xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision bbecb07f)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/notifier.h>
53 #include <linux/mutex.h>
54 #include <linux/kthread.h>
55 #include <asm/irq.h>
56 #include <linux/interrupt.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ipmi.h>
59 #include <linux/ipmi_smi.h>
60 #include "ipmi_si.h"
61 #include <linux/string.h>
62 #include <linux/ctype.h>
63 
64 #define PFX "ipmi_si: "
65 
66 /* Measure times between events in the driver. */
67 #undef DEBUG_TIMING
68 
69 /* Call every 10 ms. */
70 #define SI_TIMEOUT_TIME_USEC	10000
71 #define SI_USEC_PER_JIFFY	(1000000/HZ)
72 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
73 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
74 				      short timeout */
75 
76 enum si_intf_state {
77 	SI_NORMAL,
78 	SI_GETTING_FLAGS,
79 	SI_GETTING_EVENTS,
80 	SI_CLEARING_FLAGS,
81 	SI_GETTING_MESSAGES,
82 	SI_CHECKING_ENABLES,
83 	SI_SETTING_ENABLES
84 	/* FIXME - add watchdog stuff. */
85 };
86 
87 /* Some BT-specific defines we need here. */
88 #define IPMI_BT_INTMASK_REG		2
89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
91 
92 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
93 
94 static int initialized;
95 
96 /*
97  * Indexes into stats[] in smi_info below.
98  */
99 enum si_stat_indexes {
100 	/*
101 	 * Number of times the driver requested a timer while an operation
102 	 * was in progress.
103 	 */
104 	SI_STAT_short_timeouts = 0,
105 
106 	/*
107 	 * Number of times the driver requested a timer while nothing was in
108 	 * progress.
109 	 */
110 	SI_STAT_long_timeouts,
111 
112 	/* Number of times the interface was idle while being polled. */
113 	SI_STAT_idles,
114 
115 	/* Number of interrupts the driver handled. */
116 	SI_STAT_interrupts,
117 
118 	/* Number of time the driver got an ATTN from the hardware. */
119 	SI_STAT_attentions,
120 
121 	/* Number of times the driver requested flags from the hardware. */
122 	SI_STAT_flag_fetches,
123 
124 	/* Number of times the hardware didn't follow the state machine. */
125 	SI_STAT_hosed_count,
126 
127 	/* Number of completed messages. */
128 	SI_STAT_complete_transactions,
129 
130 	/* Number of IPMI events received from the hardware. */
131 	SI_STAT_events,
132 
133 	/* Number of watchdog pretimeouts. */
134 	SI_STAT_watchdog_pretimeouts,
135 
136 	/* Number of asynchronous messages received. */
137 	SI_STAT_incoming_messages,
138 
139 
140 	/* This *must* remain last, add new values above this. */
141 	SI_NUM_STATS
142 };
143 
144 struct smi_info {
145 	int                    intf_num;
146 	ipmi_smi_t             intf;
147 	struct si_sm_data      *si_sm;
148 	const struct si_sm_handlers *handlers;
149 	spinlock_t             si_lock;
150 	struct ipmi_smi_msg    *waiting_msg;
151 	struct ipmi_smi_msg    *curr_msg;
152 	enum si_intf_state     si_state;
153 
154 	/*
155 	 * Used to handle the various types of I/O that can occur with
156 	 * IPMI
157 	 */
158 	struct si_sm_io io;
159 
160 	/*
161 	 * Per-OEM handler, called from handle_flags().  Returns 1
162 	 * when handle_flags() needs to be re-run or 0 indicating it
163 	 * set si_state itself.
164 	 */
165 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
166 
167 	/*
168 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
169 	 * is set to hold the flags until we are done handling everything
170 	 * from the flags.
171 	 */
172 #define RECEIVE_MSG_AVAIL	0x01
173 #define EVENT_MSG_BUFFER_FULL	0x02
174 #define WDT_PRE_TIMEOUT_INT	0x08
175 #define OEM0_DATA_AVAIL     0x20
176 #define OEM1_DATA_AVAIL     0x40
177 #define OEM2_DATA_AVAIL     0x80
178 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
179 			     OEM1_DATA_AVAIL | \
180 			     OEM2_DATA_AVAIL)
181 	unsigned char       msg_flags;
182 
183 	/* Does the BMC have an event buffer? */
184 	bool		    has_event_buffer;
185 
186 	/*
187 	 * If set to true, this will request events the next time the
188 	 * state machine is idle.
189 	 */
190 	atomic_t            req_events;
191 
192 	/*
193 	 * If true, run the state machine to completion on every send
194 	 * call.  Generally used after a panic to make sure stuff goes
195 	 * out.
196 	 */
197 	bool                run_to_completion;
198 
199 	/* The timer for this si. */
200 	struct timer_list   si_timer;
201 
202 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
203 	bool		    timer_running;
204 
205 	/* The time (in jiffies) the last timeout occurred at. */
206 	unsigned long       last_timeout_jiffies;
207 
208 	/* Are we waiting for the events, pretimeouts, received msgs? */
209 	atomic_t            need_watch;
210 
211 	/*
212 	 * The driver will disable interrupts when it gets into a
213 	 * situation where it cannot handle messages due to lack of
214 	 * memory.  Once that situation clears up, it will re-enable
215 	 * interrupts.
216 	 */
217 	bool interrupt_disabled;
218 
219 	/*
220 	 * Does the BMC support events?
221 	 */
222 	bool supports_event_msg_buff;
223 
224 	/*
225 	 * Can we disable interrupts the global enables receive irq
226 	 * bit?  There are currently two forms of brokenness, some
227 	 * systems cannot disable the bit (which is technically within
228 	 * the spec but a bad idea) and some systems have the bit
229 	 * forced to zero even though interrupts work (which is
230 	 * clearly outside the spec).  The next bool tells which form
231 	 * of brokenness is present.
232 	 */
233 	bool cannot_disable_irq;
234 
235 	/*
236 	 * Some systems are broken and cannot set the irq enable
237 	 * bit, even if they support interrupts.
238 	 */
239 	bool irq_enable_broken;
240 
241 	/*
242 	 * Did we get an attention that we did not handle?
243 	 */
244 	bool got_attn;
245 
246 	/* From the get device id response... */
247 	struct ipmi_device_id device_id;
248 
249 	/* Default driver model device. */
250 	struct platform_device *pdev;
251 
252 	/* Counters and things for the proc filesystem. */
253 	atomic_t stats[SI_NUM_STATS];
254 
255 	struct task_struct *thread;
256 
257 	struct list_head link;
258 };
259 
260 #define smi_inc_stat(smi, stat) \
261 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
262 #define smi_get_stat(smi, stat) \
263 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
264 
265 #define IPMI_MAX_INTFS 4
266 static int force_kipmid[IPMI_MAX_INTFS];
267 static int num_force_kipmid;
268 
269 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
270 static int num_max_busy_us;
271 
272 static bool unload_when_empty = true;
273 
274 static int try_smi_init(struct smi_info *smi);
275 static void cleanup_one_si(struct smi_info *to_clean);
276 static void cleanup_ipmi_si(void);
277 
278 #ifdef DEBUG_TIMING
279 void debug_timestamp(char *msg)
280 {
281 	struct timespec64 t;
282 
283 	getnstimeofday64(&t);
284 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
285 }
286 #else
287 #define debug_timestamp(x)
288 #endif
289 
290 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
291 static int register_xaction_notifier(struct notifier_block *nb)
292 {
293 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
294 }
295 
296 static void deliver_recv_msg(struct smi_info *smi_info,
297 			     struct ipmi_smi_msg *msg)
298 {
299 	/* Deliver the message to the upper layer. */
300 	if (smi_info->intf)
301 		ipmi_smi_msg_received(smi_info->intf, msg);
302 	else
303 		ipmi_free_smi_msg(msg);
304 }
305 
306 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
307 {
308 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
309 
310 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
311 		cCode = IPMI_ERR_UNSPECIFIED;
312 	/* else use it as is */
313 
314 	/* Make it a response */
315 	msg->rsp[0] = msg->data[0] | 4;
316 	msg->rsp[1] = msg->data[1];
317 	msg->rsp[2] = cCode;
318 	msg->rsp_size = 3;
319 
320 	smi_info->curr_msg = NULL;
321 	deliver_recv_msg(smi_info, msg);
322 }
323 
324 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
325 {
326 	int              rv;
327 
328 	if (!smi_info->waiting_msg) {
329 		smi_info->curr_msg = NULL;
330 		rv = SI_SM_IDLE;
331 	} else {
332 		int err;
333 
334 		smi_info->curr_msg = smi_info->waiting_msg;
335 		smi_info->waiting_msg = NULL;
336 		debug_timestamp("Start2");
337 		err = atomic_notifier_call_chain(&xaction_notifier_list,
338 				0, smi_info);
339 		if (err & NOTIFY_STOP_MASK) {
340 			rv = SI_SM_CALL_WITHOUT_DELAY;
341 			goto out;
342 		}
343 		err = smi_info->handlers->start_transaction(
344 			smi_info->si_sm,
345 			smi_info->curr_msg->data,
346 			smi_info->curr_msg->data_size);
347 		if (err)
348 			return_hosed_msg(smi_info, err);
349 
350 		rv = SI_SM_CALL_WITHOUT_DELAY;
351 	}
352 out:
353 	return rv;
354 }
355 
356 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
357 {
358 	smi_info->last_timeout_jiffies = jiffies;
359 	mod_timer(&smi_info->si_timer, new_val);
360 	smi_info->timer_running = true;
361 }
362 
363 /*
364  * Start a new message and (re)start the timer and thread.
