xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision b34e08d5)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
96 	SI_GETTING_MESSAGES,
97 	SI_ENABLE_INTERRUPTS1,
98 	SI_ENABLE_INTERRUPTS2,
99 	SI_DISABLE_INTERRUPTS1,
100 	SI_DISABLE_INTERRUPTS2
101 	/* FIXME - add watchdog stuff. */
102 };
103 
104 /* Some BT-specific defines we need here. */
105 #define IPMI_BT_INTMASK_REG		2
106 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
107 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
108 
109 enum si_type {
110     SI_KCS, SI_SMIC, SI_BT
111 };
112 static char *si_to_str[] = { "kcs", "smic", "bt" };
113 
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115 					"ACPI", "SMBIOS", "PCI",
116 					"device-tree", "default" };
117 
118 #define DEVICE_NAME "ipmi_si"
119 
120 static struct platform_driver ipmi_driver;
121 
122 /*
123  * Indexes into stats[] in smi_info below.
124  */
125 enum si_stat_indexes {
126 	/*
127 	 * Number of times the driver requested a timer while an operation
128 	 * was in progress.
129 	 */
130 	SI_STAT_short_timeouts = 0,
131 
132 	/*
133 	 * Number of times the driver requested a timer while nothing was in
134 	 * progress.
135 	 */
136 	SI_STAT_long_timeouts,
137 
138 	/* Number of times the interface was idle while being polled. */
139 	SI_STAT_idles,
140 
141 	/* Number of interrupts the driver handled. */
142 	SI_STAT_interrupts,
143 
144 	/* Number of time the driver got an ATTN from the hardware. */
145 	SI_STAT_attentions,
146 
147 	/* Number of times the driver requested flags from the hardware. */
148 	SI_STAT_flag_fetches,
149 
150 	/* Number of times the hardware didn't follow the state machine. */
151 	SI_STAT_hosed_count,
152 
153 	/* Number of completed messages. */
154 	SI_STAT_complete_transactions,
155 
156 	/* Number of IPMI events received from the hardware. */
157 	SI_STAT_events,
158 
159 	/* Number of watchdog pretimeouts. */
160 	SI_STAT_watchdog_pretimeouts,
161 
162 	/* Number of asynchronous messages received. */
163 	SI_STAT_incoming_messages,
164 
165 
166 	/* This *must* remain last, add new values above this. */
167 	SI_NUM_STATS
168 };
169 
170 struct smi_info {
171 	int                    intf_num;
172 	ipmi_smi_t             intf;
173 	struct si_sm_data      *si_sm;
174 	struct si_sm_handlers  *handlers;
175 	enum si_type           si_type;
176 	spinlock_t             si_lock;
177 	struct list_head       xmit_msgs;
178 	struct list_head       hp_xmit_msgs;
179 	struct ipmi_smi_msg    *curr_msg;
180 	enum si_intf_state     si_state;
181 
182 	/*
183 	 * Used to handle the various types of I/O that can occur with
184 	 * IPMI
185 	 */
186 	struct si_sm_io io;
187 	int (*io_setup)(struct smi_info *info);
188 	void (*io_cleanup)(struct smi_info *info);
189 	int (*irq_setup)(struct smi_info *info);
190 	void (*irq_cleanup)(struct smi_info *info);
191 	unsigned int io_size;
192 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
193 	void (*addr_source_cleanup)(struct smi_info *info);
194 	void *addr_source_data;
195 
196 	/*
197 	 * Per-OEM handler, called from handle_flags().  Returns 1
198 	 * when handle_flags() needs to be re-run or 0 indicating it
199 	 * set si_state itself.
200 	 */
201 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
202 
203 	/*
204 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
205 	 * is set to hold the flags until we are done handling everything
206 	 * from the flags.
