1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_si.c 4 * 5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 6 * BT). 7 * 8 * Author: MontaVista Software, Inc. 9 * Corey Minyard <minyard@mvista.com> 10 * source@mvista.com 11 * 12 * Copyright 2002 MontaVista Software Inc. 13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 14 */ 15 16 /* 17 * This file holds the "policy" for the interface to the SMI state 18 * machine. It does the configuration, handles timers and interrupts, 19 * and drives the real SMI state machine. 20 */ 21 22 #define pr_fmt(fmt) "ipmi_si: " fmt 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/sched.h> 27 #include <linux/seq_file.h> 28 #include <linux/timer.h> 29 #include <linux/errno.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/delay.h> 33 #include <linux/list.h> 34 #include <linux/notifier.h> 35 #include <linux/mutex.h> 36 #include <linux/kthread.h> 37 #include <asm/irq.h> 38 #include <linux/interrupt.h> 39 #include <linux/rcupdate.h> 40 #include <linux/ipmi.h> 41 #include <linux/ipmi_smi.h> 42 #include "ipmi_si.h" 43 #include <linux/string.h> 44 #include <linux/ctype.h> 45 46 /* Measure times between events in the driver. */ 47 #undef DEBUG_TIMING 48 49 /* Call every 10 ms. */ 50 #define SI_TIMEOUT_TIME_USEC 10000 51 #define SI_USEC_PER_JIFFY (1000000/HZ) 52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 54 short timeout */ 55 56 enum si_intf_state { 57 SI_NORMAL, 58 SI_GETTING_FLAGS, 59 SI_GETTING_EVENTS, 60 SI_CLEARING_FLAGS, 61 SI_GETTING_MESSAGES, 62 SI_CHECKING_ENABLES, 63 SI_SETTING_ENABLES 64 /* FIXME - add watchdog stuff. */ 65 }; 66 67 /* Some BT-specific defines we need here. */ 68 #define IPMI_BT_INTMASK_REG 2 69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 71 72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" }; 73 74 static int initialized; 75 76 /* 77 * Indexes into stats[] in smi_info below. 78 */ 79 enum si_stat_indexes { 80 /* 81 * Number of times the driver requested a timer while an operation 82 * was in progress. 83 */ 84 SI_STAT_short_timeouts = 0, 85 86 /* 87 * Number of times the driver requested a timer while nothing was in 88 * progress. 89 */ 90 SI_STAT_long_timeouts, 91 92 /* Number of times the interface was idle while being polled. */ 93 SI_STAT_idles, 94 95 /* Number of interrupts the driver handled. */ 96 SI_STAT_interrupts, 97 98 /* Number of time the driver got an ATTN from the hardware. */ 99 SI_STAT_attentions, 100 101 /* Number of times the driver requested flags from the hardware. */ 102 SI_STAT_flag_fetches, 103 104 /* Number of times the hardware didn't follow the state machine. */ 105 SI_STAT_hosed_count, 106 107 /* Number of completed messages. */ 108 SI_STAT_complete_transactions, 109 110 /* Number of IPMI events received from the hardware. */ 111 SI_STAT_events, 112 113 /* Number of watchdog pretimeouts. */ 114 SI_STAT_watchdog_pretimeouts, 115 116 /* Number of asynchronous messages received. */ 117 SI_STAT_incoming_messages, 118 119 120 /* This *must* remain last, add new values above this. */ 121 SI_NUM_STATS 122 }; 123 124 struct smi_info { 125 int si_num; 126 struct ipmi_smi *intf; 127 struct si_sm_data *si_sm; 128 const struct si_sm_handlers *handlers; 129 spinlock_t si_lock; 130 struct ipmi_smi_msg *waiting_msg; 131 struct ipmi_smi_msg *curr_msg; 132 enum si_intf_state si_state; 133 134 /* 135 * Used to handle the various types of I/O that can occur with 136 * IPMI 137 */ 138 struct si_sm_io io; 139 140 /* 141 * Per-OEM handler, called from handle_flags(). Returns 1 142 * when handle_flags() needs to be re-run or 0 indicating it 143 * set si_state itself. 144 */ 145 int (*oem_data_avail_handler)(struct smi_info *smi_info); 146 147 /* 148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 149 * is set to hold the flags until we are done handling everything 150 * from the flags. 151 */ 152 #define RECEIVE_MSG_AVAIL 0x01 153 #define EVENT_MSG_BUFFER_FULL 0x02 154 #define WDT_PRE_TIMEOUT_INT 0x08 155 #define OEM0_DATA_AVAIL 0x20 156 #define OEM1_DATA_AVAIL 0x40 157 #define OEM2_DATA_AVAIL 0x80 158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 159 OEM1_DATA_AVAIL | \ 160 OEM2_DATA_AVAIL) 161 unsigned char msg_flags; 162 163 /* Does the BMC have an event buffer? */ 164 bool has_event_buffer; 165 166 /* 167 * If set to true, this will request events the next time the 168 * state machine is idle. 169 */ 170 atomic_t req_events; 171 172 /* 173 * If true, run the state machine to completion on every send 174 * call. Generally used after a panic to make sure stuff goes 175 * out. 176 */ 177 bool run_to_completion; 178 179 /* The timer for this si. */ 180 struct timer_list si_timer; 181 182 /* This flag is set, if the timer can be set */ 183 bool timer_can_start; 184 185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 186 bool timer_running; 187 188 /* The time (in jiffies) the last timeout occurred at. */ 189 unsigned long last_timeout_jiffies; 190 191 /* Are we waiting for the events, pretimeouts, received msgs? */ 192 atomic_t need_watch; 193 194 /* 195 * The driver will disable interrupts when it gets into a 196 * situation where it cannot handle messages due to lack of 197 * memory. Once that situation clears up, it will re-enable 198 * interrupts. 199 */ 200 bool interrupt_disabled; 201 202 /* 203 * Does the BMC support events? 204 */ 205 bool supports_event_msg_buff; 206 207 /* 208 * Can we disable interrupts the global enables receive irq 209 * bit? There are currently two forms of brokenness, some 210 * systems cannot disable the bit (which is technically within 211 * the spec but a bad idea) and some systems have the bit 212 * forced to zero even though interrupts work (which is 213 * clearly outside the spec). The next bool tells which form 214 * of brokenness is present. 215 */ 216 bool cannot_disable_irq; 217 218 /* 219 * Some systems are broken and cannot set the irq enable 220 * bit, even if they support interrupts. 221 */ 222 bool irq_enable_broken; 223 224 /* 225 * Did we get an attention that we did not handle? 226 */ 227 bool got_attn; 228 229 /* From the get device id response... */ 230 struct ipmi_device_id device_id; 231 232 /* Default driver model device. */ 233 struct platform_device *pdev; 234 235 /* Have we added the device group to the device? */ 236 bool dev_group_added; 237 238 /* Have we added the platform device? */ 239 bool pdev_registered; 240 241 /* Counters and things for the proc filesystem. */ 242 atomic_t stats[SI_NUM_STATS]; 243 244 struct task_struct *thread; 245 246 struct list_head link; 247 }; 248 249 #define smi_inc_stat(smi, stat) \ 250 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 251 #define smi_get_stat(smi, stat) \ 252 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 253 254 #define IPMI_MAX_INTFS 4 255 static int force_kipmid[IPMI_MAX_INTFS]; 256 static int num_force_kipmid; 257 258 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS]; 259 static int num_max_busy_us; 260 261 static bool unload_when_empty = true; 262 263 static int try_smi_init(struct smi_info *smi); 264 static void cleanup_one_si(struct smi_info *smi_info); 265 static void cleanup_ipmi_si(void); 266 267 #ifdef DEBUG_TIMING 268 void debug_timestamp(char *msg) 269 { 270 struct timespec64 t; 271 272 ktime_get_ts64(&t); 273 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 274 } 275 #else 276 #define debug_timestamp(x) 277 #endif 278 279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 280 static int register_xaction_notifier(struct notifier_block *nb) 281 { 282 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 283 } 284 285 static void deliver_recv_msg(struct smi_info *smi_info, 286 struct ipmi_smi_msg *msg) 287 { 288 /* Deliver the message to the upper layer. */ 289 ipmi_smi_msg_received(smi_info->intf, msg); 290 } 291 292 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 293 { 294 struct ipmi_smi_msg *msg = smi_info->curr_msg; 295 296 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 297 cCode = IPMI_ERR_UNSPECIFIED; 298 /* else use it as is */ 299 300 /* Make it a response */ 301 msg->rsp[0] = msg->data[0] | 4; 302 msg->rsp[1] = msg->data[1]; 303 msg->rsp[2] = cCode; 304 msg->rsp_size = 3; 305 306 smi_info->curr_msg = NULL; 307 deliver_recv_msg(smi_info, msg); 308 } 309 310 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 311 { 312 int rv; 313 314 if (!smi_info->waiting_msg) { 315 smi_info->curr_msg = NULL; 316 rv = SI_SM_IDLE; 317 } else { 318 int err; 319 320 smi_info->curr_msg = smi_info->waiting_msg; 321 smi_info->waiting_msg = NULL; 322 debug_timestamp("Start2"); 323 err = atomic_notifier_call_chain(&xaction_notifier_list, 324 0, smi_info); 325 if (err & NOTIFY_STOP_MASK) { 326 rv = SI_SM_CALL_WITHOUT_DELAY; 327 goto out; 328 } 329 err = smi_info->handlers->start_transaction( 330 smi_info->si_sm, 331 smi_info->curr_msg->data, 332 smi_info->curr_msg->data_size); 333 if (err) 334 return_hosed_msg(smi_info, err); 335 336 rv = SI_SM_CALL_WITHOUT_DELAY; 337 } 338 out: 339 return rv; 340 } 341 342 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 343 { 344 if (!smi_info->timer_can_start) 345 return; 346 smi_info->last_timeout_jiffies = jiffies; 347 mod_timer(&smi_info->si_timer, new_val); 348 smi_info->timer_running = true; 349 } 350 351 /* 352 * Start a new message and (re)start the timer and thread. 