1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/notifier.h> 53 #include <linux/mutex.h> 54 #include <linux/kthread.h> 55 #include <asm/irq.h> 56 #include <linux/interrupt.h> 57 #include <linux/rcupdate.h> 58 #include <linux/ipmi.h> 59 #include <linux/ipmi_smi.h> 60 #include "ipmi_si.h" 61 #include <linux/string.h> 62 #include <linux/ctype.h> 63 64 #define PFX "ipmi_si: " 65 66 /* Measure times between events in the driver. */ 67 #undef DEBUG_TIMING 68 69 /* Call every 10 ms. */ 70 #define SI_TIMEOUT_TIME_USEC 10000 71 #define SI_USEC_PER_JIFFY (1000000/HZ) 72 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 73 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 74 short timeout */ 75 76 enum si_intf_state { 77 SI_NORMAL, 78 SI_GETTING_FLAGS, 79 SI_GETTING_EVENTS, 80 SI_CLEARING_FLAGS, 81 SI_GETTING_MESSAGES, 82 SI_CHECKING_ENABLES, 83 SI_SETTING_ENABLES 84 /* FIXME - add watchdog stuff. */ 85 }; 86 87 /* Some BT-specific defines we need here. */ 88 #define IPMI_BT_INTMASK_REG 2 89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 91 92 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" }; 93 94 static int initialized; 95 96 /* 97 * Indexes into stats[] in smi_info below. 98 */ 99 enum si_stat_indexes { 100 /* 101 * Number of times the driver requested a timer while an operation 102 * was in progress. 103 */ 104 SI_STAT_short_timeouts = 0, 105 106 /* 107 * Number of times the driver requested a timer while nothing was in 108 * progress. 109 */ 110 SI_STAT_long_timeouts, 111 112 /* Number of times the interface was idle while being polled. */ 113 SI_STAT_idles, 114 115 /* Number of interrupts the driver handled. */ 116 SI_STAT_interrupts, 117 118 /* Number of time the driver got an ATTN from the hardware. */ 119 SI_STAT_attentions, 120 121 /* Number of times the driver requested flags from the hardware. */ 122 SI_STAT_flag_fetches, 123 124 /* Number of times the hardware didn't follow the state machine. */ 125 SI_STAT_hosed_count, 126 127 /* Number of completed messages. */ 128 SI_STAT_complete_transactions, 129 130 /* Number of IPMI events received from the hardware. */ 131 SI_STAT_events, 132 133 /* Number of watchdog pretimeouts. */ 134 SI_STAT_watchdog_pretimeouts, 135 136 /* Number of asynchronous messages received. */ 137 SI_STAT_incoming_messages, 138 139 140 /* This *must* remain last, add new values above this. */ 141 SI_NUM_STATS 142 }; 143 144 struct smi_info { 145 int intf_num; 146 ipmi_smi_t intf; 147 struct si_sm_data *si_sm; 148 const struct si_sm_handlers *handlers; 149 spinlock_t si_lock; 150 struct ipmi_smi_msg *waiting_msg; 151 struct ipmi_smi_msg *curr_msg; 152 enum si_intf_state si_state; 153 154 /* 155 * Used to handle the various types of I/O that can occur with 156 * IPMI 157 */ 158 struct si_sm_io io; 159 160 /* 161 * Per-OEM handler, called from handle_flags(). Returns 1 162 * when handle_flags() needs to be re-run or 0 indicating it 163 * set si_state itself. 164 */ 165 int (*oem_data_avail_handler)(struct smi_info *smi_info); 166 167 /* 168 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 169 * is set to hold the flags until we are done handling everything 170 * from the flags. 171 */ 172 #define RECEIVE_MSG_AVAIL 0x01 173 #define EVENT_MSG_BUFFER_FULL 0x02 174 #define WDT_PRE_TIMEOUT_INT 0x08 175 #define OEM0_DATA_AVAIL 0x20 176 #define OEM1_DATA_AVAIL 0x40 177 #define OEM2_DATA_AVAIL 0x80 178 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 179 OEM1_DATA_AVAIL | \ 180 OEM2_DATA_AVAIL) 181 unsigned char msg_flags; 182 183 /* Does the BMC have an event buffer? */ 184 bool has_event_buffer; 185 186 /* 187 * If set to true, this will request events the next time the 188 * state machine is idle. 189 */ 190 atomic_t req_events; 191 192 /* 193 * If true, run the state machine to completion on every send 194 * call. Generally used after a panic to make sure stuff goes 195 * out. 196 */ 197 bool run_to_completion; 198 199 /* The timer for this si. */ 200 struct timer_list si_timer; 201 202 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 203 bool timer_running; 204 205 /* The time (in jiffies) the last timeout occurred at. */ 206 unsigned long last_timeout_jiffies; 207 208 /* Are we waiting for the events, pretimeouts, received msgs? */ 209 atomic_t need_watch; 210 211 /* 212 * The driver will disable interrupts when it gets into a 213 * situation where it cannot handle messages due to lack of 214 * memory. Once that situation clears up, it will re-enable 215 * interrupts. 216 */ 217 bool interrupt_disabled; 218 219 /* 220 * Does the BMC support events? 221 */ 222 bool supports_event_msg_buff; 223 224 /* 225 * Can we disable interrupts the global enables receive irq 226 * bit? There are currently two forms of brokenness, some 227 * systems cannot disable the bit (which is technically within 228 * the spec but a bad idea) and some systems have the bit 229 * forced to zero even though interrupts work (which is 230 * clearly outside the spec). The next bool tells which form 231 * of brokenness is present. 232 */ 233 bool cannot_disable_irq; 234 235 /* 236 * Some systems are broken and cannot set the irq enable 237 * bit, even if they support interrupts. 238 */ 239 bool irq_enable_broken; 240 241 /* 242 * Did we get an attention that we did not handle? 243 */ 244 bool got_attn; 245 246 /* From the get device id response... */ 247 struct ipmi_device_id device_id; 248 249 /* Default driver model device. */ 250 struct platform_device *pdev; 251 252 /* Counters and things for the proc filesystem. */ 253 atomic_t stats[SI_NUM_STATS]; 254 255 struct task_struct *thread; 256 257 struct list_head link; 258 }; 259 260 #define smi_inc_stat(smi, stat) \ 261 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 262 #define smi_get_stat(smi, stat) \ 263 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 264 265 #define IPMI_MAX_INTFS 4 266 static int force_kipmid[IPMI_MAX_INTFS]; 267 static int num_force_kipmid; 268 269 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS]; 270 static int num_max_busy_us; 271 272 static bool unload_when_empty = true; 273 274 static int try_smi_init(struct smi_info *smi); 275 static void cleanup_one_si(struct smi_info *to_clean); 276 static void cleanup_ipmi_si(void); 277 278 #ifdef DEBUG_TIMING 279 void debug_timestamp(char *msg) 280 { 281 struct timespec64 t; 282 283 getnstimeofday64(&t); 284 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 285 } 286 #else 287 #define debug_timestamp(x) 288 #endif 289 290 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 291 static int register_xaction_notifier(struct notifier_block *nb) 292 { 293 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 294 } 295 296 static void deliver_recv_msg(struct smi_info *smi_info, 297 struct ipmi_smi_msg *msg) 298 { 299 /* Deliver the message to the upper layer. */ 300 if (smi_info->intf) 301 ipmi_smi_msg_received(smi_info->intf, msg); 302 else 303 ipmi_free_smi_msg(msg); 304 } 305 306 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 307 { 308 struct ipmi_smi_msg *msg = smi_info->curr_msg; 309 310 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 311 cCode = IPMI_ERR_UNSPECIFIED; 312 /* else use it as is */ 313 314 /* Make it a response */ 315 msg->rsp[0] = msg->data[0] | 4; 316 msg->rsp[1] = msg->data[1]; 317 msg->rsp[2] = cCode; 318 msg->rsp_size = 3; 319 320 smi_info->curr_msg = NULL; 321 deliver_recv_msg(smi_info, msg); 322 } 323 324 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 325 { 326 int rv; 327 328 if (!smi_info->waiting_msg) { 329 smi_info->curr_msg = NULL; 330 rv = SI_SM_IDLE; 331 } else { 332 int err; 333 334 smi_info->curr_msg = smi_info->waiting_msg; 335 smi_info->waiting_msg = NULL; 336 debug_timestamp("Start2"); 337 err = atomic_notifier_call_chain(&xaction_notifier_list, 338 0, smi_info); 339 if (err & NOTIFY_STOP_MASK) { 340 rv = SI_SM_CALL_WITHOUT_DELAY; 341 goto out; 342 } 343 err = smi_info->handlers->start_transaction( 344 smi_info->si_sm, 345 smi_info->curr_msg->data, 346 smi_info->curr_msg->data_size); 347 if (err) 348 return_hosed_msg(smi_info, err); 349 350 rv = SI_SM_CALL_WITHOUT_DELAY; 351 } 352 out: 353 return rv; 354 } 355 356 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 357 { 358 smi_info->last_timeout_jiffies = jiffies; 359 mod_timer(&smi_info->si_timer, new_val); 360 smi_info->timer_running = true; 361 } 362 363 /* 364 * Start a new message and (re)start the timer and thread. 