207 	 */
208 #define RECEIVE_MSG_AVAIL	0x01
209 #define EVENT_MSG_BUFFER_FULL	0x02
210 #define WDT_PRE_TIMEOUT_INT	0x08
211 #define OEM0_DATA_AVAIL     0x20
212 #define OEM1_DATA_AVAIL     0x40
213 #define OEM2_DATA_AVAIL     0x80
214 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
215 			     OEM1_DATA_AVAIL | \
216 			     OEM2_DATA_AVAIL)
217 	unsigned char       msg_flags;
218 
219 	/* Does the BMC have an event buffer? */
220 	char		    has_event_buffer;
221 
222 	/*
223 	 * If set to true, this will request events the next time the
224 	 * state machine is idle.
225 	 */
226 	atomic_t            req_events;
227 
228 	/*
229 	 * If true, run the state machine to completion on every send
230 	 * call.  Generally used after a panic to make sure stuff goes
231 	 * out.
232 	 */
233 	int                 run_to_completion;
234 
235 	/* The I/O port of an SI interface. */
236 	int                 port;
237 
238 	/*
239 	 * The space between start addresses of the two ports.  For
240 	 * instance, if the first port is 0xca2 and the spacing is 4, then
241 	 * the second port is 0xca6.
242 	 */
243 	unsigned int        spacing;
244 
245 	/* zero if no irq; */
246 	int                 irq;
247 
248 	/* The timer for this si. */
249 	struct timer_list   si_timer;
250 
251 	/* The time (in jiffies) the last timeout occurred at. */
252 	unsigned long       last_timeout_jiffies;
253 
254 	/* Used to gracefully stop the timer without race conditions. */
255 	atomic_t            stop_operation;
256 
257 	/*
258 	 * The driver will disable interrupts when it gets into a
259 	 * situation where it cannot handle messages due to lack of
260 	 * memory.  Once that situation clears up, it will re-enable
261 	 * interrupts.
262 	 */
263 	int interrupt_disabled;
264 
265 	/* From the get device id response... */
266 	struct ipmi_device_id device_id;
267 
268 	/* Driver model stuff. */
269 	struct device *dev;
270 	struct platform_device *pdev;
271 
272 	/*
273 	 * True if we allocated the device, false if it came from
274 	 * someplace else (like PCI).
275 	 */
276 	int dev_registered;
277 
278 	/* Slave address, could be reported from DMI. */
279 	unsigned char slave_addr;
280 
281 	/* Counters and things for the proc filesystem. */
282 	atomic_t stats[SI_NUM_STATS];
283 
284 	struct task_struct *thread;
285 
286 	struct list_head link;
287 	union ipmi_smi_info_union addr_info;
288 };
289 
290 #define smi_inc_stat(smi, stat) \
291 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
292 #define smi_get_stat(smi, stat) \
293 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
294 
295 #define SI_MAX_PARMS 4
296 
297 static int force_kipmid[SI_MAX_PARMS];
298 static int num_force_kipmid;
299 #ifdef CONFIG_PCI
300 static int pci_registered;
301 #endif
302 #ifdef CONFIG_ACPI
303 static int pnp_registered;
304 #endif
305 #ifdef CONFIG_PARISC
306 static int parisc_registered;
307 #endif
308 
309 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
310 static int num_max_busy_us;
311 
312 static int unload_when_empty = 1;
313 
314 static int add_smi(struct smi_info *smi);
315 static int try_smi_init(struct smi_info *smi);
316 static void cleanup_one_si(struct smi_info *to_clean);
317 static void cleanup_ipmi_si(void);
318 
319 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
320 static int register_xaction_notifier(struct notifier_block *nb)
321 {
322 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
323 }
324 
325 static void deliver_recv_msg(struct smi_info *smi_info,
326 			     struct ipmi_smi_msg *msg)
327 {
328 	/* Deliver the message to the upper layer. */
329 	ipmi_smi_msg_received(smi_info->intf, msg);
330 }
331 
332 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
333 {
334 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
335 
336 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
337 		cCode = IPMI_ERR_UNSPECIFIED;
338 	/* else use it as is */
339 
340 	/* Make it a response */
341 	msg->rsp[0] = msg->data[0] | 4;
342 	msg->rsp[1] = msg->data[1];
343 	msg->rsp[2] = cCode;
