xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision cdfce539)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/init.h>
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/pnp.h>
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #include <linux/of_address.h>
72 #include <linux/of_irq.h>
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
111 					"ACPI", "SMBIOS", "PCI",
112 					"device-tree", "default" };
113 
114 #define DEVICE_NAME "ipmi_si"
115 
116 static struct platform_driver ipmi_driver;
117 
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122 	/*
123 	 * Number of times the driver requested a timer while an operation
124 	 * was in progress.
125 	 */
126 	SI_STAT_short_timeouts = 0,
127 
128 	/*
129 	 * Number of times the driver requested a timer while nothing was in
130 	 * progress.
131 	 */
132 	SI_STAT_long_timeouts,
133 
134 	/* Number of times the interface was idle while being polled. */
135 	SI_STAT_idles,
136 
137 	/* Number of interrupts the driver handled. */
138 	SI_STAT_interrupts,
139 
140 	/* Number of time the driver got an ATTN from the hardware. */
141 	SI_STAT_attentions,
142 
143 	/* Number of times the driver requested flags from the hardware. */
144 	SI_STAT_flag_fetches,
145 
146 	/* Number of times the hardware didn't follow the state machine. */
147 	SI_STAT_hosed_count,
148 
149 	/* Number of completed messages. */
150 	SI_STAT_complete_transactions,
151 
152 	/* Number of IPMI events received from the hardware. */
153 	SI_STAT_events,
154 
155 	/* Number of watchdog pretimeouts. */
156 	SI_STAT_watchdog_pretimeouts,
157 
158 	/* Number of asynchronous messages received. */
159 	SI_STAT_incoming_messages,
160 
161 
162 	/* This *must* remain last, add new values above this. */
163 	SI_NUM_STATS
164 };
165 
166 struct smi_info {
167 	int                    intf_num;
168 	ipmi_smi_t             intf;
169 	struct si_sm_data      *si_sm;
170 	struct si_sm_handlers  *handlers;
171 	enum si_type           si_type;
172 	spinlock_t             si_lock;
173 	struct list_head       xmit_msgs;
174 	struct list_head       hp_xmit_msgs;
175 	struct ipmi_smi_msg    *curr_msg;
176 	enum si_intf_state     si_state;
177 
178 	/*
179 	 * Used to handle the various types of I/O that can occur with
180 	 * IPMI
181 	 */
182 	struct si_sm_io io;
183 	int (*io_setup)(struct smi_info *info);
184 	void (*io_cleanup)(struct smi_info *info);
185 	int (*irq_setup)(struct smi_info *info);
186 	void (*irq_cleanup)(struct smi_info *info);
187 	unsigned int io_size;
188 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189 	void (*addr_source_cleanup)(struct smi_info *info);
190 	void *addr_source_data;
191 
192 	/*
193 	 * Per-OEM handler, called from handle_flags().  Returns 1
194 	 * when handle_flags() needs to be re-run or 0 indicating it
195 	 * set si_state itself.
196 	 */
197 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
198 
199 	/*
200 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201 	 * is set to hold the flags until we are done handling everything
202 	 * from the flags.
203 	 */
204 #define RECEIVE_MSG_AVAIL	0x01
205 #define EVENT_MSG_BUFFER_FULL	0x02
206 #define WDT_PRE_TIMEOUT_INT	0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211 			     OEM1_DATA_AVAIL | \
212 			     OEM2_DATA_AVAIL)
213 	unsigned char       msg_flags;
214 
215 	/* Does the BMC have an event buffer? */
216 	char		    has_event_buffer;
217 
218 	/*
219 	 * If set to true, this will request events the next time the
220 	 * state machine is idle.
221 	 */
222 	atomic_t            req_events;
223 
224 	/*
225 	 * If true, run the state machine to completion on every send
226 	 * call.  Generally used after a panic to make sure stuff goes
227 	 * out.
228 	 */
229 	int                 run_to_completion;
230 
231 	/* The I/O port of an SI interface. */
232 	int                 port;
233 
234 	/*
235 	 * The space between start addresses of the two ports.  For
236 	 * instance, if the first port is 0xca2 and the spacing is 4, then
237 	 * the second port is 0xca6.
238 	 */
239 	unsigned int        spacing;
240 
241 	/* zero if no irq; */
242 	int                 irq;
243 
244 	/* The timer for this si. */
245 	struct timer_list   si_timer;
246 
247 	/* The time (in jiffies) the last timeout occurred at. */
248 	unsigned long       last_timeout_jiffies;
249 
250 	/* Used to gracefully stop the timer without race conditions. */
251 	atomic_t            stop_operation;
252 
253 	/*
254 	 * The driver will disable interrupts when it gets into a
255 	 * situation where it cannot handle messages due to lack of
256 	 * memory.  Once that situation clears up, it will re-enable
257 	 * interrupts.
258 	 */
259 	int interrupt_disabled;
260 
261 	/* From the get device id response... */
262 	struct ipmi_device_id device_id;
263 
264 	/* Driver model stuff. */
265 	struct device *dev;
266 	struct platform_device *pdev;
267 
268 	/*
269 	 * True if we allocated the device, false if it came from
270 	 * someplace else (like PCI).
271 	 */
272 	int dev_registered;
273 
274 	/* Slave address, could be reported from DMI. */
275 	unsigned char slave_addr;
276 
277 	/* Counters and things for the proc filesystem. */
278 	atomic_t stats[SI_NUM_STATS];
279 
280 	struct task_struct *thread;
281 
282 	struct list_head link;
283 	union ipmi_smi_info_union addr_info;
284 };
285 
286 #define smi_inc_stat(smi, stat) \
287 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
288 #define smi_get_stat(smi, stat) \
289 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
290 
291 #define SI_MAX_PARMS 4
292 
293 static int force_kipmid[SI_MAX_PARMS];
294 static int num_force_kipmid;
295 #ifdef CONFIG_PCI
296 static int pci_registered;
297 #endif
298 #ifdef CONFIG_ACPI
299 static int pnp_registered;
300 #endif
301 
302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
303 static int num_max_busy_us;
304 
305 static int unload_when_empty = 1;
306 
307 static int add_smi(struct smi_info *smi);
308 static int try_smi_init(struct smi_info *smi);
309 static void cleanup_one_si(struct smi_info *to_clean);
310 static void cleanup_ipmi_si(void);
311 
312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
313 static int register_xaction_notifier(struct notifier_block *nb)
314 {
315 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
316 }
317 
318 static void deliver_recv_msg(struct smi_info *smi_info,
319 			     struct ipmi_smi_msg *msg)
320 {
321 	/* Deliver the message to the upper layer. */
322 	ipmi_smi_msg_received(smi_info->intf, msg);
323 }
324 
325 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
326 {
327 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
328 
329 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
330 		cCode = IPMI_ERR_UNSPECIFIED;
331 	/* else use it as is */
332 
333 	/* Make it a response */
334 	msg->rsp[0] = msg->data[0] | 4;
335 	msg->rsp[1] = msg->data[1];
336 	msg->rsp[2] = cCode;
337 	msg->rsp_size = 3;
338 
339 	smi_info->curr_msg = NULL;
340 	deliver_recv_msg(smi_info, msg);
341 }
342 
343 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
344 {
345 	int              rv;
346 	struct list_head *entry = NULL;
347 #ifdef DEBUG_TIMING
348 	struct timeval t;
349 #endif
350 
351 	/* Pick the high priority queue first. */
352 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 		entry = smi_info->hp_xmit_msgs.next;
354 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
355 		entry = smi_info->xmit_msgs.next;
356 	}
357 
358 	if (!entry) {
359 		smi_info->curr_msg = NULL;
360 		rv = SI_SM_IDLE;
361 	} else {
362 		int err;
363 
364 		list_del(entry);
365 		smi_info->curr_msg = list_entry(entry,
366 						struct ipmi_smi_msg,
367 						link);
368 #ifdef DEBUG_TIMING
369 		do_gettimeofday(&t);
370 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 		err = atomic_notifier_call_chain(&xaction_notifier_list,
373 				0, smi_info);
374 		if (err & NOTIFY_STOP_MASK) {
375 			rv = SI_SM_CALL_WITHOUT_DELAY;
376 			goto out;
377 		}
378 		err = smi_info->handlers->start_transaction(
379 			smi_info->si_sm,
380 			smi_info->curr_msg->data,
381 			smi_info->curr_msg->data_size);
382 		if (err)
383 			return_hosed_msg(smi_info, err);
384 
385 		rv = SI_SM_CALL_WITHOUT_DELAY;
386 	}
387  out:
388 	return rv;
389 }
390 
391 static void start_enable_irq(struct smi_info *smi_info)
392 {
393 	unsigned char msg[2];
394 
395 	/*
396 	 * If we are enabling interrupts, we have to tell the
397 	 * BMC to use them.
398 	 */
399 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
400 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
401 
402 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
403 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
404 }
405 
406 static void start_disable_irq(struct smi_info *smi_info)
407 {
408 	unsigned char msg[2];
409 
410 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
411 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
412 
413 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
414 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
415 }
416 
417 static void start_clear_flags(struct smi_info *smi_info)
418 {
419 	unsigned char msg[3];
420 
421 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
422 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
423 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
424 	msg[2] = WDT_PRE_TIMEOUT_INT;
425 
426 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
427 	smi_info->si_state = SI_CLEARING_FLAGS;
428 }
429 
430 /*
431  * When we have a situtaion where we run out of memory and cannot
432  * allocate messages, we just leave them in the BMC and run the system
433  * polled until we can allocate some memory.  Once we have some
434  * memory, we will re-enable the interrupt.
435  */
436 static inline void disable_si_irq(struct smi_info *smi_info)
437 {
438 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
439 		start_disable_irq(smi_info);
440 		smi_info->interrupt_disabled = 1;
441 		if (!atomic_read(&smi_info->stop_operation))
442 			mod_timer(&smi_info->si_timer,
443 				  jiffies + SI_TIMEOUT_JIFFIES);
444 	}
445 }
446 
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 		start_enable_irq(smi_info);
451 		smi_info->interrupt_disabled = 0;
452 	}
453 }
454 
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 		/* Watchdog pre-timeout */
460 		smi_inc_stat(smi_info, watchdog_pretimeouts);
461 
462 		start_clear_flags(smi_info);
463 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 		/* Messages available. */
467 		smi_info->curr_msg = ipmi_alloc_smi_msg();
468 		if (!smi_info->curr_msg) {
469 			disable_si_irq(smi_info);
470 			smi_info->si_state = SI_NORMAL;
471 			return;
472 		}
473 		enable_si_irq(smi_info);
474 
475 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
476 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
477 		smi_info->curr_msg->data_size = 2;
478 
479 		smi_info->handlers->start_transaction(
480 			smi_info->si_sm,
481 			smi_info->curr_msg->data,
482 			smi_info->curr_msg->data_size);
483 		smi_info->si_state = SI_GETTING_MESSAGES;
484 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
485 		/* Events available. */
486 		smi_info->curr_msg = ipmi_alloc_smi_msg();
487 		if (!smi_info->curr_msg) {
488 			disable_si_irq(smi_info);
489 			smi_info->si_state = SI_NORMAL;
490 			return;
491 		}
492 		enable_si_irq(smi_info);
493 
494 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
495 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
496 		smi_info->curr_msg->data_size = 2;
497 
498 		smi_info->handlers->start_transaction(
499 			smi_info->si_sm,
500 			smi_info->curr_msg->data,
501 			smi_info->curr_msg->data_size);
502 		smi_info->si_state = SI_GETTING_EVENTS;
503 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 		   smi_info->oem_data_avail_handler) {
505 		if (smi_info->oem_data_avail_handler(smi_info))
506 			goto retry;
507 	} else
508 		smi_info->si_state = SI_NORMAL;
509 }
510 
511 static void handle_transaction_done(struct smi_info *smi_info)
512 {
513 	struct ipmi_smi_msg *msg;
514 #ifdef DEBUG_TIMING
515 	struct timeval t;
516 
517 	do_gettimeofday(&t);
518 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
519 #endif
520 	switch (smi_info->si_state) {
521 	case SI_NORMAL:
522 		if (!smi_info->curr_msg)
523 			break;
524 
525 		smi_info->curr_msg->rsp_size
526 			= smi_info->handlers->get_result(
527 				smi_info->si_sm,
528 				smi_info->curr_msg->rsp,
529 				IPMI_MAX_MSG_LENGTH);
530 
531 		/*
532 		 * Do this here becase deliver_recv_msg() releases the
533 		 * lock, and a new message can be put in during the
534 		 * time the lock is released.
535 		 */
536 		msg = smi_info->curr_msg;
537 		smi_info->curr_msg = NULL;
538 		deliver_recv_msg(smi_info, msg);
539 		break;
540 
541 	case SI_GETTING_FLAGS:
542 	{
543 		unsigned char msg[4];
544 		unsigned int  len;
545 
546 		/* We got the flags from the SMI, now handle them. */
547 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
548 		if (msg[2] != 0) {
549 			/* Error fetching flags, just give up for now. */
550 			smi_info->si_state = SI_NORMAL;
551 		} else if (len < 4) {
552 			/*
553 			 * Hmm, no flags.  That's technically illegal, but
554 			 * don't use uninitialized data.