365 */ 366 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 367 unsigned int size) 368 { 369 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 370 371 if (smi_info->thread) 372 wake_up_process(smi_info->thread); 373 374 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 375 } 376 377 static void start_check_enables(struct smi_info *smi_info, bool start_timer) 378 { 379 unsigned char msg[2]; 380 381 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 382 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 383 384 if (start_timer) 385 start_new_msg(smi_info, msg, 2); 386 else 387 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 388 smi_info->si_state = SI_CHECKING_ENABLES; 389 } 390 391 static void start_clear_flags(struct smi_info *smi_info, bool start_timer) 392 { 393 unsigned char msg[3]; 394 395 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 396 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 397 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 398 msg[2] = WDT_PRE_TIMEOUT_INT; 399 400 if (start_timer) 401 start_new_msg(smi_info, msg, 3); 402 else 403 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 404 smi_info->si_state = SI_CLEARING_FLAGS; 405 } 406 407 static void start_getting_msg_queue(struct smi_info *smi_info) 408 { 409 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 410 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 411 smi_info->curr_msg->data_size = 2; 412 413 start_new_msg(smi_info, smi_info->curr_msg->data, 414 smi_info->curr_msg->data_size); 415 smi_info->si_state = SI_GETTING_MESSAGES; 416 } 417 418 static void start_getting_events(struct smi_info *smi_info) 419 { 420 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 421 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 422 smi_info->curr_msg->data_size = 2; 423 424 start_new_msg(smi_info, smi_info->curr_msg->data, 425 smi_info->curr_msg->data_size); 426 smi_info->si_state = SI_GETTING_EVENTS; 427 } 428 429 /* 430 * When we have a situtaion where we run out of memory and cannot 431 * allocate messages, we just leave them in the BMC and run the system 432 * polled until we can allocate some memory. Once we have some 433 * memory, we will re-enable the interrupt. 434 * 435 * Note that we cannot just use disable_irq(), since the interrupt may 436 * be shared. 437 */ 438 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer) 439 { 440 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 441 smi_info->interrupt_disabled = true; 442 start_check_enables(smi_info, start_timer); 443 return true; 444 } 445 return false; 446 } 447 448 static inline bool enable_si_irq(struct smi_info *smi_info) 449 { 450 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) { 451 smi_info->interrupt_disabled = false; 452 start_check_enables(smi_info, true); 453 return true; 454 } 455 return false; 456 } 457 458 /* 459 * Allocate a message. If unable to allocate, start the interrupt 460 * disable process and return NULL. If able to allocate but 461 * interrupts are disabled, free the message and return NULL after 462 * starting the interrupt enable process. 463 */ 464 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 465 { 466 struct ipmi_smi_msg *msg; 467 468 msg = ipmi_alloc_smi_msg(); 469 if (!msg) { 470 if (!disable_si_irq(smi_info, true)) 471 smi_info->si_state = SI_NORMAL; 472 } else if (enable_si_irq(smi_info)) { 473 ipmi_free_smi_msg(msg); 474 msg = NULL; 475 } 476 return msg; 477 } 478 479 static void handle_flags(struct smi_info *smi_info) 480 { 481 retry: 482 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 483 /* Watchdog pre-timeout */ 484 smi_inc_stat(smi_info, watchdog_pretimeouts); 485 486 start_clear_flags(smi_info, true); 487 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 488 if (smi_info->intf) 489 ipmi_smi_watchdog_pretimeout(smi_info->intf); 490 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 491 /* Messages available. */ 492 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 493 if (!smi_info->curr_msg) 494 return; 495 496 start_getting_msg_queue(smi_info); 497 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 498 /* Events available. */ 499 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 500 if (!smi_info->curr_msg) 501 return; 502 503 start_getting_events(smi_info); 504 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 505 smi_info->oem_data_avail_handler) { 506 if (smi_info->oem_data_avail_handler(smi_info)) 507 goto retry; 508 } else 509 smi_info->si_state = SI_NORMAL; 510 } 511 512 /* 513 * Global enables we care about. 514 */ 515 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 516 IPMI_BMC_EVT_MSG_INTR) 517 518 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 519 bool *irq_on) 520 { 521 u8 enables = 0; 522 523 if (smi_info->supports_event_msg_buff) 524 enables |= IPMI_BMC_EVT_MSG_BUFF; 525 526 if (((smi_info->io.irq && !smi_info->interrupt_disabled) || 527 smi_info->cannot_disable_irq) && 528 !smi_info->irq_enable_broken) 529 enables |= IPMI_BMC_RCV_MSG_INTR; 530 531 if (smi_info->supports_event_msg_buff && 532 smi_info->io.irq && !smi_info->interrupt_disabled && 533 !smi_info->irq_enable_broken) 534 enables |= IPMI_BMC_EVT_MSG_INTR; 535 536 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 537 538 return enables; 539 } 540 541 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 542 { 543 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 544 545 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 546 547 if ((bool)irqstate == irq_on) 548 return; 549 550 if (irq_on) 551 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 552 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 553 else 554 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 555 } 556 557 static void handle_transaction_done(struct smi_info *smi_info) 558 { 559 struct ipmi_smi_msg *msg; 560 561 debug_timestamp("Done"); 562 switch (smi_info->si_state) { 563 case SI_NORMAL: 564 if (!smi_info->curr_msg) 565 break; 566 567 smi_info->curr_msg->rsp_size 568 = smi_info->handlers->get_result( 569 smi_info->si_sm, 570 smi_info->curr_msg->rsp, 571 IPMI_MAX_MSG_LENGTH); 572 573 /* 574 * Do this here becase deliver_recv_msg() releases the 575 * lock, and a new message can be put in during the 576 * time the lock is released. 577 */ 578 msg = smi_info->curr_msg; 579 smi_info->curr_msg = NULL; 580 deliver_recv_msg(smi_info, msg); 581 break; 582 583 case SI_GETTING_FLAGS: 584 { 585 unsigned char msg[4]; 586 unsigned int len; 587 588 /* We got the flags from the SMI, now handle them. */ 589 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 590 if (msg[2] != 0) { 591 /* Error fetching flags, just give up for now. */ 592 smi_info->si_state = SI_NORMAL; 593 } else if (len < 4) { 594 /* 595 * Hmm, no flags. That's technically illegal, but 596 * don't use uninitialized data. 597 */ 598 smi_info->si_state = SI_NORMAL; 599 } else { 600 smi_info->msg_flags = msg[3]; 601 handle_flags(smi_info); 602 } 603 break; 604 } 605 606 case SI_CLEARING_FLAGS: 607 { 608 unsigned char msg[3]; 609 610 /* We cleared the flags. */ 611 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 612 if (msg[2] != 0) { 613 /* Error clearing flags */ 614 dev_warn(smi_info->io.dev, 615 "Error clearing flags: %2.2x\n", msg[2]); 616 } 617 smi_info->si_state = SI_NORMAL; 618 break; 619 } 620 621 case SI_GETTING_EVENTS: 622 { 623 smi_info->curr_msg->rsp_size 624 = smi_info->handlers->get_result( 625 smi_info->si_sm, 626 smi_info->curr_msg->rsp, 627 IPMI_MAX_MSG_LENGTH); 628 629 /* 630 * Do this here becase deliver_recv_msg() releases the 631 * lock, and a new message can be put in during the 632 * time the lock is released. 633 */ 634 msg = smi_info->curr_msg; 635 smi_info->curr_msg = NULL; 636 if (msg->rsp[2] != 0) { 637 /* Error getting event, probably done. */ 638 msg->done(msg); 639 640 /* Take off the event flag. */ 641 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 642 handle_flags(smi_info); 643 } else { 644 smi_inc_stat(smi_info, events); 645 646 /* 647 * Do this before we deliver the message 648 * because delivering the message releases the 649 * lock and something else can mess with the 650 * state. 651 */ 652 handle_flags(smi_info); 653 654 deliver_recv_msg(smi_info, msg); 655 } 656 break; 657 } 658 659 case SI_GETTING_MESSAGES: 660 { 661 smi_info->curr_msg->rsp_size 662 = smi_info->handlers->get_result( 663 smi_info->si_sm, 664 smi_info->curr_msg->rsp, 665 IPMI_MAX_MSG_LENGTH); 666 667 /* 668 * Do this here becase deliver_recv_msg() releases the 669 * lock, and a new message can be put in during the 670 * time the lock is released. 671 */ 672 msg = smi_info->curr_msg; 673 smi_info->curr_msg = NULL; 674 if (msg->rsp[2] != 0) { 675 /* Error getting event, probably done. */ 676 msg->done(msg); 677 678 /* Take off the msg flag. */ 679 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 680 handle_flags(smi_info); 681 } else { 682 smi_inc_stat(smi_info, incoming_messages); 683 684 /* 685 * Do this before we deliver the message 686 * because delivering the message releases the 687 * lock and something else can mess with the 688 * state. 