1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/init.h> 65 #include <linux/dmi.h> 66 #include <linux/string.h> 67 #include <linux/ctype.h> 68 #include <linux/pnp.h> 69 #include <linux/of_device.h> 70 #include <linux/of_platform.h> 71 #include <linux/of_address.h> 72 #include <linux/of_irq.h> 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 111 "ACPI", "SMBIOS", "PCI", 112 "device-tree", "default" }; 113 114 #define DEVICE_NAME "ipmi_si" 115 116 static struct platform_driver ipmi_driver; 117 118 /* 119 * Indexes into stats[] in smi_info below. 120 */ 121 enum si_stat_indexes { 122 /* 123 * Number of times the driver requested a timer while an operation 124 * was in progress. 125 */ 126 SI_STAT_short_timeouts = 0, 127 128 /* 129 * Number of times the driver requested a timer while nothing was in 130 * progress. 131 */ 132 SI_STAT_long_timeouts, 133 134 /* Number of times the interface was idle while being polled. */ 135 SI_STAT_idles, 136 137 /* Number of interrupts the driver handled. */ 138 SI_STAT_interrupts, 139 140 /* Number of time the driver got an ATTN from the hardware. */ 141 SI_STAT_attentions, 142 143 /* Number of times the driver requested flags from the hardware. */ 144 SI_STAT_flag_fetches, 145 146 /* Number of times the hardware didn't follow the state machine. */ 147 SI_STAT_hosed_count, 148 149 /* Number of completed messages. */ 150 SI_STAT_complete_transactions, 151 152 /* Number of IPMI events received from the hardware. */ 153 SI_STAT_events, 154 155 /* Number of watchdog pretimeouts. */ 156 SI_STAT_watchdog_pretimeouts, 157 158 /* Number of asynchronous messages received. */ 159 SI_STAT_incoming_messages, 160 161 162 /* This *must* remain last, add new values above this. */ 163 SI_NUM_STATS 164 }; 165 166 struct smi_info { 167 int intf_num; 168 ipmi_smi_t intf; 169 struct si_sm_data *si_sm; 170 struct si_sm_handlers *handlers; 171 enum si_type si_type; 172 spinlock_t si_lock; 173 struct list_head xmit_msgs; 174 struct list_head hp_xmit_msgs; 175 struct ipmi_smi_msg *curr_msg; 176 enum si_intf_state si_state; 177 178 /* 179 * Used to handle the various types of I/O that can occur with 180 * IPMI 181 */ 182 struct si_sm_io io; 183 int (*io_setup)(struct smi_info *info); 184 void (*io_cleanup)(struct smi_info *info); 185 int (*irq_setup)(struct smi_info *info); 186 void (*irq_cleanup)(struct smi_info *info); 187 unsigned int io_size; 188 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 189 void (*addr_source_cleanup)(struct smi_info *info); 190 void *addr_source_data; 191 192 /* 193 * Per-OEM handler, called from handle_flags(). Returns 1 194 * when handle_flags() needs to be re-run or 0 indicating it 195 * set si_state itself. 196 */ 197 int (*oem_data_avail_handler)(struct smi_info *smi_info); 198 199 /* 200 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 201 * is set to hold the flags until we are done handling everything 202 * from the flags. 203 */ 204 #define RECEIVE_MSG_AVAIL 0x01 205 #define EVENT_MSG_BUFFER_FULL 0x02 206 #define WDT_PRE_TIMEOUT_INT 0x08 207 #define OEM0_DATA_AVAIL 0x20 208 #define OEM1_DATA_AVAIL 0x40 209 #define OEM2_DATA_AVAIL 0x80 210 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 211 OEM1_DATA_AVAIL | \ 212 OEM2_DATA_AVAIL) 213 unsigned char msg_flags; 214 215 /* Does the BMC have an event buffer? */ 216 char has_event_buffer; 217 218 /* 219 * If set to true, this will request events the next time the 220 * state machine is idle. 221 */ 222 atomic_t req_events; 223 224 /* 225 * If true, run the state machine to completion on every send 226 * call. Generally used after a panic to make sure stuff goes 227 * out. 228 */ 229 int run_to_completion; 230 231 /* The I/O port of an SI interface. */ 232 int port; 233 234 /* 235 * The space between start addresses of the two ports. For 236 * instance, if the first port is 0xca2 and the spacing is 4, then 237 * the second port is 0xca6. 238 */ 239 unsigned int spacing; 240 241 /* zero if no irq; */ 242 int irq; 243 244 /* The timer for this si. */ 245 struct timer_list si_timer; 246 247 /* The time (in jiffies) the last timeout occurred at. */ 248 unsigned long last_timeout_jiffies; 249 250 /* Used to gracefully stop the timer without race conditions. */ 251 atomic_t stop_operation; 252 253 /* 254 * The driver will disable interrupts when it gets into a 255 * situation where it cannot handle messages due to lack of 256 * memory. Once that situation clears up, it will re-enable 257 * interrupts. 258 */ 259 int interrupt_disabled; 260 261 /* From the get device id response... */ 262 struct ipmi_device_id device_id; 263 264 /* Driver model stuff. */ 265 struct device *dev; 266 struct platform_device *pdev; 267 268 /* 269 * True if we allocated the device, false if it came from 270 * someplace else (like PCI). 271 */ 272 int dev_registered; 273 274 /* Slave address, could be reported from DMI. */ 275 unsigned char slave_addr; 276 277 /* Counters and things for the proc filesystem. */ 278 atomic_t stats[SI_NUM_STATS]; 279 280 struct task_struct *thread; 281 282 struct list_head link; 283 union ipmi_smi_info_union addr_info; 284 }; 285 286 #define smi_inc_stat(smi, stat) \ 287 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 288 #define smi_get_stat(smi, stat) \ 289 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 290 291 #define SI_MAX_PARMS 4 292 293 static int force_kipmid[SI_MAX_PARMS]; 294 static int num_force_kipmid; 295 #ifdef CONFIG_PCI 296 static int pci_registered; 297 #endif 298 #ifdef CONFIG_ACPI 299 static int pnp_registered; 300 #endif 301 302 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 303 static int num_max_busy_us; 304 305 static int unload_when_empty = 1; 306 307 static int add_smi(struct smi_info *smi); 308 static int try_smi_init(struct smi_info *smi); 309 static void cleanup_one_si(struct smi_info *to_clean); 310 static void cleanup_ipmi_si(void); 311 312 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 313 static int register_xaction_notifier(struct notifier_block *nb) 314 { 315 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 316 } 317 318 static void deliver_recv_msg(struct smi_info *smi_info, 319 struct ipmi_smi_msg *msg) 320 { 321 /* Deliver the message to the upper layer. */ 322 ipmi_smi_msg_received(smi_info->intf, msg); 323 } 324 325 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 326 { 327 struct ipmi_smi_msg *msg = smi_info->curr_msg; 328 329 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 330 cCode = IPMI_ERR_UNSPECIFIED; 331 /* else use it as is */ 332 333 /* Make it a response */ 334 msg->rsp[0] = msg->data[0] | 4; 335 msg->rsp[1] = msg->data[1]; 336 msg->rsp[2] = cCode; 337 msg->rsp_size = 3; 338 339 smi_info->curr_msg = NULL; 340 deliver_recv_msg(smi_info, msg); 341 } 342 343 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 344 { 345 int rv; 346 struct list_head *entry = NULL; 347 #ifdef DEBUG_TIMING 348 struct timeval t; 349 #endif 350 351 /* Pick the high priority queue first. */ 352 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 353 entry = smi_info->hp_xmit_msgs.next; 354 } else if (!list_empty(&(smi_info->xmit_msgs))) { 355 entry = smi_info->xmit_msgs.next; 356 } 357 358 if (!entry) { 359 smi_info->curr_msg = NULL; 360 rv = SI_SM_IDLE; 361 } else { 362 int err; 363 364 list_del(entry); 365 smi_info->curr_msg = list_entry(entry, 366 struct ipmi_smi_msg, 367 link); 368 #ifdef DEBUG_TIMING 369 do_gettimeofday(&t); 370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 371 #endif 372 err = atomic_notifier_call_chain(&xaction_notifier_list, 373 0, smi_info); 374 if (err & NOTIFY_STOP_MASK) { 375 rv = SI_SM_CALL_WITHOUT_DELAY; 376 goto out; 377 } 378 err = smi_info->handlers->start_transaction( 379 smi_info->si_sm, 380 smi_info->curr_msg->data, 381 smi_info->curr_msg->data_size); 382 if (err) 383 return_hosed_msg(smi_info, err); 384 385 rv = SI_SM_CALL_WITHOUT_DELAY; 386 } 387 out: 388 return rv; 389 } 390 391 static void start_enable_irq(struct smi_info *smi_info) 392 { 393 unsigned char msg[2]; 394 395 /* 396 * If we are enabling interrupts, we have to tell the 397 * BMC to use them. 398 */ 399 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 400 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 401 402 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 403 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 404 } 405 406 static void start_disable_irq(struct smi_info *smi_info) 407 { 408 unsigned char msg[2]; 409 410 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 411 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 412 413 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 414 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 415 } 416 417 static void start_clear_flags(struct smi_info *smi_info) 418 { 419 unsigned char msg[3]; 420 421 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 422 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 423 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 424 msg[2] = WDT_PRE_TIMEOUT_INT; 425 426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 427 smi_info->si_state = SI_CLEARING_FLAGS; 428 } 429 430 /* 431 * When we have a situtaion where we run out of memory and cannot 432 * allocate messages, we just leave them in the BMC and run the system 433 * polled until we can allocate some memory. Once we have some 434 * memory, we will re-enable the interrupt. 435 */ 436 static inline void disable_si_irq(struct smi_info *smi_info) 437 { 438 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 439 start_disable_irq(smi_info); 440 smi_info->interrupt_disabled = 1; 441 if (!atomic_read(&smi_info->stop_operation)) 442 mod_timer(&smi_info->si_timer, 443 jiffies + SI_TIMEOUT_JIFFIES); 444 } 445 } 446 447 static inline void enable_si_irq(struct smi_info *smi_info) 448 { 449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 450 start_enable_irq(smi_info); 451 smi_info->interrupt_disabled = 0; 452 } 453 } 454 455 static void handle_flags(struct smi_info *smi_info) 456 { 457 retry: 458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 459 /* Watchdog pre-timeout */ 460 smi_inc_stat(smi_info, watchdog_pretimeouts); 461 462 start_clear_flags(smi_info); 463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 464 ipmi_smi_watchdog_pretimeout(smi_info->intf); 465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 466 /* Messages available. */ 467 smi_info->curr_msg = ipmi_alloc_smi_msg(); 468 if (!smi_info->curr_msg) { 469 disable_si_irq(smi_info); 470 smi_info->si_state = SI_NORMAL; 471 return; 472 } 473 enable_si_irq(smi_info); 474 475 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 476 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 477 smi_info->curr_msg->data_size = 2; 478 479 smi_info->handlers->start_transaction( 480 smi_info->si_sm, 481 smi_info->curr_msg->data, 482 smi_info->curr_msg->data_size); 483 smi_info->si_state = SI_GETTING_MESSAGES; 484 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 485 /* Events available. */ 486 smi_info->curr_msg = ipmi_alloc_smi_msg(); 487 if (!smi_info->curr_msg) { 488 disable_si_irq(smi_info); 489 smi_info->si_state = SI_NORMAL; 490 return; 491 } 492 enable_si_irq(smi_info); 493 494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 495 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 496 smi_info->curr_msg->data_size = 2; 497 498 smi_info->handlers->start_transaction( 499 smi_info->si_sm, 500 smi_info->curr_msg->data, 501 smi_info->curr_msg->data_size); 502 smi_info->si_state = SI_GETTING_EVENTS; 503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 504 smi_info->oem_data_avail_handler) { 505 if (smi_info->oem_data_avail_handler(smi_info)) 506 goto retry; 507 } else 508 smi_info->si_state = SI_NORMAL; 509 } 510 511 static void handle_transaction_done(struct smi_info *smi_info) 512 { 513 struct ipmi_smi_msg *msg; 514 #ifdef DEBUG_TIMING 515 struct timeval t; 516 517 do_gettimeofday(&t); 518 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 519 #endif 520 switch (smi_info->si_state) { 521 case SI_NORMAL: 522 if (!smi_info->curr_msg) 523 break; 524 525 smi_info->curr_msg->rsp_size 526 = smi_info->handlers->get_result( 527 smi_info->si_sm, 528 smi_info->curr_msg->rsp, 529 IPMI_MAX_MSG_LENGTH); 530 531 /* 532 * Do this here becase deliver_recv_msg() releases the 533 * lock, and a new message can be put in during the 534 * time the lock is released. 