xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 enum ipmi_addr_src {
111 	SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112 	SI_PCI,	SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 					"ACPI", "SMBIOS", "PCI",
116 					"device-tree", "default" };
117 
118 #define DEVICE_NAME "ipmi_si"
119 
120 static struct platform_driver ipmi_driver = {
121 	.driver = {
122 		.name = DEVICE_NAME,
123 		.bus = &platform_bus_type
124 	}
125 };
126 
127 
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132 	/*
133 	 * Number of times the driver requested a timer while an operation
134 	 * was in progress.
135 	 */
136 	SI_STAT_short_timeouts = 0,
137 
138 	/*
139 	 * Number of times the driver requested a timer while nothing was in
140 	 * progress.
141 	 */
142 	SI_STAT_long_timeouts,
143 
144 	/* Number of times the interface was idle while being polled. */
145 	SI_STAT_idles,
146 
147 	/* Number of interrupts the driver handled. */
148 	SI_STAT_interrupts,
149 
150 	/* Number of time the driver got an ATTN from the hardware. */
151 	SI_STAT_attentions,
152 
153 	/* Number of times the driver requested flags from the hardware. */
154 	SI_STAT_flag_fetches,
155 
156 	/* Number of times the hardware didn't follow the state machine. */
157 	SI_STAT_hosed_count,
158 
159 	/* Number of completed messages. */
160 	SI_STAT_complete_transactions,
161 
162 	/* Number of IPMI events received from the hardware. */
163 	SI_STAT_events,
164 
165 	/* Number of watchdog pretimeouts. */
166 	SI_STAT_watchdog_pretimeouts,
167 
168 	/* Number of asyncronous messages received. */
169 	SI_STAT_incoming_messages,
170 
171 
172 	/* This *must* remain last, add new values above this. */
173 	SI_NUM_STATS
174 };
175 
176 struct smi_info {
177 	int                    intf_num;
178 	ipmi_smi_t             intf;
179 	struct si_sm_data      *si_sm;
180 	struct si_sm_handlers  *handlers;
181 	enum si_type           si_type;
182 	spinlock_t             si_lock;
183 	spinlock_t             msg_lock;
184 	struct list_head       xmit_msgs;
185 	struct list_head       hp_xmit_msgs;
186 	struct ipmi_smi_msg    *curr_msg;
187 	enum si_intf_state     si_state;
188 
189 	/*
190 	 * Used to handle the various types of I/O that can occur with
191 	 * IPMI
192 	 */
193 	struct si_sm_io io;
194 	int (*io_setup)(struct smi_info *info);
195 	void (*io_cleanup)(struct smi_info *info);
196 	int (*irq_setup)(struct smi_info *info);
197 	void (*irq_cleanup)(struct smi_info *info);
198 	unsigned int io_size;
199 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200 	void (*addr_source_cleanup)(struct smi_info *info);
201 	void *addr_source_data;
202 
203 	/*
204 	 * Per-OEM handler, called from handle_flags().  Returns 1
205 	 * when handle_flags() needs to be re-run or 0 indicating it
206 	 * set si_state itself.
207 	 */
208 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
209 
210 	/*
211 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212 	 * is set to hold the flags until we are done handling everything
213 	 * from the flags.
214 	 */
215 #define RECEIVE_MSG_AVAIL	0x01
216 #define EVENT_MSG_BUFFER_FULL	0x02
217 #define WDT_PRE_TIMEOUT_INT	0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222 			     OEM1_DATA_AVAIL | \
223 			     OEM2_DATA_AVAIL)
224 	unsigned char       msg_flags;
225 
226 	/* Does the BMC have an event buffer? */
227 	char		    has_event_buffer;
228 
229 	/*
230 	 * If set to true, this will request events the next time the
231 	 * state machine is idle.
232 	 */
233 	atomic_t            req_events;
234 
235 	/*
236 	 * If true, run the state machine to completion on every send
237 	 * call.  Generally used after a panic to make sure stuff goes
238 	 * out.
239 	 */
240 	int                 run_to_completion;
241 
242 	/* The I/O port of an SI interface. */
243 	int                 port;
244 
245 	/*
246 	 * The space between start addresses of the two ports.  For
247 	 * instance, if the first port is 0xca2 and the spacing is 4, then
248 	 * the second port is 0xca6.
249 	 */
250 	unsigned int        spacing;
251 
252 	/* zero if no irq; */
253 	int                 irq;
254 
255 	/* The timer for this si. */
256 	struct timer_list   si_timer;
257 
258 	/* The time (in jiffies) the last timeout occurred at. */
259 	unsigned long       last_timeout_jiffies;
260 
261 	/* Used to gracefully stop the timer without race conditions. */
262 	atomic_t            stop_operation;
263 
264 	/*
265 	 * The driver will disable interrupts when it gets into a
266 	 * situation where it cannot handle messages due to lack of
267 	 * memory.  Once that situation clears up, it will re-enable
268 	 * interrupts.
269 	 */
270 	int interrupt_disabled;
271 
272 	/* From the get device id response... */
273 	struct ipmi_device_id device_id;
274 
275 	/* Driver model stuff. */
276 	struct device *dev;
277 	struct platform_device *pdev;
278 
279 	/*
280 	 * True if we allocated the device, false if it came from
281 	 * someplace else (like PCI).
282 	 */
283 	int dev_registered;
284 
285 	/* Slave address, could be reported from DMI. */
286 	unsigned char slave_addr;
287 
288 	/* Counters and things for the proc filesystem. */
289 	atomic_t stats[SI_NUM_STATS];
290 
291 	struct task_struct *thread;
292 
293 	struct list_head link;
294 };
295 
296 #define smi_inc_stat(smi, stat) \
297 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300 
301 #define SI_MAX_PARMS 4
302 
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305 #ifdef CONFIG_PCI
306 static int pci_registered;
307 #endif
308 #ifdef CONFIG_ACPI
309 static int pnp_registered;
310 #endif
311 #ifdef CONFIG_PPC_OF
312 static int of_registered;
313 #endif
314 
315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
316 static int num_max_busy_us;
317 
318 static int unload_when_empty = 1;
319 
320 static int add_smi(struct smi_info *smi);
321 static int try_smi_init(struct smi_info *smi);
322 static void cleanup_one_si(struct smi_info *to_clean);
323 
324 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
325 static int register_xaction_notifier(struct notifier_block *nb)
326 {
327 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
328 }
329 
330 static void deliver_recv_msg(struct smi_info *smi_info,
331 			     struct ipmi_smi_msg *msg)
332 {
333 	/* Deliver the message to the upper layer with the lock
334 	   released. */
335 
336 	if (smi_info->run_to_completion) {
337 		ipmi_smi_msg_received(smi_info->intf, msg);
338 	} else {
339 		spin_unlock(&(smi_info->si_lock));
340 		ipmi_smi_msg_received(smi_info->intf, msg);
341 		spin_lock(&(smi_info->si_lock));
342 	}
343 }
344 
345 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
346 {
347 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
348 
349 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
350 		cCode = IPMI_ERR_UNSPECIFIED;
351 	/* else use it as is */
352 
353 	/* Make it a reponse */
354 	msg->rsp[0] = msg->data[0] | 4;
355 	msg->rsp[1] = msg->data[1];
356 	msg->rsp[2] = cCode;
357 	msg->rsp_size = 3;
358 
359 	smi_info->curr_msg = NULL;
360 	deliver_recv_msg(smi_info, msg);
361 }
362 
363 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
364 {
365 	int              rv;
366 	struct list_head *entry = NULL;
367 #ifdef DEBUG_TIMING
368 	struct timeval t;
369 #endif
370 
371 	/*
372 	 * No need to save flags, we aleady have interrupts off and we
373 	 * already hold the SMI lock.
374 	 */
375 	if (!smi_info->run_to_completion)
376 		spin_lock(&(smi_info->msg_lock));
377 
378 	/* Pick the high priority queue first. */
379 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
380 		entry = smi_info->hp_xmit_msgs.next;
381 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
382 		entry = smi_info->xmit_msgs.next;
383 	}
384 
385 	if (!entry) {
386 		smi_info->curr_msg = NULL;
387 		rv = SI_SM_IDLE;
388 	} else {
389 		int err;
390 
391 		list_del(entry);
392 		smi_info->curr_msg = list_entry(entry,
393 						struct ipmi_smi_msg,
394 						link);
395 #ifdef DEBUG_TIMING
396 		do_gettimeofday(&t);
397 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
398 #endif
399 		err = atomic_notifier_call_chain(&xaction_notifier_list,
400 				0, smi_info);
401 		if (err & NOTIFY_STOP_MASK) {
402 			rv = SI_SM_CALL_WITHOUT_DELAY;
403 			goto out;
404 		}
405 		err = smi_info->handlers->start_transaction(
406 			smi_info->si_sm,
407 			smi_info->curr_msg->data,
408 			smi_info->curr_msg->data_size);
409 		if (err)
410 			return_hosed_msg(smi_info, err);
411 
412 		rv = SI_SM_CALL_WITHOUT_DELAY;
413 	}
414  out:
415 	if (!smi_info->run_to_completion)
416 		spin_unlock(&(smi_info->msg_lock));
417 
418 	return rv;
419 }
420 
421 static void start_enable_irq(struct smi_info *smi_info)
422 {
423 	unsigned char msg[2];
424 
425 	/*
426 	 * If we are enabling interrupts, we have to tell the
427 	 * BMC to use them.
428 	 */
429 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
431 
432 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
433 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
434 }
435 
436 static void start_disable_irq(struct smi_info *smi_info)
437 {
438 	unsigned char msg[2];
439 
440 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442 
443 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
444 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
445 }
446 
447 static void start_clear_flags(struct smi_info *smi_info)
448 {
449 	unsigned char msg[3];
450 
451 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
452 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
453 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
454 	msg[2] = WDT_PRE_TIMEOUT_INT;
455 
456 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
457 	smi_info->si_state = SI_CLEARING_FLAGS;
458 }
459 
460 /*
461  * When we have a situtaion where we run out of memory and cannot
462  * allocate messages, we just leave them in the BMC and run the system
463  * polled until we can allocate some memory.  Once we have some
464  * memory, we will re-enable the interrupt.
465  */
466 static inline void disable_si_irq(struct smi_info *smi_info)
467 {
468 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
469 		start_disable_irq(smi_info);
470 		smi_info->interrupt_disabled = 1;
471 		if (!atomic_read(&smi_info->stop_operation))
472 			mod_timer(&smi_info->si_timer,
473 				  jiffies + SI_TIMEOUT_JIFFIES);
474 	}
475 }
476 
477 static inline void enable_si_irq(struct smi_info *smi_info)
478 {
479 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
480 		start_enable_irq(smi_info);
481 		smi_info->interrupt_disabled = 0;
482 	}
483 }
484 
485 static void handle_flags(struct smi_info *smi_info)
486 {
487  retry:
488 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
489 		/* Watchdog pre-timeout */
490 		smi_inc_stat(smi_info, watchdog_pretimeouts);
491 
492 		start_clear_flags(smi_info);
493 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
494 		spin_unlock(&(smi_info->si_lock));
495 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
496 		spin_lock(&(smi_info->si_lock));
497 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
498 		/* Messages available. */
499 		smi_info->curr_msg = ipmi_alloc_smi_msg();
500 		if (!smi_info->curr_msg) {
501 			disable_si_irq(smi_info);
502 			smi_info->si_state = SI_NORMAL;
503 			return;
504 		}
505 		enable_si_irq(smi_info);
506 
507 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
508 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
509 		smi_info->curr_msg->data_size = 2;
510 
511 		smi_info->handlers->start_transaction(
512 			smi_info->si_sm,
513 			smi_info->curr_msg->data,
514 			smi_info->curr_msg->data_size);
515 		smi_info->si_state = SI_GETTING_MESSAGES;
516 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
517 		/* Events available. */
518 		smi_info->curr_msg = ipmi_alloc_smi_msg();
519 		if (!smi_info->curr_msg) {
520 			disable_si_irq(smi_info);
521 			smi_info->si_state = SI_NORMAL;
522 			return;
523 		}
524 		enable_si_irq(smi_info);
525 
526 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
527 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
528 		smi_info->curr_msg->data_size = 2;
529 
530 		smi_info->handlers->start_transaction(
531 			smi_info->si_sm,
532 			smi_info->curr_msg->data,
533 			smi_info->curr_msg->data_size);
534 		smi_info->si_state = SI_GETTING_EVENTS;
535 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
536 		   smi_info->oem_data_avail_handler) {
537 		if (smi_info->oem_data_avail_handler(smi_info))
538 			goto retry;
539 	} else
540 		smi_info->si_state = SI_NORMAL;
541 }
542 
543 static void handle_transaction_done(struct smi_info *smi_info)
544 {
545 	struct ipmi_smi_msg *msg;
546 #ifdef DEBUG_TIMING
547 	struct timeval t;
548 
549 	do_gettimeofday(&t);
550 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
551 #endif
552 	switch (smi_info->si_state) {
553 	case SI_NORMAL:
554 		if (!smi_info->curr_msg)
555 			break;
556 
557 		smi_info->curr_msg->rsp_size
558 			= smi_info->handlers->get_result(
559 				smi_info->si_sm,
560 				smi_info->curr_msg->rsp,
561 				IPMI_MAX_MSG_LENGTH);
562 
563 		/*
564 		 * Do this here becase deliver_recv_msg() releases the
565 		 * lock, and a new message can be put in during the
566 		 * time the lock is released.