344 	msg->rsp_size = 3;
345 
346 	smi_info->curr_msg = NULL;
347 	deliver_recv_msg(smi_info, msg);
348 }
349 
350 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
351 {
352 	int              rv;
353 	struct list_head *entry = NULL;
354 #ifdef DEBUG_TIMING
355 	struct timeval t;
356 #endif
357 
358 	/* Pick the high priority queue first. */
359 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
360 		entry = smi_info->hp_xmit_msgs.next;
361 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
362 		entry = smi_info->xmit_msgs.next;
363 	}
364 
365 	if (!entry) {
366 		smi_info->curr_msg = NULL;
367 		rv = SI_SM_IDLE;
368 	} else {
369 		int err;
370 
371 		list_del(entry);
372 		smi_info->curr_msg = list_entry(entry,
373 						struct ipmi_smi_msg,
374 						link);
375 #ifdef DEBUG_TIMING
376 		do_gettimeofday(&t);
377 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
378 #endif
379 		err = atomic_notifier_call_chain(&xaction_notifier_list,
380 				0, smi_info);
381 		if (err & NOTIFY_STOP_MASK) {
382 			rv = SI_SM_CALL_WITHOUT_DELAY;
383 			goto out;
384 		}
385 		err = smi_info->handlers->start_transaction(
386 			smi_info->si_sm,
387 			smi_info->curr_msg->data,
388 			smi_info->curr_msg->data_size);
389 		if (err)
390 			return_hosed_msg(smi_info, err);
391 
392 		rv = SI_SM_CALL_WITHOUT_DELAY;
393 	}
394  out:
395 	return rv;
396 }
397 
398 static void start_enable_irq(struct smi_info *smi_info)
399 {
400 	unsigned char msg[2];
401 
402 	/*
403 	 * If we are enabling interrupts, we have to tell the
404 	 * BMC to use them.
405 	 */
406 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408 
409 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
411 }
412 
413 static void start_disable_irq(struct smi_info *smi_info)
414 {
415 	unsigned char msg[2];
416 
417 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
418 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
419 
420 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
421 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
422 }
423 
424 static void start_clear_flags(struct smi_info *smi_info)
425 {
426 	unsigned char msg[3];
427 
428 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
429 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
431 	msg[2] = WDT_PRE_TIMEOUT_INT;
432 
433 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
434 	smi_info->si_state = SI_CLEARING_FLAGS;
435 }
436 
437 /*
438  * When we have a situtaion where we run out of memory and cannot
439  * allocate messages, we just leave them in the BMC and run the system
440  * polled until we can allocate some memory.  Once we have some
441  * memory, we will re-enable the interrupt.
442  */
443 static inline void disable_si_irq(struct smi_info *smi_info)
444 {
445 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
446 		start_disable_irq(smi_info);
447 		smi_info->interrupt_disabled = 1;
448 		if (!atomic_read(&smi_info->stop_operation))
449 			mod_timer(&smi_info->si_timer,
450 				  jiffies + SI_TIMEOUT_JIFFIES);
451 	}
452 }
453 
454 static inline void enable_si_irq(struct smi_info *smi_info)
455 {
456 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
457 		start_enable_irq(smi_info);
458 		smi_info->interrupt_disabled = 0;
459 	}
460 }
461 
462 static void handle_flags(struct smi_info *smi_info)
463 {
464  retry:
465 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
466 		/* Watchdog pre-timeout */
467 		smi_inc_stat(smi_info, watchdog_pretimeouts);
468 
469 		start_clear_flags(smi_info);
470 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
471 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
472 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
473 		/* Messages available. */
474 		smi_info->curr_msg = ipmi_alloc_smi_msg();
475 		if (!smi_info->curr_msg) {
476 			disable_si_irq(smi_info);
477 			smi_info->si_state = SI_NORMAL;
478 			return;
479 		}
480 		enable_si_irq(smi_info);
481 
482 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
483 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