535 */ 536 msg = smi_info->curr_msg; 537 smi_info->curr_msg = NULL; 538 deliver_recv_msg(smi_info, msg); 539 break; 540 541 case SI_GETTING_FLAGS: 542 { 543 unsigned char msg[4]; 544 unsigned int len; 545 546 /* We got the flags from the SMI, now handle them. */ 547 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 548 if (msg[2] != 0) { 549 /* Error fetching flags, just give up for now. */ 550 smi_info->si_state = SI_NORMAL; 551 } else if (len < 4) { 552 /* 553 * Hmm, no flags. That's technically illegal, but 554 * don't use uninitialized data. 555 */ 556 smi_info->si_state = SI_NORMAL; 557 } else { 558 smi_info->msg_flags = msg[3]; 559 handle_flags(smi_info); 560 } 561 break; 562 } 563 564 case SI_CLEARING_FLAGS: 565 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 566 { 567 unsigned char msg[3]; 568 569 /* We cleared the flags. */ 570 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 571 if (msg[2] != 0) { 572 /* Error clearing flags */ 573 dev_warn(smi_info->dev, 574 "Error clearing flags: %2.2x\n", msg[2]); 575 } 576 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 577 start_enable_irq(smi_info); 578 else 579 smi_info->si_state = SI_NORMAL; 580 break; 581 } 582 583 case SI_GETTING_EVENTS: 584 { 585 smi_info->curr_msg->rsp_size 586 = smi_info->handlers->get_result( 587 smi_info->si_sm, 588 smi_info->curr_msg->rsp, 589 IPMI_MAX_MSG_LENGTH); 590 591 /* 592 * Do this here becase deliver_recv_msg() releases the 593 * lock, and a new message can be put in during the 594 * time the lock is released. 595 */ 596 msg = smi_info->curr_msg; 597 smi_info->curr_msg = NULL; 598 if (msg->rsp[2] != 0) { 599 /* Error getting event, probably done. */ 600 msg->done(msg); 601 602 /* Take off the event flag. */ 603 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 604 handle_flags(smi_info); 605 } else { 606 smi_inc_stat(smi_info, events); 607 608 /* 609 * Do this before we deliver the message 610 * because delivering the message releases the 611 * lock and something else can mess with the 612 * state. 613 */ 614 handle_flags(smi_info); 615 616 deliver_recv_msg(smi_info, msg); 617 } 618 break; 619 } 620 621 case SI_GETTING_MESSAGES: 622 { 623 smi_info->curr_msg->rsp_size 624 = smi_info->handlers->get_result( 625 smi_info->si_sm, 626 smi_info->curr_msg->rsp, 627 IPMI_MAX_MSG_LENGTH); 628 629 /* 630 * Do this here becase deliver_recv_msg() releases the 631 * lock, and a new message can be put in during the 632 * time the lock is released. 633 */ 634 msg = smi_info->curr_msg; 635 smi_info->curr_msg = NULL; 636 if (msg->rsp[2] != 0) { 637 /* Error getting event, probably done. */ 638 msg->done(msg); 639 640 /* Take off the msg flag. */ 641 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 642 handle_flags(smi_info); 643 } else { 644 smi_inc_stat(smi_info, incoming_messages); 645 646 /* 647 * Do this before we deliver the message 648 * because delivering the message releases the 649 * lock and something else can mess with the 650 * state. 651 */ 652 handle_flags(smi_info); 653 654 deliver_recv_msg(smi_info, msg); 655 } 656 break; 657 } 658 659 case SI_ENABLE_INTERRUPTS1: 660 { 661 unsigned char msg[4]; 662 663 /* We got the flags from the SMI, now handle them. */ 664 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 665 if (msg[2] != 0) { 666 dev_warn(smi_info->dev, 667 "Couldn't get irq info: %x.\n", msg[2]); 668 dev_warn(smi_info->dev, 669 "Maybe ok, but ipmi might run very slowly.\n"); 670 smi_info->si_state = SI_NORMAL; 671 } else { 672 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 673 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 674 msg[2] = (msg[3] | 675 IPMI_BMC_RCV_MSG_INTR | 676 IPMI_BMC_EVT_MSG_INTR); 677 smi_info->handlers->start_transaction( 678 smi_info->si_sm, msg, 3); 679 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 680 } 681 break; 682 } 683 684 case SI_ENABLE_INTERRUPTS2: 685 { 686 unsigned char msg[4]; 687 688 /* We got the flags from the SMI, now handle them. */ 689 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 690 if (msg[2] != 0) { 691 dev_warn(smi_info->dev, 692 "Couldn't set irq info: %x.\n", msg[2]); 693 dev_warn(smi_info->dev, 694 "Maybe ok, but ipmi might run very slowly.\n"); 695 } else 696 smi_info->interrupt_disabled = 0; 697 smi_info->si_state = SI_NORMAL; 698 break; 699 } 700 701 case SI_DISABLE_INTERRUPTS1: 702 { 703 unsigned char msg[4]; 704 705 /* We got the flags from the SMI, now handle them. */ 706 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 707 if (msg[2] != 0) { 708 dev_warn(smi_info->dev, "Could not disable interrupts" 709 ", failed get.\n"); 710 smi_info->si_state = SI_NORMAL; 711 } else { 712 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 713 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 714 msg[2] = (msg[3] & 715 ~(IPMI_BMC_RCV_MSG_INTR | 716 IPMI_BMC_EVT_MSG_INTR)); 717 smi_info->handlers->start_transaction( 718 smi_info->si_sm, msg, 3); 719 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 720 } 721 break; 722 } 723 724 case SI_DISABLE_INTERRUPTS2: 725 { 726 unsigned char msg[4]; 727 728 /* We got the flags from the SMI, now handle them. */ 729 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 730 if (msg[2] != 0) { 731 dev_warn(smi_info->dev, "Could not disable interrupts" 732 ", failed set.\n"); 733 } 734 smi_info->si_state = SI_NORMAL; 735 break; 736 } 737 } 738 } 739 740 /* 741 * Called on timeouts and events. Timeouts should pass the elapsed 742 * time, interrupts should pass in zero. Must be called with 743 * si_lock held and interrupts disabled. 744 */ 745 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 746 int time) 747 { 748 enum si_sm_result si_sm_result; 749 750 restart: 751 /* 752 * There used to be a loop here that waited a little while 753 * (around 25us) before giving up. That turned out to be 754 * pointless, the minimum delays I was seeing were in the 300us 755 * range, which is far too long to wait in an interrupt. So 756 * we just run until the state machine tells us something 757 * happened or it needs a delay. 758 */ 759 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 760 time = 0; 761 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 763 764 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 765 smi_inc_stat(smi_info, complete_transactions); 766 767 handle_transaction_done(smi_info); 768 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 769 } else if (si_sm_result == SI_SM_HOSED) { 770 smi_inc_stat(smi_info, hosed_count); 771 772 /* 773 * Do the before return_hosed_msg, because that 774 * releases the lock. 775 */ 776 smi_info->si_state = SI_NORMAL; 777 if (smi_info->curr_msg != NULL) { 778 /* 779 * If we were handling a user message, format 780 * a response to send to the upper layer to 781 * tell it about the error. 782 */ 783 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 784 } 785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 786 } 787 788 /* 789 * We prefer handling attn over new messages. But don't do 790 * this if there is not yet an upper layer to handle anything. 791 */ 792 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 793 unsigned char msg[2]; 794 795 smi_inc_stat(smi_info, attentions); 796 797 /* 798 * Got a attn, send down a get message flags to see 799 * what's causing it. It would be better to handle 800 * this in the upper layer, but due to the way 801 * interrupts work with the SMI, that's not really 802 * possible. 803 */ 804 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 805 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 806 807 smi_info->handlers->start_transaction( 808 smi_info->si_sm, msg, 2); 809 smi_info->si_state = SI_GETTING_FLAGS; 810 goto restart; 811 } 812 813 /* If we are currently idle, try to start the next message. */ 814 if (si_sm_result == SI_SM_IDLE) { 815 smi_inc_stat(smi_info, idles); 816 817 si_sm_result = start_next_msg(smi_info); 818 if (si_sm_result != SI_SM_IDLE) 819 goto restart; 820 } 821 822 if ((si_sm_result == SI_SM_IDLE) 823 && (atomic_read(&smi_info->req_events))) { 824 /* 825 * We are idle and the upper layer requested that I fetch 826 * events, so do so. 827 */ 828 atomic_set(&smi_info->req_events, 0); 829 830 smi_info->curr_msg = ipmi_alloc_smi_msg(); 831 if (!smi_info->curr_msg) 832 goto out; 833 834 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 835 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 836 smi_info->curr_msg->data_size = 2; 837 838 smi_info->handlers->start_transaction( 839 smi_info->si_sm, 840 smi_info->curr_msg->data, 841 smi_info->curr_msg->data_size); 842 smi_info->si_state = SI_GETTING_EVENTS; 843 goto restart; 844 } 845 out: 846 return si_sm_result; 847 } 848 849 static void sender(void *send_info, 850 struct ipmi_smi_msg *msg, 851 int priority) 852 { 853 struct smi_info *smi_info = send_info; 854 enum si_sm_result result; 855 unsigned long flags; 856 #ifdef DEBUG_TIMING 857 struct timeval t; 858 #endif 859 860 if (atomic_read(&smi_info->stop_operation)) { 861 msg->rsp[0] = msg->data[0] | 4; 862 msg->rsp[1] = msg->data[1]; 863 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 864 msg->rsp_size = 3; 865 deliver_recv_msg(smi_info, msg); 866 return; 867 } 868 869 #ifdef DEBUG_TIMING 870 do_gettimeofday(&t); 871 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 872 #endif 873 874 if (smi_info->run_to_completion) { 875 /* 876 * If we are running to completion, then throw it in 877 * the list and run transactions until everything is 878 * clear. Priority doesn't matter here. 879 */ 880 881 /* 882 * Run to completion means we are single-threaded, no 883 * need for locks. 884 */ 885 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 886 887 result = smi_event_handler(smi_info, 0); 888 while (result != SI_SM_IDLE) { 889 udelay(SI_SHORT_TIMEOUT_USEC); 890 result = smi_event_handler(smi_info, 891 SI_SHORT_TIMEOUT_USEC); 892 } 893 return; 894 } 895 896 spin_lock_irqsave(&smi_info->si_lock, flags); 897 if (priority > 0) 898 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 899 else 900 list_add_tail(&msg->link, &smi_info->xmit_msgs); 901 902 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 903 /* 904 * last_timeout_jiffies is updated here to avoid 905 * smi_timeout() handler passing very large time_diff 906 * value to smi_event_handler() that causes 907 * the send command to abort. 908 */ 909 smi_info->last_timeout_jiffies = jiffies; 910 911 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 912 913 if (smi_info->thread) 914 wake_up_process(smi_info->thread); 915 916 start_next_msg(smi_info); 917 smi_event_handler(smi_info, 0); 918 } 919 spin_unlock_irqrestore(&smi_info->si_lock, flags); 920 } 921 922 static void set_run_to_completion(void *send_info, int i_run_to_completion) 923 { 924 struct smi_info *smi_info = send_info; 925 enum si_sm_result result; 926 927 smi_info->run_to_completion = i_run_to_completion; 928 if (i_run_to_completion) { 929 result = smi_event_handler(smi_info, 0); 930 while (result != SI_SM_IDLE) { 931 udelay(SI_SHORT_TIMEOUT_USEC); 932 result = smi_event_handler(smi_info, 933 SI_SHORT_TIMEOUT_USEC); 934 } 935 } 936 } 937 938 /* 939 * Use -1 in the nsec value of the busy waiting timespec to tell that 940 * we are spinning in kipmid looking for something and not delaying 941 * between checks 942 */ 943 static inline void ipmi_si_set_not_busy(struct timespec *ts) 944 { 945 ts->tv_nsec = -1; 946 } 947 static inline int ipmi_si_is_busy(struct timespec *ts) 948 { 949 return ts->tv_nsec != -1; 950 } 951 952 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 953 const struct smi_info *smi_info, 954 struct timespec *busy_until) 955 { 956 unsigned int max_busy_us = 0; 957 958 if (smi_info->intf_num < num_max_busy_us) 959 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 960 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 961 ipmi_si_set_not_busy(busy_until); 962 else if (!ipmi_si_is_busy(busy_until)) { 963 getnstimeofday(busy_until); 964 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 965 } else { 966 struct timespec now; 967 getnstimeofday(&now); 968 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 969 ipmi_si_set_not_busy(busy_until); 970 return 0; 971 } 972 } 973 return 1; 974 } 975 976 977 /* 978 * A busy-waiting loop for speeding up IPMI operation. 