365  */
366 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
367 			  unsigned int size)
368 {
369 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
370 
371 	if (smi_info->thread)
372 		wake_up_process(smi_info->thread);
373 
374 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
375 }
376 
377 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
378 {
379 	unsigned char msg[2];
380 
381 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
382 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
383 
384 	if (start_timer)
385 		start_new_msg(smi_info, msg, 2);
386 	else
387 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
388 	smi_info->si_state = SI_CHECKING_ENABLES;
389 }
390 
391 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
392 {
393 	unsigned char msg[3];
394 
395 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
396 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
397 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
398 	msg[2] = WDT_PRE_TIMEOUT_INT;
399 
400 	if (start_timer)
401 		start_new_msg(smi_info, msg, 3);
402 	else
403 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
404 	smi_info->si_state = SI_CLEARING_FLAGS;
405 }
406 
407 static void start_getting_msg_queue(struct smi_info *smi_info)
408 {
409 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
410 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
411 	smi_info->curr_msg->data_size = 2;
412 
413 	start_new_msg(smi_info, smi_info->curr_msg->data,
414 		      smi_info->curr_msg->data_size);
415 	smi_info->si_state = SI_GETTING_MESSAGES;
416 }
417 
418 static void start_getting_events(struct smi_info *smi_info)
419 {
420 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
421 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
422 	smi_info->curr_msg->data_size = 2;
423 
424 	start_new_msg(smi_info, smi_info->curr_msg->data,
425 		      smi_info->curr_msg->data_size);
426 	smi_info->si_state = SI_GETTING_EVENTS;
427 }
428 
429 /*
430  * When we have a situtaion where we run out of memory and cannot
431  * allocate messages, we just leave them in the BMC and run the system
432  * polled until we can allocate some memory.  Once we have some
433  * memory, we will re-enable the interrupt.
434  *
435  * Note that we cannot just use disable_irq(), since the interrupt may
436  * be shared.
437  */
438 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
439 {
440 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
441 		smi_info->interrupt_disabled = true;
442 		start_check_enables(smi_info, start_timer);
443 		return true;
444 	}
445 	return false;
446 }
447 
448 static inline bool enable_si_irq(struct smi_info *smi_info)
449 {
450 	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
451 		smi_info->interrupt_disabled = false;
452 		start_check_enables(smi_info, true);
453 		return true;
454 	}
455 	return false;
456 }
457 
458 /*
459  * Allocate a message.  If unable to allocate, start the interrupt
460  * disable process and return NULL.  If able to allocate but
461  * interrupts are disabled, free the message and return NULL after
462  * starting the interrupt enable process.
463  */
464 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
465 {
466 	struct ipmi_smi_msg *msg;
467 
468 	msg = ipmi_alloc_smi_msg();
469 	if (!msg) {
470 		if (!disable_si_irq(smi_info, true))
471 			smi_info->si_state = SI_NORMAL;
472 	} else if (enable_si_irq(smi_info)) {
473 		ipmi_free_smi_msg(msg);
474 		msg = NULL;
475 	}
476 	return msg;
477 }
478 
479 static void handle_flags(struct smi_info *smi_info)
480 {
481 retry:
482 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
483 		/* Watchdog pre-timeout */
484 		smi_inc_stat(smi_info, watchdog_pretimeouts);
485 
486 		start_clear_flags(smi_info, true);
487 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
488 		if (smi_info->intf)
489 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
490 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
491 		/* Messages available. */
492 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
493 		if (!smi_info->curr_msg)
494 			return;
495 
496 		start_getting_msg_queue(smi_info);
497 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
498 		/* Events available. */
499 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
500 		if (!smi_info->curr_msg)
501 			return;
502 
503 		start_getting_events(smi_info);
504 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
505 		   smi_info->oem_data_avail_handler) {
506 		if (smi_info->oem_data_avail_handler(smi_info))
507 			goto retry;
508 	} else
509 		smi_info->si_state = SI_NORMAL;
510 }
511 
512 /*
513  * Global enables we care about.
514  */
515 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
516 			     IPMI_BMC_EVT_MSG_INTR)
517 
518 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
519 				 bool *irq_on)
520 {
521 	u8 enables = 0;
522 
523 	if (smi_info->supports_event_msg_buff)
524 		enables |= IPMI_BMC_EVT_MSG_BUFF;
525 
526 	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
527 	     smi_info->cannot_disable_irq) &&
528 	    !smi_info->irq_enable_broken)
529 		enables |= IPMI_BMC_RCV_MSG_INTR;
530 
531 	if (smi_info->supports_event_msg_buff &&
532 	    smi_info->io.irq && !smi_info->interrupt_disabled &&
533 	    !smi_info->irq_enable_broken)
534 		enables |= IPMI_BMC_EVT_MSG_INTR;
535 
536 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
537 
538 	return enables;
539 }
540 
541 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
542 {
543 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
544 
545 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
546 
547 	if ((bool)irqstate == irq_on)
548 		return;
549 
550 	if (irq_on)
551 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
552 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
553 	else
554 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
555 }
556 
557 static void handle_transaction_done(struct smi_info *smi_info)
558 {
559 	struct ipmi_smi_msg *msg;
560 
561 	debug_timestamp("Done");
562 	switch (smi_info->si_state) {
563 	case SI_NORMAL:
564 		if (!smi_info->curr_msg)
565 			break;
566 
567 		smi_info->curr_msg->rsp_size
568 			= smi_info->handlers->get_result(
569 				smi_info->si_sm,
570 				smi_info->curr_msg->rsp,
571 				IPMI_MAX_MSG_LENGTH);
572 
573 		/*
574 		 * Do this here becase deliver_recv_msg() releases the
575 		 * lock, and a new message can be put in during the
576 		 * time the lock is released.
577 		 */
578 		msg = smi_info->curr_msg;
579 		smi_info->curr_msg = NULL;
580 		deliver_recv_msg(smi_info, msg);
581 		break;
582 
583 	case SI_GETTING_FLAGS:
584 	{
585 		unsigned char msg[4];
586 		unsigned int  len;
587 
588 		/* We got the flags from the SMI, now handle them. */
589 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
590 		if (msg[2] != 0) {
591 			/* Error fetching flags, just give up for now. */
592 			smi_info->si_state = SI_NORMAL;
593 		} else if (len < 4) {
594 			/*
595 			 * Hmm, no flags.  That's technically illegal, but
596 			 * don't use uninitialized data.
597 			 */
598 			smi_info->si_state = SI_NORMAL;
599 		} else {
600 			smi_info->msg_flags = msg[3];
601 			handle_flags(smi_info);
602 		}
603 		break;
604 	}
605 
606 	case SI_CLEARING_FLAGS:
607 	{
608 		unsigned char msg[3];
609 
610 		/* We cleared the flags. */
611 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
612 		if (msg[2] != 0) {
613 			/* Error clearing flags */
614 			dev_warn(smi_info->io.dev,
615 				 "Error clearing flags: %2.2x\n", msg[2]);
616 		}
617 		smi_info->si_state = SI_NORMAL;
618 		break;
619 	}
620 
621 	case SI_GETTING_EVENTS:
622 	{
623 		smi_info->curr_msg->rsp_size
624 			= smi_info->handlers->get_result(
625 				smi_info->si_sm,
626 				smi_info->curr_msg->rsp,
627 				IPMI_MAX_MSG_LENGTH);
628 
629 		/*
630 		 * Do this here becase deliver_recv_msg() releases the
631 		 * lock, and a new message can be put in during the
632 		 * time the lock is released.
633 		 */
634 		msg = smi_info->curr_msg;
635 		smi_info->curr_msg = NULL;
636 		if (msg->rsp[2] != 0) {
637 			/* Error getting event, probably done. */
638 			msg->done(msg);
639 
640 			/* Take off the event flag. */
641 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
642 			handle_flags(smi_info);
643 		} else {
644 			smi_inc_stat(smi_info, events);
645 
646 			/*
647 			 * Do this before we deliver the message
648 			 * because delivering the message releases the
649 			 * lock and something else can mess with the
650 			 * state.
651 			 */
652 			handle_flags(smi_info);
653 
654 			deliver_recv_msg(smi_info, msg);
655 		}
656 		break;
657 	}
658 
659 	case SI_GETTING_MESSAGES:
660 	{
661 		smi_info->curr_msg->rsp_size
662 			= smi_info->handlers->get_result(
663 				smi_info->si_sm,
664 				smi_info->curr_msg->rsp,
665 				IPMI_MAX_MSG_LENGTH);
666 
667 		/*
668 		 * Do this here becase deliver_recv_msg() releases the
669 		 * lock, and a new message can be put in during the
670 		 * time the lock is released.
671 		 */
672 		msg = smi_info->curr_msg;
673 		smi_info->curr_msg = NULL;
674 		if (msg->rsp[2] != 0) {
675 			/* Error getting event, probably done. */
676 			msg->done(msg);
677 
678 			/* Take off the msg flag. */
679 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
680 			handle_flags(smi_info);
681 		} else {
682 			smi_inc_stat(smi_info, incoming_messages);
683 
684 			/*
685 			 * Do this before we deliver the message
686 			 * because delivering the message releases the
687 			 * lock and something else can mess with the
688 			 * state.