484 		smi_info->curr_msg->data_size = 2;
485 
486 		smi_info->handlers->start_transaction(
487 			smi_info->si_sm,
488 			smi_info->curr_msg->data,
489 			smi_info->curr_msg->data_size);
490 		smi_info->si_state = SI_GETTING_MESSAGES;
491 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
492 		/* Events available. */
493 		smi_info->curr_msg = ipmi_alloc_smi_msg();
494 		if (!smi_info->curr_msg) {
495 			disable_si_irq(smi_info);
496 			smi_info->si_state = SI_NORMAL;
497 			return;
498 		}
499 		enable_si_irq(smi_info);
500 
501 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
502 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
503 		smi_info->curr_msg->data_size = 2;
504 
505 		smi_info->handlers->start_transaction(
506 			smi_info->si_sm,
507 			smi_info->curr_msg->data,
508 			smi_info->curr_msg->data_size);
509 		smi_info->si_state = SI_GETTING_EVENTS;
510 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
511 		   smi_info->oem_data_avail_handler) {
512 		if (smi_info->oem_data_avail_handler(smi_info))
513 			goto retry;
514 	} else
515 		smi_info->si_state = SI_NORMAL;
516 }
517 
518 static void handle_transaction_done(struct smi_info *smi_info)
519 {
520 	struct ipmi_smi_msg *msg;
521 #ifdef DEBUG_TIMING
522 	struct timeval t;
523 
524 	do_gettimeofday(&t);
525 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
526 #endif
527 	switch (smi_info->si_state) {
528 	case SI_NORMAL:
529 		if (!smi_info->curr_msg)
530 			break;
531 
532 		smi_info->curr_msg->rsp_size
533 			= smi_info->handlers->get_result(
534 				smi_info->si_sm,
535 				smi_info->curr_msg->rsp,
536 				IPMI_MAX_MSG_LENGTH);
537 
538 		/*
539 		 * Do this here becase deliver_recv_msg() releases the
540 		 * lock, and a new message can be put in during the
541 		 * time the lock is released.
542 		 */
543 		msg = smi_info->curr_msg;
544 		smi_info->curr_msg = NULL;
545 		deliver_recv_msg(smi_info, msg);
546 		break;
547 
548 	case SI_GETTING_FLAGS:
549 	{
550 		unsigned char msg[4];
551 		unsigned int  len;
552 
553 		/* We got the flags from the SMI, now handle them. */
554 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
555 		if (msg[2] != 0) {
556 			/* Error fetching flags, just give up for now. */
557 			smi_info->si_state = SI_NORMAL;
558 		} else if (len < 4) {
559 			/*
560 			 * Hmm, no flags.  That's technically illegal, but
561 			 * don't use uninitialized data.
562 			 */
563 			smi_info->si_state = SI_NORMAL;
564 		} else {
565 			smi_info->msg_flags = msg[3];
566 			handle_flags(smi_info);
567 		}
568 		break;
569 	}
570 
571 	case SI_CLEARING_FLAGS:
572 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
573 	{
574 		unsigned char msg[3];
575 
576 		/* We cleared the flags. */
577 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
578 		if (msg[2] != 0) {
579 			/* Error clearing flags */
580 			dev_warn(smi_info->dev,
581 				 "Error clearing flags: %2.2x\n", msg[2]);
582 		}
583 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
584 			start_enable_irq(smi_info);
585 		else
586 			smi_info->si_state = SI_NORMAL;
587 		break;
588 	}
589 
590 	case SI_GETTING_EVENTS:
591 	{
592 		smi_info->curr_msg->rsp_size
593 			= smi_info->handlers->get_result(
594 				smi_info->si_sm,
595 				smi_info->curr_msg->rsp,
596 				IPMI_MAX_MSG_LENGTH);
597 
598 		/*
599 		 * Do this here becase deliver_recv_msg() releases the
600 		 * lock, and a new message can be put in during the
601 		 * time the lock is released.
602 		 */
603 		msg = smi_info->curr_msg;
604 		smi_info->curr_msg = NULL;
605 		if (msg->rsp[2] != 0) {
606 			/* Error getting event, probably done. */
607 			msg->done(msg);
608 
609 			/* Take off the event flag. */
610 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
611 			handle_flags(smi_info);
612 		} else {
613 			smi_inc_stat(smi_info, events);
614 
615 			/*
616 			 * Do this before we deliver the message
617 			 * because delivering the message releases the
618 			 * lock and something else can mess with the
619 			 * state.
