /* 3886 * Timeouts are stopped, now make sure the interrupts are off 3887 * in the BMC. Note that timers and CPU interrupts are off, 3888 * so no need for locks. 3889 */ 3890 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3891 poll(to_clean); 3892 schedule_timeout_uninterruptible(1); 3893 } 3894 disable_si_irq(to_clean, false); 3895 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3896 poll(to_clean); 3897 schedule_timeout_uninterruptible(1); 3898 } 3899 3900 if (to_clean->handlers) 3901 to_clean->handlers->cleanup(to_clean->si_sm); 3902 3903 kfree(to_clean->si_sm); 3904 3905 if (to_clean->addr_source_cleanup) 3906 to_clean->addr_source_cleanup(to_clean); 3907 if (to_clean->io_cleanup) 3908 to_clean->io_cleanup(to_clean); 3909 3910 if (to_clean->dev_registered) 3911 platform_device_unregister(to_clean->pdev); 3912 3913 kfree(to_clean); 3914 } 3915 3916 static void cleanup_ipmi_si(void) 3917 { 3918 struct smi_info *e, *tmp_e; 3919 3920 if (!initialized) 3921 return; 3922 3923 #ifdef CONFIG_PCI 3924 if (pci_registered) 3925 pci_unregister_driver(&ipmi_pci_driver); 3926 #endif 3927 #ifdef CONFIG_PARISC 3928 if (parisc_registered) 3929 unregister_parisc_driver(&ipmi_parisc_driver); 3930 #endif 3931 3932 platform_driver_unregister(&ipmi_driver); 3933 3934 mutex_lock(&smi_infos_lock); 3935 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3936 cleanup_one_si(e); 3937 mutex_unlock(&smi_infos_lock); 3938 } 3939 module_exit(cleanup_ipmi_si); 3940 3941 MODULE_LICENSE("GPL"); 3942 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3943 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3944 " system interfaces."); 3945