689 			 */
690 			handle_flags(smi_info);
691 
692 			deliver_recv_msg(smi_info, msg);
693 		}
694 		break;
695 	}
696 
697 	case SI_CHECKING_ENABLES:
698 	{
699 		unsigned char msg[4];
700 		u8 enables;
701 		bool irq_on;
702 
703 		/* We got the flags from the SMI, now handle them. */
704 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
705 		if (msg[2] != 0) {
706 			dev_warn(smi_info->io.dev,
707 				 "Couldn't get irq info: %x.\n", msg[2]);
708 			dev_warn(smi_info->io.dev,
709 				 "Maybe ok, but ipmi might run very slowly.\n");
710 			smi_info->si_state = SI_NORMAL;
711 			break;
712 		}
713 		enables = current_global_enables(smi_info, 0, &irq_on);
714 		if (smi_info->io.si_type == SI_BT)
715 			/* BT has its own interrupt enable bit. */
716 			check_bt_irq(smi_info, irq_on);
717 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
718 			/* Enables are not correct, fix them. */
719 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
720 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
721 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
722 			smi_info->handlers->start_transaction(
723 				smi_info->si_sm, msg, 3);
724 			smi_info->si_state = SI_SETTING_ENABLES;
725 		} else if (smi_info->supports_event_msg_buff) {
726 			smi_info->curr_msg = ipmi_alloc_smi_msg();
727 			if (!smi_info->curr_msg) {
728 				smi_info->si_state = SI_NORMAL;
729 				break;
730 			}
731 			start_getting_events(smi_info);
732 		} else {
733 			smi_info->si_state = SI_NORMAL;
734 		}
735 		break;
736 	}
737 
738 	case SI_SETTING_ENABLES:
739 	{
740 		unsigned char msg[4];
741 
742 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
743 		if (msg[2] != 0)
744 			dev_warn(smi_info->io.dev,
745 				 "Could not set the global enables: 0x%x.\n",
746 				 msg[2]);
747 
748 		if (smi_info->supports_event_msg_buff) {
749 			smi_info->curr_msg = ipmi_alloc_smi_msg();
750 			if (!smi_info->curr_msg) {
751 				smi_info->si_state = SI_NORMAL;
752 				break;
753 			}
754 			start_getting_events(smi_info);
755 		} else {
756 			smi_info->si_state = SI_NORMAL;
757 		}
758 		break;
759 	}
760 	}
761 }
762 
763 /*
764  * Called on timeouts and events.  Timeouts should pass the elapsed
765  * time, interrupts should pass in zero.  Must be called with
766  * si_lock held and interrupts disabled.
767  */
768 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
769 					   int time)
770 {
771 	enum si_sm_result si_sm_result;
772 
773 restart:
774 	/*
775 	 * There used to be a loop here that waited a little while
776 	 * (around 25us) before giving up.  That turned out to be
777 	 * pointless, the minimum delays I was seeing were in the 300us
778 	 * range, which is far too long to wait in an interrupt.  So
779 	 * we just run until the state machine tells us something
780 	 * happened or it needs a delay.
781 	 */
782 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
783 	time = 0;
784 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
785 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786 
787 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
788 		smi_inc_stat(smi_info, complete_transactions);
789 
790 		handle_transaction_done(smi_info);
791 		goto restart;
792 	} else if (si_sm_result == SI_SM_HOSED) {
793 		smi_inc_stat(smi_info, hosed_count);
794 
795 		/*
796 		 * Do the before return_hosed_msg, because that
797 		 * releases the lock.
798 		 */
799 		smi_info->si_state = SI_NORMAL;
800 		if (smi_info->curr_msg != NULL) {
801 			/*
802 			 * If we were handling a user message, format
803 			 * a response to send to the upper layer to
804 			 * tell it about the error.
805 			 */
806 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
807 		}
808 		goto restart;
809 	}
810 
811 	/*
812 	 * We prefer handling attn over new messages.  But don't do
813 	 * this if there is not yet an upper layer to handle anything.
814 	 */
815 	if (likely(smi_info->intf) &&
816 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
817 		unsigned char msg[2];
818 
819 		if (smi_info->si_state != SI_NORMAL) {
820 			/*
821 			 * We got an ATTN, but we are doing something else.
822 			 * Handle the ATTN later.
823 			 */
824 			smi_info->got_attn = true;
825 		} else {
826 			smi_info->got_attn = false;
827 			smi_inc_stat(smi_info, attentions);
828 
829 			/*
830 			 * Got a attn, send down a get message flags to see
831 			 * what's causing it.  It would be better to handle
832 			 * this in the upper layer, but due to the way
833 			 * interrupts work with the SMI, that's not really
834 			 * possible.
835 			 */
836 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
837 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
838 
839 			start_new_msg(smi_info, msg, 2);
840 			smi_info->si_state = SI_GETTING_FLAGS;
841 			goto restart;
842 		}
843 	}
844 
845 	/* If we are currently idle, try to start the next message. */
846 	if (si_sm_result == SI_SM_IDLE) {
847 		smi_inc_stat(smi_info, idles);
848 
849 		si_sm_result = start_next_msg(smi_info);
850 		if (si_sm_result != SI_SM_IDLE)
851 			goto restart;
852 	}
853 
854 	if ((si_sm_result == SI_SM_IDLE)
855 	    && (atomic_read(&smi_info->req_events))) {
856 		/*
857 		 * We are idle and the upper layer requested that I fetch
858 		 * events, so do so.
859 		 */
860 		atomic_set(&smi_info->req_events, 0);
861 
862 		/*
863 		 * Take this opportunity to check the interrupt and
864 		 * message enable state for the BMC.  The BMC can be
865 		 * asynchronously reset, and may thus get interrupts
866 		 * disable and messages disabled.
867 		 */
868 		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
869 			start_check_enables(smi_info, true);
870 		} else {
871 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
872 			if (!smi_info->curr_msg)
873 				goto out;
874 
875 			start_getting_events(smi_info);
876 		}
877 		goto restart;
878 	}
879 
880 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
881 		/* Ok it if fails, the timer will just go off. */
882 		if (del_timer(&smi_info->si_timer))
883 			smi_info->timer_running = false;
884 	}
885 
886 out:
887 	return si_sm_result;
888 }
889 
890 static void check_start_timer_thread(struct smi_info *smi_info)
891 {
892 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
893 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
894 
895 		if (smi_info->thread)
896 			wake_up_process(smi_info->thread);
897 
898 		start_next_msg(smi_info);
899 		smi_event_handler(smi_info, 0);
900 	}
901 }
902 
903 static void flush_messages(void *send_info)
904 {
905 	struct smi_info *smi_info = send_info;
906 	enum si_sm_result result;
907 
908 	/*
909 	 * Currently, this function is called only in run-to-completion
910 	 * mode.  This means we are single-threaded, no need for locks.
911 	 */
912 	result = smi_event_handler(smi_info, 0);
913 	while (result != SI_SM_IDLE) {
914 		udelay(SI_SHORT_TIMEOUT_USEC);
915 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
916 	}
917 }
918 
919 static void sender(void                *send_info,
920 		   struct ipmi_smi_msg *msg)
921 {
922 	struct smi_info   *smi_info = send_info;
923 	unsigned long     flags;
924 
925 	debug_timestamp("Enqueue");
926 
927 	if (smi_info->run_to_completion) {
928 		/*
929 		 * If we are running to completion, start it.  Upper
930 		 * layer will call flush_messages to clear it out.
931 		 */
932 		smi_info->waiting_msg = msg;
933 		return;
934 	}
935 
936 	spin_lock_irqsave(&smi_info->si_lock, flags);
937 	/*
938 	 * The following two lines don't need to be under the lock for
939 	 * the lock's sake, but they do need SMP memory barriers to
940 	 * avoid getting things out of order.  We are already claiming
941 	 * the lock, anyway, so just do it under the lock to avoid the
942 	 * ordering problem.
943 	 */
944 	BUG_ON(smi_info->waiting_msg);
945 	smi_info->waiting_msg = msg;
946 	check_start_timer_thread(smi_info);
947 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
948 }
949 
950 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
951 {
952 	struct smi_info   *smi_info = send_info;
953 
954 	smi_info->run_to_completion = i_run_to_completion;
955 	if (i_run_to_completion)
956 		flush_messages(smi_info);
957 }
958 
959 /*
960  * Use -1 in the nsec value of the busy waiting timespec to tell that
961  * we are spinning in kipmid looking for something and not delaying
962  * between checks
963  */
964 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
965 {
966 	ts->tv_nsec = -1;
967 }
968 static inline int ipmi_si_is_busy(struct timespec64 *ts)
969 {
970 	return ts->tv_nsec != -1;
971 }
972 
973 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
974 					const struct smi_info *smi_info,
975 					struct timespec64 *busy_until)
976 {
977 	unsigned int max_busy_us = 0;
978 
979 	if (smi_info->intf_num < num_max_busy_us)
980 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
981 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
982 		ipmi_si_set_not_busy(busy_until);
983 	else if (!ipmi_si_is_busy(busy_until)) {
984 		getnstimeofday64(busy_until);
985 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
986 	} else {
987 		struct timespec64 now;
988 
989 		getnstimeofday64(&now);
990 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
991 			ipmi_si_set_not_busy(busy_until);
992 			return 0;
993 		}
994 	}
995 	return 1;
996 }
997 
998 
999 /*
1000  * A busy-waiting loop for speeding up IPMI operation.
1001  *
1002  * Lousy hardware makes this hard.  This is only enabled for systems
1003  * that are not BT and do not have interrupts.  It starts spinning
1004  * when an operation is complete or until max_busy tells it to stop
1005  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1006  * Documentation/IPMI.txt for details.