353 */ 354 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 355 unsigned int size) 356 { 357 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 358 359 if (smi_info->thread) 360 wake_up_process(smi_info->thread); 361 362 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 363 } 364 365 static void start_check_enables(struct smi_info *smi_info) 366 { 367 unsigned char msg[2]; 368 369 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 371 372 start_new_msg(smi_info, msg, 2); 373 smi_info->si_state = SI_CHECKING_ENABLES; 374 } 375 376 static void start_clear_flags(struct smi_info *smi_info) 377 { 378 unsigned char msg[3]; 379 380 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 381 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 382 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 383 msg[2] = WDT_PRE_TIMEOUT_INT; 384 385 start_new_msg(smi_info, msg, 3); 386 smi_info->si_state = SI_CLEARING_FLAGS; 387 } 388 389 static void start_getting_msg_queue(struct smi_info *smi_info) 390 { 391 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 392 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 393 smi_info->curr_msg->data_size = 2; 394 395 start_new_msg(smi_info, smi_info->curr_msg->data, 396 smi_info->curr_msg->data_size); 397 smi_info->si_state = SI_GETTING_MESSAGES; 398 } 399 400 static void start_getting_events(struct smi_info *smi_info) 401 { 402 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 403 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 404 smi_info->curr_msg->data_size = 2; 405 406 start_new_msg(smi_info, smi_info->curr_msg->data, 407 smi_info->curr_msg->data_size); 408 smi_info->si_state = SI_GETTING_EVENTS; 409 } 410 411 /* 412 * When we have a situtaion where we run out of memory and cannot 413 * allocate messages, we just leave them in the BMC and run the system 414 * polled until we can allocate some memory. Once we have some 415 * memory, we will re-enable the interrupt. 416 * 417 * Note that we cannot just use disable_irq(), since the interrupt may 418 * be shared. 419 */ 420 static inline bool disable_si_irq(struct smi_info *smi_info) 421 { 422 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 423 smi_info->interrupt_disabled = true; 424 start_check_enables(smi_info); 425 return true; 426 } 427 return false; 428 } 429 430 static inline bool enable_si_irq(struct smi_info *smi_info) 431 { 432 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) { 433 smi_info->interrupt_disabled = false; 434 start_check_enables(smi_info); 435 return true; 436 } 437 return false; 438 } 439 440 /* 441 * Allocate a message. If unable to allocate, start the interrupt 442 * disable process and return NULL. If able to allocate but 443 * interrupts are disabled, free the message and return NULL after 444 * starting the interrupt enable process. 445 */ 446 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 447 { 448 struct ipmi_smi_msg *msg; 449 450 msg = ipmi_alloc_smi_msg(); 451 if (!msg) { 452 if (!disable_si_irq(smi_info)) 453 smi_info->si_state = SI_NORMAL; 454 } else if (enable_si_irq(smi_info)) { 455 ipmi_free_smi_msg(msg); 456 msg = NULL; 457 } 458 return msg; 459 } 460 461 static void handle_flags(struct smi_info *smi_info) 462 { 463 retry: 464 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 465 /* Watchdog pre-timeout */ 466 smi_inc_stat(smi_info, watchdog_pretimeouts); 467 468 start_clear_flags(smi_info); 469 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 470 ipmi_smi_watchdog_pretimeout(smi_info->intf); 471 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 472 /* Messages available. */ 473 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 474 if (!smi_info->curr_msg) 475 return; 476 477 start_getting_msg_queue(smi_info); 478 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 479 /* Events available. */ 480 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 481 if (!smi_info->curr_msg) 482 return; 483 484 start_getting_events(smi_info); 485 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 486 smi_info->oem_data_avail_handler) { 487 if (smi_info->oem_data_avail_handler(smi_info)) 488 goto retry; 489 } else 490 smi_info->si_state = SI_NORMAL; 491 } 492 493 /* 494 * Global enables we care about. 495 */ 496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 497 IPMI_BMC_EVT_MSG_INTR) 498 499 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 500 bool *irq_on) 501 { 502 u8 enables = 0; 503 504 if (smi_info->supports_event_msg_buff) 505 enables |= IPMI_BMC_EVT_MSG_BUFF; 506 507 if (((smi_info->io.irq && !smi_info->interrupt_disabled) || 508 smi_info->cannot_disable_irq) && 509 !smi_info->irq_enable_broken) 510 enables |= IPMI_BMC_RCV_MSG_INTR; 511 512 if (smi_info->supports_event_msg_buff && 513 smi_info->io.irq && !smi_info->interrupt_disabled && 514 !smi_info->irq_enable_broken) 515 enables |= IPMI_BMC_EVT_MSG_INTR; 516 517 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 518 519 return enables; 520 } 521 522 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 523 { 524 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 525 526 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 527 528 if ((bool)irqstate == irq_on) 529 return; 530 531 if (irq_on) 532 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 533 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 534 else 535 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 536 } 537 538 static void handle_transaction_done(struct smi_info *smi_info) 539 { 540 struct ipmi_smi_msg *msg; 541 542 debug_timestamp("Done"); 543 switch (smi_info->si_state) { 544 case SI_NORMAL: 545 if (!smi_info->curr_msg) 546 break; 547 548 smi_info->curr_msg->rsp_size 549 = smi_info->handlers->get_result( 550 smi_info->si_sm, 551 smi_info->curr_msg->rsp, 552 IPMI_MAX_MSG_LENGTH); 553 554 /* 555 * Do this here becase deliver_recv_msg() releases the 556 * lock, and a new message can be put in during the 557 * time the lock is released. 558 */ 559 msg = smi_info->curr_msg; 560 smi_info->curr_msg = NULL; 561 deliver_recv_msg(smi_info, msg); 562 break; 563 564 case SI_GETTING_FLAGS: 565 { 566 unsigned char msg[4]; 567 unsigned int len; 568 569 /* We got the flags from the SMI, now handle them. */ 570 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 571 if (msg[2] != 0) { 572 /* Error fetching flags, just give up for now. */ 573 smi_info->si_state = SI_NORMAL; 574 } else if (len < 4) { 575 /* 576 * Hmm, no flags. That's technically illegal, but 577 * don't use uninitialized data. 578 */ 579 smi_info->si_state = SI_NORMAL; 580 } else { 581 smi_info->msg_flags = msg[3]; 582 handle_flags(smi_info); 583 } 584 break; 585 } 586 587 case SI_CLEARING_FLAGS: 588 { 589 unsigned char msg[3]; 590 591 /* We cleared the flags. */ 592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 593 if (msg[2] != 0) { 594 /* Error clearing flags */ 595 dev_warn(smi_info->io.dev, 596 "Error clearing flags: %2.2x\n", msg[2]); 597 } 598 smi_info->si_state = SI_NORMAL; 599 break; 600 } 601 602 case SI_GETTING_EVENTS: 603 { 604 smi_info->curr_msg->rsp_size 605 = smi_info->handlers->get_result( 606 smi_info->si_sm, 607 smi_info->curr_msg->rsp, 608 IPMI_MAX_MSG_LENGTH); 609 610 /* 611 * Do this here becase deliver_recv_msg() releases the 612 * lock, and a new message can be put in during the 613 * time the lock is released. 