xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision b627b4ed)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
72 
73 #define PFX "ipmi_si: "
74 
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77 
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC	10000
80 #define SI_USEC_PER_JIFFY	(1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
83 				      short timeout */
84 
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR     0x01
87 #define IPMI_BMC_EVT_MSG_INTR     0x02
88 #define IPMI_BMC_EVT_MSG_BUFF     0x04
89 #define IPMI_BMC_SYS_LOG          0x08
90 
91 enum si_intf_state {
92 	SI_NORMAL,
93 	SI_GETTING_FLAGS,
94 	SI_GETTING_EVENTS,
95 	SI_CLEARING_FLAGS,
96 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 	SI_GETTING_MESSAGES,
98 	SI_ENABLE_INTERRUPTS1,
99 	SI_ENABLE_INTERRUPTS2,
100 	SI_DISABLE_INTERRUPTS1,
101 	SI_DISABLE_INTERRUPTS2
102 	/* FIXME - add watchdog stuff. */
103 };
104 
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG		2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
109 
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114 
115 #define DEVICE_NAME "ipmi_si"
116 
117 static struct platform_driver ipmi_driver = {
118 	.driver = {
119 		.name = DEVICE_NAME,
120 		.bus = &platform_bus_type
121 	}
122 };
123 
124 
125 /*
126  * Indexes into stats[] in smi_info below.
127  */
128 enum si_stat_indexes {
129 	/*
130 	 * Number of times the driver requested a timer while an operation
131 	 * was in progress.
132 	 */
133 	SI_STAT_short_timeouts = 0,
134 
135 	/*
136 	 * Number of times the driver requested a timer while nothing was in
137 	 * progress.
138 	 */
139 	SI_STAT_long_timeouts,
140 
141 	/* Number of times the interface was idle while being polled. */
142 	SI_STAT_idles,
143 
144 	/* Number of interrupts the driver handled. */
145 	SI_STAT_interrupts,
146 
147 	/* Number of time the driver got an ATTN from the hardware. */
148 	SI_STAT_attentions,
149 
150 	/* Number of times the driver requested flags from the hardware. */
151 	SI_STAT_flag_fetches,
152 
153 	/* Number of times the hardware didn't follow the state machine. */
154 	SI_STAT_hosed_count,
155 
156 	/* Number of completed messages. */
157 	SI_STAT_complete_transactions,
158 
159 	/* Number of IPMI events received from the hardware. */
160 	SI_STAT_events,
161 
162 	/* Number of watchdog pretimeouts. */
163 	SI_STAT_watchdog_pretimeouts,
164 
165 	/* Number of asyncronous messages received. */
166 	SI_STAT_incoming_messages,
167 
168 
169 	/* This *must* remain last, add new values above this. */
170 	SI_NUM_STATS
171 };
172 
173 struct smi_info {
174 	int                    intf_num;
175 	ipmi_smi_t             intf;
176 	struct si_sm_data      *si_sm;
177 	struct si_sm_handlers  *handlers;
178 	enum si_type           si_type;
179 	spinlock_t             si_lock;
180 	spinlock_t             msg_lock;
181 	struct list_head       xmit_msgs;
182 	struct list_head       hp_xmit_msgs;
183 	struct ipmi_smi_msg    *curr_msg;
184 	enum si_intf_state     si_state;
185 
186 	/*
187 	 * Used to handle the various types of I/O that can occur with
188 	 * IPMI
189 	 */
190 	struct si_sm_io io;
191 	int (*io_setup)(struct smi_info *info);
192 	void (*io_cleanup)(struct smi_info *info);
193 	int (*irq_setup)(struct smi_info *info);
194 	void (*irq_cleanup)(struct smi_info *info);
195 	unsigned int io_size;
196 	char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
197 	void (*addr_source_cleanup)(struct smi_info *info);
198 	void *addr_source_data;
199 
200 	/*
201 	 * Per-OEM handler, called from handle_flags().  Returns 1
202 	 * when handle_flags() needs to be re-run or 0 indicating it
203 	 * set si_state itself.
204 	 */
205 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
206 
207 	/*
208 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
209 	 * is set to hold the flags until we are done handling everything
210 	 * from the flags.
211 	 */
212 #define RECEIVE_MSG_AVAIL	0x01
213 #define EVENT_MSG_BUFFER_FULL	0x02
214 #define WDT_PRE_TIMEOUT_INT	0x08
215 #define OEM0_DATA_AVAIL     0x20
216 #define OEM1_DATA_AVAIL     0x40
217 #define OEM2_DATA_AVAIL     0x80
218 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
219 			     OEM1_DATA_AVAIL | \
220 			     OEM2_DATA_AVAIL)
221 	unsigned char       msg_flags;
222 
223 	/*
224 	 * If set to true, this will request events the next time the
225 	 * state machine is idle.
226 	 */
227 	atomic_t            req_events;
228 
229 	/*
230 	 * If true, run the state machine to completion on every send
231 	 * call.  Generally used after a panic to make sure stuff goes
232 	 * out.
233 	 */
234 	int                 run_to_completion;
235 
236 	/* The I/O port of an SI interface. */
237 	int                 port;
238 
239 	/*
240 	 * The space between start addresses of the two ports.  For
241 	 * instance, if the first port is 0xca2 and the spacing is 4, then
242 	 * the second port is 0xca6.
243 	 */
244 	unsigned int        spacing;
245 
246 	/* zero if no irq; */
247 	int                 irq;
248 
249 	/* The timer for this si. */
250 	struct timer_list   si_timer;
251 
252 	/* The time (in jiffies) the last timeout occurred at. */
253 	unsigned long       last_timeout_jiffies;
254 
255 	/* Used to gracefully stop the timer without race conditions. */
256 	atomic_t            stop_operation;
257 
258 	/*
259 	 * The driver will disable interrupts when it gets into a
260 	 * situation where it cannot handle messages due to lack of
261 	 * memory.  Once that situation clears up, it will re-enable
262 	 * interrupts.
263 	 */
264 	int interrupt_disabled;
265 
266 	/* From the get device id response... */
267 	struct ipmi_device_id device_id;
268 
269 	/* Driver model stuff. */
270 	struct device *dev;
271 	struct platform_device *pdev;
272 
273 	/*
274 	 * True if we allocated the device, false if it came from
275 	 * someplace else (like PCI).
276 	 */
277 	int dev_registered;
278 
279 	/* Slave address, could be reported from DMI. */
280 	unsigned char slave_addr;
281 
282 	/* Counters and things for the proc filesystem. */
283 	atomic_t stats[SI_NUM_STATS];
284 
285 	struct task_struct *thread;
286 
287 	struct list_head link;
288 };
289 
290 #define smi_inc_stat(smi, stat) \
291 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
292 #define smi_get_stat(smi, stat) \
293 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
294 
295 #define SI_MAX_PARMS 4
296 
297 static int force_kipmid[SI_MAX_PARMS];
298 static int num_force_kipmid;
299 
300 static int unload_when_empty = 1;
301 
302 static int try_smi_init(struct smi_info *smi);
303 static void cleanup_one_si(struct smi_info *to_clean);
304 
305 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
306 static int register_xaction_notifier(struct notifier_block *nb)
307 {
308 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
309 }
310 
311 static void deliver_recv_msg(struct smi_info *smi_info,
312 			     struct ipmi_smi_msg *msg)
313 {
314 	/* Deliver the message to the upper layer with the lock
315 	   released. */
316 	spin_unlock(&(smi_info->si_lock));
317 	ipmi_smi_msg_received(smi_info->intf, msg);
318 	spin_lock(&(smi_info->si_lock));
319 }
320 
321 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
322 {
323 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
324 
325 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
326 		cCode = IPMI_ERR_UNSPECIFIED;
327 	/* else use it as is */
328 
329 	/* Make it a reponse */
330 	msg->rsp[0] = msg->data[0] | 4;
331 	msg->rsp[1] = msg->data[1];
332 	msg->rsp[2] = cCode;
333 	msg->rsp_size = 3;
334 
335 	smi_info->curr_msg = NULL;
336 	deliver_recv_msg(smi_info, msg);
337 }
338 
339 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
340 {
341 	int              rv;
342 	struct list_head *entry = NULL;
343 #ifdef DEBUG_TIMING
344 	struct timeval t;
345 #endif
346 
347 	/*
348 	 * No need to save flags, we aleady have interrupts off and we
349 	 * already hold the SMI lock.
350 	 */
351 	if (!smi_info->run_to_completion)
352 		spin_lock(&(smi_info->msg_lock));
353 
354 	/* Pick the high priority queue first. */
355 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
356 		entry = smi_info->hp_xmit_msgs.next;
357 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
358 		entry = smi_info->xmit_msgs.next;
359 	}
360 
361 	if (!entry) {
362 		smi_info->curr_msg = NULL;
363 		rv = SI_SM_IDLE;
364 	} else {
365 		int err;
366 
367 		list_del(entry);
368 		smi_info->curr_msg = list_entry(entry,
369 						struct ipmi_smi_msg,
370 						link);
371 #ifdef DEBUG_TIMING
372 		do_gettimeofday(&t);
373 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
374 #endif
375 		err = atomic_notifier_call_chain(&xaction_notifier_list,
376 				0, smi_info);
377 		if (err & NOTIFY_STOP_MASK) {
378 			rv = SI_SM_CALL_WITHOUT_DELAY;
379 			goto out;
380 		}
381 		err = smi_info->handlers->start_transaction(
382 			smi_info->si_sm,
383 			smi_info->curr_msg->data,
384 			smi_info->curr_msg->data_size);
385 		if (err)
386 			return_hosed_msg(smi_info, err);
387 
388 		rv = SI_SM_CALL_WITHOUT_DELAY;
389 	}
390  out:
391 	if (!smi_info->run_to_completion)
392 		spin_unlock(&(smi_info->msg_lock));
393 
394 	return rv;
395 }
396 
397 static void start_enable_irq(struct smi_info *smi_info)
398 {
399 	unsigned char msg[2];
400 
401 	/*
402 	 * If we are enabling interrupts, we have to tell the
403 	 * BMC to use them.
404 	 */
405 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
406 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
407 
408 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
409 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
410 }
411 
412 static void start_disable_irq(struct smi_info *smi_info)
413 {
414 	unsigned char msg[2];
415 
416 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
417 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
418 
419 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
420 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
421 }
422 
423 static void start_clear_flags(struct smi_info *smi_info)
424 {
425 	unsigned char msg[3];
426 
427 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
428 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
429 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
430 	msg[2] = WDT_PRE_TIMEOUT_INT;
431 
432 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
433 	smi_info->si_state = SI_CLEARING_FLAGS;
434 }
435 
436 /*
437  * When we have a situtaion where we run out of memory and cannot
438  * allocate messages, we just leave them in the BMC and run the system
439  * polled until we can allocate some memory.  Once we have some
440  * memory, we will re-enable the interrupt.