1007  */
1008 static int ipmi_thread(void *data)
1009 {
1010 	struct smi_info *smi_info = data;
1011 	unsigned long flags;
1012 	enum si_sm_result smi_result;
1013 	struct timespec64 busy_until;
1014 
1015 	ipmi_si_set_not_busy(&busy_until);
1016 	set_user_nice(current, MAX_NICE);
1017 	while (!kthread_should_stop()) {
1018 		int busy_wait;
1019 
1020 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1021 		smi_result = smi_event_handler(smi_info, 0);
1022 
1023 		/*
1024 		 * If the driver is doing something, there is a possible
1025 		 * race with the timer.  If the timer handler see idle,
1026 		 * and the thread here sees something else, the timer
1027 		 * handler won't restart the timer even though it is
1028 		 * required.  So start it here if necessary.
1029 		 */
1030 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1031 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1032 
1033 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1034 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1035 						  &busy_until);
1036 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1037 			; /* do nothing */
1038 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1039 			schedule();
1040 		else if (smi_result == SI_SM_IDLE) {
1041 			if (atomic_read(&smi_info->need_watch)) {
1042 				schedule_timeout_interruptible(100);
1043 			} else {
1044 				/* Wait to be woken up when we are needed. */
1045 				__set_current_state(TASK_INTERRUPTIBLE);
1046 				schedule();
1047 			}
1048 		} else
1049 			schedule_timeout_interruptible(1);
1050 	}
1051 	return 0;
1052 }
1053 
1054 
1055 static void poll(void *send_info)
1056 {
1057 	struct smi_info *smi_info = send_info;
1058 	unsigned long flags = 0;
1059 	bool run_to_completion = smi_info->run_to_completion;
1060 
1061 	/*
1062 	 * Make sure there is some delay in the poll loop so we can
1063 	 * drive time forward and timeout things.
1064 	 */
1065 	udelay(10);
1066 	if (!run_to_completion)
1067 		spin_lock_irqsave(&smi_info->si_lock, flags);
1068 	smi_event_handler(smi_info, 10);
1069 	if (!run_to_completion)
1070 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1071 }
1072 
1073 static void request_events(void *send_info)
1074 {
1075 	struct smi_info *smi_info = send_info;
1076 
1077 	if (!smi_info->has_event_buffer)
1078 		return;
1079 
1080 	atomic_set(&smi_info->req_events, 1);
1081 }
1082 
1083 static void set_need_watch(void *send_info, bool enable)
1084 {
1085 	struct smi_info *smi_info = send_info;
1086 	unsigned long flags;
1087 
1088 	atomic_set(&smi_info->need_watch, enable);
1089 	spin_lock_irqsave(&smi_info->si_lock, flags);
1090 	check_start_timer_thread(smi_info);
1091 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1092 }
1093 
1094 static void smi_timeout(struct timer_list *t)
1095 {
1096 	struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1097 	enum si_sm_result smi_result;
1098 	unsigned long     flags;
1099 	unsigned long     jiffies_now;
1100 	long              time_diff;
1101 	long		  timeout;
1102 
1103 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1104 	debug_timestamp("Timer");
1105 
1106 	jiffies_now = jiffies;
1107 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1108 		     * SI_USEC_PER_JIFFY);
1109 	smi_result = smi_event_handler(smi_info, time_diff);
1110 
1111 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1112 		/* Running with interrupts, only do long timeouts. */
1113 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1114 		smi_inc_stat(smi_info, long_timeouts);
1115 		goto do_mod_timer;
1116 	}
1117 
1118 	/*
1119 	 * If the state machine asks for a short delay, then shorten
1120 	 * the timer timeout.
1121 	 */
1122 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1123 		smi_inc_stat(smi_info, short_timeouts);
1124 		timeout = jiffies + 1;
1125 	} else {
1126 		smi_inc_stat(smi_info, long_timeouts);
1127 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1128 	}
1129 
1130 do_mod_timer:
1131 	if (smi_result != SI_SM_IDLE)
1132 		smi_mod_timer(smi_info, timeout);
1133 	else
1134 		smi_info->timer_running = false;
1135 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1136 }
1137 
1138 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1139 {
1140 	struct smi_info *smi_info = data;
1141 	unsigned long   flags;
1142 
1143 	if (smi_info->io.si_type == SI_BT)
1144 		/* We need to clear the IRQ flag for the BT interface. */
1145 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1146 				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1147 				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1148 
1149 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1150 
1151 	smi_inc_stat(smi_info, interrupts);
1152 
1153 	debug_timestamp("Interrupt");
1154 
1155 	smi_event_handler(smi_info, 0);
1156 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1157 	return IRQ_HANDLED;
1158 }
1159 
1160 static int smi_start_processing(void       *send_info,
1161 				ipmi_smi_t intf)
1162 {
1163 	struct smi_info *new_smi = send_info;
1164 	int             enable = 0;
1165 
1166 	new_smi->intf = intf;
1167 
1168 	/* Set up the timer that drives the interface. */
1169 	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1170 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1171 
1172 	/* Try to claim any interrupts. */
1173 	if (new_smi->io.irq_setup) {
1174 		new_smi->io.irq_handler_data = new_smi;
1175 		new_smi->io.irq_setup(&new_smi->io);
1176 	}
1177 
1178 	/*
1179 	 * Check if the user forcefully enabled the daemon.
1180 	 */
1181 	if (new_smi->intf_num < num_force_kipmid)
1182 		enable = force_kipmid[new_smi->intf_num];
1183 	/*
1184 	 * The BT interface is efficient enough to not need a thread,
1185 	 * and there is no need for a thread if we have interrupts.
1186 	 */
1187 	else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1188 		enable = 1;
1189 
1190 	if (enable) {
1191 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1192 					      "kipmi%d", new_smi->intf_num);
1193 		if (IS_ERR(new_smi->thread)) {
1194 			dev_notice(new_smi->io.dev, "Could not start"
1195 				   " kernel thread due to error %ld, only using"
1196 				   " timers to drive the interface\n",
1197 				   PTR_ERR(new_smi->thread));
1198 			new_smi->thread = NULL;
1199 		}
1200 	}
1201 
1202 	return 0;
1203 }
1204 
1205 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1206 {
1207 	struct smi_info *smi = send_info;
1208 
1209 	data->addr_src = smi->io.addr_source;
1210 	data->dev = smi->io.dev;
1211 	data->addr_info = smi->io.addr_info;
1212 	get_device(smi->io.dev);
1213 
1214 	return 0;
1215 }
1216 
1217 static void set_maintenance_mode(void *send_info, bool enable)
1218 {
1219 	struct smi_info   *smi_info = send_info;
1220 
1221 	if (!enable)
1222 		atomic_set(&smi_info->req_events, 0);
1223 }
1224 
1225 static const struct ipmi_smi_handlers handlers = {
1226 	.owner                  = THIS_MODULE,
1227 	.start_processing       = smi_start_processing,
1228 	.get_smi_info		= get_smi_info,
1229 	.sender			= sender,
1230 	.request_events		= request_events,
1231 	.set_need_watch		= set_need_watch,
1232 	.set_maintenance_mode   = set_maintenance_mode,
1233 	.set_run_to_completion  = set_run_to_completion,
1234 	.flush_messages		= flush_messages,
1235 	.poll			= poll,
1236 };
1237 
1238 static LIST_HEAD(smi_infos);
1239 static DEFINE_MUTEX(smi_infos_lock);
1240 static int smi_num; /* Used to sequence the SMIs */
1241 
1242 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1243 
1244 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1245 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1246 		 " disabled(0).  Normally the IPMI driver auto-detects"
1247 		 " this, but the value may be overridden by this parm.");
1248 module_param(unload_when_empty, bool, 0);
1249 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1250 		 " specified or found, default is 1.  Setting to 0"
1251 		 " is useful for hot add of devices using hotmod.");
1252 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1253 MODULE_PARM_DESC(kipmid_max_busy_us,
1254 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1255 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1256 		 " if kipmid is using up a lot of CPU time.");
1257 
1258 void ipmi_irq_finish_setup(struct si_sm_io *io)
1259 {
1260 	if (io->si_type == SI_BT)
1261 		/* Enable the interrupt in the BT interface. */
1262 		io->outputb(io, IPMI_BT_INTMASK_REG,
1263 			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1264 }
1265 
1266 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1267 {
1268 	if (io->si_type == SI_BT)
1269 		/* Disable the interrupt in the BT interface. */
1270 		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1271 }
1272 
1273 static void std_irq_cleanup(struct si_sm_io *io)
1274 {
1275 	ipmi_irq_start_cleanup(io);
1276 	free_irq(io->irq, io->irq_handler_data);
1277 }
1278 
1279 int ipmi_std_irq_setup(struct si_sm_io *io)
1280 {
1281 	int rv;
1282 
1283 	if (!io->irq)
1284 		return 0;
1285 
1286 	rv = request_irq(io->irq,
1287 			 ipmi_si_irq_handler,
1288 			 IRQF_SHARED,
1289 			 DEVICE_NAME,
1290 			 io->irq_handler_data);
1291 	if (rv) {
1292 		dev_warn(io->dev, "%s unable to claim interrupt %d,"
1293 			 " running polled\n",
1294 			 DEVICE_NAME, io->irq);
1295 		io->irq = 0;
1296 	} else {
1297 		io->irq_cleanup = std_irq_cleanup;
1298 		ipmi_irq_finish_setup(io);
1299 		dev_info(io->dev, "Using irq %d\n", io->irq);
1300 	}
1301 
1302 	return rv;
1303 }
1304 
1305 static int wait_for_msg_done(struct smi_info *smi_info)
1306 {
1307 	enum si_sm_result     smi_result;
1308 
1309 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1310 	for (;;) {
1311 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1312 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1313 			schedule_timeout_uninterruptible(1);
1314 			smi_result = smi_info->handlers->event(
1315 				smi_info->si_sm, jiffies_to_usecs(1));
1316 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1317 			smi_result = smi_info->handlers->event(
1318 				smi_info->si_sm, 0);
1319 		} else
1320 			break;
1321 	}
1322 	if (smi_result == SI_SM_HOSED)
1323 		/*
1324 		 * We couldn't get the state machine to run, so whatever's at
1325 		 * the port is probably not an IPMI SMI interface.