567 		 */
568 		msg = smi_info->curr_msg;
569 		smi_info->curr_msg = NULL;
570 		deliver_recv_msg(smi_info, msg);
571 		break;
572 
573 	case SI_GETTING_FLAGS:
574 	{
575 		unsigned char msg[4];
576 		unsigned int  len;
577 
578 		/* We got the flags from the SMI, now handle them. */
579 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
580 		if (msg[2] != 0) {
581 			/* Error fetching flags, just give up for now. */
582 			smi_info->si_state = SI_NORMAL;
583 		} else if (len < 4) {
584 			/*
585 			 * Hmm, no flags.  That's technically illegal, but
586 			 * don't use uninitialized data.
587 			 */
588 			smi_info->si_state = SI_NORMAL;
589 		} else {
590 			smi_info->msg_flags = msg[3];
591 			handle_flags(smi_info);
592 		}
593 		break;
594 	}
595 
596 	case SI_CLEARING_FLAGS:
597 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
598 	{
599 		unsigned char msg[3];
600 
601 		/* We cleared the flags. */
602 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
603 		if (msg[2] != 0) {
604 			/* Error clearing flags */
605 			dev_warn(smi_info->dev,
606 				 "Error clearing flags: %2.2x\n", msg[2]);
607 		}
608 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
609 			start_enable_irq(smi_info);
610 		else
611 			smi_info->si_state = SI_NORMAL;
612 		break;
613 	}
614 
615 	case SI_GETTING_EVENTS:
616 	{
617 		smi_info->curr_msg->rsp_size
618 			= smi_info->handlers->get_result(
619 				smi_info->si_sm,
620 				smi_info->curr_msg->rsp,
621 				IPMI_MAX_MSG_LENGTH);
622 
623 		/*
624 		 * Do this here becase deliver_recv_msg() releases the
625 		 * lock, and a new message can be put in during the
626 		 * time the lock is released.
627 		 */
628 		msg = smi_info->curr_msg;
629 		smi_info->curr_msg = NULL;
630 		if (msg->rsp[2] != 0) {
631 			/* Error getting event, probably done. */
632 			msg->done(msg);
633 
634 			/* Take off the event flag. */
635 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
636 			handle_flags(smi_info);
637 		} else {
638 			smi_inc_stat(smi_info, events);
639 
640 			/*
641 			 * Do this before we deliver the message
642 			 * because delivering the message releases the
643 			 * lock and something else can mess with the
644 			 * state.
645 			 */
646 			handle_flags(smi_info);
647 
648 			deliver_recv_msg(smi_info, msg);
649 		}
650 		break;
651 	}
652 
653 	case SI_GETTING_MESSAGES:
654 	{
655 		smi_info->curr_msg->rsp_size
656 			= smi_info->handlers->get_result(
657 				smi_info->si_sm,
658 				smi_info->curr_msg->rsp,
659 				IPMI_MAX_MSG_LENGTH);
660 
661 		/*
662 		 * Do this here becase deliver_recv_msg() releases the
663 		 * lock, and a new message can be put in during the
664 		 * time the lock is released.
665 		 */
666 		msg = smi_info->curr_msg;
667 		smi_info->curr_msg = NULL;
668 		if (msg->rsp[2] != 0) {
669 			/* Error getting event, probably done. */
670 			msg->done(msg);
671 
672 			/* Take off the msg flag. */
673 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
674 			handle_flags(smi_info);
675 		} else {
676 			smi_inc_stat(smi_info, incoming_messages);
677 
678 			/*
679 			 * Do this before we deliver the message
680 			 * because delivering the message releases the
681 			 * lock and something else can mess with the
682 			 * state.
683 			 */
684 			handle_flags(smi_info);
685 
686 			deliver_recv_msg(smi_info, msg);
687 		}
688 		break;
689 	}
690 
691 	case SI_ENABLE_INTERRUPTS1:
692 	{
693 		unsigned char msg[4];
694 
695 		/* We got the flags from the SMI, now handle them. */
696 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 		if (msg[2] != 0) {
698 			dev_warn(smi_info->dev, "Could not enable interrupts"
699 				 ", failed get, using polled mode.\n");
700 			smi_info->si_state = SI_NORMAL;
701 		} else {
702 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
703 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
704 			msg[2] = (msg[3] |
705 				  IPMI_BMC_RCV_MSG_INTR |
706 				  IPMI_BMC_EVT_MSG_INTR);
707 			smi_info->handlers->start_transaction(
708 				smi_info->si_sm, msg, 3);
709 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
710 		}
711 		break;
712 	}
713 
714 	case SI_ENABLE_INTERRUPTS2:
715 	{
716 		unsigned char msg[4];
717 
718 		/* We got the flags from the SMI, now handle them. */
719 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
720 		if (msg[2] != 0)
721 			dev_warn(smi_info->dev, "Could not enable interrupts"
722 				 ", failed set, using polled mode.\n");
723 		else
724 			smi_info->interrupt_disabled = 0;
725 		smi_info->si_state = SI_NORMAL;
726 		break;
727 	}
728 
729 	case SI_DISABLE_INTERRUPTS1:
730 	{
731 		unsigned char msg[4];
732 
733 		/* We got the flags from the SMI, now handle them. */
734 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 		if (msg[2] != 0) {
736 			dev_warn(smi_info->dev, "Could not disable interrupts"
737 				 ", failed get.\n");
738 			smi_info->si_state = SI_NORMAL;
739 		} else {
740 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
741 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
742 			msg[2] = (msg[3] &
743 				  ~(IPMI_BMC_RCV_MSG_INTR |
744 				    IPMI_BMC_EVT_MSG_INTR));
745 			smi_info->handlers->start_transaction(
746 				smi_info->si_sm, msg, 3);
747 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
748 		}
749 		break;
750 	}
751 
752 	case SI_DISABLE_INTERRUPTS2:
753 	{
754 		unsigned char msg[4];
755 
756 		/* We got the flags from the SMI, now handle them. */
757 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
758 		if (msg[2] != 0) {
759 			dev_warn(smi_info->dev, "Could not disable interrupts"
760 				 ", failed set.\n");
761 		}
762 		smi_info->si_state = SI_NORMAL;
763 		break;
764 	}
765 	}
766 }
767 
768 /*
769  * Called on timeouts and events.  Timeouts should pass the elapsed
770  * time, interrupts should pass in zero.  Must be called with
771  * si_lock held and interrupts disabled.
772  */
773 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
774 					   int time)
775 {
776 	enum si_sm_result si_sm_result;
777 
778  restart:
779 	/*
780 	 * There used to be a loop here that waited a little while
781 	 * (around 25us) before giving up.  That turned out to be
782 	 * pointless, the minimum delays I was seeing were in the 300us
783 	 * range, which is far too long to wait in an interrupt.  So
784 	 * we just run until the state machine tells us something
785 	 * happened or it needs a delay.
786 	 */
787 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
788 	time = 0;
789 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
790 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791 
792 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
793 		smi_inc_stat(smi_info, complete_transactions);
794 
795 		handle_transaction_done(smi_info);
796 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
797 	} else if (si_sm_result == SI_SM_HOSED) {
798 		smi_inc_stat(smi_info, hosed_count);
799 
800 		/*
801 		 * Do the before return_hosed_msg, because that
802 		 * releases the lock.
803 		 */
804 		smi_info->si_state = SI_NORMAL;
805 		if (smi_info->curr_msg != NULL) {
806 			/*
807 			 * If we were handling a user message, format
808 			 * a response to send to the upper layer to
809 			 * tell it about the error.
810 			 */
811 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
812 		}
813 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
814 	}
815 
816 	/*
817 	 * We prefer handling attn over new messages.  But don't do
818 	 * this if there is not yet an upper layer to handle anything.
819 	 */
820 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
821 		unsigned char msg[2];
822 
823 		smi_inc_stat(smi_info, attentions);
824 
825 		/*
826 		 * Got a attn, send down a get message flags to see
827 		 * what's causing it.  It would be better to handle
828 		 * this in the upper layer, but due to the way
829 		 * interrupts work with the SMI, that's not really
830 		 * possible.
831 		 */
832 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
833 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
834 
835 		smi_info->handlers->start_transaction(
836 			smi_info->si_sm, msg, 2);
837 		smi_info->si_state = SI_GETTING_FLAGS;
838 		goto restart;
839 	}
840 
841 	/* If we are currently idle, try to start the next message. */
842 	if (si_sm_result == SI_SM_IDLE) {
843 		smi_inc_stat(smi_info, idles);
844 
845 		si_sm_result = start_next_msg(smi_info);
846 		if (si_sm_result != SI_SM_IDLE)
847 			goto restart;
848 	}
849 
850 	if ((si_sm_result == SI_SM_IDLE)
851 	    && (atomic_read(&smi_info->req_events))) {
852 		/*
853 		 * We are idle and the upper layer requested that I fetch
854 		 * events, so do so.
855 		 */
856 		atomic_set(&smi_info->req_events, 0);
857 
858 		smi_info->curr_msg = ipmi_alloc_smi_msg();
859 		if (!smi_info->curr_msg)
860 			goto out;
861 
862 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
863 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
864 		smi_info->curr_msg->data_size = 2;
865 
866 		smi_info->handlers->start_transaction(
867 			smi_info->si_sm,
868 			smi_info->curr_msg->data,
869 			smi_info->curr_msg->data_size);
870 		smi_info->si_state = SI_GETTING_EVENTS;
871 		goto restart;
872 	}
873  out:
874 	return si_sm_result;
875 }
876 
877 static void sender(void                *send_info,
878 		   struct ipmi_smi_msg *msg,
879 		   int                 priority)
880 {
881 	struct smi_info   *smi_info = send_info;
882 	enum si_sm_result result;
883 	unsigned long     flags;
884 #ifdef DEBUG_TIMING
885 	struct timeval    t;
886 #endif
887 
888 	if (atomic_read(&smi_info->stop_operation)) {
889 		msg->rsp[0] = msg->data[0] | 4;
890 		msg->rsp[1] = msg->data[1];
891 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892 		msg->rsp_size = 3;
893 		deliver_recv_msg(smi_info, msg);
894 		return;
895 	}
896 
897 #ifdef DEBUG_TIMING
898 	do_gettimeofday(&t);
899 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900 #endif
901 
902 	mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
903 
904 	if (smi_info->thread)
905 		wake_up_process(smi_info->thread);
906 
907 	if (smi_info->run_to_completion) {
908 		/*
909 		 * If we are running to completion, then throw it in
910 		 * the list and run transactions until everything is
911 		 * clear.  Priority doesn't matter here.
912 		 */
913 
914 		/*
915 		 * Run to completion means we are single-threaded, no
916 		 * need for locks.
917 		 */
918 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
919 
920 		result = smi_event_handler(smi_info, 0);
921 		while (result != SI_SM_IDLE) {
922 			udelay(SI_SHORT_TIMEOUT_USEC);
923 			result = smi_event_handler(smi_info,
924 						   SI_SHORT_TIMEOUT_USEC);
925 		}
926 		return;
927 	}
928 
929 	spin_lock_irqsave(&smi_info->msg_lock, flags);
930 	if (priority > 0)
931 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
932 	else
933 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
934 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
935 
936 	spin_lock_irqsave(&smi_info->si_lock, flags);
937 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
938 		start_next_msg(smi_info);
939 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
940 }
941 
942 static void set_run_to_completion(void *send_info, int i_run_to_completion)
943 {
944 	struct smi_info   *smi_info = send_info;
945 	enum si_sm_result result;
946 
947 	smi_info->run_to_completion = i_run_to_completion;
948 	if (i_run_to_completion) {
949 		result = smi_event_handler(smi_info, 0);
950 		while (result != SI_SM_IDLE) {
951 			udelay(SI_SHORT_TIMEOUT_USEC);
952 			result = smi_event_handler(smi_info,
953 						   SI_SHORT_TIMEOUT_USEC);
954 		}
955 	}
956 }
957 
958 /*
959  * Use -1 in the nsec value of the busy waiting timespec to tell that
960  * we are spinning in kipmid looking for something and not delaying
961  * between checks
962  */
963 static inline void ipmi_si_set_not_busy(struct timespec *ts)
964 {
965 	ts->tv_nsec = -1;
966 }
967 static inline int ipmi_si_is_busy(struct timespec *ts)
968 {
969 	return ts->tv_nsec != -1;
970 }
971 
972 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973 				 const struct smi_info *smi_info,
974 				 struct timespec *busy_until)
975 {
976 	unsigned int max_busy_us = 0;
977 
978 	if (smi_info->intf_num < num_max_busy_us)
979 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981 		ipmi_si_set_not_busy(busy_until);
982 	else if (!ipmi_si_is_busy(busy_until)) {
983 		getnstimeofday(busy_until);
984 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985 	} else {
986 		struct timespec now;
987 		getnstimeofday(&now);
988 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
989 			ipmi_si_set_not_busy(busy_until);
990 			return 0;
991 		}
992 	}
993 	return 1;
994 }
995 
996 
997 /*
998  * A busy-waiting loop for speeding up IPMI operation.