689 */ 690 handle_flags(smi_info); 691 692 deliver_recv_msg(smi_info, msg); 693 } 694 break; 695 } 696 697 case SI_CHECKING_ENABLES: 698 { 699 unsigned char msg[4]; 700 u8 enables; 701 bool irq_on; 702 703 /* We got the flags from the SMI, now handle them. */ 704 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 705 if (msg[2] != 0) { 706 dev_warn(smi_info->io.dev, 707 "Couldn't get irq info: %x.\n", msg[2]); 708 dev_warn(smi_info->io.dev, 709 "Maybe ok, but ipmi might run very slowly.\n"); 710 smi_info->si_state = SI_NORMAL; 711 break; 712 } 713 enables = current_global_enables(smi_info, 0, &irq_on); 714 if (smi_info->io.si_type == SI_BT) 715 /* BT has its own interrupt enable bit. */ 716 check_bt_irq(smi_info, irq_on); 717 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 718 /* Enables are not correct, fix them. */ 719 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 720 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 721 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 722 smi_info->handlers->start_transaction( 723 smi_info->si_sm, msg, 3); 724 smi_info->si_state = SI_SETTING_ENABLES; 725 } else if (smi_info->supports_event_msg_buff) { 726 smi_info->curr_msg = ipmi_alloc_smi_msg(); 727 if (!smi_info->curr_msg) { 728 smi_info->si_state = SI_NORMAL; 729 break; 730 } 731 start_getting_events(smi_info); 732 } else { 733 smi_info->si_state = SI_NORMAL; 734 } 735 break; 736 } 737 738 case SI_SETTING_ENABLES: 739 { 740 unsigned char msg[4]; 741 742 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 743 if (msg[2] != 0) 744 dev_warn(smi_info->io.dev, 745 "Could not set the global enables: 0x%x.\n", 746 msg[2]); 747 748 if (smi_info->supports_event_msg_buff) { 749 smi_info->curr_msg = ipmi_alloc_smi_msg(); 750 if (!smi_info->curr_msg) { 751 smi_info->si_state = SI_NORMAL; 752 break; 753 } 754 start_getting_events(smi_info); 755 } else { 756 smi_info->si_state = SI_NORMAL; 757 } 758 break; 759 } 760 } 761 } 762 763 /* 764 * Called on timeouts and events. Timeouts should pass the elapsed 765 * time, interrupts should pass in zero. Must be called with 766 * si_lock held and interrupts disabled. 767 */ 768 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 769 int time) 770 { 771 enum si_sm_result si_sm_result; 772 773 restart: 774 /* 775 * There used to be a loop here that waited a little while 776 * (around 25us) before giving up. That turned out to be 777 * pointless, the minimum delays I was seeing were in the 300us 778 * range, which is far too long to wait in an interrupt. So 779 * we just run until the state machine tells us something 780 * happened or it needs a delay. 781 */ 782 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 783 time = 0; 784 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 785 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 786 787 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 788 smi_inc_stat(smi_info, complete_transactions); 789 790 handle_transaction_done(smi_info); 791 goto restart; 792 } else if (si_sm_result == SI_SM_HOSED) { 793 smi_inc_stat(smi_info, hosed_count); 794 795 /* 796 * Do the before return_hosed_msg, because that 797 * releases the lock. 798 */ 799 smi_info->si_state = SI_NORMAL; 800 if (smi_info->curr_msg != NULL) { 801 /* 802 * If we were handling a user message, format 803 * a response to send to the upper layer to 804 * tell it about the error. 805 */ 806 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 807 } 808 goto restart; 809 } 810 811 /* 812 * We prefer handling attn over new messages. But don't do 813 * this if there is not yet an upper layer to handle anything. 814 */ 815 if (likely(smi_info->intf) && 816 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 817 unsigned char msg[2]; 818 819 if (smi_info->si_state != SI_NORMAL) { 820 /* 821 * We got an ATTN, but we are doing something else. 822 * Handle the ATTN later. 823 */ 824 smi_info->got_attn = true; 825 } else { 826 smi_info->got_attn = false; 827 smi_inc_stat(smi_info, attentions); 828 829 /* 830 * Got a attn, send down a get message flags to see 831 * what's causing it. It would be better to handle 832 * this in the upper layer, but due to the way 833 * interrupts work with the SMI, that's not really 834 * possible. 835 */ 836 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 837 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 838 839 start_new_msg(smi_info, msg, 2); 840 smi_info->si_state = SI_GETTING_FLAGS; 841 goto restart; 842 } 843 } 844 845 /* If we are currently idle, try to start the next message. */ 846 if (si_sm_result == SI_SM_IDLE) { 847 smi_inc_stat(smi_info, idles); 848 849 si_sm_result = start_next_msg(smi_info); 850 if (si_sm_result != SI_SM_IDLE) 851 goto restart; 852 } 853 854 if ((si_sm_result == SI_SM_IDLE) 855 && (atomic_read(&smi_info->req_events))) { 856 /* 857 * We are idle and the upper layer requested that I fetch 858 * events, so do so. 859 */ 860 atomic_set(&smi_info->req_events, 0); 861 862 /* 863 * Take this opportunity to check the interrupt and 864 * message enable state for the BMC. The BMC can be 865 * asynchronously reset, and may thus get interrupts 866 * disable and messages disabled. 867 */ 868 if (smi_info->supports_event_msg_buff || smi_info->io.irq) { 869 start_check_enables(smi_info, true); 870 } else { 871 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 872 if (!smi_info->curr_msg) 873 goto out; 874 875 start_getting_events(smi_info); 876 } 877 goto restart; 878 } 879 880 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 881 /* Ok it if fails, the timer will just go off. */ 882 if (del_timer(&smi_info->si_timer)) 883 smi_info->timer_running = false; 884 } 885 886 out: 887 return si_sm_result; 888 } 889 890 static void check_start_timer_thread(struct smi_info *smi_info) 891 { 892 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 893 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 894 895 if (smi_info->thread) 896 wake_up_process(smi_info->thread); 897 898 start_next_msg(smi_info); 899 smi_event_handler(smi_info, 0); 900 } 901 } 902 903 static void flush_messages(void *send_info) 904 { 905 struct smi_info *smi_info = send_info; 906 enum si_sm_result result; 907 908 /* 909 * Currently, this function is called only in run-to-completion 910 * mode. This means we are single-threaded, no need for locks. 911 */ 912 result = smi_event_handler(smi_info, 0); 913 while (result != SI_SM_IDLE) { 914 udelay(SI_SHORT_TIMEOUT_USEC); 915 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 916 } 917 } 918 919 static void sender(void *send_info, 920 struct ipmi_smi_msg *msg) 921 { 922 struct smi_info *smi_info = send_info; 923 unsigned long flags; 924 925 debug_timestamp("Enqueue"); 926 927 if (smi_info->run_to_completion) { 928 /* 929 * If we are running to completion, start it. Upper 930 * layer will call flush_messages to clear it out. 931 */ 932 smi_info->waiting_msg = msg; 933 return; 934 } 935 936 spin_lock_irqsave(&smi_info->si_lock, flags); 937 /* 938 * The following two lines don't need to be under the lock for 939 * the lock's sake, but they do need SMP memory barriers to 940 * avoid getting things out of order. We are already claiming 941 * the lock, anyway, so just do it under the lock to avoid the 942 * ordering problem. 943 */ 944 BUG_ON(smi_info->waiting_msg); 945 smi_info->waiting_msg = msg; 946 check_start_timer_thread(smi_info); 947 spin_unlock_irqrestore(&smi_info->si_lock, flags); 948 } 949 950 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 951 { 952 struct smi_info *smi_info = send_info; 953 954 smi_info->run_to_completion = i_run_to_completion; 955 if (i_run_to_completion) 956 flush_messages(smi_info); 957 } 958 959 /* 960 * Use -1 in the nsec value of the busy waiting timespec to tell that 961 * we are spinning in kipmid looking for something and not delaying 962 * between checks 963 */ 964 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 965 { 966 ts->tv_nsec = -1; 967 } 968 static inline int ipmi_si_is_busy(struct timespec64 *ts) 969 { 970 return ts->tv_nsec != -1; 971 } 972 973 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 974 const struct smi_info *smi_info, 975 struct timespec64 *busy_until) 976 { 977 unsigned int max_busy_us = 0; 978 979 if (smi_info->intf_num < num_max_busy_us) 980 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 981 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 982 ipmi_si_set_not_busy(busy_until); 983 else if (!ipmi_si_is_busy(busy_until)) { 984 getnstimeofday64(busy_until); 985 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 986 } else { 987 struct timespec64 now; 988 989 getnstimeofday64(&now); 990 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 991 ipmi_si_set_not_busy(busy_until); 992 return 0; 993 } 994 } 995 return 1; 996 } 997 998 999 /* 1000 * A busy-waiting loop for speeding up IPMI operation. 