1326 		 */
1327 		return -ENODEV;
1328 
1329 	return 0;
1330 }
1331 
1332 static int try_get_dev_id(struct smi_info *smi_info)
1333 {
1334 	unsigned char         msg[2];
1335 	unsigned char         *resp;
1336 	unsigned long         resp_len;
1337 	int                   rv = 0;
1338 
1339 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1340 	if (!resp)
1341 		return -ENOMEM;
1342 
1343 	/*
1344 	 * Do a Get Device ID command, since it comes back with some
1345 	 * useful info.
1346 	 */
1347 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1348 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1349 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1350 
1351 	rv = wait_for_msg_done(smi_info);
1352 	if (rv)
1353 		goto out;
1354 
1355 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1356 						  resp, IPMI_MAX_MSG_LENGTH);
1357 
1358 	/* Check and record info from the get device id, in case we need it. */
1359 	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1360 			resp + 2, resp_len - 2, &smi_info->device_id);
1361 
1362 out:
1363 	kfree(resp);
1364 	return rv;
1365 }
1366 
1367 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1368 {
1369 	unsigned char         msg[3];
1370 	unsigned char         *resp;
1371 	unsigned long         resp_len;
1372 	int                   rv;
1373 
1374 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1375 	if (!resp)
1376 		return -ENOMEM;
1377 
1378 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1379 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1380 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1381 
1382 	rv = wait_for_msg_done(smi_info);
1383 	if (rv) {
1384 		dev_warn(smi_info->io.dev,
1385 			 "Error getting response from get global enables command: %d\n",
1386 			 rv);
1387 		goto out;
1388 	}
1389 
1390 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1391 						  resp, IPMI_MAX_MSG_LENGTH);
1392 
1393 	if (resp_len < 4 ||
1394 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1395 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1396 			resp[2] != 0) {
1397 		dev_warn(smi_info->io.dev,
1398 			 "Invalid return from get global enables command: %ld %x %x %x\n",
1399 			 resp_len, resp[0], resp[1], resp[2]);
1400 		rv = -EINVAL;
1401 		goto out;
1402 	} else {
1403 		*enables = resp[3];
1404 	}
1405 
1406 out:
1407 	kfree(resp);
1408 	return rv;
1409 }
1410 
1411 /*
1412  * Returns 1 if it gets an error from the command.
1413  */
1414 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1415 {
1416 	unsigned char         msg[3];
1417 	unsigned char         *resp;
1418 	unsigned long         resp_len;
1419 	int                   rv;
1420 
1421 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1422 	if (!resp)
1423 		return -ENOMEM;
1424 
1425 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1426 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1427 	msg[2] = enables;
1428 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1429 
1430 	rv = wait_for_msg_done(smi_info);
1431 	if (rv) {
1432 		dev_warn(smi_info->io.dev,
1433 			 "Error getting response from set global enables command: %d\n",
1434 			 rv);
1435 		goto out;
1436 	}
1437 
1438 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1439 						  resp, IPMI_MAX_MSG_LENGTH);
1440 
1441 	if (resp_len < 3 ||
1442 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1443 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1444 		dev_warn(smi_info->io.dev,
1445 			 "Invalid return from set global enables command: %ld %x %x\n",
1446 			 resp_len, resp[0], resp[1]);
1447 		rv = -EINVAL;
1448 		goto out;
1449 	}
1450 
1451 	if (resp[2] != 0)
1452 		rv = 1;
1453 
1454 out:
1455 	kfree(resp);
1456 	return rv;
1457 }
1458 
1459 /*
1460  * Some BMCs do not support clearing the receive irq bit in the global
1461  * enables (even if they don't support interrupts on the BMC).  Check
1462  * for this and handle it properly.
1463  */
1464 static void check_clr_rcv_irq(struct smi_info *smi_info)
1465 {
1466 	u8 enables = 0;
1467 	int rv;
1468 
1469 	rv = get_global_enables(smi_info, &enables);
1470 	if (!rv) {
1471 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1472 			/* Already clear, should work ok. */
1473 			return;
1474 
1475 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1476 		rv = set_global_enables(smi_info, enables);
1477 	}
1478 
1479 	if (rv < 0) {
1480 		dev_err(smi_info->io.dev,
1481 			"Cannot check clearing the rcv irq: %d\n", rv);
1482 		return;
1483 	}
1484 
1485 	if (rv) {
1486 		/*
1487 		 * An error when setting the event buffer bit means
1488 		 * clearing the bit is not supported.
1489 		 */
1490 		dev_warn(smi_info->io.dev,
1491 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1492 		smi_info->cannot_disable_irq = true;
1493 	}
1494 }
1495 
1496 /*
1497  * Some BMCs do not support setting the interrupt bits in the global
1498  * enables even if they support interrupts.  Clearly bad, but we can
1499  * compensate.
1500  */
1501 static void check_set_rcv_irq(struct smi_info *smi_info)
1502 {
1503 	u8 enables = 0;
1504 	int rv;
1505 
1506 	if (!smi_info->io.irq)
1507 		return;
1508 
1509 	rv = get_global_enables(smi_info, &enables);
1510 	if (!rv) {
1511 		enables |= IPMI_BMC_RCV_MSG_INTR;
1512 		rv = set_global_enables(smi_info, enables);
1513 	}
1514 
1515 	if (rv < 0) {
1516 		dev_err(smi_info->io.dev,
1517 			"Cannot check setting the rcv irq: %d\n", rv);
1518 		return;
1519 	}
1520 
1521 	if (rv) {
1522 		/*
1523 		 * An error when setting the event buffer bit means
1524 		 * setting the bit is not supported.
1525 		 */
1526 		dev_warn(smi_info->io.dev,
1527 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1528 		smi_info->cannot_disable_irq = true;
1529 		smi_info->irq_enable_broken = true;
1530 	}
1531 }
1532 
1533 static int try_enable_event_buffer(struct smi_info *smi_info)
1534 {
1535 	unsigned char         msg[3];
1536 	unsigned char         *resp;
1537 	unsigned long         resp_len;
1538 	int                   rv = 0;
1539 
1540 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1541 	if (!resp)
1542 		return -ENOMEM;
1543 
1544 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1545 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1546 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1547 
1548 	rv = wait_for_msg_done(smi_info);
1549 	if (rv) {
1550 		pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1551 		goto out;
1552 	}
1553 
1554 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1555 						  resp, IPMI_MAX_MSG_LENGTH);
1556 
1557 	if (resp_len < 4 ||
1558 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1559 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1560 			resp[2] != 0) {
1561 		pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1562 		rv = -EINVAL;
1563 		goto out;
1564 	}
1565 
1566 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1567 		/* buffer is already enabled, nothing to do. */
1568 		smi_info->supports_event_msg_buff = true;
1569 		goto out;
1570 	}
1571 
1572 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1573 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1574 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1575 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1576 
1577 	rv = wait_for_msg_done(smi_info);
1578 	if (rv) {
1579 		pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1580 		goto out;
1581 	}
1582 
1583 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1584 						  resp, IPMI_MAX_MSG_LENGTH);
1585 
1586 	if (resp_len < 3 ||
1587 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1588 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1589 		pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1590 		rv = -EINVAL;
1591 		goto out;
1592 	}
1593 
1594 	if (resp[2] != 0)
1595 		/*
1596 		 * An error when setting the event buffer bit means
1597 		 * that the event buffer is not supported.
