1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 69 #ifdef CONFIG_PPC_OF 70 #include <linux/of_device.h> 71 #include <linux/of_platform.h> 72 #endif 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 enum ipmi_addr_src { 111 SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS, 112 SI_PCI, SI_DEVICETREE, SI_DEFAULT 113 }; 114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 115 "ACPI", "SMBIOS", "PCI", 116 "device-tree", "default" }; 117 118 #define DEVICE_NAME "ipmi_si" 119 120 static struct platform_driver ipmi_driver = { 121 .driver = { 122 .name = DEVICE_NAME, 123 .bus = &platform_bus_type 124 } 125 }; 126 127 128 /* 129 * Indexes into stats[] in smi_info below. 130 */ 131 enum si_stat_indexes { 132 /* 133 * Number of times the driver requested a timer while an operation 134 * was in progress. 135 */ 136 SI_STAT_short_timeouts = 0, 137 138 /* 139 * Number of times the driver requested a timer while nothing was in 140 * progress. 141 */ 142 SI_STAT_long_timeouts, 143 144 /* Number of times the interface was idle while being polled. */ 145 SI_STAT_idles, 146 147 /* Number of interrupts the driver handled. */ 148 SI_STAT_interrupts, 149 150 /* Number of time the driver got an ATTN from the hardware. */ 151 SI_STAT_attentions, 152 153 /* Number of times the driver requested flags from the hardware. */ 154 SI_STAT_flag_fetches, 155 156 /* Number of times the hardware didn't follow the state machine. */ 157 SI_STAT_hosed_count, 158 159 /* Number of completed messages. */ 160 SI_STAT_complete_transactions, 161 162 /* Number of IPMI events received from the hardware. */ 163 SI_STAT_events, 164 165 /* Number of watchdog pretimeouts. */ 166 SI_STAT_watchdog_pretimeouts, 167 168 /* Number of asyncronous messages received. */ 169 SI_STAT_incoming_messages, 170 171 172 /* This *must* remain last, add new values above this. */ 173 SI_NUM_STATS 174 }; 175 176 struct smi_info { 177 int intf_num; 178 ipmi_smi_t intf; 179 struct si_sm_data *si_sm; 180 struct si_sm_handlers *handlers; 181 enum si_type si_type; 182 spinlock_t si_lock; 183 spinlock_t msg_lock; 184 struct list_head xmit_msgs; 185 struct list_head hp_xmit_msgs; 186 struct ipmi_smi_msg *curr_msg; 187 enum si_intf_state si_state; 188 189 /* 190 * Used to handle the various types of I/O that can occur with 191 * IPMI 192 */ 193 struct si_sm_io io; 194 int (*io_setup)(struct smi_info *info); 195 void (*io_cleanup)(struct smi_info *info); 196 int (*irq_setup)(struct smi_info *info); 197 void (*irq_cleanup)(struct smi_info *info); 198 unsigned int io_size; 199 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 200 void (*addr_source_cleanup)(struct smi_info *info); 201 void *addr_source_data; 202 203 /* 204 * Per-OEM handler, called from handle_flags(). Returns 1 205 * when handle_flags() needs to be re-run or 0 indicating it 206 * set si_state itself. 207 */ 208 int (*oem_data_avail_handler)(struct smi_info *smi_info); 209 210 /* 211 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 212 * is set to hold the flags until we are done handling everything 213 * from the flags. 214 */ 215 #define RECEIVE_MSG_AVAIL 0x01 216 #define EVENT_MSG_BUFFER_FULL 0x02 217 #define WDT_PRE_TIMEOUT_INT 0x08 218 #define OEM0_DATA_AVAIL 0x20 219 #define OEM1_DATA_AVAIL 0x40 220 #define OEM2_DATA_AVAIL 0x80 221 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 222 OEM1_DATA_AVAIL | \ 223 OEM2_DATA_AVAIL) 224 unsigned char msg_flags; 225 226 /* Does the BMC have an event buffer? */ 227 char has_event_buffer; 228 229 /* 230 * If set to true, this will request events the next time the 231 * state machine is idle. 232 */ 233 atomic_t req_events; 234 235 /* 236 * If true, run the state machine to completion on every send 237 * call. Generally used after a panic to make sure stuff goes 238 * out. 239 */ 240 int run_to_completion; 241 242 /* The I/O port of an SI interface. */ 243 int port; 244 245 /* 246 * The space between start addresses of the two ports. For 247 * instance, if the first port is 0xca2 and the spacing is 4, then 248 * the second port is 0xca6. 249 */ 250 unsigned int spacing; 251 252 /* zero if no irq; */ 253 int irq; 254 255 /* The timer for this si. */ 256 struct timer_list si_timer; 257 258 /* The time (in jiffies) the last timeout occurred at. */ 259 unsigned long last_timeout_jiffies; 260 261 /* Used to gracefully stop the timer without race conditions. */ 262 atomic_t stop_operation; 263 264 /* 265 * The driver will disable interrupts when it gets into a 266 * situation where it cannot handle messages due to lack of 267 * memory. Once that situation clears up, it will re-enable 268 * interrupts. 269 */ 270 int interrupt_disabled; 271 272 /* From the get device id response... */ 273 struct ipmi_device_id device_id; 274 275 /* Driver model stuff. */ 276 struct device *dev; 277 struct platform_device *pdev; 278 279 /* 280 * True if we allocated the device, false if it came from 281 * someplace else (like PCI). 282 */ 283 int dev_registered; 284 285 /* Slave address, could be reported from DMI. */ 286 unsigned char slave_addr; 287 288 /* Counters and things for the proc filesystem. */ 289 atomic_t stats[SI_NUM_STATS]; 290 291 struct task_struct *thread; 292 293 struct list_head link; 294 }; 295 296 #define smi_inc_stat(smi, stat) \ 297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 298 #define smi_get_stat(smi, stat) \ 299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 300 301 #define SI_MAX_PARMS 4 302 303 static int force_kipmid[SI_MAX_PARMS]; 304 static int num_force_kipmid; 305 #ifdef CONFIG_PCI 306 static int pci_registered; 307 #endif 308 #ifdef CONFIG_ACPI 309 static int pnp_registered; 310 #endif 311 #ifdef CONFIG_PPC_OF 312 static int of_registered; 313 #endif 314 315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 316 static int num_max_busy_us; 317 318 static int unload_when_empty = 1; 319 320 static int add_smi(struct smi_info *smi); 321 static int try_smi_init(struct smi_info *smi); 322 static void cleanup_one_si(struct smi_info *to_clean); 323 324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 325 static int register_xaction_notifier(struct notifier_block *nb) 326 { 327 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 328 } 329 330 static void deliver_recv_msg(struct smi_info *smi_info, 331 struct ipmi_smi_msg *msg) 332 { 333 /* Deliver the message to the upper layer with the lock 334 released. */ 335 336 if (smi_info->run_to_completion) { 337 ipmi_smi_msg_received(smi_info->intf, msg); 338 } else { 339 spin_unlock(&(smi_info->si_lock)); 340 ipmi_smi_msg_received(smi_info->intf, msg); 341 spin_lock(&(smi_info->si_lock)); 342 } 343 } 344 345 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 346 { 347 struct ipmi_smi_msg *msg = smi_info->curr_msg; 348 349 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 350 cCode = IPMI_ERR_UNSPECIFIED; 351 /* else use it as is */ 352 353 /* Make it a reponse */ 354 msg->rsp[0] = msg->data[0] | 4; 355 msg->rsp[1] = msg->data[1]; 356 msg->rsp[2] = cCode; 357 msg->rsp_size = 3; 358 359 smi_info->curr_msg = NULL; 360 deliver_recv_msg(smi_info, msg); 361 } 362 363 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 364 { 365 int rv; 366 struct list_head *entry = NULL; 367 #ifdef DEBUG_TIMING 368 struct timeval t; 369 #endif 370 371 /* 372 * No need to save flags, we aleady have interrupts off and we 373 * already hold the SMI lock. 374 */ 375 if (!smi_info->run_to_completion) 376 spin_lock(&(smi_info->msg_lock)); 377 378 /* Pick the high priority queue first. */ 379 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 380 entry = smi_info->hp_xmit_msgs.next; 381 } else if (!list_empty(&(smi_info->xmit_msgs))) { 382 entry = smi_info->xmit_msgs.next; 383 } 384 385 if (!entry) { 386 smi_info->curr_msg = NULL; 387 rv = SI_SM_IDLE; 388 } else { 389 int err; 390 391 list_del(entry); 392 smi_info->curr_msg = list_entry(entry, 393 struct ipmi_smi_msg, 394 link); 395 #ifdef DEBUG_TIMING 396 do_gettimeofday(&t); 397 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 398 #endif 399 err = atomic_notifier_call_chain(&xaction_notifier_list, 400 0, smi_info); 401 if (err & NOTIFY_STOP_MASK) { 402 rv = SI_SM_CALL_WITHOUT_DELAY; 403 goto out; 404 } 405 err = smi_info->handlers->start_transaction( 406 smi_info->si_sm, 407 smi_info->curr_msg->data, 408 smi_info->curr_msg->data_size); 409 if (err) 410 return_hosed_msg(smi_info, err); 411 412 rv = SI_SM_CALL_WITHOUT_DELAY; 413 } 414 out: 415 if (!smi_info->run_to_completion) 416 spin_unlock(&(smi_info->msg_lock)); 417 418 return rv; 419 } 420 421 static void start_enable_irq(struct smi_info *smi_info) 422 { 423 unsigned char msg[2]; 424 425 /* 426 * If we are enabling interrupts, we have to tell the 427 * BMC to use them. 428 */ 429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 430 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 431 432 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 433 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 434 } 435 436 static void start_disable_irq(struct smi_info *smi_info) 437 { 438 unsigned char msg[2]; 439 440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 442 443 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 444 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 445 } 446 447 static void start_clear_flags(struct smi_info *smi_info) 448 { 449 unsigned char msg[3]; 450 451 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 452 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 453 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 454 msg[2] = WDT_PRE_TIMEOUT_INT; 455 456 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 457 smi_info->si_state = SI_CLEARING_FLAGS; 458 } 459 460 /* 461 * When we have a situtaion where we run out of memory and cannot 462 * allocate messages, we just leave them in the BMC and run the system 463 * polled until we can allocate some memory. Once we have some 464 * memory, we will re-enable the interrupt. 465 */ 466 static inline void disable_si_irq(struct smi_info *smi_info) 467 { 468 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 469 start_disable_irq(smi_info); 470 smi_info->interrupt_disabled = 1; 471 if (!atomic_read(&smi_info->stop_operation)) 472 mod_timer(&smi_info->si_timer, 473 jiffies + SI_TIMEOUT_JIFFIES); 474 } 475 } 476 477 static inline void enable_si_irq(struct smi_info *smi_info) 478 { 479 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 480 start_enable_irq(smi_info); 481 smi_info->interrupt_disabled = 0; 482 } 483 } 484 485 static void handle_flags(struct smi_info *smi_info) 486 { 487 retry: 488 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 489 /* Watchdog pre-timeout */ 490 smi_inc_stat(smi_info, watchdog_pretimeouts); 491 492 start_clear_flags(smi_info); 493 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 494 spin_unlock(&(smi_info->si_lock)); 495 ipmi_smi_watchdog_pretimeout(smi_info->intf); 496 spin_lock(&(smi_info->si_lock)); 497 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 498 /* Messages available. */ 499 smi_info->curr_msg = ipmi_alloc_smi_msg(); 500 if (!smi_info->curr_msg) { 501 disable_si_irq(smi_info); 502 smi_info->si_state = SI_NORMAL; 503 return; 504 } 505 enable_si_irq(smi_info); 506 507 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 508 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 509 smi_info->curr_msg->data_size = 2; 510 511 smi_info->handlers->start_transaction( 512 smi_info->si_sm, 513 smi_info->curr_msg->data, 514 smi_info->curr_msg->data_size); 515 smi_info->si_state = SI_GETTING_MESSAGES; 516 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 517 /* Events available. */ 518 smi_info->curr_msg = ipmi_alloc_smi_msg(); 519 if (!smi_info->curr_msg) { 520 disable_si_irq(smi_info); 521 smi_info->si_state = SI_NORMAL; 522 return; 523 } 524 enable_si_irq(smi_info); 525 526 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 527 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 528 smi_info->curr_msg->data_size = 2; 529 530 smi_info->handlers->start_transaction( 531 smi_info->si_sm, 532 smi_info->curr_msg->data, 533 smi_info->curr_msg->data_size); 534 smi_info->si_state = SI_GETTING_EVENTS; 535 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 536 smi_info->oem_data_avail_handler) { 537 if (smi_info->oem_data_avail_handler(smi_info)) 538 goto retry; 539 } else 540 smi_info->si_state = SI_NORMAL; 541 } 542 543 static void handle_transaction_done(struct smi_info *smi_info) 544 { 545 struct ipmi_smi_msg *msg; 546 #ifdef DEBUG_TIMING 547 struct timeval t; 548 549 do_gettimeofday(&t); 550 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 551 #endif 552 switch (smi_info->si_state) { 553 case SI_NORMAL: 554 if (!smi_info->curr_msg) 555 break; 556 557 smi_info->curr_msg->rsp_size 558 = smi_info->handlers->get_result( 559 smi_info->si_sm, 560 smi_info->curr_msg->rsp, 561 IPMI_MAX_MSG_LENGTH); 562 563 /* 564 * Do this here becase deliver_recv_msg() releases the 565 * lock, and a new message can be put in during the 566 * time the lock is released. 