555 			 */
556 			smi_info->si_state = SI_NORMAL;
557 		} else {
558 			smi_info->msg_flags = msg[3];
559 			handle_flags(smi_info);
560 		}
561 		break;
562 	}
563 
564 	case SI_CLEARING_FLAGS:
565 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
566 	{
567 		unsigned char msg[3];
568 
569 		/* We cleared the flags. */
570 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
571 		if (msg[2] != 0) {
572 			/* Error clearing flags */
573 			dev_warn(smi_info->dev,
574 				 "Error clearing flags: %2.2x\n", msg[2]);
575 		}
576 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
577 			start_enable_irq(smi_info);
578 		else
579 			smi_info->si_state = SI_NORMAL;
580 		break;
581 	}
582 
583 	case SI_GETTING_EVENTS:
584 	{
585 		smi_info->curr_msg->rsp_size
586 			= smi_info->handlers->get_result(
587 				smi_info->si_sm,
588 				smi_info->curr_msg->rsp,
589 				IPMI_MAX_MSG_LENGTH);
590 
591 		/*
592 		 * Do this here becase deliver_recv_msg() releases the
593 		 * lock, and a new message can be put in during the
594 		 * time the lock is released.
595 		 */
596 		msg = smi_info->curr_msg;
597 		smi_info->curr_msg = NULL;
598 		if (msg->rsp[2] != 0) {
599 			/* Error getting event, probably done. */
600 			msg->done(msg);
601 
602 			/* Take off the event flag. */
603 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
604 			handle_flags(smi_info);
605 		} else {
606 			smi_inc_stat(smi_info, events);
607 
608 			/*
609 			 * Do this before we deliver the message
610 			 * because delivering the message releases the
611 			 * lock and something else can mess with the
612 			 * state.
613 			 */
614 			handle_flags(smi_info);
615 
616 			deliver_recv_msg(smi_info, msg);
617 		}
618 		break;
619 	}
620 
621 	case SI_GETTING_MESSAGES:
622 	{
623 		smi_info->curr_msg->rsp_size
624 			= smi_info->handlers->get_result(
625 				smi_info->si_sm,
626 				smi_info->curr_msg->rsp,
627 				IPMI_MAX_MSG_LENGTH);
628 
629 		/*
630 		 * Do this here becase deliver_recv_msg() releases the
631 		 * lock, and a new message can be put in during the
632 		 * time the lock is released.
633 		 */
634 		msg = smi_info->curr_msg;
635 		smi_info->curr_msg = NULL;
636 		if (msg->rsp[2] != 0) {
637 			/* Error getting event, probably done. */
638 			msg->done(msg);
639 
640 			/* Take off the msg flag. */
641 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
642 			handle_flags(smi_info);
643 		} else {
644 			smi_inc_stat(smi_info, incoming_messages);
645 
646 			/*
647 			 * Do this before we deliver the message
648 			 * because delivering the message releases the
649 			 * lock and something else can mess with the
650 			 * state.
651 			 */
652 			handle_flags(smi_info);
653 
654 			deliver_recv_msg(smi_info, msg);
655 		}
656 		break;
657 	}
658 
659 	case SI_ENABLE_INTERRUPTS1:
660 	{
661 		unsigned char msg[4];
662 
663 		/* We got the flags from the SMI, now handle them. */
664 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
665 		if (msg[2] != 0) {
666 			dev_warn(smi_info->dev,
667 				 "Couldn't get irq info: %x.\n", msg[2]);
668 			dev_warn(smi_info->dev,
669 				 "Maybe ok, but ipmi might run very slowly.\n");
670 			smi_info->si_state = SI_NORMAL;
671 		} else {
672 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
673 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
674 			msg[2] = (msg[3] |
675 				  IPMI_BMC_RCV_MSG_INTR |
676 				  IPMI_BMC_EVT_MSG_INTR);
677 			smi_info->handlers->start_transaction(
678 				smi_info->si_sm, msg, 3);
679 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
680 		}
681 		break;
682 	}
683 
684 	case SI_ENABLE_INTERRUPTS2:
685 	{
686 		unsigned char msg[4];
687 
688 		/* We got the flags from the SMI, now handle them. */
689 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
690 		if (msg[2] != 0) {
691 			dev_warn(smi_info->dev,
692 				 "Couldn't set irq info: %x.\n", msg[2]);
693 			dev_warn(smi_info->dev,
694 				 "Maybe ok, but ipmi might run very slowly.\n");
695 		} else
696 			smi_info->interrupt_disabled = 0;
697 		smi_info->si_state = SI_NORMAL;
698 		break;
699 	}
700 
701 	case SI_DISABLE_INTERRUPTS1:
702 	{
703 		unsigned char msg[4];
704 
705 		/* We got the flags from the SMI, now handle them. */
706 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707 		if (msg[2] != 0) {
708 			dev_warn(smi_info->dev, "Could not disable interrupts"
709 				 ", failed get.\n");
710 			smi_info->si_state = SI_NORMAL;
711 		} else {
712 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
713 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
714 			msg[2] = (msg[3] &
715 				  ~(IPMI_BMC_RCV_MSG_INTR |
716 				    IPMI_BMC_EVT_MSG_INTR));
717 			smi_info->handlers->start_transaction(
718 				smi_info->si_sm, msg, 3);
719 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
720 		}
721 		break;
722 	}
723 
724 	case SI_DISABLE_INTERRUPTS2:
725 	{
726 		unsigned char msg[4];
727 
728 		/* We got the flags from the SMI, now handle them. */
729 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
730 		if (msg[2] != 0) {
731 			dev_warn(smi_info->dev, "Could not disable interrupts"
732 				 ", failed set.\n");
733 		}
734 		smi_info->si_state = SI_NORMAL;
735 		break;
736 	}
737 	}
738 }
739 
740 /*
741  * Called on timeouts and events.  Timeouts should pass the elapsed
742  * time, interrupts should pass in zero.  Must be called with
743  * si_lock held and interrupts disabled.
744  */
745 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
746 					   int time)
747 {
748 	enum si_sm_result si_sm_result;
749 
750  restart:
751 	/*
752 	 * There used to be a loop here that waited a little while
753 	 * (around 25us) before giving up.  That turned out to be
754 	 * pointless, the minimum delays I was seeing were in the 300us
755 	 * range, which is far too long to wait in an interrupt.  So
756 	 * we just run until the state machine tells us something
757 	 * happened or it needs a delay.
758 	 */
759 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
760 	time = 0;
761 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
762 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
763 
764 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
765 		smi_inc_stat(smi_info, complete_transactions);
766 
767 		handle_transaction_done(smi_info);
768 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769 	} else if (si_sm_result == SI_SM_HOSED) {
770 		smi_inc_stat(smi_info, hosed_count);
771 
772 		/*
773 		 * Do the before return_hosed_msg, because that
774 		 * releases the lock.
775 		 */
776 		smi_info->si_state = SI_NORMAL;
777 		if (smi_info->curr_msg != NULL) {
778 			/*
779 			 * If we were handling a user message, format
780 			 * a response to send to the upper layer to
781 			 * tell it about the error.
782 			 */
783 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
784 		}
785 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786 	}
787 
788 	/*
789 	 * We prefer handling attn over new messages.  But don't do
790 	 * this if there is not yet an upper layer to handle anything.
791 	 */
792 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
793 		unsigned char msg[2];
794 
795 		smi_inc_stat(smi_info, attentions);
796 
797 		/*
798 		 * Got a attn, send down a get message flags to see
799 		 * what's causing it.  It would be better to handle
800 		 * this in the upper layer, but due to the way
801 		 * interrupts work with the SMI, that's not really
802 		 * possible.
803 		 */
804 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
805 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
806 
807 		smi_info->handlers->start_transaction(
808 			smi_info->si_sm, msg, 2);
809 		smi_info->si_state = SI_GETTING_FLAGS;
810 		goto restart;
811 	}
812 
813 	/* If we are currently idle, try to start the next message. */
814 	if (si_sm_result == SI_SM_IDLE) {
815 		smi_inc_stat(smi_info, idles);
816 
817 		si_sm_result = start_next_msg(smi_info);
818 		if (si_sm_result != SI_SM_IDLE)
819 			goto restart;
820 	}
821 
822 	if ((si_sm_result == SI_SM_IDLE)
823 	    && (atomic_read(&smi_info->req_events))) {
824 		/*
825 		 * We are idle and the upper layer requested that I fetch
826 		 * events, so do so.
827 		 */
828 		atomic_set(&smi_info->req_events, 0);
829 
830 		smi_info->curr_msg = ipmi_alloc_smi_msg();
831 		if (!smi_info->curr_msg)
832 			goto out;
833 
834 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
835 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
836 		smi_info->curr_msg->data_size = 2;
837 
838 		smi_info->handlers->start_transaction(
839 			smi_info->si_sm,
840 			smi_info->curr_msg->data,
841 			smi_info->curr_msg->data_size);
842 		smi_info->si_state = SI_GETTING_EVENTS;
843 		goto restart;
844 	}
845  out:
846 	return si_sm_result;
847 }
848 
849 static void sender(void                *send_info,
850 		   struct ipmi_smi_msg *msg,
851 		   int                 priority)
852 {
853 	struct smi_info   *smi_info = send_info;
854 	enum si_sm_result result;
855 	unsigned long     flags;
856 #ifdef DEBUG_TIMING
857 	struct timeval    t;
858 #endif
859 
860 	if (atomic_read(&smi_info->stop_operation)) {
861 		msg->rsp[0] = msg->data[0] | 4;
862 		msg->rsp[1] = msg->data[1];
863 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
864 		msg->rsp_size = 3;
865 		deliver_recv_msg(smi_info, msg);
866 		return;
867 	}
868 
869 #ifdef DEBUG_TIMING
870 	do_gettimeofday(&t);
871 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
872 #endif
873 
874 	if (smi_info->run_to_completion) {
875 		/*
876 		 * If we are running to completion, then throw it in
877 		 * the list and run transactions until everything is
878 		 * clear.  Priority doesn't matter here.
879 		 */
880 
881 		/*
882 		 * Run to completion means we are single-threaded, no
883 		 * need for locks.
884 		 */
885 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
886 
887 		result = smi_event_handler(smi_info, 0);
888 		while (result != SI_SM_IDLE) {
889 			udelay(SI_SHORT_TIMEOUT_USEC);
890 			result = smi_event_handler(smi_info,
891 						   SI_SHORT_TIMEOUT_USEC);
892 		}
893 		return;
894 	}
895 
896 	spin_lock_irqsave(&smi_info->si_lock, flags);
897 	if (priority > 0)
898 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
899 	else
900 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
901 
902 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
903 		/*
904 		 * last_timeout_jiffies is updated here to avoid
905 		 * smi_timeout() handler passing very large time_diff
906 		 * value to smi_event_handler() that causes
907 		 * the send command to abort.
908 		 */
909 		smi_info->last_timeout_jiffies = jiffies;
910 
911 		mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
912 
913 		if (smi_info->thread)
914 			wake_up_process(smi_info->thread);
915 
916 		start_next_msg(smi_info);
917 		smi_event_handler(smi_info, 0);
918 	}
919 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
920 }
921 
922 static void set_run_to_completion(void *send_info, int i_run_to_completion)
923 {
924 	struct smi_info   *smi_info = send_info;
925 	enum si_sm_result result;
926 
927 	smi_info->run_to_completion = i_run_to_completion;
928 	if (i_run_to_completion) {
929 		result = smi_event_handler(smi_info, 0);
930 		while (result != SI_SM_IDLE) {
931 			udelay(SI_SHORT_TIMEOUT_USEC);
932 			result = smi_event_handler(smi_info,
933 						   SI_SHORT_TIMEOUT_USEC);
934 		}
935 	}
936 }
937 
938 /*
939  * Use -1 in the nsec value of the busy waiting timespec to tell that
940  * we are spinning in kipmid looking for something and not delaying
941  * between checks
942  */
943 static inline void ipmi_si_set_not_busy(struct timespec *ts)
944 {
945 	ts->tv_nsec = -1;
946 }
947 static inline int ipmi_si_is_busy(struct timespec *ts)
948 {
949 	return ts->tv_nsec != -1;
950 }
951 
952 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
953 				 const struct smi_info *smi_info,
954 				 struct timespec *busy_until)
955 {
956 	unsigned int max_busy_us = 0;
957 
958 	if (smi_info->intf_num < num_max_busy_us)
959 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
960 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
961 		ipmi_si_set_not_busy(busy_until);
962 	else if (!ipmi_si_is_busy(busy_until)) {
963 		getnstimeofday(busy_until);
964 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
965 	} else {
966 		struct timespec now;
967 		getnstimeofday(&now);
968 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
969 			ipmi_si_set_not_busy(busy_until);
970 			return 0;
971 		}
972 	}
973 	return 1;
974 }
975 
976 
977 /*
978  * A busy-waiting loop for speeding up IPMI operation.
979  *
980  * Lousy hardware makes this hard.  This is only enabled for systems
981  * that are not BT and do not have interrupts.  It starts spinning
982  * when an operation is complete or until max_busy tells it to stop
983  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
984  * Documentation/IPMI.txt for details.
985  */
986 static int ipmi_thread(void *data)
987 {
988 	struct smi_info *smi_info = data;
989 	unsigned long flags;
990 	enum si_sm_result smi_result;
991 	struct timespec busy_until;
992 
993 	ipmi_si_set_not_busy(&busy_until);
994 	set_user_nice(current, 19);
995 	while (!kthread_should_stop()) {
996 		int busy_wait;
997 
998 		spin_lock_irqsave(&(smi_info->si_lock), flags);
999 		smi_result = smi_event_handler(smi_info, 0);
1000 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1002 						  &busy_until);
1003 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1004 			; /* do nothing */
1005 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1006 			schedule();
1007 		else if (smi_result == SI_SM_IDLE)
1008 			schedule_timeout_interruptible(100);
1009 		else
1010 			schedule_timeout_interruptible(1);
1011 	}
1012 	return 0;
1013 }
1014 
1015 
1016 static void poll(void *send_info)
1017 {
1018 	struct smi_info *smi_info = send_info;
1019 	unsigned long flags = 0;
1020 	int run_to_completion = smi_info->run_to_completion;
1021 
1022 	/*
1023 	 * Make sure there is some delay in the poll loop so we can
1024 	 * drive time forward and timeout things.