441  */
442 static inline void disable_si_irq(struct smi_info *smi_info)
443 {
444 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
445 		start_disable_irq(smi_info);
446 		smi_info->interrupt_disabled = 1;
447 	}
448 }
449 
450 static inline void enable_si_irq(struct smi_info *smi_info)
451 {
452 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
453 		start_enable_irq(smi_info);
454 		smi_info->interrupt_disabled = 0;
455 	}
456 }
457 
458 static void handle_flags(struct smi_info *smi_info)
459 {
460  retry:
461 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
462 		/* Watchdog pre-timeout */
463 		smi_inc_stat(smi_info, watchdog_pretimeouts);
464 
465 		start_clear_flags(smi_info);
466 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
467 		spin_unlock(&(smi_info->si_lock));
468 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
469 		spin_lock(&(smi_info->si_lock));
470 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
471 		/* Messages available. */
472 		smi_info->curr_msg = ipmi_alloc_smi_msg();
473 		if (!smi_info->curr_msg) {
474 			disable_si_irq(smi_info);
475 			smi_info->si_state = SI_NORMAL;
476 			return;
477 		}
478 		enable_si_irq(smi_info);
479 
480 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
482 		smi_info->curr_msg->data_size = 2;
483 
484 		smi_info->handlers->start_transaction(
485 			smi_info->si_sm,
486 			smi_info->curr_msg->data,
487 			smi_info->curr_msg->data_size);
488 		smi_info->si_state = SI_GETTING_MESSAGES;
489 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
490 		/* Events available. */
491 		smi_info->curr_msg = ipmi_alloc_smi_msg();
492 		if (!smi_info->curr_msg) {
493 			disable_si_irq(smi_info);
494 			smi_info->si_state = SI_NORMAL;
495 			return;
496 		}
497 		enable_si_irq(smi_info);
498 
499 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
500 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
501 		smi_info->curr_msg->data_size = 2;
502 
503 		smi_info->handlers->start_transaction(
504 			smi_info->si_sm,
505 			smi_info->curr_msg->data,
506 			smi_info->curr_msg->data_size);
507 		smi_info->si_state = SI_GETTING_EVENTS;
508 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
509 		   smi_info->oem_data_avail_handler) {
510 		if (smi_info->oem_data_avail_handler(smi_info))
511 			goto retry;
512 	} else
513 		smi_info->si_state = SI_NORMAL;
514 }
515 
516 static void handle_transaction_done(struct smi_info *smi_info)
517 {
518 	struct ipmi_smi_msg *msg;
519 #ifdef DEBUG_TIMING
520 	struct timeval t;
521 
522 	do_gettimeofday(&t);
523 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
524 #endif
525 	switch (smi_info->si_state) {
526 	case SI_NORMAL:
527 		if (!smi_info->curr_msg)
528 			break;
529 
530 		smi_info->curr_msg->rsp_size
531 			= smi_info->handlers->get_result(
532 				smi_info->si_sm,
533 				smi_info->curr_msg->rsp,
534 				IPMI_MAX_MSG_LENGTH);
535 
536 		/*
537 		 * Do this here becase deliver_recv_msg() releases the
538 		 * lock, and a new message can be put in during the
539 		 * time the lock is released.
540 		 */
541 		msg = smi_info->curr_msg;
542 		smi_info->curr_msg = NULL;
543 		deliver_recv_msg(smi_info, msg);
544 		break;
545 
546 	case SI_GETTING_FLAGS:
547 	{
548 		unsigned char msg[4];
549 		unsigned int  len;
550 
551 		/* We got the flags from the SMI, now handle them. */
552 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
553 		if (msg[2] != 0) {
554 			/* Error fetching flags, just give up for now. */
555 			smi_info->si_state = SI_NORMAL;
556 		} else if (len < 4) {
557 			/*
558 			 * Hmm, no flags.  That's technically illegal, but
559 			 * don't use uninitialized data.
560 			 */
561 			smi_info->si_state = SI_NORMAL;
562 		} else {
563 			smi_info->msg_flags = msg[3];
564 			handle_flags(smi_info);
565 		}
566 		break;
567 	}
568 
569 	case SI_CLEARING_FLAGS:
570 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
571 	{
572 		unsigned char msg[3];
573 
574 		/* We cleared the flags. */
575 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
576 		if (msg[2] != 0) {
577 			/* Error clearing flags */
578 			printk(KERN_WARNING
579 			       "ipmi_si: Error clearing flags: %2.2x\n",
580 			       msg[2]);
581 		}
582 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
583 			start_enable_irq(smi_info);
584 		else
585 			smi_info->si_state = SI_NORMAL;
586 		break;
587 	}
588 
589 	case SI_GETTING_EVENTS:
590 	{
591 		smi_info->curr_msg->rsp_size
592 			= smi_info->handlers->get_result(
593 				smi_info->si_sm,
594 				smi_info->curr_msg->rsp,
595 				IPMI_MAX_MSG_LENGTH);
596 
597 		/*
598 		 * Do this here becase deliver_recv_msg() releases the
599 		 * lock, and a new message can be put in during the
600 		 * time the lock is released.
601 		 */
602 		msg = smi_info->curr_msg;
603 		smi_info->curr_msg = NULL;
604 		if (msg->rsp[2] != 0) {
605 			/* Error getting event, probably done. */
606 			msg->done(msg);
607 
608 			/* Take off the event flag. */
609 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
610 			handle_flags(smi_info);
611 		} else {
612 			smi_inc_stat(smi_info, events);
613 
614 			/*
615 			 * Do this before we deliver the message
616 			 * because delivering the message releases the
617 			 * lock and something else can mess with the
618 			 * state.
619 			 */
620 			handle_flags(smi_info);
621 
622 			deliver_recv_msg(smi_info, msg);
623 		}
624 		break;
625 	}
626 
627 	case SI_GETTING_MESSAGES:
628 	{
629 		smi_info->curr_msg->rsp_size
630 			= smi_info->handlers->get_result(
631 				smi_info->si_sm,
632 				smi_info->curr_msg->rsp,
633 				IPMI_MAX_MSG_LENGTH);
634 
635 		/*
636 		 * Do this here becase deliver_recv_msg() releases the
637 		 * lock, and a new message can be put in during the
638 		 * time the lock is released.
639 		 */
640 		msg = smi_info->curr_msg;
641 		smi_info->curr_msg = NULL;
642 		if (msg->rsp[2] != 0) {
643 			/* Error getting event, probably done. */
644 			msg->done(msg);
645 
646 			/* Take off the msg flag. */
647 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
648 			handle_flags(smi_info);
649 		} else {
650 			smi_inc_stat(smi_info, incoming_messages);
651 
652 			/*
653 			 * Do this before we deliver the message
654 			 * because delivering the message releases the
655 			 * lock and something else can mess with the
656 			 * state.
657 			 */
658 			handle_flags(smi_info);
659 
660 			deliver_recv_msg(smi_info, msg);
661 		}
662 		break;
663 	}
664 
665 	case SI_ENABLE_INTERRUPTS1:
666 	{
667 		unsigned char msg[4];
668 
669 		/* We got the flags from the SMI, now handle them. */
670 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
671 		if (msg[2] != 0) {
672 			printk(KERN_WARNING
673 			       "ipmi_si: Could not enable interrupts"
674 			       ", failed get, using polled mode.\n");
675 			smi_info->si_state = SI_NORMAL;
676 		} else {
677 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
678 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
679 			msg[2] = (msg[3] |
680 				  IPMI_BMC_RCV_MSG_INTR |
681 				  IPMI_BMC_EVT_MSG_INTR);
682 			smi_info->handlers->start_transaction(
683 				smi_info->si_sm, msg, 3);
684 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
685 		}
686 		break;
687 	}
688 
689 	case SI_ENABLE_INTERRUPTS2:
690 	{
691 		unsigned char msg[4];
692 
693 		/* We got the flags from the SMI, now handle them. */
694 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
695 		if (msg[2] != 0) {
696 			printk(KERN_WARNING
697 			       "ipmi_si: Could not enable interrupts"
698 			       ", failed set, using polled mode.\n");
699 		}
700 		smi_info->si_state = SI_NORMAL;
701 		break;
702 	}
703 
704 	case SI_DISABLE_INTERRUPTS1:
705 	{
706 		unsigned char msg[4];
707 
708 		/* We got the flags from the SMI, now handle them. */
709 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
710 		if (msg[2] != 0) {
711 			printk(KERN_WARNING
712 			       "ipmi_si: Could not disable interrupts"
713 			       ", failed get.\n");
714 			smi_info->si_state = SI_NORMAL;
715 		} else {
716 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
717 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
718 			msg[2] = (msg[3] &
719 				  ~(IPMI_BMC_RCV_MSG_INTR |
720 				    IPMI_BMC_EVT_MSG_INTR));
721 			smi_info->handlers->start_transaction(
722 				smi_info->si_sm, msg, 3);
723 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
724 		}
725 		break;
726 	}
727 
728 	case SI_DISABLE_INTERRUPTS2:
729 	{
730 		unsigned char msg[4];
731 
732 		/* We got the flags from the SMI, now handle them. */
733 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
734 		if (msg[2] != 0) {
735 			printk(KERN_WARNING
736 			       "ipmi_si: Could not disable interrupts"
737 			       ", failed set.\n");
738 		}
739 		smi_info->si_state = SI_NORMAL;
740 		break;
741 	}
742 	}
743 }
744 
745 /*
746  * Called on timeouts and events.  Timeouts should pass the elapsed
747  * time, interrupts should pass in zero.  Must be called with
748  * si_lock held and interrupts disabled.
749  */
750 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
751 					   int time)
752 {
753 	enum si_sm_result si_sm_result;
754 
755  restart:
756 	/*
757 	 * There used to be a loop here that waited a little while
758 	 * (around 25us) before giving up.  That turned out to be
759 	 * pointless, the minimum delays I was seeing were in the 300us
760 	 * range, which is far too long to wait in an interrupt.  So
761 	 * we just run until the state machine tells us something
762 	 * happened or it needs a delay.
763 	 */
764 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
765 	time = 0;
766 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
767 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
768 
769 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
770 		smi_inc_stat(smi_info, complete_transactions);
771 
772 		handle_transaction_done(smi_info);
773 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
774 	} else if (si_sm_result == SI_SM_HOSED) {
775 		smi_inc_stat(smi_info, hosed_count);
776 
777 		/*
778 		 * Do the before return_hosed_msg, because that
779 		 * releases the lock.
780 		 */
781 		smi_info->si_state = SI_NORMAL;
782 		if (smi_info->curr_msg != NULL) {
783 			/*
784 			 * If we were handling a user message, format
785 			 * a response to send to the upper layer to
786 			 * tell it about the error.
787 			 */
788 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
789 		}
790 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
791 	}
792 
793 	/*
794 	 * We prefer handling attn over new messages.  But don't do
795 	 * this if there is not yet an upper layer to handle anything.
796 	 */
797 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
798 		unsigned char msg[2];
799 
800 		smi_inc_stat(smi_info, attentions);
801 
802 		/*
803 		 * Got a attn, send down a get message flags to see
804 		 * what's causing it.  It would be better to handle
805 		 * this in the upper layer, but due to the way
806 		 * interrupts work with the SMI, that's not really
807 		 * possible.
808 		 */
809 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
810 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
811 
812 		smi_info->handlers->start_transaction(
813 			smi_info->si_sm, msg, 2);
814 		smi_info->si_state = SI_GETTING_FLAGS;
815 		goto restart;
816 	}
817 
818 	/* If we are currently idle, try to start the next message. */
819 	if (si_sm_result == SI_SM_IDLE) {
820 		smi_inc_stat(smi_info, idles);
821 
822 		si_sm_result = start_next_msg(smi_info);
823 		if (si_sm_result != SI_SM_IDLE)
824 			goto restart;
825 	}
826 
827 	if ((si_sm_result == SI_SM_IDLE)
828 	    && (atomic_read(&smi_info->req_events))) {
829 		/*
830 		 * We are idle and the upper layer requested that I fetch
831 		 * events, so do so.
832 		 */
833 		atomic_set(&smi_info->req_events, 0);
834 
835 		smi_info->curr_msg = ipmi_alloc_smi_msg();
836 		if (!smi_info->curr_msg)
837 			goto out;
838 
839 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
840 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
841 		smi_info->curr_msg->data_size = 2;
842 
843 		smi_info->handlers->start_transaction(
844 			smi_info->si_sm,
845 			smi_info->curr_msg->data,
846 			smi_info->curr_msg->data_size);
847 		smi_info->si_state = SI_GETTING_EVENTS;
848 		goto restart;
849 	}
850  out:
851 	return si_sm_result;
852 }
853 
854 static void sender(void                *send_info,
855 		   struct ipmi_smi_msg *msg,
856 		   int                 priority)
857 {
858 	struct smi_info   *smi_info = send_info;
859 	enum si_sm_result result;
860 	unsigned long     flags;
861 #ifdef DEBUG_TIMING
862 	struct timeval    t;
863 #endif
864 
865 	if (atomic_read(&smi_info->stop_operation)) {
866 		msg->rsp[0] = msg->data[0] | 4;
867 		msg->rsp[1] = msg->data[1];
868 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
869 		msg->rsp_size = 3;
870 		deliver_recv_msg(smi_info, msg);
871 		return;
872 	}
873 
874 #ifdef DEBUG_TIMING
875 	do_gettimeofday(&t);
876 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
877 #endif
878 
879 	if (smi_info->run_to_completion) {
880 		/*
881 		 * If we are running to completion, then throw it in
882 		 * the list and run transactions until everything is
883 		 * clear.  Priority doesn't matter here.