979 * 980 * Lousy hardware makes this hard. This is only enabled for systems 981 * that are not BT and do not have interrupts. It starts spinning 982 * when an operation is complete or until max_busy tells it to stop 983 * (if that is enabled). See the paragraph on kimid_max_busy_us in 984 * Documentation/IPMI.txt for details. 985 */ 986 static int ipmi_thread(void *data) 987 { 988 struct smi_info *smi_info = data; 989 unsigned long flags; 990 enum si_sm_result smi_result; 991 struct timespec busy_until; 992 993 ipmi_si_set_not_busy(&busy_until); 994 set_user_nice(current, 19); 995 while (!kthread_should_stop()) { 996 int busy_wait; 997 998 spin_lock_irqsave(&(smi_info->si_lock), flags); 999 smi_result = smi_event_handler(smi_info, 0); 1000 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1001 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1002 &busy_until); 1003 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1004 ; /* do nothing */ 1005 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1006 schedule(); 1007 else if (smi_result == SI_SM_IDLE) 1008 schedule_timeout_interruptible(100); 1009 else 1010 schedule_timeout_interruptible(1); 1011 } 1012 return 0; 1013 } 1014 1015 1016 static void poll(void *send_info) 1017 { 1018 struct smi_info *smi_info = send_info; 1019 unsigned long flags = 0; 1020 int run_to_completion = smi_info->run_to_completion; 1021 1022 /* 1023 * Make sure there is some delay in the poll loop so we can 1024 * drive time forward and timeout things. 1025 */ 1026 udelay(10); 1027 if (!run_to_completion) 1028 spin_lock_irqsave(&smi_info->si_lock, flags); 1029 smi_event_handler(smi_info, 10); 1030 if (!run_to_completion) 1031 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1032 } 1033 1034 static void request_events(void *send_info) 1035 { 1036 struct smi_info *smi_info = send_info; 1037 1038 if (atomic_read(&smi_info->stop_operation) || 1039 !smi_info->has_event_buffer) 1040 return; 1041 1042 atomic_set(&smi_info->req_events, 1); 1043 } 1044 1045 static int initialized; 1046 1047 static void smi_timeout(unsigned long data) 1048 { 1049 struct smi_info *smi_info = (struct smi_info *) data; 1050 enum si_sm_result smi_result; 1051 unsigned long flags; 1052 unsigned long jiffies_now; 1053 long time_diff; 1054 long timeout; 1055 #ifdef DEBUG_TIMING 1056 struct timeval t; 1057 #endif 1058 1059 spin_lock_irqsave(&(smi_info->si_lock), flags); 1060 #ifdef DEBUG_TIMING 1061 do_gettimeofday(&t); 1062 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1063 #endif 1064 jiffies_now = jiffies; 1065 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1066 * SI_USEC_PER_JIFFY); 1067 smi_result = smi_event_handler(smi_info, time_diff); 1068 1069 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1070 1071 smi_info->last_timeout_jiffies = jiffies_now; 1072 1073 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1074 /* Running with interrupts, only do long timeouts. */ 1075 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1076 smi_inc_stat(smi_info, long_timeouts); 1077 goto do_mod_timer; 1078 } 1079 1080 /* 1081 * If the state machine asks for a short delay, then shorten 1082 * the timer timeout. 1083 */ 1084 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1085 smi_inc_stat(smi_info, short_timeouts); 1086 timeout = jiffies + 1; 1087 } else { 1088 smi_inc_stat(smi_info, long_timeouts); 1089 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1090 } 1091 1092 do_mod_timer: 1093 if (smi_result != SI_SM_IDLE) 1094 mod_timer(&(smi_info->si_timer), timeout); 1095 } 1096 1097 static irqreturn_t si_irq_handler(int irq, void *data) 1098 { 1099 struct smi_info *smi_info = data; 1100 unsigned long flags; 1101 #ifdef DEBUG_TIMING 1102 struct timeval t; 1103 #endif 1104 1105 spin_lock_irqsave(&(smi_info->si_lock), flags); 1106 1107 smi_inc_stat(smi_info, interrupts); 1108 1109 #ifdef DEBUG_TIMING 1110 do_gettimeofday(&t); 1111 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1112 #endif 1113 smi_event_handler(smi_info, 0); 1114 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1115 return IRQ_HANDLED; 1116 } 1117 1118 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1119 { 1120 struct smi_info *smi_info = data; 1121 /* We need to clear the IRQ flag for the BT interface. */ 1122 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1125 return si_irq_handler(irq, data); 1126 } 1127 1128 static int smi_start_processing(void *send_info, 1129 ipmi_smi_t intf) 1130 { 1131 struct smi_info *new_smi = send_info; 1132 int enable = 0; 1133 1134 new_smi->intf = intf; 1135 1136 /* Try to claim any interrupts. */ 1137 if (new_smi->irq_setup) 1138 new_smi->irq_setup(new_smi); 1139 1140 /* Set up the timer that drives the interface. */ 1141 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1142 new_smi->last_timeout_jiffies = jiffies; 1143 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1144 1145 /* 1146 * Check if the user forcefully enabled the daemon. 1147 */ 1148 if (new_smi->intf_num < num_force_kipmid) 1149 enable = force_kipmid[new_smi->intf_num]; 1150 /* 1151 * The BT interface is efficient enough to not need a thread, 1152 * and there is no need for a thread if we have interrupts. 1153 */ 1154 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1155 enable = 1; 1156 1157 if (enable) { 1158 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1159 "kipmi%d", new_smi->intf_num); 1160 if (IS_ERR(new_smi->thread)) { 1161 dev_notice(new_smi->dev, "Could not start" 1162 " kernel thread due to error %ld, only using" 1163 " timers to drive the interface\n", 1164 PTR_ERR(new_smi->thread)); 1165 new_smi->thread = NULL; 1166 } 1167 } 1168 1169 return 0; 1170 } 1171 1172 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1173 { 1174 struct smi_info *smi = send_info; 1175 1176 data->addr_src = smi->addr_source; 1177 data->dev = smi->dev; 1178 data->addr_info = smi->addr_info; 1179 get_device(smi->dev); 1180 1181 return 0; 1182 } 1183 1184 static void set_maintenance_mode(void *send_info, int enable) 1185 { 1186 struct smi_info *smi_info = send_info; 1187 1188 if (!enable) 1189 atomic_set(&smi_info->req_events, 0); 1190 } 1191 1192 static struct ipmi_smi_handlers handlers = { 1193 .owner = THIS_MODULE, 1194 .start_processing = smi_start_processing, 1195 .get_smi_info = get_smi_info, 1196 .sender = sender, 1197 .request_events = request_events, 1198 .set_maintenance_mode = set_maintenance_mode, 1199 .set_run_to_completion = set_run_to_completion, 1200 .poll = poll, 1201 }; 1202 1203 /* 1204 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1205 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1206 */ 1207 1208 static LIST_HEAD(smi_infos); 1209 static DEFINE_MUTEX(smi_infos_lock); 1210 static int smi_num; /* Used to sequence the SMIs */ 1211 1212 #define DEFAULT_REGSPACING 1 1213 #define DEFAULT_REGSIZE 1 1214 1215 #ifdef CONFIG_ACPI 1216 static bool si_tryacpi = 1; 1217 #endif 1218 #ifdef CONFIG_DMI 1219 static bool si_trydmi = 1; 1220 #endif 1221 static bool si_tryplatform = 1; 1222 #ifdef CONFIG_PCI 1223 static bool si_trypci = 1; 1224 #endif 1225 static bool si_trydefaults = 1; 1226 static char *si_type[SI_MAX_PARMS]; 1227 #define MAX_SI_TYPE_STR 30 1228 static char si_type_str[MAX_SI_TYPE_STR]; 1229 static unsigned long addrs[SI_MAX_PARMS]; 1230 static unsigned int num_addrs; 1231 static unsigned int ports[SI_MAX_PARMS]; 1232 static unsigned int num_ports; 1233 static int irqs[SI_MAX_PARMS]; 1234 static unsigned int num_irqs; 1235 static int regspacings[SI_MAX_PARMS]; 1236 static unsigned int num_regspacings; 1237 static int regsizes[SI_MAX_PARMS]; 1238 static unsigned int num_regsizes; 1239 static int regshifts[SI_MAX_PARMS]; 1240 static unsigned int num_regshifts; 1241 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1242 static unsigned int num_slave_addrs; 1243 1244 #define IPMI_IO_ADDR_SPACE 0 1245 #define IPMI_MEM_ADDR_SPACE 1 1246 static char *addr_space_to_str[] = { "i/o", "mem" }; 1247 1248 static int hotmod_handler(const char *val, struct kernel_param *kp); 1249 1250 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1251 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1252 " Documentation/IPMI.txt in the kernel sources for the" 1253 " gory details."); 1254 1255 #ifdef CONFIG_ACPI 1256 module_param_named(tryacpi, si_tryacpi, bool, 0); 1257 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1258 " default scan of the interfaces identified via ACPI"); 1259 #endif 1260 #ifdef CONFIG_DMI 1261 module_param_named(trydmi, si_trydmi, bool, 0); 1262 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1263 " default scan of the interfaces identified via DMI"); 1264 #endif 1265 module_param_named(tryplatform, si_tryplatform, bool, 0); 1266 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1267 " default scan of the interfaces identified via platform" 1268 " interfaces like openfirmware"); 1269 #ifdef CONFIG_PCI 1270 module_param_named(trypci, si_trypci, bool, 0); 1271 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1272 " default scan of the interfaces identified via pci"); 1273 #endif 1274 module_param_named(trydefaults, si_trydefaults, bool, 0); 1275 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1276 " default scan of the KCS and SMIC interface at the standard" 1277 " address"); 1278 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1279 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1280 " interface separated by commas. The types are 'kcs'," 1281 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1282 " the first interface to kcs and the second to bt"); 1283 module_param_array(addrs, ulong, &num_addrs, 0); 1284 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1285 " addresses separated by commas. Only use if an interface" 1286 " is in memory. Otherwise, set it to zero or leave" 1287 " it blank."); 1288 module_param_array(ports, uint, &num_ports, 0); 1289 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1290 " addresses separated by commas. Only use if an interface" 1291 " is a port. Otherwise, set it to zero or leave" 1292 " it blank."); 1293 module_param_array(irqs, int, &num_irqs, 0); 1294 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1295 " addresses separated by commas. Only use if an interface" 1296 " has an interrupt. Otherwise, set it to zero or leave" 1297 " it blank."); 1298 module_param_array(regspacings, int, &num_regspacings, 0); 1299 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1300 " and each successive register used by the interface. For" 1301 " instance, if the start address is 0xca2 and the spacing" 1302 " is 2, then the second address is at 0xca4. Defaults" 1303 " to 1."); 1304 module_param_array(regsizes, int, &num_regsizes, 0); 1305 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1306 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1307 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1308 " the 8-bit IPMI register has to be read from a larger" 1309 " register."); 1310 module_param_array(regshifts, int, &num_regshifts, 0); 1311 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1312 " IPMI register, in bits. For instance, if the data" 1313 " is read from a 32-bit word and the IPMI data is in" 1314 " bit 8-15, then the shift would be 8"); 1315 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1316 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1317 " the controller. Normally this is 0x20, but can be" 1318 " overridden by this parm. This is an array indexed" 1319 " by interface number."); 1320 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1321 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1322 " disabled(0). Normally the IPMI driver auto-detects" 1323 " this, but the value may be overridden by this parm."); 1324 module_param(unload_when_empty, int, 0); 1325 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1326 " specified or found, default is 1. Setting to 