1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 68 #ifdef CONFIG_PPC_OF 69 #include <asm/of_device.h> 70 #include <asm/of_platform.h> 71 #endif 72 73 #define PFX "ipmi_si: " 74 75 /* Measure times between events in the driver. */ 76 #undef DEBUG_TIMING 77 78 /* Call every 10 ms. */ 79 #define SI_TIMEOUT_TIME_USEC 10000 80 #define SI_USEC_PER_JIFFY (1000000/HZ) 81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 83 short timeout */ 84 85 /* Bit for BMC global enables. */ 86 #define IPMI_BMC_RCV_MSG_INTR 0x01 87 #define IPMI_BMC_EVT_MSG_INTR 0x02 88 #define IPMI_BMC_EVT_MSG_BUFF 0x04 89 #define IPMI_BMC_SYS_LOG 0x08 90 91 enum si_intf_state { 92 SI_NORMAL, 93 SI_GETTING_FLAGS, 94 SI_GETTING_EVENTS, 95 SI_CLEARING_FLAGS, 96 SI_CLEARING_FLAGS_THEN_SET_IRQ, 97 SI_GETTING_MESSAGES, 98 SI_ENABLE_INTERRUPTS1, 99 SI_ENABLE_INTERRUPTS2, 100 SI_DISABLE_INTERRUPTS1, 101 SI_DISABLE_INTERRUPTS2 102 /* FIXME - add watchdog stuff. */ 103 }; 104 105 /* Some BT-specific defines we need here. */ 106 #define IPMI_BT_INTMASK_REG 2 107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 109 110 enum si_type { 111 SI_KCS, SI_SMIC, SI_BT 112 }; 113 static char *si_to_str[] = { "kcs", "smic", "bt" }; 114 115 #define DEVICE_NAME "ipmi_si" 116 117 static struct device_driver ipmi_driver = 118 { 119 .name = DEVICE_NAME, 120 .bus = &platform_bus_type 121 }; 122 123 struct smi_info 124 { 125 int intf_num; 126 ipmi_smi_t intf; 127 struct si_sm_data *si_sm; 128 struct si_sm_handlers *handlers; 129 enum si_type si_type; 130 spinlock_t si_lock; 131 spinlock_t msg_lock; 132 struct list_head xmit_msgs; 133 struct list_head hp_xmit_msgs; 134 struct ipmi_smi_msg *curr_msg; 135 enum si_intf_state si_state; 136 137 /* Used to handle the various types of I/O that can occur with 138 IPMI */ 139 struct si_sm_io io; 140 int (*io_setup)(struct smi_info *info); 141 void (*io_cleanup)(struct smi_info *info); 142 int (*irq_setup)(struct smi_info *info); 143 void (*irq_cleanup)(struct smi_info *info); 144 unsigned int io_size; 145 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */ 146 void (*addr_source_cleanup)(struct smi_info *info); 147 void *addr_source_data; 148 149 /* Per-OEM handler, called from handle_flags(). 150 Returns 1 when handle_flags() needs to be re-run 151 or 0 indicating it set si_state itself. 152 */ 153 int (*oem_data_avail_handler)(struct smi_info *smi_info); 154 155 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN 156 is set to hold the flags until we are done handling everything 157 from the flags. */ 158 #define RECEIVE_MSG_AVAIL 0x01 159 #define EVENT_MSG_BUFFER_FULL 0x02 160 #define WDT_PRE_TIMEOUT_INT 0x08 161 #define OEM0_DATA_AVAIL 0x20 162 #define OEM1_DATA_AVAIL 0x40 163 #define OEM2_DATA_AVAIL 0x80 164 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 165 OEM1_DATA_AVAIL | \ 166 OEM2_DATA_AVAIL) 167 unsigned char msg_flags; 168 169 /* If set to true, this will request events the next time the 170 state machine is idle. */ 171 atomic_t req_events; 172 173 /* If true, run the state machine to completion on every send 174 call. Generally used after a panic to make sure stuff goes 175 out. */ 176 int run_to_completion; 177 178 /* The I/O port of an SI interface. */ 179 int port; 180 181 /* The space between start addresses of the two ports. For 182 instance, if the first port is 0xca2 and the spacing is 4, then 183 the second port is 0xca6. */ 184 unsigned int spacing; 185 186 /* zero if no irq; */ 187 int irq; 188 189 /* The timer for this si. */ 190 struct timer_list si_timer; 191 192 /* The time (in jiffies) the last timeout occurred at. */ 193 unsigned long last_timeout_jiffies; 194 195 /* Used to gracefully stop the timer without race conditions. */ 196 atomic_t stop_operation; 197 198 /* The driver will disable interrupts when it gets into a 199 situation where it cannot handle messages due to lack of 200 memory. Once that situation clears up, it will re-enable 201 interrupts. */ 202 int interrupt_disabled; 203 204 /* From the get device id response... */ 205 struct ipmi_device_id device_id; 206 207 /* Driver model stuff. */ 208 struct device *dev; 209 struct platform_device *pdev; 210 211 /* True if we allocated the device, false if it came from 212 * someplace else (like PCI). */ 213 int dev_registered; 214 215 /* Slave address, could be reported from DMI. */ 216 unsigned char slave_addr; 217 218 /* Counters and things for the proc filesystem. */ 219 spinlock_t count_lock; 220 unsigned long short_timeouts; 221 unsigned long long_timeouts; 222 unsigned long timeout_restarts; 223 unsigned long idles; 224 unsigned long interrupts; 225 unsigned long attentions; 226 unsigned long flag_fetches; 227 unsigned long hosed_count; 228 unsigned long complete_transactions; 229 unsigned long events; 230 unsigned long watchdog_pretimeouts; 231 unsigned long incoming_messages; 232 233 struct task_struct *thread; 234 235 struct list_head link; 236 }; 237 238 #define SI_MAX_PARMS 4 239 240 static int force_kipmid[SI_MAX_PARMS]; 241 static int num_force_kipmid; 242 243 static int unload_when_empty = 1; 244 245 static int try_smi_init(struct smi_info *smi); 246 static void cleanup_one_si(struct smi_info *to_clean); 247 248 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 249 static int register_xaction_notifier(struct notifier_block * nb) 250 { 251 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 252 } 253 254 static void deliver_recv_msg(struct smi_info *smi_info, 255 struct ipmi_smi_msg *msg) 256 { 257 /* Deliver the message to the upper layer with the lock 258 released. */ 259 spin_unlock(&(smi_info->si_lock)); 260 ipmi_smi_msg_received(smi_info->intf, msg); 261 spin_lock(&(smi_info->si_lock)); 262 } 263 264 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 265 { 266 struct ipmi_smi_msg *msg = smi_info->curr_msg; 267 268 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 269 cCode = IPMI_ERR_UNSPECIFIED; 270 /* else use it as is */ 271 272 /* Make it a reponse */ 273 msg->rsp[0] = msg->data[0] | 4; 274 msg->rsp[1] = msg->data[1]; 275 msg->rsp[2] = cCode; 276 msg->rsp_size = 3; 277 278 smi_info->curr_msg = NULL; 279 deliver_recv_msg(smi_info, msg); 280 } 281 282 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 283 { 284 int rv; 285 struct list_head *entry = NULL; 286 #ifdef DEBUG_TIMING 287 struct timeval t; 288 #endif 289 290 /* No need to save flags, we aleady have interrupts off and we 291 already hold the SMI lock. */ 292 spin_lock(&(smi_info->msg_lock)); 293 294 /* Pick the high priority queue first. */ 295 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 296 entry = smi_info->hp_xmit_msgs.next; 297 } else if (!list_empty(&(smi_info->xmit_msgs))) { 298 entry = smi_info->xmit_msgs.next; 299 } 300 301 if (!entry) { 302 smi_info->curr_msg = NULL; 303 rv = SI_SM_IDLE; 304 } else { 305 int err; 306 307 list_del(entry); 308 smi_info->curr_msg = list_entry(entry, 309 struct ipmi_smi_msg, 310 link); 311 #ifdef DEBUG_TIMING 312 do_gettimeofday(&t); 313 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 314 #endif 315 err = atomic_notifier_call_chain(&xaction_notifier_list, 316 0, smi_info); 317 if (err & NOTIFY_STOP_MASK) { 318 rv = SI_SM_CALL_WITHOUT_DELAY; 319 goto out; 320 } 321 err = smi_info->handlers->start_transaction( 322 smi_info->si_sm, 323 smi_info->curr_msg->data, 324 smi_info->curr_msg->data_size); 325 if (err) { 326 return_hosed_msg(smi_info, err); 327 } 328 329 rv = SI_SM_CALL_WITHOUT_DELAY; 330 } 331 out: 332 spin_unlock(&(smi_info->msg_lock)); 333 334 return rv; 335 } 336 337 static void start_enable_irq(struct smi_info *smi_info) 338 { 339 unsigned char msg[2]; 340 341 /* If we are enabling interrupts, we have to tell the 342 BMC to use them. */ 343 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 344 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 345 346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 347 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 348 } 349 350 static void start_disable_irq(struct smi_info *smi_info) 351 { 352 unsigned char msg[2]; 353 354 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 355 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 356 357 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 358 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 359 } 360 361 static void start_clear_flags(struct smi_info *smi_info) 362 { 363 unsigned char msg[3]; 364 365 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 366 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 367 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 368 msg[2] = WDT_PRE_TIMEOUT_INT; 369 370 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 371 smi_info->si_state = SI_CLEARING_FLAGS; 372 } 373 374 /* When we have a situtaion where we run out of memory and cannot 375 allocate messages, we just leave them in the BMC and run the system 376 polled until we can allocate some memory. Once we have some 377 memory, we will re-enable the interrupt. */ 378 static inline void disable_si_irq(struct smi_info *smi_info) 379 { 380 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 381 start_disable_irq(smi_info); 382 smi_info->interrupt_disabled = 1; 383 } 384 } 385 386 static inline void enable_si_irq(struct smi_info *smi_info) 387 { 388 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 389 start_enable_irq(smi_info); 390 smi_info->interrupt_disabled = 0; 391 } 392 } 393 394 static void handle_flags(struct smi_info *smi_info) 395 { 396 retry: 397 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 398 /* Watchdog pre-timeout */ 399 spin_lock(&smi_info->count_lock); 400 smi_info->watchdog_pretimeouts++; 401 spin_unlock(&smi_info->count_lock); 402 403 start_clear_flags(smi_info); 404 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 405 spin_unlock(&(smi_info->si_lock)); 406 ipmi_smi_watchdog_pretimeout(smi_info->intf); 407 spin_lock(&(smi_info->si_lock)); 408 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 409 /* Messages available. */ 410 smi_info->curr_msg = ipmi_alloc_smi_msg(); 411 if (!smi_info->curr_msg) { 412 disable_si_irq(smi_info); 413 smi_info->si_state = SI_NORMAL; 414 return; 415 } 416 enable_si_irq(smi_info); 417 418 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 419 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 420 smi_info->curr_msg->data_size = 2; 421 422 smi_info->handlers->start_transaction( 423 smi_info->si_sm, 424 smi_info->curr_msg->data, 425 smi_info->curr_msg->data_size); 426 smi_info->si_state = SI_GETTING_MESSAGES; 