1001 * 1002 * Lousy hardware makes this hard. This is only enabled for systems 1003 * that are not BT and do not have interrupts. It starts spinning 1004 * when an operation is complete or until max_busy tells it to stop 1005 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1006 * Documentation/IPMI.txt for details. 1007 */ 1008 static int ipmi_thread(void *data) 1009 { 1010 struct smi_info *smi_info = data; 1011 unsigned long flags; 1012 enum si_sm_result smi_result; 1013 struct timespec64 busy_until; 1014 1015 ipmi_si_set_not_busy(&busy_until); 1016 set_user_nice(current, MAX_NICE); 1017 while (!kthread_should_stop()) { 1018 int busy_wait; 1019 1020 spin_lock_irqsave(&(smi_info->si_lock), flags); 1021 smi_result = smi_event_handler(smi_info, 0); 1022 1023 /* 1024 * If the driver is doing something, there is a possible 1025 * race with the timer. If the timer handler see idle, 1026 * and the thread here sees something else, the timer 1027 * handler won't restart the timer even though it is 1028 * required. So start it here if necessary. 1029 */ 1030 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1031 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1032 1033 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1034 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1035 &busy_until); 1036 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1037 ; /* do nothing */ 1038 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1039 schedule(); 1040 else if (smi_result == SI_SM_IDLE) { 1041 if (atomic_read(&smi_info->need_watch)) { 1042 schedule_timeout_interruptible(100); 1043 } else { 1044 /* Wait to be woken up when we are needed. */ 1045 __set_current_state(TASK_INTERRUPTIBLE); 1046 schedule(); 1047 } 1048 } else 1049 schedule_timeout_interruptible(1); 1050 } 1051 return 0; 1052 } 1053 1054 1055 static void poll(void *send_info) 1056 { 1057 struct smi_info *smi_info = send_info; 1058 unsigned long flags = 0; 1059 bool run_to_completion = smi_info->run_to_completion; 1060 1061 /* 1062 * Make sure there is some delay in the poll loop so we can 1063 * drive time forward and timeout things. 1064 */ 1065 udelay(10); 1066 if (!run_to_completion) 1067 spin_lock_irqsave(&smi_info->si_lock, flags); 1068 smi_event_handler(smi_info, 10); 1069 if (!run_to_completion) 1070 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1071 } 1072 1073 static void request_events(void *send_info) 1074 { 1075 struct smi_info *smi_info = send_info; 1076 1077 if (!smi_info->has_event_buffer) 1078 return; 1079 1080 atomic_set(&smi_info->req_events, 1); 1081 } 1082 1083 static void set_need_watch(void *send_info, bool enable) 1084 { 1085 struct smi_info *smi_info = send_info; 1086 unsigned long flags; 1087 1088 atomic_set(&smi_info->need_watch, enable); 1089 spin_lock_irqsave(&smi_info->si_lock, flags); 1090 check_start_timer_thread(smi_info); 1091 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1092 } 1093 1094 static void smi_timeout(struct timer_list *t) 1095 { 1096 struct smi_info *smi_info = from_timer(smi_info, t, si_timer); 1097 enum si_sm_result smi_result; 1098 unsigned long flags; 1099 unsigned long jiffies_now; 1100 long time_diff; 1101 long timeout; 1102 1103 spin_lock_irqsave(&(smi_info->si_lock), flags); 1104 debug_timestamp("Timer"); 1105 1106 jiffies_now = jiffies; 1107 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1108 * SI_USEC_PER_JIFFY); 1109 smi_result = smi_event_handler(smi_info, time_diff); 1110 1111 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 1112 /* Running with interrupts, only do long timeouts. */ 1113 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1114 smi_inc_stat(smi_info, long_timeouts); 1115 goto do_mod_timer; 1116 } 1117 1118 /* 1119 * If the state machine asks for a short delay, then shorten 1120 * the timer timeout. 1121 */ 1122 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1123 smi_inc_stat(smi_info, short_timeouts); 1124 timeout = jiffies + 1; 1125 } else { 1126 smi_inc_stat(smi_info, long_timeouts); 1127 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1128 } 1129 1130 do_mod_timer: 1131 if (smi_result != SI_SM_IDLE) 1132 smi_mod_timer(smi_info, timeout); 1133 else 1134 smi_info->timer_running = false; 1135 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1136 } 1137 1138 irqreturn_t ipmi_si_irq_handler(int irq, void *data) 1139 { 1140 struct smi_info *smi_info = data; 1141 unsigned long flags; 1142 1143 if (smi_info->io.si_type == SI_BT) 1144 /* We need to clear the IRQ flag for the BT interface. */ 1145 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1146 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1147 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1148 1149 spin_lock_irqsave(&(smi_info->si_lock), flags); 1150 1151 smi_inc_stat(smi_info, interrupts); 1152 1153 debug_timestamp("Interrupt"); 1154 1155 smi_event_handler(smi_info, 0); 1156 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1157 return IRQ_HANDLED; 1158 } 1159 1160 static int smi_start_processing(void *send_info, 1161 ipmi_smi_t intf) 1162 { 1163 struct smi_info *new_smi = send_info; 1164 int enable = 0; 1165 1166 new_smi->intf = intf; 1167 1168 /* Set up the timer that drives the interface. */ 1169 timer_setup(&new_smi->si_timer, smi_timeout, 0); 1170 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1171 1172 /* Try to claim any interrupts. */ 1173 if (new_smi->io.irq_setup) { 1174 new_smi->io.irq_handler_data = new_smi; 1175 new_smi->io.irq_setup(&new_smi->io); 1176 } 1177 1178 /* 1179 * Check if the user forcefully enabled the daemon. 1180 */ 1181 if (new_smi->intf_num < num_force_kipmid) 1182 enable = force_kipmid[new_smi->intf_num]; 1183 /* 1184 * The BT interface is efficient enough to not need a thread, 1185 * and there is no need for a thread if we have interrupts. 1186 */ 1187 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq)) 1188 enable = 1; 1189 1190 if (enable) { 1191 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1192 "kipmi%d", new_smi->intf_num); 1193 if (IS_ERR(new_smi->thread)) { 1194 dev_notice(new_smi->io.dev, "Could not start" 1195 " kernel thread due to error %ld, only using" 1196 " timers to drive the interface\n", 1197 PTR_ERR(new_smi->thread)); 1198 new_smi->thread = NULL; 1199 } 1200 } 1201 1202 return 0; 1203 } 1204 1205 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1206 { 1207 struct smi_info *smi = send_info; 1208 1209 data->addr_src = smi->io.addr_source; 1210 data->dev = smi->io.dev; 1211 data->addr_info = smi->io.addr_info; 1212 get_device(smi->io.dev); 1213 1214 return 0; 1215 } 1216 1217 static void set_maintenance_mode(void *send_info, bool enable) 1218 { 1219 struct smi_info *smi_info = send_info; 1220 1221 if (!enable) 1222 atomic_set(&smi_info->req_events, 0); 1223 } 1224 1225 static const struct ipmi_smi_handlers handlers = { 1226 .owner = THIS_MODULE, 1227 .start_processing = smi_start_processing, 1228 .get_smi_info = get_smi_info, 1229 .sender = sender, 1230 .request_events = request_events, 1231 .set_need_watch = set_need_watch, 1232 .set_maintenance_mode = set_maintenance_mode, 1233 .set_run_to_completion = set_run_to_completion, 1234 .flush_messages = flush_messages, 1235 .poll = poll, 1236 }; 1237 1238 static LIST_HEAD(smi_infos); 1239 static DEFINE_MUTEX(smi_infos_lock); 1240 static int smi_num; /* Used to sequence the SMIs */ 1241 1242 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1243 1244 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1245 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1246 " disabled(0). Normally the IPMI driver auto-detects" 1247 " this, but the value may be overridden by this parm."); 1248 module_param(unload_when_empty, bool, 0); 1249 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1250 " specified or found, default is 1. Setting to 0" 1251 " is useful for hot add of devices using hotmod."); 1252 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1253 MODULE_PARM_DESC(kipmid_max_busy_us, 1254 "Max time (in microseconds) to busy-wait for IPMI data before" 1255 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1256 " if kipmid is using up a lot of CPU time."); 1257 1258 void ipmi_irq_finish_setup(struct si_sm_io *io) 1259 { 1260 if (io->si_type == SI_BT) 1261 /* Enable the interrupt in the BT interface. */ 1262 io->outputb(io, IPMI_BT_INTMASK_REG, 1263 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1264 } 1265 1266 void ipmi_irq_start_cleanup(struct si_sm_io *io) 1267 { 1268 if (io->si_type == SI_BT) 1269 /* Disable the interrupt in the BT interface. */ 1270 io->outputb(io, IPMI_BT_INTMASK_REG, 0); 1271 } 1272 1273 static void std_irq_cleanup(struct si_sm_io *io) 1274 { 1275 ipmi_irq_start_cleanup(io); 1276 free_irq(io->irq, io->irq_handler_data); 1277 } 1278 1279 int ipmi_std_irq_setup(struct si_sm_io *io) 1280 { 1281 int rv; 1282 1283 if (!io->irq) 1284 return 0; 1285 1286 rv = request_irq(io->irq, 1287 ipmi_si_irq_handler, 1288 IRQF_SHARED, 1289 DEVICE_NAME, 1290 io->irq_handler_data); 1291 if (rv) { 1292 dev_warn(io->dev, "%s unable to claim interrupt %d," 1293 " running polled\n", 1294 DEVICE_NAME, io->irq); 1295 io->irq = 0; 1296 } else { 1297 io->irq_cleanup = std_irq_cleanup; 1298 ipmi_irq_finish_setup(io); 1299 dev_info(io->dev, "Using irq %d\n", io->irq); 1300 } 1301 1302 return rv; 1303 } 1304 1305 static int wait_for_msg_done(struct smi_info *smi_info) 1306 { 1307 enum si_sm_result smi_result; 1308 1309 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 1310 for (;;) { 1311 if (smi_result == SI_SM_CALL_WITH_DELAY || 1312 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 1313 schedule_timeout_uninterruptible(1); 1314 smi_result = smi_info->handlers->event( 1315 smi_info->si_sm, jiffies_to_usecs(1)); 1316 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 1317 smi_result = smi_info->handlers->event( 1318 smi_info->si_sm, 0); 1319 } else 1320 break; 1321 } 1322 if (smi_result == SI_SM_HOSED) 1323 /* 1324 * We couldn't get the state machine to run, so whatever's at 1325 * the port is probably not an IPMI SMI interface. 1326 */ 1327 return -ENODEV; 1328 1329 return 0; 1330 } 1331 1332 static int try_get_dev_id(struct smi_info *smi_info) 1333 { 1334 unsigned char msg[2]; 1335 unsigned char *resp; 1336 unsigned long resp_len; 1337 int rv = 0; 1338 1339 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1340 if (!resp) 1341 return -ENOMEM; 1342 1343 /* 1344 * Do a Get Device ID command, since it comes back with some 1345 * useful info. 1346 */ 1347 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1348 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1350 1351 rv = wait_for_msg_done(smi_info); 1352 if (rv) 1353 goto out; 1354 1355 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1356 resp, IPMI_MAX_MSG_LENGTH); 1357 1358 /* Check and record info from the get device id, in case we need it. */ 1359 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], 1360 resp + 2, resp_len - 2, &smi_info->device_id); 1361 1362 out: 1363 kfree(resp); 1364 return rv; 1365 } 1366 1367 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 1368 { 1369 unsigned char msg[3]; 1370 unsigned char *resp; 1371 unsigned long resp_len; 1372 int rv; 1373 1374 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1375 if (!resp) 1376 return -ENOMEM; 1377 1378 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1379 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1380 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1381 1382 rv = wait_for_msg_done(smi_info); 1383 if (rv) { 1384 dev_warn(smi_info->io.dev, 1385 "Error getting response from get global enables command: %d\n", 1386 rv); 1387 goto out; 1388 } 1389 1390 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1391 resp, IPMI_MAX_MSG_LENGTH); 1392 1393 if (resp_len < 4 || 1394 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1395 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1396 resp[2] != 0) { 1397 dev_warn(smi_info->io.dev, 1398 "Invalid return from get global enables command: %ld %x %x %x\n", 1399 resp_len, resp[0], resp[1], resp[2]); 1400 rv = -EINVAL; 1401 goto out; 1402 } else { 1403 *enables = resp[3]; 1404 } 1405 1406 out: 1407 kfree(resp); 1408 return rv; 1409 } 1410 1411 /* 1412 * Returns 1 if it gets an error from the command. 1413 */ 1414 static int set_global_enables(struct smi_info *smi_info, u8 enables) 1415 { 1416 unsigned char msg[3]; 1417 unsigned char *resp; 1418 unsigned long resp_len; 1419 int rv; 1420 1421 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1422 if (!resp) 1423 return -ENOMEM; 1424 1425 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1426 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1427 msg[2] = enables; 1428 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1429 1430 rv = wait_for_msg_done(smi_info); 1431 if (rv) { 1432 dev_warn(smi_info->io.dev, 1433 "Error getting response from set global enables command: %d\n", 1434 rv); 1435 goto out; 1436 } 1437 1438 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1439 resp, IPMI_MAX_MSG_LENGTH); 1440 1441 if (resp_len < 3 || 1442 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1443 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1444 dev_warn(smi_info->io.dev, 1445 "Invalid return from set global enables command: %ld %x %x\n", 1446 resp_len, resp[0], resp[1]); 1447 rv = -EINVAL; 1448 goto out; 1449 } 1450 1451 if (resp[2] != 0) 1452 rv = 1; 1453 1454 out: 1455 kfree(resp); 1456 return rv; 1457 } 1458 1459 /* 1460 * Some BMCs do not support clearing the receive irq bit in the global 1461 * enables (even if they don't support interrupts on the BMC). Check 1462 * for this and handle it properly. 1463 */ 1464 static void check_clr_rcv_irq(struct smi_info *smi_info) 1465 { 1466 u8 enables = 0; 1467 int rv; 1468 1469 rv = get_global_enables(smi_info, &enables); 1470 if (!rv) { 1471 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 1472 /* Already clear, should work ok. */ 1473 return; 1474 1475 enables &= ~IPMI_BMC_RCV_MSG_INTR; 1476 rv = set_global_enables(smi_info, enables); 1477 } 1478 1479 if (rv < 0) { 1480 dev_err(smi_info->io.dev, 1481 "Cannot check clearing the rcv irq: %d\n", rv); 1482 return; 1483 } 1484 1485 if (rv) { 1486 /* 1487 * An error when setting the event buffer bit means 1488 * clearing the bit is not supported. 1489 */ 1490 dev_warn(smi_info->io.dev, 1491 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1492 smi_info->cannot_disable_irq = true; 1493 } 1494 } 1495 1496 /* 1497 * Some BMCs do not support setting the interrupt bits in the global 1498 * enables even if they support interrupts. Clearly bad, but we can 1499 * compensate. 1500 */ 1501 static void check_set_rcv_irq(struct smi_info *smi_info) 1502 { 1503 u8 enables = 0; 1504 int rv; 1505 1506 if (!smi_info->io.irq) 1507 return; 1508 1509 rv = get_global_enables(smi_info, &enables); 1510 if (!rv) { 1511 enables |= IPMI_BMC_RCV_MSG_INTR; 1512 rv = set_global_enables(smi_info, enables); 1513 } 1514 1515 if (rv < 0) { 1516 dev_err(smi_info->io.dev, 1517 "Cannot check setting the rcv irq: %d\n", rv); 1518 return; 1519 } 1520 1521 if (rv) { 1522 /* 1523 * An error when setting the event buffer bit means 1524 * setting the bit is not supported. 1525 */ 1526 dev_warn(smi_info->io.dev, 1527 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1528 smi_info->cannot_disable_irq = true; 1529 smi_info->irq_enable_broken = true; 1530 } 1531 } 1532 1533 static int try_enable_event_buffer(struct smi_info *smi_info) 1534 { 1535 unsigned char msg[3]; 1536 unsigned char *resp; 1537 unsigned long resp_len; 1538 int rv = 0; 1539 1540 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1541 if (!resp) 1542 return -ENOMEM; 1543 1544 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1545 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1546 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1547 1548 rv = wait_for_msg_done(smi_info); 1549 if (rv) { 1550 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n"); 1551 goto out; 1552 } 1553 1554 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1555 resp, IPMI_MAX_MSG_LENGTH); 1556 1557 if (resp_len < 4 || 1558 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1559 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1560 resp[2] != 0) { 1561 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n"); 1562 rv = -EINVAL; 1563 goto out; 1564 } 1565 1566 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1567 /* buffer is already enabled, nothing to do. */ 1568 smi_info->supports_event_msg_buff = true; 1569 goto out; 1570 } 1571 1572 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1573 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1574 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 1575 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1576 1577 rv = wait_for_msg_done(smi_info); 1578 if (rv) { 1579 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n"); 1580 goto out; 1581 } 1582 1583 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1584 resp, IPMI_MAX_MSG_LENGTH); 1585 1586 if (resp_len < 3 || 1587 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1588 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1589 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n"); 1590 rv = -EINVAL; 1591 goto out; 1592 } 1593 1594 if (resp[2] != 0) 1595 /* 1596 * An error when setting the event buffer bit means 1597 * that the event buffer is not supported. 