xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision b732539e)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15 
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/timer.h>
27 #include <linux/errno.h>
28 #include <linux/spinlock.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/list.h>
32 #include <linux/notifier.h>
33 #include <linux/mutex.h>
34 #include <linux/kthread.h>
35 #include <asm/irq.h>
36 #include <linux/interrupt.h>
37 #include <linux/rcupdate.h>
38 #include <linux/ipmi.h>
39 #include <linux/ipmi_smi.h>
40 #include "ipmi_si.h"
41 #include <linux/string.h>
42 #include <linux/ctype.h>
43 
44 #define PFX "ipmi_si: "
45 
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48 
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC	10000
51 #define SI_USEC_PER_JIFFY	(1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
54 				      short timeout */
55 
56 enum si_intf_state {
57 	SI_NORMAL,
58 	SI_GETTING_FLAGS,
59 	SI_GETTING_EVENTS,
60 	SI_CLEARING_FLAGS,
61 	SI_GETTING_MESSAGES,
62 	SI_CHECKING_ENABLES,
63 	SI_SETTING_ENABLES
64 	/* FIXME - add watchdog stuff. */
65 };
66 
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG		2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
71 
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73 
74 static int initialized;
75 
76 /*
77  * Indexes into stats[] in smi_info below.
78  */
79 enum si_stat_indexes {
80 	/*
81 	 * Number of times the driver requested a timer while an operation
82 	 * was in progress.
83 	 */
84 	SI_STAT_short_timeouts = 0,
85 
86 	/*
87 	 * Number of times the driver requested a timer while nothing was in
88 	 * progress.
89 	 */
90 	SI_STAT_long_timeouts,
91 
92 	/* Number of times the interface was idle while being polled. */
93 	SI_STAT_idles,
94 
95 	/* Number of interrupts the driver handled. */
96 	SI_STAT_interrupts,
97 
98 	/* Number of time the driver got an ATTN from the hardware. */
99 	SI_STAT_attentions,
100 
101 	/* Number of times the driver requested flags from the hardware. */
102 	SI_STAT_flag_fetches,
103 
104 	/* Number of times the hardware didn't follow the state machine. */
105 	SI_STAT_hosed_count,
106 
107 	/* Number of completed messages. */
108 	SI_STAT_complete_transactions,
109 
110 	/* Number of IPMI events received from the hardware. */
111 	SI_STAT_events,
112 
113 	/* Number of watchdog pretimeouts. */
114 	SI_STAT_watchdog_pretimeouts,
115 
116 	/* Number of asynchronous messages received. */
117 	SI_STAT_incoming_messages,
118 
119 
120 	/* This *must* remain last, add new values above this. */
121 	SI_NUM_STATS
122 };
123 
124 struct smi_info {
125 	int                    intf_num;
126 	ipmi_smi_t             intf;
127 	struct si_sm_data      *si_sm;
128 	const struct si_sm_handlers *handlers;
129 	spinlock_t             si_lock;
130 	struct ipmi_smi_msg    *waiting_msg;
131 	struct ipmi_smi_msg    *curr_msg;
132 	enum si_intf_state     si_state;
133 
134 	/*
135 	 * Used to handle the various types of I/O that can occur with
136 	 * IPMI
137 	 */
138 	struct si_sm_io io;
139 
140 	/*
141 	 * Per-OEM handler, called from handle_flags().  Returns 1
142 	 * when handle_flags() needs to be re-run or 0 indicating it
143 	 * set si_state itself.
144 	 */
145 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
146 
147 	/*
148 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 	 * is set to hold the flags until we are done handling everything
150 	 * from the flags.
151 	 */
152 #define RECEIVE_MSG_AVAIL	0x01
153 #define EVENT_MSG_BUFFER_FULL	0x02
154 #define WDT_PRE_TIMEOUT_INT	0x08
155 #define OEM0_DATA_AVAIL     0x20
156 #define OEM1_DATA_AVAIL     0x40
157 #define OEM2_DATA_AVAIL     0x80
158 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
159 			     OEM1_DATA_AVAIL | \
160 			     OEM2_DATA_AVAIL)
161 	unsigned char       msg_flags;
162 
163 	/* Does the BMC have an event buffer? */
164 	bool		    has_event_buffer;
165 
166 	/*
167 	 * If set to true, this will request events the next time the
168 	 * state machine is idle.
169 	 */
170 	atomic_t            req_events;
171 
172 	/*
173 	 * If true, run the state machine to completion on every send
174 	 * call.  Generally used after a panic to make sure stuff goes
175 	 * out.
176 	 */
177 	bool                run_to_completion;
178 
179 	/* The timer for this si. */
180 	struct timer_list   si_timer;
181 
182 	/* This flag is set, if the timer can be set */
183 	bool		    timer_can_start;
184 
185 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
186 	bool		    timer_running;
187 
188 	/* The time (in jiffies) the last timeout occurred at. */
189 	unsigned long       last_timeout_jiffies;
190 
191 	/* Are we waiting for the events, pretimeouts, received msgs? */
192 	atomic_t            need_watch;
193 
194 	/*
195 	 * The driver will disable interrupts when it gets into a
196 	 * situation where it cannot handle messages due to lack of
197 	 * memory.  Once that situation clears up, it will re-enable
198 	 * interrupts.
199 	 */
200 	bool interrupt_disabled;
201 
202 	/*
203 	 * Does the BMC support events?
204 	 */
205 	bool supports_event_msg_buff;
206 
207 	/*
208 	 * Can we disable interrupts the global enables receive irq
209 	 * bit?  There are currently two forms of brokenness, some
210 	 * systems cannot disable the bit (which is technically within
211 	 * the spec but a bad idea) and some systems have the bit
212 	 * forced to zero even though interrupts work (which is
213 	 * clearly outside the spec).  The next bool tells which form
214 	 * of brokenness is present.
215 	 */
216 	bool cannot_disable_irq;
217 
218 	/*
219 	 * Some systems are broken and cannot set the irq enable
220 	 * bit, even if they support interrupts.
221 	 */
222 	bool irq_enable_broken;
223 
224 	/*
225 	 * Did we get an attention that we did not handle?
226 	 */
227 	bool got_attn;
228 
229 	/* From the get device id response... */
230 	struct ipmi_device_id device_id;
231 
232 	/* Default driver model device. */
233 	struct platform_device *pdev;
234 
235 	/* Have we added the device group to the device? */
236 	bool dev_group_added;
237 
238 	/* Have we added the platform device? */
239 	bool pdev_registered;
240 
241 	/* Counters and things for the proc filesystem. */
242 	atomic_t stats[SI_NUM_STATS];
243 
244 	struct task_struct *thread;
245 
246 	struct list_head link;
247 };
248 
249 #define smi_inc_stat(smi, stat) \
250 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251 #define smi_get_stat(smi, stat) \
252 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253 
254 #define IPMI_MAX_INTFS 4
255 static int force_kipmid[IPMI_MAX_INTFS];
256 static int num_force_kipmid;
257 
258 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
259 static int num_max_busy_us;
260 
261 static bool unload_when_empty = true;
262 
263 static int try_smi_init(struct smi_info *smi);
264 static void shutdown_one_si(struct smi_info *smi_info);
265 static void cleanup_one_si(struct smi_info *smi_info);
266 static void cleanup_ipmi_si(void);
267 
268 #ifdef DEBUG_TIMING
269 void debug_timestamp(char *msg)
270 {
271 	struct timespec64 t;
272 
273 	getnstimeofday64(&t);
274 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
275 }
276 #else
277 #define debug_timestamp(x)
278 #endif
279 
280 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
281 static int register_xaction_notifier(struct notifier_block *nb)
282 {
283 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
284 }
285 
286 static void deliver_recv_msg(struct smi_info *smi_info,
287 			     struct ipmi_smi_msg *msg)
288 {
289 	/* Deliver the message to the upper layer. */
290 	if (smi_info->intf)
291 		ipmi_smi_msg_received(smi_info->intf, msg);
292 	else
293 		ipmi_free_smi_msg(msg);
294 }
295 
296 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
297 {
298 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
299 
300 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
301 		cCode = IPMI_ERR_UNSPECIFIED;
302 	/* else use it as is */
303 
304 	/* Make it a response */
305 	msg->rsp[0] = msg->data[0] | 4;
306 	msg->rsp[1] = msg->data[1];
307 	msg->rsp[2] = cCode;
308 	msg->rsp_size = 3;
309 
310 	smi_info->curr_msg = NULL;
311 	deliver_recv_msg(smi_info, msg);
312 }
313 
314 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
315 {
316 	int              rv;
317 
318 	if (!smi_info->waiting_msg) {
319 		smi_info->curr_msg = NULL;
320 		rv = SI_SM_IDLE;
321 	} else {
322 		int err;
323 
324 		smi_info->curr_msg = smi_info->waiting_msg;
325 		smi_info->waiting_msg = NULL;
326 		debug_timestamp("Start2");
327 		err = atomic_notifier_call_chain(&xaction_notifier_list,
328 				0, smi_info);
329 		if (err & NOTIFY_STOP_MASK) {
330 			rv = SI_SM_CALL_WITHOUT_DELAY;
331 			goto out;
332 		}
333 		err = smi_info->handlers->start_transaction(
334 			smi_info->si_sm,
335 			smi_info->curr_msg->data,
336 			smi_info->curr_msg->data_size);
337 		if (err)
338 			return_hosed_msg(smi_info, err);
339 
340 		rv = SI_SM_CALL_WITHOUT_DELAY;
341 	}
342 out:
343 	return rv;
344 }
345 
346 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
347 {
348 	if (!smi_info->timer_can_start)
349 		return;
350 	smi_info->last_timeout_jiffies = jiffies;
351 	mod_timer(&smi_info->si_timer, new_val);
352 	smi_info->timer_running = true;
353 }
354 
355 /*
356  * Start a new message and (re)start the timer and thread.