567 */ 568 msg = smi_info->curr_msg; 569 smi_info->curr_msg = NULL; 570 deliver_recv_msg(smi_info, msg); 571 break; 572 573 case SI_GETTING_FLAGS: 574 { 575 unsigned char msg[4]; 576 unsigned int len; 577 578 /* We got the flags from the SMI, now handle them. */ 579 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 580 if (msg[2] != 0) { 581 /* Error fetching flags, just give up for now. */ 582 smi_info->si_state = SI_NORMAL; 583 } else if (len < 4) { 584 /* 585 * Hmm, no flags. That's technically illegal, but 586 * don't use uninitialized data. 587 */ 588 smi_info->si_state = SI_NORMAL; 589 } else { 590 smi_info->msg_flags = msg[3]; 591 handle_flags(smi_info); 592 } 593 break; 594 } 595 596 case SI_CLEARING_FLAGS: 597 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 598 { 599 unsigned char msg[3]; 600 601 /* We cleared the flags. */ 602 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 603 if (msg[2] != 0) { 604 /* Error clearing flags */ 605 dev_warn(smi_info->dev, 606 "Error clearing flags: %2.2x\n", msg[2]); 607 } 608 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 609 start_enable_irq(smi_info); 610 else 611 smi_info->si_state = SI_NORMAL; 612 break; 613 } 614 615 case SI_GETTING_EVENTS: 616 { 617 smi_info->curr_msg->rsp_size 618 = smi_info->handlers->get_result( 619 smi_info->si_sm, 620 smi_info->curr_msg->rsp, 621 IPMI_MAX_MSG_LENGTH); 622 623 /* 624 * Do this here becase deliver_recv_msg() releases the 625 * lock, and a new message can be put in during the 626 * time the lock is released. 627 */ 628 msg = smi_info->curr_msg; 629 smi_info->curr_msg = NULL; 630 if (msg->rsp[2] != 0) { 631 /* Error getting event, probably done. */ 632 msg->done(msg); 633 634 /* Take off the event flag. */ 635 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 636 handle_flags(smi_info); 637 } else { 638 smi_inc_stat(smi_info, events); 639 640 /* 641 * Do this before we deliver the message 642 * because delivering the message releases the 643 * lock and something else can mess with the 644 * state. 645 */ 646 handle_flags(smi_info); 647 648 deliver_recv_msg(smi_info, msg); 649 } 650 break; 651 } 652 653 case SI_GETTING_MESSAGES: 654 { 655 smi_info->curr_msg->rsp_size 656 = smi_info->handlers->get_result( 657 smi_info->si_sm, 658 smi_info->curr_msg->rsp, 659 IPMI_MAX_MSG_LENGTH); 660 661 /* 662 * Do this here becase deliver_recv_msg() releases the 663 * lock, and a new message can be put in during the 664 * time the lock is released. 665 */ 666 msg = smi_info->curr_msg; 667 smi_info->curr_msg = NULL; 668 if (msg->rsp[2] != 0) { 669 /* Error getting event, probably done. */ 670 msg->done(msg); 671 672 /* Take off the msg flag. */ 673 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 674 handle_flags(smi_info); 675 } else { 676 smi_inc_stat(smi_info, incoming_messages); 677 678 /* 679 * Do this before we deliver the message 680 * because delivering the message releases the 681 * lock and something else can mess with the 682 * state. 683 */ 684 handle_flags(smi_info); 685 686 deliver_recv_msg(smi_info, msg); 687 } 688 break; 689 } 690 691 case SI_ENABLE_INTERRUPTS1: 692 { 693 unsigned char msg[4]; 694 695 /* We got the flags from the SMI, now handle them. */ 696 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 697 if (msg[2] != 0) { 698 dev_warn(smi_info->dev, "Could not enable interrupts" 699 ", failed get, using polled mode.\n"); 700 smi_info->si_state = SI_NORMAL; 701 } else { 702 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 703 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 704 msg[2] = (msg[3] | 705 IPMI_BMC_RCV_MSG_INTR | 706 IPMI_BMC_EVT_MSG_INTR); 707 smi_info->handlers->start_transaction( 708 smi_info->si_sm, msg, 3); 709 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 710 } 711 break; 712 } 713 714 case SI_ENABLE_INTERRUPTS2: 715 { 716 unsigned char msg[4]; 717 718 /* We got the flags from the SMI, now handle them. */ 719 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 720 if (msg[2] != 0) 721 dev_warn(smi_info->dev, "Could not enable interrupts" 722 ", failed set, using polled mode.\n"); 723 else 724 smi_info->interrupt_disabled = 0; 725 smi_info->si_state = SI_NORMAL; 726 break; 727 } 728 729 case SI_DISABLE_INTERRUPTS1: 730 { 731 unsigned char msg[4]; 732 733 /* We got the flags from the SMI, now handle them. */ 734 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 735 if (msg[2] != 0) { 736 dev_warn(smi_info->dev, "Could not disable interrupts" 737 ", failed get.\n"); 738 smi_info->si_state = SI_NORMAL; 739 } else { 740 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 741 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 742 msg[2] = (msg[3] & 743 ~(IPMI_BMC_RCV_MSG_INTR | 744 IPMI_BMC_EVT_MSG_INTR)); 745 smi_info->handlers->start_transaction( 746 smi_info->si_sm, msg, 3); 747 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 748 } 749 break; 750 } 751 752 case SI_DISABLE_INTERRUPTS2: 753 { 754 unsigned char msg[4]; 755 756 /* We got the flags from the SMI, now handle them. */ 757 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 758 if (msg[2] != 0) { 759 dev_warn(smi_info->dev, "Could not disable interrupts" 760 ", failed set.\n"); 761 } 762 smi_info->si_state = SI_NORMAL; 763 break; 764 } 765 } 766 } 767 768 /* 769 * Called on timeouts and events. Timeouts should pass the elapsed 770 * time, interrupts should pass in zero. Must be called with 771 * si_lock held and interrupts disabled. 772 */ 773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 774 int time) 775 { 776 enum si_sm_result si_sm_result; 777 778 restart: 779 /* 780 * There used to be a loop here that waited a little while 781 * (around 25us) before giving up. That turned out to be 782 * pointless, the minimum delays I was seeing were in the 300us 783 * range, which is far too long to wait in an interrupt. So 784 * we just run until the state machine tells us something 785 * happened or it needs a delay. 786 */ 787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 788 time = 0; 789 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 790 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 791 792 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 793 smi_inc_stat(smi_info, complete_transactions); 794 795 handle_transaction_done(smi_info); 796 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 797 } else if (si_sm_result == SI_SM_HOSED) { 798 smi_inc_stat(smi_info, hosed_count); 799 800 /* 801 * Do the before return_hosed_msg, because that 802 * releases the lock. 803 */ 804 smi_info->si_state = SI_NORMAL; 805 if (smi_info->curr_msg != NULL) { 806 /* 807 * If we were handling a user message, format 808 * a response to send to the upper layer to 809 * tell it about the error. 810 */ 811 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 812 } 813 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 814 } 815 816 /* 817 * We prefer handling attn over new messages. But don't do 818 * this if there is not yet an upper layer to handle anything. 819 */ 820 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 821 unsigned char msg[2]; 822 823 smi_inc_stat(smi_info, attentions); 824 825 /* 826 * Got a attn, send down a get message flags to see 827 * what's causing it. It would be better to handle 828 * this in the upper layer, but due to the way 829 * interrupts work with the SMI, that's not really 830 * possible. 831 */ 832 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 833 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 834 835 smi_info->handlers->start_transaction( 836 smi_info->si_sm, msg, 2); 837 smi_info->si_state = SI_GETTING_FLAGS; 838 goto restart; 839 } 840 841 /* If we are currently idle, try to start the next message. */ 842 if (si_sm_result == SI_SM_IDLE) { 843 smi_inc_stat(smi_info, idles); 844 845 si_sm_result = start_next_msg(smi_info); 846 if (si_sm_result != SI_SM_IDLE) 847 goto restart; 848 } 849 850 if ((si_sm_result == SI_SM_IDLE) 851 && (atomic_read(&smi_info->req_events))) { 852 /* 853 * We are idle and the upper layer requested that I fetch 854 * events, so do so. 855 */ 856 atomic_set(&smi_info->req_events, 0); 857 858 smi_info->curr_msg = ipmi_alloc_smi_msg(); 859 if (!smi_info->curr_msg) 860 goto out; 861 862 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 863 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 864 smi_info->curr_msg->data_size = 2; 865 866 smi_info->handlers->start_transaction( 867 smi_info->si_sm, 868 smi_info->curr_msg->data, 869 smi_info->curr_msg->data_size); 870 smi_info->si_state = SI_GETTING_EVENTS; 871 goto restart; 872 } 873 out: 874 return si_sm_result; 875 } 876 877 static void sender(void *send_info, 878 struct ipmi_smi_msg *msg, 879 int priority) 880 { 881 struct smi_info *smi_info = send_info; 882 enum si_sm_result result; 883 unsigned long flags; 884 #ifdef DEBUG_TIMING 885 struct timeval t; 886 #endif 887 888 if (atomic_read(&smi_info->stop_operation)) { 889 msg->rsp[0] = msg->data[0] | 4; 890 msg->rsp[1] = msg->data[1]; 891 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 892 msg->rsp_size = 3; 893 deliver_recv_msg(smi_info, msg); 894 return; 895 } 896 897 #ifdef DEBUG_TIMING 898 do_gettimeofday(&t); 899 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 900 #endif 901 902 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 903 904 if (smi_info->thread) 905 wake_up_process(smi_info->thread); 906 907 if (smi_info->run_to_completion) { 908 /* 909 * If we are running to completion, then throw it in 910 * the list and run transactions until everything is 911 * clear. Priority doesn't matter here. 912 */ 913 914 /* 915 * Run to completion means we are single-threaded, no 916 * need for locks. 917 */ 918 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 919 920 result = smi_event_handler(smi_info, 0); 921 while (result != SI_SM_IDLE) { 922 udelay(SI_SHORT_TIMEOUT_USEC); 923 result = smi_event_handler(smi_info, 924 SI_SHORT_TIMEOUT_USEC); 925 } 926 return; 927 } 928 929 spin_lock_irqsave(&smi_info->msg_lock, flags); 930 if (priority > 0) 931 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 932 else 933 list_add_tail(&msg->link, &smi_info->xmit_msgs); 934 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 935 936 spin_lock_irqsave(&smi_info->si_lock, flags); 937 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 938 start_next_msg(smi_info); 939 spin_unlock_irqrestore(&smi_info->si_lock, flags); 940 } 941 942 static void set_run_to_completion(void *send_info, int i_run_to_completion) 943 { 944 struct smi_info *smi_info = send_info; 945 enum si_sm_result result; 946 947 smi_info->run_to_completion = i_run_to_completion; 948 if (i_run_to_completion) { 949 result = smi_event_handler(smi_info, 0); 950 while (result != SI_SM_IDLE) { 951 udelay(SI_SHORT_TIMEOUT_USEC); 952 result = smi_event_handler(smi_info, 953 SI_SHORT_TIMEOUT_USEC); 954 } 955 } 956 } 957 958 /* 959 * Use -1 in the nsec value of the busy waiting timespec to tell that 960 * we are spinning in kipmid looking for something and not delaying 961 * between checks 962 */ 963 static inline void ipmi_si_set_not_busy(struct timespec *ts) 964 { 965 ts->tv_nsec = -1; 966 } 967 static inline int ipmi_si_is_busy(struct timespec *ts) 968 { 969 return ts->tv_nsec != -1; 970 } 971 972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 973 const struct smi_info *smi_info, 974 struct timespec *busy_until) 975 { 976 unsigned int max_busy_us = 0; 977 978 if (smi_info->intf_num < num_max_busy_us) 979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 981 ipmi_si_set_not_busy(busy_until); 982 else if (!ipmi_si_is_busy(busy_until)) { 983 getnstimeofday(busy_until); 984 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 985 } else { 986 struct timespec now; 987 getnstimeofday(&now); 988 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 989 ipmi_si_set_not_busy(busy_until); 990 return 0; 991 } 992 } 993 return 1; 994 } 995 996 997 /* 998 * A busy-waiting loop for speeding up IPMI operation. 