1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 #include <linux/of_device.h> 69 #include <linux/of_platform.h> 70 #include <linux/of_address.h> 71 #include <linux/of_irq.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_CLEARING_FLAGS_THEN_SET_IRQ, 96 SI_GETTING_MESSAGES, 97 SI_ENABLE_INTERRUPTS1, 98 SI_ENABLE_INTERRUPTS2, 99 SI_DISABLE_INTERRUPTS1, 100 SI_DISABLE_INTERRUPTS2 101 /* FIXME - add watchdog stuff. */ 102 }; 103 104 /* Some BT-specific defines we need here. */ 105 #define IPMI_BT_INTMASK_REG 2 106 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 107 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 108 109 enum si_type { 110 SI_KCS, SI_SMIC, SI_BT 111 }; 112 static char *si_to_str[] = { "kcs", "smic", "bt" }; 113 114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 115 "ACPI", "SMBIOS", "PCI", 116 "device-tree", "default" }; 117 118 #define DEVICE_NAME "ipmi_si" 119 120 static struct platform_driver ipmi_driver; 121 122 /* 123 * Indexes into stats[] in smi_info below. 124 */ 125 enum si_stat_indexes { 126 /* 127 * Number of times the driver requested a timer while an operation 128 * was in progress. 129 */ 130 SI_STAT_short_timeouts = 0, 131 132 /* 133 * Number of times the driver requested a timer while nothing was in 134 * progress. 135 */ 136 SI_STAT_long_timeouts, 137 138 /* Number of times the interface was idle while being polled. */ 139 SI_STAT_idles, 140 141 /* Number of interrupts the driver handled. */ 142 SI_STAT_interrupts, 143 144 /* Number of time the driver got an ATTN from the hardware. */ 145 SI_STAT_attentions, 146 147 /* Number of times the driver requested flags from the hardware. */ 148 SI_STAT_flag_fetches, 149 150 /* Number of times the hardware didn't follow the state machine. */ 151 SI_STAT_hosed_count, 152 153 /* Number of completed messages. */ 154 SI_STAT_complete_transactions, 155 156 /* Number of IPMI events received from the hardware. */ 157 SI_STAT_events, 158 159 /* Number of watchdog pretimeouts. */ 160 SI_STAT_watchdog_pretimeouts, 161 162 /* Number of asynchronous messages received. */ 163 SI_STAT_incoming_messages, 164 165 166 /* This *must* remain last, add new values above this. */ 167 SI_NUM_STATS 168 }; 169 170 struct smi_info { 171 int intf_num; 172 ipmi_smi_t intf; 173 struct si_sm_data *si_sm; 174 struct si_sm_handlers *handlers; 175 enum si_type si_type; 176 spinlock_t si_lock; 177 struct list_head xmit_msgs; 178 struct list_head hp_xmit_msgs; 179 struct ipmi_smi_msg *curr_msg; 180 enum si_intf_state si_state; 181 182 /* 183 * Used to handle the various types of I/O that can occur with 184 * IPMI 185 */ 186 struct si_sm_io io; 187 int (*io_setup)(struct smi_info *info); 188 void (*io_cleanup)(struct smi_info *info); 189 int (*irq_setup)(struct smi_info *info); 190 void (*irq_cleanup)(struct smi_info *info); 191 unsigned int io_size; 192 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 193 void (*addr_source_cleanup)(struct smi_info *info); 194 void *addr_source_data; 195 196 /* 197 * Per-OEM handler, called from handle_flags(). Returns 1 198 * when handle_flags() needs to be re-run or 0 indicating it 199 * set si_state itself. 200 */ 201 int (*oem_data_avail_handler)(struct smi_info *smi_info); 202 203 /* 204 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 205 * is set to hold the flags until we are done handling everything 206 * from the flags. 207 */ 208 #define RECEIVE_MSG_AVAIL 0x01 209 #define EVENT_MSG_BUFFER_FULL 0x02 210 #define WDT_PRE_TIMEOUT_INT 0x08 211 #define OEM0_DATA_AVAIL 0x20 212 #define OEM1_DATA_AVAIL 0x40 213 #define OEM2_DATA_AVAIL 0x80 214 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 215 OEM1_DATA_AVAIL | \ 216 OEM2_DATA_AVAIL) 217 unsigned char msg_flags; 218 219 /* Does the BMC have an event buffer? */ 220 char has_event_buffer; 221 222 /* 223 * If set to true, this will request events the next time the 224 * state machine is idle. 225 */ 226 atomic_t req_events; 227 228 /* 229 * If true, run the state machine to completion on every send 230 * call. Generally used after a panic to make sure stuff goes 231 * out. 232 */ 233 int run_to_completion; 234 235 /* The I/O port of an SI interface. */ 236 int port; 237 238 /* 239 * The space between start addresses of the two ports. For 240 * instance, if the first port is 0xca2 and the spacing is 4, then 241 * the second port is 0xca6. 242 */ 243 unsigned int spacing; 244 245 /* zero if no irq; */ 246 int irq; 247 248 /* The timer for this si. */ 249 struct timer_list si_timer; 250 251 /* The time (in jiffies) the last timeout occurred at. */ 252 unsigned long last_timeout_jiffies; 253 254 /* Used to gracefully stop the timer without race conditions. */ 255 atomic_t stop_operation; 256 257 /* 258 * The driver will disable interrupts when it gets into a 259 * situation where it cannot handle messages due to lack of 260 * memory. Once that situation clears up, it will re-enable 261 * interrupts. 262 */ 263 int interrupt_disabled; 264 265 /* From the get device id response... */ 266 struct ipmi_device_id device_id; 267 268 /* Driver model stuff. */ 269 struct device *dev; 270 struct platform_device *pdev; 271 272 /* 273 * True if we allocated the device, false if it came from 274 * someplace else (like PCI). 275 */ 276 int dev_registered; 277 278 /* Slave address, could be reported from DMI. */ 279 unsigned char slave_addr; 280 281 /* Counters and things for the proc filesystem. */ 282 atomic_t stats[SI_NUM_STATS]; 283 284 struct task_struct *thread; 285 286 struct list_head link; 287 union ipmi_smi_info_union addr_info; 288 }; 289 290 #define smi_inc_stat(smi, stat) \ 291 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 292 #define smi_get_stat(smi, stat) \ 293 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 294 295 #define SI_MAX_PARMS 4 296 297 static int force_kipmid[SI_MAX_PARMS]; 298 static int num_force_kipmid; 299 #ifdef CONFIG_PCI 300 static int pci_registered; 301 #endif 302 #ifdef CONFIG_ACPI 303 static int pnp_registered; 304 #endif 305 #ifdef CONFIG_PARISC 306 static int parisc_registered; 307 #endif 308 309 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 310 static int num_max_busy_us; 311 312 static int unload_when_empty = 1; 313 314 static int add_smi(struct smi_info *smi); 315 static int try_smi_init(struct smi_info *smi); 316 static void cleanup_one_si(struct smi_info *to_clean); 317 static void cleanup_ipmi_si(void); 318 319 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 320 static int register_xaction_notifier(struct notifier_block *nb) 321 { 322 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 323 } 324 325 static void deliver_recv_msg(struct smi_info *smi_info, 326 struct ipmi_smi_msg *msg) 327 { 328 /* Deliver the message to the upper layer. */ 329 ipmi_smi_msg_received(smi_info->intf, msg); 330 } 331 332 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 333 { 334 struct ipmi_smi_msg *msg = smi_info->curr_msg; 335 336 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 337 cCode = IPMI_ERR_UNSPECIFIED; 338 /* else use it as is */ 339 340 /* Make it a response */ 341 msg->rsp[0] = msg->data[0] | 4; 342 msg->rsp[1] = msg->data[1]; 343 msg->rsp[2] = cCode; 344 msg->rsp_size = 3; 345 346 smi_info->curr_msg = NULL; 347 deliver_recv_msg(smi_info, msg); 348 } 349 350 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 351 { 352 int rv; 353 struct list_head *entry = NULL; 354 #ifdef DEBUG_TIMING 355 struct timeval t; 356 #endif 357 358 /* Pick the high priority queue first. */ 359 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 360 entry = smi_info->hp_xmit_msgs.next; 361 } else if (!list_empty(&(smi_info->xmit_msgs))) { 362 entry = smi_info->xmit_msgs.next; 363 } 364 365 if (!entry) { 366 smi_info->curr_msg = NULL; 367 rv = SI_SM_IDLE; 368 } else { 369 int err; 370 371 list_del(entry); 372 smi_info->curr_msg = list_entry(entry, 373 struct ipmi_smi_msg, 374 link); 375 #ifdef DEBUG_TIMING 376 do_gettimeofday(&t); 377 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 378 #endif 379 err = atomic_notifier_call_chain(&xaction_notifier_list, 380 0, smi_info); 381 if (err & NOTIFY_STOP_MASK) { 382 rv = SI_SM_CALL_WITHOUT_DELAY; 383 goto out; 384 } 385 err = smi_info->handlers->start_transaction( 386 smi_info->si_sm, 387 smi_info->curr_msg->data, 388 smi_info->curr_msg->data_size); 389 if (err) 390 return_hosed_msg(smi_info, err); 391 392 rv = SI_SM_CALL_WITHOUT_DELAY; 393 } 394 out: 395 return rv; 396 } 397 398 static void start_enable_irq(struct smi_info *smi_info) 399 { 400 unsigned char msg[2]; 401 402 /* 403 * If we are enabling interrupts, we have to tell the 404 * BMC to use them. 405 */ 406 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 407 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 408 409 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 410 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 411 } 412 413 static void start_disable_irq(struct smi_info *smi_info) 414 { 415 unsigned char msg[2]; 416 417 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 418 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 419 420 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 421 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 422 } 423 424 static void start_clear_flags(struct smi_info *smi_info) 425 { 426 unsigned char msg[3]; 427 428 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 429 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 430 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 431 msg[2] = WDT_PRE_TIMEOUT_INT; 432 433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 434 smi_info->si_state = SI_CLEARING_FLAGS; 435 } 436 437 /* 438 * When we have a situtaion where we run out of memory and cannot 439 * allocate messages, we just leave them in the BMC and run the system 440 * polled until we can allocate some memory. Once we have some 441 * memory, we will re-enable the interrupt. 442 */ 443 static inline void disable_si_irq(struct smi_info *smi_info) 444 { 445 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 446 start_disable_irq(smi_info); 447 smi_info->interrupt_disabled = 1; 448 if (!atomic_read(&smi_info->stop_operation)) 449 mod_timer(&smi_info->si_timer, 450 jiffies + SI_TIMEOUT_JIFFIES); 451 } 452 } 453 454 static inline void enable_si_irq(struct smi_info *smi_info) 455 { 456 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 457 start_enable_irq(smi_info); 458 smi_info->interrupt_disabled = 0; 459 } 460 } 461 462 static void handle_flags(struct smi_info *smi_info) 463 { 464 retry: 465 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 466 /* Watchdog pre-timeout */ 467 smi_inc_stat(smi_info, watchdog_pretimeouts); 468 469 start_clear_flags(smi_info); 470 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 471 ipmi_smi_watchdog_pretimeout(smi_info->intf); 472 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 473 /* Messages available. */ 474 smi_info->curr_msg = ipmi_alloc_smi_msg(); 475 if (!smi_info->curr_msg) { 476 disable_si_irq(smi_info); 477 smi_info->si_state = SI_NORMAL; 478 return; 479 } 480 enable_si_irq(smi_info); 481 482 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 483 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 484 smi_info->curr_msg->data_size = 2; 485 486 smi_info->handlers->start_transaction( 487 smi_info->si_sm, 488 smi_info->curr_msg->data, 489 smi_info->curr_msg->data_size); 490 smi_info->si_state = SI_GETTING_MESSAGES; 491 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 492 /* Events available. */ 493 smi_info->curr_msg = ipmi_alloc_smi_msg(); 494 if (!smi_info->curr_msg) { 495 disable_si_irq(smi_info); 496 smi_info->si_state = SI_NORMAL; 497 return; 498 } 499 enable_si_irq(smi_info); 500 501 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 502 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 503 smi_info->curr_msg->data_size = 2; 504 505 smi_info->handlers->start_transaction( 506 smi_info->si_sm, 507 smi_info->curr_msg->data, 508 smi_info->curr_msg->data_size); 509 smi_info->si_state = SI_GETTING_EVENTS; 510 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 511 smi_info->oem_data_avail_handler) { 512 if (smi_info->oem_data_avail_handler(smi_info)) 513 goto retry; 514 } else 515 smi_info->si_state = SI_NORMAL; 516 } 517 518 static void handle_transaction_done(struct smi_info *smi_info) 519 { 520 struct ipmi_smi_msg *msg; 521 #ifdef DEBUG_TIMING 522 struct timeval t; 523 524 do_gettimeofday(&t); 525 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 526 #endif 527 switch (smi_info->si_state) { 528 case SI_NORMAL: 529 if (!smi_info->curr_msg) 530 break; 531 532 smi_info->curr_msg->rsp_size 533 = smi_info->handlers->get_result( 534 smi_info->si_sm, 535 smi_info->curr_msg->rsp, 536 IPMI_MAX_MSG_LENGTH); 537 538 /* 539 * Do this here becase deliver_recv_msg() releases the 540 * lock, and a new message can be put in during the 541 * time the lock is released. 