999  *
1000  * Lousy hardware makes this hard.  This is only enabled for systems
1001  * that are not BT and do not have interrupts.  It starts spinning
1002  * when an operation is complete or until max_busy tells it to stop
1003  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1004  * Documentation/IPMI.txt for details.
1005  */
1006 static int ipmi_thread(void *data)
1007 {
1008 	struct smi_info *smi_info = data;
1009 	unsigned long flags;
1010 	enum si_sm_result smi_result;
1011 	struct timespec busy_until;
1012 
1013 	ipmi_si_set_not_busy(&busy_until);
1014 	set_user_nice(current, 19);
1015 	while (!kthread_should_stop()) {
1016 		int busy_wait;
1017 
1018 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1019 		smi_result = smi_event_handler(smi_info, 0);
1020 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1021 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1022 						  &busy_until);
1023 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1024 			; /* do nothing */
1025 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1026 			schedule();
1027 		else if (smi_result == SI_SM_IDLE)
1028 			schedule_timeout_interruptible(100);
1029 		else
1030 			schedule_timeout_interruptible(1);
1031 	}
1032 	return 0;
1033 }
1034 
1035 
1036 static void poll(void *send_info)
1037 {
1038 	struct smi_info *smi_info = send_info;
1039 	unsigned long flags;
1040 
1041 	/*
1042 	 * Make sure there is some delay in the poll loop so we can
1043 	 * drive time forward and timeout things.
1044 	 */
1045 	udelay(10);
1046 	spin_lock_irqsave(&smi_info->si_lock, flags);
1047 	smi_event_handler(smi_info, 10);
1048 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1049 }
1050 
1051 static void request_events(void *send_info)
1052 {
1053 	struct smi_info *smi_info = send_info;
1054 
1055 	if (atomic_read(&smi_info->stop_operation) ||
1056 				!smi_info->has_event_buffer)
1057 		return;
1058 
1059 	atomic_set(&smi_info->req_events, 1);
1060 }
1061 
1062 static int initialized;
1063 
1064 static void smi_timeout(unsigned long data)
1065 {
1066 	struct smi_info   *smi_info = (struct smi_info *) data;
1067 	enum si_sm_result smi_result;
1068 	unsigned long     flags;
1069 	unsigned long     jiffies_now;
1070 	long              time_diff;
1071 	long		  timeout;
1072 #ifdef DEBUG_TIMING
1073 	struct timeval    t;
1074 #endif
1075 
1076 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1077 #ifdef DEBUG_TIMING
1078 	do_gettimeofday(&t);
1079 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1080 #endif
1081 	jiffies_now = jiffies;
1082 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1083 		     * SI_USEC_PER_JIFFY);
1084 	smi_result = smi_event_handler(smi_info, time_diff);
1085 
1086 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1087 
1088 	smi_info->last_timeout_jiffies = jiffies_now;
1089 
1090 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1091 		/* Running with interrupts, only do long timeouts. */
1092 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1093 		smi_inc_stat(smi_info, long_timeouts);
1094 		goto do_mod_timer;
1095 	}
1096 
1097 	/*
1098 	 * If the state machine asks for a short delay, then shorten
1099 	 * the timer timeout.
1100 	 */
1101 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1102 		smi_inc_stat(smi_info, short_timeouts);
1103 		timeout = jiffies + 1;
1104 	} else {
1105 		smi_inc_stat(smi_info, long_timeouts);
1106 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1107 	}
1108 
1109  do_mod_timer:
1110 	if (smi_result != SI_SM_IDLE)
1111 		mod_timer(&(smi_info->si_timer), timeout);
1112 }
1113 
1114 static irqreturn_t si_irq_handler(int irq, void *data)
1115 {
1116 	struct smi_info *smi_info = data;
1117 	unsigned long   flags;
1118 #ifdef DEBUG_TIMING
1119 	struct timeval  t;
1120 #endif
1121 
1122 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1123 
1124 	smi_inc_stat(smi_info, interrupts);
1125 
1126 #ifdef DEBUG_TIMING
1127 	do_gettimeofday(&t);
1128 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1129 #endif
1130 	smi_event_handler(smi_info, 0);
1131 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1132 	return IRQ_HANDLED;
1133 }
1134 
1135 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1136 {
1137 	struct smi_info *smi_info = data;
1138 	/* We need to clear the IRQ flag for the BT interface. */
1139 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1140 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1141 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1142 	return si_irq_handler(irq, data);
1143 }
1144 
1145 static int smi_start_processing(void       *send_info,
1146 				ipmi_smi_t intf)
1147 {
1148 	struct smi_info *new_smi = send_info;
1149 	int             enable = 0;
1150 
1151 	new_smi->intf = intf;
1152 
1153 	/* Try to claim any interrupts. */
1154 	if (new_smi->irq_setup)
1155 		new_smi->irq_setup(new_smi);
1156 
1157 	/* Set up the timer that drives the interface. */
1158 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1159 	new_smi->last_timeout_jiffies = jiffies;
1160 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1161 
1162 	/*
1163 	 * Check if the user forcefully enabled the daemon.
1164 	 */
1165 	if (new_smi->intf_num < num_force_kipmid)
1166 		enable = force_kipmid[new_smi->intf_num];
1167 	/*
1168 	 * The BT interface is efficient enough to not need a thread,
1169 	 * and there is no need for a thread if we have interrupts.
1170 	 */
1171 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1172 		enable = 1;
1173 
1174 	if (enable) {
1175 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1176 					      "kipmi%d", new_smi->intf_num);
1177 		if (IS_ERR(new_smi->thread)) {
1178 			dev_notice(new_smi->dev, "Could not start"
1179 				   " kernel thread due to error %ld, only using"
1180 				   " timers to drive the interface\n",
1181 				   PTR_ERR(new_smi->thread));
1182 			new_smi->thread = NULL;
1183 		}
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static void set_maintenance_mode(void *send_info, int enable)
1190 {
1191 	struct smi_info   *smi_info = send_info;
1192 
1193 	if (!enable)
1194 		atomic_set(&smi_info->req_events, 0);
1195 }
1196 
1197 static struct ipmi_smi_handlers handlers = {
1198 	.owner                  = THIS_MODULE,
1199 	.start_processing       = smi_start_processing,
1200 	.sender			= sender,
1201 	.request_events		= request_events,
1202 	.set_maintenance_mode   = set_maintenance_mode,
1203 	.set_run_to_completion  = set_run_to_completion,
1204 	.poll			= poll,
1205 };
1206 
1207 /*
1208  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1209  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1210  */
1211 
1212 static LIST_HEAD(smi_infos);
1213 static DEFINE_MUTEX(smi_infos_lock);
1214 static int smi_num; /* Used to sequence the SMIs */
1215 
1216 #define DEFAULT_REGSPACING	1
1217 #define DEFAULT_REGSIZE		1
1218 
1219 static int           si_trydefaults = 1;
1220 static char          *si_type[SI_MAX_PARMS];
1221 #define MAX_SI_TYPE_STR 30
1222 static char          si_type_str[MAX_SI_TYPE_STR];
1223 static unsigned long addrs[SI_MAX_PARMS];
1224 static unsigned int num_addrs;
1225 static unsigned int  ports[SI_MAX_PARMS];
1226 static unsigned int num_ports;
1227 static int           irqs[SI_MAX_PARMS];
1228 static unsigned int num_irqs;
1229 static int           regspacings[SI_MAX_PARMS];
1230 static unsigned int num_regspacings;
1231 static int           regsizes[SI_MAX_PARMS];
1232 static unsigned int num_regsizes;
1233 static int           regshifts[SI_MAX_PARMS];
1234 static unsigned int num_regshifts;
1235 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1236 static unsigned int num_slave_addrs;
1237 
1238 #define IPMI_IO_ADDR_SPACE  0
1239 #define IPMI_MEM_ADDR_SPACE 1
1240 static char *addr_space_to_str[] = { "i/o", "mem" };
1241 
1242 static int hotmod_handler(const char *val, struct kernel_param *kp);
1243 
1244 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1245 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1246 		 " Documentation/IPMI.txt in the kernel sources for the"
1247 		 " gory details.");
1248 
1249 module_param_named(trydefaults, si_trydefaults, bool, 0);
1250 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1251 		 " default scan of the KCS and SMIC interface at the standard"
1252 		 " address");
1253 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1254 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1255 		 " interface separated by commas.  The types are 'kcs',"
1256 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1257 		 " the first interface to kcs and the second to bt");
1258 module_param_array(addrs, ulong, &num_addrs, 0);
1259 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1260 		 " addresses separated by commas.  Only use if an interface"
1261 		 " is in memory.  Otherwise, set it to zero or leave"
1262 		 " it blank.");
1263 module_param_array(ports, uint, &num_ports, 0);
1264 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1265 		 " addresses separated by commas.  Only use if an interface"
1266 		 " is a port.  Otherwise, set it to zero or leave"
1267 		 " it blank.");
1268 module_param_array(irqs, int, &num_irqs, 0);
1269 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1270 		 " addresses separated by commas.  Only use if an interface"
1271 		 " has an interrupt.  Otherwise, set it to zero or leave"
1272 		 " it blank.");
1273 module_param_array(regspacings, int, &num_regspacings, 0);
1274 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1275 		 " and each successive register used by the interface.  For"
1276 		 " instance, if the start address is 0xca2 and the spacing"
1277 		 " is 2, then the second address is at 0xca4.  Defaults"
1278 		 " to 1.");
1279 module_param_array(regsizes, int, &num_regsizes, 0);
1280 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1281 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1282 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1283 		 " the 8-bit IPMI register has to be read from a larger"
1284 		 " register.");
1285 module_param_array(regshifts, int, &num_regshifts, 0);
1286 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1287 		 " IPMI register, in bits.  For instance, if the data"
1288 		 " is read from a 32-bit word and the IPMI data is in"
1289 		 " bit 8-15, then the shift would be 8");
1290 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1291 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1292 		 " the controller.  Normally this is 0x20, but can be"
1293 		 " overridden by this parm.  This is an array indexed"
1294 		 " by interface number.");
1295 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1296 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1297 		 " disabled(0).  Normally the IPMI driver auto-detects"
1298 		 " this, but the value may be overridden by this parm.");
1299 module_param(unload_when_empty, int, 0);
1300 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1301 		 " specified or found, default is 1.  Setting to 0"
1302 		 " is useful for hot add of devices using hotmod.");
1303 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1304 MODULE_PARM_DESC(kipmid_max_busy_us,
1305 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1306 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1307 		 " if kipmid is using up a lot of CPU time.");
1308 
1309 
1310 static void std_irq_cleanup(struct smi_info *info)
1311 {
1312 	if (info->si_type == SI_BT)
1313 		/* Disable the interrupt in the BT interface. */
1314 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1315 	free_irq(info->irq, info);
1316 }
1317 
1318 static int std_irq_setup(struct smi_info *info)
1319 {
1320 	int rv;
1321 
1322 	if (!info->irq)
1323 		return 0;
1324 
1325 	if (info->si_type == SI_BT) {
1326 		rv = request_irq(info->irq,
1327 				 si_bt_irq_handler,
1328 				 IRQF_SHARED | IRQF_DISABLED,
1329 				 DEVICE_NAME,
1330 				 info);
1331 		if (!rv)
1332 			/* Enable the interrupt in the BT interface. */
1333 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1334 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1335 	} else
1336 		rv = request_irq(info->irq,
1337 				 si_irq_handler,
1338 				 IRQF_SHARED | IRQF_DISABLED,
1339 				 DEVICE_NAME,
1340 				 info);
1341 	if (rv) {
1342 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1343 			 " running polled\n",
1344 			 DEVICE_NAME, info->irq);
1345 		info->irq = 0;
1346 	} else {
1347 		info->irq_cleanup = std_irq_cleanup;
1348 		dev_info(info->dev, "Using irq %d\n", info->irq);
1349 	}
1350 
1351 	return rv;
1352 }
1353 
1354 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1355 {
1356 	unsigned int addr = io->addr_data;
1357 
1358 	return inb(addr + (offset * io->regspacing));
1359 }
1360 
1361 static void port_outb(struct si_sm_io *io, unsigned int offset,
1362 		      unsigned char b)
1363 {
1364 	unsigned int addr = io->addr_data;
1365 
1366 	outb(b, addr + (offset * io->regspacing));
1367 }
1368 
1369 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1370 {
1371 	unsigned int addr = io->addr_data;
1372 
1373 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1374 }
1375 
1376 static void port_outw(struct si_sm_io *io, unsigned int offset,
1377 		      unsigned char b)
1378 {
1379 	unsigned int addr = io->addr_data;
1380 
1381 	outw(b << io->regshift, addr + (offset * io->regspacing));
1382 }
1383 
1384 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1385 {
1386 	unsigned int addr = io->addr_data;
1387 
1388 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1389 }
1390 
1391 static void port_outl(struct si_sm_io *io, unsigned int offset,
1392 		      unsigned char b)
1393 {
1394 	unsigned int addr = io->addr_data;
1395 
1396 	outl(b << io->regshift, addr+(offset * io->regspacing));
1397 }
1398 
1399 static void port_cleanup(struct smi_info *info)
1400 {
1401 	unsigned int addr = info->io.addr_data;
1402 	int          idx;
1403 
1404 	if (addr) {
1405 		for (idx = 0; idx < info->io_size; idx++)
1406 			release_region(addr + idx * info->io.regspacing,
1407 				       info->io.regsize);
1408 	}
1409 }
1410 
1411 static int port_setup(struct smi_info *info)
1412 {
1413 	unsigned int addr = info->io.addr_data;
1414 	int          idx;
1415 
1416 	if (!addr)
1417 		return -ENODEV;
1418 
1419 	info->io_cleanup = port_cleanup;
1420 
1421 	/*
1422 	 * Figure out the actual inb/inw/inl/etc routine to use based
1423 	 * upon the register size.