620 			 */
621 			handle_flags(smi_info);
622 
623 			deliver_recv_msg(smi_info, msg);
624 		}
625 		break;
626 	}
627 
628 	case SI_GETTING_MESSAGES:
629 	{
630 		smi_info->curr_msg->rsp_size
631 			= smi_info->handlers->get_result(
632 				smi_info->si_sm,
633 				smi_info->curr_msg->rsp,
634 				IPMI_MAX_MSG_LENGTH);
635 
636 		/*
637 		 * Do this here becase deliver_recv_msg() releases the
638 		 * lock, and a new message can be put in during the
639 		 * time the lock is released.
640 		 */
641 		msg = smi_info->curr_msg;
642 		smi_info->curr_msg = NULL;
643 		if (msg->rsp[2] != 0) {
644 			/* Error getting event, probably done. */
645 			msg->done(msg);
646 
647 			/* Take off the msg flag. */
648 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
649 			handle_flags(smi_info);
650 		} else {
651 			smi_inc_stat(smi_info, incoming_messages);
652 
653 			/*
654 			 * Do this before we deliver the message
655 			 * because delivering the message releases the
656 			 * lock and something else can mess with the
657 			 * state.
658 			 */
659 			handle_flags(smi_info);
660 
661 			deliver_recv_msg(smi_info, msg);
662 		}
663 		break;
664 	}
665 
666 	case SI_ENABLE_INTERRUPTS1:
667 	{
668 		unsigned char msg[4];
669 
670 		/* We got the flags from the SMI, now handle them. */
671 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
672 		if (msg[2] != 0) {
673 			dev_warn(smi_info->dev,
674 				 "Couldn't get irq info: %x.\n", msg[2]);
675 			dev_warn(smi_info->dev,
676 				 "Maybe ok, but ipmi might run very slowly.\n");
677 			smi_info->si_state = SI_NORMAL;
678 		} else {
679 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
680 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
681 			msg[2] = (msg[3] |
682 				  IPMI_BMC_RCV_MSG_INTR |
683 				  IPMI_BMC_EVT_MSG_INTR);
684 			smi_info->handlers->start_transaction(
685 				smi_info->si_sm, msg, 3);
686 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
687 		}
688 		break;
689 	}
690 
691 	case SI_ENABLE_INTERRUPTS2:
692 	{
693 		unsigned char msg[4];
694 
695 		/* We got the flags from the SMI, now handle them. */
696 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
697 		if (msg[2] != 0) {
698 			dev_warn(smi_info->dev,
699 				 "Couldn't set irq info: %x.\n", msg[2]);
700 			dev_warn(smi_info->dev,
701 				 "Maybe ok, but ipmi might run very slowly.\n");
702 		} else
703 			smi_info->interrupt_disabled = 0;
704 		smi_info->si_state = SI_NORMAL;
705 		break;
706 	}
707 
708 	case SI_DISABLE_INTERRUPTS1:
709 	{
710 		unsigned char msg[4];
711 
712 		/* We got the flags from the SMI, now handle them. */
713 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
714 		if (msg[2] != 0) {
715 			dev_warn(smi_info->dev, "Could not disable interrupts"
716 				 ", failed get.\n");
717 			smi_info->si_state = SI_NORMAL;
718 		} else {
719 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
720 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
721 			msg[2] = (msg[3] &
722 				  ~(IPMI_BMC_RCV_MSG_INTR |
723 				    IPMI_BMC_EVT_MSG_INTR));
724 			smi_info->handlers->start_transaction(
725 				smi_info->si_sm, msg, 3);
726 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
727 		}
728 		break;
729 	}
730 
731 	case SI_DISABLE_INTERRUPTS2:
732 	{
733 		unsigned char msg[4];
734 
735 		/* We got the flags from the SMI, now handle them. */
736 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
737 		if (msg[2] != 0) {
738 			dev_warn(smi_info->dev, "Could not disable interrupts"
739 				 ", failed set.\n");
740 		}
741 		smi_info->si_state = SI_NORMAL;
742 		break;
743 	}
744 	}
745 }
746 
747 /*
748  * Called on timeouts and events.  Timeouts should pass the elapsed
749  * time, interrupts should pass in zero.  Must be called with
750  * si_lock held and interrupts disabled.