542 */ 543 msg = smi_info->curr_msg; 544 smi_info->curr_msg = NULL; 545 deliver_recv_msg(smi_info, msg); 546 break; 547 548 case SI_GETTING_FLAGS: 549 { 550 unsigned char msg[4]; 551 unsigned int len; 552 553 /* We got the flags from the SMI, now handle them. */ 554 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 555 if (msg[2] != 0) { 556 /* Error fetching flags, just give up for now. */ 557 smi_info->si_state = SI_NORMAL; 558 } else if (len < 4) { 559 /* 560 * Hmm, no flags. That's technically illegal, but 561 * don't use uninitialized data. 562 */ 563 smi_info->si_state = SI_NORMAL; 564 } else { 565 smi_info->msg_flags = msg[3]; 566 handle_flags(smi_info); 567 } 568 break; 569 } 570 571 case SI_CLEARING_FLAGS: 572 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 573 { 574 unsigned char msg[3]; 575 576 /* We cleared the flags. */ 577 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 578 if (msg[2] != 0) { 579 /* Error clearing flags */ 580 dev_warn(smi_info->dev, 581 "Error clearing flags: %2.2x\n", msg[2]); 582 } 583 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 584 start_enable_irq(smi_info); 585 else 586 smi_info->si_state = SI_NORMAL; 587 break; 588 } 589 590 case SI_GETTING_EVENTS: 591 { 592 smi_info->curr_msg->rsp_size 593 = smi_info->handlers->get_result( 594 smi_info->si_sm, 595 smi_info->curr_msg->rsp, 596 IPMI_MAX_MSG_LENGTH); 597 598 /* 599 * Do this here becase deliver_recv_msg() releases the 600 * lock, and a new message can be put in during the 601 * time the lock is released. 602 */ 603 msg = smi_info->curr_msg; 604 smi_info->curr_msg = NULL; 605 if (msg->rsp[2] != 0) { 606 /* Error getting event, probably done. */ 607 msg->done(msg); 608 609 /* Take off the event flag. */ 610 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 611 handle_flags(smi_info); 612 } else { 613 smi_inc_stat(smi_info, events); 614 615 /* 616 * Do this before we deliver the message 617 * because delivering the message releases the 618 * lock and something else can mess with the 619 * state. 620 */ 621 handle_flags(smi_info); 622 623 deliver_recv_msg(smi_info, msg); 624 } 625 break; 626 } 627 628 case SI_GETTING_MESSAGES: 629 { 630 smi_info->curr_msg->rsp_size 631 = smi_info->handlers->get_result( 632 smi_info->si_sm, 633 smi_info->curr_msg->rsp, 634 IPMI_MAX_MSG_LENGTH); 635 636 /* 637 * Do this here becase deliver_recv_msg() releases the 638 * lock, and a new message can be put in during the 639 * time the lock is released. 640 */ 641 msg = smi_info->curr_msg; 642 smi_info->curr_msg = NULL; 643 if (msg->rsp[2] != 0) { 644 /* Error getting event, probably done. */ 645 msg->done(msg); 646 647 /* Take off the msg flag. */ 648 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 649 handle_flags(smi_info); 650 } else { 651 smi_inc_stat(smi_info, incoming_messages); 652 653 /* 654 * Do this before we deliver the message 655 * because delivering the message releases the 656 * lock and something else can mess with the 657 * state. 658 */ 659 handle_flags(smi_info); 660 661 deliver_recv_msg(smi_info, msg); 662 } 663 break; 664 } 665 666 case SI_ENABLE_INTERRUPTS1: 667 { 668 unsigned char msg[4]; 669 670 /* We got the flags from the SMI, now handle them. */ 671 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 672 if (msg[2] != 0) { 673 dev_warn(smi_info->dev, 674 "Couldn't get irq info: %x.\n", msg[2]); 675 dev_warn(smi_info->dev, 676 "Maybe ok, but ipmi might run very slowly.\n"); 677 smi_info->si_state = SI_NORMAL; 678 } else { 679 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 680 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 681 msg[2] = (msg[3] | 682 IPMI_BMC_RCV_MSG_INTR | 683 IPMI_BMC_EVT_MSG_INTR); 684 smi_info->handlers->start_transaction( 685 smi_info->si_sm, msg, 3); 686 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 687 } 688 break; 689 } 690 691 case SI_ENABLE_INTERRUPTS2: 692 { 693 unsigned char msg[4]; 694 695 /* We got the flags from the SMI, now handle them. */ 696 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 697 if (msg[2] != 0) { 698 dev_warn(smi_info->dev, 699 "Couldn't set irq info: %x.\n", msg[2]); 700 dev_warn(smi_info->dev, 701 "Maybe ok, but ipmi might run very slowly.\n"); 702 } else 703 smi_info->interrupt_disabled = 0; 704 smi_info->si_state = SI_NORMAL; 705 break; 706 } 707 708 case SI_DISABLE_INTERRUPTS1: 709 { 710 unsigned char msg[4]; 711 712 /* We got the flags from the SMI, now handle them. */ 713 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 714 if (msg[2] != 0) { 715 dev_warn(smi_info->dev, "Could not disable interrupts" 716 ", failed get.\n"); 717 smi_info->si_state = SI_NORMAL; 718 } else { 719 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 720 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 721 msg[2] = (msg[3] & 722 ~(IPMI_BMC_RCV_MSG_INTR | 723 IPMI_BMC_EVT_MSG_INTR)); 724 smi_info->handlers->start_transaction( 725 smi_info->si_sm, msg, 3); 726 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 727 } 728 break; 729 } 730 731 case SI_DISABLE_INTERRUPTS2: 732 { 733 unsigned char msg[4]; 734 735 /* We got the flags from the SMI, now handle them. */ 736 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 737 if (msg[2] != 0) { 738 dev_warn(smi_info->dev, "Could not disable interrupts" 739 ", failed set.\n"); 740 } 741 smi_info->si_state = SI_NORMAL; 742 break; 743 } 744 } 745 } 746 747 /* 748 * Called on timeouts and events. Timeouts should pass the elapsed 749 * time, interrupts should pass in zero. Must be called with 750 * si_lock held and interrupts disabled. 751 */ 752 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 753 int time) 754 { 755 enum si_sm_result si_sm_result; 756 757 restart: 758 /* 759 * There used to be a loop here that waited a little while 760 * (around 25us) before giving up. That turned out to be 761 * pointless, the minimum delays I was seeing were in the 300us 762 * range, which is far too long to wait in an interrupt. So 763 * we just run until the state machine tells us something 764 * happened or it needs a delay. 765 */ 766 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 767 time = 0; 768 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 769 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 770 771 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 772 smi_inc_stat(smi_info, complete_transactions); 773 774 handle_transaction_done(smi_info); 775 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 776 } else if (si_sm_result == SI_SM_HOSED) { 777 smi_inc_stat(smi_info, hosed_count); 778 779 /* 780 * Do the before return_hosed_msg, because that 781 * releases the lock. 782 */ 783 smi_info->si_state = SI_NORMAL; 784 if (smi_info->curr_msg != NULL) { 785 /* 786 * If we were handling a user message, format 787 * a response to send to the upper layer to 788 * tell it about the error. 789 */ 790 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 791 } 792 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 793 } 794 795 /* 796 * We prefer handling attn over new messages. But don't do 797 * this if there is not yet an upper layer to handle anything. 798 */ 799 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 800 unsigned char msg[2]; 801 802 smi_inc_stat(smi_info, attentions); 803 804 /* 805 * Got a attn, send down a get message flags to see 806 * what's causing it. It would be better to handle 807 * this in the upper layer, but due to the way 808 * interrupts work with the SMI, that's not really 809 * possible. 810 */ 811 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 812 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 813 814 smi_info->handlers->start_transaction( 815 smi_info->si_sm, msg, 2); 816 smi_info->si_state = SI_GETTING_FLAGS; 817 goto restart; 818 } 819 820 /* If we are currently idle, try to start the next message. */ 821 if (si_sm_result == SI_SM_IDLE) { 822 smi_inc_stat(smi_info, idles); 823 824 si_sm_result = start_next_msg(smi_info); 825 if (si_sm_result != SI_SM_IDLE) 826 goto restart; 827 } 828 829 if ((si_sm_result == SI_SM_IDLE) 830 && (atomic_read(&smi_info->req_events))) { 831 /* 832 * We are idle and the upper layer requested that I fetch 833 * events, so do so. 834 */ 835 atomic_set(&smi_info->req_events, 0); 836 837 smi_info->curr_msg = ipmi_alloc_smi_msg(); 838 if (!smi_info->curr_msg) 839 goto out; 840 841 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 842 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 843 smi_info->curr_msg->data_size = 2; 844 845 smi_info->handlers->start_transaction( 846 smi_info->si_sm, 847 smi_info->curr_msg->data, 848 smi_info->curr_msg->data_size); 849 smi_info->si_state = SI_GETTING_EVENTS; 850 goto restart; 851 } 852 out: 853 return si_sm_result; 854 } 855 856 static void sender(void *send_info, 857 struct ipmi_smi_msg *msg, 858 int priority) 859 { 860 struct smi_info *smi_info = send_info; 861 enum si_sm_result result; 862 unsigned long flags; 863 #ifdef DEBUG_TIMING 864 struct timeval t; 865 #endif 866 867 if (atomic_read(&smi_info->stop_operation)) { 868 msg->rsp[0] = msg->data[0] | 4; 869 msg->rsp[1] = msg->data[1]; 870 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 871 msg->rsp_size = 3; 872 deliver_recv_msg(smi_info, msg); 873 return; 874 } 875 876 #ifdef DEBUG_TIMING 877 do_gettimeofday(&t); 878 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 879 #endif 880 881 if (smi_info->run_to_completion) { 882 /* 883 * If we are running to completion, then throw it in 884 * the list and run transactions until everything is 885 * clear. Priority doesn't matter here. 886 */ 887 888 /* 889 * Run to completion means we are single-threaded, no 890 * need for locks. 891 */ 892 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 893 894 result = smi_event_handler(smi_info, 0); 895 while (result != SI_SM_IDLE) { 896 udelay(SI_SHORT_TIMEOUT_USEC); 897 result = smi_event_handler(smi_info, 898 SI_SHORT_TIMEOUT_USEC); 899 } 900 return; 901 } 902 903 spin_lock_irqsave(&smi_info->si_lock, flags); 904 if (priority > 0) 905 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 906 else 907 list_add_tail(&msg->link, &smi_info->xmit_msgs); 908 909 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 910 /* 911 * last_timeout_jiffies is updated here to avoid 912 * smi_timeout() handler passing very large time_diff 913 * value to smi_event_handler() that causes 914 * the send command to abort. 915 */ 916 smi_info->last_timeout_jiffies = jiffies; 917 918 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 919 920 if (smi_info->thread) 921 wake_up_process(smi_info->thread); 922 923 start_next_msg(smi_info); 924 smi_event_handler(smi_info, 0); 925 } 926 spin_unlock_irqrestore(&smi_info->si_lock, flags); 927 } 928 929 static void set_run_to_completion(void *send_info, int i_run_to_completion) 930 { 931 struct smi_info *smi_info = send_info; 932 enum si_sm_result result; 933 934 smi_info->run_to_completion = i_run_to_completion; 935 if (i_run_to_completion) { 936 result = smi_event_handler(smi_info, 0); 937 while (result != SI_SM_IDLE) { 938 udelay(SI_SHORT_TIMEOUT_USEC); 939 result = smi_event_handler(smi_info, 940 SI_SHORT_TIMEOUT_USEC); 941 } 942 } 943 } 944 945 /* 946 * Use -1 in the nsec value of the busy waiting timespec to tell that 947 * we are spinning in kipmid looking for something and not delaying 948 * between checks 949 */ 950 static inline void ipmi_si_set_not_busy(struct timespec *ts) 951 { 952 ts->tv_nsec = -1; 953 } 954 static inline int ipmi_si_is_busy(struct timespec *ts) 955 { 956 return ts->tv_nsec != -1; 957 } 958 959 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 960 const struct smi_info *smi_info, 961 struct timespec *busy_until) 962 { 963 unsigned int max_busy_us = 0; 964 965 if (smi_info->intf_num < num_max_busy_us) 966 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 967 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 968 ipmi_si_set_not_busy(busy_until); 969 else if (!ipmi_si_is_busy(busy_until)) { 970 getnstimeofday(busy_until); 971 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 972 } else { 973 struct timespec now; 974 getnstimeofday(&now); 975 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 976 ipmi_si_set_not_busy(busy_until); 977 return 0; 978 } 979 } 980 return 1; 981 } 982 983 984 /* 985 * A busy-waiting loop for speeding up IPMI operation. 