0" 1327 " is useful for hot add of devices using hotmod."); 1328 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1329 MODULE_PARM_DESC(kipmid_max_busy_us, 1330 "Max time (in microseconds) to busy-wait for IPMI data before" 1331 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1332 " if kipmid is using up a lot of CPU time."); 1333 1334 1335 static void std_irq_cleanup(struct smi_info *info) 1336 { 1337 if (info->si_type == SI_BT) 1338 /* Disable the interrupt in the BT interface. */ 1339 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1340 free_irq(info->irq, info); 1341 } 1342 1343 static int std_irq_setup(struct smi_info *info) 1344 { 1345 int rv; 1346 1347 if (!info->irq) 1348 return 0; 1349 1350 if (info->si_type == SI_BT) { 1351 rv = request_irq(info->irq, 1352 si_bt_irq_handler, 1353 IRQF_SHARED | IRQF_DISABLED, 1354 DEVICE_NAME, 1355 info); 1356 if (!rv) 1357 /* Enable the interrupt in the BT interface. */ 1358 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1359 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1360 } else 1361 rv = request_irq(info->irq, 1362 si_irq_handler, 1363 IRQF_SHARED | IRQF_DISABLED, 1364 DEVICE_NAME, 1365 info); 1366 if (rv) { 1367 dev_warn(info->dev, "%s unable to claim interrupt %d," 1368 " running polled\n", 1369 DEVICE_NAME, info->irq); 1370 info->irq = 0; 1371 } else { 1372 info->irq_cleanup = std_irq_cleanup; 1373 dev_info(info->dev, "Using irq %d\n", info->irq); 1374 } 1375 1376 return rv; 1377 } 1378 1379 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1380 { 1381 unsigned int addr = io->addr_data; 1382 1383 return inb(addr + (offset * io->regspacing)); 1384 } 1385 1386 static void port_outb(struct si_sm_io *io, unsigned int offset, 1387 unsigned char b) 1388 { 1389 unsigned int addr = io->addr_data; 1390 1391 outb(b, addr + (offset * io->regspacing)); 1392 } 1393 1394 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1395 { 1396 unsigned int addr = io->addr_data; 1397 1398 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1399 } 1400 1401 static void port_outw(struct si_sm_io *io, unsigned int offset, 1402 unsigned char b) 1403 { 1404 unsigned int addr = io->addr_data; 1405 1406 outw(b << io->regshift, addr + (offset * io->regspacing)); 1407 } 1408 1409 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1410 { 1411 unsigned int addr = io->addr_data; 1412 1413 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1414 } 1415 1416 static void port_outl(struct si_sm_io *io, unsigned int offset, 1417 unsigned char b) 1418 { 1419 unsigned int addr = io->addr_data; 1420 1421 outl(b << io->regshift, addr+(offset * io->regspacing)); 1422 } 1423 1424 static void port_cleanup(struct smi_info *info) 1425 { 1426 unsigned int addr = info->io.addr_data; 1427 int idx; 1428 1429 if (addr) { 1430 for (idx = 0; idx < info->io_size; idx++) 1431 release_region(addr + idx * info->io.regspacing, 1432 info->io.regsize); 1433 } 1434 } 1435 1436 static int port_setup(struct smi_info *info) 1437 { 1438 unsigned int addr = info->io.addr_data; 1439 int idx; 1440 1441 if (!addr) 1442 return -ENODEV; 1443 1444 info->io_cleanup = port_cleanup; 1445 1446 /* 1447 * Figure out the actual inb/inw/inl/etc routine to use based 1448 * upon the register size. 1449 */ 1450 switch (info->io.regsize) { 1451 case 1: 1452 info->io.inputb = port_inb; 1453 info->io.outputb = port_outb; 1454 break; 1455 case 2: 1456 info->io.inputb = port_inw; 1457 info->io.outputb = port_outw; 1458 break; 1459 case 4: 1460 info->io.inputb = port_inl; 1461 info->io.outputb = port_outl; 1462 break; 1463 default: 1464 dev_warn(info->dev, "Invalid register size: %d\n", 1465 info->io.regsize); 1466 return -EINVAL; 1467 } 1468 1469 /* 1470 * Some BIOSes reserve disjoint I/O regions in their ACPI 1471 * tables. This causes problems when trying to register the 1472 * entire I/O region. Therefore we must register each I/O 1473 * port separately. 1474 */ 1475 for (idx = 0; idx < info->io_size; idx++) { 1476 if (request_region(addr + idx * info->io.regspacing, 1477 info->io.regsize, DEVICE_NAME) == NULL) { 1478 /* Undo allocations */ 1479 while (idx--) { 1480 release_region(addr + idx * info->io.regspacing, 1481 info->io.regsize); 1482 } 1483 return -EIO; 1484 } 1485 } 1486 return 0; 1487 } 1488 1489 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1490 { 1491 return readb((io->addr)+(offset * io->regspacing)); 1492 } 1493 1494 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1495 unsigned char b) 1496 { 1497 writeb(b, (io->addr)+(offset * io->regspacing)); 1498 } 1499 1500 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1501 { 1502 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1503 & 0xff; 1504 } 1505 1506 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1507 unsigned char b) 1508 { 1509 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1510 } 1511 1512 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1513 { 1514 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1515 & 0xff; 1516 } 1517 1518 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1519 unsigned char b) 1520 { 1521 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1522 } 1523 1524 #ifdef readq 1525 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1526 { 1527 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1528 & 0xff; 1529 } 1530 1531 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1532 unsigned char b) 1533 { 1534 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1535 } 1536 #endif 1537 1538 static void mem_cleanup(struct smi_info *info) 1539 { 1540 unsigned long addr = info->io.addr_data; 1541 int mapsize; 1542 1543 if (info->io.addr) { 1544 iounmap(info->io.addr); 1545 1546 mapsize = ((info->io_size * info->io.regspacing) 1547 - (info->io.regspacing - info->io.regsize)); 1548 1549 release_mem_region(addr, mapsize); 1550 } 1551 } 1552 1553 static int mem_setup(struct smi_info *info) 1554 { 1555 unsigned long addr = info->io.addr_data; 1556 int mapsize; 1557 1558 if (!addr) 1559 return -ENODEV; 1560 1561 info->io_cleanup = mem_cleanup; 1562 1563 /* 1564 * Figure out the actual readb/readw/readl/etc routine to use based 1565 * upon the register size. 1566 */ 1567 switch (info->io.regsize) { 1568 case 1: 1569 info->io.inputb = intf_mem_inb; 1570 info->io.outputb = intf_mem_outb; 1571 break; 1572 case 2: 1573 info->io.inputb = intf_mem_inw; 1574 info->io.outputb = intf_mem_outw; 1575 break; 1576 case 4: 1577 info->io.inputb = intf_mem_inl; 1578 info->io.outputb = intf_mem_outl; 1579 break; 1580 #ifdef readq 1581 case 8: 1582 info->io.inputb = mem_inq; 1583 info->io.outputb = mem_outq; 1584 break; 1585 #endif 1586 default: 1587 dev_warn(info->dev, "Invalid register size: %d\n", 1588 info->io.regsize); 1589 return -EINVAL; 1590 } 1591 1592 /* 1593 * Calculate the total amount of memory to claim. This is an 1594 * unusual looking calculation, but it avoids claiming any 1595 * more memory than it has to. It will claim everything 1596 * between the first address to the end of the last full 1597 * register. 1598 */ 1599 mapsize = ((info->io_size * info->io.regspacing) 1600 - (info->io.regspacing - info->io.regsize)); 1601 1602 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1603 return -EIO; 1604 1605 info->io.addr = ioremap(addr, mapsize); 1606 if (info->io.addr == NULL) { 1607 release_mem_region(addr, mapsize); 1608 return -EIO; 1609 } 1610 return 0; 1611 } 1612 1613 /* 1614 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1615 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1616 * Options are: 1617 * rsp=<regspacing> 1618 * rsi=<regsize> 1619 * rsh=<regshift> 1620 * irq=<irq> 1621 * ipmb=<ipmb addr> 1622 */ 1623 enum hotmod_op { HM_ADD, HM_REMOVE }; 1624 struct hotmod_vals { 1625 char *name; 1626 int val; 1627 }; 1628 static struct hotmod_vals hotmod_ops[] = { 1629 { "add", HM_ADD }, 1630 { "remove", HM_REMOVE }, 1631 { NULL } 1632 }; 1633 static struct hotmod_vals hotmod_si[] = { 1634 { "kcs", SI_KCS }, 1635 { "smic", SI_SMIC }, 1636 { "bt", SI_BT }, 1637 { NULL } 1638 }; 1639 static struct hotmod_vals hotmod_as[] = { 1640 { "mem", IPMI_MEM_ADDR_SPACE }, 1641 { "i/o", IPMI_IO_ADDR_SPACE }, 1642 { NULL } 1643 }; 1644 1645 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1646 { 1647 char *s; 1648 int i; 1649 1650 s = strchr(*curr, ','); 1651 if (!s) { 1652 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1653 return -EINVAL; 1654 } 1655 *s = '\0'; 1656 s++; 1657 for (i = 0; hotmod_ops[i].name; i++) { 1658 if (strcmp(*curr, v[i].name) == 0) { 1659 *val = v[i].val; 1660 *curr = s; 1661 return 0; 1662 } 1663 } 1664 1665 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1666 return -EINVAL; 1667 } 1668 1669 static int check_hotmod_int_op(const char *curr, const char *option, 1670 const char *name, int *val) 1671 { 1672 char *n; 1673 1674 if (strcmp(curr, name) == 0) { 1675 if (!option) { 1676 printk(KERN_WARNING PFX 1677 "No option given for '%s'\n", 1678 curr); 1679 return -EINVAL; 1680 } 1681 *val = simple_strtoul(option, &n, 0); 1682 if ((*n != '\0') || (*option == '\0')) { 1683 printk(KERN_WARNING PFX 1684 "Bad option given for '%s'\n", 1685 curr); 1686 return -EINVAL; 1687 } 1688 return 1; 1689 } 1690 return 0; 1691 } 1692 1693 static struct smi_info *smi_info_alloc(void) 1694 { 1695 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1696 1697 if (info) 1698 spin_lock_init(&info->si_lock); 1699 return info; 1700 } 1701 1702 static int hotmod_handler(const char *val, struct kernel_param *kp) 1703 { 1704 char *str = kstrdup(val, GFP_KERNEL); 1705 int rv; 1706 char *next, *curr, *s, *n, *o; 1707 enum hotmod_op op; 1708 enum si_type si_type; 1709 int addr_space; 1710 unsigned long addr; 1711 int regspacing; 1712 int regsize; 1713 int regshift; 1714 int irq; 1715 int ipmb; 1716 int ival; 1717 int len; 1718 struct smi_info *info; 1719 1720 if (!str) 1721 return -ENOMEM; 1722 1723 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1724 len = strlen(str); 1725 ival = len - 1; 1726 while ((ival >= 0) && isspace(str[ival])) { 1727 str[ival] = '\0'; 1728 ival--; 1729 } 1730 1731 for (curr = str; curr; curr = next) { 1732 regspacing = 1; 1733 regsize = 1; 1734 regshift = 0; 1735 irq = 0; 1736 ipmb = 0; /* Choose the default if not specified */ 1737 1738 next = strchr(curr, ':'); 1739 if (next) { 1740 *next = '\0'; 1741 next++; 1742 } 1743 1744 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1745 if (rv) 1746 break; 1747 op = ival; 1748 1749 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1750 if (rv) 1751 break; 1752 si_type = ival; 1753 1754 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1755 if (rv) 1756 break; 1757 1758 s = strchr(curr, ','); 1759 if (s) { 1760 *s = '\0'; 1761 s++; 1762 } 1763 addr = simple_strtoul(curr, &n, 0); 1764 if ((*n != '\0') || (*curr == '\0')) { 1765 printk(KERN_WARNING PFX "Invalid hotmod address" 1766 " '%s'\n", curr); 1767 break; 1768 } 1769 1770 while (s) { 1771 curr = s; 1772 s = strchr(curr, ','); 1773 if (s) { 1774 *s = '\0'; 1775 s++; 1776 } 1777 o = strchr(curr, '='); 1778 if (o) { 1779 *o = '\0'; 1780 o++; 1781 } 1782 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1783 if (rv < 0) 1784 goto out; 1785 else if (rv) 1786 continue; 1787 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1788 if (rv < 0) 1789 goto out; 1790 else if (rv) 1791 continue; 1792 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1793 if (rv < 0) 1794 goto out; 1795 else if (rv) 1796 continue; 1797 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1798 if (rv < 0) 1799 goto out; 1800 else if (rv) 1801 continue; 1802 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1803 if (rv < 0) 1804 goto out; 1805 else if (rv) 1806 continue; 1807 1808 rv = -EINVAL; 1809 printk(KERN_WARNING PFX 1810 "Invalid hotmod option '%s'\n", 1811 curr); 1812 goto out; 1813 } 1814 1815 if (op == HM_ADD) { 1816 info = smi_info_alloc(); 1817 if (!info) { 1818 rv = -ENOMEM; 1819 goto out; 1820 } 1821 1822 info->addr_source = SI_HOTMOD; 1823 info->si_type = si_type; 1824 info->io.addr_data = addr; 1825 info->io.addr_type = addr_space; 1826 if (addr_space == IPMI_MEM_ADDR_SPACE) 1827 info->io_setup = mem_setup; 1828 else 1829 info->io_setup = port_setup; 