1424 	 */
1425 	switch (info->io.regsize) {
1426 	case 1:
1427 		info->io.inputb = port_inb;
1428 		info->io.outputb = port_outb;
1429 		break;
1430 	case 2:
1431 		info->io.inputb = port_inw;
1432 		info->io.outputb = port_outw;
1433 		break;
1434 	case 4:
1435 		info->io.inputb = port_inl;
1436 		info->io.outputb = port_outl;
1437 		break;
1438 	default:
1439 		dev_warn(info->dev, "Invalid register size: %d\n",
1440 			 info->io.regsize);
1441 		return -EINVAL;
1442 	}
1443 
1444 	/*
1445 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1446 	 * tables.  This causes problems when trying to register the
1447 	 * entire I/O region.  Therefore we must register each I/O
1448 	 * port separately.
1449 	 */
1450 	for (idx = 0; idx < info->io_size; idx++) {
1451 		if (request_region(addr + idx * info->io.regspacing,
1452 				   info->io.regsize, DEVICE_NAME) == NULL) {
1453 			/* Undo allocations */
1454 			while (idx--) {
1455 				release_region(addr + idx * info->io.regspacing,
1456 					       info->io.regsize);
1457 			}
1458 			return -EIO;
1459 		}
1460 	}
1461 	return 0;
1462 }
1463 
1464 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1465 {
1466 	return readb((io->addr)+(offset * io->regspacing));
1467 }
1468 
1469 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1470 		     unsigned char b)
1471 {
1472 	writeb(b, (io->addr)+(offset * io->regspacing));
1473 }
1474 
1475 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1476 {
1477 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1478 		& 0xff;
1479 }
1480 
1481 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1482 		     unsigned char b)
1483 {
1484 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1485 }
1486 
1487 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1488 {
1489 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1490 		& 0xff;
1491 }
1492 
1493 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1494 		     unsigned char b)
1495 {
1496 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1497 }
1498 
1499 #ifdef readq
1500 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1501 {
1502 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1503 		& 0xff;
1504 }
1505 
1506 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1507 		     unsigned char b)
1508 {
1509 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1510 }
1511 #endif
1512 
1513 static void mem_cleanup(struct smi_info *info)
1514 {
1515 	unsigned long addr = info->io.addr_data;
1516 	int           mapsize;
1517 
1518 	if (info->io.addr) {
1519 		iounmap(info->io.addr);
1520 
1521 		mapsize = ((info->io_size * info->io.regspacing)
1522 			   - (info->io.regspacing - info->io.regsize));
1523 
1524 		release_mem_region(addr, mapsize);
1525 	}
1526 }
1527 
1528 static int mem_setup(struct smi_info *info)
1529 {
1530 	unsigned long addr = info->io.addr_data;
1531 	int           mapsize;
1532 
1533 	if (!addr)
1534 		return -ENODEV;
1535 
1536 	info->io_cleanup = mem_cleanup;
1537 
1538 	/*
1539 	 * Figure out the actual readb/readw/readl/etc routine to use based
1540 	 * upon the register size.
1541 	 */
1542 	switch (info->io.regsize) {
1543 	case 1:
1544 		info->io.inputb = intf_mem_inb;
1545 		info->io.outputb = intf_mem_outb;
1546 		break;
1547 	case 2:
1548 		info->io.inputb = intf_mem_inw;
1549 		info->io.outputb = intf_mem_outw;
1550 		break;
1551 	case 4:
1552 		info->io.inputb = intf_mem_inl;
1553 		info->io.outputb = intf_mem_outl;
1554 		break;
1555 #ifdef readq
1556 	case 8:
1557 		info->io.inputb = mem_inq;
1558 		info->io.outputb = mem_outq;
1559 		break;
1560 #endif
1561 	default:
1562 		dev_warn(info->dev, "Invalid register size: %d\n",
1563 			 info->io.regsize);
1564 		return -EINVAL;
1565 	}
1566 
1567 	/*
1568 	 * Calculate the total amount of memory to claim.  This is an
1569 	 * unusual looking calculation, but it avoids claiming any
1570 	 * more memory than it has to.  It will claim everything
1571 	 * between the first address to the end of the last full
1572 	 * register.
1573 	 */
1574 	mapsize = ((info->io_size * info->io.regspacing)
1575 		   - (info->io.regspacing - info->io.regsize));
1576 
1577 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1578 		return -EIO;
1579 
1580 	info->io.addr = ioremap(addr, mapsize);
1581 	if (info->io.addr == NULL) {
1582 		release_mem_region(addr, mapsize);
1583 		return -EIO;
1584 	}
1585 	return 0;
1586 }
1587 
1588 /*
1589  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1590  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1591  * Options are:
1592  *   rsp=<regspacing>
1593  *   rsi=<regsize>
1594  *   rsh=<regshift>
1595  *   irq=<irq>
1596  *   ipmb=<ipmb addr>
1597  */
1598 enum hotmod_op { HM_ADD, HM_REMOVE };
1599 struct hotmod_vals {
1600 	char *name;
1601 	int  val;
1602 };
1603 static struct hotmod_vals hotmod_ops[] = {
1604 	{ "add",	HM_ADD },
1605 	{ "remove",	HM_REMOVE },
1606 	{ NULL }
1607 };
1608 static struct hotmod_vals hotmod_si[] = {
1609 	{ "kcs",	SI_KCS },
1610 	{ "smic",	SI_SMIC },
1611 	{ "bt",		SI_BT },
1612 	{ NULL }
1613 };
1614 static struct hotmod_vals hotmod_as[] = {
1615 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1616 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1617 	{ NULL }
1618 };
1619 
1620 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1621 {
1622 	char *s;
1623 	int  i;
1624 
1625 	s = strchr(*curr, ',');
1626 	if (!s) {
1627 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1628 		return -EINVAL;
1629 	}
1630 	*s = '\0';
1631 	s++;
1632 	for (i = 0; hotmod_ops[i].name; i++) {
1633 		if (strcmp(*curr, v[i].name) == 0) {
1634 			*val = v[i].val;
1635 			*curr = s;
1636 			return 0;
1637 		}
1638 	}
1639 
1640 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1641 	return -EINVAL;
1642 }
1643 
1644 static int check_hotmod_int_op(const char *curr, const char *option,
1645 			       const char *name, int *val)
1646 {
1647 	char *n;
1648 
1649 	if (strcmp(curr, name) == 0) {
1650 		if (!option) {
1651 			printk(KERN_WARNING PFX
1652 			       "No option given for '%s'\n",
1653 			       curr);
1654 			return -EINVAL;
1655 		}
1656 		*val = simple_strtoul(option, &n, 0);
1657 		if ((*n != '\0') || (*option == '\0')) {
1658 			printk(KERN_WARNING PFX
1659 			       "Bad option given for '%s'\n",
1660 			       curr);
1661 			return -EINVAL;
1662 		}
1663 		return 1;
1664 	}
1665 	return 0;
1666 }
1667 
1668 static struct smi_info *smi_info_alloc(void)
1669 {
1670 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1671 
1672 	if (info) {
1673 		spin_lock_init(&info->si_lock);
1674 		spin_lock_init(&info->msg_lock);
1675 	}
1676 	return info;
1677 }
1678 
1679 static int hotmod_handler(const char *val, struct kernel_param *kp)
1680 {
1681 	char *str = kstrdup(val, GFP_KERNEL);
1682 	int  rv;
1683 	char *next, *curr, *s, *n, *o;
1684 	enum hotmod_op op;
1685 	enum si_type si_type;
1686 	int  addr_space;
1687 	unsigned long addr;
1688 	int regspacing;
1689 	int regsize;
1690 	int regshift;
1691 	int irq;
1692 	int ipmb;
1693 	int ival;
1694 	int len;
1695 	struct smi_info *info;
1696 
1697 	if (!str)
1698 		return -ENOMEM;
1699 
1700 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1701 	len = strlen(str);
1702 	ival = len - 1;
1703 	while ((ival >= 0) && isspace(str[ival])) {
1704 		str[ival] = '\0';
1705 		ival--;
1706 	}
1707 
1708 	for (curr = str; curr; curr = next) {
1709 		regspacing = 1;
1710 		regsize = 1;
1711 		regshift = 0;
1712 		irq = 0;
1713 		ipmb = 0; /* Choose the default if not specified */
1714 
1715 		next = strchr(curr, ':');
1716 		if (next) {
1717 			*next = '\0';
1718 			next++;
1719 		}
1720 
1721 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1722 		if (rv)
1723 			break;
1724 		op = ival;
1725 
1726 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1727 		if (rv)
1728 			break;
1729 		si_type = ival;
1730 
1731 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1732 		if (rv)
1733 			break;
1734 
1735 		s = strchr(curr, ',');
1736 		if (s) {
1737 			*s = '\0';
1738 			s++;
1739 		}
1740 		addr = simple_strtoul(curr, &n, 0);
1741 		if ((*n != '\0') || (*curr == '\0')) {
1742 			printk(KERN_WARNING PFX "Invalid hotmod address"
1743 			       " '%s'\n", curr);
1744 			break;
1745 		}
1746 
1747 		while (s) {
1748 			curr = s;
1749 			s = strchr(curr, ',');
1750 			if (s) {
1751 				*s = '\0';
1752 				s++;
1753 			}
1754 			o = strchr(curr, '=');
1755 			if (o) {
1756 				*o = '\0';
1757 				o++;
1758 			}
1759 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1760 			if (rv < 0)
1761 				goto out;
1762 			else if (rv)
1763 				continue;
1764 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1765 			if (rv < 0)
1766 				goto out;
1767 			else if (rv)
1768 				continue;
1769 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1770 			if (rv < 0)
1771 				goto out;
1772 			else if (rv)
1773 				continue;
1774 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1775 			if (rv < 0)
1776 				goto out;
1777 			else if (rv)
1778 				continue;
1779 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1780 			if (rv < 0)
1781 				goto out;
1782 			else if (rv)
1783 				continue;
1784 
1785 			rv = -EINVAL;
1786 			printk(KERN_WARNING PFX
1787 			       "Invalid hotmod option '%s'\n",
1788 			       curr);
1789 			goto out;
1790 		}
1791 
1792 		if (op == HM_ADD) {
1793 			info = smi_info_alloc();
1794 			if (!info) {
1795 				rv = -ENOMEM;
1796 				goto out;
1797 			}
1798 
1799 			info->addr_source = SI_HOTMOD;
1800 			info->si_type = si_type;
1801 			info->io.addr_data = addr;
1802 			info->io.addr_type = addr_space;
1803 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1804 				info->io_setup = mem_setup;
1805 			else
1806 				info->io_setup = port_setup;
1807 
1808 			info->io.addr = NULL;
1809 			info->io.regspacing = regspacing;
1810 			if (!info->io.regspacing)
1811 				info->io.regspacing = DEFAULT_REGSPACING;
1812 			info->io.regsize = regsize;
1813 			if (!info->io.regsize)
1814 				info->io.regsize = DEFAULT_REGSPACING;
1815 			info->io.regshift = regshift;
1816 			info->irq = irq;
1817 			if (info->irq)
1818 				info->irq_setup = std_irq_setup;
1819 			info->slave_addr = ipmb;
1820 
1821 			if (!add_smi(info)) {
1822 				if (try_smi_init(info))
1823 					cleanup_one_si(info);
1824 			} else {
1825 				kfree(info);
1826 			}
1827 		} else {
1828 			/* remove */
1829 			struct smi_info *e, *tmp_e;
1830 
1831 			mutex_lock(&smi_infos_lock);
1832 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1833 				if (e->io.addr_type != addr_space)
1834 					continue;
1835 				if (e->si_type != si_type)
1836 					continue;
1837 				if (e->io.addr_data == addr)
1838 					cleanup_one_si(e);
1839 			}
1840 			mutex_unlock(&smi_infos_lock);
1841 		}
1842 	}
1843 	rv = len;
1844  out:
1845 	kfree(str);
1846 	return rv;
1847 }
1848 
1849 static void __devinit hardcode_find_bmc(void)
1850 {
1851 	int             i;
1852 	struct smi_info *info;
1853 
1854 	for (i = 0; i < SI_MAX_PARMS; i++) {
1855 		if (!ports[i] && !addrs[i])
1856 			continue;
1857 
1858 		info = smi_info_alloc();
1859 		if (!info)
1860 			return;
1861 
1862 		info->addr_source = SI_HARDCODED;
1863 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1864 
1865 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1866 			info->si_type = SI_KCS;
1867 		} else if (strcmp(si_type[i], "smic") == 0) {
1868 			info->si_type = SI_SMIC;
1869 		} else if (strcmp(si_type[i], "bt") == 0) {
1870 			info->si_type = SI_BT;
1871 		} else {
1872 			printk(KERN_WARNING PFX "Interface type specified "
1873 			       "for interface %d, was invalid: %s\n",
1874 			       i, si_type[i]);
1875 			kfree(info);
1876 			continue;
1877 		}
1878 
1879 		if (ports[i]) {
1880 			/* An I/O port */
1881 			info->io_setup = port_setup;
1882 			info->io.addr_data = ports[i];
1883 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1884 		} else if (addrs[i]) {
1885 			/* A memory port */
1886 			info->io_setup = mem_setup;
1887 			info->io.addr_data = addrs[i];
1888 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1889 		} else {
1890 			printk(KERN_WARNING PFX "Interface type specified "
1891 			       "for interface %d, but port and address were "
1892 			       "not set or set to zero.\n", i);
1893 			kfree(info);
1894 			continue;
1895 		}
1896 
1897 		info->io.addr = NULL;
1898 		info->io.regspacing = regspacings[i];
1899 		if (!info->io.regspacing)
1900 			info->io.regspacing = DEFAULT_REGSPACING;
1901 		info->io.regsize = regsizes[i];
1902 		if (!info->io.regsize)
1903 			info->io.regsize = DEFAULT_REGSPACING;
1904 		info->io.regshift = regshifts[i];
1905 		info->irq = irqs[i];
1906 		if (info->irq)
1907 			info->irq_setup = std_irq_setup;
1908 		info->slave_addr = slave_addrs[i];
1909 
1910 		if (!add_smi(info)) {
1911 			if (try_smi_init(info))
1912 				cleanup_one_si(info);
1913 		} else {
1914 			kfree(info);
1915 		}
1916 	}
1917 }
1918 
1919 #ifdef CONFIG_ACPI
1920 
1921 #include <linux/acpi.h>
1922 
1923 /*
1924  * Once we get an ACPI failure, we don't try any more, because we go
1925  * through the tables sequentially.  Once we don't find a table, there
1926  * are no more.