1598 */ 1599 rv = -ENOENT; 1600 else 1601 smi_info->supports_event_msg_buff = true; 1602 1603 out: 1604 kfree(resp); 1605 return rv; 1606 } 1607 1608 #ifdef CONFIG_IPMI_PROC_INTERFACE 1609 static int smi_type_proc_show(struct seq_file *m, void *v) 1610 { 1611 struct smi_info *smi = m->private; 1612 1613 seq_printf(m, "%s\n", si_to_str[smi->io.si_type]); 1614 1615 return 0; 1616 } 1617 1618 static int smi_type_proc_open(struct inode *inode, struct file *file) 1619 { 1620 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 1621 } 1622 1623 static const struct file_operations smi_type_proc_ops = { 1624 .open = smi_type_proc_open, 1625 .read = seq_read, 1626 .llseek = seq_lseek, 1627 .release = single_release, 1628 }; 1629 1630 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 1631 { 1632 struct smi_info *smi = m->private; 1633 1634 seq_printf(m, "interrupts_enabled: %d\n", 1635 smi->io.irq && !smi->interrupt_disabled); 1636 seq_printf(m, "short_timeouts: %u\n", 1637 smi_get_stat(smi, short_timeouts)); 1638 seq_printf(m, "long_timeouts: %u\n", 1639 smi_get_stat(smi, long_timeouts)); 1640 seq_printf(m, "idles: %u\n", 1641 smi_get_stat(smi, idles)); 1642 seq_printf(m, "interrupts: %u\n", 1643 smi_get_stat(smi, interrupts)); 1644 seq_printf(m, "attentions: %u\n", 1645 smi_get_stat(smi, attentions)); 1646 seq_printf(m, "flag_fetches: %u\n", 1647 smi_get_stat(smi, flag_fetches)); 1648 seq_printf(m, "hosed_count: %u\n", 1649 smi_get_stat(smi, hosed_count)); 1650 seq_printf(m, "complete_transactions: %u\n", 1651 smi_get_stat(smi, complete_transactions)); 1652 seq_printf(m, "events: %u\n", 1653 smi_get_stat(smi, events)); 1654 seq_printf(m, "watchdog_pretimeouts: %u\n", 1655 smi_get_stat(smi, watchdog_pretimeouts)); 1656 seq_printf(m, "incoming_messages: %u\n", 1657 smi_get_stat(smi, incoming_messages)); 1658 return 0; 1659 } 1660 1661 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 1662 { 1663 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 1664 } 1665 1666 static const struct file_operations smi_si_stats_proc_ops = { 1667 .open = smi_si_stats_proc_open, 1668 .read = seq_read, 1669 .llseek = seq_lseek, 1670 .release = single_release, 1671 }; 1672 1673 static int smi_params_proc_show(struct seq_file *m, void *v) 1674 { 1675 struct smi_info *smi = m->private; 1676 1677 seq_printf(m, 1678 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 1679 si_to_str[smi->io.si_type], 1680 addr_space_to_str[smi->io.addr_type], 1681 smi->io.addr_data, 1682 smi->io.regspacing, 1683 smi->io.regsize, 1684 smi->io.regshift, 1685 smi->io.irq, 1686 smi->io.slave_addr); 1687 1688 return 0; 1689 } 1690 1691 static int smi_params_proc_open(struct inode *inode, struct file *file) 1692 { 1693 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 1694 } 1695 1696 static const struct file_operations smi_params_proc_ops = { 1697 .open = smi_params_proc_open, 1698 .read = seq_read, 1699 .llseek = seq_lseek, 1700 .release = single_release, 1701 }; 1702 #endif 1703 1704 #define IPMI_SI_ATTR(name) \ 1705 static ssize_t ipmi_##name##_show(struct device *dev, \ 1706 struct device_attribute *attr, \ 1707 char *buf) \ 1708 { \ 1709 struct smi_info *smi_info = dev_get_drvdata(dev); \ 1710 \ 1711 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \ 1712 } \ 1713 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1714 1715 static ssize_t ipmi_type_show(struct device *dev, 1716 struct device_attribute *attr, 1717 char *buf) 1718 { 1719 struct smi_info *smi_info = dev_get_drvdata(dev); 1720 1721 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]); 1722 } 1723 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1724 1725 static ssize_t ipmi_interrupts_enabled_show(struct device *dev, 1726 struct device_attribute *attr, 1727 char *buf) 1728 { 1729 struct smi_info *smi_info = dev_get_drvdata(dev); 1730 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled; 1731 1732 return snprintf(buf, 10, "%d\n", enabled); 1733 } 1734 static DEVICE_ATTR(interrupts_enabled, S_IRUGO, 1735 ipmi_interrupts_enabled_show, NULL); 1736 1737 IPMI_SI_ATTR(short_timeouts); 1738 IPMI_SI_ATTR(long_timeouts); 1739 IPMI_SI_ATTR(idles); 1740 IPMI_SI_ATTR(interrupts); 1741 IPMI_SI_ATTR(attentions); 1742 IPMI_SI_ATTR(flag_fetches); 1743 IPMI_SI_ATTR(hosed_count); 1744 IPMI_SI_ATTR(complete_transactions); 1745 IPMI_SI_ATTR(events); 1746 IPMI_SI_ATTR(watchdog_pretimeouts); 1747 IPMI_SI_ATTR(incoming_messages); 1748 1749 static ssize_t ipmi_params_show(struct device *dev, 1750 struct device_attribute *attr, 1751 char *buf) 1752 { 1753 struct smi_info *smi_info = dev_get_drvdata(dev); 1754 1755 return snprintf(buf, 200, 1756 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 1757 si_to_str[smi_info->io.si_type], 1758 addr_space_to_str[smi_info->io.addr_type], 1759 smi_info->io.addr_data, 1760 smi_info->io.regspacing, 1761 smi_info->io.regsize, 1762 smi_info->io.regshift, 1763 smi_info->io.irq, 1764 smi_info->io.slave_addr); 1765 } 1766 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL); 1767 1768 static struct attribute *ipmi_si_dev_attrs[] = { 1769 &dev_attr_type.attr, 1770 &dev_attr_interrupts_enabled.attr, 1771 &dev_attr_short_timeouts.attr, 1772 &dev_attr_long_timeouts.attr, 1773 &dev_attr_idles.attr, 1774 &dev_attr_interrupts.attr, 1775 &dev_attr_attentions.attr, 1776 &dev_attr_flag_fetches.attr, 1777 &dev_attr_hosed_count.attr, 1778 &dev_attr_complete_transactions.attr, 1779 &dev_attr_events.attr, 1780 &dev_attr_watchdog_pretimeouts.attr, 1781 &dev_attr_incoming_messages.attr, 1782 &dev_attr_params.attr, 1783 NULL 1784 }; 1785 1786 static const struct attribute_group ipmi_si_dev_attr_group = { 1787 .attrs = ipmi_si_dev_attrs, 1788 }; 1789 1790 /* 1791 * oem_data_avail_to_receive_msg_avail 1792 * @info - smi_info structure with msg_flags set 1793 * 1794 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 1795 * Returns 1 indicating need to re-run handle_flags(). 1796 */ 1797 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 1798 { 1799 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 1800 RECEIVE_MSG_AVAIL); 1801 return 1; 1802 } 1803 1804 /* 1805 * setup_dell_poweredge_oem_data_handler 1806 * @info - smi_info.device_id must be populated 1807 * 1808 * Systems that match, but have firmware version < 1.40 may assert 1809 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 1810 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 1811 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 1812 * as RECEIVE_MSG_AVAIL instead. 1813 * 1814 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 1815 * assert the OEM[012] bits, and if it did, the driver would have to 1816 * change to handle that properly, we don't actually check for the 1817 * firmware version. 1818 * Device ID = 0x20 BMC on PowerEdge 8G servers 1819 * Device Revision = 0x80 1820 * Firmware Revision1 = 0x01 BMC version 1.40 1821 * Firmware Revision2 = 0x40 BCD encoded 1822 * IPMI Version = 0x51 IPMI 1.5 1823 * Manufacturer ID = A2 02 00 Dell IANA 1824 * 1825 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 1826 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 1827 * 1828 */ 1829 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 1830 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 1831 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 1832 #define DELL_IANA_MFR_ID 0x0002a2 1833 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 1834 { 1835 struct ipmi_device_id *id = &smi_info->device_id; 1836 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 1837 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 1838 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 1839 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 1840 smi_info->oem_data_avail_handler = 1841 oem_data_avail_to_receive_msg_avail; 1842 } else if (ipmi_version_major(id) < 1 || 1843 (ipmi_version_major(id) == 1 && 1844 ipmi_version_minor(id) < 5)) { 1845 smi_info->oem_data_avail_handler = 1846 oem_data_avail_to_receive_msg_avail; 1847 } 1848 } 1849 } 1850 1851 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 1852 static void return_hosed_msg_badsize(struct smi_info *smi_info) 1853 { 1854 struct ipmi_smi_msg *msg = smi_info->curr_msg; 1855 1856 /* Make it a response */ 1857 msg->rsp[0] = msg->data[0] | 4; 1858 msg->rsp[1] = msg->data[1]; 1859 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 1860 msg->rsp_size = 3; 1861 smi_info->curr_msg = NULL; 1862 deliver_recv_msg(smi_info, msg); 1863 } 1864 1865 /* 1866 * dell_poweredge_bt_xaction_handler 1867 * @info - smi_info.device_id must be populated 1868 * 1869 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 1870 * not respond to a Get SDR command if the length of the data 1871 * requested is exactly 0x3A, which leads to command timeouts and no 1872 * data returned. This intercepts such commands, and causes userspace 1873 * callers to try again with a different-sized buffer, which succeeds. 