1830 1831 info->io.addr = NULL; 1832 info->io.regspacing = regspacing; 1833 if (!info->io.regspacing) 1834 info->io.regspacing = DEFAULT_REGSPACING; 1835 info->io.regsize = regsize; 1836 if (!info->io.regsize) 1837 info->io.regsize = DEFAULT_REGSPACING; 1838 info->io.regshift = regshift; 1839 info->irq = irq; 1840 if (info->irq) 1841 info->irq_setup = std_irq_setup; 1842 info->slave_addr = ipmb; 1843 1844 if (!add_smi(info)) { 1845 if (try_smi_init(info)) 1846 cleanup_one_si(info); 1847 } else { 1848 kfree(info); 1849 } 1850 } else { 1851 /* remove */ 1852 struct smi_info *e, *tmp_e; 1853 1854 mutex_lock(&smi_infos_lock); 1855 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1856 if (e->io.addr_type != addr_space) 1857 continue; 1858 if (e->si_type != si_type) 1859 continue; 1860 if (e->io.addr_data == addr) 1861 cleanup_one_si(e); 1862 } 1863 mutex_unlock(&smi_infos_lock); 1864 } 1865 } 1866 rv = len; 1867 out: 1868 kfree(str); 1869 return rv; 1870 } 1871 1872 static int hardcode_find_bmc(void) 1873 { 1874 int ret = -ENODEV; 1875 int i; 1876 struct smi_info *info; 1877 1878 for (i = 0; i < SI_MAX_PARMS; i++) { 1879 if (!ports[i] && !addrs[i]) 1880 continue; 1881 1882 info = smi_info_alloc(); 1883 if (!info) 1884 return -ENOMEM; 1885 1886 info->addr_source = SI_HARDCODED; 1887 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1888 1889 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1890 info->si_type = SI_KCS; 1891 } else if (strcmp(si_type[i], "smic") == 0) { 1892 info->si_type = SI_SMIC; 1893 } else if (strcmp(si_type[i], "bt") == 0) { 1894 info->si_type = SI_BT; 1895 } else { 1896 printk(KERN_WARNING PFX "Interface type specified " 1897 "for interface %d, was invalid: %s\n", 1898 i, si_type[i]); 1899 kfree(info); 1900 continue; 1901 } 1902 1903 if (ports[i]) { 1904 /* An I/O port */ 1905 info->io_setup = port_setup; 1906 info->io.addr_data = ports[i]; 1907 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1908 } else if (addrs[i]) { 1909 /* A memory port */ 1910 info->io_setup = mem_setup; 1911 info->io.addr_data = addrs[i]; 1912 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1913 } else { 1914 printk(KERN_WARNING PFX "Interface type specified " 1915 "for interface %d, but port and address were " 1916 "not set or set to zero.\n", i); 1917 kfree(info); 1918 continue; 1919 } 1920 1921 info->io.addr = NULL; 1922 info->io.regspacing = regspacings[i]; 1923 if (!info->io.regspacing) 1924 info->io.regspacing = DEFAULT_REGSPACING; 1925 info->io.regsize = regsizes[i]; 1926 if (!info->io.regsize) 1927 info->io.regsize = DEFAULT_REGSPACING; 1928 info->io.regshift = regshifts[i]; 1929 info->irq = irqs[i]; 1930 if (info->irq) 1931 info->irq_setup = std_irq_setup; 1932 info->slave_addr = slave_addrs[i]; 1933 1934 if (!add_smi(info)) { 1935 if (try_smi_init(info)) 1936 cleanup_one_si(info); 1937 ret = 0; 1938 } else { 1939 kfree(info); 1940 } 1941 } 1942 return ret; 1943 } 1944 1945 #ifdef CONFIG_ACPI 1946 1947 #include <linux/acpi.h> 1948 1949 /* 1950 * Once we get an ACPI failure, we don't try any more, because we go 1951 * through the tables sequentially. Once we don't find a table, there 1952 * are no more. 1953 */ 1954 static int acpi_failure; 1955 1956 /* For GPE-type interrupts. */ 1957 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 1958 u32 gpe_number, void *context) 1959 { 1960 struct smi_info *smi_info = context; 1961 unsigned long flags; 1962 #ifdef DEBUG_TIMING 1963 struct timeval t; 1964 #endif 1965 1966 spin_lock_irqsave(&(smi_info->si_lock), flags); 1967 1968 smi_inc_stat(smi_info, interrupts); 1969 1970 #ifdef DEBUG_TIMING 1971 do_gettimeofday(&t); 1972 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1973 #endif 1974 smi_event_handler(smi_info, 0); 1975 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1976 1977 return ACPI_INTERRUPT_HANDLED; 1978 } 1979 1980 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1981 { 1982 if (!info->irq) 1983 return; 1984 1985 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1986 } 1987 1988 static int acpi_gpe_irq_setup(struct smi_info *info) 1989 { 1990 acpi_status status; 1991 1992 if (!info->irq) 1993 return 0; 1994 1995 /* FIXME - is level triggered right? */ 1996 status = acpi_install_gpe_handler(NULL, 1997 info->irq, 1998 ACPI_GPE_LEVEL_TRIGGERED, 1999 &ipmi_acpi_gpe, 2000 info); 2001 if (status != AE_OK) { 2002 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2003 " running polled\n", DEVICE_NAME, info->irq); 2004 info->irq = 0; 2005 return -EINVAL; 2006 } else { 2007 info->irq_cleanup = acpi_gpe_irq_cleanup; 2008 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2009 return 0; 2010 } 2011 } 2012 2013 /* 2014 * Defined at 2015 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2016 */ 2017 struct SPMITable { 2018 s8 Signature[4]; 2019 u32 Length; 2020 u8 Revision; 2021 u8 Checksum; 2022 s8 OEMID[6]; 2023 s8 OEMTableID[8]; 2024 s8 OEMRevision[4]; 2025 s8 CreatorID[4]; 2026 s8 CreatorRevision[4]; 2027 u8 InterfaceType; 2028 u8 IPMIlegacy; 2029 s16 SpecificationRevision; 2030 2031 /* 2032 * Bit 0 - SCI interrupt supported 2033 * Bit 1 - I/O APIC/SAPIC 2034 */ 2035 u8 InterruptType; 2036 2037 /* 2038 * If bit 0 of InterruptType is set, then this is the SCI 2039 * interrupt in the GPEx_STS register. 2040 */ 2041 u8 GPE; 2042 2043 s16 Reserved; 2044 2045 /* 2046 * If bit 1 of InterruptType is set, then this is the I/O 2047 * APIC/SAPIC interrupt. 2048 */ 2049 u32 GlobalSystemInterrupt; 2050 2051 /* The actual register address. */ 2052 struct acpi_generic_address addr; 2053 2054 u8 UID[4]; 2055 2056 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2057 }; 2058 2059 static int try_init_spmi(struct SPMITable *spmi) 2060 { 2061 struct smi_info *info; 2062 2063 if (spmi->IPMIlegacy != 1) { 2064 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2065 return -ENODEV; 2066 } 2067 2068 info = smi_info_alloc(); 2069 if (!info) { 2070 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2071 return -ENOMEM; 2072 } 2073 2074 info->addr_source = SI_SPMI; 2075 printk(KERN_INFO PFX "probing via SPMI\n"); 2076 2077 /* Figure out the interface type. */ 2078 switch (spmi->InterfaceType) { 2079 case 1: /* KCS */ 2080 info->si_type = SI_KCS; 2081 break; 2082 case 2: /* SMIC */ 2083 info->si_type = SI_SMIC; 2084 break; 2085 case 3: /* BT */ 2086 info->si_type = SI_BT; 2087 break; 2088 default: 2089 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2090 spmi->InterfaceType); 2091 kfree(info); 2092 return -EIO; 2093 } 2094 2095 if (spmi->InterruptType & 1) { 2096 /* We've got a GPE interrupt. */ 2097 info->irq = spmi->GPE; 2098 info->irq_setup = acpi_gpe_irq_setup; 2099 } else if (spmi->InterruptType & 2) { 2100 /* We've got an APIC/SAPIC interrupt. */ 2101 info->irq = spmi->GlobalSystemInterrupt; 2102 info->irq_setup = std_irq_setup; 2103 } else { 2104 /* Use the default interrupt setting. */ 2105 info->irq = 0; 2106 info->irq_setup = NULL; 2107 } 2108 2109 if (spmi->addr.bit_width) { 2110 /* A (hopefully) properly formed register bit width. */ 2111 info->io.regspacing = spmi->addr.bit_width / 8; 2112 } else { 2113 info->io.regspacing = DEFAULT_REGSPACING; 2114 } 2115 info->io.regsize = info->io.regspacing; 2116 info->io.regshift = spmi->addr.bit_offset; 2117 2118 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2119 info->io_setup = mem_setup; 2120 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2121 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2122 info->io_setup = port_setup; 2123 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2124 } else { 2125 kfree(info); 2126 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2127 return -EIO; 2128 } 2129 info->io.addr_data = spmi->addr.address; 2130 2131 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2132 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2133 info->io.addr_data, info->io.regsize, info->io.regspacing, 2134 info->irq); 2135 2136 if (add_smi(info)) 2137 kfree(info); 2138 2139 return 0; 2140 } 2141 2142 static void spmi_find_bmc(void) 2143 { 2144 acpi_status status; 2145 struct SPMITable *spmi; 2146 int i; 2147 2148 if (acpi_disabled) 2149 return; 2150 2151 if (acpi_failure) 2152 return; 2153 2154 for (i = 0; ; i++) { 2155 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2156 (struct acpi_table_header **)&spmi); 2157 if (status != AE_OK) 2158 return; 2159 2160 try_init_spmi(spmi); 2161 } 2162 } 2163 2164 static int ipmi_pnp_probe(struct pnp_dev *dev, 2165 const struct pnp_device_id *dev_id) 2166 { 2167 struct acpi_device *acpi_dev; 2168 struct smi_info *info; 2169 struct resource *res, *res_second; 2170 acpi_handle handle; 2171 acpi_status status; 2172 unsigned long long tmp; 2173 2174 acpi_dev = pnp_acpi_device(dev); 2175 if (!acpi_dev) 2176 return -ENODEV; 2177 2178 info = smi_info_alloc(); 2179 if (!info) 2180 return -ENOMEM; 2181 2182 info->addr_source = SI_ACPI; 2183 printk(KERN_INFO PFX "probing via ACPI\n"); 2184 2185 handle = acpi_dev->handle; 2186 info->addr_info.acpi_info.acpi_handle = handle; 2187 2188 /* _IFT tells us the interface type: KCS, BT, etc */ 2189 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2190 if (ACPI_FAILURE(status)) 2191 goto err_free; 2192 2193 switch (tmp) { 2194 case 1: 2195 info->si_type = SI_KCS; 2196 break; 2197 case 2: 2198 info->si_type = SI_SMIC; 2199 break; 2200 case 3: 2201 info->si_type = SI_BT; 2202 break; 2203 default: 2204 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2205 goto err_free; 2206 } 2207 2208 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2209 if (res) { 2210 info->io_setup = port_setup; 2211 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2212 } else { 2213 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2214 if (res) { 2215 info->io_setup = mem_setup; 2216 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2217 } 2218 } 2219 if (!res) { 2220 dev_err(&dev->dev, "no I/O or memory address\n"); 2221 goto err_free; 2222 } 2223 info->io.addr_data = res->start; 2224 2225 info->io.regspacing = DEFAULT_REGSPACING; 2226 res_second = pnp_get_resource(dev, 2227 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2228 IORESOURCE_IO : IORESOURCE_MEM, 2229 1); 2230 if (res_second) { 2231 if (res_second->start > info->io.addr_data) 2232 info->io.regspacing = res_second->start - info->io.addr_data; 2233 } 2234 info->io.regsize = DEFAULT_REGSPACING; 2235 info->io.regshift = 0; 2236 2237 /* If _GPE exists, use it; otherwise use standard interrupts */ 2238 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2239 if (ACPI_SUCCESS(status)) { 2240 info->irq = tmp; 2241 info->irq_setup = acpi_gpe_irq_setup; 2242 } else if (pnp_irq_valid(dev, 0)) { 2243 info->irq = pnp_irq(dev, 0); 2244 info->irq_setup = std_irq_setup; 2245 } 2246 2247 info->dev = &dev->dev; 2248 pnp_set_drvdata(dev, info); 2249 2250 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2251 res, info->io.regsize, info->io.regspacing, 2252 info->irq); 2253 2254 if (add_smi(info)) 2255 goto err_free; 2256 2257 return 0; 2258 2259 err_free: 2260 kfree(info); 2261 return -EINVAL; 2262 } 2263 2264 static void ipmi_pnp_remove(struct pnp_dev *dev) 2265 { 2266 struct smi_info *info = pnp_get_drvdata(dev); 2267 2268 cleanup_one_si(info); 2269 } 2270 2271 static const struct pnp_device_id pnp_dev_table[] = { 2272 {"IPI0001", 0}, 2273 {"", 0}, 2274 }; 2275 2276 static struct pnp_driver ipmi_pnp_driver = { 2277 .name = DEVICE_NAME, 2278 .probe = ipmi_pnp_probe, 2279 .remove = ipmi_pnp_remove, 2280 .id_table = pnp_dev_table, 2281 }; 2282 #endif 2283 2284 #ifdef CONFIG_DMI 2285 struct dmi_ipmi_data { 2286 u8 type; 2287 u8 addr_space; 2288 unsigned long base_addr; 2289 u8 irq; 2290 u8 offset; 2291 u8 slave_addr; 2292 }; 2293 2294 static int decode_dmi(const struct dmi_header *dm, 2295 struct dmi_ipmi_data *dmi) 2296 { 2297 const u8 *data = (const u8 *)dm; 2298 unsigned long base_addr; 2299 u8 reg_spacing; 2300 u8 len = dm->length; 2301 2302 dmi->type = data[4]; 2303 2304 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2305 if (len >= 0x11) { 2306 if (base_addr & 1) { 2307 /* I/O */ 2308 base_addr &= 0xFFFE; 2309 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2310 } else 2311 /* Memory */ 2312 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2313 2314 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2315 is odd. */ 2316 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2317 2318 dmi->irq = data[0x11]; 2319 2320 /* The top two bits of byte 0x10 hold the register spacing. */ 2321 reg_spacing = (data[0x10] & 0xC0) >> 6; 2322 switch (reg_spacing) { 2323 case 0x00: /* Byte boundaries */ 2324 dmi->offset = 1; 2325 break; 2326 case 0x01: /* 32-bit boundaries */ 2327 dmi->offset = 4; 2328 break; 2329 case 0x02: /* 16-byte boundaries */ 2330 dmi->offset = 16; 2331 break; 2332 default: 2333 /* Some other interface, just ignore it. */ 2334 return -EIO; 2335 } 2336 } else { 2337 /* Old DMI spec. */ 2338 /* 2339 * Note that technically, the lower bit of the base 2340 * address should be 1 if the address is I/O and 0 if 2341 * the address is in memory. So many systems get that 2342 * wrong (and all that I have seen are I/O) so we just 2343 * ignore that bit and assume I/O. Systems that use 2344 * memory should use the newer spec, anyway. 