427 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 428 /* Events available. */ 429 smi_info->curr_msg = ipmi_alloc_smi_msg(); 430 if (!smi_info->curr_msg) { 431 disable_si_irq(smi_info); 432 smi_info->si_state = SI_NORMAL; 433 return; 434 } 435 enable_si_irq(smi_info); 436 437 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 438 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 439 smi_info->curr_msg->data_size = 2; 440 441 smi_info->handlers->start_transaction( 442 smi_info->si_sm, 443 smi_info->curr_msg->data, 444 smi_info->curr_msg->data_size); 445 smi_info->si_state = SI_GETTING_EVENTS; 446 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 447 smi_info->oem_data_avail_handler) { 448 if (smi_info->oem_data_avail_handler(smi_info)) 449 goto retry; 450 } else { 451 smi_info->si_state = SI_NORMAL; 452 } 453 } 454 455 static void handle_transaction_done(struct smi_info *smi_info) 456 { 457 struct ipmi_smi_msg *msg; 458 #ifdef DEBUG_TIMING 459 struct timeval t; 460 461 do_gettimeofday(&t); 462 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 463 #endif 464 switch (smi_info->si_state) { 465 case SI_NORMAL: 466 if (!smi_info->curr_msg) 467 break; 468 469 smi_info->curr_msg->rsp_size 470 = smi_info->handlers->get_result( 471 smi_info->si_sm, 472 smi_info->curr_msg->rsp, 473 IPMI_MAX_MSG_LENGTH); 474 475 /* Do this here becase deliver_recv_msg() releases the 476 lock, and a new message can be put in during the 477 time the lock is released. */ 478 msg = smi_info->curr_msg; 479 smi_info->curr_msg = NULL; 480 deliver_recv_msg(smi_info, msg); 481 break; 482 483 case SI_GETTING_FLAGS: 484 { 485 unsigned char msg[4]; 486 unsigned int len; 487 488 /* We got the flags from the SMI, now handle them. */ 489 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 490 if (msg[2] != 0) { 491 /* Error fetching flags, just give up for 492 now. */ 493 smi_info->si_state = SI_NORMAL; 494 } else if (len < 4) { 495 /* Hmm, no flags. That's technically illegal, but 496 don't use uninitialized data. */ 497 smi_info->si_state = SI_NORMAL; 498 } else { 499 smi_info->msg_flags = msg[3]; 500 handle_flags(smi_info); 501 } 502 break; 503 } 504 505 case SI_CLEARING_FLAGS: 506 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 507 { 508 unsigned char msg[3]; 509 510 /* We cleared the flags. */ 511 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 512 if (msg[2] != 0) { 513 /* Error clearing flags */ 514 printk(KERN_WARNING 515 "ipmi_si: Error clearing flags: %2.2x\n", 516 msg[2]); 517 } 518 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 519 start_enable_irq(smi_info); 520 else 521 smi_info->si_state = SI_NORMAL; 522 break; 523 } 524 525 case SI_GETTING_EVENTS: 526 { 527 smi_info->curr_msg->rsp_size 528 = smi_info->handlers->get_result( 529 smi_info->si_sm, 530 smi_info->curr_msg->rsp, 531 IPMI_MAX_MSG_LENGTH); 532 533 /* Do this here becase deliver_recv_msg() releases the 534 lock, and a new message can be put in during the 535 time the lock is released. */ 536 msg = smi_info->curr_msg; 537 smi_info->curr_msg = NULL; 538 if (msg->rsp[2] != 0) { 539 /* Error getting event, probably done. */ 540 msg->done(msg); 541 542 /* Take off the event flag. */ 543 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 544 handle_flags(smi_info); 545 } else { 546 spin_lock(&smi_info->count_lock); 547 smi_info->events++; 548 spin_unlock(&smi_info->count_lock); 549 550 /* Do this before we deliver the message 551 because delivering the message releases the 552 lock and something else can mess with the 553 state. */ 554 handle_flags(smi_info); 555 556 deliver_recv_msg(smi_info, msg); 557 } 558 break; 559 } 560 561 case SI_GETTING_MESSAGES: 562 { 563 smi_info->curr_msg->rsp_size 564 = smi_info->handlers->get_result( 565 smi_info->si_sm, 566 smi_info->curr_msg->rsp, 567 IPMI_MAX_MSG_LENGTH); 568 569 /* Do this here becase deliver_recv_msg() releases the 570 lock, and a new message can be put in during the 571 time the lock is released. */ 572 msg = smi_info->curr_msg; 573 smi_info->curr_msg = NULL; 574 if (msg->rsp[2] != 0) { 575 /* Error getting event, probably done. */ 576 msg->done(msg); 577 578 /* Take off the msg flag. */ 579 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 580 handle_flags(smi_info); 581 } else { 582 spin_lock(&smi_info->count_lock); 583 smi_info->incoming_messages++; 584 spin_unlock(&smi_info->count_lock); 585 586 /* Do this before we deliver the message 587 because delivering the message releases the 588 lock and something else can mess with the 589 state. */ 590 handle_flags(smi_info); 591 592 deliver_recv_msg(smi_info, msg); 593 } 594 break; 595 } 596 597 case SI_ENABLE_INTERRUPTS1: 598 { 599 unsigned char msg[4]; 600 601 /* We got the flags from the SMI, now handle them. */ 602 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 603 if (msg[2] != 0) { 604 printk(KERN_WARNING 605 "ipmi_si: Could not enable interrupts" 606 ", failed get, using polled mode.\n"); 607 smi_info->si_state = SI_NORMAL; 608 } else { 609 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 610 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 611 msg[2] = (msg[3] | 612 IPMI_BMC_RCV_MSG_INTR | 613 IPMI_BMC_EVT_MSG_INTR); 614 smi_info->handlers->start_transaction( 615 smi_info->si_sm, msg, 3); 616 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 617 } 618 break; 619 } 620 621 case SI_ENABLE_INTERRUPTS2: 622 { 623 unsigned char msg[4]; 624 625 /* We got the flags from the SMI, now handle them. */ 626 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 627 if (msg[2] != 0) { 628 printk(KERN_WARNING 629 "ipmi_si: Could not enable interrupts" 630 ", failed set, using polled mode.\n"); 631 } 632 smi_info->si_state = SI_NORMAL; 633 break; 634 } 635 636 case SI_DISABLE_INTERRUPTS1: 637 { 638 unsigned char msg[4]; 639 640 /* We got the flags from the SMI, now handle them. */ 641 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 642 if (msg[2] != 0) { 643 printk(KERN_WARNING 644 "ipmi_si: Could not disable interrupts" 645 ", failed get.\n"); 646 smi_info->si_state = SI_NORMAL; 647 } else { 648 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 649 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 650 msg[2] = (msg[3] & 651 ~(IPMI_BMC_RCV_MSG_INTR | 652 IPMI_BMC_EVT_MSG_INTR)); 653 smi_info->handlers->start_transaction( 654 smi_info->si_sm, msg, 3); 655 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 656 } 657 break; 658 } 659 660 case SI_DISABLE_INTERRUPTS2: 661 { 662 unsigned char msg[4]; 663 664 /* We got the flags from the SMI, now handle them. */ 665 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 666 if (msg[2] != 0) { 667 printk(KERN_WARNING 668 "ipmi_si: Could not disable interrupts" 669 ", failed set.\n"); 670 } 671 smi_info->si_state = SI_NORMAL; 672 break; 673 } 674 } 675 } 676 677 /* Called on timeouts and events. Timeouts should pass the elapsed 678 time, interrupts should pass in zero. */ 679 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 680 int time) 681 { 682 enum si_sm_result si_sm_result; 683 684 restart: 685 /* There used to be a loop here that waited a little while 686 (around 25us) before giving up. That turned out to be 687 pointless, the minimum delays I was seeing were in the 300us 688 range, which is far too long to wait in an interrupt. So 689 we just run until the state machine tells us something 690 happened or it needs a delay. */ 691 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 692 time = 0; 693 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 694 { 695 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 696 } 697 698 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) 699 { 700 spin_lock(&smi_info->count_lock); 701 smi_info->complete_transactions++; 702 spin_unlock(&smi_info->count_lock); 703 704 handle_transaction_done(smi_info); 705 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 706 } 707 else if (si_sm_result == SI_SM_HOSED) 708 { 709 spin_lock(&smi_info->count_lock); 710 smi_info->hosed_count++; 711 spin_unlock(&smi_info->count_lock); 712 713 /* Do the before return_hosed_msg, because that 714 releases the lock. */ 715 smi_info->si_state = SI_NORMAL; 716 if (smi_info->curr_msg != NULL) { 717 /* If we were handling a user message, format 718 a response to send to the upper layer to 719 tell it about the error. */ 720 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 721 } 722 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 723 } 724 725 /* We prefer handling attn over new messages. */ 726 if (si_sm_result == SI_SM_ATTN) 727 { 728 unsigned char msg[2]; 729 730 spin_lock(&smi_info->count_lock); 731 smi_info->attentions++; 732 spin_unlock(&smi_info->count_lock); 733 734 /* Got a attn, send down a get message flags to see 735 what's causing it. It would be better to handle 736 this in the upper layer, but due to the way 737 interrupts work with the SMI, that's not really 738 possible. */ 739 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 740 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 741 742 smi_info->handlers->start_transaction( 743 smi_info->si_sm, msg, 2); 744 smi_info->si_state = SI_GETTING_FLAGS; 745 goto restart; 746 } 747 748 /* If we are currently idle, try to start the next message. */ 749 if (si_sm_result == SI_SM_IDLE) { 750 spin_lock(&smi_info->count_lock); 751 smi_info->idles++; 752 spin_unlock(&smi_info->count_lock); 753 754 si_sm_result = start_next_msg(smi_info); 755 if (si_sm_result != SI_SM_IDLE) 756 goto restart; 757 } 758 759 if ((si_sm_result == SI_SM_IDLE) 760 && (atomic_read(&smi_info->req_events))) 761 { 762 /* We are idle and the upper layer requested that I fetch 763 events, so do so. */ 764 atomic_set(&smi_info->req_events, 0); 765 766 smi_info->curr_msg = ipmi_alloc_smi_msg(); 767 if (!smi_info->curr_msg) 768 goto out; 769 770 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 771 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 772 smi_info->curr_msg->data_size = 2; 773 774 smi_info->handlers->start_transaction( 775 smi_info->si_sm, 776 smi_info->curr_msg->data, 777 smi_info->curr_msg->data_size); 778 smi_info->si_state = SI_GETTING_EVENTS; 779 goto restart; 780 } 781 out: 782 return si_sm_result; 783 } 784 785 static void sender(void *send_info, 786 struct ipmi_smi_msg *msg, 787 int priority) 788 { 789 struct smi_info *smi_info = send_info; 790 enum si_sm_result result; 791 unsigned long flags; 792 #ifdef DEBUG_TIMING 793 struct timeval t; 794 #endif 795 796 if (atomic_read(&smi_info->stop_operation)) { 