357  */
358 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
359 			  unsigned int size)
360 {
361 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
362 
363 	if (smi_info->thread)
364 		wake_up_process(smi_info->thread);
365 
366 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
367 }
368 
369 static void start_check_enables(struct smi_info *smi_info)
370 {
371 	unsigned char msg[2];
372 
373 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
374 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
375 
376 	start_new_msg(smi_info, msg, 2);
377 	smi_info->si_state = SI_CHECKING_ENABLES;
378 }
379 
380 static void start_clear_flags(struct smi_info *smi_info)
381 {
382 	unsigned char msg[3];
383 
384 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
385 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
387 	msg[2] = WDT_PRE_TIMEOUT_INT;
388 
389 	start_new_msg(smi_info, msg, 3);
390 	smi_info->si_state = SI_CLEARING_FLAGS;
391 }
392 
393 static void start_getting_msg_queue(struct smi_info *smi_info)
394 {
395 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
396 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
397 	smi_info->curr_msg->data_size = 2;
398 
399 	start_new_msg(smi_info, smi_info->curr_msg->data,
400 		      smi_info->curr_msg->data_size);
401 	smi_info->si_state = SI_GETTING_MESSAGES;
402 }
403 
404 static void start_getting_events(struct smi_info *smi_info)
405 {
406 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
408 	smi_info->curr_msg->data_size = 2;
409 
410 	start_new_msg(smi_info, smi_info->curr_msg->data,
411 		      smi_info->curr_msg->data_size);
412 	smi_info->si_state = SI_GETTING_EVENTS;
413 }
414 
415 /*
416  * When we have a situtaion where we run out of memory and cannot
417  * allocate messages, we just leave them in the BMC and run the system
418  * polled until we can allocate some memory.  Once we have some
419  * memory, we will re-enable the interrupt.
420  *
421  * Note that we cannot just use disable_irq(), since the interrupt may
422  * be shared.
423  */
424 static inline bool disable_si_irq(struct smi_info *smi_info)
425 {
426 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
427 		smi_info->interrupt_disabled = true;
428 		start_check_enables(smi_info);
429 		return true;
430 	}
431 	return false;
432 }
433 
434 static inline bool enable_si_irq(struct smi_info *smi_info)
435 {
436 	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
437 		smi_info->interrupt_disabled = false;
438 		start_check_enables(smi_info);
439 		return true;
440 	}
441 	return false;
442 }
443 
444 /*
445  * Allocate a message.  If unable to allocate, start the interrupt
446  * disable process and return NULL.  If able to allocate but
447  * interrupts are disabled, free the message and return NULL after
448  * starting the interrupt enable process.
449  */
450 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
451 {
452 	struct ipmi_smi_msg *msg;
453 
454 	msg = ipmi_alloc_smi_msg();
455 	if (!msg) {
456 		if (!disable_si_irq(smi_info))
457 			smi_info->si_state = SI_NORMAL;
458 	} else if (enable_si_irq(smi_info)) {
459 		ipmi_free_smi_msg(msg);
460 		msg = NULL;
461 	}
462 	return msg;
463 }
464 
465 static void handle_flags(struct smi_info *smi_info)
466 {
467 retry:
468 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
469 		/* Watchdog pre-timeout */
470 		smi_inc_stat(smi_info, watchdog_pretimeouts);
471 
472 		start_clear_flags(smi_info);
473 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
474 		if (smi_info->intf)
475 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
476 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
477 		/* Messages available. */
478 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
479 		if (!smi_info->curr_msg)
480 			return;
481 
482 		start_getting_msg_queue(smi_info);
483 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
484 		/* Events available. */
485 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
486 		if (!smi_info->curr_msg)
487 			return;
488 
489 		start_getting_events(smi_info);
490 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
491 		   smi_info->oem_data_avail_handler) {
492 		if (smi_info->oem_data_avail_handler(smi_info))
493 			goto retry;
494 	} else
495 		smi_info->si_state = SI_NORMAL;
496 }
497 
498 /*
499  * Global enables we care about.
500  */
501 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
502 			     IPMI_BMC_EVT_MSG_INTR)
503 
504 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
505 				 bool *irq_on)
506 {
507 	u8 enables = 0;
508 
509 	if (smi_info->supports_event_msg_buff)
510 		enables |= IPMI_BMC_EVT_MSG_BUFF;
511 
512 	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
513 	     smi_info->cannot_disable_irq) &&
514 	    !smi_info->irq_enable_broken)
515 		enables |= IPMI_BMC_RCV_MSG_INTR;
516 
517 	if (smi_info->supports_event_msg_buff &&
518 	    smi_info->io.irq && !smi_info->interrupt_disabled &&
519 	    !smi_info->irq_enable_broken)
520 		enables |= IPMI_BMC_EVT_MSG_INTR;
521 
522 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
523 
524 	return enables;
525 }
526 
527 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
528 {
529 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
530 
531 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
532 
533 	if ((bool)irqstate == irq_on)
534 		return;
535 
536 	if (irq_on)
537 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
538 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
539 	else
540 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
541 }
542 
543 static void handle_transaction_done(struct smi_info *smi_info)
544 {
545 	struct ipmi_smi_msg *msg;
546 
547 	debug_timestamp("Done");
548 	switch (smi_info->si_state) {
549 	case SI_NORMAL:
550 		if (!smi_info->curr_msg)
551 			break;
552 
553 		smi_info->curr_msg->rsp_size
554 			= smi_info->handlers->get_result(
555 				smi_info->si_sm,
556 				smi_info->curr_msg->rsp,
557 				IPMI_MAX_MSG_LENGTH);
558 
559 		/*
560 		 * Do this here becase deliver_recv_msg() releases the
561 		 * lock, and a new message can be put in during the
562 		 * time the lock is released.
563 		 */
564 		msg = smi_info->curr_msg;
565 		smi_info->curr_msg = NULL;
566 		deliver_recv_msg(smi_info, msg);
567 		break;
568 
569 	case SI_GETTING_FLAGS:
570 	{
571 		unsigned char msg[4];
572 		unsigned int  len;
573 
574 		/* We got the flags from the SMI, now handle them. */
575 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
576 		if (msg[2] != 0) {
577 			/* Error fetching flags, just give up for now. */
578 			smi_info->si_state = SI_NORMAL;
579 		} else if (len < 4) {
580 			/*
581 			 * Hmm, no flags.  That's technically illegal, but
582 			 * don't use uninitialized data.
583 			 */
584 			smi_info->si_state = SI_NORMAL;
585 		} else {
586 			smi_info->msg_flags = msg[3];
587 			handle_flags(smi_info);
588 		}
589 		break;
590 	}
591 
592 	case SI_CLEARING_FLAGS:
593 	{
594 		unsigned char msg[3];
595 
596 		/* We cleared the flags. */
597 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
598 		if (msg[2] != 0) {
599 			/* Error clearing flags */
600 			dev_warn(smi_info->io.dev,
601 				 "Error clearing flags: %2.2x\n", msg[2]);
602 		}
603 		smi_info->si_state = SI_NORMAL;
604 		break;
605 	}
606 
607 	case SI_GETTING_EVENTS:
608 	{
609 		smi_info->curr_msg->rsp_size
610 			= smi_info->handlers->get_result(
611 				smi_info->si_sm,
612 				smi_info->curr_msg->rsp,
613 				IPMI_MAX_MSG_LENGTH);
614 
615 		/*
616 		 * Do this here becase deliver_recv_msg() releases the
617 		 * lock, and a new message can be put in during the
618 		 * time the lock is released.
619 		 */
620 		msg = smi_info->curr_msg;
621 		smi_info->curr_msg = NULL;
622 		if (msg->rsp[2] != 0) {
623 			/* Error getting event, probably done. */
624 			msg->done(msg);
625 
626 			/* Take off the event flag. */
627 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
628 			handle_flags(smi_info);
629 		} else {
630 			smi_inc_stat(smi_info, events);
631 
632 			/*
633 			 * Do this before we deliver the message
634 			 * because delivering the message releases the
635 			 * lock and something else can mess with the
636 			 * state.
637 			 */
638 			handle_flags(smi_info);
639 
640 			deliver_recv_msg(smi_info, msg);
641 		}
642 		break;
643 	}
644 
645 	case SI_GETTING_MESSAGES:
646 	{
647 		smi_info->curr_msg->rsp_size
648 			= smi_info->handlers->get_result(
649 				smi_info->si_sm,
650 				smi_info->curr_msg->rsp,
651 				IPMI_MAX_MSG_LENGTH);
652 
653 		/*
654 		 * Do this here becase deliver_recv_msg() releases the
655 		 * lock, and a new message can be put in during the
656 		 * time the lock is released.
657 		 */
658 		msg = smi_info->curr_msg;
659 		smi_info->curr_msg = NULL;
660 		if (msg->rsp[2] != 0) {
661 			/* Error getting event, probably done. */
662 			msg->done(msg);
663 
664 			/* Take off the msg flag. */
665 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
666 			handle_flags(smi_info);
667 		} else {
668 			smi_inc_stat(smi_info, incoming_messages);
669 
670 			/*
671 			 * Do this before we deliver the message
672 			 * because delivering the message releases the
673 			 * lock and something else can mess with the
674 			 * state.