1025 	 */
1026 	udelay(10);
1027 	if (!run_to_completion)
1028 		spin_lock_irqsave(&smi_info->si_lock, flags);
1029 	smi_event_handler(smi_info, 10);
1030 	if (!run_to_completion)
1031 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1032 }
1033 
1034 static void request_events(void *send_info)
1035 {
1036 	struct smi_info *smi_info = send_info;
1037 
1038 	if (atomic_read(&smi_info->stop_operation) ||
1039 				!smi_info->has_event_buffer)
1040 		return;
1041 
1042 	atomic_set(&smi_info->req_events, 1);
1043 }
1044 
1045 static int initialized;
1046 
1047 static void smi_timeout(unsigned long data)
1048 {
1049 	struct smi_info   *smi_info = (struct smi_info *) data;
1050 	enum si_sm_result smi_result;
1051 	unsigned long     flags;
1052 	unsigned long     jiffies_now;
1053 	long              time_diff;
1054 	long		  timeout;
1055 #ifdef DEBUG_TIMING
1056 	struct timeval    t;
1057 #endif
1058 
1059 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1060 #ifdef DEBUG_TIMING
1061 	do_gettimeofday(&t);
1062 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1063 #endif
1064 	jiffies_now = jiffies;
1065 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1066 		     * SI_USEC_PER_JIFFY);
1067 	smi_result = smi_event_handler(smi_info, time_diff);
1068 
1069 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1070 
1071 	smi_info->last_timeout_jiffies = jiffies_now;
1072 
1073 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1074 		/* Running with interrupts, only do long timeouts. */
1075 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1076 		smi_inc_stat(smi_info, long_timeouts);
1077 		goto do_mod_timer;
1078 	}
1079 
1080 	/*
1081 	 * If the state machine asks for a short delay, then shorten
1082 	 * the timer timeout.
1083 	 */
1084 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1085 		smi_inc_stat(smi_info, short_timeouts);
1086 		timeout = jiffies + 1;
1087 	} else {
1088 		smi_inc_stat(smi_info, long_timeouts);
1089 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1090 	}
1091 
1092  do_mod_timer:
1093 	if (smi_result != SI_SM_IDLE)
1094 		mod_timer(&(smi_info->si_timer), timeout);
1095 }
1096 
1097 static irqreturn_t si_irq_handler(int irq, void *data)
1098 {
1099 	struct smi_info *smi_info = data;
1100 	unsigned long   flags;
1101 #ifdef DEBUG_TIMING
1102 	struct timeval  t;
1103 #endif
1104 
1105 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1106 
1107 	smi_inc_stat(smi_info, interrupts);
1108 
1109 #ifdef DEBUG_TIMING
1110 	do_gettimeofday(&t);
1111 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1112 #endif
1113 	smi_event_handler(smi_info, 0);
1114 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1115 	return IRQ_HANDLED;
1116 }
1117 
1118 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1119 {
1120 	struct smi_info *smi_info = data;
1121 	/* We need to clear the IRQ flag for the BT interface. */
1122 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1125 	return si_irq_handler(irq, data);
1126 }
1127 
1128 static int smi_start_processing(void       *send_info,
1129 				ipmi_smi_t intf)
1130 {
1131 	struct smi_info *new_smi = send_info;
1132 	int             enable = 0;
1133 
1134 	new_smi->intf = intf;
1135 
1136 	/* Try to claim any interrupts. */
1137 	if (new_smi->irq_setup)
1138 		new_smi->irq_setup(new_smi);
1139 
1140 	/* Set up the timer that drives the interface. */
1141 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1142 	new_smi->last_timeout_jiffies = jiffies;
1143 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1144 
1145 	/*
1146 	 * Check if the user forcefully enabled the daemon.
1147 	 */
1148 	if (new_smi->intf_num < num_force_kipmid)
1149 		enable = force_kipmid[new_smi->intf_num];
1150 	/*
1151 	 * The BT interface is efficient enough to not need a thread,
1152 	 * and there is no need for a thread if we have interrupts.
1153 	 */
1154 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1155 		enable = 1;
1156 
1157 	if (enable) {
1158 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1159 					      "kipmi%d", new_smi->intf_num);
1160 		if (IS_ERR(new_smi->thread)) {
1161 			dev_notice(new_smi->dev, "Could not start"
1162 				   " kernel thread due to error %ld, only using"
1163 				   " timers to drive the interface\n",
1164 				   PTR_ERR(new_smi->thread));
1165 			new_smi->thread = NULL;
1166 		}
1167 	}
1168 
1169 	return 0;
1170 }
1171 
1172 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1173 {
1174 	struct smi_info *smi = send_info;
1175 
1176 	data->addr_src = smi->addr_source;
1177 	data->dev = smi->dev;
1178 	data->addr_info = smi->addr_info;
1179 	get_device(smi->dev);
1180 
1181 	return 0;
1182 }
1183 
1184 static void set_maintenance_mode(void *send_info, int enable)
1185 {
1186 	struct smi_info   *smi_info = send_info;
1187 
1188 	if (!enable)
1189 		atomic_set(&smi_info->req_events, 0);
1190 }
1191 
1192 static struct ipmi_smi_handlers handlers = {
1193 	.owner                  = THIS_MODULE,
1194 	.start_processing       = smi_start_processing,
1195 	.get_smi_info		= get_smi_info,
1196 	.sender			= sender,
1197 	.request_events		= request_events,
1198 	.set_maintenance_mode   = set_maintenance_mode,
1199 	.set_run_to_completion  = set_run_to_completion,
1200 	.poll			= poll,
1201 };
1202 
1203 /*
1204  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1205  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1206  */
1207 
1208 static LIST_HEAD(smi_infos);
1209 static DEFINE_MUTEX(smi_infos_lock);
1210 static int smi_num; /* Used to sequence the SMIs */
1211 
1212 #define DEFAULT_REGSPACING	1
1213 #define DEFAULT_REGSIZE		1
1214 
1215 #ifdef CONFIG_ACPI
1216 static bool          si_tryacpi = 1;
1217 #endif
1218 #ifdef CONFIG_DMI
1219 static bool          si_trydmi = 1;
1220 #endif
1221 static bool          si_tryplatform = 1;
1222 #ifdef CONFIG_PCI
1223 static bool          si_trypci = 1;
1224 #endif
1225 static bool          si_trydefaults = 1;
1226 static char          *si_type[SI_MAX_PARMS];
1227 #define MAX_SI_TYPE_STR 30
1228 static char          si_type_str[MAX_SI_TYPE_STR];
1229 static unsigned long addrs[SI_MAX_PARMS];
1230 static unsigned int num_addrs;
1231 static unsigned int  ports[SI_MAX_PARMS];
1232 static unsigned int num_ports;
1233 static int           irqs[SI_MAX_PARMS];
1234 static unsigned int num_irqs;
1235 static int           regspacings[SI_MAX_PARMS];
1236 static unsigned int num_regspacings;
1237 static int           regsizes[SI_MAX_PARMS];
1238 static unsigned int num_regsizes;
1239 static int           regshifts[SI_MAX_PARMS];
1240 static unsigned int num_regshifts;
1241 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1242 static unsigned int num_slave_addrs;
1243 
1244 #define IPMI_IO_ADDR_SPACE  0
1245 #define IPMI_MEM_ADDR_SPACE 1
1246 static char *addr_space_to_str[] = { "i/o", "mem" };
1247 
1248 static int hotmod_handler(const char *val, struct kernel_param *kp);
1249 
1250 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1251 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1252 		 " Documentation/IPMI.txt in the kernel sources for the"
1253 		 " gory details.");
1254 
1255 #ifdef CONFIG_ACPI
1256 module_param_named(tryacpi, si_tryacpi, bool, 0);
1257 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1258 		 " default scan of the interfaces identified via ACPI");
1259 #endif
1260 #ifdef CONFIG_DMI
1261 module_param_named(trydmi, si_trydmi, bool, 0);
1262 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1263 		 " default scan of the interfaces identified via DMI");
1264 #endif
1265 module_param_named(tryplatform, si_tryplatform, bool, 0);
1266 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1267 		 " default scan of the interfaces identified via platform"
1268 		 " interfaces like openfirmware");
1269 #ifdef CONFIG_PCI
1270 module_param_named(trypci, si_trypci, bool, 0);
1271 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1272 		 " default scan of the interfaces identified via pci");
1273 #endif
1274 module_param_named(trydefaults, si_trydefaults, bool, 0);
1275 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1276 		 " default scan of the KCS and SMIC interface at the standard"
1277 		 " address");
1278 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1279 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1280 		 " interface separated by commas.  The types are 'kcs',"
1281 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1282 		 " the first interface to kcs and the second to bt");
1283 module_param_array(addrs, ulong, &num_addrs, 0);
1284 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1285 		 " addresses separated by commas.  Only use if an interface"
1286 		 " is in memory.  Otherwise, set it to zero or leave"
1287 		 " it blank.");
1288 module_param_array(ports, uint, &num_ports, 0);
1289 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1290 		 " addresses separated by commas.  Only use if an interface"
1291 		 " is a port.  Otherwise, set it to zero or leave"
1292 		 " it blank.");
1293 module_param_array(irqs, int, &num_irqs, 0);
1294 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1295 		 " addresses separated by commas.  Only use if an interface"
1296 		 " has an interrupt.  Otherwise, set it to zero or leave"
1297 		 " it blank.");
1298 module_param_array(regspacings, int, &num_regspacings, 0);
1299 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1300 		 " and each successive register used by the interface.  For"
1301 		 " instance, if the start address is 0xca2 and the spacing"
1302 		 " is 2, then the second address is at 0xca4.  Defaults"
1303 		 " to 1.");
1304 module_param_array(regsizes, int, &num_regsizes, 0);
1305 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1306 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1307 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1308 		 " the 8-bit IPMI register has to be read from a larger"
1309 		 " register.");
1310 module_param_array(regshifts, int, &num_regshifts, 0);
1311 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1312 		 " IPMI register, in bits.  For instance, if the data"
1313 		 " is read from a 32-bit word and the IPMI data is in"
1314 		 " bit 8-15, then the shift would be 8");
1315 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1316 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1317 		 " the controller.  Normally this is 0x20, but can be"
1318 		 " overridden by this parm.  This is an array indexed"
1319 		 " by interface number.");
1320 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1321 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1322 		 " disabled(0).  Normally the IPMI driver auto-detects"
1323 		 " this, but the value may be overridden by this parm.");
1324 module_param(unload_when_empty, int, 0);
1325 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1326 		 " specified or found, default is 1.  Setting to 0"
1327 		 " is useful for hot add of devices using hotmod.");
1328 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1329 MODULE_PARM_DESC(kipmid_max_busy_us,
1330 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1331 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1332 		 " if kipmid is using up a lot of CPU time.");
1333 
1334 
1335 static void std_irq_cleanup(struct smi_info *info)
1336 {
1337 	if (info->si_type == SI_BT)
1338 		/* Disable the interrupt in the BT interface. */
1339 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1340 	free_irq(info->irq, info);
1341 }
1342 
1343 static int std_irq_setup(struct smi_info *info)
1344 {
1345 	int rv;
1346 
1347 	if (!info->irq)
1348 		return 0;
1349 
1350 	if (info->si_type == SI_BT) {
1351 		rv = request_irq(info->irq,
1352 				 si_bt_irq_handler,
1353 				 IRQF_SHARED | IRQF_DISABLED,
1354 				 DEVICE_NAME,
1355 				 info);
1356 		if (!rv)
1357 			/* Enable the interrupt in the BT interface. */
1358 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1359 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1360 	} else
1361 		rv = request_irq(info->irq,
1362 				 si_irq_handler,
1363 				 IRQF_SHARED | IRQF_DISABLED,
1364 				 DEVICE_NAME,
1365 				 info);
1366 	if (rv) {
1367 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1368 			 " running polled\n",
1369 			 DEVICE_NAME, info->irq);
1370 		info->irq = 0;
1371 	} else {
1372 		info->irq_cleanup = std_irq_cleanup;
1373 		dev_info(info->dev, "Using irq %d\n", info->irq);
1374 	}
1375 
1376 	return rv;
1377 }
1378 
1379 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1380 {
1381 	unsigned int addr = io->addr_data;
1382 
1383 	return inb(addr + (offset * io->regspacing));
1384 }
1385 
1386 static void port_outb(struct si_sm_io *io, unsigned int offset,
1387 		      unsigned char b)
1388 {
1389 	unsigned int addr = io->addr_data;
1390 
1391 	outb(b, addr + (offset * io->regspacing));
1392 }
1393 
1394 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1395 {
1396 	unsigned int addr = io->addr_data;
1397 
1398 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1399 }
1400 
1401 static void port_outw(struct si_sm_io *io, unsigned int offset,
1402 		      unsigned char b)
1403 {
1404 	unsigned int addr = io->addr_data;
1405 
1406 	outw(b << io->regshift, addr + (offset * io->regspacing));
1407 }
1408 
1409 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1410 {
1411 	unsigned int addr = io->addr_data;
1412 
1413 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1414 }
1415 
1416 static void port_outl(struct si_sm_io *io, unsigned int offset,
1417 		      unsigned char b)
1418 {
1419 	unsigned int addr = io->addr_data;
1420 
1421 	outl(b << io->regshift, addr+(offset * io->regspacing));
1422 }
1423 
1424 static void port_cleanup(struct smi_info *info)
1425 {
1426 	unsigned int addr = info->io.addr_data;
1427 	int          idx;
1428 
1429 	if (addr) {
1430 		for (idx = 0; idx < info->io_size; idx++)
1431 			release_region(addr + idx * info->io.regspacing,
1432 				       info->io.regsize);
1433 	}
1434 }
1435 
1436 static int port_setup(struct smi_info *info)
1437 {
1438 	unsigned int addr = info->io.addr_data;
1439 	int          idx;
1440 
1441 	if (!addr)
1442 		return -ENODEV;
1443 
1444 	info->io_cleanup = port_cleanup;
1445 
1446 	/*
1447 	 * Figure out the actual inb/inw/inl/etc routine to use based
1448 	 * upon the register size.