1874 */ 1875 1876 #define STORAGE_NETFN 0x0A 1877 #define STORAGE_CMD_GET_SDR 0x23 1878 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 1879 unsigned long unused, 1880 void *in) 1881 { 1882 struct smi_info *smi_info = in; 1883 unsigned char *data = smi_info->curr_msg->data; 1884 unsigned int size = smi_info->curr_msg->data_size; 1885 if (size >= 8 && 1886 (data[0]>>2) == STORAGE_NETFN && 1887 data[1] == STORAGE_CMD_GET_SDR && 1888 data[7] == 0x3A) { 1889 return_hosed_msg_badsize(smi_info); 1890 return NOTIFY_STOP; 1891 } 1892 return NOTIFY_DONE; 1893 } 1894 1895 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 1896 .notifier_call = dell_poweredge_bt_xaction_handler, 1897 }; 1898 1899 /* 1900 * setup_dell_poweredge_bt_xaction_handler 1901 * @info - smi_info.device_id must be filled in already 1902 * 1903 * Fills in smi_info.device_id.start_transaction_pre_hook 1904 * when we know what function to use there. 1905 */ 1906 static void 1907 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 1908 { 1909 struct ipmi_device_id *id = &smi_info->device_id; 1910 if (id->manufacturer_id == DELL_IANA_MFR_ID && 1911 smi_info->io.si_type == SI_BT) 1912 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 1913 } 1914 1915 /* 1916 * setup_oem_data_handler 1917 * @info - smi_info.device_id must be filled in already 1918 * 1919 * Fills in smi_info.device_id.oem_data_available_handler 1920 * when we know what function to use there. 1921 */ 1922 1923 static void setup_oem_data_handler(struct smi_info *smi_info) 1924 { 1925 setup_dell_poweredge_oem_data_handler(smi_info); 1926 } 1927 1928 static void setup_xaction_handlers(struct smi_info *smi_info) 1929 { 1930 setup_dell_poweredge_bt_xaction_handler(smi_info); 1931 } 1932 1933 static void check_for_broken_irqs(struct smi_info *smi_info) 1934 { 1935 check_clr_rcv_irq(smi_info); 1936 check_set_rcv_irq(smi_info); 1937 } 1938 1939 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 1940 { 1941 if (smi_info->thread != NULL) 1942 kthread_stop(smi_info->thread); 1943 if (smi_info->timer_running) 1944 del_timer_sync(&smi_info->si_timer); 1945 } 1946 1947 static struct smi_info *find_dup_si(struct smi_info *info) 1948 { 1949 struct smi_info *e; 1950 1951 list_for_each_entry(e, &smi_infos, link) { 1952 if (e->io.addr_type != info->io.addr_type) 1953 continue; 1954 if (e->io.addr_data == info->io.addr_data) { 1955 /* 1956 * This is a cheap hack, ACPI doesn't have a defined 1957 * slave address but SMBIOS does. Pick it up from 1958 * any source that has it available. 1959 */ 1960 if (info->io.slave_addr && !e->io.slave_addr) 1961 e->io.slave_addr = info->io.slave_addr; 1962 return e; 1963 } 1964 } 1965 1966 return NULL; 1967 } 1968 1969 int ipmi_si_add_smi(struct si_sm_io *io) 1970 { 1971 int rv = 0; 1972 struct smi_info *new_smi, *dup; 1973 1974 if (!io->io_setup) { 1975 if (io->addr_type == IPMI_IO_ADDR_SPACE) { 1976 io->io_setup = ipmi_si_port_setup; 1977 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) { 1978 io->io_setup = ipmi_si_mem_setup; 1979 } else { 1980 return -EINVAL; 1981 } 1982 } 1983 1984 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL); 1985 if (!new_smi) 1986 return -ENOMEM; 1987 spin_lock_init(&new_smi->si_lock); 1988 1989 new_smi->io = *io; 1990 1991 mutex_lock(&smi_infos_lock); 1992 dup = find_dup_si(new_smi); 1993 if (dup) { 1994 if (new_smi->io.addr_source == SI_ACPI && 1995 dup->io.addr_source == SI_SMBIOS) { 1996 /* We prefer ACPI over SMBIOS. */ 1997 dev_info(dup->io.dev, 1998 "Removing SMBIOS-specified %s state machine in favor of ACPI\n", 1999 si_to_str[new_smi->io.si_type]); 2000 cleanup_one_si(dup); 2001 } else { 2002 dev_info(new_smi->io.dev, 2003 "%s-specified %s state machine: duplicate\n", 2004 ipmi_addr_src_to_str(new_smi->io.addr_source), 2005 si_to_str[new_smi->io.si_type]); 2006 rv = -EBUSY; 2007 kfree(new_smi); 2008 goto out_err; 2009 } 2010 } 2011 2012 pr_info(PFX "Adding %s-specified %s state machine\n", 2013 ipmi_addr_src_to_str(new_smi->io.addr_source), 2014 si_to_str[new_smi->io.si_type]); 2015 2016 /* So we know not to free it unless we have allocated one. */ 2017 new_smi->intf = NULL; 2018 new_smi->si_sm = NULL; 2019 new_smi->handlers = NULL; 2020 2021 list_add_tail(&new_smi->link, &smi_infos); 2022 2023 if (initialized) { 2024 rv = try_smi_init(new_smi); 2025 if (rv) { 2026 mutex_unlock(&smi_infos_lock); 2027 cleanup_one_si(new_smi); 2028 return rv; 2029 } 2030 } 2031 out_err: 2032 mutex_unlock(&smi_infos_lock); 2033 return rv; 2034 } 2035 2036 /* 2037 * Try to start up an interface. Must be called with smi_infos_lock 2038 * held, primarily to keep smi_num consistent, we only one to do these 2039 * one at a time. 2040 */ 2041 static int try_smi_init(struct smi_info *new_smi) 2042 { 2043 int rv = 0; 2044 int i; 2045 char *init_name = NULL; 2046 2047 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", 2048 ipmi_addr_src_to_str(new_smi->io.addr_source), 2049 si_to_str[new_smi->io.si_type], 2050 addr_space_to_str[new_smi->io.addr_type], 2051 new_smi->io.addr_data, 2052 new_smi->io.slave_addr, new_smi->io.irq); 2053 2054 switch (new_smi->io.si_type) { 2055 case SI_KCS: 2056 new_smi->handlers = &kcs_smi_handlers; 2057 break; 2058 2059 case SI_SMIC: 2060 new_smi->handlers = &smic_smi_handlers; 2061 break; 2062 2063 case SI_BT: 2064 new_smi->handlers = &bt_smi_handlers; 2065 break; 2066 2067 default: 2068 /* No support for anything else yet. */ 2069 rv = -EIO; 2070 goto out_err; 2071 } 2072 2073 new_smi->intf_num = smi_num; 2074 2075 /* Do this early so it's available for logs. */ 2076 if (!new_smi->io.dev) { 2077 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 2078 new_smi->intf_num); 2079 2080 /* 2081 * If we don't already have a device from something 2082 * else (like PCI), then register a new one. 2083 */ 2084 new_smi->pdev = platform_device_alloc("ipmi_si", 2085 new_smi->intf_num); 2086 if (!new_smi->pdev) { 2087 pr_err(PFX "Unable to allocate platform device\n"); 2088 goto out_err; 2089 } 2090 new_smi->io.dev = &new_smi->pdev->dev; 2091 new_smi->io.dev->driver = &ipmi_platform_driver.driver; 2092 /* Nulled by device_add() */ 2093 new_smi->io.dev->init_name = init_name; 2094 } 2095 2096 /* Allocate the state machine's data and initialize it. */ 2097 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2098 if (!new_smi->si_sm) { 2099 rv = -ENOMEM; 2100 goto out_err; 2101 } 2102 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm, 2103 &new_smi->io); 2104 2105 /* Now that we know the I/O size, we can set up the I/O. */ 2106 rv = new_smi->io.io_setup(&new_smi->io); 2107 if (rv) { 2108 dev_err(new_smi->io.dev, "Could not set up I/O space\n"); 2109 goto out_err; 2110 } 2111 2112 /* Do low-level detection first. */ 2113 if (new_smi->handlers->detect(new_smi->si_sm)) { 2114 if (new_smi->io.addr_source) 2115 dev_err(new_smi->io.dev, 2116 "Interface detection failed\n"); 2117 rv = -ENODEV; 2118 goto out_err; 2119 } 2120 2121 /* 2122 * Attempt a get device id command. If it fails, we probably 2123 * don't have a BMC here. 2124 */ 2125 rv = try_get_dev_id(new_smi); 2126 if (rv) { 2127 if (new_smi->io.addr_source) 2128 dev_err(new_smi->io.dev, 2129 "There appears to be no BMC at this location\n"); 2130 goto out_err; 2131 } 2132 2133 setup_oem_data_handler(new_smi); 2134 setup_xaction_handlers(new_smi); 2135 check_for_broken_irqs(new_smi); 2136 2137 new_smi->waiting_msg = NULL; 2138 new_smi->curr_msg = NULL; 2139 atomic_set(&new_smi->req_events, 0); 2140 new_smi->run_to_completion = false; 2141 for (i = 0; i < SI_NUM_STATS; i++) 2142 atomic_set(&new_smi->stats[i], 0); 2143 2144 new_smi->interrupt_disabled = true; 2145 atomic_set(&new_smi->need_watch, 0); 2146 2147 rv = try_enable_event_buffer(new_smi); 2148 if (rv == 0) 2149 new_smi->has_event_buffer = true; 2150 2151 /* 2152 * Start clearing the flags before we enable interrupts or the 2153 * timer to avoid racing with the timer. 