884 		 */
885 
886 		/*
887 		 * Run to completion means we are single-threaded, no
888 		 * need for locks.
889 		 */
890 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
891 
892 		result = smi_event_handler(smi_info, 0);
893 		while (result != SI_SM_IDLE) {
894 			udelay(SI_SHORT_TIMEOUT_USEC);
895 			result = smi_event_handler(smi_info,
896 						   SI_SHORT_TIMEOUT_USEC);
897 		}
898 		return;
899 	}
900 
901 	spin_lock_irqsave(&smi_info->msg_lock, flags);
902 	if (priority > 0)
903 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
904 	else
905 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
906 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
907 
908 	spin_lock_irqsave(&smi_info->si_lock, flags);
909 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
910 		start_next_msg(smi_info);
911 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
912 }
913 
914 static void set_run_to_completion(void *send_info, int i_run_to_completion)
915 {
916 	struct smi_info   *smi_info = send_info;
917 	enum si_sm_result result;
918 
919 	smi_info->run_to_completion = i_run_to_completion;
920 	if (i_run_to_completion) {
921 		result = smi_event_handler(smi_info, 0);
922 		while (result != SI_SM_IDLE) {
923 			udelay(SI_SHORT_TIMEOUT_USEC);
924 			result = smi_event_handler(smi_info,
925 						   SI_SHORT_TIMEOUT_USEC);
926 		}
927 	}
928 }
929 
930 static int ipmi_thread(void *data)
931 {
932 	struct smi_info *smi_info = data;
933 	unsigned long flags;
934 	enum si_sm_result smi_result;
935 
936 	set_user_nice(current, 19);
937 	while (!kthread_should_stop()) {
938 		spin_lock_irqsave(&(smi_info->si_lock), flags);
939 		smi_result = smi_event_handler(smi_info, 0);
940 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
941 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
942 			; /* do nothing */
943 		else if (smi_result == SI_SM_CALL_WITH_DELAY)
944 			schedule();
945 		else
946 			schedule_timeout_interruptible(1);
947 	}
948 	return 0;
949 }
950 
951 
952 static void poll(void *send_info)
953 {
954 	struct smi_info *smi_info = send_info;
955 	unsigned long flags;
956 
957 	/*
958 	 * Make sure there is some delay in the poll loop so we can
959 	 * drive time forward and timeout things.
960 	 */
961 	udelay(10);
962 	spin_lock_irqsave(&smi_info->si_lock, flags);
963 	smi_event_handler(smi_info, 10);
964 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
965 }
966 
967 static void request_events(void *send_info)
968 {
969 	struct smi_info *smi_info = send_info;
970 
971 	if (atomic_read(&smi_info->stop_operation))
972 		return;
973 
974 	atomic_set(&smi_info->req_events, 1);
975 }
976 
977 static int initialized;
978 
979 static void smi_timeout(unsigned long data)
980 {
981 	struct smi_info   *smi_info = (struct smi_info *) data;
982 	enum si_sm_result smi_result;
983 	unsigned long     flags;
984 	unsigned long     jiffies_now;
985 	long              time_diff;
986 #ifdef DEBUG_TIMING
987 	struct timeval    t;
988 #endif
989 
990 	spin_lock_irqsave(&(smi_info->si_lock), flags);
991 #ifdef DEBUG_TIMING
992 	do_gettimeofday(&t);
993 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
994 #endif
995 	jiffies_now = jiffies;
996 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
997 		     * SI_USEC_PER_JIFFY);
998 	smi_result = smi_event_handler(smi_info, time_diff);
999 
1000 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1001 
1002 	smi_info->last_timeout_jiffies = jiffies_now;
1003 
1004 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1005 		/* Running with interrupts, only do long timeouts. */
1006 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1007 		smi_inc_stat(smi_info, long_timeouts);
1008 		goto do_add_timer;
1009 	}
1010 
1011 	/*
1012 	 * If the state machine asks for a short delay, then shorten
1013 	 * the timer timeout.
1014 	 */
1015 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1016 		smi_inc_stat(smi_info, short_timeouts);
1017 		smi_info->si_timer.expires = jiffies + 1;
1018 	} else {
1019 		smi_inc_stat(smi_info, long_timeouts);
1020 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1021 	}
1022 
1023  do_add_timer:
1024 	add_timer(&(smi_info->si_timer));
1025 }
1026 
1027 static irqreturn_t si_irq_handler(int irq, void *data)
1028 {
1029 	struct smi_info *smi_info = data;
1030 	unsigned long   flags;
1031 #ifdef DEBUG_TIMING
1032 	struct timeval  t;
1033 #endif
1034 
1035 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1036 
1037 	smi_inc_stat(smi_info, interrupts);
1038 
1039 #ifdef DEBUG_TIMING
1040 	do_gettimeofday(&t);
1041 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1042 #endif
1043 	smi_event_handler(smi_info, 0);
1044 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1045 	return IRQ_HANDLED;
1046 }
1047 
1048 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1049 {
1050 	struct smi_info *smi_info = data;
1051 	/* We need to clear the IRQ flag for the BT interface. */
1052 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1053 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1054 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1055 	return si_irq_handler(irq, data);
1056 }
1057 
1058 static int smi_start_processing(void       *send_info,
1059 				ipmi_smi_t intf)
1060 {
1061 	struct smi_info *new_smi = send_info;
1062 	int             enable = 0;
1063 
1064 	new_smi->intf = intf;
1065 
1066 	/* Try to claim any interrupts. */
1067 	if (new_smi->irq_setup)
1068 		new_smi->irq_setup(new_smi);
1069 
1070 	/* Set up the timer that drives the interface. */
1071 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1072 	new_smi->last_timeout_jiffies = jiffies;
1073 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1074 
1075 	/*
1076 	 * Check if the user forcefully enabled the daemon.
1077 	 */
1078 	if (new_smi->intf_num < num_force_kipmid)
1079 		enable = force_kipmid[new_smi->intf_num];
1080 	/*
1081 	 * The BT interface is efficient enough to not need a thread,
1082 	 * and there is no need for a thread if we have interrupts.
1083 	 */
1084 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1085 		enable = 1;
1086 
1087 	if (enable) {
1088 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1089 					      "kipmi%d", new_smi->intf_num);
1090 		if (IS_ERR(new_smi->thread)) {
1091 			printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1092 			       " kernel thread due to error %ld, only using"
1093 			       " timers to drive the interface\n",
1094 			       PTR_ERR(new_smi->thread));
1095 			new_smi->thread = NULL;
1096 		}
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 static void set_maintenance_mode(void *send_info, int enable)
1103 {
1104 	struct smi_info   *smi_info = send_info;
1105 
1106 	if (!enable)
1107 		atomic_set(&smi_info->req_events, 0);
1108 }
1109 
1110 static struct ipmi_smi_handlers handlers = {
1111 	.owner                  = THIS_MODULE,
1112 	.start_processing       = smi_start_processing,
1113 	.sender			= sender,
1114 	.request_events		= request_events,
1115 	.set_maintenance_mode   = set_maintenance_mode,
1116 	.set_run_to_completion  = set_run_to_completion,
1117 	.poll			= poll,
1118 };
1119 
1120 /*
1121  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1122  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1123  */
1124 
1125 static LIST_HEAD(smi_infos);
1126 static DEFINE_MUTEX(smi_infos_lock);
1127 static int smi_num; /* Used to sequence the SMIs */
1128 
1129 #define DEFAULT_REGSPACING	1
1130 #define DEFAULT_REGSIZE		1
1131 
1132 static int           si_trydefaults = 1;
1133 static char          *si_type[SI_MAX_PARMS];
1134 #define MAX_SI_TYPE_STR 30
1135 static char          si_type_str[MAX_SI_TYPE_STR];
1136 static unsigned long addrs[SI_MAX_PARMS];
1137 static unsigned int num_addrs;
1138 static unsigned int  ports[SI_MAX_PARMS];
1139 static unsigned int num_ports;
1140 static int           irqs[SI_MAX_PARMS];
1141 static unsigned int num_irqs;
1142 static int           regspacings[SI_MAX_PARMS];
1143 static unsigned int num_regspacings;
1144 static int           regsizes[SI_MAX_PARMS];
1145 static unsigned int num_regsizes;
1146 static int           regshifts[SI_MAX_PARMS];
1147 static unsigned int num_regshifts;
1148 static int slave_addrs[SI_MAX_PARMS];
1149 static unsigned int num_slave_addrs;
1150 
1151 #define IPMI_IO_ADDR_SPACE  0
1152 #define IPMI_MEM_ADDR_SPACE 1
1153 static char *addr_space_to_str[] = { "i/o", "mem" };
1154 
1155 static int hotmod_handler(const char *val, struct kernel_param *kp);
1156 
1157 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1158 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1159 		 " Documentation/IPMI.txt in the kernel sources for the"
1160 		 " gory details.");
1161 
1162 module_param_named(trydefaults, si_trydefaults, bool, 0);
1163 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1164 		 " default scan of the KCS and SMIC interface at the standard"
1165 		 " address");
1166 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1167 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1168 		 " interface separated by commas.  The types are 'kcs',"
1169 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1170 		 " the first interface to kcs and the second to bt");
1171 module_param_array(addrs, ulong, &num_addrs, 0);
1172 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1173 		 " addresses separated by commas.  Only use if an interface"
1174 		 " is in memory.  Otherwise, set it to zero or leave"
1175 		 " it blank.");
1176 module_param_array(ports, uint, &num_ports, 0);
1177 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1178 		 " addresses separated by commas.  Only use if an interface"
1179 		 " is a port.  Otherwise, set it to zero or leave"
1180 		 " it blank.");
1181 module_param_array(irqs, int, &num_irqs, 0);
1182 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1183 		 " addresses separated by commas.  Only use if an interface"
1184 		 " has an interrupt.  Otherwise, set it to zero or leave"
1185 		 " it blank.");
1186 module_param_array(regspacings, int, &num_regspacings, 0);
1187 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1188 		 " and each successive register used by the interface.  For"
1189 		 " instance, if the start address is 0xca2 and the spacing"
1190 		 " is 2, then the second address is at 0xca4.  Defaults"
1191 		 " to 1.");
1192 module_param_array(regsizes, int, &num_regsizes, 0);
1193 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1194 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1195 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1196 		 " the 8-bit IPMI register has to be read from a larger"
1197 		 " register.");
1198 module_param_array(regshifts, int, &num_regshifts, 0);
1199 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1200 		 " IPMI register, in bits.  For instance, if the data"
1201 		 " is read from a 32-bit word and the IPMI data is in"
1202 		 " bit 8-15, then the shift would be 8");
1203 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1204 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1205 		 " the controller.  Normally this is 0x20, but can be"
1206 		 " overridden by this parm.  This is an array indexed"
1207 		 " by interface number.");
1208 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1209 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1210 		 " disabled(0).  Normally the IPMI driver auto-detects"
1211 		 " this, but the value may be overridden by this parm.");
1212 module_param(unload_when_empty, int, 0);
1213 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1214 		 " specified or found, default is 1.  Setting to 0"
1215 		 " is useful for hot add of devices using hotmod.");
1216 
1217 
1218 static void std_irq_cleanup(struct smi_info *info)
1219 {
1220 	if (info->si_type == SI_BT)
1221 		/* Disable the interrupt in the BT interface. */
1222 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1223 	free_irq(info->irq, info);
1224 }
1225 
1226 static int std_irq_setup(struct smi_info *info)
1227 {
1228 	int rv;
1229 
1230 	if (!info->irq)
1231 		return 0;
1232 
1233 	if (info->si_type == SI_BT) {
1234 		rv = request_irq(info->irq,
1235 				 si_bt_irq_handler,
1236 				 IRQF_SHARED | IRQF_DISABLED,
1237 				 DEVICE_NAME,
1238 				 info);
1239 		if (!rv)
1240 			/* Enable the interrupt in the BT interface. */
1241 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1242 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1243 	} else
1244 		rv = request_irq(info->irq,
1245 				 si_irq_handler,
1246 				 IRQF_SHARED | IRQF_DISABLED,
1247 				 DEVICE_NAME,
1248 				 info);
1249 	if (rv) {
1250 		printk(KERN_WARNING
1251 		       "ipmi_si: %s unable to claim interrupt %d,"
1252 		       " running polled\n",
1253 		       DEVICE_NAME, info->irq);
1254 		info->irq = 0;
1255 	} else {
1256 		info->irq_cleanup = std_irq_cleanup;
1257 		printk("  Using irq %d\n", info->irq);
1258 	}
1259 
1260 	return rv;
1261 }
1262 
1263 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1264 {
1265 	unsigned int addr = io->addr_data;
1266 
1267 	return inb(addr + (offset * io->regspacing));
1268 }
1269 
1270 static void port_outb(struct si_sm_io *io, unsigned int offset,
1271 		      unsigned char b)
1272 {
1273 	unsigned int addr = io->addr_data;
1274 
1275 	outb(b, addr + (offset * io->regspacing));
1276 }
1277 
1278 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1279 {
1280 	unsigned int addr = io->addr_data;
1281 
1282 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1283 }
1284 
1285 static void port_outw(struct si_sm_io *io, unsigned int offset,
1286 		      unsigned char b)
1287 {
1288 	unsigned int addr = io->addr_data;
1289 
1290 	outw(b << io->regshift, addr + (offset * io->regspacing));
1291 }
1292 
1293 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1294 {
1295 	unsigned int addr = io->addr_data;
1296 
1297 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1298 }
1299 
1300 static void port_outl(struct si_sm_io *io, unsigned int offset,
1301 		      unsigned char b)
1302 {
1303 	unsigned int addr = io->addr_data;
1304 
1305 	outl(b << io->regshift, addr+(offset * io->regspacing));
1306 }
1307 
1308 static void port_cleanup(struct smi_info *info)
1309 {
1310 	unsigned int addr = info->io.addr_data;
1311 	int          idx;
1312 
1313 	if (addr) {
1314 		for (idx = 0; idx < info->io_size; idx++)
1315 			release_region(addr + idx * info->io.regspacing,
1316 				       info->io.regsize);
1317 	}
1318 }
1319 
1320 static int port_setup(struct smi_info *info)
1321 {
1322 	unsigned int addr = info->io.addr_data;
1323 	int          idx;
1324 
1325 	if (!addr)
1326 		return -ENODEV;
1327 
1328 	info->io_cleanup = port_cleanup;
1329 
1330 	/*
1331 	 * Figure out the actual inb/inw/inl/etc routine to use based
1332 	 * upon the register size.