1449 	 */
1450 	switch (info->io.regsize) {
1451 	case 1:
1452 		info->io.inputb = port_inb;
1453 		info->io.outputb = port_outb;
1454 		break;
1455 	case 2:
1456 		info->io.inputb = port_inw;
1457 		info->io.outputb = port_outw;
1458 		break;
1459 	case 4:
1460 		info->io.inputb = port_inl;
1461 		info->io.outputb = port_outl;
1462 		break;
1463 	default:
1464 		dev_warn(info->dev, "Invalid register size: %d\n",
1465 			 info->io.regsize);
1466 		return -EINVAL;
1467 	}
1468 
1469 	/*
1470 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1471 	 * tables.  This causes problems when trying to register the
1472 	 * entire I/O region.  Therefore we must register each I/O
1473 	 * port separately.
1474 	 */
1475 	for (idx = 0; idx < info->io_size; idx++) {
1476 		if (request_region(addr + idx * info->io.regspacing,
1477 				   info->io.regsize, DEVICE_NAME) == NULL) {
1478 			/* Undo allocations */
1479 			while (idx--) {
1480 				release_region(addr + idx * info->io.regspacing,
1481 					       info->io.regsize);
1482 			}
1483 			return -EIO;
1484 		}
1485 	}
1486 	return 0;
1487 }
1488 
1489 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1490 {
1491 	return readb((io->addr)+(offset * io->regspacing));
1492 }
1493 
1494 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1495 		     unsigned char b)
1496 {
1497 	writeb(b, (io->addr)+(offset * io->regspacing));
1498 }
1499 
1500 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1501 {
1502 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503 		& 0xff;
1504 }
1505 
1506 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1507 		     unsigned char b)
1508 {
1509 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511 
1512 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1513 {
1514 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1515 		& 0xff;
1516 }
1517 
1518 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1519 		     unsigned char b)
1520 {
1521 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1522 }
1523 
1524 #ifdef readq
1525 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1526 {
1527 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1528 		& 0xff;
1529 }
1530 
1531 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1532 		     unsigned char b)
1533 {
1534 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1535 }
1536 #endif
1537 
1538 static void mem_cleanup(struct smi_info *info)
1539 {
1540 	unsigned long addr = info->io.addr_data;
1541 	int           mapsize;
1542 
1543 	if (info->io.addr) {
1544 		iounmap(info->io.addr);
1545 
1546 		mapsize = ((info->io_size * info->io.regspacing)
1547 			   - (info->io.regspacing - info->io.regsize));
1548 
1549 		release_mem_region(addr, mapsize);
1550 	}
1551 }
1552 
1553 static int mem_setup(struct smi_info *info)
1554 {
1555 	unsigned long addr = info->io.addr_data;
1556 	int           mapsize;
1557 
1558 	if (!addr)
1559 		return -ENODEV;
1560 
1561 	info->io_cleanup = mem_cleanup;
1562 
1563 	/*
1564 	 * Figure out the actual readb/readw/readl/etc routine to use based
1565 	 * upon the register size.
1566 	 */
1567 	switch (info->io.regsize) {
1568 	case 1:
1569 		info->io.inputb = intf_mem_inb;
1570 		info->io.outputb = intf_mem_outb;
1571 		break;
1572 	case 2:
1573 		info->io.inputb = intf_mem_inw;
1574 		info->io.outputb = intf_mem_outw;
1575 		break;
1576 	case 4:
1577 		info->io.inputb = intf_mem_inl;
1578 		info->io.outputb = intf_mem_outl;
1579 		break;
1580 #ifdef readq
1581 	case 8:
1582 		info->io.inputb = mem_inq;
1583 		info->io.outputb = mem_outq;
1584 		break;
1585 #endif
1586 	default:
1587 		dev_warn(info->dev, "Invalid register size: %d\n",
1588 			 info->io.regsize);
1589 		return -EINVAL;
1590 	}
1591 
1592 	/*
1593 	 * Calculate the total amount of memory to claim.  This is an
1594 	 * unusual looking calculation, but it avoids claiming any
1595 	 * more memory than it has to.  It will claim everything
1596 	 * between the first address to the end of the last full
1597 	 * register.
1598 	 */
1599 	mapsize = ((info->io_size * info->io.regspacing)
1600 		   - (info->io.regspacing - info->io.regsize));
1601 
1602 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1603 		return -EIO;
1604 
1605 	info->io.addr = ioremap(addr, mapsize);
1606 	if (info->io.addr == NULL) {
1607 		release_mem_region(addr, mapsize);
1608 		return -EIO;
1609 	}
1610 	return 0;
1611 }
1612 
1613 /*
1614  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1615  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1616  * Options are:
1617  *   rsp=<regspacing>
1618  *   rsi=<regsize>
1619  *   rsh=<regshift>
1620  *   irq=<irq>
1621  *   ipmb=<ipmb addr>
1622  */
1623 enum hotmod_op { HM_ADD, HM_REMOVE };
1624 struct hotmod_vals {
1625 	char *name;
1626 	int  val;
1627 };
1628 static struct hotmod_vals hotmod_ops[] = {
1629 	{ "add",	HM_ADD },
1630 	{ "remove",	HM_REMOVE },
1631 	{ NULL }
1632 };
1633 static struct hotmod_vals hotmod_si[] = {
1634 	{ "kcs",	SI_KCS },
1635 	{ "smic",	SI_SMIC },
1636 	{ "bt",		SI_BT },
1637 	{ NULL }
1638 };
1639 static struct hotmod_vals hotmod_as[] = {
1640 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1641 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1642 	{ NULL }
1643 };
1644 
1645 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1646 {
1647 	char *s;
1648 	int  i;
1649 
1650 	s = strchr(*curr, ',');
1651 	if (!s) {
1652 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1653 		return -EINVAL;
1654 	}
1655 	*s = '\0';
1656 	s++;
1657 	for (i = 0; hotmod_ops[i].name; i++) {
1658 		if (strcmp(*curr, v[i].name) == 0) {
1659 			*val = v[i].val;
1660 			*curr = s;
1661 			return 0;
1662 		}
1663 	}
1664 
1665 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1666 	return -EINVAL;
1667 }
1668 
1669 static int check_hotmod_int_op(const char *curr, const char *option,
1670 			       const char *name, int *val)
1671 {
1672 	char *n;
1673 
1674 	if (strcmp(curr, name) == 0) {
1675 		if (!option) {
1676 			printk(KERN_WARNING PFX
1677 			       "No option given for '%s'\n",
1678 			       curr);
1679 			return -EINVAL;
1680 		}
1681 		*val = simple_strtoul(option, &n, 0);
1682 		if ((*n != '\0') || (*option == '\0')) {
1683 			printk(KERN_WARNING PFX
1684 			       "Bad option given for '%s'\n",
1685 			       curr);
1686 			return -EINVAL;
1687 		}
1688 		return 1;
1689 	}
1690 	return 0;
1691 }
1692 
1693 static struct smi_info *smi_info_alloc(void)
1694 {
1695 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1696 
1697 	if (info)
1698 		spin_lock_init(&info->si_lock);
1699 	return info;
1700 }
1701 
1702 static int hotmod_handler(const char *val, struct kernel_param *kp)
1703 {
1704 	char *str = kstrdup(val, GFP_KERNEL);
1705 	int  rv;
1706 	char *next, *curr, *s, *n, *o;
1707 	enum hotmod_op op;
1708 	enum si_type si_type;
1709 	int  addr_space;
1710 	unsigned long addr;
1711 	int regspacing;
1712 	int regsize;
1713 	int regshift;
1714 	int irq;
1715 	int ipmb;
1716 	int ival;
1717 	int len;
1718 	struct smi_info *info;
1719 
1720 	if (!str)
1721 		return -ENOMEM;
1722 
1723 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1724 	len = strlen(str);
1725 	ival = len - 1;
1726 	while ((ival >= 0) && isspace(str[ival])) {
1727 		str[ival] = '\0';
1728 		ival--;
1729 	}
1730 
1731 	for (curr = str; curr; curr = next) {
1732 		regspacing = 1;
1733 		regsize = 1;
1734 		regshift = 0;
1735 		irq = 0;
1736 		ipmb = 0; /* Choose the default if not specified */
1737 
1738 		next = strchr(curr, ':');
1739 		if (next) {
1740 			*next = '\0';
1741 			next++;
1742 		}
1743 
1744 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1745 		if (rv)
1746 			break;
1747 		op = ival;
1748 
1749 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1750 		if (rv)
1751 			break;
1752 		si_type = ival;
1753 
1754 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1755 		if (rv)
1756 			break;
1757 
1758 		s = strchr(curr, ',');
1759 		if (s) {
1760 			*s = '\0';
1761 			s++;
1762 		}
1763 		addr = simple_strtoul(curr, &n, 0);
1764 		if ((*n != '\0') || (*curr == '\0')) {
1765 			printk(KERN_WARNING PFX "Invalid hotmod address"
1766 			       " '%s'\n", curr);
1767 			break;
1768 		}
1769 
1770 		while (s) {
1771 			curr = s;
1772 			s = strchr(curr, ',');
1773 			if (s) {
1774 				*s = '\0';
1775 				s++;
1776 			}
1777 			o = strchr(curr, '=');
1778 			if (o) {
1779 				*o = '\0';
1780 				o++;
1781 			}
1782 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1783 			if (rv < 0)
1784 				goto out;
1785 			else if (rv)
1786 				continue;
1787 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1788 			if (rv < 0)
1789 				goto out;
1790 			else if (rv)
1791 				continue;
1792 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1793 			if (rv < 0)
1794 				goto out;
1795 			else if (rv)
1796 				continue;
1797 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1798 			if (rv < 0)
1799 				goto out;
1800 			else if (rv)
1801 				continue;
1802 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1803 			if (rv < 0)
1804 				goto out;
1805 			else if (rv)
1806 				continue;
1807 
1808 			rv = -EINVAL;
1809 			printk(KERN_WARNING PFX
1810 			       "Invalid hotmod option '%s'\n",
1811 			       curr);
1812 			goto out;
1813 		}
1814 
1815 		if (op == HM_ADD) {
1816 			info = smi_info_alloc();
1817 			if (!info) {
1818 				rv = -ENOMEM;
1819 				goto out;
1820 			}
1821 
1822 			info->addr_source = SI_HOTMOD;
1823 			info->si_type = si_type;
1824 			info->io.addr_data = addr;
1825 			info->io.addr_type = addr_space;
1826 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1827 				info->io_setup = mem_setup;
1828 			else
1829 				info->io_setup = port_setup;
1830 
1831 			info->io.addr = NULL;
1832 			info->io.regspacing = regspacing;
1833 			if (!info->io.regspacing)
1834 				info->io.regspacing = DEFAULT_REGSPACING;
1835 			info->io.regsize = regsize;
1836 			if (!info->io.regsize)
1837 				info->io.regsize = DEFAULT_REGSPACING;
1838 			info->io.regshift = regshift;
1839 			info->irq = irq;
1840 			if (info->irq)
1841 				info->irq_setup = std_irq_setup;
1842 			info->slave_addr = ipmb;
1843 
1844 			if (!add_smi(info)) {
1845 				if (try_smi_init(info))
1846 					cleanup_one_si(info);
1847 			} else {
1848 				kfree(info);
1849 			}
1850 		} else {
1851 			/* remove */
1852 			struct smi_info *e, *tmp_e;
1853 
1854 			mutex_lock(&smi_infos_lock);
1855 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1856 				if (e->io.addr_type != addr_space)
1857 					continue;
1858 				if (e->si_type != si_type)
1859 					continue;
1860 				if (e->io.addr_data == addr)
1861 					cleanup_one_si(e);
1862 			}
1863 			mutex_unlock(&smi_infos_lock);
1864 		}
1865 	}
1866 	rv = len;
1867  out:
1868 	kfree(str);
1869 	return rv;
1870 }
1871 
1872 static int hardcode_find_bmc(void)
1873 {
1874 	int ret = -ENODEV;
1875 	int             i;
1876 	struct smi_info *info;
1877 
1878 	for (i = 0; i < SI_MAX_PARMS; i++) {
1879 		if (!ports[i] && !addrs[i])
1880 			continue;
1881 
1882 		info = smi_info_alloc();
1883 		if (!info)
1884 			return -ENOMEM;
1885 
1886 		info->addr_source = SI_HARDCODED;
1887 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1888 
1889 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1890 			info->si_type = SI_KCS;
1891 		} else if (strcmp(si_type[i], "smic") == 0) {
1892 			info->si_type = SI_SMIC;
1893 		} else if (strcmp(si_type[i], "bt") == 0) {
1894 			info->si_type = SI_BT;
1895 		} else {
1896 			printk(KERN_WARNING PFX "Interface type specified "
1897 			       "for interface %d, was invalid: %s\n",
1898 			       i, si_type[i]);
1899 			kfree(info);
1900 			continue;
1901 		}
1902 
1903 		if (ports[i]) {
1904 			/* An I/O port */
1905 			info->io_setup = port_setup;
1906 			info->io.addr_data = ports[i];
1907 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1908 		} else if (addrs[i]) {
1909 			/* A memory port */
1910 			info->io_setup = mem_setup;
1911 			info->io.addr_data = addrs[i];
1912 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1913 		} else {
1914 			printk(KERN_WARNING PFX "Interface type specified "
1915 			       "for interface %d, but port and address were "
1916 			       "not set or set to zero.\n", i);
1917 			kfree(info);
1918 			continue;
1919 		}
1920 
1921 		info->io.addr = NULL;
1922 		info->io.regspacing = regspacings[i];
1923 		if (!info->io.regspacing)
1924 			info->io.regspacing = DEFAULT_REGSPACING;
1925 		info->io.regsize = regsizes[i];
1926 		if (!info->io.regsize)
1927 			info->io.regsize = DEFAULT_REGSPACING;
1928 		info->io.regshift = regshifts[i];
1929 		info->irq = irqs[i];
1930 		if (info->irq)
1931 			info->irq_setup = std_irq_setup;
1932 		info->slave_addr = slave_addrs[i];
1933 
1934 		if (!add_smi(info)) {
1935 			if (try_smi_init(info))
1936 				cleanup_one_si(info);
1937 			ret = 0;
1938 		} else {
1939 			kfree(info);
1940 		}
1941 	}
1942 	return ret;
1943 }
1944 
1945 #ifdef CONFIG_ACPI
1946 
1947 #include <linux/acpi.h>
1948 
1949 /*
1950  * Once we get an ACPI failure, we don't try any more, because we go
1951  * through the tables sequentially.  Once we don't find a table, there
1952  * are no more.