986 * 987 * Lousy hardware makes this hard. This is only enabled for systems 988 * that are not BT and do not have interrupts. It starts spinning 989 * when an operation is complete or until max_busy tells it to stop 990 * (if that is enabled). See the paragraph on kimid_max_busy_us in 991 * Documentation/IPMI.txt for details. 992 */ 993 static int ipmi_thread(void *data) 994 { 995 struct smi_info *smi_info = data; 996 unsigned long flags; 997 enum si_sm_result smi_result; 998 struct timespec busy_until; 999 1000 ipmi_si_set_not_busy(&busy_until); 1001 set_user_nice(current, 19); 1002 while (!kthread_should_stop()) { 1003 int busy_wait; 1004 1005 spin_lock_irqsave(&(smi_info->si_lock), flags); 1006 smi_result = smi_event_handler(smi_info, 0); 1007 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1008 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1009 &busy_until); 1010 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1011 ; /* do nothing */ 1012 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1013 schedule(); 1014 else if (smi_result == SI_SM_IDLE) 1015 schedule_timeout_interruptible(100); 1016 else 1017 schedule_timeout_interruptible(1); 1018 } 1019 return 0; 1020 } 1021 1022 1023 static void poll(void *send_info) 1024 { 1025 struct smi_info *smi_info = send_info; 1026 unsigned long flags = 0; 1027 int run_to_completion = smi_info->run_to_completion; 1028 1029 /* 1030 * Make sure there is some delay in the poll loop so we can 1031 * drive time forward and timeout things. 1032 */ 1033 udelay(10); 1034 if (!run_to_completion) 1035 spin_lock_irqsave(&smi_info->si_lock, flags); 1036 smi_event_handler(smi_info, 10); 1037 if (!run_to_completion) 1038 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1039 } 1040 1041 static void request_events(void *send_info) 1042 { 1043 struct smi_info *smi_info = send_info; 1044 1045 if (atomic_read(&smi_info->stop_operation) || 1046 !smi_info->has_event_buffer) 1047 return; 1048 1049 atomic_set(&smi_info->req_events, 1); 1050 } 1051 1052 static int initialized; 1053 1054 static void smi_timeout(unsigned long data) 1055 { 1056 struct smi_info *smi_info = (struct smi_info *) data; 1057 enum si_sm_result smi_result; 1058 unsigned long flags; 1059 unsigned long jiffies_now; 1060 long time_diff; 1061 long timeout; 1062 #ifdef DEBUG_TIMING 1063 struct timeval t; 1064 #endif 1065 1066 spin_lock_irqsave(&(smi_info->si_lock), flags); 1067 #ifdef DEBUG_TIMING 1068 do_gettimeofday(&t); 1069 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1070 #endif 1071 jiffies_now = jiffies; 1072 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1073 * SI_USEC_PER_JIFFY); 1074 smi_result = smi_event_handler(smi_info, time_diff); 1075 1076 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1077 1078 smi_info->last_timeout_jiffies = jiffies_now; 1079 1080 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1081 /* Running with interrupts, only do long timeouts. */ 1082 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1083 smi_inc_stat(smi_info, long_timeouts); 1084 goto do_mod_timer; 1085 } 1086 1087 /* 1088 * If the state machine asks for a short delay, then shorten 1089 * the timer timeout. 1090 */ 1091 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1092 smi_inc_stat(smi_info, short_timeouts); 1093 timeout = jiffies + 1; 1094 } else { 1095 smi_inc_stat(smi_info, long_timeouts); 1096 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1097 } 1098 1099 do_mod_timer: 1100 if (smi_result != SI_SM_IDLE) 1101 mod_timer(&(smi_info->si_timer), timeout); 1102 } 1103 1104 static irqreturn_t si_irq_handler(int irq, void *data) 1105 { 1106 struct smi_info *smi_info = data; 1107 unsigned long flags; 1108 #ifdef DEBUG_TIMING 1109 struct timeval t; 1110 #endif 1111 1112 spin_lock_irqsave(&(smi_info->si_lock), flags); 1113 1114 smi_inc_stat(smi_info, interrupts); 1115 1116 #ifdef DEBUG_TIMING 1117 do_gettimeofday(&t); 1118 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1119 #endif 1120 smi_event_handler(smi_info, 0); 1121 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1122 return IRQ_HANDLED; 1123 } 1124 1125 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1126 { 1127 struct smi_info *smi_info = data; 1128 /* We need to clear the IRQ flag for the BT interface. */ 1129 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1130 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1131 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1132 return si_irq_handler(irq, data); 1133 } 1134 1135 static int smi_start_processing(void *send_info, 1136 ipmi_smi_t intf) 1137 { 1138 struct smi_info *new_smi = send_info; 1139 int enable = 0; 1140 1141 new_smi->intf = intf; 1142 1143 /* Try to claim any interrupts. */ 1144 if (new_smi->irq_setup) 1145 new_smi->irq_setup(new_smi); 1146 1147 /* Set up the timer that drives the interface. */ 1148 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1149 new_smi->last_timeout_jiffies = jiffies; 1150 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1151 1152 /* 1153 * Check if the user forcefully enabled the daemon. 1154 */ 1155 if (new_smi->intf_num < num_force_kipmid) 1156 enable = force_kipmid[new_smi->intf_num]; 1157 /* 1158 * The BT interface is efficient enough to not need a thread, 1159 * and there is no need for a thread if we have interrupts. 1160 */ 1161 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1162 enable = 1; 1163 1164 if (enable) { 1165 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1166 "kipmi%d", new_smi->intf_num); 1167 if (IS_ERR(new_smi->thread)) { 1168 dev_notice(new_smi->dev, "Could not start" 1169 " kernel thread due to error %ld, only using" 1170 " timers to drive the interface\n", 1171 PTR_ERR(new_smi->thread)); 1172 new_smi->thread = NULL; 1173 } 1174 } 1175 1176 return 0; 1177 } 1178 1179 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1180 { 1181 struct smi_info *smi = send_info; 1182 1183 data->addr_src = smi->addr_source; 1184 data->dev = smi->dev; 1185 data->addr_info = smi->addr_info; 1186 get_device(smi->dev); 1187 1188 return 0; 1189 } 1190 1191 static void set_maintenance_mode(void *send_info, int enable) 1192 { 1193 struct smi_info *smi_info = send_info; 1194 1195 if (!enable) 1196 atomic_set(&smi_info->req_events, 0); 1197 } 1198 1199 static struct ipmi_smi_handlers handlers = { 1200 .owner = THIS_MODULE, 1201 .start_processing = smi_start_processing, 1202 .get_smi_info = get_smi_info, 1203 .sender = sender, 1204 .request_events = request_events, 1205 .set_maintenance_mode = set_maintenance_mode, 1206 .set_run_to_completion = set_run_to_completion, 1207 .poll = poll, 1208 }; 1209 1210 /* 1211 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1212 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1213 */ 1214 1215 static LIST_HEAD(smi_infos); 1216 static DEFINE_MUTEX(smi_infos_lock); 1217 static int smi_num; /* Used to sequence the SMIs */ 1218 1219 #define DEFAULT_REGSPACING 1 1220 #define DEFAULT_REGSIZE 1 1221 1222 #ifdef CONFIG_ACPI 1223 static bool si_tryacpi = 1; 1224 #endif 1225 #ifdef CONFIG_DMI 1226 static bool si_trydmi = 1; 1227 #endif 1228 static bool si_tryplatform = 1; 1229 #ifdef CONFIG_PCI 1230 static bool si_trypci = 1; 1231 #endif 1232 static bool si_trydefaults = 1; 1233 static char *si_type[SI_MAX_PARMS]; 1234 #define MAX_SI_TYPE_STR 30 1235 static char si_type_str[MAX_SI_TYPE_STR]; 1236 static unsigned long addrs[SI_MAX_PARMS]; 1237 static unsigned int num_addrs; 1238 static unsigned int ports[SI_MAX_PARMS]; 1239 static unsigned int num_ports; 1240 static int irqs[SI_MAX_PARMS]; 1241 static unsigned int num_irqs; 1242 static int regspacings[SI_MAX_PARMS]; 1243 static unsigned int num_regspacings; 1244 static int regsizes[SI_MAX_PARMS]; 1245 static unsigned int num_regsizes; 1246 static int regshifts[SI_MAX_PARMS]; 1247 static unsigned int num_regshifts; 1248 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1249 static unsigned int num_slave_addrs; 1250 1251 #define IPMI_IO_ADDR_SPACE 0 1252 #define IPMI_MEM_ADDR_SPACE 1 1253 static char *addr_space_to_str[] = { "i/o", "mem" }; 1254 1255 static int hotmod_handler(const char *val, struct kernel_param *kp); 1256 1257 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1258 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1259 " Documentation/IPMI.txt in the kernel sources for the" 1260 " gory details."); 1261 1262 #ifdef CONFIG_ACPI 1263 module_param_named(tryacpi, si_tryacpi, bool, 0); 1264 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1265 " default scan of the interfaces identified via ACPI"); 1266 #endif 1267 #ifdef CONFIG_DMI 1268 module_param_named(trydmi, si_trydmi, bool, 0); 1269 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1270 " default scan of the interfaces identified via DMI"); 1271 #endif 1272 module_param_named(tryplatform, si_tryplatform, bool, 0); 1273 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1274 " default scan of the interfaces identified via platform" 1275 " interfaces like openfirmware"); 1276 #ifdef CONFIG_PCI 1277 module_param_named(trypci, si_trypci, bool, 0); 1278 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1279 " default scan of the interfaces identified via pci"); 1280 #endif 1281 module_param_named(trydefaults, si_trydefaults, bool, 0); 1282 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1283 " default scan of the KCS and SMIC interface at the standard" 1284 " address"); 1285 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1286 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1287 " interface separated by commas. The types are 'kcs'," 1288 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1289 " the first interface to kcs and the second to bt"); 1290 module_param_array(addrs, ulong, &num_addrs, 0); 1291 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1292 " addresses separated by commas. Only use if an interface" 1293 " is in memory. Otherwise, set it to zero or leave" 1294 " it blank."); 1295 module_param_array(ports, uint, &num_ports, 0); 1296 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1297 " addresses separated by commas. Only use if an interface" 1298 " is a port. Otherwise, set it to zero or leave" 1299 " it blank."); 1300 module_param_array(irqs, int, &num_irqs, 0); 1301 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1302 " addresses separated by commas. Only use if an interface" 1303 " has an interrupt. Otherwise, set it to zero or leave" 1304 " it blank."); 1305 module_param_array(regspacings, int, &num_regspacings, 0); 1306 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1307 " and each successive register used by the interface. For" 1308 " instance, if the start address is 0xca2 and the spacing" 1309 " is 2, then the second address is at 0xca4. Defaults" 1310 " to 1."); 1311 module_param_array(regsizes, int, &num_regsizes, 0); 1312 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1313 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1314 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1315 " the 8-bit IPMI register has to be read from a larger" 1316 " register."); 1317 module_param_array(regshifts, int, &num_regshifts, 0); 1318 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1319 " IPMI register, in bits. For instance, if the data" 1320 " is read from a 32-bit word and the IPMI data is in" 1321 " bit 8-15, then the shift would be 8"); 1322 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1323 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1324 " the controller. Normally this is 0x20, but can be" 1325 " overridden by this parm. This is an array indexed" 1326 " by interface number."); 1327 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1328 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1329 " disabled(0). Normally the IPMI driver auto-detects" 1330 " this, but the value may be overridden by this parm."); 1331 module_param(unload_when_empty, int, 0); 1332 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1333 " specified or found, default is 1. Setting to 0" 1334 " is useful for hot add of devices using hotmod."); 1335 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1336 MODULE_PARM_DESC(kipmid_max_busy_us, 1337 "Max time (in microseconds) to busy-wait for IPMI data before" 1338 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1339 " if kipmid