1333 	 */
1334 	switch (info->io.regsize) {
1335 	case 1:
1336 		info->io.inputb = port_inb;
1337 		info->io.outputb = port_outb;
1338 		break;
1339 	case 2:
1340 		info->io.inputb = port_inw;
1341 		info->io.outputb = port_outw;
1342 		break;
1343 	case 4:
1344 		info->io.inputb = port_inl;
1345 		info->io.outputb = port_outl;
1346 		break;
1347 	default:
1348 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1349 		       info->io.regsize);
1350 		return -EINVAL;
1351 	}
1352 
1353 	/*
1354 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1355 	 * tables.  This causes problems when trying to register the
1356 	 * entire I/O region.  Therefore we must register each I/O
1357 	 * port separately.
1358 	 */
1359 	for (idx = 0; idx < info->io_size; idx++) {
1360 		if (request_region(addr + idx * info->io.regspacing,
1361 				   info->io.regsize, DEVICE_NAME) == NULL) {
1362 			/* Undo allocations */
1363 			while (idx--) {
1364 				release_region(addr + idx * info->io.regspacing,
1365 					       info->io.regsize);
1366 			}
1367 			return -EIO;
1368 		}
1369 	}
1370 	return 0;
1371 }
1372 
1373 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1374 {
1375 	return readb((io->addr)+(offset * io->regspacing));
1376 }
1377 
1378 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1379 		     unsigned char b)
1380 {
1381 	writeb(b, (io->addr)+(offset * io->regspacing));
1382 }
1383 
1384 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1385 {
1386 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1387 		& 0xff;
1388 }
1389 
1390 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1391 		     unsigned char b)
1392 {
1393 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1394 }
1395 
1396 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1397 {
1398 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1399 		& 0xff;
1400 }
1401 
1402 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1403 		     unsigned char b)
1404 {
1405 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1406 }
1407 
1408 #ifdef readq
1409 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1410 {
1411 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1412 		& 0xff;
1413 }
1414 
1415 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1416 		     unsigned char b)
1417 {
1418 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1419 }
1420 #endif
1421 
1422 static void mem_cleanup(struct smi_info *info)
1423 {
1424 	unsigned long addr = info->io.addr_data;
1425 	int           mapsize;
1426 
1427 	if (info->io.addr) {
1428 		iounmap(info->io.addr);
1429 
1430 		mapsize = ((info->io_size * info->io.regspacing)
1431 			   - (info->io.regspacing - info->io.regsize));
1432 
1433 		release_mem_region(addr, mapsize);
1434 	}
1435 }
1436 
1437 static int mem_setup(struct smi_info *info)
1438 {
1439 	unsigned long addr = info->io.addr_data;
1440 	int           mapsize;
1441 
1442 	if (!addr)
1443 		return -ENODEV;
1444 
1445 	info->io_cleanup = mem_cleanup;
1446 
1447 	/*
1448 	 * Figure out the actual readb/readw/readl/etc routine to use based
1449 	 * upon the register size.
1450 	 */
1451 	switch (info->io.regsize) {
1452 	case 1:
1453 		info->io.inputb = intf_mem_inb;
1454 		info->io.outputb = intf_mem_outb;
1455 		break;
1456 	case 2:
1457 		info->io.inputb = intf_mem_inw;
1458 		info->io.outputb = intf_mem_outw;
1459 		break;
1460 	case 4:
1461 		info->io.inputb = intf_mem_inl;
1462 		info->io.outputb = intf_mem_outl;
1463 		break;
1464 #ifdef readq
1465 	case 8:
1466 		info->io.inputb = mem_inq;
1467 		info->io.outputb = mem_outq;
1468 		break;
1469 #endif
1470 	default:
1471 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1472 		       info->io.regsize);
1473 		return -EINVAL;
1474 	}
1475 
1476 	/*
1477 	 * Calculate the total amount of memory to claim.  This is an
1478 	 * unusual looking calculation, but it avoids claiming any
1479 	 * more memory than it has to.  It will claim everything
1480 	 * between the first address to the end of the last full
1481 	 * register.
1482 	 */
1483 	mapsize = ((info->io_size * info->io.regspacing)
1484 		   - (info->io.regspacing - info->io.regsize));
1485 
1486 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1487 		return -EIO;
1488 
1489 	info->io.addr = ioremap(addr, mapsize);
1490 	if (info->io.addr == NULL) {
1491 		release_mem_region(addr, mapsize);
1492 		return -EIO;
1493 	}
1494 	return 0;
1495 }
1496 
1497 /*
1498  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1499  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1500  * Options are:
1501  *   rsp=<regspacing>
1502  *   rsi=<regsize>
1503  *   rsh=<regshift>
1504  *   irq=<irq>
1505  *   ipmb=<ipmb addr>
1506  */
1507 enum hotmod_op { HM_ADD, HM_REMOVE };
1508 struct hotmod_vals {
1509 	char *name;
1510 	int  val;
1511 };
1512 static struct hotmod_vals hotmod_ops[] = {
1513 	{ "add",	HM_ADD },
1514 	{ "remove",	HM_REMOVE },
1515 	{ NULL }
1516 };
1517 static struct hotmod_vals hotmod_si[] = {
1518 	{ "kcs",	SI_KCS },
1519 	{ "smic",	SI_SMIC },
1520 	{ "bt",		SI_BT },
1521 	{ NULL }
1522 };
1523 static struct hotmod_vals hotmod_as[] = {
1524 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1525 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1526 	{ NULL }
1527 };
1528 
1529 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1530 {
1531 	char *s;
1532 	int  i;
1533 
1534 	s = strchr(*curr, ',');
1535 	if (!s) {
1536 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1537 		return -EINVAL;
1538 	}
1539 	*s = '\0';
1540 	s++;
1541 	for (i = 0; hotmod_ops[i].name; i++) {
1542 		if (strcmp(*curr, v[i].name) == 0) {
1543 			*val = v[i].val;
1544 			*curr = s;
1545 			return 0;
1546 		}
1547 	}
1548 
1549 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1550 	return -EINVAL;
1551 }
1552 
1553 static int check_hotmod_int_op(const char *curr, const char *option,
1554 			       const char *name, int *val)
1555 {
1556 	char *n;
1557 
1558 	if (strcmp(curr, name) == 0) {
1559 		if (!option) {
1560 			printk(KERN_WARNING PFX
1561 			       "No option given for '%s'\n",
1562 			       curr);
1563 			return -EINVAL;
1564 		}
1565 		*val = simple_strtoul(option, &n, 0);
1566 		if ((*n != '\0') || (*option == '\0')) {
1567 			printk(KERN_WARNING PFX
1568 			       "Bad option given for '%s'\n",
1569 			       curr);
1570 			return -EINVAL;
1571 		}
1572 		return 1;
1573 	}
1574 	return 0;
1575 }
1576 
1577 static int hotmod_handler(const char *val, struct kernel_param *kp)
1578 {
1579 	char *str = kstrdup(val, GFP_KERNEL);
1580 	int  rv;
1581 	char *next, *curr, *s, *n, *o;
1582 	enum hotmod_op op;
1583 	enum si_type si_type;
1584 	int  addr_space;
1585 	unsigned long addr;
1586 	int regspacing;
1587 	int regsize;
1588 	int regshift;
1589 	int irq;
1590 	int ipmb;
1591 	int ival;
1592 	int len;
1593 	struct smi_info *info;
1594 
1595 	if (!str)
1596 		return -ENOMEM;
1597 
1598 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1599 	len = strlen(str);
1600 	ival = len - 1;
1601 	while ((ival >= 0) && isspace(str[ival])) {
1602 		str[ival] = '\0';
1603 		ival--;
1604 	}
1605 
1606 	for (curr = str; curr; curr = next) {
1607 		regspacing = 1;
1608 		regsize = 1;
1609 		regshift = 0;
1610 		irq = 0;
1611 		ipmb = 0x20;
1612 
1613 		next = strchr(curr, ':');
1614 		if (next) {
1615 			*next = '\0';
1616 			next++;
1617 		}
1618 
1619 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1620 		if (rv)
1621 			break;
1622 		op = ival;
1623 
1624 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1625 		if (rv)
1626 			break;
1627 		si_type = ival;
1628 
1629 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1630 		if (rv)
1631 			break;
1632 
1633 		s = strchr(curr, ',');
1634 		if (s) {
1635 			*s = '\0';
1636 			s++;
1637 		}
1638 		addr = simple_strtoul(curr, &n, 0);
1639 		if ((*n != '\0') || (*curr == '\0')) {
1640 			printk(KERN_WARNING PFX "Invalid hotmod address"
1641 			       " '%s'\n", curr);
1642 			break;
1643 		}
1644 
1645 		while (s) {
1646 			curr = s;
1647 			s = strchr(curr, ',');
1648 			if (s) {
1649 				*s = '\0';
1650 				s++;
1651 			}
1652 			o = strchr(curr, '=');
1653 			if (o) {
1654 				*o = '\0';
1655 				o++;
1656 			}
1657 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1658 			if (rv < 0)
1659 				goto out;
1660 			else if (rv)
1661 				continue;
1662 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1663 			if (rv < 0)
1664 				goto out;
1665 			else if (rv)
1666 				continue;
1667 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1668 			if (rv < 0)
1669 				goto out;
1670 			else if (rv)
1671 				continue;
1672 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1673 			if (rv < 0)
1674 				goto out;
1675 			else if (rv)
1676 				continue;
1677 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1678 			if (rv < 0)
1679 				goto out;
1680 			else if (rv)
1681 				continue;
1682 
1683 			rv = -EINVAL;
1684 			printk(KERN_WARNING PFX
1685 			       "Invalid hotmod option '%s'\n",
1686 			       curr);
1687 			goto out;
1688 		}
1689 
1690 		if (op == HM_ADD) {
1691 			info = kzalloc(sizeof(*info), GFP_KERNEL);
1692 			if (!info) {
1693 				rv = -ENOMEM;
1694 				goto out;
1695 			}
1696 
1697 			info->addr_source = "hotmod";
1698 			info->si_type = si_type;
1699 			info->io.addr_data = addr;
1700 			info->io.addr_type = addr_space;
1701 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1702 				info->io_setup = mem_setup;
1703 			else
1704 				info->io_setup = port_setup;
1705 
1706 			info->io.addr = NULL;
1707 			info->io.regspacing = regspacing;
1708 			if (!info->io.regspacing)
1709 				info->io.regspacing = DEFAULT_REGSPACING;
1710 			info->io.regsize = regsize;
1711 			if (!info->io.regsize)
1712 				info->io.regsize = DEFAULT_REGSPACING;
1713 			info->io.regshift = regshift;
1714 			info->irq = irq;
1715 			if (info->irq)
1716 				info->irq_setup = std_irq_setup;
1717 			info->slave_addr = ipmb;
1718 
1719 			try_smi_init(info);
1720 		} else {
1721 			/* remove */
1722 			struct smi_info *e, *tmp_e;
1723 
1724 			mutex_lock(&smi_infos_lock);