751  */
752 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
753 					   int time)
754 {
755 	enum si_sm_result si_sm_result;
756 
757  restart:
758 	/*
759 	 * There used to be a loop here that waited a little while
760 	 * (around 25us) before giving up.  That turned out to be
761 	 * pointless, the minimum delays I was seeing were in the 300us
762 	 * range, which is far too long to wait in an interrupt.  So
763 	 * we just run until the state machine tells us something
764 	 * happened or it needs a delay.
765 	 */
766 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
767 	time = 0;
768 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
769 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
770 
771 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
772 		smi_inc_stat(smi_info, complete_transactions);
773 
774 		handle_transaction_done(smi_info);
775 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
776 	} else if (si_sm_result == SI_SM_HOSED) {
777 		smi_inc_stat(smi_info, hosed_count);
778 
779 		/*
780 		 * Do the before return_hosed_msg, because that
781 		 * releases the lock.
782 		 */
783 		smi_info->si_state = SI_NORMAL;
784 		if (smi_info->curr_msg != NULL) {
785 			/*
786 			 * If we were handling a user message, format
787 			 * a response to send to the upper layer to
788 			 * tell it about the error.
789 			 */
790 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
791 		}
792 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
793 	}
794 
795 	/*
796 	 * We prefer handling attn over new messages.  But don't do
797 	 * this if there is not yet an upper layer to handle anything.
798 	 */
799 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
800 		unsigned char msg[2];
801 
802 		smi_inc_stat(smi_info, attentions);
803 
804 		/*
805 		 * Got a attn, send down a get message flags to see
806 		 * what's causing it.  It would be better to handle
807 		 * this in the upper layer, but due to the way
808 		 * interrupts work with the SMI, that's not really
809 		 * possible.
810 		 */
811 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
812 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
813 
814 		smi_info->handlers->start_transaction(
815 			smi_info->si_sm, msg, 2);
816 		smi_info->si_state = SI_GETTING_FLAGS;
817 		goto restart;
818 	}
819 
820 	/* If we are currently idle, try to start the next message. */
821 	if (si_sm_result == SI_SM_IDLE) {
822 		smi_inc_stat(smi_info, idles);
823 
824 		si_sm_result = start_next_msg(smi_info);
825 		if (si_sm_result != SI_SM_IDLE)
826 			goto restart;
827 	}
828 
829 	if ((si_sm_result == SI_SM_IDLE)
830 	    && (atomic_read(&smi_info->req_events))) {
831 		/*
832 		 * We are idle and the upper layer requested that I fetch
833 		 * events, so do so.
834 		 */
835 		atomic_set(&smi_info->req_events, 0);
836 
837 		smi_info->curr_msg = ipmi_alloc_smi_msg();
838 		if (!smi_info->curr_msg)
839 			goto out;
840 
841 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
842 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
843 		smi_info->curr_msg->data_size = 2;
844 
845 		smi_info->handlers->start_transaction(
846 			smi_info->si_sm,
847 			smi_info->curr_msg->data,
848 			smi_info->curr_msg->data_size);
849 		smi_info->si_state = SI_GETTING_EVENTS;
850 		goto restart;
851 	}
852  out:
853 	return si_sm_result;
854 }
855 
856 static void sender(void                *send_info,
857 		   struct ipmi_smi_msg *msg,
858 		   int                 priority)
859 {
860 	struct smi_info   *smi_info = send_info;
861 	enum si_sm_result result;
862 	unsigned long     flags;
863 #ifdef DEBUG_TIMING
864 	struct timeval    t;
865 #endif
866 
867 	if (atomic_read(&smi_info->stop_operation)) {
868 		msg->rsp[0] = msg->data[0] | 4;
869 		msg->rsp[1] = msg->data[1];
870 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
871 		msg->rsp_size = 3;
872 		deliver_recv_msg(smi_info, msg);
873 		return;
874 	}
875 
876 #ifdef DEBUG_TIMING
877 	do_gettimeofday(&t);
878 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
879 #endif
880 
881 	if (smi_info->run_to_completion) {
882 		/*
883 		 * If we are running to completion, then throw it in
884 		 * the list and run transactions until everything is
885 		 * clear.  Priority doesn't matter here.