is using up a lot of CPU time."); 1340 1341 1342 static void std_irq_cleanup(struct smi_info *info) 1343 { 1344 if (info->si_type == SI_BT) 1345 /* Disable the interrupt in the BT interface. */ 1346 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1347 free_irq(info->irq, info); 1348 } 1349 1350 static int std_irq_setup(struct smi_info *info) 1351 { 1352 int rv; 1353 1354 if (!info->irq) 1355 return 0; 1356 1357 if (info->si_type == SI_BT) { 1358 rv = request_irq(info->irq, 1359 si_bt_irq_handler, 1360 IRQF_SHARED, 1361 DEVICE_NAME, 1362 info); 1363 if (!rv) 1364 /* Enable the interrupt in the BT interface. */ 1365 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1366 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1367 } else 1368 rv = request_irq(info->irq, 1369 si_irq_handler, 1370 IRQF_SHARED, 1371 DEVICE_NAME, 1372 info); 1373 if (rv) { 1374 dev_warn(info->dev, "%s unable to claim interrupt %d," 1375 " running polled\n", 1376 DEVICE_NAME, info->irq); 1377 info->irq = 0; 1378 } else { 1379 info->irq_cleanup = std_irq_cleanup; 1380 dev_info(info->dev, "Using irq %d\n", info->irq); 1381 } 1382 1383 return rv; 1384 } 1385 1386 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1387 { 1388 unsigned int addr = io->addr_data; 1389 1390 return inb(addr + (offset * io->regspacing)); 1391 } 1392 1393 static void port_outb(struct si_sm_io *io, unsigned int offset, 1394 unsigned char b) 1395 { 1396 unsigned int addr = io->addr_data; 1397 1398 outb(b, addr + (offset * io->regspacing)); 1399 } 1400 1401 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1402 { 1403 unsigned int addr = io->addr_data; 1404 1405 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1406 } 1407 1408 static void port_outw(struct si_sm_io *io, unsigned int offset, 1409 unsigned char b) 1410 { 1411 unsigned int addr = io->addr_data; 1412 1413 outw(b << io->regshift, addr + (offset * io->regspacing)); 1414 } 1415 1416 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1417 { 1418 unsigned int addr = io->addr_data; 1419 1420 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1421 } 1422 1423 static void port_outl(struct si_sm_io *io, unsigned int offset, 1424 unsigned char b) 1425 { 1426 unsigned int addr = io->addr_data; 1427 1428 outl(b << io->regshift, addr+(offset * io->regspacing)); 1429 } 1430 1431 static void port_cleanup(struct smi_info *info) 1432 { 1433 unsigned int addr = info->io.addr_data; 1434 int idx; 1435 1436 if (addr) { 1437 for (idx = 0; idx < info->io_size; idx++) 1438 release_region(addr + idx * info->io.regspacing, 1439 info->io.regsize); 1440 } 1441 } 1442 1443 static int port_setup(struct smi_info *info) 1444 { 1445 unsigned int addr = info->io.addr_data; 1446 int idx; 1447 1448 if (!addr) 1449 return -ENODEV; 1450 1451 info->io_cleanup = port_cleanup; 1452 1453 /* 1454 * Figure out the actual inb/inw/inl/etc routine to use based 1455 * upon the register size. 1456 */ 1457 switch (info->io.regsize) { 1458 case 1: 1459 info->io.inputb = port_inb; 1460 info->io.outputb = port_outb; 1461 break; 1462 case 2: 1463 info->io.inputb = port_inw; 1464 info->io.outputb = port_outw; 1465 break; 1466 case 4: 1467 info->io.inputb = port_inl; 1468 info->io.outputb = port_outl; 1469 break; 1470 default: 1471 dev_warn(info->dev, "Invalid register size: %d\n", 1472 info->io.regsize); 1473 return -EINVAL; 1474 } 1475 1476 /* 1477 * Some BIOSes reserve disjoint I/O regions in their ACPI 1478 * tables. This causes problems when trying to register the 1479 * entire I/O region. Therefore we must register each I/O 1480 * port separately. 1481 */ 1482 for (idx = 0; idx < info->io_size; idx++) { 1483 if (request_region(addr + idx * info->io.regspacing, 1484 info->io.regsize, DEVICE_NAME) == NULL) { 1485 /* Undo allocations */ 1486 while (idx--) { 1487 release_region(addr + idx * info->io.regspacing, 1488 info->io.regsize); 1489 } 1490 return -EIO; 1491 } 1492 } 1493 return 0; 1494 } 1495 1496 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1497 { 1498 return readb((io->addr)+(offset * io->regspacing)); 1499 } 1500 1501 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1502 unsigned char b) 1503 { 1504 writeb(b, (io->addr)+(offset * io->regspacing)); 1505 } 1506 1507 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1508 { 1509 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1510 & 0xff; 1511 } 1512 1513 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1514 unsigned char b) 1515 { 1516 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1517 } 1518 1519 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1520 { 1521 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1522 & 0xff; 1523 } 1524 1525 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1526 unsigned char b) 1527 { 1528 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1529 } 1530 1531 #ifdef readq 1532 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1533 { 1534 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1535 & 0xff; 1536 } 1537 1538 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1539 unsigned char b) 1540 { 1541 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1542 } 1543 #endif 1544 1545 static void mem_cleanup(struct smi_info *info) 1546 { 1547 unsigned long addr = info->io.addr_data; 1548 int mapsize; 1549 1550 if (info->io.addr) { 1551 iounmap(info->io.addr); 1552 1553 mapsize = ((info->io_size * info->io.regspacing) 1554 - (info->io.regspacing - info->io.regsize)); 1555 1556 release_mem_region(addr, mapsize); 1557 } 1558 } 1559 1560 static int mem_setup(struct smi_info *info) 1561 { 1562 unsigned long addr = info->io.addr_data; 1563 int mapsize; 1564 1565 if (!addr) 1566 return -ENODEV; 1567 1568 info->io_cleanup = mem_cleanup; 1569 1570 /* 1571 * Figure out the actual readb/readw/readl/etc routine to use based 1572 * upon the register size. 1573 */ 1574 switch (info->io.regsize) { 1575 case 1: 1576 info->io.inputb = intf_mem_inb; 1577 info->io.outputb = intf_mem_outb; 1578 break; 1579 case 2: 1580 info->io.inputb = intf_mem_inw; 1581 info->io.outputb = intf_mem_outw; 1582 break; 1583 case 4: 1584 info->io.inputb = intf_mem_inl; 1585 info->io.outputb = intf_mem_outl; 1586 break; 1587 #ifdef readq 1588 case 8: 1589 info->io.inputb = mem_inq; 1590 info->io.outputb = mem_outq; 1591 break; 1592 #endif 1593 default: 1594 dev_warn(info->dev, "Invalid register size: %d\n", 1595 info->io.regsize); 1596 return -EINVAL; 1597 } 1598 1599 /* 1600 * Calculate the total amount of memory to claim. This is an 1601 * unusual looking calculation, but it avoids claiming any 1602 * more memory than it has to. It will claim everything 1603 * between the first address to the end of the last full 1604 * register. 1605 */ 1606 mapsize = ((info->io_size * info->io.regspacing) 1607 - (info->io.regspacing - info->io.regsize)); 1608 1609 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1610 return -EIO; 1611 1612 info->io.addr = ioremap(addr, mapsize); 1613 if (info->io.addr == NULL) { 1614 release_mem_region(addr, mapsize); 1615 return -EIO; 1616 } 1617 return 0; 1618 } 1619 1620 /* 1621 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1622 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1623 * Options are: 1624 * rsp=<regspacing> 1625 * rsi=<regsize> 1626 * rsh=<regshift> 1627 * irq=<irq> 1628 * ipmb=<ipmb addr> 1629 */ 1630 enum hotmod_op { HM_ADD, HM_REMOVE }; 1631 struct hotmod_vals { 1632 char *name; 1633 int val; 1634 }; 1635 static struct hotmod_vals hotmod_ops[] = { 1636 { "add", HM_ADD }, 1637 { "remove", HM_REMOVE }, 1638 { NULL } 1639 }; 1640 static struct hotmod_vals hotmod_si[] = { 1641 { "kcs", SI_KCS }, 1642 { "smic", SI_SMIC }, 1643 { "bt", SI_BT }, 1644 { NULL } 1645 }; 1646 static struct hotmod_vals hotmod_as[] = { 1647 { "mem", IPMI_MEM_ADDR_SPACE }, 1648 { "i/o", IPMI_IO_ADDR_SPACE }, 1649 { NULL } 1650 }; 1651 1652 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1653 { 1654 char *s; 1655 int i; 1656 1657 s = strchr(*curr, ','); 1658 if (!s) { 1659 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1660 return -EINVAL; 1661 } 1662 *s = '\0'; 1663 s++; 1664 for (i = 0; hotmod_ops[i].name; i++) { 1665 if (strcmp(*curr, v[i].name) == 0) { 1666 *val = v[i].val; 1667 *curr = s; 1668 return 0; 1669 } 1670 } 1671 1672 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1673 return -EINVAL; 1674 } 1675 1676 static int check_hotmod_int_op(const char *curr, const char *option, 1677 const char *name, int *val) 1678 { 1679 char *n; 1680 1681 if (strcmp(curr, name) == 0) { 1682 if (!option) { 1683 printk(KERN_WARNING PFX 1684 "No option given for '%s'\n", 1685 curr); 1686 return -EINVAL; 1687 } 1688 *val = simple_strtoul(option, &n, 0); 1689 if ((*n != '\0') || (*option == '\0')) { 1690 printk(KERN_WARNING PFX 1691 "Bad option given for '%s'\n", 1692 curr); 1693 return -EINVAL; 1694 } 1695 return 1; 1696 } 1697 return 0; 1698 } 1699 1700 static struct smi_info *smi_info_alloc(void) 1701 { 1702 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1703 1704 if (info) 1705 spin_lock_init(&info->si_lock); 1706 return info; 1707 } 1708 1709 static int hotmod_handler(const char *val, struct kernel_param *kp) 1710 { 1711 char *str = kstrdup(val, GFP_KERNEL); 1712 int rv; 1713 char *next, *curr, *s, *n, *o; 1714 enum hotmod_op op; 1715 enum si_type si_type; 1716 int addr_space; 1717 unsigned long addr; 1718 int regspacing; 1719 int regsize; 1720 int regshift; 1721 int irq; 1722 int ipmb; 1723 int ival; 1724 int len; 1725 struct smi_info *info; 1726 1727 if (!str) 1728 return -ENOMEM; 1729 1730 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1731 len = strlen(str); 1732 ival = len - 1; 1733 while ((ival >= 0) && isspace(str[ival])) { 1734 str[ival] = '\0'; 1735 ival--; 1736 } 1737 1738 for (curr = str; curr; curr = next) { 1739 regspacing = 1; 1740 regsize = 1; 1741 regshift = 0; 1742 irq = 0; 1743 ipmb = 0; /* Choose the default if not specified */ 1744 1745 next = strchr(curr, ':'); 1746 if (next) { 1747 *next = '\0'; 1748 next++; 1749 } 1750 1751 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1752 if (rv) 1753 break; 1754 op = ival; 1755 1756 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1757 if (rv) 1758 break; 1759 si_type = ival; 1760 1761 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1762 if (rv) 1763 break; 1764 1765 s = strchr(curr, ','); 1766 if (s) { 1767 *s = '\0'; 1768 s++; 1769 } 1770 addr = simple_strtoul(curr, &n, 0); 1771 if ((*n != '\0') || (*curr == '\0')) { 1772 printk(KERN_WARNING PFX "Invalid hotmod address" 1773 " '%s'\n", curr); 1774 break; 1775 } 1776 1777 while (s) { 1778 curr = s; 1779 s = strchr(curr, ','); 1780 if (s) { 1781 *s = '\0'; 1782 s++; 1783 } 1784 o = strchr(curr, '='); 1785 if (o) { 1786 *o = '\0'; 1787 o++; 1788 } 1789 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1790 if (rv < 0) 1791 goto out; 1792 else if (rv) 1793 continue; 1794 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1795 if (rv < 0) 1796 goto out; 1797 else if (rv) 1798 continue; 1799 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1800 if (rv < 0) 1801 goto out; 1802 else if (rv) 1803 continue; 1804 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1805 if (rv < 0) 1806 goto out; 1807 else if (rv) 1808 continue; 1809 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1810 if (rv < 0) 1811 goto out; 1812 else if (rv) 1813 continue; 1814 1815 rv = -EINVAL; 1816 printk(KERN_WARNING PFX 1817 "Invalid hotmod option '%s'\n", 1818 curr); 1819 goto out; 1820 } 1821 1822 if (op == HM_ADD) { 1823 info = smi_info_alloc(); 1824 if (!info) { 1825 rv = -ENOMEM; 1826 goto out; 1827 } 1828 1829 info->addr_source = SI_HOTMOD; 1830 info->si_type = si_type; 1831 info->io.addr_data = addr; 1832 info->io.addr_type = addr_space; 1833 if (addr_space == IPMI_MEM_ADDR_SPACE) 1834 info->io_setup = mem_setup; 1835 else 1836 info->io_setup = port_setup; 1837 1838 info->io.addr = NULL; 1839 info->io.regspacing = regspacing; 1840 if (!info->io.regspacing) 1841 info->io.regspacing = DEFAULT_REGSPACING; 1842 info->io.regsize = regsize; 1843 if (!info->io.regsize) 1844 info->io.regsize = DEFAULT_REGSPACING; 1845 info->io.regshift = regshift; 1846 info->irq = irq; 1847 if (info->irq) 1848 info->irq_setup = std_irq_setup; 1849 info->slave_addr = ipmb; 1850 1851 rv = add_smi(info); 1852 if (rv) { 1853 kfree(info); 1854 goto out; 1855 } 1856 rv = try_smi_init(info); 1857 if (rv) { 1858 cleanup_one_si(info); 1859 goto out; 1860 } 1861 } else { 1862 /* remove */ 1863 struct smi_info *e, *tmp_e; 1864 1865 mutex_lock(&smi_infos_lock); 1866 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1867 if (e->io.addr_type != addr_space) 1868 continue; 1869 if (e->si_type != si_type) 1870 continue; 1871 if (e->io.addr_data == addr) 1872 cleanup_one_si(e); 1873 } 1874 mutex_unlock(&smi_infos_lock); 1875 } 1876 } 1877 rv = len; 1878 out: 1879 kfree(str); 1880 return rv; 1881 } 1882 1883 static int hardcode_find_bmc(void) 1884 { 1885 int ret = -ENODEV; 1886 int i; 1887 struct smi_info *info; 1888 1889 for (i = 0; i < SI_MAX_PARMS; i++) { 1890 if (!ports[i] && !addrs[i]) 1891 continue; 1892 1893 info = smi_info_alloc(); 1894 if (!info) 1895 return -ENOMEM; 1896 1897 info->addr_source = SI_HARDCODED; 1898 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1899 1900 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1901 info->si_type = SI_KCS; 1902 } else if (strcmp(si_type[i], "smic") == 0) { 1903 info->si_type = SI_SMIC; 1904 } else if (strcmp(si_type[i], "bt") == 0) { 1905 info->si_type = SI_BT; 1906 } else { 1907 printk(KERN_WARNING PFX "Interface type specified " 1908 "for interface %d, was invalid: %s\n", 1909 i, si_type[i]); 1910 kfree(info); 1911 continue; 1912 } 1913 1914 if (ports[i]) { 1915 /* An I/O port */ 1916 info->io_setup = port_setup; 1917 info->io.addr_data = ports[i]; 1918 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1919 } else if (addrs[i]) { 1920 /* A memory port */ 1921 info->io_setup = mem_setup; 1922 info->io.addr_data = addrs[i]; 1923 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1924 } else { 1925 printk(KERN_WARNING PFX "Interface type specified " 1926 "for interface %d, but port and address were " 1927 "not set or set to zero.