1725 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1726 				if (e->io.addr_type != addr_space)
1727 					continue;
1728 				if (e->si_type != si_type)
1729 					continue;
1730 				if (e->io.addr_data == addr)
1731 					cleanup_one_si(e);
1732 			}
1733 			mutex_unlock(&smi_infos_lock);
1734 		}
1735 	}
1736 	rv = len;
1737  out:
1738 	kfree(str);
1739 	return rv;
1740 }
1741 
1742 static __devinit void hardcode_find_bmc(void)
1743 {
1744 	int             i;
1745 	struct smi_info *info;
1746 
1747 	for (i = 0; i < SI_MAX_PARMS; i++) {
1748 		if (!ports[i] && !addrs[i])
1749 			continue;
1750 
1751 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1752 		if (!info)
1753 			return;
1754 
1755 		info->addr_source = "hardcoded";
1756 
1757 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1758 			info->si_type = SI_KCS;
1759 		} else if (strcmp(si_type[i], "smic") == 0) {
1760 			info->si_type = SI_SMIC;
1761 		} else if (strcmp(si_type[i], "bt") == 0) {
1762 			info->si_type = SI_BT;
1763 		} else {
1764 			printk(KERN_WARNING
1765 			       "ipmi_si: Interface type specified "
1766 			       "for interface %d, was invalid: %s\n",
1767 			       i, si_type[i]);
1768 			kfree(info);
1769 			continue;
1770 		}
1771 
1772 		if (ports[i]) {
1773 			/* An I/O port */
1774 			info->io_setup = port_setup;
1775 			info->io.addr_data = ports[i];
1776 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1777 		} else if (addrs[i]) {
1778 			/* A memory port */
1779 			info->io_setup = mem_setup;
1780 			info->io.addr_data = addrs[i];
1781 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1782 		} else {
1783 			printk(KERN_WARNING
1784 			       "ipmi_si: Interface type specified "
1785 			       "for interface %d, "
1786 			       "but port and address were not set or "
1787 			       "set to zero.\n", i);
1788 			kfree(info);
1789 			continue;
1790 		}
1791 
1792 		info->io.addr = NULL;
1793 		info->io.regspacing = regspacings[i];
1794 		if (!info->io.regspacing)
1795 			info->io.regspacing = DEFAULT_REGSPACING;
1796 		info->io.regsize = regsizes[i];
1797 		if (!info->io.regsize)
1798 			info->io.regsize = DEFAULT_REGSPACING;
1799 		info->io.regshift = regshifts[i];
1800 		info->irq = irqs[i];
1801 		if (info->irq)
1802 			info->irq_setup = std_irq_setup;
1803 
1804 		try_smi_init(info);
1805 	}
1806 }
1807 
1808 #ifdef CONFIG_ACPI
1809 
1810 #include <linux/acpi.h>
1811 
1812 /*
1813  * Once we get an ACPI failure, we don't try any more, because we go
1814  * through the tables sequentially.  Once we don't find a table, there
1815  * are no more.
1816  */
1817 static int acpi_failure;
1818 
1819 /* For GPE-type interrupts. */
1820 static u32 ipmi_acpi_gpe(void *context)
1821 {
1822 	struct smi_info *smi_info = context;
1823 	unsigned long   flags;
1824 #ifdef DEBUG_TIMING
1825 	struct timeval t;
1826 #endif
1827 
1828 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1829 
1830 	smi_inc_stat(smi_info, interrupts);
1831 
1832 #ifdef DEBUG_TIMING
1833 	do_gettimeofday(&t);
1834 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1835 #endif
1836 	smi_event_handler(smi_info, 0);
1837 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1838 
1839 	return ACPI_INTERRUPT_HANDLED;
1840 }
1841 
1842 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1843 {
1844 	if (!info->irq)
1845 		return;
1846 
1847 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1848 }
1849 
1850 static int acpi_gpe_irq_setup(struct smi_info *info)
1851 {
1852 	acpi_status status;
1853 
1854 	if (!info->irq)
1855 		return 0;
1856 
1857 	/* FIXME - is level triggered right? */
1858 	status = acpi_install_gpe_handler(NULL,
1859 					  info->irq,
1860 					  ACPI_GPE_LEVEL_TRIGGERED,
1861 					  &ipmi_acpi_gpe,
1862 					  info);
1863 	if (status != AE_OK) {
1864 		printk(KERN_WARNING
1865 		       "ipmi_si: %s unable to claim ACPI GPE %d,"
1866 		       " running polled\n",
1867 		       DEVICE_NAME, info->irq);
1868 		info->irq = 0;
1869 		return -EINVAL;
1870 	} else {
1871 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1872 		printk("  Using ACPI GPE %d\n", info->irq);
1873 		return 0;
1874 	}
1875 }
1876 
1877 /*
1878  * Defined at
1879  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1880  * Docs/TechPapers/IA64/hpspmi.pdf
1881  */
1882 struct SPMITable {
1883 	s8	Signature[4];
1884 	u32	Length;
1885 	u8	Revision;
1886 	u8	Checksum;
1887 	s8	OEMID[6];
1888 	s8	OEMTableID[8];
1889 	s8	OEMRevision[4];
1890 	s8	CreatorID[4];
1891 	s8	CreatorRevision[4];
1892 	u8	InterfaceType;
1893 	u8	IPMIlegacy;
1894 	s16	SpecificationRevision;
1895 
1896 	/*
1897 	 * Bit 0 - SCI interrupt supported
1898 	 * Bit 1 - I/O APIC/SAPIC
1899 	 */
1900 	u8	InterruptType;
1901 
1902 	/*
1903 	 * If bit 0 of InterruptType is set, then this is the SCI
1904 	 * interrupt in the GPEx_STS register.
1905 	 */
1906 	u8	GPE;
1907 
1908 	s16	Reserved;
1909 
1910 	/*
1911 	 * If bit 1 of InterruptType is set, then this is the I/O
1912 	 * APIC/SAPIC interrupt.
1913 	 */
1914 	u32	GlobalSystemInterrupt;
1915 
1916 	/* The actual register address. */
1917 	struct acpi_generic_address addr;
1918 
1919 	u8	UID[4];
1920 
1921 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1922 };
1923 
1924 static __devinit int try_init_acpi(struct SPMITable *spmi)
1925 {
1926 	struct smi_info  *info;
1927 	u8 		 addr_space;
1928 
1929 	if (spmi->IPMIlegacy != 1) {
1930 	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1931 	    return -ENODEV;
1932 	}
1933 
1934 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1935 		addr_space = IPMI_MEM_ADDR_SPACE;
1936 	else
1937 		addr_space = IPMI_IO_ADDR_SPACE;
1938 
1939 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1940 	if (!info) {
1941 		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1942 		return -ENOMEM;
1943 	}
1944 
1945 	info->addr_source = "ACPI";
1946 
1947 	/* Figure out the interface type. */
1948 	switch (spmi->InterfaceType) {
1949 	case 1:	/* KCS */
1950 		info->si_type = SI_KCS;
1951 		break;
1952 	case 2:	/* SMIC */
1953 		info->si_type = SI_SMIC;
1954 		break;
1955 	case 3:	/* BT */
1956 		info->si_type = SI_BT;
1957 		break;
1958 	default:
1959 		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1960 			spmi->InterfaceType);
1961 		kfree(info);
1962 		return -EIO;
1963 	}
1964 
1965 	if (spmi->InterruptType & 1) {
1966 		/* We've got a GPE interrupt. */
1967 		info->irq = spmi->GPE;
1968 		info->irq_setup = acpi_gpe_irq_setup;
1969 	} else if (spmi->InterruptType & 2) {
1970 		/* We've got an APIC/SAPIC interrupt. */
1971 		info->irq = spmi->GlobalSystemInterrupt;
1972 		info->irq_setup = std_irq_setup;
1973 	} else {
1974 		/* Use the default interrupt setting. */
1975 		info->irq = 0;
1976 		info->irq_setup = NULL;
1977 	}
1978 
1979 	if (spmi->addr.bit_width) {
1980 		/* A (hopefully) properly formed register bit width. */
1981 		info->io.regspacing = spmi->addr.bit_width / 8;
1982 	} else {
1983 		info->io.regspacing = DEFAULT_REGSPACING;
1984 	}
1985 	info->io.regsize = info->io.regspacing;
1986 	info->io.regshift = spmi->addr.bit_offset;
1987 
1988 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1989 		info->io_setup = mem_setup;
1990 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1991 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1992 		info->io_setup = port_setup;
1993 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
1994 	} else {
1995 		kfree(info);
1996 		printk(KERN_WARNING
1997 		       "ipmi_si: Unknown ACPI I/O Address type\n");
1998 		return -EIO;
1999 	}
2000 	info->io.addr_data = spmi->addr.address;
2001 
2002 	try_smi_init(info);
2003 
2004 	return 0;
2005 }
2006 
2007 static __devinit void acpi_find_bmc(void)
2008 {
2009 	acpi_status      status;
2010 	struct SPMITable *spmi;
2011 	int              i;
2012 
2013 	if (acpi_disabled)
2014 		return;
2015 
2016 	if (acpi_failure)
2017 		return;
2018 
2019 	for (i = 0; ; i++) {
2020 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2021 					(struct acpi_table_header **)&spmi);
2022 		if (status != AE_OK)
2023 			return;
2024 
2025 		try_init_acpi(spmi);
2026 	}
2027 }
2028 #endif
2029 
2030 #ifdef CONFIG_DMI
2031 struct dmi_ipmi_data {
2032 	u8   		type;
2033 	u8   		addr_space;
2034 	unsigned long	base_addr;
2035 	u8   		irq;
2036 	u8              offset;
2037 	u8              slave_addr;
2038 };
2039 
2040 static int __devinit decode_dmi(const struct dmi_header *dm,
2041 				struct dmi_ipmi_data *dmi)
2042 {
2043 	const u8	*data = (const u8 *)dm;
2044 	unsigned long  	base_addr;
2045 	u8		reg_spacing;
2046 	u8              len = dm->length;
2047 
2048 	dmi->type = data[4];
2049 
2050 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2051 	if (len >= 0x11) {
2052 		if (base_addr & 1) {
2053 			/* I/O */
2054 			base_addr &= 0xFFFE;
2055 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2056 		} else
2057 			/* Memory */
2058 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2059 
2060 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2061 		   is odd. */
2062 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2063 
2064 		dmi->irq = data[0x11];
2065 
2066 		/* The top two bits of byte 0x10 hold the register spacing. */
2067 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2068 		switch (reg_spacing) {
2069 		case 0x00: /* Byte boundaries */
2070 		    dmi->offset = 1;
2071 		    break;
2072 		case 0x01: /* 32-bit boundaries */
2073 		    dmi->offset = 4;
2074 		    break;
2075 		case 0x02: /* 16-byte boundaries */
2076 		    dmi->offset = 16;
2077 		    break;
2078 		default:
2079 		    /* Some other interface, just ignore it. */
2080 		    return -EIO;
2081 		}
2082 	} else {
2083 		/* Old DMI spec. */
2084 		/*
2085 		 * Note that technically, the lower bit of the base
2086 		 * address should be 1 if the address is I/O and 0 if
2087 		 * the address is in memory.  So many systems get that
2088 		 * wrong (and all that I have seen are I/O) so we just
2089 		 * ignore that bit and assume I/O.  Systems that use
2090 		 * memory should use the newer spec, anyway.