886 		 */
887 
888 		/*
889 		 * Run to completion means we are single-threaded, no
890 		 * need for locks.
891 		 */
892 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
893 
894 		result = smi_event_handler(smi_info, 0);
895 		while (result != SI_SM_IDLE) {
896 			udelay(SI_SHORT_TIMEOUT_USEC);
897 			result = smi_event_handler(smi_info,
898 						   SI_SHORT_TIMEOUT_USEC);
899 		}
900 		return;
901 	}
902 
903 	spin_lock_irqsave(&smi_info->si_lock, flags);
904 	if (priority > 0)
905 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
906 	else
907 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
908 
909 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
910 		/*
911 		 * last_timeout_jiffies is updated here to avoid
912 		 * smi_timeout() handler passing very large time_diff
913 		 * value to smi_event_handler() that causes
914 		 * the send command to abort.
915 		 */
916 		smi_info->last_timeout_jiffies = jiffies;
917 
918 		mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
919 
920 		if (smi_info->thread)
921 			wake_up_process(smi_info->thread);
922 
923 		start_next_msg(smi_info);
924 		smi_event_handler(smi_info, 0);
925 	}
926 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
927 }
928 
929 static void set_run_to_completion(void *send_info, int i_run_to_completion)
930 {
931 	struct smi_info   *smi_info = send_info;
932 	enum si_sm_result result;
933 
934 	smi_info->run_to_completion = i_run_to_completion;
935 	if (i_run_to_completion) {
936 		result = smi_event_handler(smi_info, 0);
937 		while (result != SI_SM_IDLE) {
938 			udelay(SI_SHORT_TIMEOUT_USEC);
939 			result = smi_event_handler(smi_info,
940 						   SI_SHORT_TIMEOUT_USEC);
941 		}
942 	}
943 }
944 
945 /*
946  * Use -1 in the nsec value of the busy waiting timespec to tell that
947  * we are spinning in kipmid looking for something and not delaying
948  * between checks
949  */
950 static inline void ipmi_si_set_not_busy(struct timespec *ts)
951 {
952 	ts->tv_nsec = -1;
953 }
954 static inline int ipmi_si_is_busy(struct timespec *ts)
955 {
956 	return ts->tv_nsec != -1;
957 }
958 
959 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
960 				 const struct smi_info *smi_info,
961 				 struct timespec *busy_until)
962 {
963 	unsigned int max_busy_us = 0;
964 
965 	if (smi_info->intf_num < num_max_busy_us)
966 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
967 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
968 		ipmi_si_set_not_busy(busy_until);
969 	else if (!ipmi_si_is_busy(busy_until)) {
970 		getnstimeofday(busy_until);
971 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
972 	} else {
973 		struct timespec now;
974 		getnstimeofday(&now);
975 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
976 			ipmi_si_set_not_busy(busy_until);
977 			return 0;
978 		}
979 	}
980 	return 1;
981 }
982 
983 
984 /*
985  * A busy-waiting loop for speeding up IPMI operation.
986  *
987  * Lousy hardware makes this hard.  This is only enabled for systems
988  * that are not BT and do not have interrupts.  It starts spinning
989  * when an operation is complete or until max_busy tells it to stop
990  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
991  * Documentation/IPMI.txt for details.