1927  */
1928 static int acpi_failure;
1929 
1930 /* For GPE-type interrupts. */
1931 static u32 ipmi_acpi_gpe(void *context)
1932 {
1933 	struct smi_info *smi_info = context;
1934 	unsigned long   flags;
1935 #ifdef DEBUG_TIMING
1936 	struct timeval t;
1937 #endif
1938 
1939 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1940 
1941 	smi_inc_stat(smi_info, interrupts);
1942 
1943 #ifdef DEBUG_TIMING
1944 	do_gettimeofday(&t);
1945 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1946 #endif
1947 	smi_event_handler(smi_info, 0);
1948 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1949 
1950 	return ACPI_INTERRUPT_HANDLED;
1951 }
1952 
1953 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1954 {
1955 	if (!info->irq)
1956 		return;
1957 
1958 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1959 }
1960 
1961 static int acpi_gpe_irq_setup(struct smi_info *info)
1962 {
1963 	acpi_status status;
1964 
1965 	if (!info->irq)
1966 		return 0;
1967 
1968 	/* FIXME - is level triggered right? */
1969 	status = acpi_install_gpe_handler(NULL,
1970 					  info->irq,
1971 					  ACPI_GPE_LEVEL_TRIGGERED,
1972 					  &ipmi_acpi_gpe,
1973 					  info);
1974 	if (status != AE_OK) {
1975 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
1976 			 " running polled\n", DEVICE_NAME, info->irq);
1977 		info->irq = 0;
1978 		return -EINVAL;
1979 	} else {
1980 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1981 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
1982 		return 0;
1983 	}
1984 }
1985 
1986 /*
1987  * Defined at
1988  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
1989  */
1990 struct SPMITable {
1991 	s8	Signature[4];
1992 	u32	Length;
1993 	u8	Revision;
1994 	u8	Checksum;
1995 	s8	OEMID[6];
1996 	s8	OEMTableID[8];
1997 	s8	OEMRevision[4];
1998 	s8	CreatorID[4];
1999 	s8	CreatorRevision[4];
2000 	u8	InterfaceType;
2001 	u8	IPMIlegacy;
2002 	s16	SpecificationRevision;
2003 
2004 	/*
2005 	 * Bit 0 - SCI interrupt supported
2006 	 * Bit 1 - I/O APIC/SAPIC
2007 	 */
2008 	u8	InterruptType;
2009 
2010 	/*
2011 	 * If bit 0 of InterruptType is set, then this is the SCI
2012 	 * interrupt in the GPEx_STS register.
2013 	 */
2014 	u8	GPE;
2015 
2016 	s16	Reserved;
2017 
2018 	/*
2019 	 * If bit 1 of InterruptType is set, then this is the I/O
2020 	 * APIC/SAPIC interrupt.
2021 	 */
2022 	u32	GlobalSystemInterrupt;
2023 
2024 	/* The actual register address. */
2025 	struct acpi_generic_address addr;
2026 
2027 	u8	UID[4];
2028 
2029 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2030 };
2031 
2032 static int __devinit try_init_spmi(struct SPMITable *spmi)
2033 {
2034 	struct smi_info  *info;
2035 
2036 	if (spmi->IPMIlegacy != 1) {
2037 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2038 		return -ENODEV;
2039 	}
2040 
2041 	info = smi_info_alloc();
2042 	if (!info) {
2043 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2044 		return -ENOMEM;
2045 	}
2046 
2047 	info->addr_source = SI_SPMI;
2048 	printk(KERN_INFO PFX "probing via SPMI\n");
2049 
2050 	/* Figure out the interface type. */
2051 	switch (spmi->InterfaceType) {
2052 	case 1:	/* KCS */
2053 		info->si_type = SI_KCS;
2054 		break;
2055 	case 2:	/* SMIC */
2056 		info->si_type = SI_SMIC;
2057 		break;
2058 	case 3:	/* BT */
2059 		info->si_type = SI_BT;
2060 		break;
2061 	default:
2062 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2063 		       spmi->InterfaceType);
2064 		kfree(info);
2065 		return -EIO;
2066 	}
2067 
2068 	if (spmi->InterruptType & 1) {
2069 		/* We've got a GPE interrupt. */
2070 		info->irq = spmi->GPE;
2071 		info->irq_setup = acpi_gpe_irq_setup;
2072 	} else if (spmi->InterruptType & 2) {
2073 		/* We've got an APIC/SAPIC interrupt. */
2074 		info->irq = spmi->GlobalSystemInterrupt;
2075 		info->irq_setup = std_irq_setup;
2076 	} else {
2077 		/* Use the default interrupt setting. */
2078 		info->irq = 0;
2079 		info->irq_setup = NULL;
2080 	}
2081 
2082 	if (spmi->addr.bit_width) {
2083 		/* A (hopefully) properly formed register bit width. */
2084 		info->io.regspacing = spmi->addr.bit_width / 8;
2085 	} else {
2086 		info->io.regspacing = DEFAULT_REGSPACING;
2087 	}
2088 	info->io.regsize = info->io.regspacing;
2089 	info->io.regshift = spmi->addr.bit_offset;
2090 
2091 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2092 		info->io_setup = mem_setup;
2093 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2094 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2095 		info->io_setup = port_setup;
2096 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2097 	} else {
2098 		kfree(info);
2099 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2100 		return -EIO;
2101 	}
2102 	info->io.addr_data = spmi->addr.address;
2103 
2104 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2105 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2106 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2107 		 info->irq);
2108 
2109 	if (add_smi(info))
2110 		kfree(info);
2111 
2112 	return 0;
2113 }
2114 
2115 static void __devinit spmi_find_bmc(void)
2116 {
2117 	acpi_status      status;
2118 	struct SPMITable *spmi;
2119 	int              i;
2120 
2121 	if (acpi_disabled)
2122 		return;
2123 
2124 	if (acpi_failure)
2125 		return;
2126 
2127 	for (i = 0; ; i++) {
2128 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2129 					(struct acpi_table_header **)&spmi);
2130 		if (status != AE_OK)
2131 			return;
2132 
2133 		try_init_spmi(spmi);
2134 	}
2135 }
2136 
2137 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2138 				    const struct pnp_device_id *dev_id)
2139 {
2140 	struct acpi_device *acpi_dev;
2141 	struct smi_info *info;
2142 	struct resource *res, *res_second;
2143 	acpi_handle handle;
2144 	acpi_status status;
2145 	unsigned long long tmp;
2146 
2147 	acpi_dev = pnp_acpi_device(dev);
2148 	if (!acpi_dev)
2149 		return -ENODEV;
2150 
2151 	info = smi_info_alloc();
2152 	if (!info)
2153 		return -ENOMEM;
2154 
2155 	info->addr_source = SI_ACPI;
2156 	printk(KERN_INFO PFX "probing via ACPI\n");
2157 
2158 	handle = acpi_dev->handle;
2159 
2160 	/* _IFT tells us the interface type: KCS, BT, etc */
2161 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2162 	if (ACPI_FAILURE(status))
2163 		goto err_free;
2164 
2165 	switch (tmp) {
2166 	case 1:
2167 		info->si_type = SI_KCS;
2168 		break;
2169 	case 2:
2170 		info->si_type = SI_SMIC;
2171 		break;
2172 	case 3:
2173 		info->si_type = SI_BT;
2174 		break;
2175 	default:
2176 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2177 		goto err_free;
2178 	}
2179 
2180 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2181 	if (res) {
2182 		info->io_setup = port_setup;
2183 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2184 	} else {
2185 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2186 		if (res) {
2187 			info->io_setup = mem_setup;
2188 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2189 		}
2190 	}
2191 	if (!res) {
2192 		dev_err(&dev->dev, "no I/O or memory address\n");
2193 		goto err_free;
2194 	}
2195 	info->io.addr_data = res->start;
2196 
2197 	info->io.regspacing = DEFAULT_REGSPACING;
2198 	res_second = pnp_get_resource(dev,
2199 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2200 					IORESOURCE_IO : IORESOURCE_MEM,
2201 			       1);
2202 	if (res_second) {
2203 		if (res_second->start > info->io.addr_data)
2204 			info->io.regspacing = res_second->start - info->io.addr_data;
2205 	}
2206 	info->io.regsize = DEFAULT_REGSPACING;
2207 	info->io.regshift = 0;
2208 
2209 	/* If _GPE exists, use it; otherwise use standard interrupts */
2210 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2211 	if (ACPI_SUCCESS(status)) {
2212 		info->irq = tmp;
2213 		info->irq_setup = acpi_gpe_irq_setup;
2214 	} else if (pnp_irq_valid(dev, 0)) {
2215 		info->irq = pnp_irq(dev, 0);
2216 		info->irq_setup = std_irq_setup;
2217 	}
2218 
2219 	info->dev = &dev->dev;
2220 	pnp_set_drvdata(dev, info);
2221 
2222 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2223 		 res, info->io.regsize, info->io.regspacing,
2224 		 info->irq);
2225 
2226 	if (add_smi(info))
2227 		goto err_free;
2228 
2229 	return 0;
2230 
2231 err_free:
2232 	kfree(info);
2233 	return -EINVAL;
2234 }
2235 
2236 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2237 {
2238 	struct smi_info *info = pnp_get_drvdata(dev);
2239 
2240 	cleanup_one_si(info);
2241 }
2242 
2243 static const struct pnp_device_id pnp_dev_table[] = {
2244 	{"IPI0001", 0},
2245 	{"", 0},
2246 };
2247 
2248 static struct pnp_driver ipmi_pnp_driver = {
2249 	.name		= DEVICE_NAME,
2250 	.probe		= ipmi_pnp_probe,
2251 	.remove		= __devexit_p(ipmi_pnp_remove),
2252 	.id_table	= pnp_dev_table,
2253 };
2254 #endif
2255 
2256 #ifdef CONFIG_DMI
2257 struct dmi_ipmi_data {
2258 	u8   		type;
2259 	u8   		addr_space;
2260 	unsigned long	base_addr;
2261 	u8   		irq;
2262 	u8              offset;
2263 	u8              slave_addr;
2264 };
2265 
2266 static int __devinit decode_dmi(const struct dmi_header *dm,
2267 				struct dmi_ipmi_data *dmi)
2268 {
2269 	const u8	*data = (const u8 *)dm;
2270 	unsigned long  	base_addr;
2271 	u8		reg_spacing;
2272 	u8              len = dm->length;
2273 
2274 	dmi->type = data[4];
2275 
2276 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2277 	if (len >= 0x11) {
2278 		if (base_addr & 1) {
2279 			/* I/O */
2280 			base_addr &= 0xFFFE;
2281 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2282 		} else
2283 			/* Memory */
2284 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2285 
2286 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2287 		   is odd. */
2288 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2289 
2290 		dmi->irq = data[0x11];
2291 
2292 		/* The top two bits of byte 0x10 hold the register spacing. */
2293 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2294 		switch (reg_spacing) {
2295 		case 0x00: /* Byte boundaries */
2296 		    dmi->offset = 1;
2297 		    break;
2298 		case 0x01: /* 32-bit boundaries */
2299 		    dmi->offset = 4;
2300 		    break;
2301 		case 0x02: /* 16-byte boundaries */
2302 		    dmi->offset = 16;
2303 		    break;
2304 		default:
2305 		    /* Some other interface, just ignore it. */
2306 		    return -EIO;
2307 		}
2308 	} else {
2309 		/* Old DMI spec. */
2310 		/*
2311 		 * Note that technically, the lower bit of the base
2312 		 * address should be 1 if the address is I/O and 0 if
2313 		 * the address is in memory.  So many systems get that
2314 		 * wrong (and all that I have seen are I/O) so we just
2315 		 * ignore that bit and assume I/O.  Systems that use
2316 		 * memory should use the newer spec, anyway.