\n", i); 1928 kfree(info); 1929 continue; 1930 } 1931 1932 info->io.addr = NULL; 1933 info->io.regspacing = regspacings[i]; 1934 if (!info->io.regspacing) 1935 info->io.regspacing = DEFAULT_REGSPACING; 1936 info->io.regsize = regsizes[i]; 1937 if (!info->io.regsize) 1938 info->io.regsize = DEFAULT_REGSPACING; 1939 info->io.regshift = regshifts[i]; 1940 info->irq = irqs[i]; 1941 if (info->irq) 1942 info->irq_setup = std_irq_setup; 1943 info->slave_addr = slave_addrs[i]; 1944 1945 if (!add_smi(info)) { 1946 if (try_smi_init(info)) 1947 cleanup_one_si(info); 1948 ret = 0; 1949 } else { 1950 kfree(info); 1951 } 1952 } 1953 return ret; 1954 } 1955 1956 #ifdef CONFIG_ACPI 1957 1958 #include <linux/acpi.h> 1959 1960 /* 1961 * Once we get an ACPI failure, we don't try any more, because we go 1962 * through the tables sequentially. Once we don't find a table, there 1963 * are no more. 1964 */ 1965 static int acpi_failure; 1966 1967 /* For GPE-type interrupts. */ 1968 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 1969 u32 gpe_number, void *context) 1970 { 1971 struct smi_info *smi_info = context; 1972 unsigned long flags; 1973 #ifdef DEBUG_TIMING 1974 struct timeval t; 1975 #endif 1976 1977 spin_lock_irqsave(&(smi_info->si_lock), flags); 1978 1979 smi_inc_stat(smi_info, interrupts); 1980 1981 #ifdef DEBUG_TIMING 1982 do_gettimeofday(&t); 1983 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1984 #endif 1985 smi_event_handler(smi_info, 0); 1986 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1987 1988 return ACPI_INTERRUPT_HANDLED; 1989 } 1990 1991 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1992 { 1993 if (!info->irq) 1994 return; 1995 1996 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1997 } 1998 1999 static int acpi_gpe_irq_setup(struct smi_info *info) 2000 { 2001 acpi_status status; 2002 2003 if (!info->irq) 2004 return 0; 2005 2006 /* FIXME - is level triggered right? */ 2007 status = acpi_install_gpe_handler(NULL, 2008 info->irq, 2009 ACPI_GPE_LEVEL_TRIGGERED, 2010 &ipmi_acpi_gpe, 2011 info); 2012 if (status != AE_OK) { 2013 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2014 " running polled\n", DEVICE_NAME, info->irq); 2015 info->irq = 0; 2016 return -EINVAL; 2017 } else { 2018 info->irq_cleanup = acpi_gpe_irq_cleanup; 2019 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2020 return 0; 2021 } 2022 } 2023 2024 /* 2025 * Defined at 2026 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2027 */ 2028 struct SPMITable { 2029 s8 Signature[4]; 2030 u32 Length; 2031 u8 Revision; 2032 u8 Checksum; 2033 s8 OEMID[6]; 2034 s8 OEMTableID[8]; 2035 s8 OEMRevision[4]; 2036 s8 CreatorID[4]; 2037 s8 CreatorRevision[4]; 2038 u8 InterfaceType; 2039 u8 IPMIlegacy; 2040 s16 SpecificationRevision; 2041 2042 /* 2043 * Bit 0 - SCI interrupt supported 2044 * Bit 1 - I/O APIC/SAPIC 2045 */ 2046 u8 InterruptType; 2047 2048 /* 2049 * If bit 0 of InterruptType is set, then this is the SCI 2050 * interrupt in the GPEx_STS register. 2051 */ 2052 u8 GPE; 2053 2054 s16 Reserved; 2055 2056 /* 2057 * If bit 1 of InterruptType is set, then this is the I/O 2058 * APIC/SAPIC interrupt. 2059 */ 2060 u32 GlobalSystemInterrupt; 2061 2062 /* The actual register address. */ 2063 struct acpi_generic_address addr; 2064 2065 u8 UID[4]; 2066 2067 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2068 }; 2069 2070 static int try_init_spmi(struct SPMITable *spmi) 2071 { 2072 struct smi_info *info; 2073 int rv; 2074 2075 if (spmi->IPMIlegacy != 1) { 2076 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2077 return -ENODEV; 2078 } 2079 2080 info = smi_info_alloc(); 2081 if (!info) { 2082 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2083 return -ENOMEM; 2084 } 2085 2086 info->addr_source = SI_SPMI; 2087 printk(KERN_INFO PFX "probing via SPMI\n"); 2088 2089 /* Figure out the interface type. */ 2090 switch (spmi->InterfaceType) { 2091 case 1: /* KCS */ 2092 info->si_type = SI_KCS; 2093 break; 2094 case 2: /* SMIC */ 2095 info->si_type = SI_SMIC; 2096 break; 2097 case 3: /* BT */ 2098 info->si_type = SI_BT; 2099 break; 2100 default: 2101 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2102 spmi->InterfaceType); 2103 kfree(info); 2104 return -EIO; 2105 } 2106 2107 if (spmi->InterruptType & 1) { 2108 /* We've got a GPE interrupt. */ 2109 info->irq = spmi->GPE; 2110 info->irq_setup = acpi_gpe_irq_setup; 2111 } else if (spmi->InterruptType & 2) { 2112 /* We've got an APIC/SAPIC interrupt. */ 2113 info->irq = spmi->GlobalSystemInterrupt; 2114 info->irq_setup = std_irq_setup; 2115 } else { 2116 /* Use the default interrupt setting. */ 2117 info->irq = 0; 2118 info->irq_setup = NULL; 2119 } 2120 2121 if (spmi->addr.bit_width) { 2122 /* A (hopefully) properly formed register bit width. */ 2123 info->io.regspacing = spmi->addr.bit_width / 8; 2124 } else { 2125 info->io.regspacing = DEFAULT_REGSPACING; 2126 } 2127 info->io.regsize = info->io.regspacing; 2128 info->io.regshift = spmi->addr.bit_offset; 2129 2130 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2131 info->io_setup = mem_setup; 2132 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2133 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2134 info->io_setup = port_setup; 2135 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2136 } else { 2137 kfree(info); 2138 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2139 return -EIO; 2140 } 2141 info->io.addr_data = spmi->addr.address; 2142 2143 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2144 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2145 info->io.addr_data, info->io.regsize, info->io.regspacing, 2146 info->irq); 2147 2148 rv = add_smi(info); 2149 if (rv) 2150 kfree(info); 2151 2152 return rv; 2153 } 2154 2155 static void spmi_find_bmc(void) 2156 { 2157 acpi_status status; 2158 struct SPMITable *spmi; 2159 int i; 2160 2161 if (acpi_disabled) 2162 return; 2163 2164 if (acpi_failure) 2165 return; 2166 2167 for (i = 0; ; i++) { 2168 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2169 (struct acpi_table_header **)&spmi); 2170 if (status != AE_OK) 2171 return; 2172 2173 try_init_spmi(spmi); 2174 } 2175 } 2176 2177 static int ipmi_pnp_probe(struct pnp_dev *dev, 2178 const struct pnp_device_id *dev_id) 2179 { 2180 struct acpi_device *acpi_dev; 2181 struct smi_info *info; 2182 struct resource *res, *res_second; 2183 acpi_handle handle; 2184 acpi_status status; 2185 unsigned long long tmp; 2186 int rv; 2187 2188 acpi_dev = pnp_acpi_device(dev); 2189 if (!acpi_dev) 2190 return -ENODEV; 2191 2192 info = smi_info_alloc(); 2193 if (!info) 2194 return -ENOMEM; 2195 2196 info->addr_source = SI_ACPI; 2197 printk(KERN_INFO PFX "probing via ACPI\n"); 2198 2199 handle = acpi_dev->handle; 2200 info->addr_info.acpi_info.acpi_handle = handle; 2201 2202 /* _IFT tells us the interface type: KCS, BT, etc */ 2203 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2204 if (ACPI_FAILURE(status)) 2205 goto err_free; 2206 2207 switch (tmp) { 2208 case 1: 2209 info->si_type = SI_KCS; 2210 break; 2211 case 2: 2212 info->si_type = SI_SMIC; 2213 break; 2214 case 3: 2215 info->si_type = SI_BT; 2216 break; 2217 default: 2218 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2219 goto err_free; 2220 } 2221 2222 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2223 if (res) { 2224 info->io_setup = port_setup; 2225 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2226 } else { 2227 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2228 if (res) { 2229 info->io_setup = mem_setup; 2230 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2231 } 2232 } 2233 if (!res) { 2234 dev_err(&dev->dev, "no I/O or memory address\n"); 2235 goto err_free; 2236 } 2237 info->io.addr_data = res->start; 2238 2239 info->io.regspacing = DEFAULT_REGSPACING; 2240 res_second = pnp_get_resource(dev, 2241 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2242 IORESOURCE_IO : IORESOURCE_MEM, 2243 1); 2244 if (res_second) { 2245 if (res_second->start > info->io.addr_data) 2246 info->io.regspacing = res_second->start - info->io.addr_data; 2247 } 2248 info->io.regsize = DEFAULT_REGSPACING; 2249 info->io.regshift = 0; 2250 2251 /* If _GPE exists, use it; otherwise use standard interrupts */ 2252 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2253 if (ACPI_SUCCESS(status)) { 2254 info->irq = tmp; 2255 info->irq_setup = acpi_gpe_irq_setup; 2256 } else if (pnp_irq_valid(dev, 0)) { 2257 info->irq = pnp_irq(dev, 0); 2258 info->irq_setup = std_irq_setup; 2259 } 2260 2261 info->dev = &dev->dev; 2262 pnp_set_drvdata(dev, info); 2263 2264 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2265 res, info->io.regsize, info->io.regspacing, 2266 info->irq); 2267 2268 rv = add_smi(info); 2269 if (rv) 2270 kfree(info); 2271 2272 return rv; 2273 2274 err_free: 2275 kfree(info); 2276 return -EINVAL; 2277 } 2278 2279 static void ipmi_pnp_remove(struct pnp_dev *dev) 2280 { 2281 struct smi_info *info = pnp_get_drvdata(dev); 2282 2283 cleanup_one_si(info); 2284 } 2285 2286 static const struct pnp_device_id pnp_dev_table[] = { 2287 {"IPI0001", 0}, 2288 {"", 0}, 2289 }; 2290 2291 static struct pnp_driver ipmi_pnp_driver = { 2292 .name = DEVICE_NAME, 2293 .probe = ipmi_pnp_probe, 2294 .remove = ipmi_pnp_remove, 2295 .id_table = pnp_dev_table, 2296 }; 2297 2298 MODULE_DEVICE_TABLE(pnp, pnp_dev_table); 2299 #endif 2300 2301 #ifdef CONFIG_DMI 2302 struct dmi_ipmi_data { 2303 u8 type; 2304 u8 addr_space; 2305 unsigned long base_addr; 2306 u8 irq; 2307 u8 offset; 2308 u8 slave_addr; 2309 }; 2310 2311 static int decode_dmi(const struct dmi_header *dm, 2312 struct dmi_ipmi_data *dmi) 2313 { 2314 const u8 *data = (const u8 *)dm; 2315 unsigned long base_addr; 2316 u8 reg_spacing; 2317 u8 len = dm->length; 2318 2319 dmi->type = data[4]; 2320 2321 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2322 if (len >= 0x11) { 2323 if (base_addr & 1) { 2324 /* I/O */ 2325 base_addr &= 0xFFFE; 2326 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2327 } else 2328 /* Memory */ 2329 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2330 2331 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2332 is odd. */ 2333 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2334 2335 dmi->irq = data[0x11]; 2336 2337 /* The top two bits of byte 0x10 hold the register spacing. */ 2338 reg_spacing = (data[0x10] & 0xC0) >> 6; 2339 switch (reg_spacing) { 2340 case 0x00: /* Byte boundaries */ 2341 dmi->offset = 1; 2342 break; 2343 case 0x01: /* 32-bit boundaries */ 2344 dmi->offset = 4; 2345 break; 2346 case 0x02: /* 16-byte boundaries */ 2347 dmi->offset = 16; 2348 break; 2349 default: 2350 /* Some other interface, just ignore it. */ 2351 return -EIO; 2352 } 2353 } else { 2354 /* Old DMI spec. */ 2355 /* 2356 * Note that technically, the lower bit of the base 2357 * address should be 1 if the address is I/O and 0 if 2358 * the address is in memory. So many systems get that 2359 * wrong (and all that I have seen are I/O) so we just 2360 * ignore that bit and assume I/O. Systems that use 2361 * memory should use the newer spec, anyway. 