614 */ 615 msg = smi_info->curr_msg; 616 smi_info->curr_msg = NULL; 617 if (msg->rsp[2] != 0) { 618 /* Error getting event, probably done. */ 619 msg->done(msg); 620 621 /* Take off the event flag. */ 622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 623 handle_flags(smi_info); 624 } else { 625 smi_inc_stat(smi_info, events); 626 627 /* 628 * Do this before we deliver the message 629 * because delivering the message releases the 630 * lock and something else can mess with the 631 * state. 632 */ 633 handle_flags(smi_info); 634 635 deliver_recv_msg(smi_info, msg); 636 } 637 break; 638 } 639 640 case SI_GETTING_MESSAGES: 641 { 642 smi_info->curr_msg->rsp_size 643 = smi_info->handlers->get_result( 644 smi_info->si_sm, 645 smi_info->curr_msg->rsp, 646 IPMI_MAX_MSG_LENGTH); 647 648 /* 649 * Do this here becase deliver_recv_msg() releases the 650 * lock, and a new message can be put in during the 651 * time the lock is released. 652 */ 653 msg = smi_info->curr_msg; 654 smi_info->curr_msg = NULL; 655 if (msg->rsp[2] != 0) { 656 /* Error getting event, probably done. */ 657 msg->done(msg); 658 659 /* Take off the msg flag. */ 660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 661 handle_flags(smi_info); 662 } else { 663 smi_inc_stat(smi_info, incoming_messages); 664 665 /* 666 * Do this before we deliver the message 667 * because delivering the message releases the 668 * lock and something else can mess with the 669 * state. 670 */ 671 handle_flags(smi_info); 672 673 deliver_recv_msg(smi_info, msg); 674 } 675 break; 676 } 677 678 case SI_CHECKING_ENABLES: 679 { 680 unsigned char msg[4]; 681 u8 enables; 682 bool irq_on; 683 684 /* We got the flags from the SMI, now handle them. */ 685 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 686 if (msg[2] != 0) { 687 dev_warn(smi_info->io.dev, 688 "Couldn't get irq info: %x.\n", msg[2]); 689 dev_warn(smi_info->io.dev, 690 "Maybe ok, but ipmi might run very slowly.\n"); 691 smi_info->si_state = SI_NORMAL; 692 break; 693 } 694 enables = current_global_enables(smi_info, 0, &irq_on); 695 if (smi_info->io.si_type == SI_BT) 696 /* BT has its own interrupt enable bit. */ 697 check_bt_irq(smi_info, irq_on); 698 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 699 /* Enables are not correct, fix them. */ 700 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 701 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 702 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 703 smi_info->handlers->start_transaction( 704 smi_info->si_sm, msg, 3); 705 smi_info->si_state = SI_SETTING_ENABLES; 706 } else if (smi_info->supports_event_msg_buff) { 707 smi_info->curr_msg = ipmi_alloc_smi_msg(); 708 if (!smi_info->curr_msg) { 709 smi_info->si_state = SI_NORMAL; 710 break; 711 } 712 start_getting_events(smi_info); 713 } else { 714 smi_info->si_state = SI_NORMAL; 715 } 716 break; 717 } 718 719 case SI_SETTING_ENABLES: 720 { 721 unsigned char msg[4]; 722 723 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 724 if (msg[2] != 0) 725 dev_warn(smi_info->io.dev, 726 "Could not set the global enables: 0x%x.\n", 727 msg[2]); 728 729 if (smi_info->supports_event_msg_buff) { 730 smi_info->curr_msg = ipmi_alloc_smi_msg(); 731 if (!smi_info->curr_msg) { 732 smi_info->si_state = SI_NORMAL; 733 break; 734 } 735 start_getting_events(smi_info); 736 } else { 737 smi_info->si_state = SI_NORMAL; 738 } 739 break; 740 } 741 } 742 } 743 744 /* 745 * Called on timeouts and events. Timeouts should pass the elapsed 746 * time, interrupts should pass in zero. Must be called with 747 * si_lock held and interrupts disabled. 748 */ 749 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 750 int time) 751 { 752 enum si_sm_result si_sm_result; 753 754 restart: 755 /* 756 * There used to be a loop here that waited a little while 757 * (around 25us) before giving up. That turned out to be 758 * pointless, the minimum delays I was seeing were in the 300us 759 * range, which is far too long to wait in an interrupt. So 760 * we just run until the state machine tells us something 761 * happened or it needs a delay. 762 */ 763 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 764 time = 0; 765 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 766 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 767 768 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 769 smi_inc_stat(smi_info, complete_transactions); 770 771 handle_transaction_done(smi_info); 772 goto restart; 773 } else if (si_sm_result == SI_SM_HOSED) { 774 smi_inc_stat(smi_info, hosed_count); 775 776 /* 777 * Do the before return_hosed_msg, because that 778 * releases the lock. 779 */ 780 smi_info->si_state = SI_NORMAL; 781 if (smi_info->curr_msg != NULL) { 782 /* 783 * If we were handling a user message, format 784 * a response to send to the upper layer to 785 * tell it about the error. 786 */ 787 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 788 } 789 goto restart; 790 } 791 792 /* 793 * We prefer handling attn over new messages. But don't do 794 * this if there is not yet an upper layer to handle anything. 795 */ 796 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) { 797 unsigned char msg[2]; 798 799 if (smi_info->si_state != SI_NORMAL) { 800 /* 801 * We got an ATTN, but we are doing something else. 802 * Handle the ATTN later. 803 */ 804 smi_info->got_attn = true; 805 } else { 806 smi_info->got_attn = false; 807 smi_inc_stat(smi_info, attentions); 808 809 /* 810 * Got a attn, send down a get message flags to see 811 * what's causing it. It would be better to handle 812 * this in the upper layer, but due to the way 813 * interrupts work with the SMI, that's not really 814 * possible. 815 */ 816 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 817 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 818 819 start_new_msg(smi_info, msg, 2); 820 smi_info->si_state = SI_GETTING_FLAGS; 821 goto restart; 822 } 823 } 824 825 /* If we are currently idle, try to start the next message. */ 826 if (si_sm_result == SI_SM_IDLE) { 827 smi_inc_stat(smi_info, idles); 828 829 si_sm_result = start_next_msg(smi_info); 830 if (si_sm_result != SI_SM_IDLE) 831 goto restart; 832 } 833 834 if ((si_sm_result == SI_SM_IDLE) 835 && (atomic_read(&smi_info->req_events))) { 836 /* 837 * We are idle and the upper layer requested that I fetch 838 * events, so do so. 839 */ 840 atomic_set(&smi_info->req_events, 0); 841 842 /* 843 * Take this opportunity to check the interrupt and 844 * message enable state for the BMC. The BMC can be 845 * asynchronously reset, and may thus get interrupts 846 * disable and messages disabled. 847 */ 848 if (smi_info->supports_event_msg_buff || smi_info->io.irq) { 849 start_check_enables(smi_info); 850 } else { 851 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 852 if (!smi_info->curr_msg) 853 goto out; 854 855 start_getting_events(smi_info); 856 } 857 goto restart; 858 } 859 860 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 861 /* Ok it if fails, the timer will just go off. */ 862 if (del_timer(&smi_info->si_timer)) 863 smi_info->timer_running = false; 864 } 865 866 out: 867 return si_sm_result; 868 } 869 870 static void check_start_timer_thread(struct smi_info *smi_info) 871 { 872 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 873 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 874 875 if (smi_info->thread) 876 wake_up_process(smi_info->thread); 877 878 start_next_msg(smi_info); 879 smi_event_handler(smi_info, 0); 880 } 881 } 882 883 static void flush_messages(void *send_info) 884 { 885 struct smi_info *smi_info = send_info; 886 enum si_sm_result result; 887 888 /* 889 * Currently, this function is called only in run-to-completion 890 * mode. This means we are single-threaded, no need for locks. 