2091 		 */
2092 		dmi->base_addr = base_addr & 0xfffe;
2093 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2094 		dmi->offset = 1;
2095 	}
2096 
2097 	dmi->slave_addr = data[6];
2098 
2099 	return 0;
2100 }
2101 
2102 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2103 {
2104 	struct smi_info *info;
2105 
2106 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2107 	if (!info) {
2108 		printk(KERN_ERR
2109 		       "ipmi_si: Could not allocate SI data\n");
2110 		return;
2111 	}
2112 
2113 	info->addr_source = "SMBIOS";
2114 
2115 	switch (ipmi_data->type) {
2116 	case 0x01: /* KCS */
2117 		info->si_type = SI_KCS;
2118 		break;
2119 	case 0x02: /* SMIC */
2120 		info->si_type = SI_SMIC;
2121 		break;
2122 	case 0x03: /* BT */
2123 		info->si_type = SI_BT;
2124 		break;
2125 	default:
2126 		kfree(info);
2127 		return;
2128 	}
2129 
2130 	switch (ipmi_data->addr_space) {
2131 	case IPMI_MEM_ADDR_SPACE:
2132 		info->io_setup = mem_setup;
2133 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2134 		break;
2135 
2136 	case IPMI_IO_ADDR_SPACE:
2137 		info->io_setup = port_setup;
2138 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2139 		break;
2140 
2141 	default:
2142 		kfree(info);
2143 		printk(KERN_WARNING
2144 		       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2145 		       ipmi_data->addr_space);
2146 		return;
2147 	}
2148 	info->io.addr_data = ipmi_data->base_addr;
2149 
2150 	info->io.regspacing = ipmi_data->offset;
2151 	if (!info->io.regspacing)
2152 		info->io.regspacing = DEFAULT_REGSPACING;
2153 	info->io.regsize = DEFAULT_REGSPACING;
2154 	info->io.regshift = 0;
2155 
2156 	info->slave_addr = ipmi_data->slave_addr;
2157 
2158 	info->irq = ipmi_data->irq;
2159 	if (info->irq)
2160 		info->irq_setup = std_irq_setup;
2161 
2162 	try_smi_init(info);
2163 }
2164 
2165 static void __devinit dmi_find_bmc(void)
2166 {
2167 	const struct dmi_device *dev = NULL;
2168 	struct dmi_ipmi_data data;
2169 	int                  rv;
2170 
2171 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2172 		memset(&data, 0, sizeof(data));
2173 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2174 				&data);
2175 		if (!rv)
2176 			try_init_dmi(&data);
2177 	}
2178 }
2179 #endif /* CONFIG_DMI */
2180 
2181 #ifdef CONFIG_PCI
2182 
2183 #define PCI_ERMC_CLASSCODE		0x0C0700
2184 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2185 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2186 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2187 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2188 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2189 
2190 #define PCI_HP_VENDOR_ID    0x103C
2191 #define PCI_MMC_DEVICE_ID   0x121A
2192 #define PCI_MMC_ADDR_CW     0x10
2193 
2194 static void ipmi_pci_cleanup(struct smi_info *info)
2195 {
2196 	struct pci_dev *pdev = info->addr_source_data;
2197 
2198 	pci_disable_device(pdev);
2199 }
2200 
2201 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2202 				    const struct pci_device_id *ent)
2203 {
2204 	int rv;
2205 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2206 	struct smi_info *info;
2207 	int first_reg_offset = 0;
2208 
2209 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2210 	if (!info)
2211 		return -ENOMEM;
2212 
2213 	info->addr_source = "PCI";
2214 
2215 	switch (class_type) {
2216 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2217 		info->si_type = SI_SMIC;
2218 		break;
2219 
2220 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2221 		info->si_type = SI_KCS;
2222 		break;
2223 
2224 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2225 		info->si_type = SI_BT;
2226 		break;
2227 
2228 	default:
2229 		kfree(info);
2230 		printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2231 		       pci_name(pdev), class_type);
2232 		return -ENOMEM;
2233 	}
2234 
2235 	rv = pci_enable_device(pdev);
2236 	if (rv) {
2237 		printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2238 		       pci_name(pdev));
2239 		kfree(info);
2240 		return rv;
2241 	}
2242 
2243 	info->addr_source_cleanup = ipmi_pci_cleanup;
2244 	info->addr_source_data = pdev;
2245 
2246 	if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2247 		first_reg_offset = 1;
2248 
2249 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2250 		info->io_setup = port_setup;
2251 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2252 	} else {
2253 		info->io_setup = mem_setup;
2254 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2255 	}
2256 	info->io.addr_data = pci_resource_start(pdev, 0);
2257 
2258 	info->io.regspacing = DEFAULT_REGSPACING;
2259 	info->io.regsize = DEFAULT_REGSPACING;
2260 	info->io.regshift = 0;
2261 
2262 	info->irq = pdev->irq;
2263 	if (info->irq)
2264 		info->irq_setup = std_irq_setup;
2265 
2266 	info->dev = &pdev->dev;
2267 	pci_set_drvdata(pdev, info);
2268 
2269 	return try_smi_init(info);
2270 }
2271 
2272 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2273 {
2274 	struct smi_info *info = pci_get_drvdata(pdev);
2275 	cleanup_one_si(info);
2276 }
2277 
2278 #ifdef CONFIG_PM
2279 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2280 {
2281 	return 0;
2282 }
2283 
2284 static int ipmi_pci_resume(struct pci_dev *pdev)
2285 {
2286 	return 0;
2287 }
2288 #endif
2289 
2290 static struct pci_device_id ipmi_pci_devices[] = {
2291 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2292 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2293 	{ 0, }
2294 };
2295 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2296 
2297 static struct pci_driver ipmi_pci_driver = {
2298 	.name =         DEVICE_NAME,
2299 	.id_table =     ipmi_pci_devices,
2300 	.probe =        ipmi_pci_probe,
2301 	.remove =       __devexit_p(ipmi_pci_remove),
2302 #ifdef CONFIG_PM
2303 	.suspend =      ipmi_pci_suspend,
2304 	.resume =       ipmi_pci_resume,
2305 #endif
2306 };
2307 #endif /* CONFIG_PCI */
2308 
2309 
2310 #ifdef CONFIG_PPC_OF
2311 static int __devinit ipmi_of_probe(struct of_device *dev,
2312 			 const struct of_device_id *match)
2313 {
2314 	struct smi_info *info;
2315 	struct resource resource;
2316 	const int *regsize, *regspacing, *regshift;
2317 	struct device_node *np = dev->node;
2318 	int ret;
2319 	int proplen;
2320 
2321 	dev_info(&dev->dev, PFX "probing via device tree\n");
2322 
2323 	ret = of_address_to_resource(np, 0, &resource);
2324 	if (ret) {
2325 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2326 		return ret;
2327 	}
2328 
2329 	regsize = of_get_property(np, "reg-size", &proplen);
2330 	if (regsize && proplen != 4) {
2331 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2332 		return -EINVAL;
2333 	}
2334 
2335 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2336 	if (regspacing && proplen != 4) {
2337 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2338 		return -EINVAL;
2339 	}
2340 
2341 	regshift = of_get_property(np, "reg-shift", &proplen);
2342 	if (regshift && proplen != 4) {
2343 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2344 		return -EINVAL;
2345 	}
2346 
2347 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2348 
2349 	if (!info) {
2350 		dev_err(&dev->dev,
2351 			PFX "could not allocate memory for OF probe\n");
2352 		return -ENOMEM;
2353 	}
2354 
2355 	info->si_type		= (enum si_type) match->data;
2356 	info->addr_source	= "device-tree";
2357 	info->irq_setup		= std_irq_setup;
2358 
2359 	if (resource.flags & IORESOURCE_IO) {
2360 		info->io_setup		= port_setup;
2361 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2362 	} else {
2363 		info->io_setup		= mem_setup;
2364 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2365 	}
2366 
2367 	info->io.addr_data	= resource.start;
2368 
2369 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2370 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2371 	info->io.regshift	= regshift ? *regshift : 0;
2372 
2373 	info->irq		= irq_of_parse_and_map(dev->node, 0);
2374 	info->dev		= &dev->dev;
2375 
2376 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2377 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2378 		info->irq);
2379 
2380 	dev->dev.driver_data = (void *) info;
2381 
2382 	return try_smi_init(info);
2383 }
2384 
2385 static int __devexit ipmi_of_remove(struct of_device *dev)
2386 {
2387 	cleanup_one_si(dev->dev.driver_data);
2388 	return 0;
2389 }
2390 
2391 static struct of_device_id ipmi_match[] =
2392 {
2393 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2394 	  .data = (void *)(unsigned long) SI_KCS },
2395 	{ .type = "ipmi", .compatible = "ipmi-smic",
2396 	  .data = (void *)(unsigned long) SI_SMIC },
2397 	{ .type = "ipmi", .compatible = "ipmi-bt",
2398 	  .data = (void *)(unsigned long) SI_BT },
2399 	{},
2400 };
2401 
2402 static struct of_platform_driver ipmi_of_platform_driver = {
2403 	.name		= "ipmi",
2404 	.match_table	= ipmi_match,
2405 	.probe		= ipmi_of_probe,
2406 	.remove		= __devexit_p(ipmi_of_remove),
2407 };
2408 #endif /* CONFIG_PPC_OF */
2409 
2410 
2411 static int try_get_dev_id(struct smi_info *smi_info)
2412 {
2413 	unsigned char         msg[2];
2414 	unsigned char         *resp;
2415 	unsigned long         resp_len;
2416 	enum si_sm_result     smi_result;
2417 	int                   rv = 0;
2418 
2419 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2420 	if (!resp)
2421 		return -ENOMEM;
2422 
2423 	/*
2424 	 * Do a Get Device ID command, since it comes back with some
2425 	 * useful info.
2426 	 */
2427 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2428 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2429 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2430 
2431 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2432 	for (;;) {
2433 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2434 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2435 			schedule_timeout_uninterruptible(1);
2436 			smi_result = smi_info->handlers->event(
2437 				smi_info->si_sm, 100);
2438 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2439 			smi_result = smi_info->handlers->event(
2440 				smi_info->si_sm, 0);
2441 		} else
2442 			break;
2443 	}
2444 	if (smi_result == SI_SM_HOSED) {
2445 		/*
2446 		 * We couldn't get the state machine to run, so whatever's at
2447 		 * the port is probably not an IPMI SMI interface.