1953  */
1954 static int acpi_failure;
1955 
1956 /* For GPE-type interrupts. */
1957 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1958 	u32 gpe_number, void *context)
1959 {
1960 	struct smi_info *smi_info = context;
1961 	unsigned long   flags;
1962 #ifdef DEBUG_TIMING
1963 	struct timeval t;
1964 #endif
1965 
1966 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1967 
1968 	smi_inc_stat(smi_info, interrupts);
1969 
1970 #ifdef DEBUG_TIMING
1971 	do_gettimeofday(&t);
1972 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1973 #endif
1974 	smi_event_handler(smi_info, 0);
1975 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1976 
1977 	return ACPI_INTERRUPT_HANDLED;
1978 }
1979 
1980 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1981 {
1982 	if (!info->irq)
1983 		return;
1984 
1985 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1986 }
1987 
1988 static int acpi_gpe_irq_setup(struct smi_info *info)
1989 {
1990 	acpi_status status;
1991 
1992 	if (!info->irq)
1993 		return 0;
1994 
1995 	/* FIXME - is level triggered right? */
1996 	status = acpi_install_gpe_handler(NULL,
1997 					  info->irq,
1998 					  ACPI_GPE_LEVEL_TRIGGERED,
1999 					  &ipmi_acpi_gpe,
2000 					  info);
2001 	if (status != AE_OK) {
2002 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2003 			 " running polled\n", DEVICE_NAME, info->irq);
2004 		info->irq = 0;
2005 		return -EINVAL;
2006 	} else {
2007 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2008 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2009 		return 0;
2010 	}
2011 }
2012 
2013 /*
2014  * Defined at
2015  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2016  */
2017 struct SPMITable {
2018 	s8	Signature[4];
2019 	u32	Length;
2020 	u8	Revision;
2021 	u8	Checksum;
2022 	s8	OEMID[6];
2023 	s8	OEMTableID[8];
2024 	s8	OEMRevision[4];
2025 	s8	CreatorID[4];
2026 	s8	CreatorRevision[4];
2027 	u8	InterfaceType;
2028 	u8	IPMIlegacy;
2029 	s16	SpecificationRevision;
2030 
2031 	/*
2032 	 * Bit 0 - SCI interrupt supported
2033 	 * Bit 1 - I/O APIC/SAPIC
2034 	 */
2035 	u8	InterruptType;
2036 
2037 	/*
2038 	 * If bit 0 of InterruptType is set, then this is the SCI
2039 	 * interrupt in the GPEx_STS register.
2040 	 */
2041 	u8	GPE;
2042 
2043 	s16	Reserved;
2044 
2045 	/*
2046 	 * If bit 1 of InterruptType is set, then this is the I/O
2047 	 * APIC/SAPIC interrupt.
2048 	 */
2049 	u32	GlobalSystemInterrupt;
2050 
2051 	/* The actual register address. */
2052 	struct acpi_generic_address addr;
2053 
2054 	u8	UID[4];
2055 
2056 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2057 };
2058 
2059 static int try_init_spmi(struct SPMITable *spmi)
2060 {
2061 	struct smi_info  *info;
2062 
2063 	if (spmi->IPMIlegacy != 1) {
2064 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2065 		return -ENODEV;
2066 	}
2067 
2068 	info = smi_info_alloc();
2069 	if (!info) {
2070 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2071 		return -ENOMEM;
2072 	}
2073 
2074 	info->addr_source = SI_SPMI;
2075 	printk(KERN_INFO PFX "probing via SPMI\n");
2076 
2077 	/* Figure out the interface type. */
2078 	switch (spmi->InterfaceType) {
2079 	case 1:	/* KCS */
2080 		info->si_type = SI_KCS;
2081 		break;
2082 	case 2:	/* SMIC */
2083 		info->si_type = SI_SMIC;
2084 		break;
2085 	case 3:	/* BT */
2086 		info->si_type = SI_BT;
2087 		break;
2088 	default:
2089 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2090 		       spmi->InterfaceType);
2091 		kfree(info);
2092 		return -EIO;
2093 	}
2094 
2095 	if (spmi->InterruptType & 1) {
2096 		/* We've got a GPE interrupt. */
2097 		info->irq = spmi->GPE;
2098 		info->irq_setup = acpi_gpe_irq_setup;
2099 	} else if (spmi->InterruptType & 2) {
2100 		/* We've got an APIC/SAPIC interrupt. */
2101 		info->irq = spmi->GlobalSystemInterrupt;
2102 		info->irq_setup = std_irq_setup;
2103 	} else {
2104 		/* Use the default interrupt setting. */
2105 		info->irq = 0;
2106 		info->irq_setup = NULL;
2107 	}
2108 
2109 	if (spmi->addr.bit_width) {
2110 		/* A (hopefully) properly formed register bit width. */
2111 		info->io.regspacing = spmi->addr.bit_width / 8;
2112 	} else {
2113 		info->io.regspacing = DEFAULT_REGSPACING;
2114 	}
2115 	info->io.regsize = info->io.regspacing;
2116 	info->io.regshift = spmi->addr.bit_offset;
2117 
2118 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2119 		info->io_setup = mem_setup;
2120 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2121 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2122 		info->io_setup = port_setup;
2123 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2124 	} else {
2125 		kfree(info);
2126 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2127 		return -EIO;
2128 	}
2129 	info->io.addr_data = spmi->addr.address;
2130 
2131 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2132 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2133 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2134 		 info->irq);
2135 
2136 	if (add_smi(info))
2137 		kfree(info);
2138 
2139 	return 0;
2140 }
2141 
2142 static void spmi_find_bmc(void)
2143 {
2144 	acpi_status      status;
2145 	struct SPMITable *spmi;
2146 	int              i;
2147 
2148 	if (acpi_disabled)
2149 		return;
2150 
2151 	if (acpi_failure)
2152 		return;
2153 
2154 	for (i = 0; ; i++) {
2155 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2156 					(struct acpi_table_header **)&spmi);
2157 		if (status != AE_OK)
2158 			return;
2159 
2160 		try_init_spmi(spmi);
2161 	}
2162 }
2163 
2164 static int ipmi_pnp_probe(struct pnp_dev *dev,
2165 				    const struct pnp_device_id *dev_id)
2166 {
2167 	struct acpi_device *acpi_dev;
2168 	struct smi_info *info;
2169 	struct resource *res, *res_second;
2170 	acpi_handle handle;
2171 	acpi_status status;
2172 	unsigned long long tmp;
2173 
2174 	acpi_dev = pnp_acpi_device(dev);
2175 	if (!acpi_dev)
2176 		return -ENODEV;
2177 
2178 	info = smi_info_alloc();
2179 	if (!info)
2180 		return -ENOMEM;
2181 
2182 	info->addr_source = SI_ACPI;
2183 	printk(KERN_INFO PFX "probing via ACPI\n");
2184 
2185 	handle = acpi_dev->handle;
2186 	info->addr_info.acpi_info.acpi_handle = handle;
2187 
2188 	/* _IFT tells us the interface type: KCS, BT, etc */
2189 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2190 	if (ACPI_FAILURE(status))
2191 		goto err_free;
2192 
2193 	switch (tmp) {
2194 	case 1:
2195 		info->si_type = SI_KCS;
2196 		break;
2197 	case 2:
2198 		info->si_type = SI_SMIC;
2199 		break;
2200 	case 3:
2201 		info->si_type = SI_BT;
2202 		break;
2203 	default:
2204 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2205 		goto err_free;
2206 	}
2207 
2208 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2209 	if (res) {
2210 		info->io_setup = port_setup;
2211 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2212 	} else {
2213 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2214 		if (res) {
2215 			info->io_setup = mem_setup;
2216 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2217 		}
2218 	}
2219 	if (!res) {
2220 		dev_err(&dev->dev, "no I/O or memory address\n");
2221 		goto err_free;
2222 	}
2223 	info->io.addr_data = res->start;
2224 
2225 	info->io.regspacing = DEFAULT_REGSPACING;
2226 	res_second = pnp_get_resource(dev,
2227 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2228 					IORESOURCE_IO : IORESOURCE_MEM,
2229 			       1);
2230 	if (res_second) {
2231 		if (res_second->start > info->io.addr_data)
2232 			info->io.regspacing = res_second->start - info->io.addr_data;
2233 	}
2234 	info->io.regsize = DEFAULT_REGSPACING;
2235 	info->io.regshift = 0;
2236 
2237 	/* If _GPE exists, use it; otherwise use standard interrupts */
2238 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2239 	if (ACPI_SUCCESS(status)) {
2240 		info->irq = tmp;
2241 		info->irq_setup = acpi_gpe_irq_setup;
2242 	} else if (pnp_irq_valid(dev, 0)) {
2243 		info->irq = pnp_irq(dev, 0);
2244 		info->irq_setup = std_irq_setup;
2245 	}
2246 
2247 	info->dev = &dev->dev;
2248 	pnp_set_drvdata(dev, info);
2249 
2250 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2251 		 res, info->io.regsize, info->io.regspacing,
2252 		 info->irq);
2253 
2254 	if (add_smi(info))
2255 		goto err_free;
2256 
2257 	return 0;
2258 
2259 err_free:
2260 	kfree(info);
2261 	return -EINVAL;
2262 }
2263 
2264 static void ipmi_pnp_remove(struct pnp_dev *dev)
2265 {
2266 	struct smi_info *info = pnp_get_drvdata(dev);
2267 
2268 	cleanup_one_si(info);
2269 }
2270 
2271 static const struct pnp_device_id pnp_dev_table[] = {
2272 	{"IPI0001", 0},
2273 	{"", 0},
2274 };
2275 
2276 static struct pnp_driver ipmi_pnp_driver = {
2277 	.name		= DEVICE_NAME,
2278 	.probe		= ipmi_pnp_probe,
2279 	.remove		= ipmi_pnp_remove,
2280 	.id_table	= pnp_dev_table,
2281 };
2282 #endif
2283 
2284 #ifdef CONFIG_DMI
2285 struct dmi_ipmi_data {
2286 	u8   		type;
2287 	u8   		addr_space;
2288 	unsigned long	base_addr;
2289 	u8   		irq;
2290 	u8              offset;
2291 	u8              slave_addr;
2292 };
2293 
2294 static int decode_dmi(const struct dmi_header *dm,
2295 				struct dmi_ipmi_data *dmi)
2296 {
2297 	const u8	*data = (const u8 *)dm;
2298 	unsigned long  	base_addr;
2299 	u8		reg_spacing;
2300 	u8              len = dm->length;
2301 
2302 	dmi->type = data[4];
2303 
2304 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2305 	if (len >= 0x11) {
2306 		if (base_addr & 1) {
2307 			/* I/O */
2308 			base_addr &= 0xFFFE;
2309 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2310 		} else
2311 			/* Memory */
2312 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2313 
2314 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2315 		   is odd. */
2316 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2317 
2318 		dmi->irq = data[0x11];
2319 
2320 		/* The top two bits of byte 0x10 hold the register spacing. */
2321 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2322 		switch (reg_spacing) {
2323 		case 0x00: /* Byte boundaries */
2324 		    dmi->offset = 1;
2325 		    break;
2326 		case 0x01: /* 32-bit boundaries */
2327 		    dmi->offset = 4;
2328 		    break;
2329 		case 0x02: /* 16-byte boundaries */
2330 		    dmi->offset = 16;
2331 		    break;
2332 		default:
2333 		    /* Some other interface, just ignore it. */
2334 		    return -EIO;
2335 		}
2336 	} else {
2337 		/* Old DMI spec. */
2338 		/*
2339 		 * Note that technically, the lower bit of the base
2340 		 * address should be 1 if the address is I/O and 0 if
2341 		 * the address is in memory.  So many systems get that
2342 		 * wrong (and all that I have seen are I/O) so we just
2343 		 * ignore that bit and assume I/O.  Systems that use
2344 		 * memory should use the newer spec, anyway.