675 			 */
676 			handle_flags(smi_info);
677 
678 			deliver_recv_msg(smi_info, msg);
679 		}
680 		break;
681 	}
682 
683 	case SI_CHECKING_ENABLES:
684 	{
685 		unsigned char msg[4];
686 		u8 enables;
687 		bool irq_on;
688 
689 		/* We got the flags from the SMI, now handle them. */
690 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
691 		if (msg[2] != 0) {
692 			dev_warn(smi_info->io.dev,
693 				 "Couldn't get irq info: %x.\n", msg[2]);
694 			dev_warn(smi_info->io.dev,
695 				 "Maybe ok, but ipmi might run very slowly.\n");
696 			smi_info->si_state = SI_NORMAL;
697 			break;
698 		}
699 		enables = current_global_enables(smi_info, 0, &irq_on);
700 		if (smi_info->io.si_type == SI_BT)
701 			/* BT has its own interrupt enable bit. */
702 			check_bt_irq(smi_info, irq_on);
703 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
704 			/* Enables are not correct, fix them. */
705 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
706 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
707 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
708 			smi_info->handlers->start_transaction(
709 				smi_info->si_sm, msg, 3);
710 			smi_info->si_state = SI_SETTING_ENABLES;
711 		} else if (smi_info->supports_event_msg_buff) {
712 			smi_info->curr_msg = ipmi_alloc_smi_msg();
713 			if (!smi_info->curr_msg) {
714 				smi_info->si_state = SI_NORMAL;
715 				break;
716 			}
717 			start_getting_events(smi_info);
718 		} else {
719 			smi_info->si_state = SI_NORMAL;
720 		}
721 		break;
722 	}
723 
724 	case SI_SETTING_ENABLES:
725 	{
726 		unsigned char msg[4];
727 
728 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
729 		if (msg[2] != 0)
730 			dev_warn(smi_info->io.dev,
731 				 "Could not set the global enables: 0x%x.\n",
732 				 msg[2]);
733 
734 		if (smi_info->supports_event_msg_buff) {
735 			smi_info->curr_msg = ipmi_alloc_smi_msg();
736 			if (!smi_info->curr_msg) {
737 				smi_info->si_state = SI_NORMAL;
738 				break;
739 			}
740 			start_getting_events(smi_info);
741 		} else {
742 			smi_info->si_state = SI_NORMAL;
743 		}
744 		break;
745 	}
746 	}
747 }
748 
749 /*
750  * Called on timeouts and events.  Timeouts should pass the elapsed
751  * time, interrupts should pass in zero.  Must be called with
752  * si_lock held and interrupts disabled.
753  */
754 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
755 					   int time)
756 {
757 	enum si_sm_result si_sm_result;
758 
759 restart:
760 	/*
761 	 * There used to be a loop here that waited a little while
762 	 * (around 25us) before giving up.  That turned out to be
763 	 * pointless, the minimum delays I was seeing were in the 300us
764 	 * range, which is far too long to wait in an interrupt.  So
765 	 * we just run until the state machine tells us something
766 	 * happened or it needs a delay.
767 	 */
768 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
769 	time = 0;
770 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
771 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772 
773 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
774 		smi_inc_stat(smi_info, complete_transactions);
775 
776 		handle_transaction_done(smi_info);
777 		goto restart;
778 	} else if (si_sm_result == SI_SM_HOSED) {
779 		smi_inc_stat(smi_info, hosed_count);
780 
781 		/*
782 		 * Do the before return_hosed_msg, because that
783 		 * releases the lock.
784 		 */
785 		smi_info->si_state = SI_NORMAL;
786 		if (smi_info->curr_msg != NULL) {
787 			/*
788 			 * If we were handling a user message, format
789 			 * a response to send to the upper layer to
790 			 * tell it about the error.
791 			 */
792 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
793 		}
794 		goto restart;
795 	}
796 
797 	/*
798 	 * We prefer handling attn over new messages.  But don't do
799 	 * this if there is not yet an upper layer to handle anything.
800 	 */
801 	if (likely(smi_info->intf) &&
802 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
803 		unsigned char msg[2];
804 
805 		if (smi_info->si_state != SI_NORMAL) {
806 			/*
807 			 * We got an ATTN, but we are doing something else.
808 			 * Handle the ATTN later.
809 			 */
810 			smi_info->got_attn = true;
811 		} else {
812 			smi_info->got_attn = false;
813 			smi_inc_stat(smi_info, attentions);
814 
815 			/*
816 			 * Got a attn, send down a get message flags to see
817 			 * what's causing it.  It would be better to handle
818 			 * this in the upper layer, but due to the way
819 			 * interrupts work with the SMI, that's not really
820 			 * possible.
821 			 */
822 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
823 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
824 
825 			start_new_msg(smi_info, msg, 2);
826 			smi_info->si_state = SI_GETTING_FLAGS;
827 			goto restart;
828 		}
829 	}
830 
831 	/* If we are currently idle, try to start the next message. */
832 	if (si_sm_result == SI_SM_IDLE) {
833 		smi_inc_stat(smi_info, idles);
834 
835 		si_sm_result = start_next_msg(smi_info);
836 		if (si_sm_result != SI_SM_IDLE)
837 			goto restart;
838 	}
839 
840 	if ((si_sm_result == SI_SM_IDLE)
841 	    && (atomic_read(&smi_info->req_events))) {
842 		/*
843 		 * We are idle and the upper layer requested that I fetch
844 		 * events, so do so.
845 		 */
846 		atomic_set(&smi_info->req_events, 0);
847 
848 		/*
849 		 * Take this opportunity to check the interrupt and
850 		 * message enable state for the BMC.  The BMC can be
851 		 * asynchronously reset, and may thus get interrupts
852 		 * disable and messages disabled.
853 		 */
854 		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
855 			start_check_enables(smi_info);
856 		} else {
857 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
858 			if (!smi_info->curr_msg)
859 				goto out;
860 
861 			start_getting_events(smi_info);
862 		}
863 		goto restart;
864 	}
865 
866 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
867 		/* Ok it if fails, the timer will just go off. */
868 		if (del_timer(&smi_info->si_timer))
869 			smi_info->timer_running = false;
870 	}
871 
872 out:
873 	return si_sm_result;
874 }
875 
876 static void check_start_timer_thread(struct smi_info *smi_info)
877 {
878 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
879 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
880 
881 		if (smi_info->thread)
882 			wake_up_process(smi_info->thread);
883 
884 		start_next_msg(smi_info);
885 		smi_event_handler(smi_info, 0);
886 	}
887 }
888 
889 static void flush_messages(void *send_info)
890 {
891 	struct smi_info *smi_info = send_info;
892 	enum si_sm_result result;
893 
894 	/*
895 	 * Currently, this function is called only in run-to-completion
896 	 * mode.  This means we are single-threaded, no need for locks.
897 	 */
898 	result = smi_event_handler(smi_info, 0);
899 	while (result != SI_SM_IDLE) {
900 		udelay(SI_SHORT_TIMEOUT_USEC);
901 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
902 	}
903 }
904 
905 static void sender(void                *send_info,
906 		   struct ipmi_smi_msg *msg)
907 {
908 	struct smi_info   *smi_info = send_info;
909 	unsigned long     flags;
910 
911 	debug_timestamp("Enqueue");
912 
913 	if (smi_info->run_to_completion) {
914 		/*
915 		 * If we are running to completion, start it.  Upper
916 		 * layer will call flush_messages to clear it out.
917 		 */
918 		smi_info->waiting_msg = msg;
919 		return;
920 	}
921 
922 	spin_lock_irqsave(&smi_info->si_lock, flags);
923 	/*
924 	 * The following two lines don't need to be under the lock for
925 	 * the lock's sake, but they do need SMP memory barriers to
926 	 * avoid getting things out of order.  We are already claiming
927 	 * the lock, anyway, so just do it under the lock to avoid the
928 	 * ordering problem.
929 	 */
930 	BUG_ON(smi_info->waiting_msg);
931 	smi_info->waiting_msg = msg;
932 	check_start_timer_thread(smi_info);
933 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
934 }
935 
936 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
937 {
938 	struct smi_info   *smi_info = send_info;
939 
940 	smi_info->run_to_completion = i_run_to_completion;
941 	if (i_run_to_completion)
942 		flush_messages(smi_info);
943 }
944 
945 /*
946  * Use -1 in the nsec value of the busy waiting timespec to tell that
947  * we are spinning in kipmid looking for something and not delaying
948  * between checks
949  */
950 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
951 {
952 	ts->tv_nsec = -1;
953 }
954 static inline int ipmi_si_is_busy(struct timespec64 *ts)
955 {
956 	return ts->tv_nsec != -1;
957 }
958 
959 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
960 					const struct smi_info *smi_info,
961 					struct timespec64 *busy_until)
962 {
963 	unsigned int max_busy_us = 0;
964 
965 	if (smi_info->intf_num < num_max_busy_us)
966 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
967 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
968 		ipmi_si_set_not_busy(busy_until);
969 	else if (!ipmi_si_is_busy(busy_until)) {
970 		getnstimeofday64(busy_until);
971 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
972 	} else {
973 		struct timespec64 now;
974 
975 		getnstimeofday64(&now);
976 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
977 			ipmi_si_set_not_busy(busy_until);
978 			return 0;
979 		}
980 	}
981 	return 1;
982 }
983 
984 
985 /*
986  * A busy-waiting loop for speeding up IPMI operation.