891 */ 892 result = smi_event_handler(smi_info, 0); 893 while (result != SI_SM_IDLE) { 894 udelay(SI_SHORT_TIMEOUT_USEC); 895 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 896 } 897 } 898 899 static void sender(void *send_info, 900 struct ipmi_smi_msg *msg) 901 { 902 struct smi_info *smi_info = send_info; 903 unsigned long flags; 904 905 debug_timestamp("Enqueue"); 906 907 if (smi_info->run_to_completion) { 908 /* 909 * If we are running to completion, start it. Upper 910 * layer will call flush_messages to clear it out. 911 */ 912 smi_info->waiting_msg = msg; 913 return; 914 } 915 916 spin_lock_irqsave(&smi_info->si_lock, flags); 917 /* 918 * The following two lines don't need to be under the lock for 919 * the lock's sake, but they do need SMP memory barriers to 920 * avoid getting things out of order. We are already claiming 921 * the lock, anyway, so just do it under the lock to avoid the 922 * ordering problem. 923 */ 924 BUG_ON(smi_info->waiting_msg); 925 smi_info->waiting_msg = msg; 926 check_start_timer_thread(smi_info); 927 spin_unlock_irqrestore(&smi_info->si_lock, flags); 928 } 929 930 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 931 { 932 struct smi_info *smi_info = send_info; 933 934 smi_info->run_to_completion = i_run_to_completion; 935 if (i_run_to_completion) 936 flush_messages(smi_info); 937 } 938 939 /* 940 * Use -1 in the nsec value of the busy waiting timespec to tell that 941 * we are spinning in kipmid looking for something and not delaying 942 * between checks 943 */ 944 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 945 { 946 ts->tv_nsec = -1; 947 } 948 static inline int ipmi_si_is_busy(struct timespec64 *ts) 949 { 950 return ts->tv_nsec != -1; 951 } 952 953 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 954 const struct smi_info *smi_info, 955 struct timespec64 *busy_until) 956 { 957 unsigned int max_busy_us = 0; 958 959 if (smi_info->si_num < num_max_busy_us) 960 max_busy_us = kipmid_max_busy_us[smi_info->si_num]; 961 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 962 ipmi_si_set_not_busy(busy_until); 963 else if (!ipmi_si_is_busy(busy_until)) { 964 ktime_get_ts64(busy_until); 965 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 966 } else { 967 struct timespec64 now; 968 969 ktime_get_ts64(&now); 970 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 971 ipmi_si_set_not_busy(busy_until); 972 return 0; 973 } 974 } 975 return 1; 976 } 977 978 979 /* 980 * A busy-waiting loop for speeding up IPMI operation. 981 * 982 * Lousy hardware makes this hard. This is only enabled for systems 983 * that are not BT and do not have interrupts. It starts spinning 984 * when an operation is complete or until max_busy tells it to stop 985 * (if that is enabled). See the paragraph on kimid_max_busy_us in 986 * Documentation/IPMI.txt for details. 987 */ 988 static int ipmi_thread(void *data) 989 { 990 struct smi_info *smi_info = data; 991 unsigned long flags; 992 enum si_sm_result smi_result; 993 struct timespec64 busy_until; 994 995 ipmi_si_set_not_busy(&busy_until); 996 set_user_nice(current, MAX_NICE); 997 while (!kthread_should_stop()) { 998 int busy_wait; 999 1000 spin_lock_irqsave(&(smi_info->si_lock), flags); 1001 smi_result = smi_event_handler(smi_info, 0); 1002 1003 /* 1004 * If the driver is doing something, there is a possible 1005 * race with the timer. If the timer handler see idle, 1006 * and the thread here sees something else, the timer 1007 * handler won't restart the timer even though it is 1008 * required. So start it here if necessary. 1009 */ 1010 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1011 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1012 1013 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1014 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1015 &busy_until); 1016 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1017 ; /* do nothing */ 1018 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1019 schedule(); 1020 else if (smi_result == SI_SM_IDLE) { 1021 if (atomic_read(&smi_info->need_watch)) { 1022 schedule_timeout_interruptible(100); 1023 } else { 1024 /* Wait to be woken up when we are needed. */ 1025 __set_current_state(TASK_INTERRUPTIBLE); 1026 schedule(); 1027 } 1028 } else 1029 schedule_timeout_interruptible(1); 1030 } 1031 return 0; 1032 } 1033 1034 1035 static void poll(void *send_info) 1036 { 1037 struct smi_info *smi_info = send_info; 1038 unsigned long flags = 0; 1039 bool run_to_completion = smi_info->run_to_completion; 1040 1041 /* 1042 * Make sure there is some delay in the poll loop so we can 1043 * drive time forward and timeout things. 1044 */ 1045 udelay(10); 1046 if (!run_to_completion) 1047 spin_lock_irqsave(&smi_info->si_lock, flags); 1048 smi_event_handler(smi_info, 10); 1049 if (!run_to_completion) 1050 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1051 } 1052 1053 static void request_events(void *send_info) 1054 { 1055 struct smi_info *smi_info = send_info; 1056 1057 if (!smi_info->has_event_buffer) 1058 return; 1059 1060 atomic_set(&smi_info->req_events, 1); 1061 } 1062 1063 static void set_need_watch(void *send_info, bool enable) 1064 { 1065 struct smi_info *smi_info = send_info; 1066 unsigned long flags; 1067 1068 atomic_set(&smi_info->need_watch, enable); 1069 spin_lock_irqsave(&smi_info->si_lock, flags); 1070 check_start_timer_thread(smi_info); 1071 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1072 } 1073 1074 static void smi_timeout(struct timer_list *t) 1075 { 1076 struct smi_info *smi_info = from_timer(smi_info, t, si_timer); 1077 enum si_sm_result smi_result; 1078 unsigned long flags; 1079 unsigned long jiffies_now; 1080 long time_diff; 1081 long timeout; 1082 1083 spin_lock_irqsave(&(smi_info->si_lock), flags); 1084 debug_timestamp("Timer"); 1085 1086 jiffies_now = jiffies; 1087 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1088 * SI_USEC_PER_JIFFY); 1089 smi_result = smi_event_handler(smi_info, time_diff); 1090 1091 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 1092 /* Running with interrupts, only do long timeouts. */ 1093 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1094 smi_inc_stat(smi_info, long_timeouts); 1095 goto do_mod_timer; 1096 } 1097 1098 /* 1099 * If the state machine asks for a short delay, then shorten 1100 * the timer timeout. 1101 */ 1102 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1103 smi_inc_stat(smi_info, short_timeouts); 1104 timeout = jiffies + 1; 1105 } else { 1106 smi_inc_stat(smi_info, long_timeouts); 1107 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1108 } 1109 1110 do_mod_timer: 1111 if (smi_result != SI_SM_IDLE) 1112 smi_mod_timer(smi_info, timeout); 1113 else 1114 smi_info->timer_running = false; 1115 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1116 } 1117 1118 irqreturn_t ipmi_si_irq_handler(int irq, void *data) 1119 { 1120 struct smi_info *smi_info = data; 1121 unsigned long flags; 1122 1123 if (smi_info->io.si_type == SI_BT) 1124 /* We need to clear the IRQ flag for the BT interface. */ 1125 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1126 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1127 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1128 1129 spin_lock_irqsave(&(smi_info->si_lock), flags); 1130 1131 smi_inc_stat(smi_info, interrupts); 1132 1133 debug_timestamp("Interrupt"); 1134 1135 smi_event_handler(smi_info, 0); 1136 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1137 return IRQ_HANDLED; 1138 } 1139 1140 static int smi_start_processing(void *send_info, 1141 struct ipmi_smi *intf) 1142 { 1143 struct smi_info *new_smi = send_info; 1144 int enable = 0; 1145 1146 new_smi->intf = intf; 1147 1148 /* Set up the timer that drives the interface. */ 1149 timer_setup(&new_smi->si_timer, smi_timeout, 0); 1150 new_smi->timer_can_start = true; 1151 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1152 1153 /* Try to claim any interrupts. */ 1154 if (new_smi->io.irq_setup) { 1155 new_smi->io.irq_handler_data = new_smi; 1156 new_smi->io.irq_setup(&new_smi->io); 1157 } 1158 1159 /* 1160 * Check if the user forcefully enabled the daemon. 1161 */ 1162 if (new_smi->si_num < num_force_kipmid) 1163 enable = force_kipmid[new_smi->si_num]; 1164 /* 1165 * The BT interface is efficient enough to not need a thread, 1166 * and there is no need for a thread if we have interrupts. 