797 msg->rsp[0] = msg->data[0] | 4; 798 msg->rsp[1] = msg->data[1]; 799 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 800 msg->rsp_size = 3; 801 deliver_recv_msg(smi_info, msg); 802 return; 803 } 804 805 spin_lock_irqsave(&(smi_info->msg_lock), flags); 806 #ifdef DEBUG_TIMING 807 do_gettimeofday(&t); 808 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 809 #endif 810 811 if (smi_info->run_to_completion) { 812 /* If we are running to completion, then throw it in 813 the list and run transactions until everything is 814 clear. Priority doesn't matter here. */ 815 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 816 817 /* We have to release the msg lock and claim the smi 818 lock in this case, because of race conditions. */ 819 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 820 821 spin_lock_irqsave(&(smi_info->si_lock), flags); 822 result = smi_event_handler(smi_info, 0); 823 while (result != SI_SM_IDLE) { 824 udelay(SI_SHORT_TIMEOUT_USEC); 825 result = smi_event_handler(smi_info, 826 SI_SHORT_TIMEOUT_USEC); 827 } 828 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 829 return; 830 } else { 831 if (priority > 0) { 832 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs)); 833 } else { 834 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 835 } 836 } 837 spin_unlock_irqrestore(&(smi_info->msg_lock), flags); 838 839 spin_lock_irqsave(&(smi_info->si_lock), flags); 840 if ((smi_info->si_state == SI_NORMAL) 841 && (smi_info->curr_msg == NULL)) 842 { 843 start_next_msg(smi_info); 844 } 845 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 846 } 847 848 static void set_run_to_completion(void *send_info, int i_run_to_completion) 849 { 850 struct smi_info *smi_info = send_info; 851 enum si_sm_result result; 852 unsigned long flags; 853 854 spin_lock_irqsave(&(smi_info->si_lock), flags); 855 856 smi_info->run_to_completion = i_run_to_completion; 857 if (i_run_to_completion) { 858 result = smi_event_handler(smi_info, 0); 859 while (result != SI_SM_IDLE) { 860 udelay(SI_SHORT_TIMEOUT_USEC); 861 result = smi_event_handler(smi_info, 862 SI_SHORT_TIMEOUT_USEC); 863 } 864 } 865 866 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 867 } 868 869 static int ipmi_thread(void *data) 870 { 871 struct smi_info *smi_info = data; 872 unsigned long flags; 873 enum si_sm_result smi_result; 874 875 set_user_nice(current, 19); 876 while (!kthread_should_stop()) { 877 spin_lock_irqsave(&(smi_info->si_lock), flags); 878 smi_result = smi_event_handler(smi_info, 0); 879 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 880 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 881 /* do nothing */ 882 } 883 else if (smi_result == SI_SM_CALL_WITH_DELAY) 884 schedule(); 885 else 886 schedule_timeout_interruptible(1); 887 } 888 return 0; 889 } 890 891 892 static void poll(void *send_info) 893 { 894 struct smi_info *smi_info = send_info; 895 896 /* 897 * Make sure there is some delay in the poll loop so we can 898 * drive time forward and timeout things. 899 */ 900 udelay(10); 901 smi_event_handler(smi_info, 10); 902 } 903 904 static void request_events(void *send_info) 905 { 906 struct smi_info *smi_info = send_info; 907 908 if (atomic_read(&smi_info->stop_operation)) 909 return; 910 911 atomic_set(&smi_info->req_events, 1); 912 } 913 914 static int initialized; 915 916 static void smi_timeout(unsigned long data) 917 { 918 struct smi_info *smi_info = (struct smi_info *) data; 919 enum si_sm_result smi_result; 920 unsigned long flags; 921 unsigned long jiffies_now; 922 long time_diff; 923 #ifdef DEBUG_TIMING 924 struct timeval t; 925 #endif 926 927 spin_lock_irqsave(&(smi_info->si_lock), flags); 928 #ifdef DEBUG_TIMING 929 do_gettimeofday(&t); 930 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 931 #endif 932 jiffies_now = jiffies; 933 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 934 * SI_USEC_PER_JIFFY); 935 smi_result = smi_event_handler(smi_info, time_diff); 936 937 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 938 939 smi_info->last_timeout_jiffies = jiffies_now; 940 941 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 942 /* Running with interrupts, only do long timeouts. */ 943 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 944 spin_lock_irqsave(&smi_info->count_lock, flags); 945 smi_info->long_timeouts++; 946 spin_unlock_irqrestore(&smi_info->count_lock, flags); 947 goto do_add_timer; 948 } 949 950 /* If the state machine asks for a short delay, then shorten 951 the timer timeout. */ 952 if (smi_result == SI_SM_CALL_WITH_DELAY) { 953 spin_lock_irqsave(&smi_info->count_lock, flags); 954 smi_info->short_timeouts++; 955 spin_unlock_irqrestore(&smi_info->count_lock, flags); 956 smi_info->si_timer.expires = jiffies + 1; 957 } else { 958 spin_lock_irqsave(&smi_info->count_lock, flags); 959 smi_info->long_timeouts++; 960 spin_unlock_irqrestore(&smi_info->count_lock, flags); 961 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 962 } 963 964 do_add_timer: 965 add_timer(&(smi_info->si_timer)); 966 } 967 968 static irqreturn_t si_irq_handler(int irq, void *data) 969 { 970 struct smi_info *smi_info = data; 971 unsigned long flags; 972 #ifdef DEBUG_TIMING 973 struct timeval t; 974 #endif 975 976 spin_lock_irqsave(&(smi_info->si_lock), flags); 977 978 spin_lock(&smi_info->count_lock); 979 smi_info->interrupts++; 980 spin_unlock(&smi_info->count_lock); 981 982 #ifdef DEBUG_TIMING 983 do_gettimeofday(&t); 984 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 985 #endif 986 smi_event_handler(smi_info, 0); 987 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 988 return IRQ_HANDLED; 989 } 990 991 static irqreturn_t si_bt_irq_handler(int irq, void *data) 992 { 993 struct smi_info *smi_info = data; 994 /* We need to clear the IRQ flag for the BT interface. */ 995 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 996 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 997 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 998 return si_irq_handler(irq, data); 999 } 1000 1001 static int smi_start_processing(void *send_info, 1002 ipmi_smi_t intf) 1003 { 1004 struct smi_info *new_smi = send_info; 1005 int enable = 0; 1006 1007 new_smi->intf = intf; 1008 1009 /* Set up the timer that drives the interface. */ 1010 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1011 new_smi->last_timeout_jiffies = jiffies; 1012 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1013 1014 /* 1015 * Check if the user forcefully enabled the daemon. 1016 */ 1017 if (new_smi->intf_num < num_force_kipmid) 1018 enable = force_kipmid[new_smi->intf_num]; 1019 /* 1020 * The BT interface is efficient enough to not need a thread, 1021 * and there is no need for a thread if we have interrupts. 1022 */ 1023 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1024 enable = 1; 1025 1026 if (enable) { 1027 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1028 "kipmi%d", new_smi->intf_num); 1029 if (IS_ERR(new_smi->thread)) { 1030 printk(KERN_NOTICE "ipmi_si_intf: Could not start" 1031 " kernel thread due to error %ld, only using" 1032 " timers to drive the interface\n", 1033 PTR_ERR(new_smi->thread)); 1034 new_smi->thread = NULL; 1035 } 1036 } 1037 1038 return 0; 1039 } 1040 1041 static void set_maintenance_mode(void *send_info, int enable) 1042 { 1043 struct smi_info *smi_info = send_info; 1044 1045 if (!enable) 1046 atomic_set(&smi_info->req_events, 0); 1047 } 1048 1049 static struct ipmi_smi_handlers handlers = 1050 { 1051 .owner = THIS_MODULE, 1052 .start_processing = smi_start_processing, 1053 .sender = sender, 1054 .request_events = request_events, 1055 .set_maintenance_mode = set_maintenance_mode, 1056 .set_run_to_completion = set_run_to_completion, 1057 .poll = poll, 1058 }; 1059 1060 /* There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1061 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */ 1062 1063 static LIST_HEAD(smi_infos); 1064 static DEFINE_MUTEX(smi_infos_lock); 1065 static int smi_num; /* Used to sequence the SMIs */ 1066 1067 #define DEFAULT_REGSPACING 1 1068 #define DEFAULT_REGSIZE 1 1069 1070 static int si_trydefaults = 1; 1071 static char *si_type[SI_MAX_PARMS]; 1072 #define MAX_SI_TYPE_STR 30 1073 static char si_type_str[MAX_SI_TYPE_STR]; 1074 static unsigned long addrs[SI_MAX_PARMS]; 1075 static int num_addrs; 1076 static unsigned int ports[SI_MAX_PARMS]; 1077 static int num_ports; 1078 static int irqs[SI_MAX_PARMS]; 1079 static int num_irqs; 1080 static int regspacings[SI_MAX_PARMS]; 1081 static int num_regspacings; 1082 static int regsizes[SI_MAX_PARMS]; 1083 static int num_regsizes; 1084 static int regshifts[SI_MAX_PARMS]; 1085 static int num_regshifts; 1086 static int slave_addrs[SI_MAX_PARMS]; 1087 static int num_slave_addrs; 1088 1089 #define IPMI_IO_ADDR_SPACE 0 1090 #define IPMI_MEM_ADDR_SPACE 1 1091 static char *addr_space_to_str[] = { "i/o", "mem" }; 1092 1093 static int hotmod_handler(const char *val, struct kernel_param *kp); 1094 1095 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1096 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1097 " Documentation/IPMI.txt in the kernel sources for the" 1098 " gory details."); 1099 1100 module_param_named(trydefaults, si_trydefaults, bool, 0); 1101 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1102 " default scan of the KCS and SMIC interface at the standard" 1103 " address"); 1104 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1105 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1106 " interface separated by commas. The types are 'kcs'," 1107 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1108 " the first interface to kcs and the second to bt"); 1109 module_param_array(addrs, long, &num_addrs, 0); 1110 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1111 " addresses separated by commas. Only use if an interface" 1112 " is in memory. Otherwise, set it to zero or leave" 1113 " it blank."); 1114 module_param_array(ports, int, &num_ports, 0); 1115 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1116 " addresses separated by commas. Only use if an interface" 1117 " is a port. Otherwise, set it to zero or leave" 1118 " it blank."); 1119 module_param_array(irqs, int, &num_irqs, 0); 1120 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1121 " addresses separated by commas. Only use if an interface" 1122 " has an interrupt. Otherwise, set it to zero or leave" 1123 " it blank."); 1124 module_param_array(regspacings, int, &num_regspacings, 0); 1125 