999 * 1000 * Lousy hardware makes this hard. This is only enabled for systems 1001 * that are not BT and do not have interrupts. It starts spinning 1002 * when an operation is complete or until max_busy tells it to stop 1003 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1004 * Documentation/IPMI.txt for details. 1005 */ 1006 static int ipmi_thread(void *data) 1007 { 1008 struct smi_info *smi_info = data; 1009 unsigned long flags; 1010 enum si_sm_result smi_result; 1011 struct timespec busy_until; 1012 1013 ipmi_si_set_not_busy(&busy_until); 1014 set_user_nice(current, 19); 1015 while (!kthread_should_stop()) { 1016 int busy_wait; 1017 1018 spin_lock_irqsave(&(smi_info->si_lock), flags); 1019 smi_result = smi_event_handler(smi_info, 0); 1020 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1021 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1022 &busy_until); 1023 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1024 ; /* do nothing */ 1025 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1026 schedule(); 1027 else if (smi_result == SI_SM_IDLE) 1028 schedule_timeout_interruptible(100); 1029 else 1030 schedule_timeout_interruptible(1); 1031 } 1032 return 0; 1033 } 1034 1035 1036 static void poll(void *send_info) 1037 { 1038 struct smi_info *smi_info = send_info; 1039 unsigned long flags; 1040 1041 /* 1042 * Make sure there is some delay in the poll loop so we can 1043 * drive time forward and timeout things. 1044 */ 1045 udelay(10); 1046 spin_lock_irqsave(&smi_info->si_lock, flags); 1047 smi_event_handler(smi_info, 10); 1048 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1049 } 1050 1051 static void request_events(void *send_info) 1052 { 1053 struct smi_info *smi_info = send_info; 1054 1055 if (atomic_read(&smi_info->stop_operation) || 1056 !smi_info->has_event_buffer) 1057 return; 1058 1059 atomic_set(&smi_info->req_events, 1); 1060 } 1061 1062 static int initialized; 1063 1064 static void smi_timeout(unsigned long data) 1065 { 1066 struct smi_info *smi_info = (struct smi_info *) data; 1067 enum si_sm_result smi_result; 1068 unsigned long flags; 1069 unsigned long jiffies_now; 1070 long time_diff; 1071 long timeout; 1072 #ifdef DEBUG_TIMING 1073 struct timeval t; 1074 #endif 1075 1076 spin_lock_irqsave(&(smi_info->si_lock), flags); 1077 #ifdef DEBUG_TIMING 1078 do_gettimeofday(&t); 1079 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1080 #endif 1081 jiffies_now = jiffies; 1082 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1083 * SI_USEC_PER_JIFFY); 1084 smi_result = smi_event_handler(smi_info, time_diff); 1085 1086 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1087 1088 smi_info->last_timeout_jiffies = jiffies_now; 1089 1090 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1091 /* Running with interrupts, only do long timeouts. */ 1092 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1093 smi_inc_stat(smi_info, long_timeouts); 1094 goto do_mod_timer; 1095 } 1096 1097 /* 1098 * If the state machine asks for a short delay, then shorten 1099 * the timer timeout. 1100 */ 1101 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1102 smi_inc_stat(smi_info, short_timeouts); 1103 timeout = jiffies + 1; 1104 } else { 1105 smi_inc_stat(smi_info, long_timeouts); 1106 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1107 } 1108 1109 do_mod_timer: 1110 if (smi_result != SI_SM_IDLE) 1111 mod_timer(&(smi_info->si_timer), timeout); 1112 } 1113 1114 static irqreturn_t si_irq_handler(int irq, void *data) 1115 { 1116 struct smi_info *smi_info = data; 1117 unsigned long flags; 1118 #ifdef DEBUG_TIMING 1119 struct timeval t; 1120 #endif 1121 1122 spin_lock_irqsave(&(smi_info->si_lock), flags); 1123 1124 smi_inc_stat(smi_info, interrupts); 1125 1126 #ifdef DEBUG_TIMING 1127 do_gettimeofday(&t); 1128 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1129 #endif 1130 smi_event_handler(smi_info, 0); 1131 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1132 return IRQ_HANDLED; 1133 } 1134 1135 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1136 { 1137 struct smi_info *smi_info = data; 1138 /* We need to clear the IRQ flag for the BT interface. */ 1139 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1140 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1141 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1142 return si_irq_handler(irq, data); 1143 } 1144 1145 static int smi_start_processing(void *send_info, 1146 ipmi_smi_t intf) 1147 { 1148 struct smi_info *new_smi = send_info; 1149 int enable = 0; 1150 1151 new_smi->intf = intf; 1152 1153 /* Try to claim any interrupts. */ 1154 if (new_smi->irq_setup) 1155 new_smi->irq_setup(new_smi); 1156 1157 /* Set up the timer that drives the interface. */ 1158 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1159 new_smi->last_timeout_jiffies = jiffies; 1160 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1161 1162 /* 1163 * Check if the user forcefully enabled the daemon. 1164 */ 1165 if (new_smi->intf_num < num_force_kipmid) 1166 enable = force_kipmid[new_smi->intf_num]; 1167 /* 1168 * The BT interface is efficient enough to not need a thread, 1169 * and there is no need for a thread if we have interrupts. 1170 */ 1171 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1172 enable = 1; 1173 1174 if (enable) { 1175 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1176 "kipmi%d", new_smi->intf_num); 1177 if (IS_ERR(new_smi->thread)) { 1178 dev_notice(new_smi->dev, "Could not start" 1179 " kernel thread due to error %ld, only using" 1180 " timers to drive the interface\n", 1181 PTR_ERR(new_smi->thread)); 1182 new_smi->thread = NULL; 1183 } 1184 } 1185 1186 return 0; 1187 } 1188 1189 static void set_maintenance_mode(void *send_info, int enable) 1190 { 1191 struct smi_info *smi_info = send_info; 1192 1193 if (!enable) 1194 atomic_set(&smi_info->req_events, 0); 1195 } 1196 1197 static struct ipmi_smi_handlers handlers = { 1198 .owner = THIS_MODULE, 1199 .start_processing = smi_start_processing, 1200 .sender = sender, 1201 .request_events = request_events, 1202 .set_maintenance_mode = set_maintenance_mode, 1203 .set_run_to_completion = set_run_to_completion, 1204 .poll = poll, 1205 }; 1206 1207 /* 1208 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1209 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1210 */ 1211 1212 static LIST_HEAD(smi_infos); 1213 static DEFINE_MUTEX(smi_infos_lock); 1214 static int smi_num; /* Used to sequence the SMIs */ 1215 1216 #define DEFAULT_REGSPACING 1 1217 #define DEFAULT_REGSIZE 1 1218 1219 static int si_trydefaults = 1; 1220 static char *si_type[SI_MAX_PARMS]; 1221 #define MAX_SI_TYPE_STR 30 1222 static char si_type_str[MAX_SI_TYPE_STR]; 1223 static unsigned long addrs[SI_MAX_PARMS]; 1224 static unsigned int num_addrs; 1225 static unsigned int ports[SI_MAX_PARMS]; 1226 static unsigned int num_ports; 1227 static int irqs[SI_MAX_PARMS]; 1228 static unsigned int num_irqs; 1229 static int regspacings[SI_MAX_PARMS]; 1230 static unsigned int num_regspacings; 1231 static int regsizes[SI_MAX_PARMS]; 1232 static unsigned int num_regsizes; 1233 static int regshifts[SI_MAX_PARMS]; 1234 static unsigned int num_regshifts; 1235 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1236 static unsigned int num_slave_addrs; 1237 1238 #define IPMI_IO_ADDR_SPACE 0 1239 #define IPMI_MEM_ADDR_SPACE 1 1240 static char *addr_space_to_str[] = { "i/o", "mem" }; 1241 1242 static int hotmod_handler(const char *val, struct kernel_param *kp); 1243 1244 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1245 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1246 " Documentation/IPMI.txt in the kernel sources for the" 1247 " gory details."); 1248 1249 module_param_named(trydefaults, si_trydefaults, bool, 0); 1250 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1251 " default scan of the KCS and SMIC interface at the standard" 1252 " address"); 1253 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1254 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1255 " interface separated by commas. The types are 'kcs'," 1256 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1257 " the first interface to kcs and the second to bt"); 1258 module_param_array(addrs, ulong, &num_addrs, 0); 1259 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1260 " addresses separated by commas. Only use if an interface" 1261 " is in memory. Otherwise, set it to zero or leave" 1262 " it blank."); 1263 module_param_array(ports, uint, &num_ports, 0); 1264 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1265 " addresses separated by commas. Only use if an interface" 1266 " is a port. Otherwise, set it to zero or leave" 1267 " it blank."); 1268 module_param_array(irqs, int, &num_irqs, 0); 1269 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1270 " addresses separated by commas. Only use if an interface" 1271 " has an interrupt. Otherwise, set it to zero or leave" 1272 " it blank."); 1273 module_param_array(regspacings, int, &num_regspacings, 0); 1274 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1275 " and each successive register used by the interface. For" 1276 " instance, if the start address is 0xca2 and the spacing" 1277 " is 2, then the second address is at 0xca4. Defaults" 1278 " to 1."); 1279 module_param_array(regsizes, int, &num_regsizes, 0); 1280 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1281 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1282 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1283 " the 8-bit IPMI register has to be read from a larger" 1284 " register."); 1285 module_param_array(regshifts, int, &num_regshifts, 0); 1286 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1287 " IPMI register, in bits. For instance, if the data" 1288 " is read from a 32-bit word and the IPMI data is in" 1289 " bit 8-15, then the shift would be 8"); 1290 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1291 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1292 " the controller. Normally this is 0x20, but can be" 1293 " overridden by this parm. This is an array indexed" 1294 " by interface number."); 1295 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1296 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1297 " disabled(0). Normally the IPMI driver auto-detects" 1298 " this, but the value may be overridden by this parm."); 1299 module_param(unload_when_empty, int, 0); 1300 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1301 " specified or found, default is 1. Setting to 0" 1302 " is useful for hot add of devices using hotmod."); 1303 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1304 MODULE_PARM_DESC(kipmid_max_busy_us, 1305 "Max time (in microseconds) to busy-wait for IPMI data before" 1306 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1307 " if kipmid is using up a lot of