1598 		 */
1599 		rv = -ENOENT;
1600 	else
1601 		smi_info->supports_event_msg_buff = true;
1602 
1603 out:
1604 	kfree(resp);
1605 	return rv;
1606 }
1607 
1608 #ifdef CONFIG_IPMI_PROC_INTERFACE
1609 static int smi_type_proc_show(struct seq_file *m, void *v)
1610 {
1611 	struct smi_info *smi = m->private;
1612 
1613 	seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
1614 
1615 	return 0;
1616 }
1617 
1618 static int smi_type_proc_open(struct inode *inode, struct file *file)
1619 {
1620 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
1621 }
1622 
1623 static const struct file_operations smi_type_proc_ops = {
1624 	.open		= smi_type_proc_open,
1625 	.read		= seq_read,
1626 	.llseek		= seq_lseek,
1627 	.release	= single_release,
1628 };
1629 
1630 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
1631 {
1632 	struct smi_info *smi = m->private;
1633 
1634 	seq_printf(m, "interrupts_enabled:    %d\n",
1635 		       smi->io.irq && !smi->interrupt_disabled);
1636 	seq_printf(m, "short_timeouts:        %u\n",
1637 		       smi_get_stat(smi, short_timeouts));
1638 	seq_printf(m, "long_timeouts:         %u\n",
1639 		       smi_get_stat(smi, long_timeouts));
1640 	seq_printf(m, "idles:                 %u\n",
1641 		       smi_get_stat(smi, idles));
1642 	seq_printf(m, "interrupts:            %u\n",
1643 		       smi_get_stat(smi, interrupts));
1644 	seq_printf(m, "attentions:            %u\n",
1645 		       smi_get_stat(smi, attentions));
1646 	seq_printf(m, "flag_fetches:          %u\n",
1647 		       smi_get_stat(smi, flag_fetches));
1648 	seq_printf(m, "hosed_count:           %u\n",
1649 		       smi_get_stat(smi, hosed_count));
1650 	seq_printf(m, "complete_transactions: %u\n",
1651 		       smi_get_stat(smi, complete_transactions));
1652 	seq_printf(m, "events:                %u\n",
1653 		       smi_get_stat(smi, events));
1654 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
1655 		       smi_get_stat(smi, watchdog_pretimeouts));
1656 	seq_printf(m, "incoming_messages:     %u\n",
1657 		       smi_get_stat(smi, incoming_messages));
1658 	return 0;
1659 }
1660 
1661 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
1662 {
1663 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
1664 }
1665 
1666 static const struct file_operations smi_si_stats_proc_ops = {
1667 	.open		= smi_si_stats_proc_open,
1668 	.read		= seq_read,
1669 	.llseek		= seq_lseek,
1670 	.release	= single_release,
1671 };
1672 
1673 static int smi_params_proc_show(struct seq_file *m, void *v)
1674 {
1675 	struct smi_info *smi = m->private;
1676 
1677 	seq_printf(m,
1678 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1679 		   si_to_str[smi->io.si_type],
1680 		   addr_space_to_str[smi->io.addr_type],
1681 		   smi->io.addr_data,
1682 		   smi->io.regspacing,
1683 		   smi->io.regsize,
1684 		   smi->io.regshift,
1685 		   smi->io.irq,
1686 		   smi->io.slave_addr);
1687 
1688 	return 0;
1689 }
1690 
1691 static int smi_params_proc_open(struct inode *inode, struct file *file)
1692 {
1693 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
1694 }
1695 
1696 static const struct file_operations smi_params_proc_ops = {
1697 	.open		= smi_params_proc_open,
1698 	.read		= seq_read,
1699 	.llseek		= seq_lseek,
1700 	.release	= single_release,
1701 };
1702 #endif
1703 
1704 #define IPMI_SI_ATTR(name) \
1705 static ssize_t ipmi_##name##_show(struct device *dev,			\
1706 				  struct device_attribute *attr,	\
1707 				  char *buf)				\
1708 {									\
1709 	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1710 									\
1711 	return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name));	\
1712 }									\
1713 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1714 
1715 static ssize_t ipmi_type_show(struct device *dev,
1716 			      struct device_attribute *attr,
1717 			      char *buf)
1718 {
1719 	struct smi_info *smi_info = dev_get_drvdata(dev);
1720 
1721 	return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1722 }
1723 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1724 
1725 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1726 					    struct device_attribute *attr,
1727 					    char *buf)
1728 {
1729 	struct smi_info *smi_info = dev_get_drvdata(dev);
1730 	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1731 
1732 	return snprintf(buf, 10, "%d\n", enabled);
1733 }
1734 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1735 		   ipmi_interrupts_enabled_show, NULL);
1736 
1737 IPMI_SI_ATTR(short_timeouts);
1738 IPMI_SI_ATTR(long_timeouts);
1739 IPMI_SI_ATTR(idles);
1740 IPMI_SI_ATTR(interrupts);
1741 IPMI_SI_ATTR(attentions);
1742 IPMI_SI_ATTR(flag_fetches);
1743 IPMI_SI_ATTR(hosed_count);
1744 IPMI_SI_ATTR(complete_transactions);
1745 IPMI_SI_ATTR(events);
1746 IPMI_SI_ATTR(watchdog_pretimeouts);
1747 IPMI_SI_ATTR(incoming_messages);
1748 
1749 static ssize_t ipmi_params_show(struct device *dev,
1750 				struct device_attribute *attr,
1751 				char *buf)
1752 {
1753 	struct smi_info *smi_info = dev_get_drvdata(dev);
1754 
1755 	return snprintf(buf, 200,
1756 			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1757 			si_to_str[smi_info->io.si_type],
1758 			addr_space_to_str[smi_info->io.addr_type],
1759 			smi_info->io.addr_data,
1760 			smi_info->io.regspacing,
1761 			smi_info->io.regsize,
1762 			smi_info->io.regshift,
1763 			smi_info->io.irq,
1764 			smi_info->io.slave_addr);
1765 }
1766 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1767 
1768 static struct attribute *ipmi_si_dev_attrs[] = {
1769 	&dev_attr_type.attr,
1770 	&dev_attr_interrupts_enabled.attr,
1771 	&dev_attr_short_timeouts.attr,
1772 	&dev_attr_long_timeouts.attr,
1773 	&dev_attr_idles.attr,
1774 	&dev_attr_interrupts.attr,
1775 	&dev_attr_attentions.attr,
1776 	&dev_attr_flag_fetches.attr,
1777 	&dev_attr_hosed_count.attr,
1778 	&dev_attr_complete_transactions.attr,
1779 	&dev_attr_events.attr,
1780 	&dev_attr_watchdog_pretimeouts.attr,
1781 	&dev_attr_incoming_messages.attr,
1782 	&dev_attr_params.attr,
1783 	NULL
1784 };
1785 
1786 static const struct attribute_group ipmi_si_dev_attr_group = {
1787 	.attrs		= ipmi_si_dev_attrs,
1788 };
1789 
1790 /*
1791  * oem_data_avail_to_receive_msg_avail
1792  * @info - smi_info structure with msg_flags set
1793  *
1794  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1795  * Returns 1 indicating need to re-run handle_flags().
1796  */
1797 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1798 {
1799 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1800 			       RECEIVE_MSG_AVAIL);
1801 	return 1;
1802 }
1803 
1804 /*
1805  * setup_dell_poweredge_oem_data_handler
1806  * @info - smi_info.device_id must be populated
1807  *
1808  * Systems that match, but have firmware version < 1.40 may assert
1809  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1810  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1811  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1812  * as RECEIVE_MSG_AVAIL instead.
1813  *
1814  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1815  * assert the OEM[012] bits, and if it did, the driver would have to
1816  * change to handle that properly, we don't actually check for the
1817  * firmware version.
1818  * Device ID = 0x20                BMC on PowerEdge 8G servers
1819  * Device Revision = 0x80
1820  * Firmware Revision1 = 0x01       BMC version 1.40
1821  * Firmware Revision2 = 0x40       BCD encoded
1822  * IPMI Version = 0x51             IPMI 1.5
1823  * Manufacturer ID = A2 02 00      Dell IANA
1824  *
1825  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1826  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1827  *
1828  */
1829 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1830 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1831 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1832 #define DELL_IANA_MFR_ID 0x0002a2
1833 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1834 {
1835 	struct ipmi_device_id *id = &smi_info->device_id;
1836 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1837 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1838 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1839 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1840 			smi_info->oem_data_avail_handler =
1841 				oem_data_avail_to_receive_msg_avail;
1842 		} else if (ipmi_version_major(id) < 1 ||
1843 			   (ipmi_version_major(id) == 1 &&
1844 			    ipmi_version_minor(id) < 5)) {
1845 			smi_info->oem_data_avail_handler =
1846 				oem_data_avail_to_receive_msg_avail;
1847 		}
1848 	}
1849 }
1850 
1851 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1852 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1853 {
1854 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1855 
1856 	/* Make it a response */
1857 	msg->rsp[0] = msg->data[0] | 4;
1858 	msg->rsp[1] = msg->data[1];
1859 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1860 	msg->rsp_size = 3;
1861 	smi_info->curr_msg = NULL;
1862 	deliver_recv_msg(smi_info, msg);
1863 }
1864 
1865 /*
1866  * dell_poweredge_bt_xaction_handler
1867  * @info - smi_info.device_id must be populated
1868  *
1869  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1870  * not respond to a Get SDR command if the length of the data
1871  * requested is exactly 0x3A, which leads to command timeouts and no
1872  * data returned.  This intercepts such commands, and causes userspace
1873  * callers to try again with a different-sized buffer, which succeeds.
1874  */
1875 
1876 #define STORAGE_NETFN 0x0A
1877 #define STORAGE_CMD_GET_SDR 0x23
1878 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1879 					     unsigned long unused,
1880 					     void *in)
1881 {
1882 	struct smi_info *smi_info = in;
1883 	unsigned char *data = smi_info->curr_msg->data;
1884 	unsigned int size   = smi_info->curr_msg->data_size;
1885 	if (size >= 8 &&
1886 	    (data[0]>>2) == STORAGE_NETFN &&
1887 	    data[1] == STORAGE_CMD_GET_SDR &&
1888 	    data[7] == 0x3A) {
1889 		return_hosed_msg_badsize(smi_info);
1890 		return NOTIFY_STOP;
1891 	}
1892 	return NOTIFY_DONE;
1893 }
1894 
1895 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1896 	.notifier_call	= dell_poweredge_bt_xaction_handler,
1897 };
1898 
1899 /*
1900  * setup_dell_poweredge_bt_xaction_handler
1901  * @info - smi_info.device_id must be filled in already
1902  *
1903  * Fills in smi_info.device_id.start_transaction_pre_hook
1904  * when we know what function to use there.
1905  */
1906 static void
1907 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1908 {
1909 	struct ipmi_device_id *id = &smi_info->device_id;
1910 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1911 	    smi_info->io.si_type == SI_BT)
1912 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1913 }
1914 
1915 /*
1916  * setup_oem_data_handler
1917  * @info - smi_info.device_id must be filled in already
1918  *
1919  * Fills in smi_info.device_id.oem_data_available_handler
1920  * when we know what function to use there.