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1126 " and each successive register used by the interface. For" 1127 " instance, if the start address is 0xca2 and the spacing" 1128 " is 2, then the second address is at 0xca4. Defaults" 1129 " to 1."); 1130 module_param_array(regsizes, int, &num_regsizes, 0); 1131 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1132 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1133 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1134 " the 8-bit IPMI register has to be read from a larger" 1135 " register."); 1136 module_param_array(regshifts, int, &num_regshifts, 0); 1137 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1138 " IPMI register, in bits. For instance, if the data" 1139 " is read from a 32-bit word and the IPMI data is in" 1140 " bit 8-15, then the shift would be 8"); 1141 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1142 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1143 " the controller. Normally this is 0x20, but can be" 1144 " overridden by this parm. This is an array indexed" 1145 " by interface number."); 1146 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1147 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1148 " disabled(0). Normally the IPMI driver auto-detects" 1149 " this, but the value may be overridden by this parm."); 1150 module_param(unload_when_empty, int, 0); 1151 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1152 " specified or found, default is 1. Setting to 0" 1153 " is useful for hot add of devices using hotmod."); 1154 1155 1156 static void std_irq_cleanup(struct smi_info *info) 1157 { 1158 if (info->si_type == SI_BT) 1159 /* Disable the interrupt in the BT interface. */ 1160 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1161 free_irq(info->irq, info); 1162 } 1163 1164 static int std_irq_setup(struct smi_info *info) 1165 { 1166 int rv; 1167 1168 if (!info->irq) 1169 return 0; 1170 1171 if (info->si_type == SI_BT) { 1172 rv = request_irq(info->irq, 1173 si_bt_irq_handler, 1174 IRQF_SHARED | IRQF_DISABLED, 1175 DEVICE_NAME, 1176 info); 1177 if (!rv) 1178 /* Enable the interrupt in the BT interface. */ 1179 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1180 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1181 } else 1182 rv = request_irq(info->irq, 1183 si_irq_handler, 1184 IRQF_SHARED | IRQF_DISABLED, 1185 DEVICE_NAME, 1186 info); 1187 if (rv) { 1188 printk(KERN_WARNING 1189 "ipmi_si: %s unable to claim interrupt %d," 1190 " running polled\n", 1191 DEVICE_NAME, info->irq); 1192 info->irq = 0; 1193 } else { 1194 info->irq_cleanup = std_irq_cleanup; 1195 printk(" Using irq %d\n", info->irq); 1196 } 1197 1198 return rv; 1199 } 1200 1201 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1202 { 1203 unsigned int addr = io->addr_data; 1204 1205 return inb(addr + (offset * io->regspacing)); 1206 } 1207 1208 static void port_outb(struct si_sm_io *io, unsigned int offset, 1209 unsigned char b) 1210 { 1211 unsigned int addr = io->addr_data; 1212 1213 outb(b, addr + (offset * io->regspacing)); 1214 } 1215 1216 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1217 { 1218 unsigned int addr = io->addr_data; 1219 1220 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1221 } 1222 1223 static void port_outw(struct si_sm_io *io, unsigned int offset, 1224 unsigned char b) 1225 { 1226 unsigned int addr = io->addr_data; 1227 1228 outw(b << io->regshift, addr + (offset * io->regspacing)); 1229 } 1230 1231 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1232 { 1233 unsigned int addr = io->addr_data; 1234 1235 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1236 } 1237 1238 static void port_outl(struct si_sm_io *io, unsigned int offset, 1239 unsigned char b) 1240 { 1241 unsigned int addr = io->addr_data; 1242 1243 outl(b << io->regshift, addr+(offset * io->regspacing)); 1244 } 1245 1246 static void port_cleanup(struct smi_info *info) 1247 { 1248 unsigned int addr = info->io.addr_data; 1249 int idx; 1250 1251 if (addr) { 1252 for (idx = 0; idx < info->io_size; idx++) { 1253 release_region(addr + idx * info->io.regspacing, 1254 info->io.regsize); 1255 } 1256 } 1257 } 1258 1259 static int port_setup(struct smi_info *info) 1260 { 1261 unsigned int addr = info->io.addr_data; 1262 int idx; 1263 1264 if (!addr) 1265 return -ENODEV; 1266 1267 info->io_cleanup = port_cleanup; 1268 1269 /* Figure out the actual inb/inw/inl/etc routine to use based 1270 upon the register size. */ 1271 switch (info->io.regsize) { 1272 case 1: 1273 info->io.inputb = port_inb; 1274 info->io.outputb = port_outb; 1275 break; 1276 case 2: 1277 info->io.inputb = port_inw; 1278 info->io.outputb = port_outw; 1279 break; 1280 case 4: 1281 info->io.inputb = port_inl; 1282 info->io.outputb = port_outl; 1283 break; 1284 default: 1285 printk("ipmi_si: Invalid register size: %d\n", 1286 info->io.regsize); 1287 return -EINVAL; 1288 } 1289 1290 /* Some BIOSes reserve disjoint I/O regions in their ACPI 1291 * tables. This causes problems when trying to register the 1292 * entire I/O region. Therefore we must register each I/O 1293 * port separately. 1294 */ 1295 for (idx = 0; idx < info->io_size; idx++) { 1296 if (request_region(addr + idx * info->io.regspacing, 1297 info->io.regsize, DEVICE_NAME) == NULL) { 1298 /* Undo allocations */ 1299 while (idx--) { 1300 release_region(addr + idx * info->io.regspacing, 1301 info->io.regsize); 1302 } 1303 return -EIO; 1304 } 1305 } 1306 return 0; 1307 } 1308 1309 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1310 { 1311 return readb((io->addr)+(offset * io->regspacing)); 1312 } 1313 1314 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1315 unsigned char b) 1316 { 1317 writeb(b, (io->addr)+(offset * io->regspacing)); 1318 } 1319 1320 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1321 { 1322 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1323 & 0xff; 1324 } 1325 1326 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1327 unsigned char b) 1328 { 1329 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1330 } 1331 1332 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1333 { 1334 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1335 & 0xff; 1336 } 1337 1338 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1339 unsigned char b) 1340 { 1341 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1342 } 1343 1344 #ifdef readq 1345 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1346 { 1347 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1348 & 0xff; 1349 } 1350 1351 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1352 unsigned char b) 1353 { 1354 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1355 } 1356 #endif 1357 1358 static void mem_cleanup(struct smi_info *info) 1359 { 1360 unsigned long addr = info->io.addr_data; 1361 int mapsize; 1362 1363 if (info->io.addr) { 1364 iounmap(info->io.addr); 1365 1366 mapsize = ((info->io_size * info->io.regspacing) 1367 - (info->io.regspacing - info->io.regsize)); 1368 1369 release_mem_region(addr, mapsize); 1370 } 1371 } 1372 1373 static int mem_setup(struct smi_info *info) 1374 { 1375 unsigned long addr = info->io.addr_data; 1376 int mapsize; 1377 1378 if (!addr) 1379 return -ENODEV; 1380 1381 info->io_cleanup = mem_cleanup; 1382 1383 /* Figure out the actual readb/readw/readl/etc routine to use based 1384 upon the register size. */ 1385 switch (info->io.regsize) { 1386 case 1: 1387 info->io.inputb = intf_mem_inb; 1388 info->io.outputb = intf_mem_outb; 1389 break; 1390 case 2: 1391 info->io.inputb = intf_mem_inw; 1392 info->io.outputb = intf_mem_outw; 1393 break; 1394 case 4: 1395 info->io.inputb = intf_mem_inl; 1396 info->io.outputb = intf_mem_outl; 1397 break; 1398 #ifdef readq 1399 case 8: 1400 info->io.inputb = mem_inq; 1401 info->io.outputb = mem_outq; 1402 break; 1403 #endif 1404 default: 1405 printk("ipmi_si: Invalid register size: %d\n", 1406 info->io.regsize); 1407 return -EINVAL; 1408 } 1409 1410 /* Calculate the total amount of memory to claim. This is an 1411 * unusual looking calculation, but it avoids claiming any 1412 * more memory than it has to. It will claim everything 1413 * between the first address to the end of the last full 1414 * register. */ 1415 mapsize = ((info->io_size * info->io.regspacing) 1416 - (info->io.regspacing - info->io.regsize)); 1417 1418 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1419 return -EIO; 1420 1421 info->io.addr = ioremap(addr, mapsize); 1422 if (info->io.addr == NULL) { 1423 release_mem_region(addr, mapsize); 1424 return -EIO; 1425 } 1426 return 0; 1427 } 1428 1429 /* 1430 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1431 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1432 * Options are: 1433 * rsp=<regspacing> 1434 * rsi=<regsize> 1435 * rsh=<regshift> 1436 * irq=<irq> 1437 * ipmb=<ipmb addr> 1438 */ 1439 enum hotmod_op { HM_ADD, HM_REMOVE }; 1440 struct hotmod_vals { 1441 char *name; 1442 int val; 1443 }; 1444 static struct hotmod_vals hotmod_ops[] = { 1445 { "add", HM_ADD }, 1446 { "remove", HM_REMOVE }, 1447 { NULL } 1448 }; 1449 static struct hotmod_vals hotmod_si[] = { 1450 { "kcs", SI_KCS }, 1451 { "smic", SI_SMIC }, 1452 { "bt", SI_BT }, 1453 { NULL } 1454 }; 1455 static struct hotmod_vals hotmod_as[] = { 1456 { "mem", IPMI_MEM_ADDR_SPACE }, 1457 { "i/o", IPMI_IO_ADDR_SPACE }, 1458 { NULL } 1459 }; 1460 1461 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1462 { 1463 char *s; 1464 int i; 1465 1466 s = strchr(*curr, ','); 1467 if (!s) { 1468 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1469 return -EINVAL; 1470 } 1471 *s = '\0'; 1472 s++; 1473 for (i = 0; hotmod_ops[i].name; i++) { 1474 if (strcmp(*curr, v[i].name) == 0) { 1475 *val = v[i].val; 1476 *curr = s; 1477 return 0; 1478 } 1479 } 1480 1481 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1482 return -EINVAL; 1483 } 1484 1485 static int check_hotmod_int_op(const char *curr, const char *option, 1486 const char *name, int *val) 1487 { 1488 char *n; 1489 1490 if (strcmp(curr, name) == 0) { 1491 if (!option) { 1492 printk(KERN_WARNING PFX 1493 "No option given for '%s'\n", 1494 curr); 1495 return -EINVAL; 1496 } 1497 *val = simple_strtoul(option, &n, 0); 1498 if ((*n != '\0') || (*option == '\0')) { 1499 printk(KERN_WARNING PFX 1500 "Bad option given for '%s'\n", 1501 curr); 1502 return -EINVAL; 1503 } 1504 return 1; 1505 } 1506 return 0; 1507 } 1508 1509 static int hotmod_handler(const char *val, struct kernel_param *kp) 1510 { 1511 char *str = kstrdup(val, GFP_KERNEL); 1512 int rv; 1513 char *next, *curr, *s, *n, *o; 1514 enum hotmod_op op; 1515 enum si_type si_type; 1516 int addr_space; 1517 unsigned long addr; 1518 int regspacing; 1519 int regsize; 1520 int regshift; 1521 int irq; 1522 int ipmb; 1523 int ival; 1524 int len; 1525 struct smi_info *info; 1526 1527 if (!str) 1528 return -ENOMEM; 1529 1530 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1531 len = strlen(str); 1532 ival = len - 1; 1533 while ((ival >= 0) && isspace(str[ival])) { 1534 str[ival] = '\0'; 1535 ival--; 1536 } 1537 1538 for (curr = str; curr; curr = next) { 1539 regspacing = 1; 1540 regsize = 1; 1541 regshift = 0; 1542 irq = 0; 1543 ipmb = 0x20; 1544 1545 next = strchr(curr, ':'); 1546 if (next) { 1547 *next = '\0'; 1548 next++; 1549 } 1550 1551 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1552 if (rv) 1553 break; 1554 op = ival; 1555 1556 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1557 if (rv) 1558 break; 1559 si_type = ival; 1560 1561 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1562 if (rv) 1563 break; 1564 1565 s = strchr(curr, ','); 1566 if (s) { 1567 *s = '\0'; 1568 s++; 1569 } 1570 addr = simple_strtoul(curr, &n, 0); 1571 if ((*n != '\0') || (*curr == '\0')) { 1572 printk(KERN_WARNING PFX "Invalid hotmod address" 1573 " '%s'\n", curr); 1574 break; 1575 } 1576 1577 while (s) { 1578 curr = s; 1579 s = strchr(curr, ','); 1580 if (s) { 1581 *s = '\0'; 1582 s++; 1583 } 1584 o = strchr(curr, '='); 1585 if (o) { 1586 *o = '\0'; 1587 o++; 1588 } 1589 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1590 if (rv < 0) 1591 goto out; 1592 else if (rv) 1593 continue; 1594 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1595 if (rv < 0) 1596 goto out; 1597 else if (rv) 1598 continue; 1599 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1600 if (rv < 0) 1601 goto out; 1602 else if (rv) 1603 continue; 1604 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1605 if (rv < 0) 1606 goto out; 1607 else if (rv) 1608 continue; 1609 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1610 if (rv < 0) 1611 goto out; 1612 else if (rv) 1613 continue; 1614 1615 rv = -EINVAL; 1616 printk(KERN_WARNING PFX 1617 "Invalid hotmod option '%s'\n", 1618 curr); 1619 goto out; 1620 } 1621 1622 if (op == HM_ADD) { 1623 info = kzalloc(sizeof(*info), GFP_KERNEL); 1624 if (!info) { 1625 rv = -ENOMEM; 1626 goto out; 1627 } 1628 1629 info->addr_source = "hotmod"; 1630 info->si_type = si_type; 1631 info->io.addr_data = addr; 1632 info->io.addr_type = addr_space; 1633 if (addr_space == IPMI_MEM_ADDR_SPACE) 1634 info->io_setup = mem_setup; 1635 else 1636 info->io_setup = port_setup; 1637 1638 info->io.addr = NULL; 1639 info->io.regspacing = regspacing; 1640 if (!info->io.regspacing) 1641 info->io.regspacing = DEFAULT_REGSPACING; 1642 info->io.regsize = regsize; 1643 if (!info->io.regsize) 1644 info->io.regsize = DEFAULT_REGSPACING; 1645 info->io.regshift = regshift; 1646 info->irq = irq; 1647 if (info->irq) 1648 info->irq_setup = std_irq_setup; 1649 info->slave_addr = ipmb; 1650 1651 try_smi_init(info); 1652 } else { 1653 /* remove */ 1654 struct smi_info *e, *tmp_e; 1655 1656 mutex_lock(&smi_infos_lock); 1657 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1658 if (e->io.addr_type != addr_space) 1659 continue; 1660 if (e->si_type != si_type) 1661 continue; 1662 if (e->io.addr_data == addr) 1663 cleanup_one_si(e); 1664 } 1665 mutex_unlock(&smi_infos_lock); 1666 } 1667 } 1668 rv = len; 1669 out: 1670 kfree(str); 1671 return rv; 1672 } 1673 1674 static __devinit void hardcode_find_bmc(void) 1675 { 1676 int i; 1677 struct smi_info *info; 1678 1679 for (i = 0; i < SI_MAX_PARMS; i++) { 1680 if (!ports[i] && !addrs[i]) 1681 continue; 1682 1683 info = kzalloc(sizeof(*info), GFP_KERNEL); 1684 if (!info) 1685 return; 1686 1687 info->addr_source = "hardcoded"; 1688 1689 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1690 info->si_type = SI_KCS; 1691 } else if (strcmp(si_type[i], "smic") == 0) { 1692 info->si_type = SI_SMIC; 1693 } else if (strcmp(si_type[i], "bt") == 0) { 1694 info->si_type = SI_BT; 1695 } else { 1696 printk(KERN_WARNING 1697 "ipmi_si: Interface type specified " 1698 "for interface %d, was invalid: %s\n", 1699 i, si_type[i]); 1700 kfree(info); 1701 continue; 1702 } 1703 1704 if (ports[i]) { 1705 /* An I/O port */ 1706 info->io_setup = port_setup; 1707 info->io.addr_data = ports[i]; 1708 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1709 } else if (addrs[i]) { 1710 /* A memory port */ 1711 info->io_setup = mem_setup; 1712 info->io.addr_data = addrs[i]; 1713 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1714 } else { 1715 printk(KERN_WARNING 1716 "ipmi_si: Interface type specified " 1717 "for interface %d, " 1718 "but port and address were not set or " 1719 "set to zero.\n", i); 1720 kfree(info); 1721 continue; 1722 } 1723 1724 info->io.addr = NULL; 1725 info->io.regspacing = regspacings[i]; 1726 if (!info->io.regspacing) 1727 info->io.regspacing = DEFAULT_REGSPACING; 1728 info->io.regsize = regsizes[i]; 1729 if (!info->io.regsize) 1730 info->io.regsize = DEFAULT_REGSPACING; 1731 info->io.regshift = regshifts[i]; 1732 info->irq = irqs[i]; 1733 if (info->irq) 1734 info->irq_setup = std_irq_setup; 1735 1736 try_smi_init(info); 1737 } 1738 } 1739 1740 #ifdef CONFIG_ACPI 1741 1742 #include <linux/acpi.h> 1743 1744 /* Once we get an ACPI failure, we don't try any more, because we go 1745 through the tables sequentially. Once we don't find a table, there 1746 are no more. */ 1747 static int acpi_failure; 1748 1749 /* For GPE-type interrupts. */ 1750 static u32 ipmi_acpi_gpe(void *context) 1751 { 1752 struct smi_info *smi_info = context; 1753 unsigned long flags; 1754 #ifdef DEBUG_TIMING 1755 struct timeval t; 1756 #endif 1757 1758 spin_lock_irqsave(&(smi_info->si_lock), flags); 1759 1760 spin_lock(&smi_info->count_lock); 1761 smi_info->interrupts++; 1762 spin_unlock(&smi_info->count_lock); 1763 1764 #ifdef DEBUG_TIMING 1765 do_gettimeofday(&t); 1766 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1767 #endif 1768 smi_event_handler(smi_info, 0); 1769 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1770 1771 return ACPI_INTERRUPT_HANDLED; 1772 } 1773 1774 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1775 { 1776 if (!info->irq) 1777 return; 1778 1779 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1780 } 1781 1782 static int acpi_gpe_irq_setup(struct smi_info *info) 1783 { 1784 acpi_status status; 1785 1786 if (!info->irq) 1787 return 0; 1788 1789 /* FIXME - is level triggered right? */ 1790 status = acpi_install_gpe_handler(NULL, 1791 info->irq, 1792 ACPI_GPE_LEVEL_TRIGGERED, 1793 &ipmi_acpi_gpe, 1794 info); 1795 if (status != AE_OK) { 1796 printk(KERN_WARNING 1797 "ipmi_si: %s unable to claim ACPI GPE %d," 1798 " running polled\n", 1799 DEVICE_NAME, info->irq); 1800 info->irq = 0; 1801 return -EINVAL; 1802 } else { 1803 info->irq_cleanup = acpi_gpe_irq_cleanup; 1804 printk(" Using ACPI GPE %d\n", info->irq); 1805 return 0; 1806 } 1807 } 1808 1809 /* 1810 * Defined at 1811 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf 1812 */ 1813 struct SPMITable { 1814 s8 Signature[4]; 1815 u32 Length; 1816 u8 Revision; 1817 u8 Checksum; 1818 s8 OEMID[6]; 1819 s8 OEMTableID[8]; 1820 s8 OEMRevision[4]; 1821 s8 CreatorID[4]; 1822 s8 CreatorRevision[4]; 1823 u8 InterfaceType; 1824 u8 IPMIlegacy; 1825 s16 SpecificationRevision; 1826 1827 /* 1828 * Bit 0 - SCI interrupt supported 1829 * Bit 1 - I/O APIC/SAPIC 1830 */ 1831 u8 InterruptType; 1832 1833 /* If bit 0 of InterruptType is set, then this is the SCI 1834 interrupt in the GPEx_STS register. */ 1835 u8 GPE; 1836 1837 s16 Reserved; 1838 1839 /* If bit 1 of InterruptType is set, then this is the I/O 1840 APIC/SAPIC interrupt. */ 1841 u32 GlobalSystemInterrupt; 1842 1843 /* The actual register address. */ 1844 struct acpi_generic_address addr; 1845 1846 u8 UID[4]; 1847 1848 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1849 }; 1850 1851 static __devinit int try_init_acpi(struct SPMITable *spmi) 1852 { 1853 struct smi_info *info; 1854 u8 addr_space; 1855 1856 if (spmi->IPMIlegacy != 1) { 1857 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); 1858 return -ENODEV; 1859 } 1860 1861 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1862 addr_space = IPMI_MEM_ADDR_SPACE; 1863 else 1864 addr_space = IPMI_IO_ADDR_SPACE; 1865 1866 info = kzalloc(sizeof(*info), GFP_KERNEL); 1867 if (!info) { 1868 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); 1869 return -ENOMEM; 1870 } 1871 1872 info->addr_source = "ACPI"; 1873 1874 /* Figure out the interface type. */ 1875 switch (spmi->InterfaceType) 1876 { 1877 case 1: /* KCS */ 1878 info->si_type = SI_KCS; 1879 break; 1880 case 2: /* SMIC */ 1881 info->si_type = SI_SMIC; 1882 break; 1883 case 3: /* BT */ 1884 info->si_type = SI_BT; 1885 break; 1886 default: 1887 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", 1888 spmi->InterfaceType); 1889 kfree(info); 1890 return -EIO; 1891 } 1892 1893 if (spmi->InterruptType & 1) { 1894 /* We've got a GPE interrupt. */ 1895 info->irq = spmi->GPE; 1896 info->irq_setup = acpi_gpe_irq_setup; 1897 } else if (spmi->InterruptType & 2) { 1898 /* We've got an APIC/SAPIC interrupt. */ 1899 info->irq = spmi->GlobalSystemInterrupt; 1900 info->irq_setup = std_irq_setup; 1901 } else { 1902 /* Use the default interrupt setting. */ 1903 info->irq = 0; 1904 info->irq_setup = NULL; 1905 } 1906 1907 if (spmi->addr.bit_width) { 1908 /* A (hopefully) properly formed register bit width. */ 1909 info->io.regspacing = spmi->addr.bit_width / 8; 1910 } else { 1911 info->io.regspacing = DEFAULT_REGSPACING; 1912 } 1913 info->io.regsize = info->io.regspacing; 1914 info->io.regshift = spmi->addr.bit_offset; 1915 1916 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1917 info->io_setup = mem_setup; 1918 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1919 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1920 info->io_setup = port_setup; 1921 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1922 } else { 1923 kfree(info); 1924 printk("ipmi_si: Unknown ACPI I/O Address type\n"); 1925 return -EIO; 1926 } 1927 info->io.addr_data = spmi->addr.address; 1928 1929 try_smi_init(info); 1930 1931 return 0; 1932 } 1933 1934 static __devinit void acpi_find_bmc(void) 1935 { 1936 acpi_status status; 1937 struct SPMITable *spmi; 1938 int i; 1939 1940 if (acpi_disabled) 1941 return; 1942 1943 if (acpi_failure) 1944 return; 1945 1946 for (i = 0; ; i++) { 1947 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 