2345 */ 2346 dmi->base_addr = base_addr & 0xfffe; 2347 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2348 dmi->offset = 1; 2349 } 2350 2351 dmi->slave_addr = data[6]; 2352 2353 return 0; 2354 } 2355 2356 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2357 { 2358 struct smi_info *info; 2359 2360 info = smi_info_alloc(); 2361 if (!info) { 2362 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2363 return; 2364 } 2365 2366 info->addr_source = SI_SMBIOS; 2367 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2368 2369 switch (ipmi_data->type) { 2370 case 0x01: /* KCS */ 2371 info->si_type = SI_KCS; 2372 break; 2373 case 0x02: /* SMIC */ 2374 info->si_type = SI_SMIC; 2375 break; 2376 case 0x03: /* BT */ 2377 info->si_type = SI_BT; 2378 break; 2379 default: 2380 kfree(info); 2381 return; 2382 } 2383 2384 switch (ipmi_data->addr_space) { 2385 case IPMI_MEM_ADDR_SPACE: 2386 info->io_setup = mem_setup; 2387 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2388 break; 2389 2390 case IPMI_IO_ADDR_SPACE: 2391 info->io_setup = port_setup; 2392 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2393 break; 2394 2395 default: 2396 kfree(info); 2397 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2398 ipmi_data->addr_space); 2399 return; 2400 } 2401 info->io.addr_data = ipmi_data->base_addr; 2402 2403 info->io.regspacing = ipmi_data->offset; 2404 if (!info->io.regspacing) 2405 info->io.regspacing = DEFAULT_REGSPACING; 2406 info->io.regsize = DEFAULT_REGSPACING; 2407 info->io.regshift = 0; 2408 2409 info->slave_addr = ipmi_data->slave_addr; 2410 2411 info->irq = ipmi_data->irq; 2412 if (info->irq) 2413 info->irq_setup = std_irq_setup; 2414 2415 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2416 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2417 info->io.addr_data, info->io.regsize, info->io.regspacing, 2418 info->irq); 2419 2420 if (add_smi(info)) 2421 kfree(info); 2422 } 2423 2424 static void dmi_find_bmc(void) 2425 { 2426 const struct dmi_device *dev = NULL; 2427 struct dmi_ipmi_data data; 2428 int rv; 2429 2430 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2431 memset(&data, 0, sizeof(data)); 2432 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2433 &data); 2434 if (!rv) 2435 try_init_dmi(&data); 2436 } 2437 } 2438 #endif /* CONFIG_DMI */ 2439 2440 #ifdef CONFIG_PCI 2441 2442 #define PCI_ERMC_CLASSCODE 0x0C0700 2443 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2444 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2445 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2446 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2447 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2448 2449 #define PCI_HP_VENDOR_ID 0x103C 2450 #define PCI_MMC_DEVICE_ID 0x121A 2451 #define PCI_MMC_ADDR_CW 0x10 2452 2453 static void ipmi_pci_cleanup(struct smi_info *info) 2454 { 2455 struct pci_dev *pdev = info->addr_source_data; 2456 2457 pci_disable_device(pdev); 2458 } 2459 2460 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2461 { 2462 if (info->si_type == SI_KCS) { 2463 unsigned char status; 2464 int regspacing; 2465 2466 info->io.regsize = DEFAULT_REGSIZE; 2467 info->io.regshift = 0; 2468 info->io_size = 2; 2469 info->handlers = &kcs_smi_handlers; 2470 2471 /* detect 1, 4, 16byte spacing */ 2472 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2473 info->io.regspacing = regspacing; 2474 if (info->io_setup(info)) { 2475 dev_err(info->dev, 2476 "Could not setup I/O space\n"); 2477 return DEFAULT_REGSPACING; 2478 } 2479 /* write invalid cmd */ 2480 info->io.outputb(&info->io, 1, 0x10); 2481 /* read status back */ 2482 status = info->io.inputb(&info->io, 1); 2483 info->io_cleanup(info); 2484 if (status) 2485 return regspacing; 2486 regspacing *= 4; 2487 } 2488 } 2489 return DEFAULT_REGSPACING; 2490 } 2491 2492 static int ipmi_pci_probe(struct pci_dev *pdev, 2493 const struct pci_device_id *ent) 2494 { 2495 int rv; 2496 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2497 struct smi_info *info; 2498 2499 info = smi_info_alloc(); 2500 if (!info) 2501 return -ENOMEM; 2502 2503 info->addr_source = SI_PCI; 2504 dev_info(&pdev->dev, "probing via PCI"); 2505 2506 switch (class_type) { 2507 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2508 info->si_type = SI_SMIC; 2509 break; 2510 2511 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2512 info->si_type = SI_KCS; 2513 break; 2514 2515 case PCI_ERMC_CLASSCODE_TYPE_BT: 2516 info->si_type = SI_BT; 2517 break; 2518 2519 default: 2520 kfree(info); 2521 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2522 return -ENOMEM; 2523 } 2524 2525 rv = pci_enable_device(pdev); 2526 if (rv) { 2527 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2528 kfree(info); 2529 return rv; 2530 } 2531 2532 info->addr_source_cleanup = ipmi_pci_cleanup; 2533 info->addr_source_data = pdev; 2534 2535 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2536 info->io_setup = port_setup; 2537 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2538 } else { 2539 info->io_setup = mem_setup; 2540 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2541 } 2542 info->io.addr_data = pci_resource_start(pdev, 0); 2543 2544 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2545 info->io.regsize = DEFAULT_REGSIZE; 2546 info->io.regshift = 0; 2547 2548 info->irq = pdev->irq; 2549 if (info->irq) 2550 info->irq_setup = std_irq_setup; 2551 2552 info->dev = &pdev->dev; 2553 pci_set_drvdata(pdev, info); 2554 2555 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2556 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2557 info->irq); 2558 2559 if (add_smi(info)) 2560 kfree(info); 2561 2562 return 0; 2563 } 2564 2565 static void ipmi_pci_remove(struct pci_dev *pdev) 2566 { 2567 struct smi_info *info = pci_get_drvdata(pdev); 2568 cleanup_one_si(info); 2569 } 2570 2571 static struct pci_device_id ipmi_pci_devices[] = { 2572 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2573 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2574 { 0, } 2575 }; 2576 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2577 2578 static struct pci_driver ipmi_pci_driver = { 2579 .name = DEVICE_NAME, 2580 .id_table = ipmi_pci_devices, 2581 .probe = ipmi_pci_probe, 2582 .remove = ipmi_pci_remove, 2583 }; 2584 #endif /* CONFIG_PCI */ 2585 2586 static struct of_device_id ipmi_match[]; 2587 static int ipmi_probe(struct platform_device *dev) 2588 { 2589 #ifdef CONFIG_OF 2590 const struct of_device_id *match; 2591 struct smi_info *info; 2592 struct resource resource; 2593 const __be32 *regsize, *regspacing, *regshift; 2594 struct device_node *np = dev->dev.of_node; 2595 int ret; 2596 int proplen; 2597 2598 dev_info(&dev->dev, "probing via device tree\n"); 2599 2600 match = of_match_device(ipmi_match, &dev->dev); 2601 if (!match) 2602 return -EINVAL; 2603 2604 ret = of_address_to_resource(np, 0, &resource); 2605 if (ret) { 2606 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2607 return ret; 2608 } 2609 2610 regsize = of_get_property(np, "reg-size", &proplen); 2611 if (regsize && proplen != 4) { 2612 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2613 return -EINVAL; 2614 } 2615 2616 regspacing = of_get_property(np, "reg-spacing", &proplen); 2617 if (regspacing && proplen != 4) { 2618 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2619 return -EINVAL; 2620 } 2621 2622 regshift = of_get_property(np, "reg-shift", &proplen); 2623 if (regshift && proplen != 4) { 2624 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2625 return -EINVAL; 2626 } 2627 2628 info = smi_info_alloc(); 2629 2630 if (!info) { 2631 dev_err(&dev->dev, 2632 "could not allocate memory for OF probe\n"); 2633 return -ENOMEM; 2634 } 2635 2636 info->si_type = (enum si_type) match->data; 2637 info->addr_source = SI_DEVICETREE; 2638 info->irq_setup = std_irq_setup; 2639 2640 if (resource.flags & IORESOURCE_IO) { 2641 info->io_setup = port_setup; 2642 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2643 } else { 2644 info->io_setup = mem_setup; 2645 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2646 } 2647 2648 info->io.addr_data = resource.start; 2649 2650 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2651 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2652 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2653 2654 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2655 info->dev = &dev->dev; 2656 2657 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2658 info->io.addr_data, info->io.regsize, info->io.regspacing, 2659 info->irq); 2660 2661 dev_set_drvdata(&dev->dev, info); 2662 2663 if (add_smi(info)) { 2664 kfree(info); 2665 return -EBUSY; 2666 } 2667 #endif 2668 return 0; 2669 } 2670 2671 static int ipmi_remove(struct platform_device *dev) 2672 { 2673 #ifdef CONFIG_OF 2674 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2675 #endif 2676 return 0; 2677 } 2678 2679 static struct of_device_id ipmi_match[] = 2680 { 2681 { .type = "ipmi", .compatible = "ipmi-kcs", 2682 .data = (void *)(unsigned long) SI_KCS }, 2683 { .type = "ipmi", .compatible = "ipmi-smic", 2684 .data = (void *)(unsigned long) SI_SMIC }, 2685 { .type = "ipmi", .compatible = "ipmi-bt", 2686 .data = (void *)(unsigned long) SI_BT }, 2687 {}, 2688 }; 2689 2690 static struct platform_driver ipmi_driver = { 2691 .driver = { 2692 .name = DEVICE_NAME, 2693 .owner = THIS_MODULE, 2694 .of_match_table = ipmi_match, 2695 }, 2696 .probe = ipmi_probe, 2697 .remove = ipmi_remove, 2698 }; 2699 2700 static int wait_for_msg_done(struct smi_info *smi_info) 2701 { 2702 enum si_sm_result smi_result; 2703 2704 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2705 for (;;) { 2706 if (smi_result == SI_SM_CALL_WITH_DELAY || 2707 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2708 schedule_timeout_uninterruptible(1); 2709 smi_result = smi_info->handlers->event( 2710 smi_info->si_sm, 100); 2711 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2712 smi_result = smi_info->handlers->event( 2713 smi_info->si_sm, 0); 2714 } else 2715 break; 2716 } 2717 if (smi_result == SI_SM_HOSED) 2718 /* 2719 * We couldn't get the state machine to run, so whatever's at 2720 * the port is probably not an IPMI SMI interface. 2721 */ 2722 return -ENODEV; 2723 2724 return 0; 2725 } 2726 2727 static int try_get_dev_id(struct smi_info *smi_info) 2728 { 2729 unsigned char msg[2]; 2730 unsigned char *resp; 2731 unsigned long resp_len; 2732 int rv = 0; 2733 2734 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2735 if (!resp) 2736 return -ENOMEM; 2737 2738 /* 2739 * Do a Get Device ID command, since it comes back with some 2740 * useful info. 2741 */ 2742 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2743 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2744 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2745 2746 rv = wait_for_msg_done(smi_info); 2747 if (rv) 2748 goto out; 2749 2750 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2751 resp, IPMI_MAX_MSG_LENGTH); 2752 2753 /* Check and record info from the get device id, in case we need it. */ 2754 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2755 2756 out: 2757 kfree(resp); 2758 return rv; 2759 } 2760 2761 static int try_enable_event_buffer(struct smi_info *smi_info) 2762 { 2763 unsigned char msg[3]; 2764 unsigned char *resp; 2765 unsigned long resp_len; 2766 int rv = 0; 2767 2768 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2769 if (!resp) 2770 return -ENOMEM; 2771 2772 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2773 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2774 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2775 2776 rv = wait_for_msg_done(smi_info); 2777 if (rv) { 2778 printk(KERN_WARNING PFX "Error getting response from get" 2779 " global enables command, the event buffer is not" 2780 " enabled.