2154 */ 2155 start_clear_flags(new_smi, false); 2156 2157 /* 2158 * IRQ is defined to be set when non-zero. req_events will 2159 * cause a global flags check that will enable interrupts. 2160 */ 2161 if (new_smi->io.irq) { 2162 new_smi->interrupt_disabled = false; 2163 atomic_set(&new_smi->req_events, 1); 2164 } 2165 2166 if (new_smi->pdev) { 2167 rv = platform_device_add(new_smi->pdev); 2168 if (rv) { 2169 dev_err(new_smi->io.dev, 2170 "Unable to register system interface device: %d\n", 2171 rv); 2172 goto out_err; 2173 } 2174 } 2175 2176 dev_set_drvdata(new_smi->io.dev, new_smi); 2177 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group); 2178 if (rv) { 2179 dev_err(new_smi->io.dev, 2180 "Unable to add device attributes: error %d\n", 2181 rv); 2182 goto out_err_stop_timer; 2183 } 2184 2185 rv = ipmi_register_smi(&handlers, 2186 new_smi, 2187 new_smi->io.dev, 2188 new_smi->io.slave_addr); 2189 if (rv) { 2190 dev_err(new_smi->io.dev, 2191 "Unable to register device: error %d\n", 2192 rv); 2193 goto out_err_remove_attrs; 2194 } 2195 2196 #ifdef CONFIG_IPMI_PROC_INTERFACE 2197 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 2198 &smi_type_proc_ops, 2199 new_smi); 2200 if (rv) { 2201 dev_err(new_smi->io.dev, 2202 "Unable to create proc entry: %d\n", rv); 2203 goto out_err_stop_timer; 2204 } 2205 2206 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 2207 &smi_si_stats_proc_ops, 2208 new_smi); 2209 if (rv) { 2210 dev_err(new_smi->io.dev, 2211 "Unable to create proc entry: %d\n", rv); 2212 goto out_err_stop_timer; 2213 } 2214 2215 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 2216 &smi_params_proc_ops, 2217 new_smi); 2218 if (rv) { 2219 dev_err(new_smi->io.dev, 2220 "Unable to create proc entry: %d\n", rv); 2221 goto out_err_stop_timer; 2222 } 2223 #endif 2224 2225 /* Don't increment till we know we have succeeded. */ 2226 smi_num++; 2227 2228 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n", 2229 si_to_str[new_smi->io.si_type]); 2230 2231 WARN_ON(new_smi->io.dev->init_name != NULL); 2232 kfree(init_name); 2233 2234 return 0; 2235 2236 out_err_remove_attrs: 2237 device_remove_group(new_smi->io.dev, &ipmi_si_dev_attr_group); 2238 dev_set_drvdata(new_smi->io.dev, NULL); 2239 2240 out_err_stop_timer: 2241 wait_for_timer_and_thread(new_smi); 2242 2243 out_err: 2244 new_smi->interrupt_disabled = true; 2245 2246 if (new_smi->intf) { 2247 ipmi_smi_t intf = new_smi->intf; 2248 new_smi->intf = NULL; 2249 ipmi_unregister_smi(intf); 2250 } 2251 2252 if (new_smi->io.irq_cleanup) { 2253 new_smi->io.irq_cleanup(&new_smi->io); 2254 new_smi->io.irq_cleanup = NULL; 2255 } 2256 2257 /* 2258 * Wait until we know that we are out of any interrupt 2259 * handlers might have been running before we freed the 2260 * interrupt. 2261 */ 2262 synchronize_sched(); 2263 2264 if (new_smi->si_sm) { 2265 if (new_smi->handlers) 2266 new_smi->handlers->cleanup(new_smi->si_sm); 2267 kfree(new_smi->si_sm); 2268 new_smi->si_sm = NULL; 2269 } 2270 if (new_smi->io.addr_source_cleanup) { 2271 new_smi->io.addr_source_cleanup(&new_smi->io); 2272 new_smi->io.addr_source_cleanup = NULL; 2273 } 2274 if (new_smi->io.io_cleanup) { 2275 new_smi->io.io_cleanup(&new_smi->io); 2276 new_smi->io.io_cleanup = NULL; 2277 } 2278 2279 if (new_smi->pdev) { 2280 platform_device_unregister(new_smi->pdev); 2281 new_smi->pdev = NULL; 2282 } else if (new_smi->pdev) { 2283 platform_device_put(new_smi->pdev); 2284 } 2285 2286 kfree(init_name); 2287 2288 return rv; 2289 } 2290 2291 static int init_ipmi_si(void) 2292 { 2293 struct smi_info *e; 2294 enum ipmi_addr_src type = SI_INVALID; 2295 2296 if (initialized) 2297 return 0; 2298 2299 pr_info("IPMI System Interface driver.\n"); 2300 2301 /* If the user gave us a device, they presumably want us to use it */ 2302 if (!ipmi_si_hardcode_find_bmc()) 2303 goto do_scan; 2304 2305 ipmi_si_platform_init(); 2306 2307 ipmi_si_pci_init(); 2308 2309 ipmi_si_parisc_init(); 2310 2311 /* We prefer devices with interrupts, but in the case of a machine 2312 with multiple BMCs we assume that there will be several instances 2313 of a given type so if we succeed in registering a type then also 2314 try to register everything else of the same type */ 2315 do_scan: 2316 mutex_lock(&smi_infos_lock); 2317 list_for_each_entry(e, &smi_infos, link) { 2318 /* Try to register a device if it has an IRQ and we either 2319 haven't successfully registered a device yet or this 2320 device has the same type as one we successfully registered */ 2321 if (e->io.irq && (!type || e->io.addr_source == type)) { 2322 if (!try_smi_init(e)) { 2323 type = e->io.addr_source; 2324 } 2325 } 2326 } 2327 2328 /* type will only have been set if we successfully registered an si */ 2329 if (type) 2330 goto skip_fallback_noirq; 2331 2332 /* Fall back to the preferred device */ 2333 2334 list_for_each_entry(e, &smi_infos, link) { 2335 if (!e->io.irq && (!type || e->io.addr_source == type)) { 2336 if (!try_smi_init(e)) { 2337 type = e->io.addr_source; 2338 } 2339 } 2340 } 2341 2342 skip_fallback_noirq: 2343 initialized = 1; 2344 mutex_unlock(&smi_infos_lock); 2345 2346 if (type) 2347 return 0; 2348 2349 mutex_lock(&smi_infos_lock); 2350 if (unload_when_empty && list_empty(&smi_infos)) { 2351 mutex_unlock(&smi_infos_lock); 2352 cleanup_ipmi_si(); 2353 pr_warn(PFX "Unable to find any System Interface(s)\n"); 2354 return -ENODEV; 2355 } else { 2356 mutex_unlock(&smi_infos_lock); 2357 return 0; 2358 } 2359 } 2360 module_init(init_ipmi_si); 2361 2362 static void cleanup_one_si(struct smi_info *to_clean) 2363 { 2364 int rv = 0; 2365 2366 if (!to_clean) 2367 return; 2368 2369 if (to_clean->intf) { 2370 ipmi_smi_t intf = to_clean->intf; 2371 2372 to_clean->intf = NULL; 2373 rv = ipmi_unregister_smi(intf); 2374 if (rv) { 2375 pr_err(PFX "Unable to unregister device: errno=%d\n", 2376 rv); 2377 } 2378 } 2379 2380 device_remove_group(to_clean->io.dev, &ipmi_si_dev_attr_group); 2381 dev_set_drvdata(to_clean->io.dev, NULL); 2382 2383 list_del(&to_clean->link); 2384 2385 /* 2386 * Make sure that interrupts, the timer and the thread are 2387 * stopped and will not run again. 2388 */ 2389 if (to_clean->io.irq_cleanup) 2390 to_clean->io.irq_cleanup(&to_clean->io); 2391 wait_for_timer_and_thread(to_clean); 2392 2393 /* 2394 * Timeouts are stopped, now make sure the interrupts are off 2395 * in the BMC. Note that timers and CPU interrupts are off, 2396 * so no need for locks. 2397 */ 2398 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 2399 poll(to_clean); 2400 schedule_timeout_uninterruptible(1); 2401 } 2402 if (to_clean->handlers) 2403 disable_si_irq(to_clean, false); 2404 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 2405 poll(to_clean); 2406 schedule_timeout_uninterruptible(1); 2407 } 2408 2409 if (to_clean->handlers) 2410 to_clean->handlers->cleanup(to_clean->si_sm); 2411 2412 kfree(to_clean->si_sm); 2413 2414 if (to_clean->io.addr_source_cleanup) 2415 to_clean->io.addr_source_cleanup(&to_clean->io); 2416 if (to_clean->io.io_cleanup) 2417 to_clean->io.io_cleanup(&to_clean->io); 2418 2419 if (to_clean->pdev) 2420 platform_device_unregister(to_clean->pdev); 2421 2422 kfree(to_clean); 2423 } 2424 2425 int ipmi_si_remove_by_dev(struct device *dev) 2426 { 2427 struct smi_info *e; 2428 int rv = -ENOENT; 2429 2430 mutex_lock(&smi_infos_lock); 2431 list_for_each_entry(e, &smi_infos, link) { 2432 if (e->io.dev == dev) { 2433 cleanup_one_si(e); 2434 rv = 0; 2435 break; 2436 } 2437 } 2438 mutex_unlock(&smi_infos_lock); 2439 2440 return rv; 2441 } 2442 2443 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type, 2444 unsigned long addr) 2445 { 2446 /* remove */ 2447 struct smi_info *e, *tmp_e; 2448 2449 mutex_lock(&smi_infos_lock); 2450 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 2451 if (e->io.addr_type != addr_space) 2452 continue; 2453 if (e->io.si_type != si_type) 2454 continue; 2455 if (e->io.addr_data == addr) 2456 cleanup_one_si(e); 2457 } 2458 mutex_unlock(&smi_infos_lock); 2459 } 2460 2461 static void cleanup_ipmi_si(void) 2462 { 2463 struct smi_info *e, *tmp_e; 2464 2465 if (!initialized) 2466 return; 2467 2468 ipmi_si_pci_shutdown(); 2469 2470 ipmi_si_parisc_shutdown(); 2471 2472 ipmi_si_platform_shutdown(); 2473 2474 mutex_lock(&smi_infos_lock); 2475 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2476 cleanup_one_si(e); 2477 mutex_unlock(&smi_infos_lock); 2478 } 2479 module_exit(cleanup_ipmi_si); 2480 2481 MODULE_ALIAS("platform:dmi-ipmi-si"); 2482 MODULE_LICENSE("GPL"); 2483 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2484 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 2485 " system interfaces."); 2486