2448 		 */
2449 		rv = -ENODEV;
2450 		goto out;
2451 	}
2452 
2453 	/* Otherwise, we got some data. */
2454 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2455 						  resp, IPMI_MAX_MSG_LENGTH);
2456 
2457 	/* Check and record info from the get device id, in case we need it. */
2458 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2459 
2460  out:
2461 	kfree(resp);
2462 	return rv;
2463 }
2464 
2465 static int type_file_read_proc(char *page, char **start, off_t off,
2466 			       int count, int *eof, void *data)
2467 {
2468 	struct smi_info *smi = data;
2469 
2470 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2471 }
2472 
2473 static int stat_file_read_proc(char *page, char **start, off_t off,
2474 			       int count, int *eof, void *data)
2475 {
2476 	char            *out = (char *) page;
2477 	struct smi_info *smi = data;
2478 
2479 	out += sprintf(out, "interrupts_enabled:    %d\n",
2480 		       smi->irq && !smi->interrupt_disabled);
2481 	out += sprintf(out, "short_timeouts:        %u\n",
2482 		       smi_get_stat(smi, short_timeouts));
2483 	out += sprintf(out, "long_timeouts:         %u\n",
2484 		       smi_get_stat(smi, long_timeouts));
2485 	out += sprintf(out, "idles:                 %u\n",
2486 		       smi_get_stat(smi, idles));
2487 	out += sprintf(out, "interrupts:            %u\n",
2488 		       smi_get_stat(smi, interrupts));
2489 	out += sprintf(out, "attentions:            %u\n",
2490 		       smi_get_stat(smi, attentions));
2491 	out += sprintf(out, "flag_fetches:          %u\n",
2492 		       smi_get_stat(smi, flag_fetches));
2493 	out += sprintf(out, "hosed_count:           %u\n",
2494 		       smi_get_stat(smi, hosed_count));
2495 	out += sprintf(out, "complete_transactions: %u\n",
2496 		       smi_get_stat(smi, complete_transactions));
2497 	out += sprintf(out, "events:                %u\n",
2498 		       smi_get_stat(smi, events));
2499 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2500 		       smi_get_stat(smi, watchdog_pretimeouts));
2501 	out += sprintf(out, "incoming_messages:     %u\n",
2502 		       smi_get_stat(smi, incoming_messages));
2503 
2504 	return out - page;
2505 }
2506 
2507 static int param_read_proc(char *page, char **start, off_t off,
2508 			   int count, int *eof, void *data)
2509 {
2510 	struct smi_info *smi = data;
2511 
2512 	return sprintf(page,
2513 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2514 		       si_to_str[smi->si_type],
2515 		       addr_space_to_str[smi->io.addr_type],
2516 		       smi->io.addr_data,
2517 		       smi->io.regspacing,
2518 		       smi->io.regsize,
2519 		       smi->io.regshift,
2520 		       smi->irq,
2521 		       smi->slave_addr);
2522 }
2523 
2524 /*
2525  * oem_data_avail_to_receive_msg_avail
2526  * @info - smi_info structure with msg_flags set
2527  *
2528  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2529  * Returns 1 indicating need to re-run handle_flags().
2530  */
2531 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2532 {
2533 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2534 			       RECEIVE_MSG_AVAIL);
2535 	return 1;
2536 }
2537 
2538 /*
2539  * setup_dell_poweredge_oem_data_handler
2540  * @info - smi_info.device_id must be populated
2541  *
2542  * Systems that match, but have firmware version < 1.40 may assert
2543  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2544  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2545  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2546  * as RECEIVE_MSG_AVAIL instead.
2547  *
2548  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2549  * assert the OEM[012] bits, and if it did, the driver would have to
2550  * change to handle that properly, we don't actually check for the
2551  * firmware version.
2552  * Device ID = 0x20                BMC on PowerEdge 8G servers
2553  * Device Revision = 0x80
2554  * Firmware Revision1 = 0x01       BMC version 1.40
2555  * Firmware Revision2 = 0x40       BCD encoded
2556  * IPMI Version = 0x51             IPMI 1.5
2557  * Manufacturer ID = A2 02 00      Dell IANA
2558  *
2559  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2560  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2561  *
2562  */
2563 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2564 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2565 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2566 #define DELL_IANA_MFR_ID 0x0002a2
2567 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2568 {
2569 	struct ipmi_device_id *id = &smi_info->device_id;
2570 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2571 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2572 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2573 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2574 			smi_info->oem_data_avail_handler =
2575 				oem_data_avail_to_receive_msg_avail;
2576 		} else if (ipmi_version_major(id) < 1 ||
2577 			   (ipmi_version_major(id) == 1 &&
2578 			    ipmi_version_minor(id) < 5)) {
2579 			smi_info->oem_data_avail_handler =
2580 				oem_data_avail_to_receive_msg_avail;
2581 		}
2582 	}
2583 }
2584 
2585 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2586 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2587 {
2588 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2589 
2590 	/* Make it a reponse */
2591 	msg->rsp[0] = msg->data[0] | 4;
2592 	msg->rsp[1] = msg->data[1];
2593 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2594 	msg->rsp_size = 3;
2595 	smi_info->curr_msg = NULL;
2596 	deliver_recv_msg(smi_info, msg);
2597 }
2598 
2599 /*
2600  * dell_poweredge_bt_xaction_handler
2601  * @info - smi_info.device_id must be populated
2602  *
2603  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2604  * not respond to a Get SDR command if the length of the data
2605  * requested is exactly 0x3A, which leads to command timeouts and no
2606  * data returned.  This intercepts such commands, and causes userspace
2607  * callers to try again with a different-sized buffer, which succeeds.
2608  */
2609 
2610 #define STORAGE_NETFN 0x0A
2611 #define STORAGE_CMD_GET_SDR 0x23
2612 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2613 					     unsigned long unused,
2614 					     void *in)
2615 {
2616 	struct smi_info *smi_info = in;
2617 	unsigned char *data = smi_info->curr_msg->data;
2618 	unsigned int size   = smi_info->curr_msg->data_size;
2619 	if (size >= 8 &&
2620 	    (data[0]>>2) == STORAGE_NETFN &&
2621 	    data[1] == STORAGE_CMD_GET_SDR &&
2622 	    data[7] == 0x3A) {
2623 		return_hosed_msg_badsize(smi_info);
2624 		return NOTIFY_STOP;
2625 	}
2626 	return NOTIFY_DONE;
2627 }
2628 
2629 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2630 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2631 };
2632 
2633 /*
2634  * setup_dell_poweredge_bt_xaction_handler
2635  * @info - smi_info.device_id must be filled in already
2636  *
2637  * Fills in smi_info.device_id.start_transaction_pre_hook
2638  * when we know what function to use there.
2639  */
2640 static void
2641 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2642 {
2643 	struct ipmi_device_id *id = &smi_info->device_id;
2644 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2645 	    smi_info->si_type == SI_BT)
2646 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2647 }
2648 
2649 /*
2650  * setup_oem_data_handler
2651  * @info - smi_info.device_id must be filled in already
2652  *
2653  * Fills in smi_info.device_id.oem_data_available_handler
2654  * when we know what function to use there.
2655  */
2656 
2657 static void setup_oem_data_handler(struct smi_info *smi_info)
2658 {
2659 	setup_dell_poweredge_oem_data_handler(smi_info);
2660 }
2661 
2662 static void setup_xaction_handlers(struct smi_info *smi_info)
2663 {
2664 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2665 }
2666 
2667 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2668 {
2669 	if (smi_info->intf) {
2670 		/*
2671 		 * The timer and thread are only running if the
2672 		 * interface has been started up and registered.
2673 		 */
2674 		if (smi_info->thread != NULL)
2675 			kthread_stop(smi_info->thread);
2676 		del_timer_sync(&smi_info->si_timer);
2677 	}
2678 }
2679 
2680 static __devinitdata struct ipmi_default_vals
2681 {
2682 	int type;
2683 	int port;
2684 } ipmi_defaults[] =
2685 {
2686 	{ .type = SI_KCS, .port = 0xca2 },
2687 	{ .type = SI_SMIC, .port = 0xca9 },
2688 	{ .type = SI_BT, .port = 0xe4 },
2689 	{ .port = 0 }
2690 };
2691 
2692 static __devinit void default_find_bmc(void)
2693 {
2694 	struct smi_info *info;
2695 	int             i;
2696 
2697 	for (i = 0; ; i++) {
2698 		if (!ipmi_defaults[i].port)
2699 			break;
2700 #ifdef CONFIG_PPC
2701 		if (check_legacy_ioport(ipmi_defaults[i].port))
2702 			continue;
2703 #endif
2704 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2705 		if (!info)
2706 			return;
2707 
2708 		info->addr_source = NULL;
2709 
2710 		info->si_type = ipmi_defaults[i].type;
2711 		info->io_setup = port_setup;
2712 		info->io.addr_data = ipmi_defaults[i].port;
2713 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2714 
2715 		info->io.addr = NULL;
2716 		info->io.regspacing = DEFAULT_REGSPACING;
2717 		info->io.regsize = DEFAULT_REGSPACING;
2718 		info->io.regshift = 0;
2719 
2720 		if (try_smi_init(info) == 0) {
2721 			/* Found one... */
2722 			printk(KERN_INFO "ipmi_si: Found default %s state"
2723 			       " machine at %s address 0x%lx\n",
2724 			       si_to_str[info->si_type],
2725 			       addr_space_to_str[info->io.addr_type],
2726 			       info->io.addr_data);
2727 			return;
2728 		}
2729 	}
2730 }
2731 
2732 static int is_new_interface(struct smi_info *info)
2733 {
2734 	struct smi_info *e;
2735 
2736 	list_for_each_entry(e, &smi_infos, link) {
2737 		if (e->io.addr_type != info->io.addr_type)
2738 			continue;
2739 		if (e->io.addr_data == info->io.addr_data)
2740 			return 0;
2741 	}
2742 
2743 	return 1;
2744 }
2745 
2746 static int try_smi_init(struct smi_info *new_smi)
2747 {
2748 	int rv;
2749 	int i;
2750 
2751 	if (new_smi->addr_source) {
2752 		printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2753 		       " machine at %s address 0x%lx, slave address 0x%x,"
2754 		       " irq %d\n",
2755 		       new_smi->addr_source,
2756 		       si_to_str[new_smi->si_type],
2757 		       addr_space_to_str[new_smi->io.addr_type],
2758 		       new_smi->io.addr_data,
2759 		       new_smi->slave_addr, new_smi->irq);
2760 	}
2761 
2762 	mutex_lock(&smi_infos_lock);
2763 	if (!is_new_interface(new_smi)) {
2764 		printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2765 		rv = -EBUSY;
2766 		goto out_err;
2767 	}
2768 
2769 	/* So we know not to free it unless we have allocated one. */
2770 	new_smi->intf = NULL;
2771 	new_smi->si_sm = NULL;
2772 	new_smi->handlers = NULL;
2773 
2774 	switch (new_smi->si_type) {
2775 	case SI_KCS:
2776 		new_smi->handlers = &kcs_smi_handlers;
2777 		break;
2778 
2779 	case SI_SMIC:
2780 		new_smi->handlers = &smic_smi_handlers;
2781 		break;
2782 
2783 	case SI_BT:
2784 		new_smi->handlers = &bt_smi_handlers;
2785 		break;
2786 
2787 	default:
2788 		/* No support for anything else yet. */
2789 		rv = -EIO;
2790 		goto out_err;
2791 	}
2792 
2793 	/* Allocate the state machine's data and initialize it. */
2794 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2795 	if (!new_smi->si_sm) {
2796 		printk(KERN_ERR "Could not allocate state machine memory\n");
2797 		rv = -ENOMEM;
2798 		goto out_err;
2799 	}
2800 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2801 							&new_smi->io);
2802 
2803 	/* Now that we know the I/O size, we can set up the I/O. */
2804 	rv = new_smi->io_setup(new_smi);
2805 	if (rv) {
2806 		printk(KERN_ERR "Could not set up I/O space\n");
2807 		goto out_err;
2808 	}
2809 
2810 	spin_lock_init(&(new_smi->si_lock));
2811 	spin_lock_init(&(new_smi->msg_lock));
2812 
2813 	/* Do low-level detection first. */
2814 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2815 		if (new_smi->addr_source)
2816 			printk(KERN_INFO "ipmi_si: Interface detection"
2817 			       " failed\n");
2818 		rv = -ENODEV;
2819 		goto out_err;
2820 	}
2821 
2822 	/*
2823 	 * Attempt a get device id command.  If it fails, we probably
2824 	 * don't have a BMC here.