CPU time."); 1308 1309 1310 static void std_irq_cleanup(struct smi_info *info) 1311 { 1312 if (info->si_type == SI_BT) 1313 /* Disable the interrupt in the BT interface. */ 1314 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1315 free_irq(info->irq, info); 1316 } 1317 1318 static int std_irq_setup(struct smi_info *info) 1319 { 1320 int rv; 1321 1322 if (!info->irq) 1323 return 0; 1324 1325 if (info->si_type == SI_BT) { 1326 rv = request_irq(info->irq, 1327 si_bt_irq_handler, 1328 IRQF_SHARED | IRQF_DISABLED, 1329 DEVICE_NAME, 1330 info); 1331 if (!rv) 1332 /* Enable the interrupt in the BT interface. */ 1333 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1334 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1335 } else 1336 rv = request_irq(info->irq, 1337 si_irq_handler, 1338 IRQF_SHARED | IRQF_DISABLED, 1339 DEVICE_NAME, 1340 info); 1341 if (rv) { 1342 dev_warn(info->dev, "%s unable to claim interrupt %d," 1343 " running polled\n", 1344 DEVICE_NAME, info->irq); 1345 info->irq = 0; 1346 } else { 1347 info->irq_cleanup = std_irq_cleanup; 1348 dev_info(info->dev, "Using irq %d\n", info->irq); 1349 } 1350 1351 return rv; 1352 } 1353 1354 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1355 { 1356 unsigned int addr = io->addr_data; 1357 1358 return inb(addr + (offset * io->regspacing)); 1359 } 1360 1361 static void port_outb(struct si_sm_io *io, unsigned int offset, 1362 unsigned char b) 1363 { 1364 unsigned int addr = io->addr_data; 1365 1366 outb(b, addr + (offset * io->regspacing)); 1367 } 1368 1369 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1370 { 1371 unsigned int addr = io->addr_data; 1372 1373 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1374 } 1375 1376 static void port_outw(struct si_sm_io *io, unsigned int offset, 1377 unsigned char b) 1378 { 1379 unsigned int addr = io->addr_data; 1380 1381 outw(b << io->regshift, addr + (offset * io->regspacing)); 1382 } 1383 1384 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1385 { 1386 unsigned int addr = io->addr_data; 1387 1388 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1389 } 1390 1391 static void port_outl(struct si_sm_io *io, unsigned int offset, 1392 unsigned char b) 1393 { 1394 unsigned int addr = io->addr_data; 1395 1396 outl(b << io->regshift, addr+(offset * io->regspacing)); 1397 } 1398 1399 static void port_cleanup(struct smi_info *info) 1400 { 1401 unsigned int addr = info->io.addr_data; 1402 int idx; 1403 1404 if (addr) { 1405 for (idx = 0; idx < info->io_size; idx++) 1406 release_region(addr + idx * info->io.regspacing, 1407 info->io.regsize); 1408 } 1409 } 1410 1411 static int port_setup(struct smi_info *info) 1412 { 1413 unsigned int addr = info->io.addr_data; 1414 int idx; 1415 1416 if (!addr) 1417 return -ENODEV; 1418 1419 info->io_cleanup = port_cleanup; 1420 1421 /* 1422 * Figure out the actual inb/inw/inl/etc routine to use based 1423 * upon the register size. 1424 */ 1425 switch (info->io.regsize) { 1426 case 1: 1427 info->io.inputb = port_inb; 1428 info->io.outputb = port_outb; 1429 break; 1430 case 2: 1431 info->io.inputb = port_inw; 1432 info->io.outputb = port_outw; 1433 break; 1434 case 4: 1435 info->io.inputb = port_inl; 1436 info->io.outputb = port_outl; 1437 break; 1438 default: 1439 dev_warn(info->dev, "Invalid register size: %d\n", 1440 info->io.regsize); 1441 return -EINVAL; 1442 } 1443 1444 /* 1445 * Some BIOSes reserve disjoint I/O regions in their ACPI 1446 * tables. This causes problems when trying to register the 1447 * entire I/O region. Therefore we must register each I/O 1448 * port separately. 1449 */ 1450 for (idx = 0; idx < info->io_size; idx++) { 1451 if (request_region(addr + idx * info->io.regspacing, 1452 info->io.regsize, DEVICE_NAME) == NULL) { 1453 /* Undo allocations */ 1454 while (idx--) { 1455 release_region(addr + idx * info->io.regspacing, 1456 info->io.regsize); 1457 } 1458 return -EIO; 1459 } 1460 } 1461 return 0; 1462 } 1463 1464 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1465 { 1466 return readb((io->addr)+(offset * io->regspacing)); 1467 } 1468 1469 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1470 unsigned char b) 1471 { 1472 writeb(b, (io->addr)+(offset * io->regspacing)); 1473 } 1474 1475 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1476 { 1477 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1478 & 0xff; 1479 } 1480 1481 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1482 unsigned char b) 1483 { 1484 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1485 } 1486 1487 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1488 { 1489 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1490 & 0xff; 1491 } 1492 1493 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1494 unsigned char b) 1495 { 1496 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1497 } 1498 1499 #ifdef readq 1500 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1501 { 1502 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1503 & 0xff; 1504 } 1505 1506 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1507 unsigned char b) 1508 { 1509 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1510 } 1511 #endif 1512 1513 static void mem_cleanup(struct smi_info *info) 1514 { 1515 unsigned long addr = info->io.addr_data; 1516 int mapsize; 1517 1518 if (info->io.addr) { 1519 iounmap(info->io.addr); 1520 1521 mapsize = ((info->io_size * info->io.regspacing) 1522 - (info->io.regspacing - info->io.regsize)); 1523 1524 release_mem_region(addr, mapsize); 1525 } 1526 } 1527 1528 static int mem_setup(struct smi_info *info) 1529 { 1530 unsigned long addr = info->io.addr_data; 1531 int mapsize; 1532 1533 if (!addr) 1534 return -ENODEV; 1535 1536 info->io_cleanup = mem_cleanup; 1537 1538 /* 1539 * Figure out the actual readb/readw/readl/etc routine to use based 1540 * upon the register size. 1541 */ 1542 switch (info->io.regsize) { 1543 case 1: 1544 info->io.inputb = intf_mem_inb; 1545 info->io.outputb = intf_mem_outb; 1546 break; 1547 case 2: 1548 info->io.inputb = intf_mem_inw; 1549 info->io.outputb = intf_mem_outw; 1550 break; 1551 case 4: 1552 info->io.inputb = intf_mem_inl; 1553 info->io.outputb = intf_mem_outl; 1554 break; 1555 #ifdef readq 1556 case 8: 1557 info->io.inputb = mem_inq; 1558 info->io.outputb = mem_outq; 1559 break; 1560 #endif 1561 default: 1562 dev_warn(info->dev, "Invalid register size: %d\n", 1563 info->io.regsize); 1564 return -EINVAL; 1565 } 1566 1567 /* 1568 * Calculate the total amount of memory to claim. This is an 1569 * unusual looking calculation, but it avoids claiming any 1570 * more memory than it has to. It will claim everything 1571 * between the first address to the end of the last full 1572 * register. 1573 */ 1574 mapsize = ((info->io_size * info->io.regspacing) 1575 - (info->io.regspacing - info->io.regsize)); 1576 1577 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1578 return -EIO; 1579 1580 info->io.addr = ioremap(addr, mapsize); 1581 if (info->io.addr == NULL) { 1582 release_mem_region(addr, mapsize); 1583 return -EIO; 1584 } 1585 return 0; 1586 } 1587 1588 /* 1589 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1590 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1591 * Options are: 1592 * rsp=<regspacing> 1593 * rsi=<regsize> 1594 * rsh=<regshift> 1595 * irq=<irq> 1596 * ipmb=<ipmb addr> 1597 */ 1598 enum hotmod_op { HM_ADD, HM_REMOVE }; 1599 struct hotmod_vals { 1600 char *name; 1601 int val; 1602 }; 1603 static struct hotmod_vals hotmod_ops[] = { 1604 { "add", HM_ADD }, 1605 { "remove", HM_REMOVE }, 1606 { NULL } 1607 }; 1608 static struct hotmod_vals hotmod_si[] = { 1609 { "kcs", SI_KCS }, 1610 { "smic", SI_SMIC }, 1611 { "bt", SI_BT }, 1612 { NULL } 1613 }; 1614 static struct hotmod_vals hotmod_as[] = { 1615 { "mem", IPMI_MEM_ADDR_SPACE }, 1616 { "i/o", IPMI_IO_ADDR_SPACE }, 1617 { NULL } 1618 }; 1619 1620 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1621 { 1622 char *s; 1623 int i; 1624 1625 s = strchr(*curr, ','); 1626 if (!s) { 1627 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1628 return -EINVAL; 1629 } 1630 *s = '\0'; 1631 s++; 1632 for (i = 0; hotmod_ops[i].name; i++) { 1633 if (strcmp(*curr, v[i].name) == 0) { 1634 *val = v[i].val; 1635 *curr = s; 1636 return 0; 1637 } 1638 } 1639 1640 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1641 return -EINVAL; 1642 } 1643 1644 static int check_hotmod_int_op(const char *curr, const char *option, 1645 const char *name, int *val) 1646 { 1647 char *n; 1648 1649 if (strcmp(curr, name) == 0) { 1650 if (!option) { 1651 printk(KERN_WARNING PFX 1652 "No option given for '%s'\n", 1653 curr); 1654 return -EINVAL; 1655 } 1656 *val = simple_strtoul(option, &n, 0); 1657 if ((*n != '\0') || (*option == '\0')) { 1658 printk(KERN_WARNING PFX 1659 "Bad option given for '%s'\n", 1660 curr); 1661 return -EINVAL; 1662 } 1663 return 1; 1664 } 1665 return 0; 1666 } 1667 1668 static struct smi_info *smi_info_alloc(void) 1669 { 1670 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1671 1672 if (info) { 1673 spin_lock_init(&info->si_lock); 1674 spin_lock_init(&info->msg_lock); 1675 } 1676 return info; 1677 } 1678 1679 static int hotmod_handler(const char *val, struct kernel_param *kp) 1680 { 1681 char *str = kstrdup(val, GFP_KERNEL); 1682 int rv; 1683 char *next, *curr, *s, *n, *o; 1684 enum hotmod_op op; 1685 enum si_type si_type; 1686 int addr_space; 1687 unsigned long addr; 1688 int regspacing; 1689 int regsize; 1690 int regshift; 1691 int irq; 1692 int ipmb; 1693 int ival; 1694 int len; 1695 struct smi_info *info; 1696 1697 if (!str) 1698 return -ENOMEM; 1699 1700 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1701 len = strlen(str); 1702 ival = len - 1; 1703 while ((ival >= 0) && isspace(str[ival])) { 1704 str[ival] = '\0'; 1705 ival--; 1706 } 1707 1708 for (curr = str; curr; curr = next) { 1709 regspacing = 1; 1710 regsize = 1; 1711 regshift = 0; 1712 irq = 0; 1713 ipmb = 0; /* Choose the default if not specified */ 1714 1715 next = strchr(curr, ':'); 1716 if (next) { 1717 *next = '\0'; 1718 next++; 1719 } 1720 1721 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1722 if (rv) 1723 break; 1724 op = ival; 1725 1726 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1727 if (rv) 1728 break; 1729 si_type = ival; 1730 1731 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1732 if (rv) 1733 break; 1734 1735 s = strchr(curr, ','); 1736 if (s) { 1737 *s = '\0'; 1738 s++; 1739 } 1740 addr = simple_strtoul(curr, &n, 0); 1741 if ((*n != '\0') || (*curr == '\0')) { 1742 printk(KERN_WARNING PFX "Invalid hotmod address" 1743 " '%s'\n", curr); 1744 break; 1745 } 1746 1747 while (s) { 1748 curr = s; 1749 s = strchr(curr, ','); 1750 if (s) { 1751 *s = '\0'; 1752 s++; 1753 } 1754 o = strchr(curr, '='); 1755 if (o) { 1756 *o = '\0'; 1757 o++; 1758 } 1759 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1760 if (rv < 0) 1761 goto out; 1762 else if (rv) 1763 continue; 1764 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1765 if (rv < 0) 1766 goto out; 1767 else if (rv) 1768 continue; 1769 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1770 if (rv < 0) 1771 goto out; 1772 else if (rv) 1773 continue; 1774 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1775 if (rv < 0) 1776 goto out; 1777 else if (rv) 1778 continue; 1779 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1780 if (rv < 0) 1781 goto out; 1782 else if (rv) 1783 continue; 1784 1785 rv = -EINVAL; 1786 printk(KERN_WARNING PFX 1787 "Invalid hotmod option '%s'\n", 1788 curr); 1789 goto out; 1790 } 1791 1792 if (op == HM_ADD) { 1793 info = smi_info_alloc(); 1794 if (!info) { 1795 rv = -ENOMEM; 1796 goto out; 1797 } 1798 1799 info->addr_source = SI_HOTMOD; 1800 info->si_type = si_type; 1801 info->io.addr_data = addr; 1802 info->io.addr_type = addr_space; 1803 if (addr_space == IPMI_MEM_ADDR_SPACE) 1804 info->io_setup = mem_setup; 1805 else 1806 info->io_setup = port_setup; 1807 1808 info->io.addr = NULL; 