1948 (struct acpi_table_header **)&spmi); 1949 if (status != AE_OK) 1950 return; 1951 1952 try_init_acpi(spmi); 1953 } 1954 } 1955 #endif 1956 1957 #ifdef CONFIG_DMI 1958 struct dmi_ipmi_data 1959 { 1960 u8 type; 1961 u8 addr_space; 1962 unsigned long base_addr; 1963 u8 irq; 1964 u8 offset; 1965 u8 slave_addr; 1966 }; 1967 1968 static int __devinit decode_dmi(struct dmi_header *dm, 1969 struct dmi_ipmi_data *dmi) 1970 { 1971 u8 *data = (u8 *)dm; 1972 unsigned long base_addr; 1973 u8 reg_spacing; 1974 u8 len = dm->length; 1975 1976 dmi->type = data[4]; 1977 1978 memcpy(&base_addr, data+8, sizeof(unsigned long)); 1979 if (len >= 0x11) { 1980 if (base_addr & 1) { 1981 /* I/O */ 1982 base_addr &= 0xFFFE; 1983 dmi->addr_space = IPMI_IO_ADDR_SPACE; 1984 } 1985 else { 1986 /* Memory */ 1987 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 1988 } 1989 /* If bit 4 of byte 0x10 is set, then the lsb for the address 1990 is odd. */ 1991 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 1992 1993 dmi->irq = data[0x11]; 1994 1995 /* The top two bits of byte 0x10 hold the register spacing. */ 1996 reg_spacing = (data[0x10] & 0xC0) >> 6; 1997 switch(reg_spacing){ 1998 case 0x00: /* Byte boundaries */ 1999 dmi->offset = 1; 2000 break; 2001 case 0x01: /* 32-bit boundaries */ 2002 dmi->offset = 4; 2003 break; 2004 case 0x02: /* 16-byte boundaries */ 2005 dmi->offset = 16; 2006 break; 2007 default: 2008 /* Some other interface, just ignore it. */ 2009 return -EIO; 2010 } 2011 } else { 2012 /* Old DMI spec. */ 2013 /* Note that technically, the lower bit of the base 2014 * address should be 1 if the address is I/O and 0 if 2015 * the address is in memory. So many systems get that 2016 * wrong (and all that I have seen are I/O) so we just 2017 * ignore that bit and assume I/O. Systems that use 2018 * memory should use the newer spec, anyway. */ 2019 dmi->base_addr = base_addr & 0xfffe; 2020 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2021 dmi->offset = 1; 2022 } 2023 2024 dmi->slave_addr = data[6]; 2025 2026 return 0; 2027 } 2028 2029 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2030 { 2031 struct smi_info *info; 2032 2033 info = kzalloc(sizeof(*info), GFP_KERNEL); 2034 if (!info) { 2035 printk(KERN_ERR 2036 "ipmi_si: Could not allocate SI data\n"); 2037 return; 2038 } 2039 2040 info->addr_source = "SMBIOS"; 2041 2042 switch (ipmi_data->type) { 2043 case 0x01: /* KCS */ 2044 info->si_type = SI_KCS; 2045 break; 2046 case 0x02: /* SMIC */ 2047 info->si_type = SI_SMIC; 2048 break; 2049 case 0x03: /* BT */ 2050 info->si_type = SI_BT; 2051 break; 2052 default: 2053 return; 2054 } 2055 2056 switch (ipmi_data->addr_space) { 2057 case IPMI_MEM_ADDR_SPACE: 2058 info->io_setup = mem_setup; 2059 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2060 break; 2061 2062 case IPMI_IO_ADDR_SPACE: 2063 info->io_setup = port_setup; 2064 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2065 break; 2066 2067 default: 2068 kfree(info); 2069 printk(KERN_WARNING 2070 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n", 2071 ipmi_data->addr_space); 2072 return; 2073 } 2074 info->io.addr_data = ipmi_data->base_addr; 2075 2076 info->io.regspacing = ipmi_data->offset; 2077 if (!info->io.regspacing) 2078 info->io.regspacing = DEFAULT_REGSPACING; 2079 info->io.regsize = DEFAULT_REGSPACING; 2080 info->io.regshift = 0; 2081 2082 info->slave_addr = ipmi_data->slave_addr; 2083 2084 info->irq = ipmi_data->irq; 2085 if (info->irq) 2086 info->irq_setup = std_irq_setup; 2087 2088 try_smi_init(info); 2089 } 2090 2091 static void __devinit dmi_find_bmc(void) 2092 { 2093 struct dmi_device *dev = NULL; 2094 struct dmi_ipmi_data data; 2095 int rv; 2096 2097 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2098 memset(&data, 0, sizeof(data)); 2099 rv = decode_dmi((struct dmi_header *) dev->device_data, &data); 2100 if (!rv) 2101 try_init_dmi(&data); 2102 } 2103 } 2104 #endif /* CONFIG_DMI */ 2105 2106 #ifdef CONFIG_PCI 2107 2108 #define PCI_ERMC_CLASSCODE 0x0C0700 2109 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2110 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2111 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2112 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2113 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2114 2115 #define PCI_HP_VENDOR_ID 0x103C 2116 #define PCI_MMC_DEVICE_ID 0x121A 2117 #define PCI_MMC_ADDR_CW 0x10 2118 2119 static void ipmi_pci_cleanup(struct smi_info *info) 2120 { 2121 struct pci_dev *pdev = info->addr_source_data; 2122 2123 pci_disable_device(pdev); 2124 } 2125 2126 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2127 const struct pci_device_id *ent) 2128 { 2129 int rv; 2130 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2131 struct smi_info *info; 2132 int first_reg_offset = 0; 2133 2134 info = kzalloc(sizeof(*info), GFP_KERNEL); 2135 if (!info) 2136 return -ENOMEM; 2137 2138 info->addr_source = "PCI"; 2139 2140 switch (class_type) { 2141 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2142 info->si_type = SI_SMIC; 2143 break; 2144 2145 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2146 info->si_type = SI_KCS; 2147 break; 2148 2149 case PCI_ERMC_CLASSCODE_TYPE_BT: 2150 info->si_type = SI_BT; 2151 break; 2152 2153 default: 2154 kfree(info); 2155 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n", 2156 pci_name(pdev), class_type); 2157 return -ENOMEM; 2158 } 2159 2160 rv = pci_enable_device(pdev); 2161 if (rv) { 2162 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n", 2163 pci_name(pdev)); 2164 kfree(info); 2165 return rv; 2166 } 2167 2168 info->addr_source_cleanup = ipmi_pci_cleanup; 2169 info->addr_source_data = pdev; 2170 2171 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID) 2172 first_reg_offset = 1; 2173 2174 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2175 info->io_setup = port_setup; 2176 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2177 } else { 2178 info->io_setup = mem_setup; 2179 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2180 } 2181 info->io.addr_data = pci_resource_start(pdev, 0); 2182 2183 info->io.regspacing = DEFAULT_REGSPACING; 2184 info->io.regsize = DEFAULT_REGSPACING; 2185 info->io.regshift = 0; 2186 2187 info->irq = pdev->irq; 2188 if (info->irq) 2189 info->irq_setup = std_irq_setup; 2190 2191 info->dev = &pdev->dev; 2192 pci_set_drvdata(pdev, info); 2193 2194 return try_smi_init(info); 2195 } 2196 2197 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2198 { 2199 struct smi_info *info = pci_get_drvdata(pdev); 2200 cleanup_one_si(info); 2201 } 2202 2203 #ifdef CONFIG_PM 2204 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2205 { 2206 return 0; 2207 } 2208 2209 static int ipmi_pci_resume(struct pci_dev *pdev) 2210 { 2211 return 0; 2212 } 2213 #endif 2214 2215 static struct pci_device_id ipmi_pci_devices[] = { 2216 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2217 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) } 2218 }; 2219 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2220 2221 static struct pci_driver ipmi_pci_driver = { 2222 .name = DEVICE_NAME, 2223 .id_table = ipmi_pci_devices, 2224 .probe = ipmi_pci_probe, 2225 .remove = __devexit_p(ipmi_pci_remove), 2226 #ifdef CONFIG_PM 2227 .suspend = ipmi_pci_suspend, 2228 .resume = ipmi_pci_resume, 2229 #endif 2230 }; 2231 #endif /* CONFIG_PCI */ 2232 2233 2234 #ifdef CONFIG_PPC_OF 2235 static int __devinit ipmi_of_probe(struct of_device *dev, 2236 const struct of_device_id *match) 2237 { 2238 struct smi_info *info; 2239 struct resource resource; 2240 const int *regsize, *regspacing, *regshift; 2241 struct device_node *np = dev->node; 2242 int ret; 2243 int proplen; 2244 2245 dev_info(&dev->dev, PFX "probing via device tree\n"); 2246 2247 ret = of_address_to_resource(np, 0, &resource); 2248 if (ret) { 2249 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2250 return ret; 2251 } 2252 2253 regsize = get_property(np, "reg-size", &proplen); 2254 if (regsize && proplen != 4) { 2255 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2256 return -EINVAL; 2257 } 2258 2259 regspacing = get_property(np, "reg-spacing", &proplen); 2260 if (regspacing && proplen != 4) { 2261 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2262 return -EINVAL; 2263 } 2264 2265 regshift = get_property(np, "reg-shift", &proplen); 2266 if (regshift && proplen != 4) { 2267 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2268 return -EINVAL; 2269 } 2270 2271 info = kzalloc(sizeof(*info), GFP_KERNEL); 2272 2273 if (!info) { 2274 dev_err(&dev->dev, 2275 PFX "could not allocate memory for OF probe\n"); 2276 return -ENOMEM; 2277 } 2278 2279 info->si_type = (enum si_type) match->data; 2280 info->addr_source = "device-tree"; 2281 info->io_setup = mem_setup; 2282 info->irq_setup = std_irq_setup; 2283 2284 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2285 info->io.addr_data = resource.start; 2286 2287 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE; 2288 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING; 2289 info->io.regshift = regshift ? *regshift : 0; 2290 2291 info->irq = irq_of_parse_and_map(dev->node, 0); 2292 info->dev = &dev->dev; 2293 2294 dev_dbg(&dev->dev, "addr 0x%lx regsize %ld spacing %ld irq %x\n", 2295 info->io.addr_data, info->io.regsize, info->io.regspacing, 2296 info->irq); 2297 2298 dev->dev.driver_data = (void*) info; 2299 2300 return try_smi_init(info); 2301 } 2302 2303 static int __devexit ipmi_of_remove(struct of_device *dev) 2304 { 2305 cleanup_one_si(dev->dev.driver_data); 2306 return 0; 2307 } 2308 2309 static struct of_device_id ipmi_match[] = 2310 { 2311 { .type = "ipmi", .compatible = "ipmi-kcs", .data = (void *)(unsigned long) SI_KCS }, 2312 { .type = "ipmi", .compatible = "ipmi-smic", .data = (void *)(unsigned long) SI_SMIC }, 2313 { .type = "ipmi", .compatible = "ipmi-bt", .data = (void *)(unsigned long) SI_BT }, 2314 {}, 2315 }; 2316 2317 static struct of_platform_driver ipmi_of_platform_driver = 2318 { 2319 .name = "ipmi", 2320 .match_table = ipmi_match, 2321 .probe = ipmi_of_probe, 2322 .remove = __devexit_p(ipmi_of_remove), 2323 }; 2324 #endif /* CONFIG_PPC_OF */ 2325 2326 2327 static int try_get_dev_id(struct smi_info *smi_info) 2328 { 2329 unsigned char msg[2]; 2330 unsigned char *resp; 2331 unsigned long resp_len; 2332 enum si_sm_result smi_result; 2333 int rv = 0; 2334 2335 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2336 if (!resp) 2337 return -ENOMEM; 2338 2339 /* Do a