2317 		 */
2318 		dmi->base_addr = base_addr & 0xfffe;
2319 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2320 		dmi->offset = 1;
2321 	}
2322 
2323 	dmi->slave_addr = data[6];
2324 
2325 	return 0;
2326 }
2327 
2328 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2329 {
2330 	struct smi_info *info;
2331 
2332 	info = smi_info_alloc();
2333 	if (!info) {
2334 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2335 		return;
2336 	}
2337 
2338 	info->addr_source = SI_SMBIOS;
2339 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2340 
2341 	switch (ipmi_data->type) {
2342 	case 0x01: /* KCS */
2343 		info->si_type = SI_KCS;
2344 		break;
2345 	case 0x02: /* SMIC */
2346 		info->si_type = SI_SMIC;
2347 		break;
2348 	case 0x03: /* BT */
2349 		info->si_type = SI_BT;
2350 		break;
2351 	default:
2352 		kfree(info);
2353 		return;
2354 	}
2355 
2356 	switch (ipmi_data->addr_space) {
2357 	case IPMI_MEM_ADDR_SPACE:
2358 		info->io_setup = mem_setup;
2359 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2360 		break;
2361 
2362 	case IPMI_IO_ADDR_SPACE:
2363 		info->io_setup = port_setup;
2364 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2365 		break;
2366 
2367 	default:
2368 		kfree(info);
2369 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2370 		       ipmi_data->addr_space);
2371 		return;
2372 	}
2373 	info->io.addr_data = ipmi_data->base_addr;
2374 
2375 	info->io.regspacing = ipmi_data->offset;
2376 	if (!info->io.regspacing)
2377 		info->io.regspacing = DEFAULT_REGSPACING;
2378 	info->io.regsize = DEFAULT_REGSPACING;
2379 	info->io.regshift = 0;
2380 
2381 	info->slave_addr = ipmi_data->slave_addr;
2382 
2383 	info->irq = ipmi_data->irq;
2384 	if (info->irq)
2385 		info->irq_setup = std_irq_setup;
2386 
2387 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2388 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2389 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2390 		 info->irq);
2391 
2392 	if (add_smi(info))
2393 		kfree(info);
2394 }
2395 
2396 static void __devinit dmi_find_bmc(void)
2397 {
2398 	const struct dmi_device *dev = NULL;
2399 	struct dmi_ipmi_data data;
2400 	int                  rv;
2401 
2402 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2403 		memset(&data, 0, sizeof(data));
2404 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2405 				&data);
2406 		if (!rv)
2407 			try_init_dmi(&data);
2408 	}
2409 }
2410 #endif /* CONFIG_DMI */
2411 
2412 #ifdef CONFIG_PCI
2413 
2414 #define PCI_ERMC_CLASSCODE		0x0C0700
2415 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2416 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2417 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2418 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2419 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2420 
2421 #define PCI_HP_VENDOR_ID    0x103C
2422 #define PCI_MMC_DEVICE_ID   0x121A
2423 #define PCI_MMC_ADDR_CW     0x10
2424 
2425 static void ipmi_pci_cleanup(struct smi_info *info)
2426 {
2427 	struct pci_dev *pdev = info->addr_source_data;
2428 
2429 	pci_disable_device(pdev);
2430 }
2431 
2432 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2433 				    const struct pci_device_id *ent)
2434 {
2435 	int rv;
2436 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2437 	struct smi_info *info;
2438 
2439 	info = smi_info_alloc();
2440 	if (!info)
2441 		return -ENOMEM;
2442 
2443 	info->addr_source = SI_PCI;
2444 	dev_info(&pdev->dev, "probing via PCI");
2445 
2446 	switch (class_type) {
2447 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2448 		info->si_type = SI_SMIC;
2449 		break;
2450 
2451 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2452 		info->si_type = SI_KCS;
2453 		break;
2454 
2455 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2456 		info->si_type = SI_BT;
2457 		break;
2458 
2459 	default:
2460 		kfree(info);
2461 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2462 		return -ENOMEM;
2463 	}
2464 
2465 	rv = pci_enable_device(pdev);
2466 	if (rv) {
2467 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2468 		kfree(info);
2469 		return rv;
2470 	}
2471 
2472 	info->addr_source_cleanup = ipmi_pci_cleanup;
2473 	info->addr_source_data = pdev;
2474 
2475 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2476 		info->io_setup = port_setup;
2477 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2478 	} else {
2479 		info->io_setup = mem_setup;
2480 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2481 	}
2482 	info->io.addr_data = pci_resource_start(pdev, 0);
2483 
2484 	info->io.regspacing = DEFAULT_REGSPACING;
2485 	info->io.regsize = DEFAULT_REGSPACING;
2486 	info->io.regshift = 0;
2487 
2488 	info->irq = pdev->irq;
2489 	if (info->irq)
2490 		info->irq_setup = std_irq_setup;
2491 
2492 	info->dev = &pdev->dev;
2493 	pci_set_drvdata(pdev, info);
2494 
2495 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2496 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2497 		info->irq);
2498 
2499 	if (add_smi(info))
2500 		kfree(info);
2501 
2502 	return 0;
2503 }
2504 
2505 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2506 {
2507 	struct smi_info *info = pci_get_drvdata(pdev);
2508 	cleanup_one_si(info);
2509 }
2510 
2511 #ifdef CONFIG_PM
2512 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2513 {
2514 	return 0;
2515 }
2516 
2517 static int ipmi_pci_resume(struct pci_dev *pdev)
2518 {
2519 	return 0;
2520 }
2521 #endif
2522 
2523 static struct pci_device_id ipmi_pci_devices[] = {
2524 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2525 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2526 	{ 0, }
2527 };
2528 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2529 
2530 static struct pci_driver ipmi_pci_driver = {
2531 	.name =         DEVICE_NAME,
2532 	.id_table =     ipmi_pci_devices,
2533 	.probe =        ipmi_pci_probe,
2534 	.remove =       __devexit_p(ipmi_pci_remove),
2535 #ifdef CONFIG_PM
2536 	.suspend =      ipmi_pci_suspend,
2537 	.resume =       ipmi_pci_resume,
2538 #endif
2539 };
2540 #endif /* CONFIG_PCI */
2541 
2542 
2543 #ifdef CONFIG_PPC_OF
2544 static int __devinit ipmi_of_probe(struct platform_device *dev,
2545 			 const struct of_device_id *match)
2546 {
2547 	struct smi_info *info;
2548 	struct resource resource;
2549 	const int *regsize, *regspacing, *regshift;
2550 	struct device_node *np = dev->dev.of_node;
2551 	int ret;
2552 	int proplen;
2553 
2554 	dev_info(&dev->dev, "probing via device tree\n");
2555 
2556 	ret = of_address_to_resource(np, 0, &resource);
2557 	if (ret) {
2558 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2559 		return ret;
2560 	}
2561 
2562 	regsize = of_get_property(np, "reg-size", &proplen);
2563 	if (regsize && proplen != 4) {
2564 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2565 		return -EINVAL;
2566 	}
2567 
2568 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2569 	if (regspacing && proplen != 4) {
2570 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2571 		return -EINVAL;
2572 	}
2573 
2574 	regshift = of_get_property(np, "reg-shift", &proplen);
2575 	if (regshift && proplen != 4) {
2576 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2577 		return -EINVAL;
2578 	}
2579 
2580 	info = smi_info_alloc();
2581 
2582 	if (!info) {
2583 		dev_err(&dev->dev,
2584 			"could not allocate memory for OF probe\n");
2585 		return -ENOMEM;
2586 	}
2587 
2588 	info->si_type		= (enum si_type) match->data;
2589 	info->addr_source	= SI_DEVICETREE;
2590 	info->irq_setup		= std_irq_setup;
2591 
2592 	if (resource.flags & IORESOURCE_IO) {
2593 		info->io_setup		= port_setup;
2594 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2595 	} else {
2596 		info->io_setup		= mem_setup;
2597 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2598 	}
2599 
2600 	info->io.addr_data	= resource.start;
2601 
2602 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2603 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2604 	info->io.regshift	= regshift ? *regshift : 0;
2605 
2606 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2607 	info->dev		= &dev->dev;
2608 
2609 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2610 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2611 		info->irq);
2612 
2613 	dev_set_drvdata(&dev->dev, info);
2614 
2615 	if (add_smi(info)) {
2616 		kfree(info);
2617 		return -EBUSY;
2618 	}
2619 
2620 	return 0;
2621 }
2622 
2623 static int __devexit ipmi_of_remove(struct platform_device *dev)
2624 {
2625 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2626 	return 0;
2627 }
2628 
2629 static struct of_device_id ipmi_match[] =
2630 {
2631 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2632 	  .data = (void *)(unsigned long) SI_KCS },
2633 	{ .type = "ipmi", .compatible = "ipmi-smic",
2634 	  .data = (void *)(unsigned long) SI_SMIC },
2635 	{ .type = "ipmi", .compatible = "ipmi-bt",
2636 	  .data = (void *)(unsigned long) SI_BT },
2637 	{},
2638 };
2639 
2640 static struct of_platform_driver ipmi_of_platform_driver = {
2641 	.driver = {
2642 		.name = "ipmi",
2643 		.owner = THIS_MODULE,
2644 		.of_match_table = ipmi_match,
2645 	},
2646 	.probe		= ipmi_of_probe,
2647 	.remove		= __devexit_p(ipmi_of_remove),
2648 };
2649 #endif /* CONFIG_PPC_OF */
2650 
2651 static int wait_for_msg_done(struct smi_info *smi_info)
2652 {
2653 	enum si_sm_result     smi_result;
2654 
2655 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2656 	for (;;) {
2657 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2658 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2659 			schedule_timeout_uninterruptible(1);
2660 			smi_result = smi_info->handlers->event(
2661 				smi_info->si_sm, 100);
2662 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2663 			smi_result = smi_info->handlers->event(
2664 				smi_info->si_sm, 0);
2665 		} else
2666 			break;
2667 	}
2668 	if (smi_result == SI_SM_HOSED)
2669 		/*
2670 		 * We couldn't get the state machine to run, so whatever's at
2671 		 * the port is probably not an IPMI SMI interface.
2672 		 */
2673 		return -ENODEV;
2674 
2675 	return 0;
2676 }
2677 
2678 static int try_get_dev_id(struct smi_info *smi_info)
2679 {
2680 	unsigned char         msg[2];
2681 	unsigned char         *resp;
2682 	unsigned long         resp_len;
2683 	int                   rv = 0;
2684 
2685 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2686 	if (!resp)
2687 		return -ENOMEM;
2688 
2689 	/*
2690 	 * Do a Get Device ID command, since it comes back with some
2691 	 * useful info.
2692 	 */
2693 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2694 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2695 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2696 
2697 	rv = wait_for_msg_done(smi_info);
2698 	if (rv)
2699 		goto out;
2700 
2701 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2702 						  resp, IPMI_MAX_MSG_LENGTH);
2703 
2704 	/* Check and record info from the get device id, in case we need it. */
2705 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2706 
2707  out:
2708 	kfree(resp);
2709 	return rv;
2710 }
2711 
2712 static int try_enable_event_buffer(struct smi_info *smi_info)
2713 {
2714 	unsigned char         msg[3];
2715 	unsigned char         *resp;
2716 	unsigned long         resp_len;
2717 	int                   rv = 0;
2718 
2719 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2720 	if (!resp)
2721 		return -ENOMEM;
2722 
2723 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2724 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2725 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2726 
2727 	rv = wait_for_msg_done(smi_info);
2728 	if (rv) {
2729 		printk(KERN_WARNING PFX "Error getting response from get"
2730 		       " global enables command, the event buffer is not"
2731 		       " enabled.\n");
2732 		goto out;
2733 	}
2734 
2735 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2736 						  resp, IPMI_MAX_MSG_LENGTH);
2737 
2738 	if (resp_len < 4 ||
2739 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2740 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2741 			resp[2] != 0) {
2742 		printk(KERN_WARNING PFX "Invalid return from get global"
2743 		       " enables command, cannot enable the event buffer.\n");
2744 		rv = -EINVAL;
2745 		goto out;
2746 	}
2747 
2748 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2749 		/* buffer is already enabled, nothing to do. */
2750 		goto out;
2751 
2752 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2753 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2754 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2755 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2756 
2757 	rv = wait_for_msg_done(smi_info);
2758 	if (rv) {
2759 		printk(KERN_WARNING PFX "Error getting response from set"
2760 		       " global, enables command, the event buffer is not"
2761 		       " enabled.\n");
2762 		goto out;
2763 	}
2764 
2765 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2766 						  resp, IPMI_MAX_MSG_LENGTH);
2767 
2768 	if (resp_len < 3 ||
2769 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2770 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2771 		printk(KERN_WARNING PFX "Invalid return from get global,"
2772 		       "enables command, not enable the event buffer.\n");
2773 		rv = -EINVAL;
2774 		goto out;
2775 	}
2776 
2777 	if (resp[2] != 0)
2778 		/*
2779 		 * An error when setting the event buffer bit means
2780 		 * that the event buffer is not supported.