1167 */ 1168 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq)) 1169 enable = 1; 1170 1171 if (enable) { 1172 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1173 "kipmi%d", new_smi->si_num); 1174 if (IS_ERR(new_smi->thread)) { 1175 dev_notice(new_smi->io.dev, "Could not start" 1176 " kernel thread due to error %ld, only using" 1177 " timers to drive the interface\n", 1178 PTR_ERR(new_smi->thread)); 1179 new_smi->thread = NULL; 1180 } 1181 } 1182 1183 return 0; 1184 } 1185 1186 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1187 { 1188 struct smi_info *smi = send_info; 1189 1190 data->addr_src = smi->io.addr_source; 1191 data->dev = smi->io.dev; 1192 data->addr_info = smi->io.addr_info; 1193 get_device(smi->io.dev); 1194 1195 return 0; 1196 } 1197 1198 static void set_maintenance_mode(void *send_info, bool enable) 1199 { 1200 struct smi_info *smi_info = send_info; 1201 1202 if (!enable) 1203 atomic_set(&smi_info->req_events, 0); 1204 } 1205 1206 static void shutdown_smi(void *send_info); 1207 static const struct ipmi_smi_handlers handlers = { 1208 .owner = THIS_MODULE, 1209 .start_processing = smi_start_processing, 1210 .shutdown = shutdown_smi, 1211 .get_smi_info = get_smi_info, 1212 .sender = sender, 1213 .request_events = request_events, 1214 .set_need_watch = set_need_watch, 1215 .set_maintenance_mode = set_maintenance_mode, 1216 .set_run_to_completion = set_run_to_completion, 1217 .flush_messages = flush_messages, 1218 .poll = poll, 1219 }; 1220 1221 static LIST_HEAD(smi_infos); 1222 static DEFINE_MUTEX(smi_infos_lock); 1223 static int smi_num; /* Used to sequence the SMIs */ 1224 1225 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1226 1227 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1228 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1229 " disabled(0). Normally the IPMI driver auto-detects" 1230 " this, but the value may be overridden by this parm."); 1231 module_param(unload_when_empty, bool, 0); 1232 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1233 " specified or found, default is 1. Setting to 0" 1234 " is useful for hot add of devices using hotmod."); 1235 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1236 MODULE_PARM_DESC(kipmid_max_busy_us, 1237 "Max time (in microseconds) to busy-wait for IPMI data before" 1238 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1239 " if kipmid is using up a lot of CPU time."); 1240 1241 void ipmi_irq_finish_setup(struct si_sm_io *io) 1242 { 1243 if (io->si_type == SI_BT) 1244 /* Enable the interrupt in the BT interface. */ 1245 io->outputb(io, IPMI_BT_INTMASK_REG, 1246 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1247 } 1248 1249 void ipmi_irq_start_cleanup(struct si_sm_io *io) 1250 { 1251 if (io->si_type == SI_BT) 1252 /* Disable the interrupt in the BT interface. */ 1253 io->outputb(io, IPMI_BT_INTMASK_REG, 0); 1254 } 1255 1256 static void std_irq_cleanup(struct si_sm_io *io) 1257 { 1258 ipmi_irq_start_cleanup(io); 1259 free_irq(io->irq, io->irq_handler_data); 1260 } 1261 1262 int ipmi_std_irq_setup(struct si_sm_io *io) 1263 { 1264 int rv; 1265 1266 if (!io->irq) 1267 return 0; 1268 1269 rv = request_irq(io->irq, 1270 ipmi_si_irq_handler, 1271 IRQF_SHARED, 1272 DEVICE_NAME, 1273 io->irq_handler_data); 1274 if (rv) { 1275 dev_warn(io->dev, "%s unable to claim interrupt %d," 1276 " running polled\n", 1277 DEVICE_NAME, io->irq); 1278 io->irq = 0; 1279 } else { 1280 io->irq_cleanup = std_irq_cleanup; 1281 ipmi_irq_finish_setup(io); 1282 dev_info(io->dev, "Using irq %d\n", io->irq); 1283 } 1284 1285 return rv; 1286 } 1287 1288 static int wait_for_msg_done(struct smi_info *smi_info) 1289 { 1290 enum si_sm_result smi_result; 1291 1292 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 1293 for (;;) { 1294 if (smi_result == SI_SM_CALL_WITH_DELAY || 1295 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 1296 schedule_timeout_uninterruptible(1); 1297 smi_result = smi_info->handlers->event( 1298 smi_info->si_sm, jiffies_to_usecs(1)); 1299 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 1300 smi_result = smi_info->handlers->event( 1301 smi_info->si_sm, 0); 1302 } else 1303 break; 1304 } 1305 if (smi_result == SI_SM_HOSED) 1306 /* 1307 * We couldn't get the state machine to run, so whatever's at 1308 * the port is probably not an IPMI SMI interface. 1309 */ 1310 return -ENODEV; 1311 1312 return 0; 1313 } 1314 1315 static int try_get_dev_id(struct smi_info *smi_info) 1316 { 1317 unsigned char msg[2]; 1318 unsigned char *resp; 1319 unsigned long resp_len; 1320 int rv = 0; 1321 1322 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1323 if (!resp) 1324 return -ENOMEM; 1325 1326 /* 1327 * Do a Get Device ID command, since it comes back with some 1328 * useful info. 1329 */ 1330 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1331 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1332 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1333 1334 rv = wait_for_msg_done(smi_info); 1335 if (rv) 1336 goto out; 1337 1338 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1339 resp, IPMI_MAX_MSG_LENGTH); 1340 1341 /* Check and record info from the get device id, in case we need it. */ 1342 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], 1343 resp + 2, resp_len - 2, &smi_info->device_id); 1344 1345 out: 1346 kfree(resp); 1347 return rv; 1348 } 1349 1350 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 1351 { 1352 unsigned char msg[3]; 1353 unsigned char *resp; 1354 unsigned long resp_len; 1355 int rv; 1356 1357 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1358 if (!resp) 1359 return -ENOMEM; 1360 1361 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1362 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1363 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1364 1365 rv = wait_for_msg_done(smi_info); 1366 if (rv) { 1367 dev_warn(smi_info->io.dev, 1368 "Error getting response from get global enables command: %d\n", 1369 rv); 1370 goto out; 1371 } 1372 1373 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1374 resp, IPMI_MAX_MSG_LENGTH); 1375 1376 if (resp_len < 4 || 1377 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1378 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1379 resp[2] != 0) { 1380 dev_warn(smi_info->io.dev, 1381 "Invalid return from get global enables command: %ld %x %x %x\n", 1382 resp_len, resp[0], resp[1], resp[2]); 1383 rv = -EINVAL; 1384 goto out; 1385 } else { 1386 *enables = resp[3]; 1387 } 1388 1389 out: 1390 kfree(resp); 1391 return rv; 1392 } 1393 1394 /* 1395 * Returns 1 if it gets an error from the command. 1396 */ 1397 static int set_global_enables(struct smi_info *smi_info, u8 enables) 1398 { 1399 unsigned char msg[3]; 1400 unsigned char *resp; 1401 unsigned long resp_len; 1402 int rv; 1403 1404 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1405 if (!resp) 1406 return -ENOMEM; 1407 1408 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1409 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1410 msg[2] = enables; 1411 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1412 1413 rv = wait_for_msg_done(smi_info); 1414 if (rv) { 1415 dev_warn(smi_info->io.dev, 1416 "Error getting response from set global enables command: %d\n", 1417 rv); 1418 goto out; 1419 } 1420 1421 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1422 resp, IPMI_MAX_MSG_LENGTH); 1423 1424 if (resp_len < 3 || 1425 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1426 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1427 dev_warn(smi_info->io.dev, 1428 "Invalid return from set global enables command: %ld %x %x\n", 1429 resp_len, resp[0], resp[1]); 1430 rv = -EINVAL; 1431 goto out; 1432 } 1433 1434 if (resp[2] != 0) 1435 rv = 1; 1436 1437 out: 1438 kfree(resp); 1439 return rv; 1440 } 1441 1442 /* 1443 * Some BMCs do not support clearing the receive irq bit in the global 1444 * enables (even if they don't support interrupts on the BMC). Check 1445 * for this and handle it properly. 