987  *
988  * Lousy hardware makes this hard.  This is only enabled for systems
989  * that are not BT and do not have interrupts.  It starts spinning
990  * when an operation is complete or until max_busy tells it to stop
991  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
992  * Documentation/IPMI.txt for details.
993  */
994 static int ipmi_thread(void *data)
995 {
996 	struct smi_info *smi_info = data;
997 	unsigned long flags;
998 	enum si_sm_result smi_result;
999 	struct timespec64 busy_until;
1000 
1001 	ipmi_si_set_not_busy(&busy_until);
1002 	set_user_nice(current, MAX_NICE);
1003 	while (!kthread_should_stop()) {
1004 		int busy_wait;
1005 
1006 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1007 		smi_result = smi_event_handler(smi_info, 0);
1008 
1009 		/*
1010 		 * If the driver is doing something, there is a possible
1011 		 * race with the timer.  If the timer handler see idle,
1012 		 * and the thread here sees something else, the timer
1013 		 * handler won't restart the timer even though it is
1014 		 * required.  So start it here if necessary.
1015 		 */
1016 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1017 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1018 
1019 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1020 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1021 						  &busy_until);
1022 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1023 			; /* do nothing */
1024 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1025 			schedule();
1026 		else if (smi_result == SI_SM_IDLE) {
1027 			if (atomic_read(&smi_info->need_watch)) {
1028 				schedule_timeout_interruptible(100);
1029 			} else {
1030 				/* Wait to be woken up when we are needed. */
1031 				__set_current_state(TASK_INTERRUPTIBLE);
1032 				schedule();
1033 			}
1034 		} else
1035 			schedule_timeout_interruptible(1);
1036 	}
1037 	return 0;
1038 }
1039 
1040 
1041 static void poll(void *send_info)
1042 {
1043 	struct smi_info *smi_info = send_info;
1044 	unsigned long flags = 0;
1045 	bool run_to_completion = smi_info->run_to_completion;
1046 
1047 	/*
1048 	 * Make sure there is some delay in the poll loop so we can
1049 	 * drive time forward and timeout things.
1050 	 */
1051 	udelay(10);
1052 	if (!run_to_completion)
1053 		spin_lock_irqsave(&smi_info->si_lock, flags);
1054 	smi_event_handler(smi_info, 10);
1055 	if (!run_to_completion)
1056 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1057 }
1058 
1059 static void request_events(void *send_info)
1060 {
1061 	struct smi_info *smi_info = send_info;
1062 
1063 	if (!smi_info->has_event_buffer)
1064 		return;
1065 
1066 	atomic_set(&smi_info->req_events, 1);
1067 }
1068 
1069 static void set_need_watch(void *send_info, bool enable)
1070 {
1071 	struct smi_info *smi_info = send_info;
1072 	unsigned long flags;
1073 
1074 	atomic_set(&smi_info->need_watch, enable);
1075 	spin_lock_irqsave(&smi_info->si_lock, flags);
1076 	check_start_timer_thread(smi_info);
1077 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1078 }
1079 
1080 static void smi_timeout(struct timer_list *t)
1081 {
1082 	struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1083 	enum si_sm_result smi_result;
1084 	unsigned long     flags;
1085 	unsigned long     jiffies_now;
1086 	long              time_diff;
1087 	long		  timeout;
1088 
1089 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1090 	debug_timestamp("Timer");
1091 
1092 	jiffies_now = jiffies;
1093 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1094 		     * SI_USEC_PER_JIFFY);
1095 	smi_result = smi_event_handler(smi_info, time_diff);
1096 
1097 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1098 		/* Running with interrupts, only do long timeouts. */
1099 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1100 		smi_inc_stat(smi_info, long_timeouts);
1101 		goto do_mod_timer;
1102 	}
1103 
1104 	/*
1105 	 * If the state machine asks for a short delay, then shorten
1106 	 * the timer timeout.
1107 	 */
1108 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1109 		smi_inc_stat(smi_info, short_timeouts);
1110 		timeout = jiffies + 1;
1111 	} else {
1112 		smi_inc_stat(smi_info, long_timeouts);
1113 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1114 	}
1115 
1116 do_mod_timer:
1117 	if (smi_result != SI_SM_IDLE)
1118 		smi_mod_timer(smi_info, timeout);
1119 	else
1120 		smi_info->timer_running = false;
1121 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1122 }
1123 
1124 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1125 {
1126 	struct smi_info *smi_info = data;
1127 	unsigned long   flags;
1128 
1129 	if (smi_info->io.si_type == SI_BT)
1130 		/* We need to clear the IRQ flag for the BT interface. */
1131 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1132 				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1133 				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1134 
1135 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1136 
1137 	smi_inc_stat(smi_info, interrupts);
1138 
1139 	debug_timestamp("Interrupt");
1140 
1141 	smi_event_handler(smi_info, 0);
1142 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1143 	return IRQ_HANDLED;
1144 }
1145 
1146 static int smi_start_processing(void       *send_info,
1147 				ipmi_smi_t intf)
1148 {
1149 	struct smi_info *new_smi = send_info;
1150 	int             enable = 0;
1151 
1152 	new_smi->intf = intf;
1153 
1154 	/* Set up the timer that drives the interface. */
1155 	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1156 	new_smi->timer_can_start = true;
1157 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1158 
1159 	/* Try to claim any interrupts. */
1160 	if (new_smi->io.irq_setup) {
1161 		new_smi->io.irq_handler_data = new_smi;
1162 		new_smi->io.irq_setup(&new_smi->io);
1163 	}
1164 
1165 	/*
1166 	 * Check if the user forcefully enabled the daemon.
1167 	 */
1168 	if (new_smi->intf_num < num_force_kipmid)
1169 		enable = force_kipmid[new_smi->intf_num];
1170 	/*
1171 	 * The BT interface is efficient enough to not need a thread,
1172 	 * and there is no need for a thread if we have interrupts.
1173 	 */
1174 	else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1175 		enable = 1;
1176 
1177 	if (enable) {
1178 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1179 					      "kipmi%d", new_smi->intf_num);
1180 		if (IS_ERR(new_smi->thread)) {
1181 			dev_notice(new_smi->io.dev, "Could not start"
1182 				   " kernel thread due to error %ld, only using"
1183 				   " timers to drive the interface\n",
1184 				   PTR_ERR(new_smi->thread));
1185 			new_smi->thread = NULL;
1186 		}
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1193 {
1194 	struct smi_info *smi = send_info;
1195 
1196 	data->addr_src = smi->io.addr_source;
1197 	data->dev = smi->io.dev;
1198 	data->addr_info = smi->io.addr_info;
1199 	get_device(smi->io.dev);
1200 
1201 	return 0;
1202 }
1203 
1204 static void set_maintenance_mode(void *send_info, bool enable)
1205 {
1206 	struct smi_info   *smi_info = send_info;
1207 
1208 	if (!enable)
1209 		atomic_set(&smi_info->req_events, 0);
1210 }
1211 
1212 static const struct ipmi_smi_handlers handlers = {
1213 	.owner                  = THIS_MODULE,
1214 	.start_processing       = smi_start_processing,
1215 	.get_smi_info		= get_smi_info,
1216 	.sender			= sender,
1217 	.request_events		= request_events,
1218 	.set_need_watch		= set_need_watch,
1219 	.set_maintenance_mode   = set_maintenance_mode,
1220 	.set_run_to_completion  = set_run_to_completion,
1221 	.flush_messages		= flush_messages,
1222 	.poll			= poll,
1223 };
1224 
1225 static LIST_HEAD(smi_infos);
1226 static DEFINE_MUTEX(smi_infos_lock);
1227 static int smi_num; /* Used to sequence the SMIs */
1228 
1229 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1230 
1231 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1232 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1233 		 " disabled(0).  Normally the IPMI driver auto-detects"
1234 		 " this, but the value may be overridden by this parm.");
1235 module_param(unload_when_empty, bool, 0);
1236 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1237 		 " specified or found, default is 1.  Setting to 0"
1238 		 " is useful for hot add of devices using hotmod.");
1239 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1240 MODULE_PARM_DESC(kipmid_max_busy_us,
1241 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1242 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1243 		 " if kipmid is using up a lot of CPU time.");
1244 
1245 void ipmi_irq_finish_setup(struct si_sm_io *io)
1246 {
1247 	if (io->si_type == SI_BT)
1248 		/* Enable the interrupt in the BT interface. */
1249 		io->outputb(io, IPMI_BT_INTMASK_REG,
1250 			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1251 }
1252 
1253 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1254 {
1255 	if (io->si_type == SI_BT)
1256 		/* Disable the interrupt in the BT interface. */
1257 		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1258 }
1259 
1260 static void std_irq_cleanup(struct si_sm_io *io)
1261 {
1262 	ipmi_irq_start_cleanup(io);
1263 	free_irq(io->irq, io->irq_handler_data);
1264 }
1265 
1266 int ipmi_std_irq_setup(struct si_sm_io *io)
1267 {
1268 	int rv;
1269 
1270 	if (!io->irq)
1271 		return 0;
1272 
1273 	rv = request_irq(io->irq,
1274 			 ipmi_si_irq_handler,
1275 			 IRQF_SHARED,
1276 			 DEVICE_NAME,
1277 			 io->irq_handler_data);
1278 	if (rv) {
1279 		dev_warn(io->dev, "%s unable to claim interrupt %d,"
1280 			 " running polled\n",
1281 			 DEVICE_NAME, io->irq);
1282 		io->irq = 0;
1283 	} else {
1284 		io->irq_cleanup = std_irq_cleanup;
1285 		ipmi_irq_finish_setup(io);
1286 		dev_info(io->dev, "Using irq %d\n", io->irq);
1287 	}
1288 
1289 	return rv;
1290 }
1291 
1292 static int wait_for_msg_done(struct smi_info *smi_info)
1293 {
1294 	enum si_sm_result     smi_result;
1295 
1296 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1297 	for (;;) {
1298 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1299 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1300 			schedule_timeout_uninterruptible(1);
1301 			smi_result = smi_info->handlers->event(
1302 				smi_info->si_sm, jiffies_to_usecs(1));
1303 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1304 			smi_result = smi_info->handlers->event(
1305 				smi_info->si_sm, 0);
1306 		} else
1307 			break;
1308 	}
1309 	if (smi_result == SI_SM_HOSED)
1310 		/*
1311 		 * We couldn't get the state machine to run, so whatever's at
1312 		 * the port is probably not an IPMI SMI interface.