\n"); 2781 goto out; 2782 } 2783 2784 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2785 resp, IPMI_MAX_MSG_LENGTH); 2786 2787 if (resp_len < 4 || 2788 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2789 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2790 resp[2] != 0) { 2791 printk(KERN_WARNING PFX "Invalid return from get global" 2792 " enables command, cannot enable the event buffer.\n"); 2793 rv = -EINVAL; 2794 goto out; 2795 } 2796 2797 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2798 /* buffer is already enabled, nothing to do. */ 2799 goto out; 2800 2801 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2802 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2803 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2804 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2805 2806 rv = wait_for_msg_done(smi_info); 2807 if (rv) { 2808 printk(KERN_WARNING PFX "Error getting response from set" 2809 " global, enables command, the event buffer is not" 2810 " enabled.\n"); 2811 goto out; 2812 } 2813 2814 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2815 resp, IPMI_MAX_MSG_LENGTH); 2816 2817 if (resp_len < 3 || 2818 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2819 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2820 printk(KERN_WARNING PFX "Invalid return from get global," 2821 "enables command, not enable the event buffer.\n"); 2822 rv = -EINVAL; 2823 goto out; 2824 } 2825 2826 if (resp[2] != 0) 2827 /* 2828 * An error when setting the event buffer bit means 2829 * that the event buffer is not supported. 2830 */ 2831 rv = -ENOENT; 2832 out: 2833 kfree(resp); 2834 return rv; 2835 } 2836 2837 static int smi_type_proc_show(struct seq_file *m, void *v) 2838 { 2839 struct smi_info *smi = m->private; 2840 2841 return seq_printf(m, "%s\n", si_to_str[smi->si_type]); 2842 } 2843 2844 static int smi_type_proc_open(struct inode *inode, struct file *file) 2845 { 2846 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 2847 } 2848 2849 static const struct file_operations smi_type_proc_ops = { 2850 .open = smi_type_proc_open, 2851 .read = seq_read, 2852 .llseek = seq_lseek, 2853 .release = single_release, 2854 }; 2855 2856 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 2857 { 2858 struct smi_info *smi = m->private; 2859 2860 seq_printf(m, "interrupts_enabled: %d\n", 2861 smi->irq && !smi->interrupt_disabled); 2862 seq_printf(m, "short_timeouts: %u\n", 2863 smi_get_stat(smi, short_timeouts)); 2864 seq_printf(m, "long_timeouts: %u\n", 2865 smi_get_stat(smi, long_timeouts)); 2866 seq_printf(m, "idles: %u\n", 2867 smi_get_stat(smi, idles)); 2868 seq_printf(m, "interrupts: %u\n", 2869 smi_get_stat(smi, interrupts)); 2870 seq_printf(m, "attentions: %u\n", 2871 smi_get_stat(smi, attentions)); 2872 seq_printf(m, "flag_fetches: %u\n", 2873 smi_get_stat(smi, flag_fetches)); 2874 seq_printf(m, "hosed_count: %u\n", 2875 smi_get_stat(smi, hosed_count)); 2876 seq_printf(m, "complete_transactions: %u\n", 2877 smi_get_stat(smi, complete_transactions)); 2878 seq_printf(m, "events: %u\n", 2879 smi_get_stat(smi, events)); 2880 seq_printf(m, "watchdog_pretimeouts: %u\n", 2881 smi_get_stat(smi, watchdog_pretimeouts)); 2882 seq_printf(m, "incoming_messages: %u\n", 2883 smi_get_stat(smi, incoming_messages)); 2884 return 0; 2885 } 2886 2887 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 2888 { 2889 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 2890 } 2891 2892 static const struct file_operations smi_si_stats_proc_ops = { 2893 .open = smi_si_stats_proc_open, 2894 .read = seq_read, 2895 .llseek = seq_lseek, 2896 .release = single_release, 2897 }; 2898 2899 static int smi_params_proc_show(struct seq_file *m, void *v) 2900 { 2901 struct smi_info *smi = m->private; 2902 2903 return seq_printf(m, 2904 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2905 si_to_str[smi->si_type], 2906 addr_space_to_str[smi->io.addr_type], 2907 smi->io.addr_data, 2908 smi->io.regspacing, 2909 smi->io.regsize, 2910 smi->io.regshift, 2911 smi->irq, 2912 smi->slave_addr); 2913 } 2914 2915 static int smi_params_proc_open(struct inode *inode, struct file *file) 2916 { 2917 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 2918 } 2919 2920 static const struct file_operations smi_params_proc_ops = { 2921 .open = smi_params_proc_open, 2922 .read = seq_read, 2923 .llseek = seq_lseek, 2924 .release = single_release, 2925 }; 2926 2927 /* 2928 * oem_data_avail_to_receive_msg_avail 2929 * @info - smi_info structure with msg_flags set 2930 * 2931 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2932 * Returns 1 indicating need to re-run handle_flags(). 2933 */ 2934 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2935 { 2936 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2937 RECEIVE_MSG_AVAIL); 2938 return 1; 2939 } 2940 2941 /* 2942 * setup_dell_poweredge_oem_data_handler 2943 * @info - smi_info.device_id must be populated 2944 * 2945 * Systems that match, but have firmware version < 1.40 may assert 2946 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2947 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2948 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2949 * as RECEIVE_MSG_AVAIL instead. 2950 * 2951 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2952 * assert the OEM[012] bits, and if it did, the driver would have to 2953 * change to handle that properly, we don't actually check for the 2954 * firmware version. 2955 * Device ID = 0x20 BMC on PowerEdge 8G servers 2956 * Device Revision = 0x80 2957 * Firmware Revision1 = 0x01 BMC version 1.40 2958 * Firmware Revision2 = 0x40 BCD encoded 2959 * IPMI Version = 0x51 IPMI 1.5 2960 * Manufacturer ID = A2 02 00 Dell IANA 2961 * 2962 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2963 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2964 * 2965 */ 2966 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2967 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2968 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2969 #define DELL_IANA_MFR_ID 0x0002a2 2970 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2971 { 2972 struct ipmi_device_id *id = &smi_info->device_id; 2973 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2974 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2975 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2976 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2977 smi_info->oem_data_avail_handler = 2978 oem_data_avail_to_receive_msg_avail; 2979 } else if (ipmi_version_major(id) < 1 || 2980 (ipmi_version_major(id) == 1 && 2981 ipmi_version_minor(id) < 5)) { 2982 smi_info->oem_data_avail_handler = 2983 oem_data_avail_to_receive_msg_avail; 2984 } 2985 } 2986 } 2987 2988 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2989 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2990 { 2991 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2992 2993 /* Make it a response */ 2994 msg->rsp[0] = msg->data[0] | 4; 2995 msg->rsp[1] = msg->data[1]; 2996 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2997 msg->rsp_size = 3; 2998 smi_info->curr_msg = NULL; 2999 deliver_recv_msg(smi_info, msg); 3000 } 3001 3002 /* 3003 * dell_poweredge_bt_xaction_handler 3004 * @info - smi_info.device_id must be populated 3005 * 3006 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3007 * not respond to a Get SDR command if the length of the data 3008 * requested is exactly 0x3A, which leads to command timeouts and no 3009 * data returned. This intercepts such commands, and causes userspace 3010 * callers to try again with a different-sized buffer, which succeeds. 3011 */ 3012 3013 #define STORAGE_NETFN 0x0A 3014 #define STORAGE_CMD_GET_SDR 0x23 3015 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3016 unsigned long unused, 3017 void *in) 3018 { 3019 struct smi_info *smi_info = in; 3020 unsigned char *data = smi_info->curr_msg->data; 3021 unsigned int size = smi_info->curr_msg->data_size; 3022 if (size >= 8 && 3023 (data[0]>>2) == STORAGE_NETFN && 3024 data[1] == STORAGE_CMD_GET_SDR && 3025 data[7] == 0x3A) { 3026 return_hosed_msg_badsize(smi_info); 3027 return NOTIFY_STOP; 3028 } 3029 return NOTIFY_DONE; 3030 } 3031 3032 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3033 .notifier_call = dell_poweredge_bt_xaction_handler, 3034 }; 3035 3036 /* 3037 * setup_dell_poweredge_bt_xaction_handler 3038 * @info - smi_info.device_id must be filled in already 3039 * 3040 * Fills in smi_info.device_id.start_transaction_pre_hook 3041 * when we know what function to use there. 3042 */ 3043 static void 3044 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3045 { 3046 struct ipmi_device_id *id = &smi_info->device_id; 3047 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3048 smi_info->si_type == SI_BT) 3049 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3050 } 3051 3052 /* 3053 * setup_oem_data_handler 3054 * @info - smi_info.device_id must be filled in already 3055 * 3056 * Fills in smi_info.device_id.oem_data_available_handler 3057 * when we know what function to use there. 3058 */ 3059 3060 static void setup_oem_data_handler(struct smi_info *smi_info) 3061 { 3062 setup_dell_poweredge_oem_data_handler(smi_info); 3063 } 3064 3065 static void setup_xaction_handlers(struct smi_info *smi_info) 3066 { 3067 setup_dell_poweredge_bt_xaction_handler(smi_info); 3068 } 3069 3070 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3071 { 3072 if (smi_info->intf) { 3073 /* 3074 * The timer and thread are only running if the 3075 * interface has been started up and registered. 3076 */ 3077 if (smi_info->thread != NULL) 3078 kthread_stop(smi_info->thread); 3079 del_timer_sync(&smi_info->si_timer); 3080 } 3081 } 3082 3083 static struct ipmi_default_vals 3084 { 3085 int type; 3086 int port; 3087 } ipmi_defaults[] = 3088 { 3089 { .type = SI_KCS, .port = 0xca2 }, 3090 { .type = SI_SMIC, .port = 0xca9 }, 3091 { .type = SI_BT, .port = 0xe4 }, 3092 { .port = 0 } 3093 }; 3094 3095 static void default_find_bmc(void) 3096 { 3097 struct smi_info *info; 3098 int i; 3099 3100 for (i = 0; ; i++) { 3101 if (!ipmi_defaults[i].port) 3102 break; 3103 #ifdef CONFIG_PPC 3104 if (check_legacy_ioport(ipmi_defaults[i].port)) 3105 continue; 3106 #endif 3107 info = smi_info_alloc(); 3108 if (!info) 3109 return; 3110 3111 info->addr_source = SI_DEFAULT; 3112 3113 info->si_type = ipmi_defaults[i].type; 3114 info->io_setup = port_setup; 3115 info->io.addr_data = ipmi_defaults[i].port; 3116 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3117 3118 info->io.addr = NULL; 3119 info->io.regspacing = DEFAULT_REGSPACING; 3120 info->io.regsize = DEFAULT_REGSPACING; 3121 info->io.regshift = 0; 3122 3123 if (add_smi(info) == 0) { 3124 if ((try_smi_init(info)) == 0) { 3125 /* Found one... */ 3126 printk(KERN_INFO PFX "Found default %s" 3127 " state machine at %s address 0x%lx\n", 3128 si_to_str[info->si_type], 3129 addr_space_to_str[info->io.addr_type], 3130 info->io.addr_data); 3131 } else 3132 cleanup_one_si(info); 3133 } else { 3134 kfree(info); 3135 } 3136 } 3137 } 3138 3139 static int is_new_interface(struct smi_info *info) 3140 { 3141 struct smi_info *e; 3142 3143 list_for_each_entry(e, &smi_infos, link) { 3144 if (e->io.addr_type != info->io.addr_type) 3145 continue; 3146 if (e->io.addr_data == info->io.addr_data) 3147 return 0; 3148 } 3149 3150 return 1; 3151 } 3152 3153 static int add_smi(struct smi_info *new_smi) 3154 { 3155 int rv = 0; 3156 3157 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3158 ipmi_addr_src_to_str[new_smi->addr_source], 