2345 		 */
2346 		dmi->base_addr = base_addr & 0xfffe;
2347 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2348 		dmi->offset = 1;
2349 	}
2350 
2351 	dmi->slave_addr = data[6];
2352 
2353 	return 0;
2354 }
2355 
2356 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2357 {
2358 	struct smi_info *info;
2359 
2360 	info = smi_info_alloc();
2361 	if (!info) {
2362 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2363 		return;
2364 	}
2365 
2366 	info->addr_source = SI_SMBIOS;
2367 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2368 
2369 	switch (ipmi_data->type) {
2370 	case 0x01: /* KCS */
2371 		info->si_type = SI_KCS;
2372 		break;
2373 	case 0x02: /* SMIC */
2374 		info->si_type = SI_SMIC;
2375 		break;
2376 	case 0x03: /* BT */
2377 		info->si_type = SI_BT;
2378 		break;
2379 	default:
2380 		kfree(info);
2381 		return;
2382 	}
2383 
2384 	switch (ipmi_data->addr_space) {
2385 	case IPMI_MEM_ADDR_SPACE:
2386 		info->io_setup = mem_setup;
2387 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2388 		break;
2389 
2390 	case IPMI_IO_ADDR_SPACE:
2391 		info->io_setup = port_setup;
2392 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2393 		break;
2394 
2395 	default:
2396 		kfree(info);
2397 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2398 		       ipmi_data->addr_space);
2399 		return;
2400 	}
2401 	info->io.addr_data = ipmi_data->base_addr;
2402 
2403 	info->io.regspacing = ipmi_data->offset;
2404 	if (!info->io.regspacing)
2405 		info->io.regspacing = DEFAULT_REGSPACING;
2406 	info->io.regsize = DEFAULT_REGSPACING;
2407 	info->io.regshift = 0;
2408 
2409 	info->slave_addr = ipmi_data->slave_addr;
2410 
2411 	info->irq = ipmi_data->irq;
2412 	if (info->irq)
2413 		info->irq_setup = std_irq_setup;
2414 
2415 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2416 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2417 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2418 		 info->irq);
2419 
2420 	if (add_smi(info))
2421 		kfree(info);
2422 }
2423 
2424 static void dmi_find_bmc(void)
2425 {
2426 	const struct dmi_device *dev = NULL;
2427 	struct dmi_ipmi_data data;
2428 	int                  rv;
2429 
2430 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2431 		memset(&data, 0, sizeof(data));
2432 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2433 				&data);
2434 		if (!rv)
2435 			try_init_dmi(&data);
2436 	}
2437 }
2438 #endif /* CONFIG_DMI */
2439 
2440 #ifdef CONFIG_PCI
2441 
2442 #define PCI_ERMC_CLASSCODE		0x0C0700
2443 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2444 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2445 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2446 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2447 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2448 
2449 #define PCI_HP_VENDOR_ID    0x103C
2450 #define PCI_MMC_DEVICE_ID   0x121A
2451 #define PCI_MMC_ADDR_CW     0x10
2452 
2453 static void ipmi_pci_cleanup(struct smi_info *info)
2454 {
2455 	struct pci_dev *pdev = info->addr_source_data;
2456 
2457 	pci_disable_device(pdev);
2458 }
2459 
2460 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2461 {
2462 	if (info->si_type == SI_KCS) {
2463 		unsigned char	status;
2464 		int		regspacing;
2465 
2466 		info->io.regsize = DEFAULT_REGSIZE;
2467 		info->io.regshift = 0;
2468 		info->io_size = 2;
2469 		info->handlers = &kcs_smi_handlers;
2470 
2471 		/* detect 1, 4, 16byte spacing */
2472 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2473 			info->io.regspacing = regspacing;
2474 			if (info->io_setup(info)) {
2475 				dev_err(info->dev,
2476 					"Could not setup I/O space\n");
2477 				return DEFAULT_REGSPACING;
2478 			}
2479 			/* write invalid cmd */
2480 			info->io.outputb(&info->io, 1, 0x10);
2481 			/* read status back */
2482 			status = info->io.inputb(&info->io, 1);
2483 			info->io_cleanup(info);
2484 			if (status)
2485 				return regspacing;
2486 			regspacing *= 4;
2487 		}
2488 	}
2489 	return DEFAULT_REGSPACING;
2490 }
2491 
2492 static int ipmi_pci_probe(struct pci_dev *pdev,
2493 				    const struct pci_device_id *ent)
2494 {
2495 	int rv;
2496 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2497 	struct smi_info *info;
2498 
2499 	info = smi_info_alloc();
2500 	if (!info)
2501 		return -ENOMEM;
2502 
2503 	info->addr_source = SI_PCI;
2504 	dev_info(&pdev->dev, "probing via PCI");
2505 
2506 	switch (class_type) {
2507 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2508 		info->si_type = SI_SMIC;
2509 		break;
2510 
2511 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2512 		info->si_type = SI_KCS;
2513 		break;
2514 
2515 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2516 		info->si_type = SI_BT;
2517 		break;
2518 
2519 	default:
2520 		kfree(info);
2521 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2522 		return -ENOMEM;
2523 	}
2524 
2525 	rv = pci_enable_device(pdev);
2526 	if (rv) {
2527 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2528 		kfree(info);
2529 		return rv;
2530 	}
2531 
2532 	info->addr_source_cleanup = ipmi_pci_cleanup;
2533 	info->addr_source_data = pdev;
2534 
2535 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2536 		info->io_setup = port_setup;
2537 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2538 	} else {
2539 		info->io_setup = mem_setup;
2540 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2541 	}
2542 	info->io.addr_data = pci_resource_start(pdev, 0);
2543 
2544 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2545 	info->io.regsize = DEFAULT_REGSIZE;
2546 	info->io.regshift = 0;
2547 
2548 	info->irq = pdev->irq;
2549 	if (info->irq)
2550 		info->irq_setup = std_irq_setup;
2551 
2552 	info->dev = &pdev->dev;
2553 	pci_set_drvdata(pdev, info);
2554 
2555 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2556 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2557 		info->irq);
2558 
2559 	if (add_smi(info))
2560 		kfree(info);
2561 
2562 	return 0;
2563 }
2564 
2565 static void ipmi_pci_remove(struct pci_dev *pdev)
2566 {
2567 	struct smi_info *info = pci_get_drvdata(pdev);
2568 	cleanup_one_si(info);
2569 }
2570 
2571 static struct pci_device_id ipmi_pci_devices[] = {
2572 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2573 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2574 	{ 0, }
2575 };
2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2577 
2578 static struct pci_driver ipmi_pci_driver = {
2579 	.name =         DEVICE_NAME,
2580 	.id_table =     ipmi_pci_devices,
2581 	.probe =        ipmi_pci_probe,
2582 	.remove =       ipmi_pci_remove,
2583 };
2584 #endif /* CONFIG_PCI */
2585 
2586 static struct of_device_id ipmi_match[];
2587 static int ipmi_probe(struct platform_device *dev)
2588 {
2589 #ifdef CONFIG_OF
2590 	const struct of_device_id *match;
2591 	struct smi_info *info;
2592 	struct resource resource;
2593 	const __be32 *regsize, *regspacing, *regshift;
2594 	struct device_node *np = dev->dev.of_node;
2595 	int ret;
2596 	int proplen;
2597 
2598 	dev_info(&dev->dev, "probing via device tree\n");
2599 
2600 	match = of_match_device(ipmi_match, &dev->dev);
2601 	if (!match)
2602 		return -EINVAL;
2603 
2604 	ret = of_address_to_resource(np, 0, &resource);
2605 	if (ret) {
2606 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2607 		return ret;
2608 	}
2609 
2610 	regsize = of_get_property(np, "reg-size", &proplen);
2611 	if (regsize && proplen != 4) {
2612 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2613 		return -EINVAL;
2614 	}
2615 
2616 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2617 	if (regspacing && proplen != 4) {
2618 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2619 		return -EINVAL;
2620 	}
2621 
2622 	regshift = of_get_property(np, "reg-shift", &proplen);
2623 	if (regshift && proplen != 4) {
2624 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2625 		return -EINVAL;
2626 	}
2627 
2628 	info = smi_info_alloc();
2629 
2630 	if (!info) {
2631 		dev_err(&dev->dev,
2632 			"could not allocate memory for OF probe\n");
2633 		return -ENOMEM;
2634 	}
2635 
2636 	info->si_type		= (enum si_type) match->data;
2637 	info->addr_source	= SI_DEVICETREE;
2638 	info->irq_setup		= std_irq_setup;
2639 
2640 	if (resource.flags & IORESOURCE_IO) {
2641 		info->io_setup		= port_setup;
2642 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2643 	} else {
2644 		info->io_setup		= mem_setup;
2645 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2646 	}
2647 
2648 	info->io.addr_data	= resource.start;
2649 
2650 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2651 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2652 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2653 
2654 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2655 	info->dev		= &dev->dev;
2656 
2657 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2658 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2659 		info->irq);
2660 
2661 	dev_set_drvdata(&dev->dev, info);
2662 
2663 	if (add_smi(info)) {
2664 		kfree(info);
2665 		return -EBUSY;
2666 	}
2667 #endif
2668 	return 0;
2669 }
2670 
2671 static int ipmi_remove(struct platform_device *dev)
2672 {
2673 #ifdef CONFIG_OF
2674 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2675 #endif
2676 	return 0;
2677 }
2678 
2679 static struct of_device_id ipmi_match[] =
2680 {
2681 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2682 	  .data = (void *)(unsigned long) SI_KCS },
2683 	{ .type = "ipmi", .compatible = "ipmi-smic",
2684 	  .data = (void *)(unsigned long) SI_SMIC },
2685 	{ .type = "ipmi", .compatible = "ipmi-bt",
2686 	  .data = (void *)(unsigned long) SI_BT },
2687 	{},
2688 };
2689 
2690 static struct platform_driver ipmi_driver = {
2691 	.driver = {
2692 		.name = DEVICE_NAME,
2693 		.owner = THIS_MODULE,
2694 		.of_match_table = ipmi_match,
2695 	},
2696 	.probe		= ipmi_probe,
2697 	.remove		= ipmi_remove,
2698 };
2699 
2700 static int wait_for_msg_done(struct smi_info *smi_info)
2701 {
2702 	enum si_sm_result     smi_result;
2703 
2704 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2705 	for (;;) {
2706 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2707 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2708 			schedule_timeout_uninterruptible(1);
2709 			smi_result = smi_info->handlers->event(
2710 				smi_info->si_sm, 100);
2711 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2712 			smi_result = smi_info->handlers->event(
2713 				smi_info->si_sm, 0);
2714 		} else
2715 			break;
2716 	}
2717 	if (smi_result == SI_SM_HOSED)
2718 		/*
2719 		 * We couldn't get the state machine to run, so whatever's at
2720 		 * the port is probably not an IPMI SMI interface.
2721 		 */
2722 		return -ENODEV;
2723 
2724 	return 0;
2725 }
2726 
2727 static int try_get_dev_id(struct smi_info *smi_info)
2728 {
2729 	unsigned char         msg[2];
2730 	unsigned char         *resp;
2731 	unsigned long         resp_len;
2732 	int                   rv = 0;
2733 
2734 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2735 	if (!resp)
2736 		return -ENOMEM;
2737 
2738 	/*
2739 	 * Do a Get Device ID command, since it comes back with some
2740 	 * useful info.
2741 	 */
2742 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2743 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2744 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2745 
2746 	rv = wait_for_msg_done(smi_info);
2747 	if (rv)
2748 		goto out;
2749 
2750 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2751 						  resp, IPMI_MAX_MSG_LENGTH);
2752 
2753 	/* Check and record info from the get device id, in case we need it. */
2754 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2755 
2756  out:
2757 	kfree(resp);
2758 	return rv;
2759 }
2760 
2761 static int try_enable_event_buffer(struct smi_info *smi_info)
2762 {
2763 	unsigned char         msg[3];
2764 	unsigned char         *resp;
2765 	unsigned long         resp_len;
2766 	int                   rv = 0;
2767 
2768 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2769 	if (!resp)
2770 		return -ENOMEM;
2771 
2772 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2773 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2774 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2775 
2776 	rv = wait_for_msg_done(smi_info);
2777 	if (rv) {
2778 		printk(KERN_WARNING PFX "Error getting response from get"
2779 		       " global enables command, the event buffer is not"
2780 		       " enabled.\n");
2781 		goto out;
2782 	}
2783 
2784 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2785 						  resp, IPMI_MAX_MSG_LENGTH);
2786 
2787 	if (resp_len < 4 ||
2788 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2789 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2790 			resp[2] != 0) {
2791 		printk(KERN_WARNING PFX "Invalid return from get global"
2792 		       " enables command, cannot enable the event buffer.\n");
2793 		rv = -EINVAL;
2794 		goto out;
2795 	}
2796 
2797 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2798 		/* buffer is already enabled, nothing to do. */
2799 		goto out;
2800 
2801 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2802 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2803 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2804 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2805 
2806 	rv = wait_for_msg_done(smi_info);
2807 	if (rv) {
2808 		printk(KERN_WARNING PFX "Error getting response from set"
2809 		       " global, enables command, the event buffer is not"
2810 		       " enabled.\n");
2811 		goto out;
2812 	}
2813 
2814 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2815 						  resp, IPMI_MAX_MSG_LENGTH);
2816 
2817 	if (resp_len < 3 ||
2818 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2819 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2820 		printk(KERN_WARNING PFX "Invalid return from get global,"
2821 		       "enables command, not enable the event buffer.\n");
2822 		rv = -EINVAL;
2823 		goto out;
2824 	}
2825 
2826 	if (resp[2] != 0)
2827 		/*
2828 		 * An error when setting the event buffer bit means
2829 		 * that the event buffer is not supported.