1446 */ 1447 static void check_clr_rcv_irq(struct smi_info *smi_info) 1448 { 1449 u8 enables = 0; 1450 int rv; 1451 1452 rv = get_global_enables(smi_info, &enables); 1453 if (!rv) { 1454 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 1455 /* Already clear, should work ok. */ 1456 return; 1457 1458 enables &= ~IPMI_BMC_RCV_MSG_INTR; 1459 rv = set_global_enables(smi_info, enables); 1460 } 1461 1462 if (rv < 0) { 1463 dev_err(smi_info->io.dev, 1464 "Cannot check clearing the rcv irq: %d\n", rv); 1465 return; 1466 } 1467 1468 if (rv) { 1469 /* 1470 * An error when setting the event buffer bit means 1471 * clearing the bit is not supported. 1472 */ 1473 dev_warn(smi_info->io.dev, 1474 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1475 smi_info->cannot_disable_irq = true; 1476 } 1477 } 1478 1479 /* 1480 * Some BMCs do not support setting the interrupt bits in the global 1481 * enables even if they support interrupts. Clearly bad, but we can 1482 * compensate. 1483 */ 1484 static void check_set_rcv_irq(struct smi_info *smi_info) 1485 { 1486 u8 enables = 0; 1487 int rv; 1488 1489 if (!smi_info->io.irq) 1490 return; 1491 1492 rv = get_global_enables(smi_info, &enables); 1493 if (!rv) { 1494 enables |= IPMI_BMC_RCV_MSG_INTR; 1495 rv = set_global_enables(smi_info, enables); 1496 } 1497 1498 if (rv < 0) { 1499 dev_err(smi_info->io.dev, 1500 "Cannot check setting the rcv irq: %d\n", rv); 1501 return; 1502 } 1503 1504 if (rv) { 1505 /* 1506 * An error when setting the event buffer bit means 1507 * setting the bit is not supported. 1508 */ 1509 dev_warn(smi_info->io.dev, 1510 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1511 smi_info->cannot_disable_irq = true; 1512 smi_info->irq_enable_broken = true; 1513 } 1514 } 1515 1516 static int try_enable_event_buffer(struct smi_info *smi_info) 1517 { 1518 unsigned char msg[3]; 1519 unsigned char *resp; 1520 unsigned long resp_len; 1521 int rv = 0; 1522 1523 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1524 if (!resp) 1525 return -ENOMEM; 1526 1527 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1528 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1529 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1530 1531 rv = wait_for_msg_done(smi_info); 1532 if (rv) { 1533 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n"); 1534 goto out; 1535 } 1536 1537 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1538 resp, IPMI_MAX_MSG_LENGTH); 1539 1540 if (resp_len < 4 || 1541 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1542 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1543 resp[2] != 0) { 1544 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n"); 1545 rv = -EINVAL; 1546 goto out; 1547 } 1548 1549 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1550 /* buffer is already enabled, nothing to do. */ 1551 smi_info->supports_event_msg_buff = true; 1552 goto out; 1553 } 1554 1555 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1556 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1557 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 1558 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1559 1560 rv = wait_for_msg_done(smi_info); 1561 if (rv) { 1562 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n"); 1563 goto out; 1564 } 1565 1566 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1567 resp, IPMI_MAX_MSG_LENGTH); 1568 1569 if (resp_len < 3 || 1570 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1571 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1572 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n"); 1573 rv = -EINVAL; 1574 goto out; 1575 } 1576 1577 if (resp[2] != 0) 1578 /* 1579 * An error when setting the event buffer bit means 1580 * that the event buffer is not supported. 1581 */ 1582 rv = -ENOENT; 1583 else 1584 smi_info->supports_event_msg_buff = true; 1585 1586 out: 1587 kfree(resp); 1588 return rv; 1589 } 1590 1591 #define IPMI_SI_ATTR(name) \ 1592 static ssize_t ipmi_##name##_show(struct device *dev, \ 1593 struct device_attribute *attr, \ 1594 char *buf) \ 1595 { \ 1596 struct smi_info *smi_info = dev_get_drvdata(dev); \ 1597 \ 1598 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \ 1599 } \ 1600 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1601 1602 static ssize_t ipmi_type_show(struct device *dev, 1603 struct device_attribute *attr, 1604 char *buf) 1605 { 1606 struct smi_info *smi_info = dev_get_drvdata(dev); 1607 1608 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]); 1609 } 1610 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1611 1612 static ssize_t ipmi_interrupts_enabled_show(struct device *dev, 1613 struct device_attribute *attr, 1614 char *buf) 1615 { 1616 struct smi_info *smi_info = dev_get_drvdata(dev); 1617 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled; 1618 1619 return snprintf(buf, 10, "%d\n", enabled); 1620 } 1621 static DEVICE_ATTR(interrupts_enabled, S_IRUGO, 1622 ipmi_interrupts_enabled_show, NULL); 1623 1624 IPMI_SI_ATTR(short_timeouts); 1625 IPMI_SI_ATTR(long_timeouts); 1626 IPMI_SI_ATTR(idles); 1627 IPMI_SI_ATTR(interrupts); 1628 IPMI_SI_ATTR(attentions); 1629 IPMI_SI_ATTR(flag_fetches); 1630 IPMI_SI_ATTR(hosed_count); 1631 IPMI_SI_ATTR(complete_transactions); 1632 IPMI_SI_ATTR(events); 1633 IPMI_SI_ATTR(watchdog_pretimeouts); 1634 IPMI_SI_ATTR(incoming_messages); 1635 1636 static ssize_t ipmi_params_show(struct device *dev, 1637 struct device_attribute *attr, 1638 char *buf) 1639 { 1640 struct smi_info *smi_info = dev_get_drvdata(dev); 1641 1642 return snprintf(buf, 200, 1643 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 1644 si_to_str[smi_info->io.si_type], 1645 addr_space_to_str[smi_info->io.addr_type], 1646 smi_info->io.addr_data, 1647 smi_info->io.regspacing, 1648 smi_info->io.regsize, 1649 smi_info->io.regshift, 1650 smi_info->io.irq, 1651 smi_info->io.slave_addr); 1652 } 1653 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL); 1654 1655 static struct attribute *ipmi_si_dev_attrs[] = { 1656 &dev_attr_type.attr, 1657 &dev_attr_interrupts_enabled.attr, 1658 &dev_attr_short_timeouts.attr, 1659 &dev_attr_long_timeouts.attr, 1660 &dev_attr_idles.attr, 1661 &dev_attr_interrupts.attr, 1662 &dev_attr_attentions.attr, 1663 &dev_attr_flag_fetches.attr, 1664 &dev_attr_hosed_count.attr, 1665 &dev_attr_complete_transactions.attr, 1666 &dev_attr_events.attr, 1667 &dev_attr_watchdog_pretimeouts.attr, 1668 &dev_attr_incoming_messages.attr, 1669 &dev_attr_params.attr, 1670 NULL 1671 }; 1672 1673 static const struct attribute_group ipmi_si_dev_attr_group = { 1674 .attrs = ipmi_si_dev_attrs, 1675 }; 1676 1677 /* 1678 * oem_data_avail_to_receive_msg_avail 1679 * @info - smi_info structure with msg_flags set 1680 * 1681 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 1682 * Returns 1 indicating need to re-run handle_flags(). 1683 */ 1684 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 1685 { 1686 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 1687 RECEIVE_MSG_AVAIL); 1688 return 1; 1689 } 1690 1691 /* 1692 * setup_dell_poweredge_oem_data_handler 1693 * @info - smi_info.device_id must be populated 1694 * 1695 * Systems that match, but have firmware version < 1.40 may assert 1696 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 1697 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 1698 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 1699 * as RECEIVE_MSG_AVAIL instead. 1700 * 1701 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 1702 * assert the OEM[012] bits, and if it did, the driver would have to 1703 * change to handle that properly, we don't actually check for the 1704 * firmware version. 