2825 	 */
2826 	rv = try_get_dev_id(new_smi);
2827 	if (rv) {
2828 		if (new_smi->addr_source)
2829 			printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2830 			       " at this location\n");
2831 		goto out_err;
2832 	}
2833 
2834 	setup_oem_data_handler(new_smi);
2835 	setup_xaction_handlers(new_smi);
2836 
2837 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2838 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2839 	new_smi->curr_msg = NULL;
2840 	atomic_set(&new_smi->req_events, 0);
2841 	new_smi->run_to_completion = 0;
2842 	for (i = 0; i < SI_NUM_STATS; i++)
2843 		atomic_set(&new_smi->stats[i], 0);
2844 
2845 	new_smi->interrupt_disabled = 0;
2846 	atomic_set(&new_smi->stop_operation, 0);
2847 	new_smi->intf_num = smi_num;
2848 	smi_num++;
2849 
2850 	/*
2851 	 * Start clearing the flags before we enable interrupts or the
2852 	 * timer to avoid racing with the timer.
2853 	 */
2854 	start_clear_flags(new_smi);
2855 	/* IRQ is defined to be set when non-zero. */
2856 	if (new_smi->irq)
2857 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2858 
2859 	if (!new_smi->dev) {
2860 		/*
2861 		 * If we don't already have a device from something
2862 		 * else (like PCI), then register a new one.
2863 		 */
2864 		new_smi->pdev = platform_device_alloc("ipmi_si",
2865 						      new_smi->intf_num);
2866 		if (rv) {
2867 			printk(KERN_ERR
2868 			       "ipmi_si_intf:"
2869 			       " Unable to allocate platform device\n");
2870 			goto out_err;
2871 		}
2872 		new_smi->dev = &new_smi->pdev->dev;
2873 		new_smi->dev->driver = &ipmi_driver.driver;
2874 
2875 		rv = platform_device_add(new_smi->pdev);
2876 		if (rv) {
2877 			printk(KERN_ERR
2878 			       "ipmi_si_intf:"
2879 			       " Unable to register system interface device:"
2880 			       " %d\n",
2881 			       rv);
2882 			goto out_err;
2883 		}
2884 		new_smi->dev_registered = 1;
2885 	}
2886 
2887 	rv = ipmi_register_smi(&handlers,
2888 			       new_smi,
2889 			       &new_smi->device_id,
2890 			       new_smi->dev,
2891 			       "bmc",
2892 			       new_smi->slave_addr);
2893 	if (rv) {
2894 		printk(KERN_ERR
2895 		       "ipmi_si: Unable to register device: error %d\n",
2896 		       rv);
2897 		goto out_err_stop_timer;
2898 	}
2899 
2900 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2901 				     type_file_read_proc,
2902 				     new_smi);
2903 	if (rv) {
2904 		printk(KERN_ERR
2905 		       "ipmi_si: Unable to create proc entry: %d\n",
2906 		       rv);
2907 		goto out_err_stop_timer;
2908 	}
2909 
2910 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2911 				     stat_file_read_proc,
2912 				     new_smi);
2913 	if (rv) {
2914 		printk(KERN_ERR
2915 		       "ipmi_si: Unable to create proc entry: %d\n",
2916 		       rv);
2917 		goto out_err_stop_timer;
2918 	}
2919 
2920 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2921 				     param_read_proc,
2922 				     new_smi);
2923 	if (rv) {
2924 		printk(KERN_ERR
2925 		       "ipmi_si: Unable to create proc entry: %d\n",
2926 		       rv);
2927 		goto out_err_stop_timer;
2928 	}
2929 
2930 	list_add_tail(&new_smi->link, &smi_infos);
2931 
2932 	mutex_unlock(&smi_infos_lock);
2933 
2934 	printk(KERN_INFO "IPMI %s interface initialized\n",
2935 	       si_to_str[new_smi->si_type]);
2936 
2937 	return 0;
2938 
2939  out_err_stop_timer:
2940 	atomic_inc(&new_smi->stop_operation);
2941 	wait_for_timer_and_thread(new_smi);
2942 
2943  out_err:
2944 	if (new_smi->intf)
2945 		ipmi_unregister_smi(new_smi->intf);
2946 
2947 	if (new_smi->irq_cleanup)
2948 		new_smi->irq_cleanup(new_smi);
2949 
2950 	/*
2951 	 * Wait until we know that we are out of any interrupt
2952 	 * handlers might have been running before we freed the
2953 	 * interrupt.
2954 	 */
2955 	synchronize_sched();
2956 
2957 	if (new_smi->si_sm) {
2958 		if (new_smi->handlers)
2959 			new_smi->handlers->cleanup(new_smi->si_sm);
2960 		kfree(new_smi->si_sm);
2961 	}
2962 	if (new_smi->addr_source_cleanup)
2963 		new_smi->addr_source_cleanup(new_smi);
2964 	if (new_smi->io_cleanup)
2965 		new_smi->io_cleanup(new_smi);
2966 
2967 	if (new_smi->dev_registered)
2968 		platform_device_unregister(new_smi->pdev);
2969 
2970 	kfree(new_smi);
2971 
2972 	mutex_unlock(&smi_infos_lock);
2973 
2974 	return rv;
2975 }
2976 
2977 static __devinit int init_ipmi_si(void)
2978 {
2979 	int  i;
2980 	char *str;
2981 	int  rv;
2982 
2983 	if (initialized)
2984 		return 0;
2985 	initialized = 1;
2986 
2987 	/* Register the device drivers. */
2988 	rv = driver_register(&ipmi_driver.driver);
2989 	if (rv) {
2990 		printk(KERN_ERR
2991 		       "init_ipmi_si: Unable to register driver: %d\n",
2992 		       rv);
2993 		return rv;
2994 	}
2995 
2996 
2997 	/* Parse out the si_type string into its components. */
2998 	str = si_type_str;
2999 	if (*str != '\0') {
3000 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3001 			si_type[i] = str;
3002 			str = strchr(str, ',');
3003 			if (str) {
3004 				*str = '\0';
3005 				str++;
3006 			} else {
3007 				break;
3008 			}
3009 		}
3010 	}
3011 
3012 	printk(KERN_INFO "IPMI System Interface driver.\n");
3013 
3014 	hardcode_find_bmc();
3015 
3016 #ifdef CONFIG_DMI
3017 	dmi_find_bmc();
3018 #endif
3019 
3020 #ifdef CONFIG_ACPI
3021 	acpi_find_bmc();
3022 #endif
3023 
3024 #ifdef CONFIG_PCI
3025 	rv = pci_register_driver(&ipmi_pci_driver);
3026 	if (rv)
3027 		printk(KERN_ERR
3028 		       "init_ipmi_si: Unable to register PCI driver: %d\n",
3029 		       rv);
3030 #endif
3031 
3032 #ifdef CONFIG_PPC_OF
3033 	of_register_platform_driver(&ipmi_of_platform_driver);
3034 #endif
3035 
3036 	if (si_trydefaults) {
3037 		mutex_lock(&smi_infos_lock);
3038 		if (list_empty(&smi_infos)) {
3039 			/* No BMC was found, try defaults. */
3040 			mutex_unlock(&smi_infos_lock);
3041 			default_find_bmc();
3042 		} else {
3043 			mutex_unlock(&smi_infos_lock);
3044 		}
3045 	}
3046 
3047 	mutex_lock(&smi_infos_lock);
3048 	if (unload_when_empty && list_empty(&smi_infos)) {
3049 		mutex_unlock(&smi_infos_lock);
3050 #ifdef CONFIG_PCI
3051 		pci_unregister_driver(&ipmi_pci_driver);
3052 #endif
3053 
3054 #ifdef CONFIG_PPC_OF
3055 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3056 #endif
3057 		driver_unregister(&ipmi_driver.driver);
3058 		printk(KERN_WARNING
3059 		       "ipmi_si: Unable to find any System Interface(s)\n");
3060 		return -ENODEV;
3061 	} else {
3062 		mutex_unlock(&smi_infos_lock);
3063 		return 0;
3064 	}
3065 }
3066 module_init(init_ipmi_si);
3067 
3068 static void cleanup_one_si(struct smi_info *to_clean)
3069 {
3070 	int           rv;
3071 	unsigned long flags;
3072 
3073 	if (!to_clean)
3074 		return;
3075 
3076 	list_del(&to_clean->link);
3077 
3078 	/* Tell the driver that we are shutting down. */
3079 	atomic_inc(&to_clean->stop_operation);
3080 
3081 	/*
3082 	 * Make sure the timer and thread are stopped and will not run
3083 	 * again.
3084 	 */
3085 	wait_for_timer_and_thread(to_clean);
3086 
3087 	/*
3088 	 * Timeouts are stopped, now make sure the interrupts are off
3089 	 * for the device.  A little tricky with locks to make sure
3090 	 * there are no races.
3091 	 */
3092 	spin_lock_irqsave(&to_clean->si_lock, flags);
3093 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3094 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3095 		poll(to_clean);
3096 		schedule_timeout_uninterruptible(1);
3097 		spin_lock_irqsave(&to_clean->si_lock, flags);
3098 	}
3099 	disable_si_irq(to_clean);
3100 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3101 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3102 		poll(to_clean);
3103 		schedule_timeout_uninterruptible(1);
3104 	}
3105 
3106 	/* Clean up interrupts and make sure that everything is done. */
3107 	if (to_clean->irq_cleanup)
3108 		to_clean->irq_cleanup(to_clean);
3109 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3110 		poll(to_clean);
3111 		schedule_timeout_uninterruptible(1);
3112 	}
3113 
3114 	rv = ipmi_unregister_smi(to_clean->intf);
3115 	if (rv) {
3116 		printk(KERN_ERR
3117 		       "ipmi_si: Unable to unregister device: errno=%d\n",
3118 		       rv);
3119 	}
3120 
3121 	to_clean->handlers->cleanup(to_clean->si_sm);
3122 
3123 	kfree(to_clean->si_sm);
3124 
3125 	if (to_clean->addr_source_cleanup)
3126 		to_clean->addr_source_cleanup(to_clean);
3127 	if (to_clean->io_cleanup)
3128 		to_clean->io_cleanup(to_clean);
3129 
3130 	if (to_clean->dev_registered)
3131 		platform_device_unregister(to_clean->pdev);
3132 
3133 	kfree(to_clean);
3134 }
3135 
3136 static __exit void cleanup_ipmi_si(void)
3137 {
3138 	struct smi_info *e, *tmp_e;
3139 
3140 	if (!initialized)
3141 		return;
3142 
3143 #ifdef CONFIG_PCI
3144 	pci_unregister_driver(&ipmi_pci_driver);
3145 #endif
3146 
3147 #ifdef CONFIG_PPC_OF
3148 	of_unregister_platform_driver(&ipmi_of_platform_driver);
3149 #endif
3150 
3151 	mutex_lock(&smi_infos_lock);
3152 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3153 		cleanup_one_si(e);
3154 	mutex_unlock(&smi_infos_lock);
3155 
3156 	driver_unregister(&ipmi_driver.driver);
3157 }
3158 module_exit(cleanup_ipmi_si);
3159 
3160 MODULE_LICENSE("GPL");
3161 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3162 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3163 		   " system interfaces.");
3164