2362 */ 2363 dmi->base_addr = base_addr & 0xfffe; 2364 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2365 dmi->offset = 1; 2366 } 2367 2368 dmi->slave_addr = data[6]; 2369 2370 return 0; 2371 } 2372 2373 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2374 { 2375 struct smi_info *info; 2376 2377 info = smi_info_alloc(); 2378 if (!info) { 2379 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2380 return; 2381 } 2382 2383 info->addr_source = SI_SMBIOS; 2384 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2385 2386 switch (ipmi_data->type) { 2387 case 0x01: /* KCS */ 2388 info->si_type = SI_KCS; 2389 break; 2390 case 0x02: /* SMIC */ 2391 info->si_type = SI_SMIC; 2392 break; 2393 case 0x03: /* BT */ 2394 info->si_type = SI_BT; 2395 break; 2396 default: 2397 kfree(info); 2398 return; 2399 } 2400 2401 switch (ipmi_data->addr_space) { 2402 case IPMI_MEM_ADDR_SPACE: 2403 info->io_setup = mem_setup; 2404 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2405 break; 2406 2407 case IPMI_IO_ADDR_SPACE: 2408 info->io_setup = port_setup; 2409 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2410 break; 2411 2412 default: 2413 kfree(info); 2414 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2415 ipmi_data->addr_space); 2416 return; 2417 } 2418 info->io.addr_data = ipmi_data->base_addr; 2419 2420 info->io.regspacing = ipmi_data->offset; 2421 if (!info->io.regspacing) 2422 info->io.regspacing = DEFAULT_REGSPACING; 2423 info->io.regsize = DEFAULT_REGSPACING; 2424 info->io.regshift = 0; 2425 2426 info->slave_addr = ipmi_data->slave_addr; 2427 2428 info->irq = ipmi_data->irq; 2429 if (info->irq) 2430 info->irq_setup = std_irq_setup; 2431 2432 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2433 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2434 info->io.addr_data, info->io.regsize, info->io.regspacing, 2435 info->irq); 2436 2437 if (add_smi(info)) 2438 kfree(info); 2439 } 2440 2441 static void dmi_find_bmc(void) 2442 { 2443 const struct dmi_device *dev = NULL; 2444 struct dmi_ipmi_data data; 2445 int rv; 2446 2447 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2448 memset(&data, 0, sizeof(data)); 2449 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2450 &data); 2451 if (!rv) 2452 try_init_dmi(&data); 2453 } 2454 } 2455 #endif /* CONFIG_DMI */ 2456 2457 #ifdef CONFIG_PCI 2458 2459 #define PCI_ERMC_CLASSCODE 0x0C0700 2460 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2461 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2462 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2463 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2464 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2465 2466 #define PCI_HP_VENDOR_ID 0x103C 2467 #define PCI_MMC_DEVICE_ID 0x121A 2468 #define PCI_MMC_ADDR_CW 0x10 2469 2470 static void ipmi_pci_cleanup(struct smi_info *info) 2471 { 2472 struct pci_dev *pdev = info->addr_source_data; 2473 2474 pci_disable_device(pdev); 2475 } 2476 2477 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2478 { 2479 if (info->si_type == SI_KCS) { 2480 unsigned char status; 2481 int regspacing; 2482 2483 info->io.regsize = DEFAULT_REGSIZE; 2484 info->io.regshift = 0; 2485 info->io_size = 2; 2486 info->handlers = &kcs_smi_handlers; 2487 2488 /* detect 1, 4, 16byte spacing */ 2489 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2490 info->io.regspacing = regspacing; 2491 if (info->io_setup(info)) { 2492 dev_err(info->dev, 2493 "Could not setup I/O space\n"); 2494 return DEFAULT_REGSPACING; 2495 } 2496 /* write invalid cmd */ 2497 info->io.outputb(&info->io, 1, 0x10); 2498 /* read status back */ 2499 status = info->io.inputb(&info->io, 1); 2500 info->io_cleanup(info); 2501 if (status) 2502 return regspacing; 2503 regspacing *= 4; 2504 } 2505 } 2506 return DEFAULT_REGSPACING; 2507 } 2508 2509 static int ipmi_pci_probe(struct pci_dev *pdev, 2510 const struct pci_device_id *ent) 2511 { 2512 int rv; 2513 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2514 struct smi_info *info; 2515 2516 info = smi_info_alloc(); 2517 if (!info) 2518 return -ENOMEM; 2519 2520 info->addr_source = SI_PCI; 2521 dev_info(&pdev->dev, "probing via PCI"); 2522 2523 switch (class_type) { 2524 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2525 info->si_type = SI_SMIC; 2526 break; 2527 2528 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2529 info->si_type = SI_KCS; 2530 break; 2531 2532 case PCI_ERMC_CLASSCODE_TYPE_BT: 2533 info->si_type = SI_BT; 2534 break; 2535 2536 default: 2537 kfree(info); 2538 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2539 return -ENOMEM; 2540 } 2541 2542 rv = pci_enable_device(pdev); 2543 if (rv) { 2544 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2545 kfree(info); 2546 return rv; 2547 } 2548 2549 info->addr_source_cleanup = ipmi_pci_cleanup; 2550 info->addr_source_data = pdev; 2551 2552 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2553 info->io_setup = port_setup; 2554 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2555 } else { 2556 info->io_setup = mem_setup; 2557 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2558 } 2559 info->io.addr_data = pci_resource_start(pdev, 0); 2560 2561 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2562 info->io.regsize = DEFAULT_REGSIZE; 2563 info->io.regshift = 0; 2564 2565 info->irq = pdev->irq; 2566 if (info->irq) 2567 info->irq_setup = std_irq_setup; 2568 2569 info->dev = &pdev->dev; 2570 pci_set_drvdata(pdev, info); 2571 2572 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2573 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2574 info->irq); 2575 2576 rv = add_smi(info); 2577 if (rv) { 2578 kfree(info); 2579 pci_disable_device(pdev); 2580 } 2581 2582 return rv; 2583 } 2584 2585 static void ipmi_pci_remove(struct pci_dev *pdev) 2586 { 2587 struct smi_info *info = pci_get_drvdata(pdev); 2588 cleanup_one_si(info); 2589 pci_disable_device(pdev); 2590 } 2591 2592 static struct pci_device_id ipmi_pci_devices[] = { 2593 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2594 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2595 { 0, } 2596 }; 2597 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2598 2599 static struct pci_driver ipmi_pci_driver = { 2600 .name = DEVICE_NAME, 2601 .id_table = ipmi_pci_devices, 2602 .probe = ipmi_pci_probe, 2603 .remove = ipmi_pci_remove, 2604 }; 2605 #endif /* CONFIG_PCI */ 2606 2607 static struct of_device_id ipmi_match[]; 2608 static int ipmi_probe(struct platform_device *dev) 2609 { 2610 #ifdef CONFIG_OF 2611 const struct of_device_id *match; 2612 struct smi_info *info; 2613 struct resource resource; 2614 const __be32 *regsize, *regspacing, *regshift; 2615 struct device_node *np = dev->dev.of_node; 2616 int ret; 2617 int proplen; 2618 2619 dev_info(&dev->dev, "probing via device tree\n"); 2620 2621 match = of_match_device(ipmi_match, &dev->dev); 2622 if (!match) 2623 return -EINVAL; 2624 2625 ret = of_address_to_resource(np, 0, &resource); 2626 if (ret) { 2627 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2628 return ret; 2629 } 2630 2631 regsize = of_get_property(np, "reg-size", &proplen); 2632 if (regsize && proplen != 4) { 2633 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2634 return -EINVAL; 2635 } 2636 2637 regspacing = of_get_property(np, "reg-spacing", &proplen); 2638 if (regspacing && proplen != 4) { 2639 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2640 return -EINVAL; 2641 } 2642 2643 regshift = of_get_property(np, "reg-shift", &proplen); 2644 if (regshift && proplen != 4) { 2645 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2646 return -EINVAL; 2647 } 2648 2649 info = smi_info_alloc(); 2650 2651 if (!info) { 2652 dev_err(&dev->dev, 2653 "could not allocate memory for OF probe\n"); 2654 return -ENOMEM; 2655 } 2656 2657 info->si_type = (enum si_type) match->data; 2658 info->addr_source = SI_DEVICETREE; 2659 info->irq_setup = std_irq_setup; 2660 2661 if (resource.flags & IORESOURCE_IO) { 2662 info->io_setup = port_setup; 2663 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2664 } else { 2665 info->io_setup = mem_setup; 2666 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2667 } 2668 2669 info->io.addr_data = resource.start; 2670 2671 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2672 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2673 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2674 2675 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2676 info->dev = &dev->dev; 2677 2678 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2679 info->io.addr_data, info->io.regsize, info->io.regspacing, 2680 info->irq); 2681 2682 dev_set_drvdata(&dev->dev, info); 2683 2684 ret = add_smi(info); 2685 if (ret) { 2686 kfree(info); 2687 return ret; 2688 } 2689 #endif 2690 return 0; 2691 } 2692 2693 static int ipmi_remove(struct platform_device *dev) 2694 { 2695 #ifdef CONFIG_OF 2696 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2697 #endif 2698 return 0; 2699 } 2700 2701 static struct of_device_id ipmi_match[] = 2702 { 2703 { .type = "ipmi", .compatible = "ipmi-kcs", 2704 .data = (void *)(unsigned long) SI_KCS }, 2705 { .type = "ipmi", .compatible = "ipmi-smic", 2706 .data = (void *)(unsigned long) SI_SMIC }, 2707 { .type = "ipmi", .compatible = "ipmi-bt", 2708 .data = (void *)(unsigned long) SI_BT }, 2709 {}, 2710 }; 2711 2712 static struct platform_driver ipmi_driver = { 2713 .driver = { 2714 .name = DEVICE_NAME, 2715 .owner = THIS_MODULE, 2716 .of_match_table = ipmi_match, 2717 }, 2718 .probe = ipmi_probe, 2719 .remove = ipmi_remove, 2720 }; 2721 2722 #ifdef CONFIG_PARISC 2723 static int ipmi_parisc_probe(struct parisc_device *dev) 2724 { 2725 struct smi_info *info; 2726 int rv; 2727 2728 info = smi_info_alloc(); 2729 2730 if (!info) { 2731 dev_err(&dev->dev, 2732 "could not allocate memory for PARISC probe\n"); 2733 return -ENOMEM; 2734 } 2735 2736 info->si_type = SI_KCS; 2737 info->addr_source = SI_DEVICETREE; 2738 info->io_setup = mem_setup; 2739 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2740 info->io.addr_data = dev->hpa.start; 2741 info->io.regsize = 1; 2742 info->io.regspacing = 1; 2743 info->io.regshift = 0; 2744 info->irq = 0; /* no interrupt */ 2745 info->irq_setup = NULL; 2746 info->dev = &dev->dev; 2747 2748 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2749 2750 dev_set_drvdata(&dev->dev, info); 2751 2752 rv = add_smi(info); 2753 if (rv) { 2754 kfree(info); 2755 return rv; 2756 } 2757 2758 return 0; 2759 } 2760 2761 static int ipmi_parisc_remove(struct parisc_device *dev) 2762 { 2763 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2764 return 0; 2765 } 2766 2767 static struct parisc_device_id ipmi_parisc_tbl[] = { 2768 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2769 { 0, } 2770 }; 2771 2772 static struct parisc_driver ipmi_parisc_driver = { 2773 .name = "ipmi", 2774 .id_table = ipmi_parisc_tbl, 2775 .probe = ipmi_parisc_probe, 2776 .remove = ipmi_parisc_remove, 2777 }; 2778 #endif /* CONFIG_PARISC */ 2779 2780 static int wait_for_msg_done(struct smi_info *smi_info) 2781 { 2782 enum si_sm_result smi_result; 2783 2784 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2785 for (;;) { 2786 if (smi_result == SI_SM_CALL_WITH_DELAY || 2787 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2788 schedule_timeout_uninterruptible(1); 2789 smi_result = smi_info->handlers->event( 2790 smi_info->si_sm, jiffies_to_usecs(1)); 2791 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2792 smi_result = smi_info->handlers->event( 2793 smi_info->si_sm, 0); 2794 } else 2795 break; 2796 } 2797 if (smi_result == SI_SM_HOSED) 2798 /* 2799 * We couldn't get the state machine to run, so whatever's at 2800 * the port is probably not an IPMI SMI interface. 