1705 * Device ID = 0x20 BMC on PowerEdge 8G servers 1706 * Device Revision = 0x80 1707 * Firmware Revision1 = 0x01 BMC version 1.40 1708 * Firmware Revision2 = 0x40 BCD encoded 1709 * IPMI Version = 0x51 IPMI 1.5 1710 * Manufacturer ID = A2 02 00 Dell IANA 1711 * 1712 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 1713 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 1714 * 1715 */ 1716 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 1717 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 1718 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 1719 #define DELL_IANA_MFR_ID 0x0002a2 1720 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 1721 { 1722 struct ipmi_device_id *id = &smi_info->device_id; 1723 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 1724 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 1725 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 1726 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 1727 smi_info->oem_data_avail_handler = 1728 oem_data_avail_to_receive_msg_avail; 1729 } else if (ipmi_version_major(id) < 1 || 1730 (ipmi_version_major(id) == 1 && 1731 ipmi_version_minor(id) < 5)) { 1732 smi_info->oem_data_avail_handler = 1733 oem_data_avail_to_receive_msg_avail; 1734 } 1735 } 1736 } 1737 1738 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 1739 static void return_hosed_msg_badsize(struct smi_info *smi_info) 1740 { 1741 struct ipmi_smi_msg *msg = smi_info->curr_msg; 1742 1743 /* Make it a response */ 1744 msg->rsp[0] = msg->data[0] | 4; 1745 msg->rsp[1] = msg->data[1]; 1746 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 1747 msg->rsp_size = 3; 1748 smi_info->curr_msg = NULL; 1749 deliver_recv_msg(smi_info, msg); 1750 } 1751 1752 /* 1753 * dell_poweredge_bt_xaction_handler 1754 * @info - smi_info.device_id must be populated 1755 * 1756 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 1757 * not respond to a Get SDR command if the length of the data 1758 * requested is exactly 0x3A, which leads to command timeouts and no 1759 * data returned. This intercepts such commands, and causes userspace 1760 * callers to try again with a different-sized buffer, which succeeds. 1761 */ 1762 1763 #define STORAGE_NETFN 0x0A 1764 #define STORAGE_CMD_GET_SDR 0x23 1765 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 1766 unsigned long unused, 1767 void *in) 1768 { 1769 struct smi_info *smi_info = in; 1770 unsigned char *data = smi_info->curr_msg->data; 1771 unsigned int size = smi_info->curr_msg->data_size; 1772 if (size >= 8 && 1773 (data[0]>>2) == STORAGE_NETFN && 1774 data[1] == STORAGE_CMD_GET_SDR && 1775 data[7] == 0x3A) { 1776 return_hosed_msg_badsize(smi_info); 1777 return NOTIFY_STOP; 1778 } 1779 return NOTIFY_DONE; 1780 } 1781 1782 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 1783 .notifier_call = dell_poweredge_bt_xaction_handler, 1784 }; 1785 1786 /* 1787 * setup_dell_poweredge_bt_xaction_handler 1788 * @info - smi_info.device_id must be filled in already 1789 * 1790 * Fills in smi_info.device_id.start_transaction_pre_hook 1791 * when we know what function to use there. 1792 */ 1793 static void 1794 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 1795 { 1796 struct ipmi_device_id *id = &smi_info->device_id; 1797 if (id->manufacturer_id == DELL_IANA_MFR_ID && 1798 smi_info->io.si_type == SI_BT) 1799 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 1800 } 1801 1802 /* 1803 * setup_oem_data_handler 1804 * @info - smi_info.device_id must be filled in already 1805 * 1806 * Fills in smi_info.device_id.oem_data_available_handler 1807 * when we know what function to use there. 1808 */ 1809 1810 static void setup_oem_data_handler(struct smi_info *smi_info) 1811 { 1812 setup_dell_poweredge_oem_data_handler(smi_info); 1813 } 1814 1815 static void setup_xaction_handlers(struct smi_info *smi_info) 1816 { 1817 setup_dell_poweredge_bt_xaction_handler(smi_info); 1818 } 1819 1820 static void check_for_broken_irqs(struct smi_info *smi_info) 1821 { 1822 check_clr_rcv_irq(smi_info); 1823 check_set_rcv_irq(smi_info); 1824 } 1825 1826 static inline void stop_timer_and_thread(struct smi_info *smi_info) 1827 { 1828 if (smi_info->thread != NULL) { 1829 kthread_stop(smi_info->thread); 1830 smi_info->thread = NULL; 1831 } 1832 1833 smi_info->timer_can_start = false; 1834 if (smi_info->timer_running) 1835 del_timer_sync(&smi_info->si_timer); 1836 } 1837 1838 static struct smi_info *find_dup_si(struct smi_info *info) 1839 { 1840 struct smi_info *e; 1841 1842 list_for_each_entry(e, &smi_infos, link) { 1843 if (e->io.addr_type != info->io.addr_type) 1844 continue; 1845 if (e->io.addr_data == info->io.addr_data) { 1846 /* 1847 * This is a cheap hack, ACPI doesn't have a defined 1848 * slave address but SMBIOS does. Pick it up from 1849 * any source that has it available. 1850 */ 1851 if (info->io.slave_addr && !e->io.slave_addr) 1852 e->io.slave_addr = info->io.slave_addr; 1853 return e; 1854 } 1855 } 1856 1857 return NULL; 1858 } 1859 1860 int ipmi_si_add_smi(struct si_sm_io *io) 1861 { 1862 int rv = 0; 1863 struct smi_info *new_smi, *dup; 1864 1865 if (!io->io_setup) { 1866 if (io->addr_type == IPMI_IO_ADDR_SPACE) { 1867 io->io_setup = ipmi_si_port_setup; 1868 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) { 1869 io->io_setup = ipmi_si_mem_setup; 1870 } else { 1871 return -EINVAL; 1872 } 1873 } 1874 1875 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL); 1876 if (!new_smi) 1877 return -ENOMEM; 1878 spin_lock_init(&new_smi->si_lock); 1879 1880 new_smi->io = *io; 1881 1882 mutex_lock(&smi_infos_lock); 1883 dup = find_dup_si(new_smi); 1884 if (dup) { 1885 if (new_smi->io.addr_source == SI_ACPI && 1886 dup->io.addr_source == SI_SMBIOS) { 1887 /* We prefer ACPI over SMBIOS. */ 1888 dev_info(dup->io.dev, 1889 "Removing SMBIOS-specified %s state machine in favor of ACPI\n", 1890 si_to_str[new_smi->io.si_type]); 1891 cleanup_one_si(dup); 1892 } else { 1893 dev_info(new_smi->io.dev, 1894 "%s-specified %s state machine: duplicate\n", 1895 ipmi_addr_src_to_str(new_smi->io.addr_source), 1896 si_to_str[new_smi->io.si_type]); 1897 rv = -EBUSY; 1898 kfree(new_smi); 1899 goto out_err; 1900 } 1901 } 1902 1903 pr_info("Adding %s-specified %s state machine\n", 1904 ipmi_addr_src_to_str(new_smi->io.addr_source), 1905 si_to_str[new_smi->io.si_type]); 1906 1907 list_add_tail(&new_smi->link, &smi_infos); 1908 1909 if (initialized) 1910 rv = try_smi_init(new_smi); 1911 out_err: 1912 mutex_unlock(&smi_infos_lock); 1913 return rv; 1914 } 1915 1916 /* 1917 * Try to start up an interface. Must be called with smi_infos_lock 1918 * held, primarily to keep smi_num consistent, we only one to do these 1919 * one at a time. 1920 */ 1921 static int try_smi_init(struct smi_info *new_smi) 1922 { 1923 int rv = 0; 1924 int i; 1925 char *init_name = NULL; 1926 1927 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", 1928 ipmi_addr_src_to_str(new_smi->io.addr_source), 1929 si_to_str[new_smi->io.si_type], 1930 addr_space_to_str[new_smi->io.addr_type], 1931 new_smi->io.addr_data, 1932 new_smi->io.slave_addr, new_smi->io.irq); 1933 1934 switch (new_smi->io.si_type) { 1935 case SI_KCS: 1936 new_smi->handlers = &kcs_smi_handlers; 1937 break; 1938 1939 case SI_SMIC: 1940 new_smi->handlers = &smic_smi_handlers; 1941 break; 1942 1943 case SI_BT: 1944 new_smi->handlers = &bt_smi_handlers; 1945 break; 1946 1947 default: 1948 /* No support for anything else yet. */ 1949 rv = -EIO; 1950 goto out_err; 1951 } 1952 1953 new_smi->si_num = smi_num; 1954 1955 /* Do this early so it's available for logs. */ 1956 if (!new_smi->io.dev) { 1957 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 1958 new_smi->si_num); 1959 1960 /* 1961 * If we don't already have a device from something 1962 * else (like PCI), then register a new one. 1963 */ 1964 new_smi->pdev = platform_device_alloc("ipmi_si", 1965 new_smi->si_num); 1966 if (!new_smi->pdev) { 1967 pr_err("Unable to allocate platform device\n"); 1968 rv = -ENOMEM; 1969 goto out_err; 1970 } 1971 new_smi->io.dev = &new_smi->pdev->dev; 1972 new_smi->io.dev->driver = &ipmi_platform_driver.driver; 1973 /* Nulled by device_add() */ 1974 new_smi->io.dev->init_name = init_name; 1975 } 1976 1977 /* Allocate the state machine's data and initialize it. */ 1978 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 1979 if (!new_smi->si_sm) { 1980 rv = -ENOMEM; 1981 goto out_err; 1982 } 1983 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm, 1984 &new_smi->io); 1985 1986 /* Now that we know the I/O size, we can set up the I/O. */ 1987 rv = new_smi->io.io_setup(&new_smi->io); 1988 if (rv) { 1989 dev_err(new_smi->io.dev, "Could not set up I/O space\n"); 1990 goto out_err; 1991 } 1992 1993 /* Do low-level detection first. */ 1994 if (new_smi->handlers->detect(new_smi->si_sm)) { 1995 if (new_smi->io.addr_source) 1996 dev_err(new_smi->io.dev, 1997 "Interface detection failed\n"); 1998 rv = -ENODEV; 1999 goto out_err; 2000 } 2001 2002 /* 2003 * Attempt a get device id command. If it fails, we probably 2004 * don't have a BMC here. 2005 */ 2006 rv = try_get_dev_id(new_smi); 2007 if (rv) { 2008 if (new_smi->io.addr_source) 2009 dev_err(new_smi->io.dev, 2010 "There appears to be no BMC at this location\n"); 2011 goto out_err; 2012 } 2013 2014 setup_oem_data_handler(new_smi); 2015 setup_xaction_handlers(new_smi); 2016 check_for_broken_irqs(new_smi); 2017 2018 new_smi->waiting_msg = NULL; 2019 new_smi->curr_msg = NULL; 2020 atomic_set(&new_smi->req_events, 0); 2021 new_smi->run_to_completion = false; 2022 for (i = 0; i < SI_NUM_STATS; i++) 2023 atomic_set(&new_smi->stats[i], 0); 2024 2025 new_smi->interrupt_disabled = true; 2026 atomic_set(&new_smi->need_watch, 0); 2027 2028 rv = try_enable_event_buffer(new_smi); 2029 if (rv == 0) 2030 new_smi->has_event_buffer = true; 2031 2032 /* 2033 * Start clearing the flags before we enable interrupts or the 2034 * timer to avoid racing with the timer. 