1313 		 */
1314 		return -ENODEV;
1315 
1316 	return 0;
1317 }
1318 
1319 static int try_get_dev_id(struct smi_info *smi_info)
1320 {
1321 	unsigned char         msg[2];
1322 	unsigned char         *resp;
1323 	unsigned long         resp_len;
1324 	int                   rv = 0;
1325 
1326 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1327 	if (!resp)
1328 		return -ENOMEM;
1329 
1330 	/*
1331 	 * Do a Get Device ID command, since it comes back with some
1332 	 * useful info.
1333 	 */
1334 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1335 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1336 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1337 
1338 	rv = wait_for_msg_done(smi_info);
1339 	if (rv)
1340 		goto out;
1341 
1342 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1343 						  resp, IPMI_MAX_MSG_LENGTH);
1344 
1345 	/* Check and record info from the get device id, in case we need it. */
1346 	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1347 			resp + 2, resp_len - 2, &smi_info->device_id);
1348 
1349 out:
1350 	kfree(resp);
1351 	return rv;
1352 }
1353 
1354 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1355 {
1356 	unsigned char         msg[3];
1357 	unsigned char         *resp;
1358 	unsigned long         resp_len;
1359 	int                   rv;
1360 
1361 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1362 	if (!resp)
1363 		return -ENOMEM;
1364 
1365 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1366 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1367 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1368 
1369 	rv = wait_for_msg_done(smi_info);
1370 	if (rv) {
1371 		dev_warn(smi_info->io.dev,
1372 			 "Error getting response from get global enables command: %d\n",
1373 			 rv);
1374 		goto out;
1375 	}
1376 
1377 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1378 						  resp, IPMI_MAX_MSG_LENGTH);
1379 
1380 	if (resp_len < 4 ||
1381 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1382 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1383 			resp[2] != 0) {
1384 		dev_warn(smi_info->io.dev,
1385 			 "Invalid return from get global enables command: %ld %x %x %x\n",
1386 			 resp_len, resp[0], resp[1], resp[2]);
1387 		rv = -EINVAL;
1388 		goto out;
1389 	} else {
1390 		*enables = resp[3];
1391 	}
1392 
1393 out:
1394 	kfree(resp);
1395 	return rv;
1396 }
1397 
1398 /*
1399  * Returns 1 if it gets an error from the command.
1400  */
1401 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1402 {
1403 	unsigned char         msg[3];
1404 	unsigned char         *resp;
1405 	unsigned long         resp_len;
1406 	int                   rv;
1407 
1408 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1409 	if (!resp)
1410 		return -ENOMEM;
1411 
1412 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1413 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1414 	msg[2] = enables;
1415 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1416 
1417 	rv = wait_for_msg_done(smi_info);
1418 	if (rv) {
1419 		dev_warn(smi_info->io.dev,
1420 			 "Error getting response from set global enables command: %d\n",
1421 			 rv);
1422 		goto out;
1423 	}
1424 
1425 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1426 						  resp, IPMI_MAX_MSG_LENGTH);
1427 
1428 	if (resp_len < 3 ||
1429 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1430 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1431 		dev_warn(smi_info->io.dev,
1432 			 "Invalid return from set global enables command: %ld %x %x\n",
1433 			 resp_len, resp[0], resp[1]);
1434 		rv = -EINVAL;
1435 		goto out;
1436 	}
1437 
1438 	if (resp[2] != 0)
1439 		rv = 1;
1440 
1441 out:
1442 	kfree(resp);
1443 	return rv;
1444 }
1445 
1446 /*
1447  * Some BMCs do not support clearing the receive irq bit in the global
1448  * enables (even if they don't support interrupts on the BMC).  Check
1449  * for this and handle it properly.
1450  */
1451 static void check_clr_rcv_irq(struct smi_info *smi_info)
1452 {
1453 	u8 enables = 0;
1454 	int rv;
1455 
1456 	rv = get_global_enables(smi_info, &enables);
1457 	if (!rv) {
1458 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1459 			/* Already clear, should work ok. */
1460 			return;
1461 
1462 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1463 		rv = set_global_enables(smi_info, enables);
1464 	}
1465 
1466 	if (rv < 0) {
1467 		dev_err(smi_info->io.dev,
1468 			"Cannot check clearing the rcv irq: %d\n", rv);
1469 		return;
1470 	}
1471 
1472 	if (rv) {
1473 		/*
1474 		 * An error when setting the event buffer bit means
1475 		 * clearing the bit is not supported.
1476 		 */
1477 		dev_warn(smi_info->io.dev,
1478 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1479 		smi_info->cannot_disable_irq = true;
1480 	}
1481 }
1482 
1483 /*
1484  * Some BMCs do not support setting the interrupt bits in the global
1485  * enables even if they support interrupts.  Clearly bad, but we can
1486  * compensate.
1487  */
1488 static void check_set_rcv_irq(struct smi_info *smi_info)
1489 {
1490 	u8 enables = 0;
1491 	int rv;
1492 
1493 	if (!smi_info->io.irq)
1494 		return;
1495 
1496 	rv = get_global_enables(smi_info, &enables);
1497 	if (!rv) {
1498 		enables |= IPMI_BMC_RCV_MSG_INTR;
1499 		rv = set_global_enables(smi_info, enables);
1500 	}
1501 
1502 	if (rv < 0) {
1503 		dev_err(smi_info->io.dev,
1504 			"Cannot check setting the rcv irq: %d\n", rv);
1505 		return;
1506 	}
1507 
1508 	if (rv) {
1509 		/*
1510 		 * An error when setting the event buffer bit means
1511 		 * setting the bit is not supported.
1512 		 */
1513 		dev_warn(smi_info->io.dev,
1514 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1515 		smi_info->cannot_disable_irq = true;
1516 		smi_info->irq_enable_broken = true;
1517 	}
1518 }
1519 
1520 static int try_enable_event_buffer(struct smi_info *smi_info)
1521 {
1522 	unsigned char         msg[3];
1523 	unsigned char         *resp;
1524 	unsigned long         resp_len;
1525 	int                   rv = 0;
1526 
1527 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1528 	if (!resp)
1529 		return -ENOMEM;
1530 
1531 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1532 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1533 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1534 
1535 	rv = wait_for_msg_done(smi_info);
1536 	if (rv) {
1537 		pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1538 		goto out;
1539 	}
1540 
1541 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1542 						  resp, IPMI_MAX_MSG_LENGTH);
1543 
1544 	if (resp_len < 4 ||
1545 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1546 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1547 			resp[2] != 0) {
1548 		pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1549 		rv = -EINVAL;
1550 		goto out;
1551 	}
1552 
1553 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1554 		/* buffer is already enabled, nothing to do. */
1555 		smi_info->supports_event_msg_buff = true;
1556 		goto out;
1557 	}
1558 
1559 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1560 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1561 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1562 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1563 
1564 	rv = wait_for_msg_done(smi_info);
1565 	if (rv) {
1566 		pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1567 		goto out;
1568 	}
1569 
1570 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1571 						  resp, IPMI_MAX_MSG_LENGTH);
1572 
1573 	if (resp_len < 3 ||
1574 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1575 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1576 		pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1577 		rv = -EINVAL;
1578 		goto out;
1579 	}
1580 
1581 	if (resp[2] != 0)
1582 		/*
1583 		 * An error when setting the event buffer bit means
1584 		 * that the event buffer is not supported.