2801 */ 2802 return -ENODEV; 2803 2804 return 0; 2805 } 2806 2807 static int try_get_dev_id(struct smi_info *smi_info) 2808 { 2809 unsigned char msg[2]; 2810 unsigned char *resp; 2811 unsigned long resp_len; 2812 int rv = 0; 2813 2814 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2815 if (!resp) 2816 return -ENOMEM; 2817 2818 /* 2819 * Do a Get Device ID command, since it comes back with some 2820 * useful info. 2821 */ 2822 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2823 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2824 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2825 2826 rv = wait_for_msg_done(smi_info); 2827 if (rv) 2828 goto out; 2829 2830 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2831 resp, IPMI_MAX_MSG_LENGTH); 2832 2833 /* Check and record info from the get device id, in case we need it. */ 2834 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2835 2836 out: 2837 kfree(resp); 2838 return rv; 2839 } 2840 2841 static int try_enable_event_buffer(struct smi_info *smi_info) 2842 { 2843 unsigned char msg[3]; 2844 unsigned char *resp; 2845 unsigned long resp_len; 2846 int rv = 0; 2847 2848 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2849 if (!resp) 2850 return -ENOMEM; 2851 2852 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2853 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2854 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2855 2856 rv = wait_for_msg_done(smi_info); 2857 if (rv) { 2858 printk(KERN_WARNING PFX "Error getting response from get" 2859 " global enables command, the event buffer is not" 2860 " enabled.\n"); 2861 goto out; 2862 } 2863 2864 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2865 resp, IPMI_MAX_MSG_LENGTH); 2866 2867 if (resp_len < 4 || 2868 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2869 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2870 resp[2] != 0) { 2871 printk(KERN_WARNING PFX "Invalid return from get global" 2872 " enables command, cannot enable the event buffer.\n"); 2873 rv = -EINVAL; 2874 goto out; 2875 } 2876 2877 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2878 /* buffer is already enabled, nothing to do. */ 2879 goto out; 2880 2881 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2882 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2883 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2884 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2885 2886 rv = wait_for_msg_done(smi_info); 2887 if (rv) { 2888 printk(KERN_WARNING PFX "Error getting response from set" 2889 " global, enables command, the event buffer is not" 2890 " enabled.\n"); 2891 goto out; 2892 } 2893 2894 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2895 resp, IPMI_MAX_MSG_LENGTH); 2896 2897 if (resp_len < 3 || 2898 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2899 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2900 printk(KERN_WARNING PFX "Invalid return from get global," 2901 "enables command, not enable the event buffer.\n"); 2902 rv = -EINVAL; 2903 goto out; 2904 } 2905 2906 if (resp[2] != 0) 2907 /* 2908 * An error when setting the event buffer bit means 2909 * that the event buffer is not supported. 2910 */ 2911 rv = -ENOENT; 2912 out: 2913 kfree(resp); 2914 return rv; 2915 } 2916 2917 static int smi_type_proc_show(struct seq_file *m, void *v) 2918 { 2919 struct smi_info *smi = m->private; 2920 2921 return seq_printf(m, "%s\n", si_to_str[smi->si_type]); 2922 } 2923 2924 static int smi_type_proc_open(struct inode *inode, struct file *file) 2925 { 2926 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 2927 } 2928 2929 static const struct file_operations smi_type_proc_ops = { 2930 .open = smi_type_proc_open, 2931 .read = seq_read, 2932 .llseek = seq_lseek, 2933 .release = single_release, 2934 }; 2935 2936 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 2937 { 2938 struct smi_info *smi = m->private; 2939 2940 seq_printf(m, "interrupts_enabled: %d\n", 2941 smi->irq && !smi->interrupt_disabled); 2942 seq_printf(m, "short_timeouts: %u\n", 2943 smi_get_stat(smi, short_timeouts)); 2944 seq_printf(m, "long_timeouts: %u\n", 2945 smi_get_stat(smi, long_timeouts)); 2946 seq_printf(m, "idles: %u\n", 2947 smi_get_stat(smi, idles)); 2948 seq_printf(m, "interrupts: %u\n", 2949 smi_get_stat(smi, interrupts)); 2950 seq_printf(m, "attentions: %u\n", 2951 smi_get_stat(smi, attentions)); 2952 seq_printf(m, "flag_fetches: %u\n", 2953 smi_get_stat(smi, flag_fetches)); 2954 seq_printf(m, "hosed_count: %u\n", 2955 smi_get_stat(smi, hosed_count)); 2956 seq_printf(m, "complete_transactions: %u\n", 2957 smi_get_stat(smi, complete_transactions)); 2958 seq_printf(m, "events: %u\n", 2959 smi_get_stat(smi, events)); 2960 seq_printf(m, "watchdog_pretimeouts: %u\n", 2961 smi_get_stat(smi, watchdog_pretimeouts)); 2962 seq_printf(m, "incoming_messages: %u\n", 2963 smi_get_stat(smi, incoming_messages)); 2964 return 0; 2965 } 2966 2967 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 2968 { 2969 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 2970 } 2971 2972 static const struct file_operations smi_si_stats_proc_ops = { 2973 .open = smi_si_stats_proc_open, 2974 .read = seq_read, 2975 .llseek = seq_lseek, 2976 .release = single_release, 2977 }; 2978 2979 static int smi_params_proc_show(struct seq_file *m, void *v) 2980 { 2981 struct smi_info *smi = m->private; 2982 2983 return seq_printf(m, 2984 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2985 si_to_str[smi->si_type], 2986 addr_space_to_str[smi->io.addr_type], 2987 smi->io.addr_data, 2988 smi->io.regspacing, 2989 smi->io.regsize, 2990 smi->io.regshift, 2991 smi->irq, 2992 smi->slave_addr); 2993 } 2994 2995 static int smi_params_proc_open(struct inode *inode, struct file *file) 2996 { 2997 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 2998 } 2999 3000 static const struct file_operations smi_params_proc_ops = { 3001 .open = smi_params_proc_open, 3002 .read = seq_read, 3003 .llseek = seq_lseek, 3004 .release = single_release, 3005 }; 3006 3007 /* 3008 * oem_data_avail_to_receive_msg_avail 3009 * @info - smi_info structure with msg_flags set 3010 * 3011 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3012 * Returns 1 indicating need to re-run handle_flags(). 3013 */ 3014 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3015 { 3016 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3017 RECEIVE_MSG_AVAIL); 3018 return 1; 3019 } 3020 3021 /* 3022 * setup_dell_poweredge_oem_data_handler 3023 * @info - smi_info.device_id must be populated 3024 * 3025 * Systems that match, but have firmware version < 1.40 may assert 3026 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3027 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3028 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3029 * as RECEIVE_MSG_AVAIL instead. 3030 * 3031 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3032 * assert the OEM[012] bits, and if it did, the driver would have to 3033 * change to handle that properly, we don't actually check for the 3034 * firmware version. 3035 * Device ID = 0x20 BMC on PowerEdge 8G servers 3036 * Device Revision = 0x80 3037 * Firmware Revision1 = 0x01 BMC version 1.40 3038 * Firmware Revision2 = 0x40 BCD encoded 3039 * IPMI Version = 0x51 IPMI 1.5 3040 * Manufacturer ID = A2 02 00 Dell IANA 3041 * 3042 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3043 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3044 * 3045 */ 3046 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3047 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3048 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3049 #define DELL_IANA_MFR_ID 0x0002a2 3050 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3051 { 3052 struct ipmi_device_id *id = &smi_info->device_id; 3053 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3054 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3055 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3056 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3057 smi_info->oem_data_avail_handler = 3058 oem_data_avail_to_receive_msg_avail; 3059 } else if (ipmi_version_major(id) < 1 || 3060 (ipmi_version_major(id) == 1 && 3061 ipmi_version_minor(id) < 5)) { 3062 smi_info->oem_data_avail_handler = 3063 oem_data_avail_to_receive_msg_avail; 3064 } 3065 } 3066 } 3067 3068 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3069 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3070 { 3071 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3072 3073 /* Make it a response */ 3074 msg->rsp[0] = msg->data[0] | 4; 3075 msg->rsp[1] = msg->data[1]; 3076 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3077 msg->rsp_size = 3; 3078 smi_info->curr_msg = NULL; 3079 deliver_recv_msg(smi_info, msg); 3080 } 3081 3082 /* 3083 * dell_poweredge_bt_xaction_handler 3084 * @info - smi_info.device_id must be populated 3085 * 3086 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3087 * not respond to a Get SDR command if the length of the data 3088 * requested is exactly 0x3A, which leads to command timeouts and no 3089 * data returned. This intercepts such commands, and causes userspace 3090 * callers to try again with a different-sized buffer, which succeeds. 3091 */ 3092 3093 #define STORAGE_NETFN 0x0A 3094 #define STORAGE_CMD_GET_SDR 0x23 3095 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3096 unsigned long unused, 3097 void *in) 3098 { 3099 struct smi_info *smi_info = in; 3100 unsigned char *data = smi_info->curr_msg->data; 3101 unsigned int size = smi_info->curr_msg->data_size; 3102 if (size >= 8 && 3103 (data[0]>>2) == STORAGE_NETFN && 3104 data[1] == STORAGE_CMD_GET_SDR && 3105 data[7] == 0x3A) { 3106 return_hosed_msg_badsize(smi_info); 3107 return NOTIFY_STOP; 3108 } 3109 return NOTIFY_DONE; 3110 } 3111 3112 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3113 .notifier_call = dell_poweredge_bt_xaction_handler, 3114 }; 3115 3116 /* 3117 * setup_dell_poweredge_bt_xaction_handler 3118 * @info - smi_info.device_id must be filled in already 3119 * 3120 * Fills in smi_info.device_id.start_transaction_pre_hook 3121 * when we know what function to use there. 3122 */ 3123 static void 3124 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3125 { 3126 struct ipmi_device_id *id = &smi_info->device_id; 3127 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3128 smi_info->si_type == SI_BT) 3129 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3130 } 3131 3132 /* 3133 * setup_oem_data_handler 3134 * @info - smi_info.device_id must be filled in already 3135 * 3136 * Fills in smi_info.device_id.oem_data_available_handler 3137 * when we know what function to use there. 3138 */ 3139 3140 static void setup_oem_data_handler(struct smi_info *smi_info) 3141 { 3142 setup_dell_poweredge_oem_data_handler(smi_info); 3143 } 3144 3145 static void setup_xaction_handlers(struct smi_info *smi_info) 3146 { 3147 setup_dell_poweredge_bt_xaction_handler(smi_info); 3148 } 3149 3150 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3151 { 3152 if (smi_info->intf) { 3153 /* 3154 * The timer and thread are only running if the 3155 * interface has been started up and registered. 3156 */ 3157 if (smi_info->thread != NULL) 3158 kthread_stop(smi_info->thread); 3159 del_timer_sync(&smi_info->si_timer); 3160 } 3161 } 3162 3163 static struct ipmi_default_vals 3164 { 3165 int type; 3166 int port; 3167 } ipmi_defaults[] = 3168 { 3169 { .type = SI_KCS, .port = 0xca2 }, 3170 { .type = SI_SMIC, .port = 0xca9 }, 3171 { .type = SI_BT, .port = 0xe4 }, 3172 { .port = 0 } 3173 }; 3174 3175 static void default_find_bmc(void) 3176 { 3177 struct smi_info *info; 3178 int i; 3179 3180 for (i = 0; ; i++) { 3181 if (!ipmi_defaults[i].port) 3182 break; 3183 #ifdef CONFIG_PPC 3184 if (check_legacy_ioport(ipmi_defaults[i].port)) 3185 continue; 3186 #endif 3187 info = smi_info_alloc(); 3188 if (!info) 3189 return; 3190 3191 info->addr_source = SI_DEFAULT; 3192 3193 info->si_type = ipmi_defaults[i].type; 3194 info->io_setup = port_setup; 3195 info->io.addr_data = ipmi_defaults[i].port; 3196 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3197 3198 info->io.addr = NULL; 3199 info->io.regspacing = DEFAULT_REGSPACING; 3200 info->io.regsize = DEFAULT_REGSPACING; 3201 info->io.regshift = 0; 3202 3203 if (add_smi(info) == 0) { 3204 if ((try_smi_init(info)) == 0) { 3205 /* Found one... */ 3206 printk(KERN_INFO PFX "Found default %s" 3207 " state machine at %s address 0x%lx\n", 3208 si_to_str[info->si_type], 3209 addr_space_to_str[info->io.addr_type], 3210 info->io.addr_data); 3211 } else 3212 cleanup_one_si(info); 3213 } else { 3214 kfree(info); 3215 } 3216 } 3217 } 3218 3219 static int is_new_interface(struct smi_info *info) 3220 { 3221 struct smi_info *e; 3222 3223 list_for_each_entry(e, &smi_infos, link) { 3224 if (e->io.addr_type != info->io.addr_type) 3225 continue; 3226 if (e->io.addr_data == info->io.addr_data) 3227 return 0; 3228 } 3229 3230 return 1; 3231 } 3232 3233 static int add_smi(struct smi_info *new_smi) 3234 { 3235 int rv = 0; 3236 3237 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3238 