1809 info->io.regspacing = regspacing; 1810 if (!info->io.regspacing) 1811 info->io.regspacing = DEFAULT_REGSPACING; 1812 info->io.regsize = regsize; 1813 if (!info->io.regsize) 1814 info->io.regsize = DEFAULT_REGSPACING; 1815 info->io.regshift = regshift; 1816 info->irq = irq; 1817 if (info->irq) 1818 info->irq_setup = std_irq_setup; 1819 info->slave_addr = ipmb; 1820 1821 if (!add_smi(info)) { 1822 if (try_smi_init(info)) 1823 cleanup_one_si(info); 1824 } else { 1825 kfree(info); 1826 } 1827 } else { 1828 /* remove */ 1829 struct smi_info *e, *tmp_e; 1830 1831 mutex_lock(&smi_infos_lock); 1832 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1833 if (e->io.addr_type != addr_space) 1834 continue; 1835 if (e->si_type != si_type) 1836 continue; 1837 if (e->io.addr_data == addr) 1838 cleanup_one_si(e); 1839 } 1840 mutex_unlock(&smi_infos_lock); 1841 } 1842 } 1843 rv = len; 1844 out: 1845 kfree(str); 1846 return rv; 1847 } 1848 1849 static void __devinit hardcode_find_bmc(void) 1850 { 1851 int i; 1852 struct smi_info *info; 1853 1854 for (i = 0; i < SI_MAX_PARMS; i++) { 1855 if (!ports[i] && !addrs[i]) 1856 continue; 1857 1858 info = smi_info_alloc(); 1859 if (!info) 1860 return; 1861 1862 info->addr_source = SI_HARDCODED; 1863 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1864 1865 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1866 info->si_type = SI_KCS; 1867 } else if (strcmp(si_type[i], "smic") == 0) { 1868 info->si_type = SI_SMIC; 1869 } else if (strcmp(si_type[i], "bt") == 0) { 1870 info->si_type = SI_BT; 1871 } else { 1872 printk(KERN_WARNING PFX "Interface type specified " 1873 "for interface %d, was invalid: %s\n", 1874 i, si_type[i]); 1875 kfree(info); 1876 continue; 1877 } 1878 1879 if (ports[i]) { 1880 /* An I/O port */ 1881 info->io_setup = port_setup; 1882 info->io.addr_data = ports[i]; 1883 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1884 } else if (addrs[i]) { 1885 /* A memory port */ 1886 info->io_setup = mem_setup; 1887 info->io.addr_data = addrs[i]; 1888 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1889 } else { 1890 printk(KERN_WARNING PFX "Interface type specified " 1891 "for interface %d, but port and address were " 1892 "not set or set to zero.\n", i); 1893 kfree(info); 1894 continue; 1895 } 1896 1897 info->io.addr = NULL; 1898 info->io.regspacing = regspacings[i]; 1899 if (!info->io.regspacing) 1900 info->io.regspacing = DEFAULT_REGSPACING; 1901 info->io.regsize = regsizes[i]; 1902 if (!info->io.regsize) 1903 info->io.regsize = DEFAULT_REGSPACING; 1904 info->io.regshift = regshifts[i]; 1905 info->irq = irqs[i]; 1906 if (info->irq) 1907 info->irq_setup = std_irq_setup; 1908 info->slave_addr = slave_addrs[i]; 1909 1910 if (!add_smi(info)) { 1911 if (try_smi_init(info)) 1912 cleanup_one_si(info); 1913 } else { 1914 kfree(info); 1915 } 1916 } 1917 } 1918 1919 #ifdef CONFIG_ACPI 1920 1921 #include <linux/acpi.h> 1922 1923 /* 1924 * Once we get an ACPI failure, we don't try any more, because we go 1925 * through the tables sequentially. Once we don't find a table, there 1926 * are no more. 1927 */ 1928 static int acpi_failure; 1929 1930 /* For GPE-type interrupts. */ 1931 static u32 ipmi_acpi_gpe(void *context) 1932 { 1933 struct smi_info *smi_info = context; 1934 unsigned long flags; 1935 #ifdef DEBUG_TIMING 1936 struct timeval t; 1937 #endif 1938 1939 spin_lock_irqsave(&(smi_info->si_lock), flags); 1940 1941 smi_inc_stat(smi_info, interrupts); 1942 1943 #ifdef DEBUG_TIMING 1944 do_gettimeofday(&t); 1945 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1946 #endif 1947 smi_event_handler(smi_info, 0); 1948 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1949 1950 return ACPI_INTERRUPT_HANDLED; 1951 } 1952 1953 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1954 { 1955 if (!info->irq) 1956 return; 1957 1958 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1959 } 1960 1961 static int acpi_gpe_irq_setup(struct smi_info *info) 1962 { 1963 acpi_status status; 1964 1965 if (!info->irq) 1966 return 0; 1967 1968 /* FIXME - is level triggered right? */ 1969 status = acpi_install_gpe_handler(NULL, 1970 info->irq, 1971 ACPI_GPE_LEVEL_TRIGGERED, 1972 &ipmi_acpi_gpe, 1973 info); 1974 if (status != AE_OK) { 1975 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1976 " running polled\n", DEVICE_NAME, info->irq); 1977 info->irq = 0; 1978 return -EINVAL; 1979 } else { 1980 info->irq_cleanup = acpi_gpe_irq_cleanup; 1981 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 1982 return 0; 1983 } 1984 } 1985 1986 /* 1987 * Defined at 1988 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 1989 */ 1990 struct SPMITable { 1991 s8 Signature[4]; 1992 u32 Length; 1993 u8 Revision; 1994 u8 Checksum; 1995 s8 OEMID[6]; 1996 s8 OEMTableID[8]; 1997 s8 OEMRevision[4]; 1998 s8 CreatorID[4]; 1999 s8 CreatorRevision[4]; 2000 u8 InterfaceType; 2001 u8 IPMIlegacy; 2002 s16 SpecificationRevision; 2003 2004 /* 2005 * Bit 0 - SCI interrupt supported 2006 * Bit 1 - I/O APIC/SAPIC 2007 */ 2008 u8 InterruptType; 2009 2010 /* 2011 * If bit 0 of InterruptType is set, then this is the SCI 2012 * interrupt in the GPEx_STS register. 2013 */ 2014 u8 GPE; 2015 2016 s16 Reserved; 2017 2018 /* 2019 * If bit 1 of InterruptType is set, then this is the I/O 2020 * APIC/SAPIC interrupt. 2021 */ 2022 u32 GlobalSystemInterrupt; 2023 2024 /* The actual register address. */ 2025 struct acpi_generic_address addr; 2026 2027 u8 UID[4]; 2028 2029 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2030 }; 2031 2032 static int __devinit try_init_spmi(struct SPMITable *spmi) 2033 { 2034 struct smi_info *info; 2035 2036 if (spmi->IPMIlegacy != 1) { 2037 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2038 return -ENODEV; 2039 } 2040 2041 info = smi_info_alloc(); 2042 if (!info) { 2043 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2044 return -ENOMEM; 2045 } 2046 2047 info->addr_source = SI_SPMI; 2048 printk(KERN_INFO PFX "probing via SPMI\n"); 2049 2050 /* Figure out the interface type. */ 2051 switch (spmi->InterfaceType) { 2052 case 1: /* KCS */ 2053 info->si_type = SI_KCS; 2054 break; 2055 case 2: /* SMIC */ 2056 info->si_type = SI_SMIC; 2057 break; 2058 case 3: /* BT */ 2059 info->si_type = SI_BT; 2060 break; 2061 default: 2062 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2063 spmi->InterfaceType); 2064 kfree(info); 2065 return -EIO; 2066 } 2067 2068 if (spmi->InterruptType & 1) { 2069 /* We've got a GPE interrupt. */ 2070 info->irq = spmi->GPE; 2071 info->irq_setup = acpi_gpe_irq_setup; 2072 } else if (spmi->InterruptType & 2) { 2073 /* We've got an APIC/SAPIC interrupt. */ 2074 info->irq = spmi->GlobalSystemInterrupt; 2075 info->irq_setup = std_irq_setup; 2076 } else { 2077 /* Use the default interrupt setting. */ 2078 info->irq = 0; 2079 info->irq_setup = NULL; 2080 } 2081 2082 if (spmi->addr.bit_width) { 2083 /* A (hopefully) properly formed register bit width. */ 2084 info->io.regspacing = spmi->addr.bit_width / 8; 2085 } else { 2086 info->io.regspacing = DEFAULT_REGSPACING; 2087 } 2088 info->io.regsize = info->io.regspacing; 2089 info->io.regshift = spmi->addr.bit_offset; 2090 2091 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2092 info->io_setup = mem_setup; 2093 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2094 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2095 info->io_setup = port_setup; 2096 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2097 } else { 2098 kfree(info); 2099 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2100 return -EIO; 2101 } 2102 info->io.addr_data = spmi->addr.address; 2103 2104 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2105 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2106 info->io.addr_data, info->io.regsize, info->io.regspacing, 2107 info->irq); 2108 2109 if (add_smi(info)) 2110 kfree(info); 2111 2112 return 0; 2113 } 2114 2115 static void __devinit spmi_find_bmc(void) 2116 { 2117 acpi_status status; 2118 struct SPMITable *spmi; 2119 int i; 2120 2121 if (acpi_disabled) 2122 return; 2123 2124 if (acpi_failure) 2125 return; 2126 2127 for (i = 0; ; i++) { 2128 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2129 (struct acpi_table_header **)&spmi); 2130 if (status != AE_OK) 2131 return; 2132 2133 try_init_spmi(spmi); 2134 } 2135 } 2136 2137 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, 2138 const struct pnp_device_id *dev_id) 2139 { 2140 struct acpi_device *acpi_dev; 2141 struct smi_info *info; 2142 struct resource *res, *res_second; 2143 acpi_handle handle; 2144 acpi_status status; 2145 unsigned long long tmp; 2146 2147 acpi_dev = pnp_acpi_device(dev); 2148 if (!acpi_dev) 2149 return -ENODEV; 2150 2151 info = smi_info_alloc(); 2152 if (!info) 2153 return -ENOMEM; 2154 2155 info->addr_source = SI_ACPI; 2156 printk(KERN_INFO PFX "probing via ACPI\n"); 2157 2158 handle = acpi_dev->handle; 2159 2160 /* _IFT tells us the interface type: KCS, BT, etc */ 2161 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2162 if (ACPI_FAILURE(status)) 2163 goto err_free; 2164 2165 switch (tmp) { 2166 case 1: 2167 info->si_type = SI_KCS; 2168 break; 2169 case 2: 2170 info->si_type = SI_SMIC; 2171 break; 2172 case 3: 2173 info->si_type = SI_BT; 2174 break; 2175 default: 2176 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2177 goto err_free; 2178 } 2179 2180 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2181 if (res) { 2182 info->io_setup = port_setup; 2183 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2184 } else { 2185 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2186 if (res) { 2187 info->io_setup = mem_setup; 2188 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2189 } 2190 } 2191 if (!res) { 2192 dev_err(&dev->dev, "no I/O or memory address\n"); 2193 goto err_free; 2194 } 2195 info->io.addr_data = res->start; 2196 2197 info->io.regspacing = DEFAULT_REGSPACING; 2198 res_second = pnp_get_resource(dev, 2199 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2200 IORESOURCE_IO : IORESOURCE_MEM, 2201 1); 2202 if (res_second) { 2203 if (res_second->start > info->io.addr_data) 2204 info->io.regspacing = res_second->start - info->io.addr_data; 2205 } 2206 info->io.regsize = DEFAULT_REGSPACING; 2207 info->io.regshift = 0; 2208 2209 /* If _GPE exists, use it; otherwise use standard interrupts */ 2210 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2211 if (ACPI_SUCCESS(status)) { 2212 info->irq = tmp; 2213 info->irq_setup = acpi_gpe_irq_setup; 2214 } else if (pnp_irq_valid(dev, 0)) { 2215 info->irq = pnp_irq(dev, 0); 2216 info->irq_setup = std_irq_setup; 2217 } 2218 2219 info->dev = &dev->dev; 2220 pnp_set_drvdata(dev, info); 2221 2222 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2223 res, info->io.regsize, info->io.regspacing, 2224 info->irq); 2225 2226 if (add_smi(info)) 2227 goto err_free; 2228 2229 return 0; 2230 2231 err_free: 2232 kfree(info); 2233 return -EINVAL; 2234 } 2235 2236 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) 2237 { 2238 struct smi_info *info = pnp_get_drvdata(dev); 2239 2240 cleanup_one_si(info); 2241 } 2242 2243 static const struct pnp_device_id pnp_dev_table[] = { 2244 {"IPI0001", 0}, 2245 {"", 0}, 2246 }; 2247 2248 static struct pnp_driver ipmi_pnp_driver = { 2249 .name = DEVICE_NAME, 2250 .probe = ipmi_pnp_probe, 2251 .remove = __devexit_p(ipmi_pnp_remove), 2252 .id_table = pnp_dev_table, 2253 }; 2254 #endif 2255 2256 #ifdef CONFIG_DMI 2257 struct dmi_ipmi_data { 2258 u8 type; 2259 u8 addr_space; 2260 unsigned long base_addr; 2261 u8 irq; 2262 u8 offset; 2263 u8 slave_addr; 2264 }; 2265 2266 static int __devinit decode_dmi(const struct dmi_header *dm, 2267 struct dmi_ipmi_data *dmi) 2268 { 2269 const u8 *data = (const u8 *)dm; 2270 unsigned long base_addr; 2271 u8 reg_spacing; 2272 u8 len = dm->length; 2273 2274 dmi->type = data[4]; 2275 2276 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2277 if (len >= 0x11) { 2278 if (base_addr & 1) { 2279 /* I/O */ 2280 base_addr &= 0xFFFE; 2281 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2282 } else 2283 /* Memory */ 2284 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2285 2286 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2287 is odd. */ 2288 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2289 2290 dmi->irq = data[0x11]; 2291 2292 /* The top two bits of byte 0x10 hold the register spacing. */ 2293 reg_spacing = (data[0x10] & 0xC0) >> 6; 2294 switch (reg_spacing) { 2295 case 0x00: /* Byte boundaries */ 2296 dmi->offset = 1; 2297 break; 2298 case 0x01: /* 32-bit boundaries */ 2299 dmi->offset = 4; 2300 break; 2301 case 0x02: /* 16-byte boundaries */ 2302 dmi->offset = 16; 2303 break; 2304 default: 2305 /* Some other interface, just ignore it. */ 2306 return -EIO; 2307 } 2308 } else { 2309 /* Old DMI spec. */ 2310 /* 2311 * Note that technically, the lower bit of the base 2312 * address should be 1 if the address is I/O and 0 if 2313 * the address is in memory. So many systems get that 2314 * wrong (and all that I have seen are I/O) so we just 2315 * ignore that bit and assume I/O. Systems that use 2316 * memory should use the newer spec, anyway. 