Get Device ID command, since it comes back with some 2340 useful info. */ 2341 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2342 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2343 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2344 2345 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2346 for (;;) 2347 { 2348 if (smi_result == SI_SM_CALL_WITH_DELAY || 2349 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2350 schedule_timeout_uninterruptible(1); 2351 smi_result = smi_info->handlers->event( 2352 smi_info->si_sm, 100); 2353 } 2354 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 2355 { 2356 smi_result = smi_info->handlers->event( 2357 smi_info->si_sm, 0); 2358 } 2359 else 2360 break; 2361 } 2362 if (smi_result == SI_SM_HOSED) { 2363 /* We couldn't get the state machine to run, so whatever's at 2364 the port is probably not an IPMI SMI interface. */ 2365 rv = -ENODEV; 2366 goto out; 2367 } 2368 2369 /* Otherwise, we got some data. */ 2370 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2371 resp, IPMI_MAX_MSG_LENGTH); 2372 if (resp_len < 14) { 2373 /* That's odd, it should be longer. */ 2374 rv = -EINVAL; 2375 goto out; 2376 } 2377 2378 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) { 2379 /* That's odd, it shouldn't be able to fail. */ 2380 rv = -EINVAL; 2381 goto out; 2382 } 2383 2384 /* Record info from the get device id, in case we need it. */ 2385 ipmi_demangle_device_id(resp+3, resp_len-3, &smi_info->device_id); 2386 2387 out: 2388 kfree(resp); 2389 return rv; 2390 } 2391 2392 static int type_file_read_proc(char *page, char **start, off_t off, 2393 int count, int *eof, void *data) 2394 { 2395 struct smi_info *smi = data; 2396 2397 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2398 } 2399 2400 static int stat_file_read_proc(char *page, char **start, off_t off, 2401 int count, int *eof, void *data) 2402 { 2403 char *out = (char *) page; 2404 struct smi_info *smi = data; 2405 2406 out += sprintf(out, "interrupts_enabled: %d\n", 2407 smi->irq && !smi->interrupt_disabled); 2408 out += sprintf(out, "short_timeouts: %ld\n", 2409 smi->short_timeouts); 2410 out += sprintf(out, "long_timeouts: %ld\n", 2411 smi->long_timeouts); 2412 out += sprintf(out, "timeout_restarts: %ld\n", 2413 smi->timeout_restarts); 2414 out += sprintf(out, "idles: %ld\n", 2415 smi->idles); 2416 out += sprintf(out, "interrupts: %ld\n", 2417 smi->interrupts); 2418 out += sprintf(out, "attentions: %ld\n", 2419 smi->attentions); 2420 out += sprintf(out, "flag_fetches: %ld\n", 2421 smi->flag_fetches); 2422 out += sprintf(out, "hosed_count: %ld\n", 2423 smi->hosed_count); 2424 out += sprintf(out, "complete_transactions: %ld\n", 2425 smi->complete_transactions); 2426 out += sprintf(out, "events: %ld\n", 2427 smi->events); 2428 out += sprintf(out, "watchdog_pretimeouts: %ld\n", 2429 smi->watchdog_pretimeouts); 2430 out += sprintf(out, "incoming_messages: %ld\n", 2431 smi->incoming_messages); 2432 2433 return out - page; 2434 } 2435 2436 static int param_read_proc(char *page, char **start, off_t off, 2437 int count, int *eof, void *data) 2438 { 2439 struct smi_info *smi = data; 2440 2441 return sprintf(page, 2442 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2443 si_to_str[smi->si_type], 2444 addr_space_to_str[smi->io.addr_type], 2445 smi->io.addr_data, 2446 smi->io.regspacing, 2447 smi->io.regsize, 2448 smi->io.regshift, 2449 smi->irq, 2450 smi->slave_addr); 2451 } 2452 2453 /* 2454 * oem_data_avail_to_receive_msg_avail 2455 * @info - smi_info structure with msg_flags set 2456 * 2457 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2458 * Returns 1 indicating need to re-run handle_flags(). 2459 */ 2460 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2461 { 2462 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2463 RECEIVE_MSG_AVAIL); 2464 return 1; 2465 } 2466 2467 /* 2468 * setup_dell_poweredge_oem_data_handler 2469 * @info - smi_info.device_id must be populated 2470 * 2471 * Systems that match, but have firmware version < 1.40 may assert 2472 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2473 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2474 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2475 * as RECEIVE_MSG_AVAIL instead. 2476 * 2477 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2478 * assert the OEM[012] bits, and if it did, the driver would have to 2479 * change to handle that properly, we don't actually check for the 2480 * firmware version. 2481 * Device ID = 0x20 BMC on PowerEdge 8G servers 2482 * Device Revision = 0x80 2483 * Firmware Revision1 = 0x01 BMC version 1.40 2484 * Firmware Revision2 = 0x40 BCD encoded 2485 * IPMI Version = 0x51 IPMI 1.5 2486 * Manufacturer ID = A2 02 00 Dell IANA 2487 * 2488 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2489 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2490 * 2491 */ 2492 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2493 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2494 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2495 #define DELL_IANA_MFR_ID 0x0002a2 2496 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2497 { 2498 struct ipmi_device_id *id = &smi_info->device_id; 2499 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2500 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2501 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2502 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2503 smi_info->oem_data_avail_handler = 2504 oem_data_avail_to_receive_msg_avail; 2505 } 2506 else if (ipmi_version_major(id) < 1 || 2507 (ipmi_version_major(id) == 1 && 2508 ipmi_version_minor(id) < 5)) { 2509 smi_info->oem_data_avail_handler = 2510 oem_data_avail_to_receive_msg_avail; 2511 } 2512 } 2513 } 2514 2515 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2516 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2517 { 2518 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2519 2520 /* Make it a reponse */ 2521 msg->rsp[0] = msg->data[0] | 4; 2522 msg->rsp[1] = msg->data[1]; 2523 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2524 msg->rsp_size = 3; 2525 smi_info->curr_msg = NULL; 2526 deliver_recv_msg(smi_info, msg); 2527 } 2528 2529 /* 2530 * dell_poweredge_bt_xaction_handler 2531 * @info - smi_info.device_id must be populated 2532 * 2533 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2534 * not respond to a Get SDR command if the length of the data 2535 * requested is exactly 0x3A, which leads to command timeouts and no 2536 * data returned. This intercepts such commands, and causes userspace 2537 * callers to try again with a different-sized buffer, which succeeds. 2538 */ 2539 2540 #define STORAGE_NETFN 0x0A 2541 #define STORAGE_CMD_GET_SDR 0x23 2542 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2543 unsigned long unused, 2544 void *in) 2545 { 2546 struct smi_info *smi_info = in; 2547 unsigned char *data = smi_info->curr_msg->data; 2548 unsigned int size = smi_info->curr_msg->data_size; 2549 if (size >= 8 && 2550 (data[0]>>2) == STORAGE_NETFN && 2551 data[1] == STORAGE_CMD_GET_SDR && 2552 data[7] == 0x3A) { 2553 return_hosed_msg_badsize(smi_info); 2554 return NOTIFY_STOP; 2555 } 2556 return NOTIFY_DONE; 2557 } 2558 2559 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2560 .notifier_call = dell_poweredge_bt_xaction_handler, 2561 }; 2562 2563 /* 2564 * setup_dell_poweredge_bt_xaction_handler 2565 * @info - smi_info.device_id must be filled in already 2566 * 2567 * Fills in smi_info.device_id.start_transaction_pre_hook 2568 * when we know what function to use there. 2569 */ 2570 static void 2571 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2572 { 2573 struct ipmi_device_id *id = &smi_info->device_id; 2574 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2575 smi_info->si_type == SI_BT) 2576 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2577 } 2578 2579 /* 2580 * setup_oem_data_handler 2581 * @info - smi_info.device_id must be filled in already 2582 * 2583 * Fills in smi_info.device_id.oem_data_available_handler 2584 * when we know what function to use there. 2585 */ 2586 2587 static void setup_oem_data_handler(struct smi_info *smi_info) 2588 { 2589 setup_dell_poweredge_oem_data_handler(smi_info); 2590 } 2591 2592 static void setup_xaction_handlers(struct smi_info *smi_info) 2593 { 2594 setup_dell_poweredge_bt_xaction_handler(smi_info); 2595 } 2596 2597 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2598 { 2599 if (smi_info->intf) { 2600 /* The timer and thread are only running if the 2601 interface has been started up and registered. */ 2602 if (smi_info->thread != NULL) 2603 kthread_stop(smi_info->thread); 2604 del_timer_sync(&smi_info->si_timer); 2605 } 2606 } 2607 2608 static __devinitdata struct ipmi_default_vals 2609 { 2610 int type; 2611 int port; 2612 } ipmi_defaults[] = 2613 { 2614 { .type = SI_KCS, .port = 0xca2 }, 2615 { .type = SI_SMIC, .port = 0xca9 }, 2616 { .type = SI_BT, .port = 0xe4 }, 2617 { .port = 0 } 2618 }; 2619 2620 static __devinit void default_find_bmc(void) 2621 { 2622 struct smi_info *info; 2623 int i; 2624 2625 for (i = 0; ; i++) { 2626 if (!ipmi_defaults[i].port) 2627 break; 2628 2629 info = kzalloc(sizeof(*info), GFP_KERNEL); 2630 if (!info) 2631 return; 2632 2633 #ifdef CONFIG_PPC_MERGE 2634 if (check_legacy_ioport(ipmi_defaults[i].port)) 2635 continue; 2636 #endif 2637 2638 info->addr_source = NULL; 2639 2640 info->si_type = ipmi_defaults[i].type; 2641 info->io_setup = port_setup; 2642 info->io.addr_data = ipmi_defaults[i].port; 2643 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2644 2645 info->io.addr = NULL; 2646 info->io.regspacing = DEFAULT_REGSPACING; 2647 info->io.regsize = DEFAULT_REGSPACING; 2648 info->io.regshift = 0; 2649 2650 if (try_smi_init(info) == 0) { 2651 /* Found one... */ 2652 printk(KERN_INFO "ipmi_si: Found default %s state" 2653 " machine at %s address 0x%lx\n", 2654 si_to_str[info->si_type], 2655 addr_space_to_str[info->io.addr_type], 2656 info->io.addr_data); 2657 return; 2658 } 2659 } 2660 } 2661 2662 static int is_new_interface(struct smi_info *info) 2663 { 2664 struct smi_info *e; 2665 2666 list_for_each_entry(e, &smi_infos, link) { 2667 if (e->io.addr_type != info->io.addr_type) 2668 continue; 2669 if (e->io.addr_data == info->io.addr_data) 2670 return 0; 2671 } 2672 2673 return 1; 2674 } 2675 2676 static int try_smi_init(struct smi_info *new_smi) 2677 { 2678 int rv; 2679 2680 if (new_smi->addr_source) { 2681 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state" 