1585 		 */
1586 		rv = -ENOENT;
1587 	else
1588 		smi_info->supports_event_msg_buff = true;
1589 
1590 out:
1591 	kfree(resp);
1592 	return rv;
1593 }
1594 
1595 #ifdef CONFIG_IPMI_PROC_INTERFACE
1596 static int smi_type_proc_show(struct seq_file *m, void *v)
1597 {
1598 	struct smi_info *smi = m->private;
1599 
1600 	seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
1601 
1602 	return 0;
1603 }
1604 
1605 static int smi_type_proc_open(struct inode *inode, struct file *file)
1606 {
1607 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
1608 }
1609 
1610 static const struct file_operations smi_type_proc_ops = {
1611 	.open		= smi_type_proc_open,
1612 	.read		= seq_read,
1613 	.llseek		= seq_lseek,
1614 	.release	= single_release,
1615 };
1616 
1617 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
1618 {
1619 	struct smi_info *smi = m->private;
1620 
1621 	seq_printf(m, "interrupts_enabled:    %d\n",
1622 		       smi->io.irq && !smi->interrupt_disabled);
1623 	seq_printf(m, "short_timeouts:        %u\n",
1624 		       smi_get_stat(smi, short_timeouts));
1625 	seq_printf(m, "long_timeouts:         %u\n",
1626 		       smi_get_stat(smi, long_timeouts));
1627 	seq_printf(m, "idles:                 %u\n",
1628 		       smi_get_stat(smi, idles));
1629 	seq_printf(m, "interrupts:            %u\n",
1630 		       smi_get_stat(smi, interrupts));
1631 	seq_printf(m, "attentions:            %u\n",
1632 		       smi_get_stat(smi, attentions));
1633 	seq_printf(m, "flag_fetches:          %u\n",
1634 		       smi_get_stat(smi, flag_fetches));
1635 	seq_printf(m, "hosed_count:           %u\n",
1636 		       smi_get_stat(smi, hosed_count));
1637 	seq_printf(m, "complete_transactions: %u\n",
1638 		       smi_get_stat(smi, complete_transactions));
1639 	seq_printf(m, "events:                %u\n",
1640 		       smi_get_stat(smi, events));
1641 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
1642 		       smi_get_stat(smi, watchdog_pretimeouts));
1643 	seq_printf(m, "incoming_messages:     %u\n",
1644 		       smi_get_stat(smi, incoming_messages));
1645 	return 0;
1646 }
1647 
1648 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
1649 {
1650 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
1651 }
1652 
1653 static const struct file_operations smi_si_stats_proc_ops = {
1654 	.open		= smi_si_stats_proc_open,
1655 	.read		= seq_read,
1656 	.llseek		= seq_lseek,
1657 	.release	= single_release,
1658 };
1659 
1660 static int smi_params_proc_show(struct seq_file *m, void *v)
1661 {
1662 	struct smi_info *smi = m->private;
1663 
1664 	seq_printf(m,
1665 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1666 		   si_to_str[smi->io.si_type],
1667 		   addr_space_to_str[smi->io.addr_type],
1668 		   smi->io.addr_data,
1669 		   smi->io.regspacing,
1670 		   smi->io.regsize,
1671 		   smi->io.regshift,
1672 		   smi->io.irq,
1673 		   smi->io.slave_addr);
1674 
1675 	return 0;
1676 }
1677 
1678 static int smi_params_proc_open(struct inode *inode, struct file *file)
1679 {
1680 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
1681 }
1682 
1683 static const struct file_operations smi_params_proc_ops = {
1684 	.open		= smi_params_proc_open,
1685 	.read		= seq_read,
1686 	.llseek		= seq_lseek,
1687 	.release	= single_release,
1688 };
1689 #endif
1690 
1691 #define IPMI_SI_ATTR(name) \
1692 static ssize_t ipmi_##name##_show(struct device *dev,			\
1693 				  struct device_attribute *attr,	\
1694 				  char *buf)				\
1695 {									\
1696 	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1697 									\
1698 	return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name));	\
1699 }									\
1700 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1701 
1702 static ssize_t ipmi_type_show(struct device *dev,
1703 			      struct device_attribute *attr,
1704 			      char *buf)
1705 {
1706 	struct smi_info *smi_info = dev_get_drvdata(dev);
1707 
1708 	return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1709 }
1710 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1711 
1712 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1713 					    struct device_attribute *attr,
1714 					    char *buf)
1715 {
1716 	struct smi_info *smi_info = dev_get_drvdata(dev);
1717 	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1718 
1719 	return snprintf(buf, 10, "%d\n", enabled);
1720 }
1721 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1722 		   ipmi_interrupts_enabled_show, NULL);
1723 
1724 IPMI_SI_ATTR(short_timeouts);
1725 IPMI_SI_ATTR(long_timeouts);
1726 IPMI_SI_ATTR(idles);
1727 IPMI_SI_ATTR(interrupts);
1728 IPMI_SI_ATTR(attentions);
1729 IPMI_SI_ATTR(flag_fetches);
1730 IPMI_SI_ATTR(hosed_count);
1731 IPMI_SI_ATTR(complete_transactions);
1732 IPMI_SI_ATTR(events);
1733 IPMI_SI_ATTR(watchdog_pretimeouts);
1734 IPMI_SI_ATTR(incoming_messages);
1735 
1736 static ssize_t ipmi_params_show(struct device *dev,
1737 				struct device_attribute *attr,
1738 				char *buf)
1739 {
1740 	struct smi_info *smi_info = dev_get_drvdata(dev);
1741 
1742 	return snprintf(buf, 200,
1743 			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1744 			si_to_str[smi_info->io.si_type],
1745 			addr_space_to_str[smi_info->io.addr_type],
1746 			smi_info->io.addr_data,
1747 			smi_info->io.regspacing,
1748 			smi_info->io.regsize,
1749 			smi_info->io.regshift,
1750 			smi_info->io.irq,
1751 			smi_info->io.slave_addr);
1752 }
1753 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1754 
1755 static struct attribute *ipmi_si_dev_attrs[] = {
1756 	&dev_attr_type.attr,
1757 	&dev_attr_interrupts_enabled.attr,
1758 	&dev_attr_short_timeouts.attr,
1759 	&dev_attr_long_timeouts.attr,
1760 	&dev_attr_idles.attr,
1761 	&dev_attr_interrupts.attr,
1762 	&dev_attr_attentions.attr,
1763 	&dev_attr_flag_fetches.attr,
1764 	&dev_attr_hosed_count.attr,
1765 	&dev_attr_complete_transactions.attr,
1766 	&dev_attr_events.attr,
1767 	&dev_attr_watchdog_pretimeouts.attr,
1768 	&dev_attr_incoming_messages.attr,
1769 	&dev_attr_params.attr,
1770 	NULL
1771 };
1772 
1773 static const struct attribute_group ipmi_si_dev_attr_group = {
1774 	.attrs		= ipmi_si_dev_attrs,
1775 };
1776 
1777 /*
1778  * oem_data_avail_to_receive_msg_avail
1779  * @info - smi_info structure with msg_flags set
1780  *
1781  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1782  * Returns 1 indicating need to re-run handle_flags().
1783  */
1784 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1785 {
1786 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1787 			       RECEIVE_MSG_AVAIL);
1788 	return 1;
1789 }
1790 
1791 /*
1792  * setup_dell_poweredge_oem_data_handler
1793  * @info - smi_info.device_id must be populated
1794  *
1795  * Systems that match, but have firmware version < 1.40 may assert
1796  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1797  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1798  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1799  * as RECEIVE_MSG_AVAIL instead.
1800  *
1801  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1802  * assert the OEM[012] bits, and if it did, the driver would have to
1803  * change to handle that properly, we don't actually check for the
1804  * firmware version.
1805  * Device ID = 0x20                BMC on PowerEdge 8G servers
1806  * Device Revision = 0x80
1807  * Firmware Revision1 = 0x01       BMC version 1.40
1808  * Firmware Revision2 = 0x40       BCD encoded
1809  * IPMI Version = 0x51             IPMI 1.5
1810  * Manufacturer ID = A2 02 00      Dell IANA
1811  *
1812  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1813  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1814  *
1815  */
1816 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1817 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1818 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1819 #define DELL_IANA_MFR_ID 0x0002a2
1820 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1821 {
1822 	struct ipmi_device_id *id = &smi_info->device_id;
1823 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1824 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1825 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1826 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1827 			smi_info->oem_data_avail_handler =
1828 				oem_data_avail_to_receive_msg_avail;
1829 		} else if (ipmi_version_major(id) < 1 ||
1830 			   (ipmi_version_major(id) == 1 &&
1831 			    ipmi_version_minor(id) < 5)) {
1832 			smi_info->oem_data_avail_handler =
1833 				oem_data_avail_to_receive_msg_avail;
1834 		}
1835 	}
1836 }
1837 
1838 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1839 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1840 {
1841 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1842 
1843 	/* Make it a response */
1844 	msg->rsp[0] = msg->data[0] | 4;
1845 	msg->rsp[1] = msg->data[1];
1846 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1847 	msg->rsp_size = 3;
1848 	smi_info->curr_msg = NULL;
1849 	deliver_recv_msg(smi_info, msg);
1850 }
1851 
1852 /*
1853  * dell_poweredge_bt_xaction_handler
1854  * @info - smi_info.device_id must be populated
1855  *
1856  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1857  * not respond to a Get SDR command if the length of the data
1858  * requested is exactly 0x3A, which leads to command timeouts and no
1859  * data returned.  This intercepts such commands, and causes userspace
1860  * callers to try again with a different-sized buffer, which succeeds.
1861  */
1862 
1863 #define STORAGE_NETFN 0x0A
1864 #define STORAGE_CMD_GET_SDR 0x23
1865 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1866 					     unsigned long unused,
1867 					     void *in)
1868 {
1869 	struct smi_info *smi_info = in;
1870 	unsigned char *data = smi_info->curr_msg->data;
1871 	unsigned int size   = smi_info->curr_msg->data_size;
1872 	if (size >= 8 &&
1873 	    (data[0]>>2) == STORAGE_NETFN &&
1874 	    data[1] == STORAGE_CMD_GET_SDR &&
1875 	    data[7] == 0x3A) {
1876 		return_hosed_msg_badsize(smi_info);
1877 		return NOTIFY_STOP;
1878 	}
1879 	return NOTIFY_DONE;
1880 }
1881 
1882 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1883 	.notifier_call	= dell_poweredge_bt_xaction_handler,
1884 };
1885 
1886 /*
1887  * setup_dell_poweredge_bt_xaction_handler
1888  * @info - smi_info.device_id must be filled in already
1889  *
1890  * Fills in smi_info.device_id.start_transaction_pre_hook
1891  * when we know what function to use there.