2035 */ 2036 start_clear_flags(new_smi); 2037 2038 /* 2039 * IRQ is defined to be set when non-zero. req_events will 2040 * cause a global flags check that will enable interrupts. 2041 */ 2042 if (new_smi->io.irq) { 2043 new_smi->interrupt_disabled = false; 2044 atomic_set(&new_smi->req_events, 1); 2045 } 2046 2047 if (new_smi->pdev && !new_smi->pdev_registered) { 2048 rv = platform_device_add(new_smi->pdev); 2049 if (rv) { 2050 dev_err(new_smi->io.dev, 2051 "Unable to register system interface device: %d\n", 2052 rv); 2053 goto out_err; 2054 } 2055 new_smi->pdev_registered = true; 2056 } 2057 2058 dev_set_drvdata(new_smi->io.dev, new_smi); 2059 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group); 2060 if (rv) { 2061 dev_err(new_smi->io.dev, 2062 "Unable to add device attributes: error %d\n", 2063 rv); 2064 goto out_err; 2065 } 2066 new_smi->dev_group_added = true; 2067 2068 rv = ipmi_register_smi(&handlers, 2069 new_smi, 2070 new_smi->io.dev, 2071 new_smi->io.slave_addr); 2072 if (rv) { 2073 dev_err(new_smi->io.dev, 2074 "Unable to register device: error %d\n", 2075 rv); 2076 goto out_err; 2077 } 2078 2079 /* Don't increment till we know we have succeeded. */ 2080 smi_num++; 2081 2082 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n", 2083 si_to_str[new_smi->io.si_type]); 2084 2085 WARN_ON(new_smi->io.dev->init_name != NULL); 2086 2087 out_err: 2088 kfree(init_name); 2089 return rv; 2090 } 2091 2092 static int init_ipmi_si(void) 2093 { 2094 struct smi_info *e; 2095 enum ipmi_addr_src type = SI_INVALID; 2096 2097 if (initialized) 2098 return 0; 2099 2100 pr_info("IPMI System Interface driver\n"); 2101 2102 /* If the user gave us a device, they presumably want us to use it */ 2103 if (!ipmi_si_hardcode_find_bmc()) 2104 goto do_scan; 2105 2106 ipmi_si_platform_init(); 2107 2108 ipmi_si_pci_init(); 2109 2110 ipmi_si_parisc_init(); 2111 2112 /* We prefer devices with interrupts, but in the case of a machine 2113 with multiple BMCs we assume that there will be several instances 2114 of a given type so if we succeed in registering a type then also 2115 try to register everything else of the same type */ 2116 do_scan: 2117 mutex_lock(&smi_infos_lock); 2118 list_for_each_entry(e, &smi_infos, link) { 2119 /* Try to register a device if it has an IRQ and we either 2120 haven't successfully registered a device yet or this 2121 device has the same type as one we successfully registered */ 2122 if (e->io.irq && (!type || e->io.addr_source == type)) { 2123 if (!try_smi_init(e)) { 2124 type = e->io.addr_source; 2125 } 2126 } 2127 } 2128 2129 /* type will only have been set if we successfully registered an si */ 2130 if (type) 2131 goto skip_fallback_noirq; 2132 2133 /* Fall back to the preferred device */ 2134 2135 list_for_each_entry(e, &smi_infos, link) { 2136 if (!e->io.irq && (!type || e->io.addr_source == type)) { 2137 if (!try_smi_init(e)) { 2138 type = e->io.addr_source; 2139 } 2140 } 2141 } 2142 2143 skip_fallback_noirq: 2144 initialized = 1; 2145 mutex_unlock(&smi_infos_lock); 2146 2147 if (type) 2148 return 0; 2149 2150 mutex_lock(&smi_infos_lock); 2151 if (unload_when_empty && list_empty(&smi_infos)) { 2152 mutex_unlock(&smi_infos_lock); 2153 cleanup_ipmi_si(); 2154 pr_warn("Unable to find any System Interface(s)\n"); 2155 return -ENODEV; 2156 } else { 2157 mutex_unlock(&smi_infos_lock); 2158 return 0; 2159 } 2160 } 2161 module_init(init_ipmi_si); 2162 2163 static void shutdown_smi(void *send_info) 2164 { 2165 struct smi_info *smi_info = send_info; 2166 2167 if (smi_info->dev_group_added) { 2168 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group); 2169 smi_info->dev_group_added = false; 2170 } 2171 if (smi_info->io.dev) 2172 dev_set_drvdata(smi_info->io.dev, NULL); 2173 2174 /* 2175 * Make sure that interrupts, the timer and the thread are 2176 * stopped and will not run again. 2177 */ 2178 smi_info->interrupt_disabled = true; 2179 if (smi_info->io.irq_cleanup) { 2180 smi_info->io.irq_cleanup(&smi_info->io); 2181 smi_info->io.irq_cleanup = NULL; 2182 } 2183 stop_timer_and_thread(smi_info); 2184 2185 /* 2186 * Wait until we know that we are out of any interrupt 2187 * handlers might have been running before we freed the 2188 * interrupt. 2189 */ 2190 synchronize_rcu(); 2191 2192 /* 2193 * Timeouts are stopped, now make sure the interrupts are off 2194 * in the BMC. Note that timers and CPU interrupts are off, 2195 * so no need for locks. 2196 */ 2197 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { 2198 poll(smi_info); 2199 schedule_timeout_uninterruptible(1); 2200 } 2201 if (smi_info->handlers) 2202 disable_si_irq(smi_info); 2203 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { 2204 poll(smi_info); 2205 schedule_timeout_uninterruptible(1); 2206 } 2207 if (smi_info->handlers) 2208 smi_info->handlers->cleanup(smi_info->si_sm); 2209 2210 if (smi_info->io.addr_source_cleanup) { 2211 smi_info->io.addr_source_cleanup(&smi_info->io); 2212 smi_info->io.addr_source_cleanup = NULL; 2213 } 2214 if (smi_info->io.io_cleanup) { 2215 smi_info->io.io_cleanup(&smi_info->io); 2216 smi_info->io.io_cleanup = NULL; 2217 } 2218 2219 kfree(smi_info->si_sm); 2220 smi_info->si_sm = NULL; 2221 2222 smi_info->intf = NULL; 2223 } 2224 2225 /* 2226 * Must be called with smi_infos_lock held, to serialize the 2227 * smi_info->intf check. 2228 */ 2229 static void cleanup_one_si(struct smi_info *smi_info) 2230 { 2231 if (!smi_info) 2232 return; 2233 2234 list_del(&smi_info->link); 2235 2236 if (smi_info->intf) 2237 ipmi_unregister_smi(smi_info->intf); 2238 2239 if (smi_info->pdev) { 2240 if (smi_info->pdev_registered) 2241 platform_device_unregister(smi_info->pdev); 2242 else 2243 platform_device_put(smi_info->pdev); 2244 } 2245 2246 kfree(smi_info); 2247 } 2248 2249 int ipmi_si_remove_by_dev(struct device *dev) 2250 { 2251 struct smi_info *e; 2252 int rv = -ENOENT; 2253 2254 mutex_lock(&smi_infos_lock); 2255 list_for_each_entry(e, &smi_infos, link) { 2256 if (e->io.dev == dev) { 2257 cleanup_one_si(e); 2258 rv = 0; 2259 break; 2260 } 2261 } 2262 mutex_unlock(&smi_infos_lock); 2263 2264 return rv; 2265 } 2266 2267 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type, 2268 unsigned long addr) 2269 { 2270 /* remove */ 2271 struct smi_info *e, *tmp_e; 2272 2273 mutex_lock(&smi_infos_lock); 2274 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 2275 if (e->io.addr_type != addr_space) 2276 continue; 2277 if (e->io.si_type != si_type) 2278 continue; 2279 if (e->io.addr_data == addr) 2280 cleanup_one_si(e); 2281 } 2282 mutex_unlock(&smi_infos_lock); 2283 } 2284 2285 static void cleanup_ipmi_si(void) 2286 { 2287 struct smi_info *e, *tmp_e; 2288 2289 if (!initialized) 2290 return; 2291 2292 ipmi_si_pci_shutdown(); 2293 2294 ipmi_si_parisc_shutdown(); 2295 2296 ipmi_si_platform_shutdown(); 2297 2298 mutex_lock(&smi_infos_lock); 2299 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2300 cleanup_one_si(e); 2301 mutex_unlock(&smi_infos_lock); 2302 } 2303 module_exit(cleanup_ipmi_si); 2304 2305 MODULE_ALIAS("platform:dmi-ipmi-si"); 2306 MODULE_LICENSE("GPL"); 2307 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2308 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 2309 " system interfaces."); 2310