2317 */ 2318 dmi->base_addr = base_addr & 0xfffe; 2319 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2320 dmi->offset = 1; 2321 } 2322 2323 dmi->slave_addr = data[6]; 2324 2325 return 0; 2326 } 2327 2328 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2329 { 2330 struct smi_info *info; 2331 2332 info = smi_info_alloc(); 2333 if (!info) { 2334 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2335 return; 2336 } 2337 2338 info->addr_source = SI_SMBIOS; 2339 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2340 2341 switch (ipmi_data->type) { 2342 case 0x01: /* KCS */ 2343 info->si_type = SI_KCS; 2344 break; 2345 case 0x02: /* SMIC */ 2346 info->si_type = SI_SMIC; 2347 break; 2348 case 0x03: /* BT */ 2349 info->si_type = SI_BT; 2350 break; 2351 default: 2352 kfree(info); 2353 return; 2354 } 2355 2356 switch (ipmi_data->addr_space) { 2357 case IPMI_MEM_ADDR_SPACE: 2358 info->io_setup = mem_setup; 2359 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2360 break; 2361 2362 case IPMI_IO_ADDR_SPACE: 2363 info->io_setup = port_setup; 2364 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2365 break; 2366 2367 default: 2368 kfree(info); 2369 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2370 ipmi_data->addr_space); 2371 return; 2372 } 2373 info->io.addr_data = ipmi_data->base_addr; 2374 2375 info->io.regspacing = ipmi_data->offset; 2376 if (!info->io.regspacing) 2377 info->io.regspacing = DEFAULT_REGSPACING; 2378 info->io.regsize = DEFAULT_REGSPACING; 2379 info->io.regshift = 0; 2380 2381 info->slave_addr = ipmi_data->slave_addr; 2382 2383 info->irq = ipmi_data->irq; 2384 if (info->irq) 2385 info->irq_setup = std_irq_setup; 2386 2387 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2388 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2389 info->io.addr_data, info->io.regsize, info->io.regspacing, 2390 info->irq); 2391 2392 if (add_smi(info)) 2393 kfree(info); 2394 } 2395 2396 static void __devinit dmi_find_bmc(void) 2397 { 2398 const struct dmi_device *dev = NULL; 2399 struct dmi_ipmi_data data; 2400 int rv; 2401 2402 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2403 memset(&data, 0, sizeof(data)); 2404 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2405 &data); 2406 if (!rv) 2407 try_init_dmi(&data); 2408 } 2409 } 2410 #endif /* CONFIG_DMI */ 2411 2412 #ifdef CONFIG_PCI 2413 2414 #define PCI_ERMC_CLASSCODE 0x0C0700 2415 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2416 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2417 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2418 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2419 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2420 2421 #define PCI_HP_VENDOR_ID 0x103C 2422 #define PCI_MMC_DEVICE_ID 0x121A 2423 #define PCI_MMC_ADDR_CW 0x10 2424 2425 static void ipmi_pci_cleanup(struct smi_info *info) 2426 { 2427 struct pci_dev *pdev = info->addr_source_data; 2428 2429 pci_disable_device(pdev); 2430 } 2431 2432 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2433 const struct pci_device_id *ent) 2434 { 2435 int rv; 2436 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2437 struct smi_info *info; 2438 2439 info = smi_info_alloc(); 2440 if (!info) 2441 return -ENOMEM; 2442 2443 info->addr_source = SI_PCI; 2444 dev_info(&pdev->dev, "probing via PCI"); 2445 2446 switch (class_type) { 2447 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2448 info->si_type = SI_SMIC; 2449 break; 2450 2451 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2452 info->si_type = SI_KCS; 2453 break; 2454 2455 case PCI_ERMC_CLASSCODE_TYPE_BT: 2456 info->si_type = SI_BT; 2457 break; 2458 2459 default: 2460 kfree(info); 2461 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2462 return -ENOMEM; 2463 } 2464 2465 rv = pci_enable_device(pdev); 2466 if (rv) { 2467 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2468 kfree(info); 2469 return rv; 2470 } 2471 2472 info->addr_source_cleanup = ipmi_pci_cleanup; 2473 info->addr_source_data = pdev; 2474 2475 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2476 info->io_setup = port_setup; 2477 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2478 } else { 2479 info->io_setup = mem_setup; 2480 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2481 } 2482 info->io.addr_data = pci_resource_start(pdev, 0); 2483 2484 info->io.regspacing = DEFAULT_REGSPACING; 2485 info->io.regsize = DEFAULT_REGSPACING; 2486 info->io.regshift = 0; 2487 2488 info->irq = pdev->irq; 2489 if (info->irq) 2490 info->irq_setup = std_irq_setup; 2491 2492 info->dev = &pdev->dev; 2493 pci_set_drvdata(pdev, info); 2494 2495 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2496 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2497 info->irq); 2498 2499 if (add_smi(info)) 2500 kfree(info); 2501 2502 return 0; 2503 } 2504 2505 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2506 { 2507 struct smi_info *info = pci_get_drvdata(pdev); 2508 cleanup_one_si(info); 2509 } 2510 2511 #ifdef CONFIG_PM 2512 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2513 { 2514 return 0; 2515 } 2516 2517 static int ipmi_pci_resume(struct pci_dev *pdev) 2518 { 2519 return 0; 2520 } 2521 #endif 2522 2523 static struct pci_device_id ipmi_pci_devices[] = { 2524 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2525 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2526 { 0, } 2527 }; 2528 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2529 2530 static struct pci_driver ipmi_pci_driver = { 2531 .name = DEVICE_NAME, 2532 .id_table = ipmi_pci_devices, 2533 .probe = ipmi_pci_probe, 2534 .remove = __devexit_p(ipmi_pci_remove), 2535 #ifdef CONFIG_PM 2536 .suspend = ipmi_pci_suspend, 2537 .resume = ipmi_pci_resume, 2538 #endif 2539 }; 2540 #endif /* CONFIG_PCI */ 2541 2542 2543 #ifdef CONFIG_PPC_OF 2544 static int __devinit ipmi_of_probe(struct platform_device *dev, 2545 const struct of_device_id *match) 2546 { 2547 struct smi_info *info; 2548 struct resource resource; 2549 const int *regsize, *regspacing, *regshift; 2550 struct device_node *np = dev->dev.of_node; 2551 int ret; 2552 int proplen; 2553 2554 dev_info(&dev->dev, "probing via device tree\n"); 2555 2556 ret = of_address_to_resource(np, 0, &resource); 2557 if (ret) { 2558 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2559 return ret; 2560 } 2561 2562 regsize = of_get_property(np, "reg-size", &proplen); 2563 if (regsize && proplen != 4) { 2564 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2565 return -EINVAL; 2566 } 2567 2568 regspacing = of_get_property(np, "reg-spacing", &proplen); 2569 if (regspacing && proplen != 4) { 2570 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2571 return -EINVAL; 2572 } 2573 2574 regshift = of_get_property(np, "reg-shift", &proplen); 2575 if (regshift && proplen != 4) { 2576 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2577 return -EINVAL; 2578 } 2579 2580 info = smi_info_alloc(); 2581 2582 if (!info) { 2583 dev_err(&dev->dev, 2584 "could not allocate memory for OF probe\n"); 2585 return -ENOMEM; 2586 } 2587 2588 info->si_type = (enum si_type) match->data; 2589 info->addr_source = SI_DEVICETREE; 2590 info->irq_setup = std_irq_setup; 2591 2592 if (resource.flags & IORESOURCE_IO) { 2593 info->io_setup = port_setup; 2594 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2595 } else { 2596 info->io_setup = mem_setup; 2597 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2598 } 2599 2600 info->io.addr_data = resource.start; 2601 2602 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE; 2603 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING; 2604 info->io.regshift = regshift ? *regshift : 0; 2605 2606 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2607 info->dev = &dev->dev; 2608 2609 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2610 info->io.addr_data, info->io.regsize, info->io.regspacing, 2611 info->irq); 2612 2613 dev_set_drvdata(&dev->dev, info); 2614 2615 if (add_smi(info)) { 2616 kfree(info); 2617 return -EBUSY; 2618 } 2619 2620 return 0; 2621 } 2622 2623 static int __devexit ipmi_of_remove(struct platform_device *dev) 2624 { 2625 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2626 return 0; 2627 } 2628 2629 static struct of_device_id ipmi_match[] = 2630 { 2631 { .type = "ipmi", .compatible = "ipmi-kcs", 2632 .data = (void *)(unsigned long) SI_KCS }, 2633 { .type = "ipmi", .compatible = "ipmi-smic", 2634 .data = (void *)(unsigned long) SI_SMIC }, 2635 { .type = "ipmi", .compatible = "ipmi-bt", 2636 .data = (void *)(unsigned long) SI_BT }, 2637 {}, 2638 }; 2639 2640 static struct of_platform_driver ipmi_of_platform_driver = { 2641 .driver = { 2642 .name = "ipmi", 2643 .owner = THIS_MODULE, 2644 .of_match_table = ipmi_match, 2645 }, 2646 .probe = ipmi_of_probe, 2647 .remove = __devexit_p(ipmi_of_remove), 2648 }; 2649 #endif /* CONFIG_PPC_OF */ 2650 2651 static int wait_for_msg_done(struct smi_info *smi_info) 2652 { 2653 enum si_sm_result smi_result; 2654 2655 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2656 for (;;) { 2657 if (smi_result == SI_SM_CALL_WITH_DELAY || 2658 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2659 schedule_timeout_uninterruptible(1); 2660 smi_result = smi_info->handlers->event( 2661 smi_info->si_sm, 100); 2662 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2663 smi_result = smi_info->handlers->event( 2664 smi_info->si_sm, 0); 2665 } else 2666 break; 2667 } 2668 if (smi_result == SI_SM_HOSED) 2669 /* 2670 * We couldn't get the state machine to run, so whatever's at 2671 * the port is probably not an IPMI SMI interface. 2672 */ 2673 return -ENODEV; 2674 2675 return 0; 2676 } 2677 2678 static int try_get_dev_id(struct smi_info *smi_info) 2679 { 2680 unsigned char msg[2]; 2681 unsigned char *resp; 2682 unsigned long resp_len; 2683 int rv = 0; 2684 2685 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2686 if (!resp) 2687 return -ENOMEM; 2688 2689 /* 2690 * Do a Get Device ID command, since it comes back with some 2691 * useful info. 2692 */ 2693 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2694 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2695 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2696 2697 rv = wait_for_msg_done(smi_info); 2698 if (rv) 2699 goto out; 2700 2701 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2702 resp, IPMI_MAX_MSG_LENGTH); 2703 2704 /* Check and record info from the get device id, in case we need it. */ 2705 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2706 2707 out: 2708 kfree(resp); 2709 return rv; 2710 } 2711 2712 static int try_enable_event_buffer(struct smi_info *smi_info) 2713 { 2714 unsigned char msg[3]; 2715 unsigned char *resp; 2716 unsigned long resp_len; 2717 int rv = 0; 2718 2719 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2720 if (!resp) 2721 return -ENOMEM; 2722 2723 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2724 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2725 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2726 2727 rv = wait_for_msg_done(smi_info); 2728 if (rv) { 2729 printk(KERN_WARNING PFX "Error getting response from get" 2730 " global enables command, the event buffer is not" 2731 " enabled.