2830 		 */
2831 		rv = -ENOENT;
2832  out:
2833 	kfree(resp);
2834 	return rv;
2835 }
2836 
2837 static int smi_type_proc_show(struct seq_file *m, void *v)
2838 {
2839 	struct smi_info *smi = m->private;
2840 
2841 	return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2842 }
2843 
2844 static int smi_type_proc_open(struct inode *inode, struct file *file)
2845 {
2846 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2847 }
2848 
2849 static const struct file_operations smi_type_proc_ops = {
2850 	.open		= smi_type_proc_open,
2851 	.read		= seq_read,
2852 	.llseek		= seq_lseek,
2853 	.release	= single_release,
2854 };
2855 
2856 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2857 {
2858 	struct smi_info *smi = m->private;
2859 
2860 	seq_printf(m, "interrupts_enabled:    %d\n",
2861 		       smi->irq && !smi->interrupt_disabled);
2862 	seq_printf(m, "short_timeouts:        %u\n",
2863 		       smi_get_stat(smi, short_timeouts));
2864 	seq_printf(m, "long_timeouts:         %u\n",
2865 		       smi_get_stat(smi, long_timeouts));
2866 	seq_printf(m, "idles:                 %u\n",
2867 		       smi_get_stat(smi, idles));
2868 	seq_printf(m, "interrupts:            %u\n",
2869 		       smi_get_stat(smi, interrupts));
2870 	seq_printf(m, "attentions:            %u\n",
2871 		       smi_get_stat(smi, attentions));
2872 	seq_printf(m, "flag_fetches:          %u\n",
2873 		       smi_get_stat(smi, flag_fetches));
2874 	seq_printf(m, "hosed_count:           %u\n",
2875 		       smi_get_stat(smi, hosed_count));
2876 	seq_printf(m, "complete_transactions: %u\n",
2877 		       smi_get_stat(smi, complete_transactions));
2878 	seq_printf(m, "events:                %u\n",
2879 		       smi_get_stat(smi, events));
2880 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
2881 		       smi_get_stat(smi, watchdog_pretimeouts));
2882 	seq_printf(m, "incoming_messages:     %u\n",
2883 		       smi_get_stat(smi, incoming_messages));
2884 	return 0;
2885 }
2886 
2887 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2888 {
2889 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2890 }
2891 
2892 static const struct file_operations smi_si_stats_proc_ops = {
2893 	.open		= smi_si_stats_proc_open,
2894 	.read		= seq_read,
2895 	.llseek		= seq_lseek,
2896 	.release	= single_release,
2897 };
2898 
2899 static int smi_params_proc_show(struct seq_file *m, void *v)
2900 {
2901 	struct smi_info *smi = m->private;
2902 
2903 	return seq_printf(m,
2904 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2905 		       si_to_str[smi->si_type],
2906 		       addr_space_to_str[smi->io.addr_type],
2907 		       smi->io.addr_data,
2908 		       smi->io.regspacing,
2909 		       smi->io.regsize,
2910 		       smi->io.regshift,
2911 		       smi->irq,
2912 		       smi->slave_addr);
2913 }
2914 
2915 static int smi_params_proc_open(struct inode *inode, struct file *file)
2916 {
2917 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2918 }
2919 
2920 static const struct file_operations smi_params_proc_ops = {
2921 	.open		= smi_params_proc_open,
2922 	.read		= seq_read,
2923 	.llseek		= seq_lseek,
2924 	.release	= single_release,
2925 };
2926 
2927 /*
2928  * oem_data_avail_to_receive_msg_avail
2929  * @info - smi_info structure with msg_flags set
2930  *
2931  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2932  * Returns 1 indicating need to re-run handle_flags().
2933  */
2934 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2935 {
2936 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2937 			       RECEIVE_MSG_AVAIL);
2938 	return 1;
2939 }
2940 
2941 /*
2942  * setup_dell_poweredge_oem_data_handler
2943  * @info - smi_info.device_id must be populated
2944  *
2945  * Systems that match, but have firmware version < 1.40 may assert
2946  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2947  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2948  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2949  * as RECEIVE_MSG_AVAIL instead.
2950  *
2951  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2952  * assert the OEM[012] bits, and if it did, the driver would have to
2953  * change to handle that properly, we don't actually check for the
2954  * firmware version.
2955  * Device ID = 0x20                BMC on PowerEdge 8G servers
2956  * Device Revision = 0x80
2957  * Firmware Revision1 = 0x01       BMC version 1.40
2958  * Firmware Revision2 = 0x40       BCD encoded
2959  * IPMI Version = 0x51             IPMI 1.5
2960  * Manufacturer ID = A2 02 00      Dell IANA
2961  *
2962  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2963  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2964  *
2965  */
2966 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2967 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2968 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2969 #define DELL_IANA_MFR_ID 0x0002a2
2970 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2971 {
2972 	struct ipmi_device_id *id = &smi_info->device_id;
2973 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2974 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2975 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2976 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2977 			smi_info->oem_data_avail_handler =
2978 				oem_data_avail_to_receive_msg_avail;
2979 		} else if (ipmi_version_major(id) < 1 ||
2980 			   (ipmi_version_major(id) == 1 &&
2981 			    ipmi_version_minor(id) < 5)) {
2982 			smi_info->oem_data_avail_handler =
2983 				oem_data_avail_to_receive_msg_avail;
2984 		}
2985 	}
2986 }
2987 
2988 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2989 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2990 {
2991 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2992 
2993 	/* Make it a response */
2994 	msg->rsp[0] = msg->data[0] | 4;
2995 	msg->rsp[1] = msg->data[1];
2996 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2997 	msg->rsp_size = 3;
2998 	smi_info->curr_msg = NULL;
2999 	deliver_recv_msg(smi_info, msg);
3000 }
3001 
3002 /*
3003  * dell_poweredge_bt_xaction_handler
3004  * @info - smi_info.device_id must be populated
3005  *
3006  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3007  * not respond to a Get SDR command if the length of the data
3008  * requested is exactly 0x3A, which leads to command timeouts and no
3009  * data returned.  This intercepts such commands, and causes userspace
3010  * callers to try again with a different-sized buffer, which succeeds.
3011  */
3012 
3013 #define STORAGE_NETFN 0x0A
3014 #define STORAGE_CMD_GET_SDR 0x23
3015 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3016 					     unsigned long unused,
3017 					     void *in)
3018 {
3019 	struct smi_info *smi_info = in;
3020 	unsigned char *data = smi_info->curr_msg->data;
3021 	unsigned int size   = smi_info->curr_msg->data_size;
3022 	if (size >= 8 &&
3023 	    (data[0]>>2) == STORAGE_NETFN &&
3024 	    data[1] == STORAGE_CMD_GET_SDR &&
3025 	    data[7] == 0x3A) {
3026 		return_hosed_msg_badsize(smi_info);
3027 		return NOTIFY_STOP;
3028 	}
3029 	return NOTIFY_DONE;
3030 }
3031 
3032 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3033 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3034 };
3035 
3036 /*
3037  * setup_dell_poweredge_bt_xaction_handler
3038  * @info - smi_info.device_id must be filled in already
3039  *
3040  * Fills in smi_info.device_id.start_transaction_pre_hook
3041  * when we know what function to use there.
3042  */
3043 static void
3044 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3045 {
3046 	struct ipmi_device_id *id = &smi_info->device_id;
3047 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3048 	    smi_info->si_type == SI_BT)
3049 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3050 }
3051 
3052 /*
3053  * setup_oem_data_handler
3054  * @info - smi_info.device_id must be filled in already
3055  *
3056  * Fills in smi_info.device_id.oem_data_available_handler
3057  * when we know what function to use there.
3058  */
3059 
3060 static void setup_oem_data_handler(struct smi_info *smi_info)
3061 {
3062 	setup_dell_poweredge_oem_data_handler(smi_info);
3063 }
3064 
3065 static void setup_xaction_handlers(struct smi_info *smi_info)
3066 {
3067 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3068 }
3069 
3070 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3071 {
3072 	if (smi_info->intf) {
3073 		/*
3074 		 * The timer and thread are only running if the
3075 		 * interface has been started up and registered.
3076 		 */
3077 		if (smi_info->thread != NULL)
3078 			kthread_stop(smi_info->thread);
3079 		del_timer_sync(&smi_info->si_timer);
3080 	}
3081 }
3082 
3083 static struct ipmi_default_vals
3084 {
3085 	int type;
3086 	int port;
3087 } ipmi_defaults[] =
3088 {
3089 	{ .type = SI_KCS, .port = 0xca2 },
3090 	{ .type = SI_SMIC, .port = 0xca9 },
3091 	{ .type = SI_BT, .port = 0xe4 },
3092 	{ .port = 0 }
3093 };
3094 
3095 static void default_find_bmc(void)
3096 {
3097 	struct smi_info *info;
3098 	int             i;
3099 
3100 	for (i = 0; ; i++) {
3101 		if (!ipmi_defaults[i].port)
3102 			break;
3103 #ifdef CONFIG_PPC
3104 		if (check_legacy_ioport(ipmi_defaults[i].port))
3105 			continue;
3106 #endif
3107 		info = smi_info_alloc();
3108 		if (!info)
3109 			return;
3110 
3111 		info->addr_source = SI_DEFAULT;
3112 
3113 		info->si_type = ipmi_defaults[i].type;
3114 		info->io_setup = port_setup;
3115 		info->io.addr_data = ipmi_defaults[i].port;
3116 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3117 
3118 		info->io.addr = NULL;
3119 		info->io.regspacing = DEFAULT_REGSPACING;
3120 		info->io.regsize = DEFAULT_REGSPACING;
3121 		info->io.regshift = 0;
3122 
3123 		if (add_smi(info) == 0) {
3124 			if ((try_smi_init(info)) == 0) {
3125 				/* Found one... */
3126 				printk(KERN_INFO PFX "Found default %s"
3127 				" state machine at %s address 0x%lx\n",
3128 				si_to_str[info->si_type],
3129 				addr_space_to_str[info->io.addr_type],
3130 				info->io.addr_data);
3131 			} else
3132 				cleanup_one_si(info);
3133 		} else {
3134 			kfree(info);
3135 		}
3136 	}
3137 }
3138 
3139 static int is_new_interface(struct smi_info *info)
3140 {
3141 	struct smi_info *e;
3142 
3143 	list_for_each_entry(e, &smi_infos, link) {
3144 		if (e->io.addr_type != info->io.addr_type)
3145 			continue;
3146 		if (e->io.addr_data == info->io.addr_data)
3147 			return 0;
3148 	}
3149 
3150 	return 1;
3151 }
3152 
3153 static int add_smi(struct smi_info *new_smi)
3154 {
3155 	int rv = 0;
3156 
3157 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3158 			ipmi_addr_src_to_str[new_smi->addr_source],
3159 			si_to_str[new_smi->si_type]);
3160 	mutex_lock(&smi_infos_lock);
3161 	if (!is_new_interface(new_smi)) {
3162 		printk(KERN_CONT " duplicate interface\n");
3163 		rv = -EBUSY;
3164 		goto out_err;
3165 	}
3166 
3167 	printk(KERN_CONT "\n");
3168 
3169 	/* So we know not to free it unless we have allocated one. */
3170 	new_smi->intf = NULL;
3171 	new_smi->si_sm = NULL;
3172 	new_smi->handlers = NULL;
3173 
3174 	list_add_tail(&new_smi->link, &smi_infos);
3175 
3176 out_err:
3177 	mutex_unlock(&smi_infos_lock);
3178 	return rv;
3179 }
3180 
3181 static int try_smi_init(struct smi_info *new_smi)
3182 {
3183 	int rv = 0;
3184 	int i;
3185 
3186 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3187 	       " machine at %s address 0x%lx, slave address 0x%x,"
3188 	       " irq %d\n",
3189 	       ipmi_addr_src_to_str[new_smi->addr_source],
3190 	       si_to_str[new_smi->si_type],
3191 	       addr_space_to_str[new_smi->io.addr_type],
3192 	       new_smi->io.addr_data,
3193 	       new_smi->slave_addr, new_smi->irq);
3194 
3195 	switch (new_smi->si_type) {
3196 	case SI_KCS:
3197 		new_smi->handlers = &kcs_smi_handlers;
3198 		break;
3199 
3200 	case SI_SMIC:
3201 		new_smi->handlers = &smic_smi_handlers;
3202 		break;
3203 
3204 	case SI_BT:
3205 		new_smi->handlers = &bt_smi_handlers;
3206 		break;
3207 
3208 	default:
3209 		/* No support for anything else yet. */
3210 		rv = -EIO;
3211 		goto out_err;
3212 	}
3213 
3214 	/* Allocate the state machine's data and initialize it. */
3215 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3216 	if (!new_smi->si_sm) {
3217 		printk(KERN_ERR PFX
3218 		       "Could not allocate state machine memory\n");
3219 		rv = -ENOMEM;
3220 		goto out_err;
3221 	}
3222 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3223 							&new_smi->io);
3224 
3225 	/* Now that we know the I/O size, we can set up the I/O. */
3226 	rv = new_smi->io_setup(new_smi);
3227 	if (rv) {
3228 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3229 		goto out_err;
3230 	}
3231 
3232 	/* Do low-level detection first. */
3233 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3234 		if (new_smi->addr_source)
3235 			printk(KERN_INFO PFX "Interface detection failed\n");
3236 		rv = -ENODEV;
3237 		goto out_err;
3238 	}
3239 
3240 	/*
3241 	 * Attempt a get device id command.  If it fails, we probably
3242 	 * don't have a BMC here.