1892  */
1893 static void
1894 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1895 {
1896 	struct ipmi_device_id *id = &smi_info->device_id;
1897 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1898 	    smi_info->io.si_type == SI_BT)
1899 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1900 }
1901 
1902 /*
1903  * setup_oem_data_handler
1904  * @info - smi_info.device_id must be filled in already
1905  *
1906  * Fills in smi_info.device_id.oem_data_available_handler
1907  * when we know what function to use there.
1908  */
1909 
1910 static void setup_oem_data_handler(struct smi_info *smi_info)
1911 {
1912 	setup_dell_poweredge_oem_data_handler(smi_info);
1913 }
1914 
1915 static void setup_xaction_handlers(struct smi_info *smi_info)
1916 {
1917 	setup_dell_poweredge_bt_xaction_handler(smi_info);
1918 }
1919 
1920 static void check_for_broken_irqs(struct smi_info *smi_info)
1921 {
1922 	check_clr_rcv_irq(smi_info);
1923 	check_set_rcv_irq(smi_info);
1924 }
1925 
1926 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1927 {
1928 	if (smi_info->thread != NULL) {
1929 		kthread_stop(smi_info->thread);
1930 		smi_info->thread = NULL;
1931 	}
1932 
1933 	smi_info->timer_can_start = false;
1934 	if (smi_info->timer_running)
1935 		del_timer_sync(&smi_info->si_timer);
1936 }
1937 
1938 static struct smi_info *find_dup_si(struct smi_info *info)
1939 {
1940 	struct smi_info *e;
1941 
1942 	list_for_each_entry(e, &smi_infos, link) {
1943 		if (e->io.addr_type != info->io.addr_type)
1944 			continue;
1945 		if (e->io.addr_data == info->io.addr_data) {
1946 			/*
1947 			 * This is a cheap hack, ACPI doesn't have a defined
1948 			 * slave address but SMBIOS does.  Pick it up from
1949 			 * any source that has it available.
1950 			 */
1951 			if (info->io.slave_addr && !e->io.slave_addr)
1952 				e->io.slave_addr = info->io.slave_addr;
1953 			return e;
1954 		}
1955 	}
1956 
1957 	return NULL;
1958 }
1959 
1960 int ipmi_si_add_smi(struct si_sm_io *io)
1961 {
1962 	int rv = 0;
1963 	struct smi_info *new_smi, *dup;
1964 
1965 	if (!io->io_setup) {
1966 		if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1967 			io->io_setup = ipmi_si_port_setup;
1968 		} else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1969 			io->io_setup = ipmi_si_mem_setup;
1970 		} else {
1971 			return -EINVAL;
1972 		}
1973 	}
1974 
1975 	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1976 	if (!new_smi)
1977 		return -ENOMEM;
1978 	spin_lock_init(&new_smi->si_lock);
1979 
1980 	new_smi->io = *io;
1981 
1982 	mutex_lock(&smi_infos_lock);
1983 	dup = find_dup_si(new_smi);
1984 	if (dup) {
1985 		if (new_smi->io.addr_source == SI_ACPI &&
1986 		    dup->io.addr_source == SI_SMBIOS) {
1987 			/* We prefer ACPI over SMBIOS. */
1988 			dev_info(dup->io.dev,
1989 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1990 				 si_to_str[new_smi->io.si_type]);
1991 			cleanup_one_si(dup);
1992 		} else {
1993 			dev_info(new_smi->io.dev,
1994 				 "%s-specified %s state machine: duplicate\n",
1995 				 ipmi_addr_src_to_str(new_smi->io.addr_source),
1996 				 si_to_str[new_smi->io.si_type]);
1997 			rv = -EBUSY;
1998 			kfree(new_smi);
1999 			goto out_err;
2000 		}
2001 	}
2002 
2003 	pr_info(PFX "Adding %s-specified %s state machine\n",
2004 		ipmi_addr_src_to_str(new_smi->io.addr_source),
2005 		si_to_str[new_smi->io.si_type]);
2006 
2007 	list_add_tail(&new_smi->link, &smi_infos);
2008 
2009 	if (initialized) {
2010 		rv = try_smi_init(new_smi);
2011 		if (rv) {
2012 			cleanup_one_si(new_smi);
2013 			mutex_unlock(&smi_infos_lock);
2014 			return rv;
2015 		}
2016 	}
2017 out_err:
2018 	mutex_unlock(&smi_infos_lock);
2019 	return rv;
2020 }
2021 
2022 /*
2023  * Try to start up an interface.  Must be called with smi_infos_lock
2024  * held, primarily to keep smi_num consistent, we only one to do these
2025  * one at a time.
2026  */
2027 static int try_smi_init(struct smi_info *new_smi)
2028 {
2029 	int rv = 0;
2030 	int i;
2031 	char *init_name = NULL;
2032 
2033 	pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2034 		ipmi_addr_src_to_str(new_smi->io.addr_source),
2035 		si_to_str[new_smi->io.si_type],
2036 		addr_space_to_str[new_smi->io.addr_type],
2037 		new_smi->io.addr_data,
2038 		new_smi->io.slave_addr, new_smi->io.irq);
2039 
2040 	switch (new_smi->io.si_type) {
2041 	case SI_KCS:
2042 		new_smi->handlers = &kcs_smi_handlers;
2043 		break;
2044 
2045 	case SI_SMIC:
2046 		new_smi->handlers = &smic_smi_handlers;
2047 		break;
2048 
2049 	case SI_BT:
2050 		new_smi->handlers = &bt_smi_handlers;
2051 		break;
2052 
2053 	default:
2054 		/* No support for anything else yet. */
2055 		rv = -EIO;
2056 		goto out_err;
2057 	}
2058 
2059 	new_smi->intf_num = smi_num;
2060 
2061 	/* Do this early so it's available for logs. */
2062 	if (!new_smi->io.dev) {
2063 		init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
2064 				      new_smi->intf_num);
2065 
2066 		/*
2067 		 * If we don't already have a device from something
2068 		 * else (like PCI), then register a new one.
2069 		 */
2070 		new_smi->pdev = platform_device_alloc("ipmi_si",
2071 						      new_smi->intf_num);
2072 		if (!new_smi->pdev) {
2073 			pr_err(PFX "Unable to allocate platform device\n");
2074 			rv = -ENOMEM;
2075 			goto out_err;
2076 		}
2077 		new_smi->io.dev = &new_smi->pdev->dev;
2078 		new_smi->io.dev->driver = &ipmi_platform_driver.driver;
2079 		/* Nulled by device_add() */
2080 		new_smi->io.dev->init_name = init_name;
2081 	}
2082 
2083 	/* Allocate the state machine's data and initialize it. */
2084 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2085 	if (!new_smi->si_sm) {
2086 		rv = -ENOMEM;
2087 		goto out_err;
2088 	}
2089 	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2090 							   &new_smi->io);
2091 
2092 	/* Now that we know the I/O size, we can set up the I/O. */
2093 	rv = new_smi->io.io_setup(&new_smi->io);
2094 	if (rv) {
2095 		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2096 		goto out_err;
2097 	}
2098 
2099 	/* Do low-level detection first. */
2100 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2101 		if (new_smi->io.addr_source)
2102 			dev_err(new_smi->io.dev,
2103 				"Interface detection failed\n");
2104 		rv = -ENODEV;
2105 		goto out_err;
2106 	}
2107 
2108 	/*
2109 	 * Attempt a get device id command.  If it fails, we probably
2110 	 * don't have a BMC here.
2111 	 */
2112 	rv = try_get_dev_id(new_smi);
2113 	if (rv) {
2114 		if (new_smi->io.addr_source)
2115 			dev_err(new_smi->io.dev,
2116 			       "There appears to be no BMC at this location\n");
2117 		goto out_err;
2118 	}
2119 
2120 	setup_oem_data_handler(new_smi);
2121 	setup_xaction_handlers(new_smi);
2122 	check_for_broken_irqs(new_smi);
2123 
2124 	new_smi->waiting_msg = NULL;
2125 	new_smi->curr_msg = NULL;
2126 	atomic_set(&new_smi->req_events, 0);
2127 	new_smi->run_to_completion = false;
2128 	for (i = 0; i < SI_NUM_STATS; i++)
2129 		atomic_set(&new_smi->stats[i], 0);
2130 
2131 	new_smi->interrupt_disabled = true;
2132 	atomic_set(&new_smi->need_watch, 0);
2133 
2134 	rv = try_enable_event_buffer(new_smi);
2135 	if (rv == 0)
2136 		new_smi->has_event_buffer = true;
2137 
2138 	/*
2139 	 * Start clearing the flags before we enable interrupts or the
2140 	 * timer to avoid racing with the timer.
2141 	 */
2142 	start_clear_flags(new_smi);
2143 
2144 	/*
2145 	 * IRQ is defined to be set when non-zero.  req_events will
2146 	 * cause a global flags check that will enable interrupts.