2781 		 */
2782 		rv = -ENOENT;
2783  out:
2784 	kfree(resp);
2785 	return rv;
2786 }
2787 
2788 static int type_file_read_proc(char *page, char **start, off_t off,
2789 			       int count, int *eof, void *data)
2790 {
2791 	struct smi_info *smi = data;
2792 
2793 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2794 }
2795 
2796 static int stat_file_read_proc(char *page, char **start, off_t off,
2797 			       int count, int *eof, void *data)
2798 {
2799 	char            *out = (char *) page;
2800 	struct smi_info *smi = data;
2801 
2802 	out += sprintf(out, "interrupts_enabled:    %d\n",
2803 		       smi->irq && !smi->interrupt_disabled);
2804 	out += sprintf(out, "short_timeouts:        %u\n",
2805 		       smi_get_stat(smi, short_timeouts));
2806 	out += sprintf(out, "long_timeouts:         %u\n",
2807 		       smi_get_stat(smi, long_timeouts));
2808 	out += sprintf(out, "idles:                 %u\n",
2809 		       smi_get_stat(smi, idles));
2810 	out += sprintf(out, "interrupts:            %u\n",
2811 		       smi_get_stat(smi, interrupts));
2812 	out += sprintf(out, "attentions:            %u\n",
2813 		       smi_get_stat(smi, attentions));
2814 	out += sprintf(out, "flag_fetches:          %u\n",
2815 		       smi_get_stat(smi, flag_fetches));
2816 	out += sprintf(out, "hosed_count:           %u\n",
2817 		       smi_get_stat(smi, hosed_count));
2818 	out += sprintf(out, "complete_transactions: %u\n",
2819 		       smi_get_stat(smi, complete_transactions));
2820 	out += sprintf(out, "events:                %u\n",
2821 		       smi_get_stat(smi, events));
2822 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2823 		       smi_get_stat(smi, watchdog_pretimeouts));
2824 	out += sprintf(out, "incoming_messages:     %u\n",
2825 		       smi_get_stat(smi, incoming_messages));
2826 
2827 	return out - page;
2828 }
2829 
2830 static int param_read_proc(char *page, char **start, off_t off,
2831 			   int count, int *eof, void *data)
2832 {
2833 	struct smi_info *smi = data;
2834 
2835 	return sprintf(page,
2836 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2837 		       si_to_str[smi->si_type],
2838 		       addr_space_to_str[smi->io.addr_type],
2839 		       smi->io.addr_data,
2840 		       smi->io.regspacing,
2841 		       smi->io.regsize,
2842 		       smi->io.regshift,
2843 		       smi->irq,
2844 		       smi->slave_addr);
2845 }
2846 
2847 /*
2848  * oem_data_avail_to_receive_msg_avail
2849  * @info - smi_info structure with msg_flags set
2850  *
2851  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2852  * Returns 1 indicating need to re-run handle_flags().
2853  */
2854 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2855 {
2856 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2857 			       RECEIVE_MSG_AVAIL);
2858 	return 1;
2859 }
2860 
2861 /*
2862  * setup_dell_poweredge_oem_data_handler
2863  * @info - smi_info.device_id must be populated
2864  *
2865  * Systems that match, but have firmware version < 1.40 may assert
2866  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2867  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2868  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2869  * as RECEIVE_MSG_AVAIL instead.
2870  *
2871  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2872  * assert the OEM[012] bits, and if it did, the driver would have to
2873  * change to handle that properly, we don't actually check for the
2874  * firmware version.
2875  * Device ID = 0x20                BMC on PowerEdge 8G servers
2876  * Device Revision = 0x80
2877  * Firmware Revision1 = 0x01       BMC version 1.40
2878  * Firmware Revision2 = 0x40       BCD encoded
2879  * IPMI Version = 0x51             IPMI 1.5
2880  * Manufacturer ID = A2 02 00      Dell IANA
2881  *
2882  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2883  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2884  *
2885  */
2886 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2887 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2888 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2889 #define DELL_IANA_MFR_ID 0x0002a2
2890 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2891 {
2892 	struct ipmi_device_id *id = &smi_info->device_id;
2893 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2894 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2895 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2896 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2897 			smi_info->oem_data_avail_handler =
2898 				oem_data_avail_to_receive_msg_avail;
2899 		} else if (ipmi_version_major(id) < 1 ||
2900 			   (ipmi_version_major(id) == 1 &&
2901 			    ipmi_version_minor(id) < 5)) {
2902 			smi_info->oem_data_avail_handler =
2903 				oem_data_avail_to_receive_msg_avail;
2904 		}
2905 	}
2906 }
2907 
2908 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2909 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2910 {
2911 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2912 
2913 	/* Make it a reponse */
2914 	msg->rsp[0] = msg->data[0] | 4;
2915 	msg->rsp[1] = msg->data[1];
2916 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2917 	msg->rsp_size = 3;
2918 	smi_info->curr_msg = NULL;
2919 	deliver_recv_msg(smi_info, msg);
2920 }
2921 
2922 /*
2923  * dell_poweredge_bt_xaction_handler
2924  * @info - smi_info.device_id must be populated
2925  *
2926  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2927  * not respond to a Get SDR command if the length of the data
2928  * requested is exactly 0x3A, which leads to command timeouts and no
2929  * data returned.  This intercepts such commands, and causes userspace
2930  * callers to try again with a different-sized buffer, which succeeds.
2931  */
2932 
2933 #define STORAGE_NETFN 0x0A
2934 #define STORAGE_CMD_GET_SDR 0x23
2935 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2936 					     unsigned long unused,
2937 					     void *in)
2938 {
2939 	struct smi_info *smi_info = in;
2940 	unsigned char *data = smi_info->curr_msg->data;
2941 	unsigned int size   = smi_info->curr_msg->data_size;
2942 	if (size >= 8 &&
2943 	    (data[0]>>2) == STORAGE_NETFN &&
2944 	    data[1] == STORAGE_CMD_GET_SDR &&
2945 	    data[7] == 0x3A) {
2946 		return_hosed_msg_badsize(smi_info);
2947 		return NOTIFY_STOP;
2948 	}
2949 	return NOTIFY_DONE;
2950 }
2951 
2952 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2953 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2954 };
2955 
2956 /*
2957  * setup_dell_poweredge_bt_xaction_handler
2958  * @info - smi_info.device_id must be filled in already
2959  *
2960  * Fills in smi_info.device_id.start_transaction_pre_hook
2961  * when we know what function to use there.
2962  */
2963 static void
2964 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2965 {
2966 	struct ipmi_device_id *id = &smi_info->device_id;
2967 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2968 	    smi_info->si_type == SI_BT)
2969 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2970 }
2971 
2972 /*
2973  * setup_oem_data_handler
2974  * @info - smi_info.device_id must be filled in already
2975  *
2976  * Fills in smi_info.device_id.oem_data_available_handler
2977  * when we know what function to use there.
2978  */
2979 
2980 static void setup_oem_data_handler(struct smi_info *smi_info)
2981 {
2982 	setup_dell_poweredge_oem_data_handler(smi_info);
2983 }
2984 
2985 static void setup_xaction_handlers(struct smi_info *smi_info)
2986 {
2987 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2988 }
2989 
2990 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2991 {
2992 	if (smi_info->intf) {
2993 		/*
2994 		 * The timer and thread are only running if the
2995 		 * interface has been started up and registered.
2996 		 */
2997 		if (smi_info->thread != NULL)
2998 			kthread_stop(smi_info->thread);
2999 		del_timer_sync(&smi_info->si_timer);
3000 	}
3001 }
3002 
3003 static __devinitdata struct ipmi_default_vals
3004 {
3005 	int type;
3006 	int port;
3007 } ipmi_defaults[] =
3008 {
3009 	{ .type = SI_KCS, .port = 0xca2 },
3010 	{ .type = SI_SMIC, .port = 0xca9 },
3011 	{ .type = SI_BT, .port = 0xe4 },
3012 	{ .port = 0 }
3013 };
3014 
3015 static void __devinit default_find_bmc(void)
3016 {
3017 	struct smi_info *info;
3018 	int             i;
3019 
3020 	for (i = 0; ; i++) {
3021 		if (!ipmi_defaults[i].port)
3022 			break;
3023 #ifdef CONFIG_PPC
3024 		if (check_legacy_ioport(ipmi_defaults[i].port))
3025 			continue;
3026 #endif
3027 		info = smi_info_alloc();
3028 		if (!info)
3029 			return;
3030 
3031 		info->addr_source = SI_DEFAULT;
3032 
3033 		info->si_type = ipmi_defaults[i].type;
3034 		info->io_setup = port_setup;
3035 		info->io.addr_data = ipmi_defaults[i].port;
3036 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3037 
3038 		info->io.addr = NULL;
3039 		info->io.regspacing = DEFAULT_REGSPACING;
3040 		info->io.regsize = DEFAULT_REGSPACING;
3041 		info->io.regshift = 0;
3042 
3043 		if (add_smi(info) == 0) {
3044 			if ((try_smi_init(info)) == 0) {
3045 				/* Found one... */
3046 				printk(KERN_INFO PFX "Found default %s"
3047 				" state machine at %s address 0x%lx\n",
3048 				si_to_str[info->si_type],
3049 				addr_space_to_str[info->io.addr_type],
3050 				info->io.addr_data);
3051 			} else
3052 				cleanup_one_si(info);
3053 		} else {
3054 			kfree(info);
3055 		}
3056 	}
3057 }
3058 
3059 static int is_new_interface(struct smi_info *info)
3060 {
3061 	struct smi_info *e;
3062 
3063 	list_for_each_entry(e, &smi_infos, link) {
3064 		if (e->io.addr_type != info->io.addr_type)
3065 			continue;
3066 		if (e->io.addr_data == info->io.addr_data)
3067 			return 0;
3068 	}
3069 
3070 	return 1;
3071 }
3072 
3073 static int add_smi(struct smi_info *new_smi)
3074 {
3075 	int rv = 0;
3076 
3077 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3078 			ipmi_addr_src_to_str[new_smi->addr_source],
3079 			si_to_str[new_smi->si_type]);
3080 	mutex_lock(&smi_infos_lock);
3081 	if (!is_new_interface(new_smi)) {
3082 		printk(KERN_CONT " duplicate interface\n");
3083 		rv = -EBUSY;
3084 		goto out_err;
3085 	}
3086 
3087 	printk(KERN_CONT "\n");
3088 
3089 	/* So we know not to free it unless we have allocated one. */
3090 	new_smi->intf = NULL;
3091 	new_smi->si_sm = NULL;
3092 	new_smi->handlers = NULL;
3093 
3094 	list_add_tail(&new_smi->link, &smi_infos);
3095 
3096 out_err:
3097 	mutex_unlock(&smi_infos_lock);
3098 	return rv;
3099 }
3100 
3101 static int try_smi_init(struct smi_info *new_smi)
3102 {
3103 	int rv = 0;
3104 	int i;
3105 
3106 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3107 	       " machine at %s address 0x%lx, slave address 0x%x,"
3108 	       " irq %d\n",
3109 	       ipmi_addr_src_to_str[new_smi->addr_source],
3110 	       si_to_str[new_smi->si_type],
3111 	       addr_space_to_str[new_smi->io.addr_type],
3112 	       new_smi->io.addr_data,
3113 	       new_smi->slave_addr, new_smi->irq);
3114 
3115 	switch (new_smi->si_type) {
3116 	case SI_KCS:
3117 		new_smi->handlers = &kcs_smi_handlers;
3118 		break;
3119 
3120 	case SI_SMIC:
3121 		new_smi->handlers = &smic_smi_handlers;
3122 		break;
3123 
3124 	case SI_BT:
3125 		new_smi->handlers = &bt_smi_handlers;
3126 		break;
3127 
3128 	default:
3129 		/* No support for anything else yet. */
3130 		rv = -EIO;
3131 		goto out_err;
3132 	}
3133 
3134 	/* Allocate the state machine's data and initialize it. */
3135 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3136 	if (!new_smi->si_sm) {
3137 		printk(KERN_ERR PFX
3138 		       "Could not allocate state machine memory\n");
3139 		rv = -ENOMEM;
3140 		goto out_err;
3141 	}
3142 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3143 							&new_smi->io);
3144 
3145 	/* Now that we know the I/O size, we can set up the I/O. */
3146 	rv = new_smi->io_setup(new_smi);
3147 	if (rv) {
3148 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3149 		goto out_err;
3150 	}
3151 
3152 	/* Do low-level detection first. */
3153 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3154 		if (new_smi->addr_source)
3155 			printk(KERN_INFO PFX "Interface detection failed\n");
3156 		rv = -ENODEV;
3157 		goto out_err;
3158 	}
3159 
3160 	/*
3161 	 * Attempt a get device id command.  If it fails, we probably
3162 	 * don't have a BMC here.