3159 si_to_str[new_smi->si_type]); 3160 mutex_lock(&smi_infos_lock); 3161 if (!is_new_interface(new_smi)) { 3162 printk(KERN_CONT " duplicate interface\n"); 3163 rv = -EBUSY; 3164 goto out_err; 3165 } 3166 3167 printk(KERN_CONT "\n"); 3168 3169 /* So we know not to free it unless we have allocated one. */ 3170 new_smi->intf = NULL; 3171 new_smi->si_sm = NULL; 3172 new_smi->handlers = NULL; 3173 3174 list_add_tail(&new_smi->link, &smi_infos); 3175 3176 out_err: 3177 mutex_unlock(&smi_infos_lock); 3178 return rv; 3179 } 3180 3181 static int try_smi_init(struct smi_info *new_smi) 3182 { 3183 int rv = 0; 3184 int i; 3185 3186 printk(KERN_INFO PFX "Trying %s-specified %s state" 3187 " machine at %s address 0x%lx, slave address 0x%x," 3188 " irq %d\n", 3189 ipmi_addr_src_to_str[new_smi->addr_source], 3190 si_to_str[new_smi->si_type], 3191 addr_space_to_str[new_smi->io.addr_type], 3192 new_smi->io.addr_data, 3193 new_smi->slave_addr, new_smi->irq); 3194 3195 switch (new_smi->si_type) { 3196 case SI_KCS: 3197 new_smi->handlers = &kcs_smi_handlers; 3198 break; 3199 3200 case SI_SMIC: 3201 new_smi->handlers = &smic_smi_handlers; 3202 break; 3203 3204 case SI_BT: 3205 new_smi->handlers = &bt_smi_handlers; 3206 break; 3207 3208 default: 3209 /* No support for anything else yet. */ 3210 rv = -EIO; 3211 goto out_err; 3212 } 3213 3214 /* Allocate the state machine's data and initialize it. */ 3215 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3216 if (!new_smi->si_sm) { 3217 printk(KERN_ERR PFX 3218 "Could not allocate state machine memory\n"); 3219 rv = -ENOMEM; 3220 goto out_err; 3221 } 3222 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3223 &new_smi->io); 3224 3225 /* Now that we know the I/O size, we can set up the I/O. */ 3226 rv = new_smi->io_setup(new_smi); 3227 if (rv) { 3228 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3229 goto out_err; 3230 } 3231 3232 /* Do low-level detection first. */ 3233 if (new_smi->handlers->detect(new_smi->si_sm)) { 3234 if (new_smi->addr_source) 3235 printk(KERN_INFO PFX "Interface detection failed\n"); 3236 rv = -ENODEV; 3237 goto out_err; 3238 } 3239 3240 /* 3241 * Attempt a get device id command. If it fails, we probably 3242 * don't have a BMC here. 3243 */ 3244 rv = try_get_dev_id(new_smi); 3245 if (rv) { 3246 if (new_smi->addr_source) 3247 printk(KERN_INFO PFX "There appears to be no BMC" 3248 " at this location\n"); 3249 goto out_err; 3250 } 3251 3252 setup_oem_data_handler(new_smi); 3253 setup_xaction_handlers(new_smi); 3254 3255 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3256 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3257 new_smi->curr_msg = NULL; 3258 atomic_set(&new_smi->req_events, 0); 3259 new_smi->run_to_completion = 0; 3260 for (i = 0; i < SI_NUM_STATS; i++) 3261 atomic_set(&new_smi->stats[i], 0); 3262 3263 new_smi->interrupt_disabled = 1; 3264 atomic_set(&new_smi->stop_operation, 0); 3265 new_smi->intf_num = smi_num; 3266 smi_num++; 3267 3268 rv = try_enable_event_buffer(new_smi); 3269 if (rv == 0) 3270 new_smi->has_event_buffer = 1; 3271 3272 /* 3273 * Start clearing the flags before we enable interrupts or the 3274 * timer to avoid racing with the timer. 3275 */ 3276 start_clear_flags(new_smi); 3277 /* IRQ is defined to be set when non-zero. */ 3278 if (new_smi->irq) 3279 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3280 3281 if (!new_smi->dev) { 3282 /* 3283 * If we don't already have a device from something 3284 * else (like PCI), then register a new one. 3285 */ 3286 new_smi->pdev = platform_device_alloc("ipmi_si", 3287 new_smi->intf_num); 3288 if (!new_smi->pdev) { 3289 printk(KERN_ERR PFX 3290 "Unable to allocate platform device\n"); 3291 goto out_err; 3292 } 3293 new_smi->dev = &new_smi->pdev->dev; 3294 new_smi->dev->driver = &ipmi_driver.driver; 3295 3296 rv = platform_device_add(new_smi->pdev); 3297 if (rv) { 3298 printk(KERN_ERR PFX 3299 "Unable to register system interface device:" 3300 " %d\n", 3301 rv); 3302 goto out_err; 3303 } 3304 new_smi->dev_registered = 1; 3305 } 3306 3307 rv = ipmi_register_smi(&handlers, 3308 new_smi, 3309 &new_smi->device_id, 3310 new_smi->dev, 3311 "bmc", 3312 new_smi->slave_addr); 3313 if (rv) { 3314 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3315 rv); 3316 goto out_err_stop_timer; 3317 } 3318 3319 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3320 &smi_type_proc_ops, 3321 new_smi); 3322 if (rv) { 3323 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3324 goto out_err_stop_timer; 3325 } 3326 3327 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3328 &smi_si_stats_proc_ops, 3329 new_smi); 3330 if (rv) { 3331 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3332 goto out_err_stop_timer; 3333 } 3334 3335 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3336 &smi_params_proc_ops, 3337 new_smi); 3338 if (rv) { 3339 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3340 goto out_err_stop_timer; 3341 } 3342 3343 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3344 si_to_str[new_smi->si_type]); 3345 3346 return 0; 3347 3348 out_err_stop_timer: 3349 atomic_inc(&new_smi->stop_operation); 3350 wait_for_timer_and_thread(new_smi); 3351 3352 out_err: 3353 new_smi->interrupt_disabled = 1; 3354 3355 if (new_smi->intf) { 3356 ipmi_unregister_smi(new_smi->intf); 3357 new_smi->intf = NULL; 3358 } 3359 3360 if (new_smi->irq_cleanup) { 3361 new_smi->irq_cleanup(new_smi); 3362 new_smi->irq_cleanup = NULL; 3363 } 3364 3365 /* 3366 * Wait until we know that we are out of any interrupt 3367 * handlers might have been running before we freed the 3368 * interrupt. 3369 */ 3370 synchronize_sched(); 3371 3372 if (new_smi->si_sm) { 3373 if (new_smi->handlers) 3374 new_smi->handlers->cleanup(new_smi->si_sm); 3375 kfree(new_smi->si_sm); 3376 new_smi->si_sm = NULL; 3377 } 3378 if (new_smi->addr_source_cleanup) { 3379 new_smi->addr_source_cleanup(new_smi); 3380 new_smi->addr_source_cleanup = NULL; 3381 } 3382 if (new_smi->io_cleanup) { 3383 new_smi->io_cleanup(new_smi); 3384 new_smi->io_cleanup = NULL; 3385 } 3386 3387 if (new_smi->dev_registered) { 3388 platform_device_unregister(new_smi->pdev); 3389 new_smi->dev_registered = 0; 3390 } 3391 3392 return rv; 3393 } 3394 3395 static int init_ipmi_si(void) 3396 { 3397 int i; 3398 char *str; 3399 int rv; 3400 struct smi_info *e; 3401 enum ipmi_addr_src type = SI_INVALID; 3402 3403 if (initialized) 3404 return 0; 3405 initialized = 1; 3406 3407 if (si_tryplatform) { 3408 rv = platform_driver_register(&ipmi_driver); 3409 if (rv) { 3410 printk(KERN_ERR PFX "Unable to register " 3411 "driver: %d\n", rv); 3412 return rv; 3413 } 3414 } 3415 3416 /* Parse out the si_type string into its components. */ 3417 str = si_type_str; 3418 if (*str != '\0') { 3419 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3420 si_type[i] = str; 3421 str = strchr(str, ','); 3422 if (str) { 3423 *str = '\0'; 3424 str++; 3425 } else { 3426 break; 3427 } 3428 } 3429 } 3430 3431 printk(KERN_INFO "IPMI System Interface driver.\n"); 3432 3433 /* If the user gave us a device, they presumably want us to use it */ 3434 if (!hardcode_find_bmc()) 3435 return 0; 3436 3437 #ifdef CONFIG_PCI 3438 if (si_trypci) { 3439 rv = pci_register_driver(&ipmi_pci_driver); 3440 if (rv) 3441 printk(KERN_ERR PFX "Unable to register " 3442 "PCI driver: %d\n", rv); 3443 else 3444 pci_registered = 1; 3445 } 3446 #endif 3447 3448 #ifdef CONFIG_ACPI 3449 if (si_tryacpi) { 3450 pnp_register_driver(&ipmi_pnp_driver); 3451 pnp_registered = 1; 3452 } 3453 #endif 3454 3455 #ifdef CONFIG_DMI 3456 if (si_trydmi) 3457 dmi_find_bmc(); 3458 #endif 3459 3460 #ifdef CONFIG_ACPI 3461 if (si_tryacpi) 3462 spmi_find_bmc(); 3463 #endif 3464 3465 /* We prefer devices with interrupts, but in the case of a machine 3466 with multiple BMCs we assume that there will be several instances 3467 of a given type so if we succeed in registering a type then also 3468 try to register everything else of the same type */ 3469 3470 mutex_lock(&smi_infos_lock); 3471 list_for_each_entry(e, &smi_infos, link) { 3472 /* Try to register a device if it has an IRQ and we either 3473 haven't successfully registered a device yet or this 3474 device has the same type as one we successfully registered */ 3475 if (e->irq && (!type || e->addr_source == type)) { 3476 if (!try_smi_init(e)) { 3477 type = e->addr_source; 3478 } 3479 } 3480 } 3481 3482 /* type will only have been set if we successfully registered an si */ 3483 if (type) { 3484 mutex_unlock(&smi_infos_lock); 3485 return 0; 3486 } 3487 3488 /* Fall back to the preferred device */ 3489 3490 list_for_each_entry(e, &smi_infos, link) { 3491 if (!e->irq && (!type || e->addr_source == type)) { 3492 if (!try_smi_init(e)) { 3493 type = e->addr_source; 3494 } 3495 } 3496 } 3497 mutex_unlock(&smi_infos_lock); 3498 3499 if (type) 3500 return 0; 3501 3502 if (si_trydefaults) { 3503 mutex_lock(&smi_infos_lock); 3504 if (list_empty(&smi_infos)) { 3505 /* No BMC was found, try defaults. */ 3506 mutex_unlock(&smi_infos_lock); 3507 default_find_bmc(); 3508 } else 3509 mutex_unlock(&smi_infos_lock); 3510 } 3511 3512 mutex_lock(&smi_infos_lock); 3513 if (unload_when_empty && list_empty(&smi_infos)) { 3514 mutex_unlock(&smi_infos_lock); 3515 cleanup_ipmi_si(); 3516 printk(KERN_WARNING PFX 3517 "Unable to find any System Interface(s)\n"); 3518 return -ENODEV; 3519 } else { 3520 mutex_unlock(&smi_infos_lock); 3521 return 0; 3522 } 3523 } 3524 module_init(init_ipmi_si); 3525 3526 static void cleanup_one_si(struct smi_info *to_clean) 3527 { 3528 int rv = 0; 3529 unsigned long flags; 3530 3531 if (!to_clean) 3532 return; 3533 3534 list_del(&to_clean->link); 3535 3536 /* Tell the driver that we are shutting down. */ 3537 atomic_inc(&to_clean->stop_operation); 3538 3539 /* 3540 * Make sure the timer and thread are stopped and will not run 3541 * again. 3542 */ 3543 wait_for_timer_and_thread(to_clean); 3544 3545 /* 3546 * Timeouts are stopped, now make sure the interrupts are off 3547 * for the device. A little tricky with locks to make sure 3548 * there are no races. 3549 */ 3550 spin_lock_irqsave(&to_clean->si_lock, flags); 3551 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3552 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3553 poll(to_clean); 3554 schedule_timeout_uninterruptible(1); 3555 spin_lock_irqsave(&to_clean->si_lock, flags); 3556 } 3557 disable_si_irq(to_clean); 3558 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3559 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3560 poll(to_clean); 3561 schedule_timeout_uninterruptible(1); 3562 } 3563 3564 /* Clean up interrupts and make sure that everything is done. */ 3565 if (to_clean->irq_cleanup) 3566 to_clean->irq_cleanup(to_clean); 3567 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3568 poll(to_clean); 3569 schedule_timeout_uninterruptible(1); 3570 } 3571 3572 if (to_clean->intf) 3573 rv = ipmi_unregister_smi(to_clean->intf); 3574 3575 if (rv) { 3576 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3577 rv); 3578 } 3579 3580 if (to_clean->handlers) 3581 to_clean->handlers->cleanup(to_clean->si_sm); 3582 3583 kfree(to_clean->si_sm); 3584 3585 if (to_clean->addr_source_cleanup) 3586 to_clean->addr_source_cleanup(to_clean); 3587 if (to_clean->io_cleanup) 3588 to_clean->io_cleanup(to_clean); 3589 3590 if (to_clean->dev_registered) 3591 platform_device_unregister(to_clean->pdev); 3592 3593 kfree(to_clean); 3594 } 3595 3596 static void cleanup_ipmi_si(void) 3597 { 3598 struct smi_info *e, *tmp_e; 3599 3600 if (!initialized) 3601 return; 3602 3603 #ifdef CONFIG_PCI 3604 if (pci_registered) 3605 pci_unregister_driver(&ipmi_pci_driver); 3606 #endif 3607 #ifdef CONFIG_ACPI 3608 if (pnp_registered) 3609 pnp_unregister_driver(&ipmi_pnp_driver); 3610 #endif 3611 3612 platform_driver_unregister(&ipmi_driver); 3613 3614 mutex_lock(&smi_infos_lock); 3615 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3616 cleanup_one_si(e); 3617 mutex_unlock(&smi_infos_lock); 3618 } 3619 module_exit(cleanup_ipmi_si); 3620 3621 MODULE_LICENSE("GPL"); 3622 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3623 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3624 " system interfaces."); 3625