\n"); 2732 goto out; 2733 } 2734 2735 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2736 resp, IPMI_MAX_MSG_LENGTH); 2737 2738 if (resp_len < 4 || 2739 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2740 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2741 resp[2] != 0) { 2742 printk(KERN_WARNING PFX "Invalid return from get global" 2743 " enables command, cannot enable the event buffer.\n"); 2744 rv = -EINVAL; 2745 goto out; 2746 } 2747 2748 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2749 /* buffer is already enabled, nothing to do. */ 2750 goto out; 2751 2752 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2753 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2754 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2755 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2756 2757 rv = wait_for_msg_done(smi_info); 2758 if (rv) { 2759 printk(KERN_WARNING PFX "Error getting response from set" 2760 " global, enables command, the event buffer is not" 2761 " enabled.\n"); 2762 goto out; 2763 } 2764 2765 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2766 resp, IPMI_MAX_MSG_LENGTH); 2767 2768 if (resp_len < 3 || 2769 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2770 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2771 printk(KERN_WARNING PFX "Invalid return from get global," 2772 "enables command, not enable the event buffer.\n"); 2773 rv = -EINVAL; 2774 goto out; 2775 } 2776 2777 if (resp[2] != 0) 2778 /* 2779 * An error when setting the event buffer bit means 2780 * that the event buffer is not supported. 2781 */ 2782 rv = -ENOENT; 2783 out: 2784 kfree(resp); 2785 return rv; 2786 } 2787 2788 static int type_file_read_proc(char *page, char **start, off_t off, 2789 int count, int *eof, void *data) 2790 { 2791 struct smi_info *smi = data; 2792 2793 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2794 } 2795 2796 static int stat_file_read_proc(char *page, char **start, off_t off, 2797 int count, int *eof, void *data) 2798 { 2799 char *out = (char *) page; 2800 struct smi_info *smi = data; 2801 2802 out += sprintf(out, "interrupts_enabled: %d\n", 2803 smi->irq && !smi->interrupt_disabled); 2804 out += sprintf(out, "short_timeouts: %u\n", 2805 smi_get_stat(smi, short_timeouts)); 2806 out += sprintf(out, "long_timeouts: %u\n", 2807 smi_get_stat(smi, long_timeouts)); 2808 out += sprintf(out, "idles: %u\n", 2809 smi_get_stat(smi, idles)); 2810 out += sprintf(out, "interrupts: %u\n", 2811 smi_get_stat(smi, interrupts)); 2812 out += sprintf(out, "attentions: %u\n", 2813 smi_get_stat(smi, attentions)); 2814 out += sprintf(out, "flag_fetches: %u\n", 2815 smi_get_stat(smi, flag_fetches)); 2816 out += sprintf(out, "hosed_count: %u\n", 2817 smi_get_stat(smi, hosed_count)); 2818 out += sprintf(out, "complete_transactions: %u\n", 2819 smi_get_stat(smi, complete_transactions)); 2820 out += sprintf(out, "events: %u\n", 2821 smi_get_stat(smi, events)); 2822 out += sprintf(out, "watchdog_pretimeouts: %u\n", 2823 smi_get_stat(smi, watchdog_pretimeouts)); 2824 out += sprintf(out, "incoming_messages: %u\n", 2825 smi_get_stat(smi, incoming_messages)); 2826 2827 return out - page; 2828 } 2829 2830 static int param_read_proc(char *page, char **start, off_t off, 2831 int count, int *eof, void *data) 2832 { 2833 struct smi_info *smi = data; 2834 2835 return sprintf(page, 2836 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2837 si_to_str[smi->si_type], 2838 addr_space_to_str[smi->io.addr_type], 2839 smi->io.addr_data, 2840 smi->io.regspacing, 2841 smi->io.regsize, 2842 smi->io.regshift, 2843 smi->irq, 2844 smi->slave_addr); 2845 } 2846 2847 /* 2848 * oem_data_avail_to_receive_msg_avail 2849 * @info - smi_info structure with msg_flags set 2850 * 2851 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2852 * Returns 1 indicating need to re-run handle_flags(). 2853 */ 2854 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2855 { 2856 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2857 RECEIVE_MSG_AVAIL); 2858 return 1; 2859 } 2860 2861 /* 2862 * setup_dell_poweredge_oem_data_handler 2863 * @info - smi_info.device_id must be populated 2864 * 2865 * Systems that match, but have firmware version < 1.40 may assert 2866 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2867 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2868 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2869 * as RECEIVE_MSG_AVAIL instead. 2870 * 2871 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2872 * assert the OEM[012] bits, and if it did, the driver would have to 2873 * change to handle that properly, we don't actually check for the 2874 * firmware version. 2875 * Device ID = 0x20 BMC on PowerEdge 8G servers 2876 * Device Revision = 0x80 2877 * Firmware Revision1 = 0x01 BMC version 1.40 2878 * Firmware Revision2 = 0x40 BCD encoded 2879 * IPMI Version = 0x51 IPMI 1.5 2880 * Manufacturer ID = A2 02 00 Dell IANA 2881 * 2882 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2883 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2884 * 2885 */ 2886 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2887 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2888 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2889 #define DELL_IANA_MFR_ID 0x0002a2 2890 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2891 { 2892 struct ipmi_device_id *id = &smi_info->device_id; 2893 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2894 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2895 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2896 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2897 smi_info->oem_data_avail_handler = 2898 oem_data_avail_to_receive_msg_avail; 2899 } else if (ipmi_version_major(id) < 1 || 2900 (ipmi_version_major(id) == 1 && 2901 ipmi_version_minor(id) < 5)) { 2902 smi_info->oem_data_avail_handler = 2903 oem_data_avail_to_receive_msg_avail; 2904 } 2905 } 2906 } 2907 2908 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2909 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2910 { 2911 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2912 2913 /* Make it a reponse */ 2914 msg->rsp[0] = msg->data[0] | 4; 2915 msg->rsp[1] = msg->data[1]; 2916 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2917 msg->rsp_size = 3; 2918 smi_info->curr_msg = NULL; 2919 deliver_recv_msg(smi_info, msg); 2920 } 2921 2922 /* 2923 * dell_poweredge_bt_xaction_handler 2924 * @info - smi_info.device_id must be populated 2925 * 2926 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2927 * not respond to a Get SDR command if the length of the data 2928 * requested is exactly 0x3A, which leads to command timeouts and no 2929 * data returned. This intercepts such commands, and causes userspace 2930 * callers to try again with a different-sized buffer, which succeeds. 2931 */ 2932 2933 #define STORAGE_NETFN 0x0A 2934 #define STORAGE_CMD_GET_SDR 0x23 2935 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2936 unsigned long unused, 2937 void *in) 2938 { 2939 struct smi_info *smi_info = in; 2940 unsigned char *data = smi_info->curr_msg->data; 2941 unsigned int size = smi_info->curr_msg->data_size; 2942 if (size >= 8 && 2943 (data[0]>>2) == STORAGE_NETFN && 2944 data[1] == STORAGE_CMD_GET_SDR && 2945 data[7] == 0x3A) { 2946 return_hosed_msg_badsize(smi_info); 2947 return NOTIFY_STOP; 2948 } 2949 return NOTIFY_DONE; 2950 } 2951 2952 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2953 .notifier_call = dell_poweredge_bt_xaction_handler, 2954 }; 2955 2956 /* 2957 * setup_dell_poweredge_bt_xaction_handler 2958 * @info - smi_info.device_id must be filled in already 2959 * 2960 * Fills in smi_info.device_id.start_transaction_pre_hook 2961 * when we know what function to use there. 2962 */ 2963 static void 2964 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2965 { 2966 struct ipmi_device_id *id = &smi_info->device_id; 2967 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2968 smi_info->si_type == SI_BT) 2969 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2970 } 2971 2972 /* 2973 * setup_oem_data_handler 2974 * @info - smi_info.device_id must be filled in already 2975 * 2976 * Fills in smi_info.device_id.oem_data_available_handler 2977 * when we know what function to use there. 2978 */ 2979 2980 static void setup_oem_data_handler(struct smi_info *smi_info) 2981 { 2982 setup_dell_poweredge_oem_data_handler(smi_info); 2983 } 2984 2985 static void setup_xaction_handlers(struct smi_info *smi_info) 2986 { 2987 setup_dell_poweredge_bt_xaction_handler(smi_info); 2988 } 2989 2990 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2991 { 2992 if (smi_info->intf) { 2993 /* 2994 * The timer and thread are only running if the 2995 * interface has been started up and registered. 2996 */ 2997 if (smi_info->thread != NULL) 2998 kthread_stop(smi_info->thread); 2999 del_timer_sync(&smi_info->si_timer); 3000 } 3001 } 3002 3003 static __devinitdata struct ipmi_default_vals 3004 { 3005 int type; 3006 int port; 3007 } ipmi_defaults[] = 3008 { 3009 { .type = SI_KCS, .port = 0xca2 }, 3010 { .type = SI_SMIC, .port = 0xca9 }, 3011 { .type = SI_BT, .port = 0xe4 }, 3012 { .port = 0 } 3013 }; 3014 3015 static void __devinit default_find_bmc(void) 3016 { 3017 struct smi_info *info; 3018 int i; 3019 3020 for (i = 0; ; i++) { 3021 if (!ipmi_defaults[i].port) 3022 break; 3023 #ifdef CONFIG_PPC 3024 if (check_legacy_ioport(ipmi_defaults[i].port)) 3025 continue; 3026 #endif 3027 info = smi_info_alloc(); 3028 if (!info) 3029 return; 3030 3031 info->addr_source = SI_DEFAULT; 3032 3033 info->si_type = ipmi_defaults[i].type; 3034 info->io_setup = port_setup; 3035 info->io.addr_data = ipmi_defaults[i].port; 3036 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3037 3038 info->io.addr = NULL; 3039 info->io.regspacing = DEFAULT_REGSPACING; 3040 info->io.regsize = DEFAULT_REGSPACING; 3041 info->io.regshift = 0; 3042 3043 if (add_smi(info) == 0) { 3044 if ((try_smi_init(info)) == 0) { 3045 /* Found one... */ 3046 printk(KERN_INFO PFX "Found default %s" 3047 " state machine at %s address 0x%lx\n", 3048 si_to_str[info->si_type], 3049 addr_space_to_str[info->io.addr_type], 3050 info->io.addr_data); 3051 } else 3052 cleanup_one_si(info); 3053 } else { 3054 kfree(info); 3055 } 3056 } 3057 } 3058 3059 static int is_new_interface(struct smi_info *info) 3060 { 3061 struct smi_info *e; 3062 3063 list_for_each_entry(e, &smi_infos, link) { 3064 if (e->io.addr_type != info->io.addr_type) 3065 continue; 3066 if (e->io.addr_data == info->io.addr_data) 3067 return 0; 3068 } 3069 3070 return 1; 3071 } 3072 3073 static int add_smi(struct smi_info *new_smi) 3074 { 3075 int rv = 0; 3076 3077 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3078 ipmi_addr_src_to_str[new_smi->addr_source], 3079 si_to_str[new_smi->si_type]); 3080 mutex_lock(&smi_infos_lock); 3081 if (!is_new_interface(new_smi)) { 3082 printk(KERN_CONT " duplicate interface\n"); 3083 rv = -EBUSY; 3084 goto out_err; 3085 } 3086 3087 printk(KERN_CONT "\n"); 3088 3089 /* So we know not to free it unless we have allocated one. */ 3090 new_smi->intf = NULL; 3091 new_smi->si_sm = NULL; 3092 new_smi->handlers = NULL; 3093 3094 list_add_tail(&new_smi->link, &smi_infos); 3095 3096 out_err: 3097 mutex_unlock(&smi_infos_lock); 3098 return rv; 3099 } 3100 3101 static int try_smi_init(struct smi_info *new_smi) 3102 { 3103 int rv = 0; 3104 int i; 3105 3106 printk(KERN_INFO PFX "Trying %s-specified %s state" 3107 " machine at %s address 0x%lx, slave address 0x%x," 3108 " irq %d\n", 3109 