3163 	 */
3164 	rv = try_get_dev_id(new_smi);
3165 	if (rv) {
3166 		if (new_smi->addr_source)
3167 			printk(KERN_INFO PFX "There appears to be no BMC"
3168 			       " at this location\n");
3169 		goto out_err;
3170 	}
3171 
3172 	setup_oem_data_handler(new_smi);
3173 	setup_xaction_handlers(new_smi);
3174 
3175 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3176 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3177 	new_smi->curr_msg = NULL;
3178 	atomic_set(&new_smi->req_events, 0);
3179 	new_smi->run_to_completion = 0;
3180 	for (i = 0; i < SI_NUM_STATS; i++)
3181 		atomic_set(&new_smi->stats[i], 0);
3182 
3183 	new_smi->interrupt_disabled = 1;
3184 	atomic_set(&new_smi->stop_operation, 0);
3185 	new_smi->intf_num = smi_num;
3186 	smi_num++;
3187 
3188 	rv = try_enable_event_buffer(new_smi);
3189 	if (rv == 0)
3190 		new_smi->has_event_buffer = 1;
3191 
3192 	/*
3193 	 * Start clearing the flags before we enable interrupts or the
3194 	 * timer to avoid racing with the timer.
3195 	 */
3196 	start_clear_flags(new_smi);
3197 	/* IRQ is defined to be set when non-zero. */
3198 	if (new_smi->irq)
3199 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3200 
3201 	if (!new_smi->dev) {
3202 		/*
3203 		 * If we don't already have a device from something
3204 		 * else (like PCI), then register a new one.
3205 		 */
3206 		new_smi->pdev = platform_device_alloc("ipmi_si",
3207 						      new_smi->intf_num);
3208 		if (!new_smi->pdev) {
3209 			printk(KERN_ERR PFX
3210 			       "Unable to allocate platform device\n");
3211 			goto out_err;
3212 		}
3213 		new_smi->dev = &new_smi->pdev->dev;
3214 		new_smi->dev->driver = &ipmi_driver.driver;
3215 
3216 		rv = platform_device_add(new_smi->pdev);
3217 		if (rv) {
3218 			printk(KERN_ERR PFX
3219 			       "Unable to register system interface device:"
3220 			       " %d\n",
3221 			       rv);
3222 			goto out_err;
3223 		}
3224 		new_smi->dev_registered = 1;
3225 	}
3226 
3227 	rv = ipmi_register_smi(&handlers,
3228 			       new_smi,
3229 			       &new_smi->device_id,
3230 			       new_smi->dev,
3231 			       "bmc",
3232 			       new_smi->slave_addr);
3233 	if (rv) {
3234 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3235 			rv);
3236 		goto out_err_stop_timer;
3237 	}
3238 
3239 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3240 				     type_file_read_proc,
3241 				     new_smi);
3242 	if (rv) {
3243 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3244 		goto out_err_stop_timer;
3245 	}
3246 
3247 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3248 				     stat_file_read_proc,
3249 				     new_smi);
3250 	if (rv) {
3251 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3252 		goto out_err_stop_timer;
3253 	}
3254 
3255 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3256 				     param_read_proc,
3257 				     new_smi);
3258 	if (rv) {
3259 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3260 		goto out_err_stop_timer;
3261 	}
3262 
3263 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3264 		 si_to_str[new_smi->si_type]);
3265 
3266 	return 0;
3267 
3268  out_err_stop_timer:
3269 	atomic_inc(&new_smi->stop_operation);
3270 	wait_for_timer_and_thread(new_smi);
3271 
3272  out_err:
3273 	new_smi->interrupt_disabled = 1;
3274 
3275 	if (new_smi->intf) {
3276 		ipmi_unregister_smi(new_smi->intf);
3277 		new_smi->intf = NULL;
3278 	}
3279 
3280 	if (new_smi->irq_cleanup) {
3281 		new_smi->irq_cleanup(new_smi);
3282 		new_smi->irq_cleanup = NULL;
3283 	}
3284 
3285 	/*
3286 	 * Wait until we know that we are out of any interrupt
3287 	 * handlers might have been running before we freed the
3288 	 * interrupt.
3289 	 */
3290 	synchronize_sched();
3291 
3292 	if (new_smi->si_sm) {
3293 		if (new_smi->handlers)
3294 			new_smi->handlers->cleanup(new_smi->si_sm);
3295 		kfree(new_smi->si_sm);
3296 		new_smi->si_sm = NULL;
3297 	}
3298 	if (new_smi->addr_source_cleanup) {
3299 		new_smi->addr_source_cleanup(new_smi);
3300 		new_smi->addr_source_cleanup = NULL;
3301 	}
3302 	if (new_smi->io_cleanup) {
3303 		new_smi->io_cleanup(new_smi);
3304 		new_smi->io_cleanup = NULL;
3305 	}
3306 
3307 	if (new_smi->dev_registered) {
3308 		platform_device_unregister(new_smi->pdev);
3309 		new_smi->dev_registered = 0;
3310 	}
3311 
3312 	return rv;
3313 }
3314 
3315 static int __devinit init_ipmi_si(void)
3316 {
3317 	int  i;
3318 	char *str;
3319 	int  rv;
3320 	struct smi_info *e;
3321 	enum ipmi_addr_src type = SI_INVALID;
3322 
3323 	if (initialized)
3324 		return 0;
3325 	initialized = 1;
3326 
3327 	/* Register the device drivers. */
3328 	rv = driver_register(&ipmi_driver.driver);
3329 	if (rv) {
3330 		printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
3331 		return rv;
3332 	}
3333 
3334 
3335 	/* Parse out the si_type string into its components. */
3336 	str = si_type_str;
3337 	if (*str != '\0') {
3338 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3339 			si_type[i] = str;
3340 			str = strchr(str, ',');
3341 			if (str) {
3342 				*str = '\0';
3343 				str++;
3344 			} else {
3345 				break;
3346 			}
3347 		}
3348 	}
3349 
3350 	printk(KERN_INFO "IPMI System Interface driver.\n");
3351 
3352 	hardcode_find_bmc();
3353 
3354 	/* If the user gave us a device, they presumably want us to use it */
3355 	mutex_lock(&smi_infos_lock);
3356 	if (!list_empty(&smi_infos)) {
3357 		mutex_unlock(&smi_infos_lock);
3358 		return 0;
3359 	}
3360 	mutex_unlock(&smi_infos_lock);
3361 
3362 #ifdef CONFIG_PCI
3363 	rv = pci_register_driver(&ipmi_pci_driver);
3364 	if (rv)
3365 		printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
3366 	else
3367 		pci_registered = 1;
3368 #endif
3369 
3370 #ifdef CONFIG_ACPI
3371 	pnp_register_driver(&ipmi_pnp_driver);
3372 	pnp_registered = 1;
3373 #endif
3374 
3375 #ifdef CONFIG_DMI
3376 	dmi_find_bmc();
3377 #endif
3378 
3379 #ifdef CONFIG_ACPI
3380 	spmi_find_bmc();
3381 #endif
3382 
3383 #ifdef CONFIG_PPC_OF
3384 	of_register_platform_driver(&ipmi_of_platform_driver);
3385 	of_registered = 1;
3386 #endif
3387 
3388 	/* We prefer devices with interrupts, but in the case of a machine
3389 	   with multiple BMCs we assume that there will be several instances
3390 	   of a given type so if we succeed in registering a type then also
3391 	   try to register everything else of the same type */
3392 
3393 	mutex_lock(&smi_infos_lock);
3394 	list_for_each_entry(e, &smi_infos, link) {
3395 		/* Try to register a device if it has an IRQ and we either
3396 		   haven't successfully registered a device yet or this
3397 		   device has the same type as one we successfully registered */
3398 		if (e->irq && (!type || e->addr_source == type)) {
3399 			if (!try_smi_init(e)) {
3400 				type = e->addr_source;
3401 			}
3402 		}
3403 	}
3404 
3405 	/* type will only have been set if we successfully registered an si */
3406 	if (type) {
3407 		mutex_unlock(&smi_infos_lock);
3408 		return 0;
3409 	}
3410 
3411 	/* Fall back to the preferred device */
3412 
3413 	list_for_each_entry(e, &smi_infos, link) {
3414 		if (!e->irq && (!type || e->addr_source == type)) {
3415 			if (!try_smi_init(e)) {
3416 				type = e->addr_source;
3417 			}
3418 		}
3419 	}
3420 	mutex_unlock(&smi_infos_lock);
3421 
3422 	if (type)
3423 		return 0;
3424 
3425 	if (si_trydefaults) {
3426 		mutex_lock(&smi_infos_lock);
3427 		if (list_empty(&smi_infos)) {
3428 			/* No BMC was found, try defaults. */
3429 			mutex_unlock(&smi_infos_lock);
3430 			default_find_bmc();
3431 		} else
3432 			mutex_unlock(&smi_infos_lock);
3433 	}
3434 
3435 	mutex_lock(&smi_infos_lock);
3436 	if (unload_when_empty && list_empty(&smi_infos)) {
3437 		mutex_unlock(&smi_infos_lock);
3438 #ifdef CONFIG_PCI
3439 		if (pci_registered)
3440 			pci_unregister_driver(&ipmi_pci_driver);
3441 #endif
3442 
3443 #ifdef CONFIG_PPC_OF
3444 		if (of_registered)
3445 			of_unregister_platform_driver(&ipmi_of_platform_driver);
3446 #endif
3447 		driver_unregister(&ipmi_driver.driver);
3448 		printk(KERN_WARNING PFX
3449 		       "Unable to find any System Interface(s)\n");
3450 		return -ENODEV;
3451 	} else {
3452 		mutex_unlock(&smi_infos_lock);
3453 		return 0;
3454 	}
3455 }
3456 module_init(init_ipmi_si);
3457 
3458 static void cleanup_one_si(struct smi_info *to_clean)
3459 {
3460 	int           rv = 0;
3461 	unsigned long flags;
3462 
3463 	if (!to_clean)
3464 		return;
3465 
3466 	list_del(&to_clean->link);
3467 
3468 	/* Tell the driver that we are shutting down. */
3469 	atomic_inc(&to_clean->stop_operation);
3470 
3471 	/*
3472 	 * Make sure the timer and thread are stopped and will not run
3473 	 * again.
3474 	 */
3475 	wait_for_timer_and_thread(to_clean);
3476 
3477 	/*
3478 	 * Timeouts are stopped, now make sure the interrupts are off
3479 	 * for the device.  A little tricky with locks to make sure
3480 	 * there are no races.
3481 	 */
3482 	spin_lock_irqsave(&to_clean->si_lock, flags);
3483 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3484 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3485 		poll(to_clean);
3486 		schedule_timeout_uninterruptible(1);
3487 		spin_lock_irqsave(&to_clean->si_lock, flags);
3488 	}
3489 	disable_si_irq(to_clean);
3490 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3491 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3492 		poll(to_clean);
3493 		schedule_timeout_uninterruptible(1);
3494 	}
3495 
3496 	/* Clean up interrupts and make sure that everything is done. */
3497 	if (to_clean->irq_cleanup)
3498 		to_clean->irq_cleanup(to_clean);
3499 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3500 		poll(to_clean);
3501 		schedule_timeout_uninterruptible(1);
3502 	}
3503 
3504 	if (to_clean->intf)
3505 		rv = ipmi_unregister_smi(to_clean->intf);
3506 
3507 	if (rv) {
3508 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3509 		       rv);
3510 	}
3511 
3512 	if (to_clean->handlers)
3513 		to_clean->handlers->cleanup(to_clean->si_sm);
3514 
3515 	kfree(to_clean->si_sm);
3516 
3517 	if (to_clean->addr_source_cleanup)
3518 		to_clean->addr_source_cleanup(to_clean);
3519 	if (to_clean->io_cleanup)
3520 		to_clean->io_cleanup(to_clean);
3521 
3522 	if (to_clean->dev_registered)
3523 		platform_device_unregister(to_clean->pdev);
3524 
3525 	kfree(to_clean);
3526 }
3527 
3528 static void __exit cleanup_ipmi_si(void)
3529 {
3530 	struct smi_info *e, *tmp_e;
3531 
3532 	if (!initialized)
3533 		return;
3534 
3535 #ifdef CONFIG_PCI
3536 	if (pci_registered)
3537 		pci_unregister_driver(&ipmi_pci_driver);
3538 #endif
3539 #ifdef CONFIG_ACPI
3540 	if (pnp_registered)
3541 		pnp_unregister_driver(&ipmi_pnp_driver);
3542 #endif
3543 
3544 #ifdef CONFIG_PPC_OF
3545 	if (of_registered)
3546 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3547 #endif
3548 
3549 	mutex_lock(&smi_infos_lock);
3550 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3551 		cleanup_one_si(e);
3552 	mutex_unlock(&smi_infos_lock);
3553 
3554 	driver_unregister(&ipmi_driver.driver);
3555 }
3556 module_exit(cleanup_ipmi_si);
3557 
3558 MODULE_LICENSE("GPL");
3559 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3560 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3561 		   " system interfaces.");
3562