2147 	 */
2148 	if (new_smi->io.irq) {
2149 		new_smi->interrupt_disabled = false;
2150 		atomic_set(&new_smi->req_events, 1);
2151 	}
2152 
2153 	if (new_smi->pdev && !new_smi->pdev_registered) {
2154 		rv = platform_device_add(new_smi->pdev);
2155 		if (rv) {
2156 			dev_err(new_smi->io.dev,
2157 				"Unable to register system interface device: %d\n",
2158 				rv);
2159 			goto out_err;
2160 		}
2161 		new_smi->pdev_registered = true;
2162 	}
2163 
2164 	dev_set_drvdata(new_smi->io.dev, new_smi);
2165 	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2166 	if (rv) {
2167 		dev_err(new_smi->io.dev,
2168 			"Unable to add device attributes: error %d\n",
2169 			rv);
2170 		goto out_err;
2171 	}
2172 	new_smi->dev_group_added = true;
2173 
2174 	rv = ipmi_register_smi(&handlers,
2175 			       new_smi,
2176 			       new_smi->io.dev,
2177 			       new_smi->io.slave_addr);
2178 	if (rv) {
2179 		dev_err(new_smi->io.dev,
2180 			"Unable to register device: error %d\n",
2181 			rv);
2182 		goto out_err;
2183 	}
2184 
2185 #ifdef CONFIG_IPMI_PROC_INTERFACE
2186 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2187 				     &smi_type_proc_ops,
2188 				     new_smi);
2189 	if (rv) {
2190 		dev_err(new_smi->io.dev,
2191 			"Unable to create proc entry: %d\n", rv);
2192 		goto out_err;
2193 	}
2194 
2195 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2196 				     &smi_si_stats_proc_ops,
2197 				     new_smi);
2198 	if (rv) {
2199 		dev_err(new_smi->io.dev,
2200 			"Unable to create proc entry: %d\n", rv);
2201 		goto out_err;
2202 	}
2203 
2204 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2205 				     &smi_params_proc_ops,
2206 				     new_smi);
2207 	if (rv) {
2208 		dev_err(new_smi->io.dev,
2209 			"Unable to create proc entry: %d\n", rv);
2210 		goto out_err;
2211 	}
2212 #endif
2213 
2214 	/* Don't increment till we know we have succeeded. */
2215 	smi_num++;
2216 
2217 	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2218 		 si_to_str[new_smi->io.si_type]);
2219 
2220 	WARN_ON(new_smi->io.dev->init_name != NULL);
2221 	kfree(init_name);
2222 
2223 	return 0;
2224 
2225 out_err:
2226 	shutdown_one_si(new_smi);
2227 
2228 	kfree(init_name);
2229 
2230 	return rv;
2231 }
2232 
2233 static int init_ipmi_si(void)
2234 {
2235 	struct smi_info *e;
2236 	enum ipmi_addr_src type = SI_INVALID;
2237 
2238 	if (initialized)
2239 		return 0;
2240 
2241 	pr_info("IPMI System Interface driver.\n");
2242 
2243 	/* If the user gave us a device, they presumably want us to use it */
2244 	if (!ipmi_si_hardcode_find_bmc())
2245 		goto do_scan;
2246 
2247 	ipmi_si_platform_init();
2248 
2249 	ipmi_si_pci_init();
2250 
2251 	ipmi_si_parisc_init();
2252 
2253 	/* We prefer devices with interrupts, but in the case of a machine
2254 	   with multiple BMCs we assume that there will be several instances
2255 	   of a given type so if we succeed in registering a type then also
2256 	   try to register everything else of the same type */
2257 do_scan:
2258 	mutex_lock(&smi_infos_lock);
2259 	list_for_each_entry(e, &smi_infos, link) {
2260 		/* Try to register a device if it has an IRQ and we either
2261 		   haven't successfully registered a device yet or this
2262 		   device has the same type as one we successfully registered */
2263 		if (e->io.irq && (!type || e->io.addr_source == type)) {
2264 			if (!try_smi_init(e)) {
2265 				type = e->io.addr_source;
2266 			}
2267 		}
2268 	}
2269 
2270 	/* type will only have been set if we successfully registered an si */
2271 	if (type)
2272 		goto skip_fallback_noirq;
2273 
2274 	/* Fall back to the preferred device */
2275 
2276 	list_for_each_entry(e, &smi_infos, link) {
2277 		if (!e->io.irq && (!type || e->io.addr_source == type)) {
2278 			if (!try_smi_init(e)) {
2279 				type = e->io.addr_source;
2280 			}
2281 		}
2282 	}
2283 
2284 skip_fallback_noirq:
2285 	initialized = 1;
2286 	mutex_unlock(&smi_infos_lock);
2287 
2288 	if (type)
2289 		return 0;
2290 
2291 	mutex_lock(&smi_infos_lock);
2292 	if (unload_when_empty && list_empty(&smi_infos)) {
2293 		mutex_unlock(&smi_infos_lock);
2294 		cleanup_ipmi_si();
2295 		pr_warn(PFX "Unable to find any System Interface(s)\n");
2296 		return -ENODEV;
2297 	} else {
2298 		mutex_unlock(&smi_infos_lock);
2299 		return 0;
2300 	}
2301 }
2302 module_init(init_ipmi_si);
2303 
2304 static void shutdown_one_si(struct smi_info *smi_info)
2305 {
2306 	int           rv = 0;
2307 
2308 	if (smi_info->intf) {
2309 		ipmi_smi_t intf = smi_info->intf;
2310 
2311 		smi_info->intf = NULL;
2312 		rv = ipmi_unregister_smi(intf);
2313 		if (rv) {
2314 			pr_err(PFX "Unable to unregister device: errno=%d\n",
2315 			       rv);
2316 		}
2317 	}
2318 
2319 	if (smi_info->dev_group_added) {
2320 		device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2321 		smi_info->dev_group_added = false;
2322 	}
2323 	if (smi_info->io.dev)
2324 		dev_set_drvdata(smi_info->io.dev, NULL);
2325 
2326 	/*
2327 	 * Make sure that interrupts, the timer and the thread are
2328 	 * stopped and will not run again.
2329 	 */
2330 	smi_info->interrupt_disabled = true;
2331 	if (smi_info->io.irq_cleanup) {
2332 		smi_info->io.irq_cleanup(&smi_info->io);
2333 		smi_info->io.irq_cleanup = NULL;
2334 	}
2335 	stop_timer_and_thread(smi_info);
2336 
2337 	/*
2338 	 * Wait until we know that we are out of any interrupt
2339 	 * handlers might have been running before we freed the
2340 	 * interrupt.
2341 	 */
2342 	synchronize_sched();
2343 
2344 	/*
2345 	 * Timeouts are stopped, now make sure the interrupts are off
2346 	 * in the BMC.  Note that timers and CPU interrupts are off,
2347 	 * so no need for locks.
2348 	 */
2349 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2350 		poll(smi_info);
2351 		schedule_timeout_uninterruptible(1);
2352 	}
2353 	if (smi_info->handlers)
2354 		disable_si_irq(smi_info);
2355 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2356 		poll(smi_info);
2357 		schedule_timeout_uninterruptible(1);
2358 	}
2359 	if (smi_info->handlers)
2360 		smi_info->handlers->cleanup(smi_info->si_sm);
2361 
2362 	if (smi_info->io.addr_source_cleanup) {
2363 		smi_info->io.addr_source_cleanup(&smi_info->io);
2364 		smi_info->io.addr_source_cleanup = NULL;
2365 	}
2366 	if (smi_info->io.io_cleanup) {
2367 		smi_info->io.io_cleanup(&smi_info->io);
2368 		smi_info->io.io_cleanup = NULL;
2369 	}
2370 
2371 	kfree(smi_info->si_sm);
2372 	smi_info->si_sm = NULL;
2373 }
2374 
2375 static void cleanup_one_si(struct smi_info *smi_info)
2376 {
2377 	if (!smi_info)
2378 		return;
2379 
2380 	list_del(&smi_info->link);
2381 
2382 	shutdown_one_si(smi_info);
2383 
2384 	if (smi_info->pdev) {
2385 		if (smi_info->pdev_registered)
2386 			platform_device_unregister(smi_info->pdev);
2387 		else
2388 			platform_device_put(smi_info->pdev);
2389 	}
2390 
2391 	kfree(smi_info);
2392 }
2393 
2394 int ipmi_si_remove_by_dev(struct device *dev)
2395 {
2396 	struct smi_info *e;
2397 	int rv = -ENOENT;
2398 
2399 	mutex_lock(&smi_infos_lock);
2400 	list_for_each_entry(e, &smi_infos, link) {
2401 		if (e->io.dev == dev) {
2402 			cleanup_one_si(e);
2403 			rv = 0;
2404 			break;
2405 		}
2406 	}
2407 	mutex_unlock(&smi_infos_lock);
2408 
2409 	return rv;
2410 }
2411 
2412 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2413 			    unsigned long addr)
2414 {
2415 	/* remove */
2416 	struct smi_info *e, *tmp_e;
2417 
2418 	mutex_lock(&smi_infos_lock);
2419 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2420 		if (e->io.addr_type != addr_space)
2421 			continue;
2422 		if (e->io.si_type != si_type)
2423 			continue;
2424 		if (e->io.addr_data == addr)
2425 			cleanup_one_si(e);
2426 	}
2427 	mutex_unlock(&smi_infos_lock);
2428 }
2429 
2430 static void cleanup_ipmi_si(void)
2431 {
2432 	struct smi_info *e, *tmp_e;
2433 
2434 	if (!initialized)
2435 		return;
2436 
2437 	ipmi_si_pci_shutdown();
2438 
2439 	ipmi_si_parisc_shutdown();
2440 
2441 	ipmi_si_platform_shutdown();
2442 
2443 	mutex_lock(&smi_infos_lock);
2444 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2445 		cleanup_one_si(e);
2446 	mutex_unlock(&smi_infos_lock);
2447 }
2448 module_exit(cleanup_ipmi_si);
2449 
2450 MODULE_ALIAS("platform:dmi-ipmi-si");
2451 MODULE_LICENSE("GPL");
2452 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2453 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2454 		   " system interfaces.");
2455