3243 	 */
3244 	rv = try_get_dev_id(new_smi);
3245 	if (rv) {
3246 		if (new_smi->addr_source)
3247 			printk(KERN_INFO PFX "There appears to be no BMC"
3248 			       " at this location\n");
3249 		goto out_err;
3250 	}
3251 
3252 	setup_oem_data_handler(new_smi);
3253 	setup_xaction_handlers(new_smi);
3254 
3255 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3256 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3257 	new_smi->curr_msg = NULL;
3258 	atomic_set(&new_smi->req_events, 0);
3259 	new_smi->run_to_completion = 0;
3260 	for (i = 0; i < SI_NUM_STATS; i++)
3261 		atomic_set(&new_smi->stats[i], 0);
3262 
3263 	new_smi->interrupt_disabled = 1;
3264 	atomic_set(&new_smi->stop_operation, 0);
3265 	new_smi->intf_num = smi_num;
3266 	smi_num++;
3267 
3268 	rv = try_enable_event_buffer(new_smi);
3269 	if (rv == 0)
3270 		new_smi->has_event_buffer = 1;
3271 
3272 	/*
3273 	 * Start clearing the flags before we enable interrupts or the
3274 	 * timer to avoid racing with the timer.
3275 	 */
3276 	start_clear_flags(new_smi);
3277 	/* IRQ is defined to be set when non-zero. */
3278 	if (new_smi->irq)
3279 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3280 
3281 	if (!new_smi->dev) {
3282 		/*
3283 		 * If we don't already have a device from something
3284 		 * else (like PCI), then register a new one.
3285 		 */
3286 		new_smi->pdev = platform_device_alloc("ipmi_si",
3287 						      new_smi->intf_num);
3288 		if (!new_smi->pdev) {
3289 			printk(KERN_ERR PFX
3290 			       "Unable to allocate platform device\n");
3291 			goto out_err;
3292 		}
3293 		new_smi->dev = &new_smi->pdev->dev;
3294 		new_smi->dev->driver = &ipmi_driver.driver;
3295 
3296 		rv = platform_device_add(new_smi->pdev);
3297 		if (rv) {
3298 			printk(KERN_ERR PFX
3299 			       "Unable to register system interface device:"
3300 			       " %d\n",
3301 			       rv);
3302 			goto out_err;
3303 		}
3304 		new_smi->dev_registered = 1;
3305 	}
3306 
3307 	rv = ipmi_register_smi(&handlers,
3308 			       new_smi,
3309 			       &new_smi->device_id,
3310 			       new_smi->dev,
3311 			       "bmc",
3312 			       new_smi->slave_addr);
3313 	if (rv) {
3314 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3315 			rv);
3316 		goto out_err_stop_timer;
3317 	}
3318 
3319 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3320 				     &smi_type_proc_ops,
3321 				     new_smi);
3322 	if (rv) {
3323 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3324 		goto out_err_stop_timer;
3325 	}
3326 
3327 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3328 				     &smi_si_stats_proc_ops,
3329 				     new_smi);
3330 	if (rv) {
3331 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3332 		goto out_err_stop_timer;
3333 	}
3334 
3335 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3336 				     &smi_params_proc_ops,
3337 				     new_smi);
3338 	if (rv) {
3339 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3340 		goto out_err_stop_timer;
3341 	}
3342 
3343 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3344 		 si_to_str[new_smi->si_type]);
3345 
3346 	return 0;
3347 
3348  out_err_stop_timer:
3349 	atomic_inc(&new_smi->stop_operation);
3350 	wait_for_timer_and_thread(new_smi);
3351 
3352  out_err:
3353 	new_smi->interrupt_disabled = 1;
3354 
3355 	if (new_smi->intf) {
3356 		ipmi_unregister_smi(new_smi->intf);
3357 		new_smi->intf = NULL;
3358 	}
3359 
3360 	if (new_smi->irq_cleanup) {
3361 		new_smi->irq_cleanup(new_smi);
3362 		new_smi->irq_cleanup = NULL;
3363 	}
3364 
3365 	/*
3366 	 * Wait until we know that we are out of any interrupt
3367 	 * handlers might have been running before we freed the
3368 	 * interrupt.
3369 	 */
3370 	synchronize_sched();
3371 
3372 	if (new_smi->si_sm) {
3373 		if (new_smi->handlers)
3374 			new_smi->handlers->cleanup(new_smi->si_sm);
3375 		kfree(new_smi->si_sm);
3376 		new_smi->si_sm = NULL;
3377 	}
3378 	if (new_smi->addr_source_cleanup) {
3379 		new_smi->addr_source_cleanup(new_smi);
3380 		new_smi->addr_source_cleanup = NULL;
3381 	}
3382 	if (new_smi->io_cleanup) {
3383 		new_smi->io_cleanup(new_smi);
3384 		new_smi->io_cleanup = NULL;
3385 	}
3386 
3387 	if (new_smi->dev_registered) {
3388 		platform_device_unregister(new_smi->pdev);
3389 		new_smi->dev_registered = 0;
3390 	}
3391 
3392 	return rv;
3393 }
3394 
3395 static int init_ipmi_si(void)
3396 {
3397 	int  i;
3398 	char *str;
3399 	int  rv;
3400 	struct smi_info *e;
3401 	enum ipmi_addr_src type = SI_INVALID;
3402 
3403 	if (initialized)
3404 		return 0;
3405 	initialized = 1;
3406 
3407 	if (si_tryplatform) {
3408 		rv = platform_driver_register(&ipmi_driver);
3409 		if (rv) {
3410 			printk(KERN_ERR PFX "Unable to register "
3411 			       "driver: %d\n", rv);
3412 			return rv;
3413 		}
3414 	}
3415 
3416 	/* Parse out the si_type string into its components. */
3417 	str = si_type_str;
3418 	if (*str != '\0') {
3419 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3420 			si_type[i] = str;
3421 			str = strchr(str, ',');
3422 			if (str) {
3423 				*str = '\0';
3424 				str++;
3425 			} else {
3426 				break;
3427 			}
3428 		}
3429 	}
3430 
3431 	printk(KERN_INFO "IPMI System Interface driver.\n");
3432 
3433 	/* If the user gave us a device, they presumably want us to use it */
3434 	if (!hardcode_find_bmc())
3435 		return 0;
3436 
3437 #ifdef CONFIG_PCI
3438 	if (si_trypci) {
3439 		rv = pci_register_driver(&ipmi_pci_driver);
3440 		if (rv)
3441 			printk(KERN_ERR PFX "Unable to register "
3442 			       "PCI driver: %d\n", rv);
3443 		else
3444 			pci_registered = 1;
3445 	}
3446 #endif
3447 
3448 #ifdef CONFIG_ACPI
3449 	if (si_tryacpi) {
3450 		pnp_register_driver(&ipmi_pnp_driver);
3451 		pnp_registered = 1;
3452 	}
3453 #endif
3454 
3455 #ifdef CONFIG_DMI
3456 	if (si_trydmi)
3457 		dmi_find_bmc();
3458 #endif
3459 
3460 #ifdef CONFIG_ACPI
3461 	if (si_tryacpi)
3462 		spmi_find_bmc();
3463 #endif
3464 
3465 	/* We prefer devices with interrupts, but in the case of a machine
3466 	   with multiple BMCs we assume that there will be several instances
3467 	   of a given type so if we succeed in registering a type then also
3468 	   try to register everything else of the same type */
3469 
3470 	mutex_lock(&smi_infos_lock);
3471 	list_for_each_entry(e, &smi_infos, link) {
3472 		/* Try to register a device if it has an IRQ and we either
3473 		   haven't successfully registered a device yet or this
3474 		   device has the same type as one we successfully registered */
3475 		if (e->irq && (!type || e->addr_source == type)) {
3476 			if (!try_smi_init(e)) {
3477 				type = e->addr_source;
3478 			}
3479 		}
3480 	}
3481 
3482 	/* type will only have been set if we successfully registered an si */
3483 	if (type) {
3484 		mutex_unlock(&smi_infos_lock);
3485 		return 0;
3486 	}
3487 
3488 	/* Fall back to the preferred device */
3489 
3490 	list_for_each_entry(e, &smi_infos, link) {
3491 		if (!e->irq && (!type || e->addr_source == type)) {
3492 			if (!try_smi_init(e)) {
3493 				type = e->addr_source;
3494 			}
3495 		}
3496 	}
3497 	mutex_unlock(&smi_infos_lock);
3498 
3499 	if (type)
3500 		return 0;
3501 
3502 	if (si_trydefaults) {
3503 		mutex_lock(&smi_infos_lock);
3504 		if (list_empty(&smi_infos)) {
3505 			/* No BMC was found, try defaults. */
3506 			mutex_unlock(&smi_infos_lock);
3507 			default_find_bmc();
3508 		} else
3509 			mutex_unlock(&smi_infos_lock);
3510 	}
3511 
3512 	mutex_lock(&smi_infos_lock);
3513 	if (unload_when_empty && list_empty(&smi_infos)) {
3514 		mutex_unlock(&smi_infos_lock);
3515 		cleanup_ipmi_si();
3516 		printk(KERN_WARNING PFX
3517 		       "Unable to find any System Interface(s)\n");
3518 		return -ENODEV;
3519 	} else {
3520 		mutex_unlock(&smi_infos_lock);
3521 		return 0;
3522 	}
3523 }
3524 module_init(init_ipmi_si);
3525 
3526 static void cleanup_one_si(struct smi_info *to_clean)
3527 {
3528 	int           rv = 0;
3529 	unsigned long flags;
3530 
3531 	if (!to_clean)
3532 		return;
3533 
3534 	list_del(&to_clean->link);
3535 
3536 	/* Tell the driver that we are shutting down. */
3537 	atomic_inc(&to_clean->stop_operation);
3538 
3539 	/*
3540 	 * Make sure the timer and thread are stopped and will not run
3541 	 * again.
3542 	 */
3543 	wait_for_timer_and_thread(to_clean);
3544 
3545 	/*
3546 	 * Timeouts are stopped, now make sure the interrupts are off
3547 	 * for the device.  A little tricky with locks to make sure
3548 	 * there are no races.
3549 	 */
3550 	spin_lock_irqsave(&to_clean->si_lock, flags);
3551 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3552 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3553 		poll(to_clean);
3554 		schedule_timeout_uninterruptible(1);
3555 		spin_lock_irqsave(&to_clean->si_lock, flags);
3556 	}
3557 	disable_si_irq(to_clean);
3558 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3559 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3560 		poll(to_clean);
3561 		schedule_timeout_uninterruptible(1);
3562 	}
3563 
3564 	/* Clean up interrupts and make sure that everything is done. */
3565 	if (to_clean->irq_cleanup)
3566 		to_clean->irq_cleanup(to_clean);
3567 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3568 		poll(to_clean);
3569 		schedule_timeout_uninterruptible(1);
3570 	}
3571 
3572 	if (to_clean->intf)
3573 		rv = ipmi_unregister_smi(to_clean->intf);
3574 
3575 	if (rv) {
3576 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3577 		       rv);
3578 	}
3579 
3580 	if (to_clean->handlers)
3581 		to_clean->handlers->cleanup(to_clean->si_sm);
3582 
3583 	kfree(to_clean->si_sm);
3584 
3585 	if (to_clean->addr_source_cleanup)
3586 		to_clean->addr_source_cleanup(to_clean);
3587 	if (to_clean->io_cleanup)
3588 		to_clean->io_cleanup(to_clean);
3589 
3590 	if (to_clean->dev_registered)
3591 		platform_device_unregister(to_clean->pdev);
3592 
3593 	kfree(to_clean);
3594 }
3595 
3596 static void cleanup_ipmi_si(void)
3597 {
3598 	struct smi_info *e, *tmp_e;
3599 
3600 	if (!initialized)
3601 		return;
3602 
3603 #ifdef CONFIG_PCI
3604 	if (pci_registered)
3605 		pci_unregister_driver(&ipmi_pci_driver);
3606 #endif
3607 #ifdef CONFIG_ACPI
3608 	if (pnp_registered)
3609 		pnp_unregister_driver(&ipmi_pnp_driver);
3610 #endif
3611 
3612 	platform_driver_unregister(&ipmi_driver);
3613 
3614 	mutex_lock(&smi_infos_lock);
3615 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3616 		cleanup_one_si(e);
3617 	mutex_unlock(&smi_infos_lock);
3618 }
3619 module_exit(cleanup_ipmi_si);
3620 
3621 MODULE_LICENSE("GPL");
3622 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3623 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3624 		   " system interfaces.");
3625