1921  */
1922 
1923 static void setup_oem_data_handler(struct smi_info *smi_info)
1924 {
1925 	setup_dell_poweredge_oem_data_handler(smi_info);
1926 }
1927 
1928 static void setup_xaction_handlers(struct smi_info *smi_info)
1929 {
1930 	setup_dell_poweredge_bt_xaction_handler(smi_info);
1931 }
1932 
1933 static void check_for_broken_irqs(struct smi_info *smi_info)
1934 {
1935 	check_clr_rcv_irq(smi_info);
1936 	check_set_rcv_irq(smi_info);
1937 }
1938 
1939 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
1940 {
1941 	if (smi_info->thread != NULL)
1942 		kthread_stop(smi_info->thread);
1943 	if (smi_info->timer_running)
1944 		del_timer_sync(&smi_info->si_timer);
1945 }
1946 
1947 static struct smi_info *find_dup_si(struct smi_info *info)
1948 {
1949 	struct smi_info *e;
1950 
1951 	list_for_each_entry(e, &smi_infos, link) {
1952 		if (e->io.addr_type != info->io.addr_type)
1953 			continue;
1954 		if (e->io.addr_data == info->io.addr_data) {
1955 			/*
1956 			 * This is a cheap hack, ACPI doesn't have a defined
1957 			 * slave address but SMBIOS does.  Pick it up from
1958 			 * any source that has it available.
1959 			 */
1960 			if (info->io.slave_addr && !e->io.slave_addr)
1961 				e->io.slave_addr = info->io.slave_addr;
1962 			return e;
1963 		}
1964 	}
1965 
1966 	return NULL;
1967 }
1968 
1969 int ipmi_si_add_smi(struct si_sm_io *io)
1970 {
1971 	int rv = 0;
1972 	struct smi_info *new_smi, *dup;
1973 
1974 	if (!io->io_setup) {
1975 		if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1976 			io->io_setup = ipmi_si_port_setup;
1977 		} else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1978 			io->io_setup = ipmi_si_mem_setup;
1979 		} else {
1980 			return -EINVAL;
1981 		}
1982 	}
1983 
1984 	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1985 	if (!new_smi)
1986 		return -ENOMEM;
1987 	spin_lock_init(&new_smi->si_lock);
1988 
1989 	new_smi->io = *io;
1990 
1991 	mutex_lock(&smi_infos_lock);
1992 	dup = find_dup_si(new_smi);
1993 	if (dup) {
1994 		if (new_smi->io.addr_source == SI_ACPI &&
1995 		    dup->io.addr_source == SI_SMBIOS) {
1996 			/* We prefer ACPI over SMBIOS. */
1997 			dev_info(dup->io.dev,
1998 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1999 				 si_to_str[new_smi->io.si_type]);
2000 			cleanup_one_si(dup);
2001 		} else {
2002 			dev_info(new_smi->io.dev,
2003 				 "%s-specified %s state machine: duplicate\n",
2004 				 ipmi_addr_src_to_str(new_smi->io.addr_source),
2005 				 si_to_str[new_smi->io.si_type]);
2006 			rv = -EBUSY;
2007 			kfree(new_smi);
2008 			goto out_err;
2009 		}
2010 	}
2011 
2012 	pr_info(PFX "Adding %s-specified %s state machine\n",
2013 		ipmi_addr_src_to_str(new_smi->io.addr_source),
2014 		si_to_str[new_smi->io.si_type]);
2015 
2016 	/* So we know not to free it unless we have allocated one. */
2017 	new_smi->intf = NULL;
2018 	new_smi->si_sm = NULL;
2019 	new_smi->handlers = NULL;
2020 
2021 	list_add_tail(&new_smi->link, &smi_infos);
2022 
2023 	if (initialized) {
2024 		rv = try_smi_init(new_smi);
2025 		if (rv) {
2026 			mutex_unlock(&smi_infos_lock);
2027 			cleanup_one_si(new_smi);
2028 			return rv;
2029 		}
2030 	}
2031 out_err:
2032 	mutex_unlock(&smi_infos_lock);
2033 	return rv;
2034 }
2035 
2036 /*
2037  * Try to start up an interface.  Must be called with smi_infos_lock
2038  * held, primarily to keep smi_num consistent, we only one to do these
2039  * one at a time.
2040  */
2041 static int try_smi_init(struct smi_info *new_smi)
2042 {
2043 	int rv = 0;
2044 	int i;
2045 	char *init_name = NULL;
2046 
2047 	pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2048 		ipmi_addr_src_to_str(new_smi->io.addr_source),
2049 		si_to_str[new_smi->io.si_type],
2050 		addr_space_to_str[new_smi->io.addr_type],
2051 		new_smi->io.addr_data,
2052 		new_smi->io.slave_addr, new_smi->io.irq);
2053 
2054 	switch (new_smi->io.si_type) {
2055 	case SI_KCS:
2056 		new_smi->handlers = &kcs_smi_handlers;
2057 		break;
2058 
2059 	case SI_SMIC:
2060 		new_smi->handlers = &smic_smi_handlers;
2061 		break;
2062 
2063 	case SI_BT:
2064 		new_smi->handlers = &bt_smi_handlers;
2065 		break;
2066 
2067 	default:
2068 		/* No support for anything else yet. */
2069 		rv = -EIO;
2070 		goto out_err;
2071 	}
2072 
2073 	new_smi->intf_num = smi_num;
2074 
2075 	/* Do this early so it's available for logs. */
2076 	if (!new_smi->io.dev) {
2077 		init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
2078 				      new_smi->intf_num);
2079 
2080 		/*
2081 		 * If we don't already have a device from something
2082 		 * else (like PCI), then register a new one.
2083 		 */
2084 		new_smi->pdev = platform_device_alloc("ipmi_si",
2085 						      new_smi->intf_num);
2086 		if (!new_smi->pdev) {
2087 			pr_err(PFX "Unable to allocate platform device\n");
2088 			goto out_err;
2089 		}
2090 		new_smi->io.dev = &new_smi->pdev->dev;
2091 		new_smi->io.dev->driver = &ipmi_platform_driver.driver;
2092 		/* Nulled by device_add() */
2093 		new_smi->io.dev->init_name = init_name;
2094 	}
2095 
2096 	/* Allocate the state machine's data and initialize it. */
2097 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2098 	if (!new_smi->si_sm) {
2099 		rv = -ENOMEM;
2100 		goto out_err;
2101 	}
2102 	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2103 							   &new_smi->io);
2104 
2105 	/* Now that we know the I/O size, we can set up the I/O. */
2106 	rv = new_smi->io.io_setup(&new_smi->io);
2107 	if (rv) {
2108 		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2109 		goto out_err;
2110 	}
2111 
2112 	/* Do low-level detection first. */
2113 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2114 		if (new_smi->io.addr_source)
2115 			dev_err(new_smi->io.dev,
2116 				"Interface detection failed\n");
2117 		rv = -ENODEV;
2118 		goto out_err;
2119 	}
2120 
2121 	/*
2122 	 * Attempt a get device id command.  If it fails, we probably
2123 	 * don't have a BMC here.
2124 	 */
2125 	rv = try_get_dev_id(new_smi);
2126 	if (rv) {
2127 		if (new_smi->io.addr_source)
2128 			dev_err(new_smi->io.dev,
2129 			       "There appears to be no BMC at this location\n");
2130 		goto out_err;
2131 	}
2132 
2133 	setup_oem_data_handler(new_smi);
2134 	setup_xaction_handlers(new_smi);
2135 	check_for_broken_irqs(new_smi);
2136 
2137 	new_smi->waiting_msg = NULL;
2138 	new_smi->curr_msg = NULL;
2139 	atomic_set(&new_smi->req_events, 0);
2140 	new_smi->run_to_completion = false;
2141 	for (i = 0; i < SI_NUM_STATS; i++)
2142 		atomic_set(&new_smi->stats[i], 0);
2143 
2144 	new_smi->interrupt_disabled = true;
2145 	atomic_set(&new_smi->need_watch, 0);
2146 
2147 	rv = try_enable_event_buffer(new_smi);
2148 	if (rv == 0)
2149 		new_smi->has_event_buffer = true;
2150 
2151 	/*
2152 	 * Start clearing the flags before we enable interrupts or the
2153 	 * timer to avoid racing with the timer.
2154 	 */
2155 	start_clear_flags(new_smi, false);
2156 
2157 	/*
2158 	 * IRQ is defined to be set when non-zero.  req_events will
2159 	 * cause a global flags check that will enable interrupts.