ipmi_addr_src_to_str[new_smi->addr_source], 3110 si_to_str[new_smi->si_type], 3111 addr_space_to_str[new_smi->io.addr_type], 3112 new_smi->io.addr_data, 3113 new_smi->slave_addr, new_smi->irq); 3114 3115 switch (new_smi->si_type) { 3116 case SI_KCS: 3117 new_smi->handlers = &kcs_smi_handlers; 3118 break; 3119 3120 case SI_SMIC: 3121 new_smi->handlers = &smic_smi_handlers; 3122 break; 3123 3124 case SI_BT: 3125 new_smi->handlers = &bt_smi_handlers; 3126 break; 3127 3128 default: 3129 /* No support for anything else yet. */ 3130 rv = -EIO; 3131 goto out_err; 3132 } 3133 3134 /* Allocate the state machine's data and initialize it. */ 3135 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3136 if (!new_smi->si_sm) { 3137 printk(KERN_ERR PFX 3138 "Could not allocate state machine memory\n"); 3139 rv = -ENOMEM; 3140 goto out_err; 3141 } 3142 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3143 &new_smi->io); 3144 3145 /* Now that we know the I/O size, we can set up the I/O. */ 3146 rv = new_smi->io_setup(new_smi); 3147 if (rv) { 3148 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3149 goto out_err; 3150 } 3151 3152 /* Do low-level detection first. */ 3153 if (new_smi->handlers->detect(new_smi->si_sm)) { 3154 if (new_smi->addr_source) 3155 printk(KERN_INFO PFX "Interface detection failed\n"); 3156 rv = -ENODEV; 3157 goto out_err; 3158 } 3159 3160 /* 3161 * Attempt a get device id command. If it fails, we probably 3162 * don't have a BMC here. 3163 */ 3164 rv = try_get_dev_id(new_smi); 3165 if (rv) { 3166 if (new_smi->addr_source) 3167 printk(KERN_INFO PFX "There appears to be no BMC" 3168 " at this location\n"); 3169 goto out_err; 3170 } 3171 3172 setup_oem_data_handler(new_smi); 3173 setup_xaction_handlers(new_smi); 3174 3175 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3176 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3177 new_smi->curr_msg = NULL; 3178 atomic_set(&new_smi->req_events, 0); 3179 new_smi->run_to_completion = 0; 3180 for (i = 0; i < SI_NUM_STATS; i++) 3181 atomic_set(&new_smi->stats[i], 0); 3182 3183 new_smi->interrupt_disabled = 1; 3184 atomic_set(&new_smi->stop_operation, 0); 3185 new_smi->intf_num = smi_num; 3186 smi_num++; 3187 3188 rv = try_enable_event_buffer(new_smi); 3189 if (rv == 0) 3190 new_smi->has_event_buffer = 1; 3191 3192 /* 3193 * Start clearing the flags before we enable interrupts or the 3194 * timer to avoid racing with the timer. 3195 */ 3196 start_clear_flags(new_smi); 3197 /* IRQ is defined to be set when non-zero. */ 3198 if (new_smi->irq) 3199 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3200 3201 if (!new_smi->dev) { 3202 /* 3203 * If we don't already have a device from something 3204 * else (like PCI), then register a new one. 3205 */ 3206 new_smi->pdev = platform_device_alloc("ipmi_si", 3207 new_smi->intf_num); 3208 if (!new_smi->pdev) { 3209 printk(KERN_ERR PFX 3210 "Unable to allocate platform device\n"); 3211 goto out_err; 3212 } 3213 new_smi->dev = &new_smi->pdev->dev; 3214 new_smi->dev->driver = &ipmi_driver.driver; 3215 3216 rv = platform_device_add(new_smi->pdev); 3217 if (rv) { 3218 printk(KERN_ERR PFX 3219 "Unable to register system interface device:" 3220 " %d\n", 3221 rv); 3222 goto out_err; 3223 } 3224 new_smi->dev_registered = 1; 3225 } 3226 3227 rv = ipmi_register_smi(&handlers, 3228 new_smi, 3229 &new_smi->device_id, 3230 new_smi->dev, 3231 "bmc", 3232 new_smi->slave_addr); 3233 if (rv) { 3234 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3235 rv); 3236 goto out_err_stop_timer; 3237 } 3238 3239 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3240 type_file_read_proc, 3241 new_smi); 3242 if (rv) { 3243 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3244 goto out_err_stop_timer; 3245 } 3246 3247 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3248 stat_file_read_proc, 3249 new_smi); 3250 if (rv) { 3251 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3252 goto out_err_stop_timer; 3253 } 3254 3255 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3256 param_read_proc, 3257 new_smi); 3258 if (rv) { 3259 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3260 goto out_err_stop_timer; 3261 } 3262 3263 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3264 si_to_str[new_smi->si_type]); 3265 3266 return 0; 3267 3268 out_err_stop_timer: 3269 atomic_inc(&new_smi->stop_operation); 3270 wait_for_timer_and_thread(new_smi); 3271 3272 out_err: 3273 new_smi->interrupt_disabled = 1; 3274 3275 if (new_smi->intf) { 3276 ipmi_unregister_smi(new_smi->intf); 3277 new_smi->intf = NULL; 3278 } 3279 3280 if (new_smi->irq_cleanup) { 3281 new_smi->irq_cleanup(new_smi); 3282 new_smi->irq_cleanup = NULL; 3283 } 3284 3285 /* 3286 * Wait until we know that we are out of any interrupt 3287 * handlers might have been running before we freed the 3288 * interrupt. 3289 */ 3290 synchronize_sched(); 3291 3292 if (new_smi->si_sm) { 3293 if (new_smi->handlers) 3294 new_smi->handlers->cleanup(new_smi->si_sm); 3295 kfree(new_smi->si_sm); 3296 new_smi->si_sm = NULL; 3297 } 3298 if (new_smi->addr_source_cleanup) { 3299 new_smi->addr_source_cleanup(new_smi); 3300 new_smi->addr_source_cleanup = NULL; 3301 } 3302 if (new_smi->io_cleanup) { 3303 new_smi->io_cleanup(new_smi); 3304 new_smi->io_cleanup = NULL; 3305 } 3306 3307 if (new_smi->dev_registered) { 3308 platform_device_unregister(new_smi->pdev); 3309 new_smi->dev_registered = 0; 3310 } 3311 3312 return rv; 3313 } 3314 3315 static int __devinit init_ipmi_si(void) 3316 { 3317 int i; 3318 char *str; 3319 int rv; 3320 struct smi_info *e; 3321 enum ipmi_addr_src type = SI_INVALID; 3322 3323 if (initialized) 3324 return 0; 3325 initialized = 1; 3326 3327 /* Register the device drivers. */ 3328 rv = driver_register(&ipmi_driver.driver); 3329 if (rv) { 3330 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); 3331 return rv; 3332 } 3333 3334 3335 /* Parse out the si_type string into its components. */ 3336 str = si_type_str; 3337 if (*str != '\0') { 3338 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3339 si_type[i] = str; 3340 str = strchr(str, ','); 3341 if (str) { 3342 *str = '\0'; 3343 str++; 3344 } else { 3345 break; 3346 } 3347 } 3348 } 3349 3350 printk(KERN_INFO "IPMI System Interface driver.\n"); 3351 3352 hardcode_find_bmc(); 3353 3354 /* If the user gave us a device, they presumably want us to use it */ 3355 mutex_lock(&smi_infos_lock); 3356 if (!list_empty(&smi_infos)) { 3357 mutex_unlock(&smi_infos_lock); 3358 return 0; 3359 } 3360 mutex_unlock(&smi_infos_lock); 3361 3362 #ifdef CONFIG_PCI 3363 rv = pci_register_driver(&ipmi_pci_driver); 3364 if (rv) 3365 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); 3366 else 3367 pci_registered = 1; 3368 #endif 3369 3370 #ifdef CONFIG_ACPI 3371 pnp_register_driver(&ipmi_pnp_driver); 3372 pnp_registered = 1; 3373 #endif 3374 3375 #ifdef CONFIG_DMI 3376 dmi_find_bmc(); 3377 #endif 3378 3379 #ifdef CONFIG_ACPI 3380 spmi_find_bmc(); 3381 #endif 3382 3383 #ifdef CONFIG_PPC_OF 3384 of_register_platform_driver(&ipmi_of_platform_driver); 3385 of_registered = 1; 3386 #endif 3387 3388 /* We prefer devices with interrupts, but in the case of a machine 3389 with multiple BMCs we assume that there will be several instances 3390 of a given type so if we succeed in registering a type then also 3391 try to register everything else of the same type */ 3392 3393 mutex_lock(&smi_infos_lock); 3394 list_for_each_entry(e, &smi_infos, link) { 3395 /* Try to register a device if it has an IRQ and we either 3396 haven't successfully registered a device yet or this 3397 device has the same type as one we successfully registered */ 3398 if (e->irq && (!type || e->addr_source == type)) { 3399 if (!try_smi_init(e)) { 3400 type = e->addr_source; 3401 } 3402 } 3403 } 3404 3405 /* type will only have been set if we successfully registered an si */ 3406 if (type) { 3407 mutex_unlock(&smi_infos_lock); 3408 return 0; 3409 } 3410 3411 /* Fall back to the preferred device */ 3412 3413 list_for_each_entry(e, &smi_infos, link) { 3414 if (!e->irq && (!type || e->addr_source == type)) { 3415 if (!try_smi_init(e)) { 3416 type = e->addr_source; 3417 } 3418 } 3419 } 3420 mutex_unlock(&smi_infos_lock); 3421 3422 if (type) 3423 return 0; 3424 3425 if (si_trydefaults) { 3426 mutex_lock(&smi_infos_lock); 3427 if (list_empty(&smi_infos)) { 3428 /* No BMC was found, try defaults. */ 3429 mutex_unlock(&smi_infos_lock); 3430 default_find_bmc(); 3431 } else 3432 mutex_unlock(&smi_infos_lock); 3433 } 3434 3435 mutex_lock(&smi_infos_lock); 3436 if (unload_when_empty && list_empty(&smi_infos)) { 3437 mutex_unlock(&smi_infos_lock); 3438 #ifdef CONFIG_PCI 3439 if (pci_registered) 3440 pci_unregister_driver(&ipmi_pci_driver); 3441 #endif 3442 3443 #ifdef CONFIG_PPC_OF 3444 if (of_registered) 3445 of_unregister_platform_driver(&ipmi_of_platform_driver); 3446 #endif 3447 driver_unregister(&ipmi_driver.driver); 3448 printk(KERN_WARNING PFX 3449 "Unable to find any System Interface(s)\n"); 3450 return -ENODEV; 3451 } else { 3452 mutex_unlock(&smi_infos_lock); 3453 return 0; 3454 } 3455 } 3456 module_init(init_ipmi_si); 3457 3458 static void cleanup_one_si(struct smi_info *to_clean) 3459 { 3460 int rv = 0; 3461 unsigned long flags; 3462 3463 if (!to_clean) 3464 return; 3465 3466 list_del(&to_clean->link); 3467 3468 /* Tell the driver that we are shutting down. */ 3469 atomic_inc(&to_clean->stop_operation); 3470 3471 /* 3472 * Make sure the timer and thread are stopped and will not run 3473 * again. 3474 */ 3475 wait_for_timer_and_thread(to_clean); 3476 3477 /* 3478 * Timeouts are stopped, now make sure the interrupts are off 3479 * for the device. A little tricky with locks to make sure 3480 * there are no races. 3481 */ 3482 spin_lock_irqsave(&to_clean->si_lock, flags); 3483 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3484 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3485 poll(to_clean); 3486 schedule_timeout_uninterruptible(1); 3487 spin_lock_irqsave(&to_clean->si_lock, flags); 3488 } 3489 disable_si_irq(to_clean); 3490 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3491 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3492 poll(to_clean); 3493 schedule_timeout_uninterruptible(1); 3494 } 3495 3496 /* Clean up interrupts and make sure that everything is done. */ 3497 if (to_clean->irq_cleanup) 3498 to_clean->irq_cleanup(to_clean); 3499 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3500 poll(to_clean); 3501 schedule_timeout_uninterruptible(1); 3502 } 3503 3504 if (to_clean->intf) 3505 rv = ipmi_unregister_smi(to_clean->intf); 3506 3507 if (rv) { 3508 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3509 rv); 3510 } 3511 3512 if (to_clean->handlers) 3513 to_clean->handlers->cleanup(to_clean->si_sm); 3514 3515 kfree(to_clean->si_sm); 3516 3517 if (to_clean->addr_source_cleanup) 3518 to_clean->addr_source_cleanup(to_clean); 3519 if (to_clean->io_cleanup) 3520 to_clean->io_cleanup(to_clean); 3521 3522 if (to_clean->dev_registered) 3523 platform_device_unregister(to_clean->pdev); 3524 3525 kfree(to_clean); 3526 } 3527 3528 static void __exit cleanup_ipmi_si(void) 3529 { 3530 struct smi_info *e, *tmp_e; 3531 3532 if (!initialized) 3533 return; 3534 3535 #ifdef CONFIG_PCI 3536 if (pci_registered) 3537 pci_unregister_driver(&ipmi_pci_driver); 3538 #endif 3539 #ifdef CONFIG_ACPI 3540 if (pnp_registered) 3541 pnp_unregister_driver(&ipmi_pnp_driver); 3542 #endif 3543 3544 #ifdef CONFIG_PPC_OF 3545 if (of_registered) 3546 of_unregister_platform_driver(&ipmi_of_platform_driver); 3547 #endif 3548 3549 mutex_lock(&smi_infos_lock); 3550 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3551 cleanup_one_si(e); 3552 mutex_unlock(&smi_infos_lock); 3553 3554 driver_unregister(&ipmi_driver.driver); 3555 } 3556 module_exit(cleanup_ipmi_si); 3557 3558 MODULE_LICENSE("GPL"); 3559 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3560 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3561 " system interfaces."); 3562