2682 " machine at %s address 0x%lx, slave address 0x%x," 2683 " irq %d\n", 2684 new_smi->addr_source, 2685 si_to_str[new_smi->si_type], 2686 addr_space_to_str[new_smi->io.addr_type], 2687 new_smi->io.addr_data, 2688 new_smi->slave_addr, new_smi->irq); 2689 } 2690 2691 mutex_lock(&smi_infos_lock); 2692 if (!is_new_interface(new_smi)) { 2693 printk(KERN_WARNING "ipmi_si: duplicate interface\n"); 2694 rv = -EBUSY; 2695 goto out_err; 2696 } 2697 2698 /* So we know not to free it unless we have allocated one. */ 2699 new_smi->intf = NULL; 2700 new_smi->si_sm = NULL; 2701 new_smi->handlers = NULL; 2702 2703 switch (new_smi->si_type) { 2704 case SI_KCS: 2705 new_smi->handlers = &kcs_smi_handlers; 2706 break; 2707 2708 case SI_SMIC: 2709 new_smi->handlers = &smic_smi_handlers; 2710 break; 2711 2712 case SI_BT: 2713 new_smi->handlers = &bt_smi_handlers; 2714 break; 2715 2716 default: 2717 /* No support for anything else yet. */ 2718 rv = -EIO; 2719 goto out_err; 2720 } 2721 2722 /* Allocate the state machine's data and initialize it. */ 2723 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2724 if (!new_smi->si_sm) { 2725 printk(" Could not allocate state machine memory\n"); 2726 rv = -ENOMEM; 2727 goto out_err; 2728 } 2729 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 2730 &new_smi->io); 2731 2732 /* Now that we know the I/O size, we can set up the I/O. */ 2733 rv = new_smi->io_setup(new_smi); 2734 if (rv) { 2735 printk(" Could not set up I/O space\n"); 2736 goto out_err; 2737 } 2738 2739 spin_lock_init(&(new_smi->si_lock)); 2740 spin_lock_init(&(new_smi->msg_lock)); 2741 spin_lock_init(&(new_smi->count_lock)); 2742 2743 /* Do low-level detection first. */ 2744 if (new_smi->handlers->detect(new_smi->si_sm)) { 2745 if (new_smi->addr_source) 2746 printk(KERN_INFO "ipmi_si: Interface detection" 2747 " failed\n"); 2748 rv = -ENODEV; 2749 goto out_err; 2750 } 2751 2752 /* Attempt a get device id command. If it fails, we probably 2753 don't have a BMC here. */ 2754 rv = try_get_dev_id(new_smi); 2755 if (rv) { 2756 if (new_smi->addr_source) 2757 printk(KERN_INFO "ipmi_si: There appears to be no BMC" 2758 " at this location\n"); 2759 goto out_err; 2760 } 2761 2762 setup_oem_data_handler(new_smi); 2763 setup_xaction_handlers(new_smi); 2764 2765 /* Try to claim any interrupts. */ 2766 if (new_smi->irq_setup) 2767 new_smi->irq_setup(new_smi); 2768 2769 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 2770 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 2771 new_smi->curr_msg = NULL; 2772 atomic_set(&new_smi->req_events, 0); 2773 new_smi->run_to_completion = 0; 2774 2775 new_smi->interrupt_disabled = 0; 2776 atomic_set(&new_smi->stop_operation, 0); 2777 new_smi->intf_num = smi_num; 2778 smi_num++; 2779 2780 /* Start clearing the flags before we enable interrupts or the 2781 timer to avoid racing with the timer. */ 2782 start_clear_flags(new_smi); 2783 /* IRQ is defined to be set when non-zero. */ 2784 if (new_smi->irq) 2785 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 2786 2787 if (!new_smi->dev) { 2788 /* If we don't already have a device from something 2789 * else (like PCI), then register a new one. */ 2790 new_smi->pdev = platform_device_alloc("ipmi_si", 2791 new_smi->intf_num); 2792 if (rv) { 2793 printk(KERN_ERR 2794 "ipmi_si_intf:" 2795 " Unable to allocate platform device\n"); 2796 goto out_err; 2797 } 2798 new_smi->dev = &new_smi->pdev->dev; 2799 new_smi->dev->driver = &ipmi_driver; 2800 2801 rv = platform_device_add(new_smi->pdev); 2802 if (rv) { 2803 printk(KERN_ERR 2804 "ipmi_si_intf:" 2805 " Unable to register system interface device:" 2806 " %d\n", 2807 rv); 2808 goto out_err; 2809 } 2810 new_smi->dev_registered = 1; 2811 } 2812 2813 rv = ipmi_register_smi(&handlers, 2814 new_smi, 2815 &new_smi->device_id, 2816 new_smi->dev, 2817 "bmc", 2818 new_smi->slave_addr); 2819 if (rv) { 2820 printk(KERN_ERR 2821 "ipmi_si: Unable to register device: error %d\n", 2822 rv); 2823 goto out_err_stop_timer; 2824 } 2825 2826 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 2827 type_file_read_proc, NULL, 2828 new_smi, THIS_MODULE); 2829 if (rv) { 2830 printk(KERN_ERR 2831 "ipmi_si: Unable to create proc entry: %d\n", 2832 rv); 2833 goto out_err_stop_timer; 2834 } 2835 2836 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 2837 stat_file_read_proc, NULL, 2838 new_smi, THIS_MODULE); 2839 if (rv) { 2840 printk(KERN_ERR 2841 "ipmi_si: Unable to create proc entry: %d\n", 2842 rv); 2843 goto out_err_stop_timer; 2844 } 2845 2846 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 2847 param_read_proc, NULL, 2848 new_smi, THIS_MODULE); 2849 if (rv) { 2850 printk(KERN_ERR 2851 "ipmi_si: Unable to create proc entry: %d\n", 2852 rv); 2853 goto out_err_stop_timer; 2854 } 2855 2856 list_add_tail(&new_smi->link, &smi_infos); 2857 2858 mutex_unlock(&smi_infos_lock); 2859 2860 printk(KERN_INFO "IPMI %s interface initialized\n",si_to_str[new_smi->si_type]); 2861 2862 return 0; 2863 2864 out_err_stop_timer: 2865 atomic_inc(&new_smi->stop_operation); 2866 wait_for_timer_and_thread(new_smi); 2867 2868 out_err: 2869 if (new_smi->intf) 2870 ipmi_unregister_smi(new_smi->intf); 2871 2872 if (new_smi->irq_cleanup) 2873 new_smi->irq_cleanup(new_smi); 2874 2875 /* Wait until we know that we are out of any interrupt 2876 handlers might have been running before we freed the 2877 interrupt. */ 2878 synchronize_sched(); 2879 2880 if (new_smi->si_sm) { 2881 if (new_smi->handlers) 2882 new_smi->handlers->cleanup(new_smi->si_sm); 2883 kfree(new_smi->si_sm); 2884 } 2885 if (new_smi->addr_source_cleanup) 2886 new_smi->addr_source_cleanup(new_smi); 2887 if (new_smi->io_cleanup) 2888 new_smi->io_cleanup(new_smi); 2889 2890 if (new_smi->dev_registered) 2891 platform_device_unregister(new_smi->pdev); 2892 2893 kfree(new_smi); 2894 2895 mutex_unlock(&smi_infos_lock); 2896 2897 return rv; 2898 } 2899 2900 static __devinit int init_ipmi_si(void) 2901 { 2902 int i; 2903 char *str; 2904 int rv; 2905 2906 if (initialized) 2907 return 0; 2908 initialized = 1; 2909 2910 /* Register the device drivers. */ 2911 rv = driver_register(&ipmi_driver); 2912 if (rv) { 2913 printk(KERN_ERR 2914 "init_ipmi_si: Unable to register driver: %d\n", 2915 rv); 2916 return rv; 2917 } 2918 2919 2920 /* Parse out the si_type string into its components. */ 2921 str = si_type_str; 2922 if (*str != '\0') { 2923 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 2924 si_type[i] = str; 2925 str = strchr(str, ','); 2926 if (str) { 2927 *str = '\0'; 2928 str++; 2929 } else { 2930 break; 2931 } 2932 } 2933 } 2934 2935 printk(KERN_INFO "IPMI System Interface driver.\n"); 2936 2937 hardcode_find_bmc(); 2938 2939 #ifdef CONFIG_DMI 2940 dmi_find_bmc(); 2941 #endif 2942 2943 #ifdef CONFIG_ACPI 2944 acpi_find_bmc(); 2945 #endif 2946 2947 #ifdef CONFIG_PCI 2948 rv = pci_register_driver(&ipmi_pci_driver); 2949 if (rv){ 2950 printk(KERN_ERR 2951 "init_ipmi_si: Unable to register PCI driver: %d\n", 2952 rv); 2953 } 2954 #endif 2955 2956 #ifdef CONFIG_PPC_OF 2957 of_register_platform_driver(&ipmi_of_platform_driver); 2958 #endif 2959 2960 if (si_trydefaults) { 2961 mutex_lock(&smi_infos_lock); 2962 if (list_empty(&smi_infos)) { 2963 /* No BMC was found, try defaults. */ 2964 mutex_unlock(&smi_infos_lock); 2965 default_find_bmc(); 2966 } else { 2967 mutex_unlock(&smi_infos_lock); 2968 } 2969 } 2970 2971 mutex_lock(&smi_infos_lock); 2972 if (unload_when_empty && list_empty(&smi_infos)) { 2973 mutex_unlock(&smi_infos_lock); 2974 #ifdef CONFIG_PCI 2975 pci_unregister_driver(&ipmi_pci_driver); 2976 #endif 2977 2978 #ifdef CONFIG_PPC_OF 2979 of_unregister_platform_driver(&ipmi_of_platform_driver); 2980 #endif 2981 driver_unregister(&ipmi_driver); 2982 printk("ipmi_si: Unable to find any System Interface(s)\n"); 2983 return -ENODEV; 2984 } else { 2985 mutex_unlock(&smi_infos_lock); 2986 return 0; 2987 } 2988 } 2989 module_init(init_ipmi_si); 2990 2991 static void cleanup_one_si(struct smi_info *to_clean) 2992 { 2993 int rv; 2994 unsigned long flags; 2995 2996 if (!to_clean) 2997 return; 2998 2999 list_del(&to_clean->link); 3000 3001 /* Tell the driver that we are shutting down. */ 3002 atomic_inc(&to_clean->stop_operation); 3003 3004 /* Make sure the timer and thread are stopped and will not run 3005 again. */ 3006 wait_for_timer_and_thread(to_clean); 3007 3008 /* Timeouts are stopped, now make sure the interrupts are off 3009 for the device. A little tricky with locks to make sure 3010 there are no races. */ 3011 spin_lock_irqsave(&to_clean->si_lock, flags); 3012 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3013 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3014 poll(to_clean); 3015 schedule_timeout_uninterruptible(1); 3016 spin_lock_irqsave(&to_clean->si_lock, flags); 3017 } 3018 disable_si_irq(to_clean); 3019 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3020 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3021 poll(to_clean); 3022 schedule_timeout_uninterruptible(1); 3023 } 3024 3025 /* Clean up interrupts and make sure that everything is done. */ 3026 if (to_clean->irq_cleanup) 3027 to_clean->irq_cleanup(to_clean); 3028 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3029 poll(to_clean); 3030 schedule_timeout_uninterruptible(1); 3031 } 3032 3033 rv = ipmi_unregister_smi(to_clean->intf); 3034 if (rv) { 3035 printk(KERN_ERR 3036 "ipmi_si: Unable to unregister device: errno=%d\n", 3037 rv); 3038 } 3039 3040 to_clean->handlers->cleanup(to_clean->si_sm); 3041 3042 kfree(to_clean->si_sm); 3043 3044 if (to_clean->addr_source_cleanup) 3045 to_clean->addr_source_cleanup(to_clean); 3046 if (to_clean->io_cleanup) 3047 to_clean->io_cleanup(to_clean); 3048 3049 if (to_clean->dev_registered) 3050 platform_device_unregister(to_clean->pdev); 3051 3052 kfree(to_clean); 3053 } 3054 3055 static __exit void cleanup_ipmi_si(void) 3056 { 3057 struct smi_info *e, *tmp_e; 3058 3059 if (!initialized) 3060 return; 3061 3062 #ifdef CONFIG_PCI 3063 pci_unregister_driver(&ipmi_pci_driver); 3064 #endif 3065 3066 #ifdef CONFIG_PPC_OF 3067 of_unregister_platform_driver(&ipmi_of_platform_driver); 3068 #endif 3069 3070 mutex_lock(&smi_infos_lock); 3071 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3072 cleanup_one_si(e); 3073 mutex_unlock(&smi_infos_lock); 3074 3075 driver_unregister(&ipmi_driver); 3076 } 3077 module_exit(cleanup_ipmi_si); 3078 3079 MODULE_LICENSE("GPL"); 3080 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3081 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); 3082