2160 	 */
2161 	if (new_smi->io.irq) {
2162 		new_smi->interrupt_disabled = false;
2163 		atomic_set(&new_smi->req_events, 1);
2164 	}
2165 
2166 	if (new_smi->pdev) {
2167 		rv = platform_device_add(new_smi->pdev);
2168 		if (rv) {
2169 			dev_err(new_smi->io.dev,
2170 				"Unable to register system interface device: %d\n",
2171 				rv);
2172 			goto out_err;
2173 		}
2174 	}
2175 
2176 	dev_set_drvdata(new_smi->io.dev, new_smi);
2177 	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2178 	if (rv) {
2179 		dev_err(new_smi->io.dev,
2180 			"Unable to add device attributes: error %d\n",
2181 			rv);
2182 		goto out_err_stop_timer;
2183 	}
2184 
2185 	rv = ipmi_register_smi(&handlers,
2186 			       new_smi,
2187 			       new_smi->io.dev,
2188 			       new_smi->io.slave_addr);
2189 	if (rv) {
2190 		dev_err(new_smi->io.dev,
2191 			"Unable to register device: error %d\n",
2192 			rv);
2193 		goto out_err_remove_attrs;
2194 	}
2195 
2196 #ifdef CONFIG_IPMI_PROC_INTERFACE
2197 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2198 				     &smi_type_proc_ops,
2199 				     new_smi);
2200 	if (rv) {
2201 		dev_err(new_smi->io.dev,
2202 			"Unable to create proc entry: %d\n", rv);
2203 		goto out_err_stop_timer;
2204 	}
2205 
2206 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2207 				     &smi_si_stats_proc_ops,
2208 				     new_smi);
2209 	if (rv) {
2210 		dev_err(new_smi->io.dev,
2211 			"Unable to create proc entry: %d\n", rv);
2212 		goto out_err_stop_timer;
2213 	}
2214 
2215 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2216 				     &smi_params_proc_ops,
2217 				     new_smi);
2218 	if (rv) {
2219 		dev_err(new_smi->io.dev,
2220 			"Unable to create proc entry: %d\n", rv);
2221 		goto out_err_stop_timer;
2222 	}
2223 #endif
2224 
2225 	/* Don't increment till we know we have succeeded. */
2226 	smi_num++;
2227 
2228 	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2229 		 si_to_str[new_smi->io.si_type]);
2230 
2231 	WARN_ON(new_smi->io.dev->init_name != NULL);
2232 	kfree(init_name);
2233 
2234 	return 0;
2235 
2236 out_err_remove_attrs:
2237 	device_remove_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2238 	dev_set_drvdata(new_smi->io.dev, NULL);
2239 
2240 out_err_stop_timer:
2241 	wait_for_timer_and_thread(new_smi);
2242 
2243 out_err:
2244 	new_smi->interrupt_disabled = true;
2245 
2246 	if (new_smi->intf) {
2247 		ipmi_smi_t intf = new_smi->intf;
2248 		new_smi->intf = NULL;
2249 		ipmi_unregister_smi(intf);
2250 	}
2251 
2252 	if (new_smi->io.irq_cleanup) {
2253 		new_smi->io.irq_cleanup(&new_smi->io);
2254 		new_smi->io.irq_cleanup = NULL;
2255 	}
2256 
2257 	/*
2258 	 * Wait until we know that we are out of any interrupt
2259 	 * handlers might have been running before we freed the
2260 	 * interrupt.
2261 	 */
2262 	synchronize_sched();
2263 
2264 	if (new_smi->si_sm) {
2265 		if (new_smi->handlers)
2266 			new_smi->handlers->cleanup(new_smi->si_sm);
2267 		kfree(new_smi->si_sm);
2268 		new_smi->si_sm = NULL;
2269 	}
2270 	if (new_smi->io.addr_source_cleanup) {
2271 		new_smi->io.addr_source_cleanup(&new_smi->io);
2272 		new_smi->io.addr_source_cleanup = NULL;
2273 	}
2274 	if (new_smi->io.io_cleanup) {
2275 		new_smi->io.io_cleanup(&new_smi->io);
2276 		new_smi->io.io_cleanup = NULL;
2277 	}
2278 
2279 	if (new_smi->pdev) {
2280 		platform_device_unregister(new_smi->pdev);
2281 		new_smi->pdev = NULL;
2282 	} else if (new_smi->pdev) {
2283 		platform_device_put(new_smi->pdev);
2284 	}
2285 
2286 	kfree(init_name);
2287 
2288 	return rv;
2289 }
2290 
2291 static int init_ipmi_si(void)
2292 {
2293 	struct smi_info *e;
2294 	enum ipmi_addr_src type = SI_INVALID;
2295 
2296 	if (initialized)
2297 		return 0;
2298 
2299 	pr_info("IPMI System Interface driver.\n");
2300 
2301 	/* If the user gave us a device, they presumably want us to use it */
2302 	if (!ipmi_si_hardcode_find_bmc())
2303 		goto do_scan;
2304 
2305 	ipmi_si_platform_init();
2306 
2307 	ipmi_si_pci_init();
2308 
2309 	ipmi_si_parisc_init();
2310 
2311 	/* We prefer devices with interrupts, but in the case of a machine
2312 	   with multiple BMCs we assume that there will be several instances
2313 	   of a given type so if we succeed in registering a type then also
2314 	   try to register everything else of the same type */
2315 do_scan:
2316 	mutex_lock(&smi_infos_lock);
2317 	list_for_each_entry(e, &smi_infos, link) {
2318 		/* Try to register a device if it has an IRQ and we either
2319 		   haven't successfully registered a device yet or this
2320 		   device has the same type as one we successfully registered */
2321 		if (e->io.irq && (!type || e->io.addr_source == type)) {
2322 			if (!try_smi_init(e)) {
2323 				type = e->io.addr_source;
2324 			}
2325 		}
2326 	}
2327 
2328 	/* type will only have been set if we successfully registered an si */
2329 	if (type)
2330 		goto skip_fallback_noirq;
2331 
2332 	/* Fall back to the preferred device */
2333 
2334 	list_for_each_entry(e, &smi_infos, link) {
2335 		if (!e->io.irq && (!type || e->io.addr_source == type)) {
2336 			if (!try_smi_init(e)) {
2337 				type = e->io.addr_source;
2338 			}
2339 		}
2340 	}
2341 
2342 skip_fallback_noirq:
2343 	initialized = 1;
2344 	mutex_unlock(&smi_infos_lock);
2345 
2346 	if (type)
2347 		return 0;
2348 
2349 	mutex_lock(&smi_infos_lock);
2350 	if (unload_when_empty && list_empty(&smi_infos)) {
2351 		mutex_unlock(&smi_infos_lock);
2352 		cleanup_ipmi_si();
2353 		pr_warn(PFX "Unable to find any System Interface(s)\n");
2354 		return -ENODEV;
2355 	} else {
2356 		mutex_unlock(&smi_infos_lock);
2357 		return 0;
2358 	}
2359 }
2360 module_init(init_ipmi_si);
2361 
2362 static void cleanup_one_si(struct smi_info *to_clean)
2363 {
2364 	int           rv = 0;
2365 
2366 	if (!to_clean)
2367 		return;
2368 
2369 	if (to_clean->intf) {
2370 		ipmi_smi_t intf = to_clean->intf;
2371 
2372 		to_clean->intf = NULL;
2373 		rv = ipmi_unregister_smi(intf);
2374 		if (rv) {
2375 			pr_err(PFX "Unable to unregister device: errno=%d\n",
2376 			       rv);
2377 		}
2378 	}
2379 
2380 	device_remove_group(to_clean->io.dev, &ipmi_si_dev_attr_group);
2381 	dev_set_drvdata(to_clean->io.dev, NULL);
2382 
2383 	list_del(&to_clean->link);
2384 
2385 	/*
2386 	 * Make sure that interrupts, the timer and the thread are
2387 	 * stopped and will not run again.
2388 	 */
2389 	if (to_clean->io.irq_cleanup)
2390 		to_clean->io.irq_cleanup(&to_clean->io);
2391 	wait_for_timer_and_thread(to_clean);
2392 
2393 	/*
2394 	 * Timeouts are stopped, now make sure the interrupts are off
2395 	 * in the BMC.  Note that timers and CPU interrupts are off,
2396 	 * so no need for locks.
2397 	 */
2398 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2399 		poll(to_clean);
2400 		schedule_timeout_uninterruptible(1);
2401 	}
2402 	if (to_clean->handlers)
2403 		disable_si_irq(to_clean, false);
2404 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2405 		poll(to_clean);
2406 		schedule_timeout_uninterruptible(1);
2407 	}
2408 
2409 	if (to_clean->handlers)
2410 		to_clean->handlers->cleanup(to_clean->si_sm);
2411 
2412 	kfree(to_clean->si_sm);
2413 
2414 	if (to_clean->io.addr_source_cleanup)
2415 		to_clean->io.addr_source_cleanup(&to_clean->io);
2416 	if (to_clean->io.io_cleanup)
2417 		to_clean->io.io_cleanup(&to_clean->io);
2418 
2419 	if (to_clean->pdev)
2420 		platform_device_unregister(to_clean->pdev);
2421 
2422 	kfree(to_clean);
2423 }
2424 
2425 int ipmi_si_remove_by_dev(struct device *dev)
2426 {
2427 	struct smi_info *e;
2428 	int rv = -ENOENT;
2429 
2430 	mutex_lock(&smi_infos_lock);
2431 	list_for_each_entry(e, &smi_infos, link) {
2432 		if (e->io.dev == dev) {
2433 			cleanup_one_si(e);
2434 			rv = 0;
2435 			break;
2436 		}
2437 	}
2438 	mutex_unlock(&smi_infos_lock);
2439 
2440 	return rv;
2441 }
2442 
2443 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2444 			    unsigned long addr)
2445 {
2446 	/* remove */
2447 	struct smi_info *e, *tmp_e;
2448 
2449 	mutex_lock(&smi_infos_lock);
2450 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2451 		if (e->io.addr_type != addr_space)
2452 			continue;
2453 		if (e->io.si_type != si_type)
2454 			continue;
2455 		if (e->io.addr_data == addr)
2456 			cleanup_one_si(e);
2457 	}
2458 	mutex_unlock(&smi_infos_lock);
2459 }
2460 
2461 static void cleanup_ipmi_si(void)
2462 {
2463 	struct smi_info *e, *tmp_e;
2464 
2465 	if (!initialized)
2466 		return;
2467 
2468 	ipmi_si_pci_shutdown();
2469 
2470 	ipmi_si_parisc_shutdown();
2471 
2472 	ipmi_si_platform_shutdown();
2473 
2474 	mutex_lock(&smi_infos_lock);
2475 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2476 		cleanup_one_si(e);
2477 	mutex_unlock(&smi_infos_lock);
2478 }
2479 module_exit(cleanup_ipmi_si);
2480 
2481 MODULE_ALIAS("platform:dmi-ipmi-si");
2482 MODULE_LICENSE("GPL");
2483 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2484 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2485 		   " system interfaces.");
2486