ipmi_addr_src_to_str[new_smi->addr_source], 3239 si_to_str[new_smi->si_type]); 3240 mutex_lock(&smi_infos_lock); 3241 if (!is_new_interface(new_smi)) { 3242 printk(KERN_CONT " duplicate interface\n"); 3243 rv = -EBUSY; 3244 goto out_err; 3245 } 3246 3247 printk(KERN_CONT "\n"); 3248 3249 /* So we know not to free it unless we have allocated one. */ 3250 new_smi->intf = NULL; 3251 new_smi->si_sm = NULL; 3252 new_smi->handlers = NULL; 3253 3254 list_add_tail(&new_smi->link, &smi_infos); 3255 3256 out_err: 3257 mutex_unlock(&smi_infos_lock); 3258 return rv; 3259 } 3260 3261 static int try_smi_init(struct smi_info *new_smi) 3262 { 3263 int rv = 0; 3264 int i; 3265 3266 printk(KERN_INFO PFX "Trying %s-specified %s state" 3267 " machine at %s address 0x%lx, slave address 0x%x," 3268 " irq %d\n", 3269 ipmi_addr_src_to_str[new_smi->addr_source], 3270 si_to_str[new_smi->si_type], 3271 addr_space_to_str[new_smi->io.addr_type], 3272 new_smi->io.addr_data, 3273 new_smi->slave_addr, new_smi->irq); 3274 3275 switch (new_smi->si_type) { 3276 case SI_KCS: 3277 new_smi->handlers = &kcs_smi_handlers; 3278 break; 3279 3280 case SI_SMIC: 3281 new_smi->handlers = &smic_smi_handlers; 3282 break; 3283 3284 case SI_BT: 3285 new_smi->handlers = &bt_smi_handlers; 3286 break; 3287 3288 default: 3289 /* No support for anything else yet. */ 3290 rv = -EIO; 3291 goto out_err; 3292 } 3293 3294 /* Allocate the state machine's data and initialize it. */ 3295 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3296 if (!new_smi->si_sm) { 3297 printk(KERN_ERR PFX 3298 "Could not allocate state machine memory\n"); 3299 rv = -ENOMEM; 3300 goto out_err; 3301 } 3302 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3303 &new_smi->io); 3304 3305 /* Now that we know the I/O size, we can set up the I/O. */ 3306 rv = new_smi->io_setup(new_smi); 3307 if (rv) { 3308 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3309 goto out_err; 3310 } 3311 3312 /* Do low-level detection first. */ 3313 if (new_smi->handlers->detect(new_smi->si_sm)) { 3314 if (new_smi->addr_source) 3315 printk(KERN_INFO PFX "Interface detection failed\n"); 3316 rv = -ENODEV; 3317 goto out_err; 3318 } 3319 3320 /* 3321 * Attempt a get device id command. If it fails, we probably 3322 * don't have a BMC here. 3323 */ 3324 rv = try_get_dev_id(new_smi); 3325 if (rv) { 3326 if (new_smi->addr_source) 3327 printk(KERN_INFO PFX "There appears to be no BMC" 3328 " at this location\n"); 3329 goto out_err; 3330 } 3331 3332 setup_oem_data_handler(new_smi); 3333 setup_xaction_handlers(new_smi); 3334 3335 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3336 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3337 new_smi->curr_msg = NULL; 3338 atomic_set(&new_smi->req_events, 0); 3339 new_smi->run_to_completion = 0; 3340 for (i = 0; i < SI_NUM_STATS; i++) 3341 atomic_set(&new_smi->stats[i], 0); 3342 3343 new_smi->interrupt_disabled = 1; 3344 atomic_set(&new_smi->stop_operation, 0); 3345 new_smi->intf_num = smi_num; 3346 smi_num++; 3347 3348 rv = try_enable_event_buffer(new_smi); 3349 if (rv == 0) 3350 new_smi->has_event_buffer = 1; 3351 3352 /* 3353 * Start clearing the flags before we enable interrupts or the 3354 * timer to avoid racing with the timer. 3355 */ 3356 start_clear_flags(new_smi); 3357 /* IRQ is defined to be set when non-zero. */ 3358 if (new_smi->irq) 3359 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3360 3361 if (!new_smi->dev) { 3362 /* 3363 * If we don't already have a device from something 3364 * else (like PCI), then register a new one. 3365 */ 3366 new_smi->pdev = platform_device_alloc("ipmi_si", 3367 new_smi->intf_num); 3368 if (!new_smi->pdev) { 3369 printk(KERN_ERR PFX 3370 "Unable to allocate platform device\n"); 3371 goto out_err; 3372 } 3373 new_smi->dev = &new_smi->pdev->dev; 3374 new_smi->dev->driver = &ipmi_driver.driver; 3375 3376 rv = platform_device_add(new_smi->pdev); 3377 if (rv) { 3378 printk(KERN_ERR PFX 3379 "Unable to register system interface device:" 3380 " %d\n", 3381 rv); 3382 goto out_err; 3383 } 3384 new_smi->dev_registered = 1; 3385 } 3386 3387 rv = ipmi_register_smi(&handlers, 3388 new_smi, 3389 &new_smi->device_id, 3390 new_smi->dev, 3391 "bmc", 3392 new_smi->slave_addr); 3393 if (rv) { 3394 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3395 rv); 3396 goto out_err_stop_timer; 3397 } 3398 3399 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3400 &smi_type_proc_ops, 3401 new_smi); 3402 if (rv) { 3403 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3404 goto out_err_stop_timer; 3405 } 3406 3407 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3408 &smi_si_stats_proc_ops, 3409 new_smi); 3410 if (rv) { 3411 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3412 goto out_err_stop_timer; 3413 } 3414 3415 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3416 &smi_params_proc_ops, 3417 new_smi); 3418 if (rv) { 3419 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3420 goto out_err_stop_timer; 3421 } 3422 3423 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3424 si_to_str[new_smi->si_type]); 3425 3426 return 0; 3427 3428 out_err_stop_timer: 3429 atomic_inc(&new_smi->stop_operation); 3430 wait_for_timer_and_thread(new_smi); 3431 3432 out_err: 3433 new_smi->interrupt_disabled = 1; 3434 3435 if (new_smi->intf) { 3436 ipmi_unregister_smi(new_smi->intf); 3437 new_smi->intf = NULL; 3438 } 3439 3440 if (new_smi->irq_cleanup) { 3441 new_smi->irq_cleanup(new_smi); 3442 new_smi->irq_cleanup = NULL; 3443 } 3444 3445 /* 3446 * Wait until we know that we are out of any interrupt 3447 * handlers might have been running before we freed the 3448 * interrupt. 3449 */ 3450 synchronize_sched(); 3451 3452 if (new_smi->si_sm) { 3453 if (new_smi->handlers) 3454 new_smi->handlers->cleanup(new_smi->si_sm); 3455 kfree(new_smi->si_sm); 3456 new_smi->si_sm = NULL; 3457 } 3458 if (new_smi->addr_source_cleanup) { 3459 new_smi->addr_source_cleanup(new_smi); 3460 new_smi->addr_source_cleanup = NULL; 3461 } 3462 if (new_smi->io_cleanup) { 3463 new_smi->io_cleanup(new_smi); 3464 new_smi->io_cleanup = NULL; 3465 } 3466 3467 if (new_smi->dev_registered) { 3468 platform_device_unregister(new_smi->pdev); 3469 new_smi->dev_registered = 0; 3470 } 3471 3472 return rv; 3473 } 3474 3475 static int init_ipmi_si(void) 3476 { 3477 int i; 3478 char *str; 3479 int rv; 3480 struct smi_info *e; 3481 enum ipmi_addr_src type = SI_INVALID; 3482 3483 if (initialized) 3484 return 0; 3485 initialized = 1; 3486 3487 if (si_tryplatform) { 3488 rv = platform_driver_register(&ipmi_driver); 3489 if (rv) { 3490 printk(KERN_ERR PFX "Unable to register " 3491 "driver: %d\n", rv); 3492 return rv; 3493 } 3494 } 3495 3496 /* Parse out the si_type string into its components. */ 3497 str = si_type_str; 3498 if (*str != '\0') { 3499 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3500 si_type[i] = str; 3501 str = strchr(str, ','); 3502 if (str) { 3503 *str = '\0'; 3504 str++; 3505 } else { 3506 break; 3507 } 3508 } 3509 } 3510 3511 printk(KERN_INFO "IPMI System Interface driver.\n"); 3512 3513 /* If the user gave us a device, they presumably want us to use it */ 3514 if (!hardcode_find_bmc()) 3515 return 0; 3516 3517 #ifdef CONFIG_PCI 3518 if (si_trypci) { 3519 rv = pci_register_driver(&ipmi_pci_driver); 3520 if (rv) 3521 printk(KERN_ERR PFX "Unable to register " 3522 "PCI driver: %d\n", rv); 3523 else 3524 pci_registered = 1; 3525 } 3526 #endif 3527 3528 #ifdef CONFIG_ACPI 3529 if (si_tryacpi) { 3530 pnp_register_driver(&ipmi_pnp_driver); 3531 pnp_registered = 1; 3532 } 3533 #endif 3534 3535 #ifdef CONFIG_DMI 3536 if (si_trydmi) 3537 dmi_find_bmc(); 3538 #endif 3539 3540 #ifdef CONFIG_ACPI 3541 if (si_tryacpi) 3542 spmi_find_bmc(); 3543 #endif 3544 3545 #ifdef CONFIG_PARISC 3546 register_parisc_driver(&ipmi_parisc_driver); 3547 parisc_registered = 1; 3548 /* poking PC IO addresses will crash machine, don't do it */ 3549 si_trydefaults = 0; 3550 #endif 3551 3552 /* We prefer devices with interrupts, but in the case of a machine 3553 with multiple BMCs we assume that there will be several instances 3554 of a given type so if we succeed in registering a type then also 3555 try to register everything else of the same type */ 3556 3557 mutex_lock(&smi_infos_lock); 3558 list_for_each_entry(e, &smi_infos, link) { 3559 /* Try to register a device if it has an IRQ and we either 3560 haven't successfully registered a device yet or this 3561 device has the same type as one we successfully registered */ 3562 if (e->irq && (!type || e->addr_source == type)) { 3563 if (!try_smi_init(e)) { 3564 type = e->addr_source; 3565 } 3566 } 3567 } 3568 3569 /* type will only have been set if we successfully registered an si */ 3570 if (type) { 3571 mutex_unlock(&smi_infos_lock); 3572 return 0; 3573 } 3574 3575 /* Fall back to the preferred device */ 3576 3577 list_for_each_entry(e, &smi_infos, link) { 3578 if (!e->irq && (!type || e->addr_source == type)) { 3579 if (!try_smi_init(e)) { 3580 type = e->addr_source; 3581 } 3582 } 3583 } 3584 mutex_unlock(&smi_infos_lock); 3585 3586 if (type) 3587 return 0; 3588 3589 if (si_trydefaults) { 3590 mutex_lock(&smi_infos_lock); 3591 if (list_empty(&smi_infos)) { 3592 /* No BMC was found, try defaults. */ 3593 mutex_unlock(&smi_infos_lock); 3594 default_find_bmc(); 3595 } else 3596 mutex_unlock(&smi_infos_lock); 3597 } 3598 3599 mutex_lock(&smi_infos_lock); 3600 if (unload_when_empty && list_empty(&smi_infos)) { 3601 mutex_unlock(&smi_infos_lock); 3602 cleanup_ipmi_si(); 3603 printk(KERN_WARNING PFX 3604 "Unable to find any System Interface(s)\n"); 3605 return -ENODEV; 3606 } else { 3607 mutex_unlock(&smi_infos_lock); 3608 return 0; 3609 } 3610 } 3611 module_init(init_ipmi_si); 3612 3613 static void cleanup_one_si(struct smi_info *to_clean) 3614 { 3615 int rv = 0; 3616 unsigned long flags; 3617 3618 if (!to_clean) 3619 return; 3620 3621 list_del(&to_clean->link); 3622 3623 /* Tell the driver that we are shutting down. */ 3624 atomic_inc(&to_clean->stop_operation); 3625 3626 /* 3627 * Make sure the timer and thread are stopped and will not run 3628 * again. 3629 */ 3630 wait_for_timer_and_thread(to_clean); 3631 3632 /* 3633 * Timeouts are stopped, now make sure the interrupts are off 3634 * for the device. A little tricky with locks to make sure 3635 * there are no races. 3636 */ 3637 spin_lock_irqsave(&to_clean->si_lock, flags); 3638 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3639 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3640 poll(to_clean); 3641 schedule_timeout_uninterruptible(1); 3642 spin_lock_irqsave(&to_clean->si_lock, flags); 3643 } 3644 disable_si_irq(to_clean); 3645 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3646 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3647 poll(to_clean); 3648 schedule_timeout_uninterruptible(1); 3649 } 3650 3651 /* Clean up interrupts and make sure that everything is done. */ 3652 if (to_clean->irq_cleanup) 3653 to_clean->irq_cleanup(to_clean); 3654 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3655 poll(to_clean); 3656 schedule_timeout_uninterruptible(1); 3657 } 3658 3659 if (to_clean->intf) 3660 rv = ipmi_unregister_smi(to_clean->intf); 3661 3662 if (rv) { 3663 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3664 rv); 3665 } 3666 3667 if (to_clean->handlers) 3668 to_clean->handlers->cleanup(to_clean->si_sm); 3669 3670 kfree(to_clean->si_sm); 3671 3672 if (to_clean->addr_source_cleanup) 3673 to_clean->addr_source_cleanup(to_clean); 3674 if (to_clean->io_cleanup) 3675 to_clean->io_cleanup(to_clean); 3676 3677 if (to_clean->dev_registered) 3678 platform_device_unregister(to_clean->pdev); 3679 3680 kfree(to_clean); 3681 } 3682 3683 static void cleanup_ipmi_si(void) 3684 { 3685 struct smi_info *e, *tmp_e; 3686 3687 if (!initialized) 3688 return; 3689 3690 #ifdef CONFIG_PCI 3691 if (pci_registered) 3692 pci_unregister_driver(&ipmi_pci_driver); 3693 #endif 3694 #ifdef CONFIG_ACPI 3695 if (pnp_registered) 3696 pnp_unregister_driver(&ipmi_pnp_driver); 3697 #endif 3698 #ifdef CONFIG_PARISC 3699 if (parisc_registered) 3700 unregister_parisc_driver(&ipmi_parisc_driver); 3701 #endif 3702 3703 platform_driver_unregister(&ipmi_driver); 3704 3705 mutex_lock(&smi_infos_lock); 3706 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3707 cleanup_one_si(e); 3708 mutex_unlock(&smi_infos_lock); 3709 } 3710 module_exit(cleanup_ipmi_si); 3711 3712 MODULE_LICENSE("GPL"); 3713 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3714 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3715 " system interfaces."); 3716