992  */
993 static int ipmi_thread(void *data)
994 {
995 	struct smi_info *smi_info = data;
996 	unsigned long flags;
997 	enum si_sm_result smi_result;
998 	struct timespec busy_until;
999 
1000 	ipmi_si_set_not_busy(&busy_until);
1001 	set_user_nice(current, 19);
1002 	while (!kthread_should_stop()) {
1003 		int busy_wait;
1004 
1005 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1006 		smi_result = smi_event_handler(smi_info, 0);
1007 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1008 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1009 						  &busy_until);
1010 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1011 			; /* do nothing */
1012 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1013 			schedule();
1014 		else if (smi_result == SI_SM_IDLE)
1015 			schedule_timeout_interruptible(100);
1016 		else
1017 			schedule_timeout_interruptible(1);
1018 	}
1019 	return 0;
1020 }
1021 
1022 
1023 static void poll(void *send_info)
1024 {
1025 	struct smi_info *smi_info = send_info;
1026 	unsigned long flags = 0;
1027 	int run_to_completion = smi_info->run_to_completion;
1028 
1029 	/*
1030 	 * Make sure there is some delay in the poll loop so we can
1031 	 * drive time forward and timeout things.
1032 	 */
1033 	udelay(10);
1034 	if (!run_to_completion)
1035 		spin_lock_irqsave(&smi_info->si_lock, flags);
1036 	smi_event_handler(smi_info, 10);
1037 	if (!run_to_completion)
1038 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1039 }
1040 
1041 static void request_events(void *send_info)
1042 {
1043 	struct smi_info *smi_info = send_info;
1044 
1045 	if (atomic_read(&smi_info->stop_operation) ||
1046 				!smi_info->has_event_buffer)
1047 		return;
1048 
1049 	atomic_set(&smi_info->req_events, 1);
1050 }
1051 
1052 static int initialized;
1053 
1054 static void smi_timeout(unsigned long data)
1055 {
1056 	struct smi_info   *smi_info = (struct smi_info *) data;
1057 	enum si_sm_result smi_result;
1058 	unsigned long     flags;
1059 	unsigned long     jiffies_now;
1060 	long              time_diff;
1061 	long		  timeout;
1062 #ifdef DEBUG_TIMING
1063 	struct timeval    t;
1064 #endif
1065 
1066 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1067 #ifdef DEBUG_TIMING
1068 	do_gettimeofday(&t);
1069 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1070 #endif
1071 	jiffies_now = jiffies;
1072 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1073 		     * SI_USEC_PER_JIFFY);
1074 	smi_result = smi_event_handler(smi_info, time_diff);
1075 
1076 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1077 
1078 	smi_info->last_timeout_jiffies = jiffies_now;
1079 
1080 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1081 		/* Running with interrupts, only do long timeouts. */
1082 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1083 		smi_inc_stat(smi_info, long_timeouts);
1084 		goto do_mod_timer;
1085 	}
1086 
1087 	/*
1088 	 * If the state machine asks for a short delay, then shorten
1089 	 * the timer timeout.
1090 	 */
1091 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1092 		smi_inc_stat(smi_info, short_timeouts);
1093 		timeout = jiffies + 1;
1094 	} else {
1095 		smi_inc_stat(smi_info, long_timeouts);
1096 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1097 	}
1098 
1099  do_mod_timer:
1100 	if (smi_result != SI_SM_IDLE)
1101 		mod_timer(&(smi_info->si_timer), timeout);
1102 }
1103 
1104 static irqreturn_t si_irq_handler(int irq, void *data)
1105 {
1106 	struct smi_info *smi_info = data;
1107 	unsigned long   flags;
1108 #ifdef DEBUG_TIMING
1109 	struct timeval  t;
1110 #endif
1111 
1112 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1113 
1114 	smi_inc_stat(smi_info, interrupts);
1115 
1116 #ifdef DEBUG_TIMING
1117 	do_gettimeofday(&t);
1118 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1119 #endif
1120 	smi_event_handler(smi_info, 0);
1121 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1122 	return IRQ_HANDLED;
1123 }
1124 
1125 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1126 {
1127 	struct smi_info *smi_info = data;
1128 	/* We need to clear the IRQ flag for the BT interface. */
1129 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1130 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1131 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1132 	return si_irq_handler(irq, data);
1133 }
1134 
1135 static int smi_start_processing(void       *send_info,
1136 				ipmi_smi_t intf)
1137 {
1138 	struct smi_info *new_smi = send_info;
1139 	int             enable = 0;
1140 
1141 	new_smi->intf = intf;
1142 
1143 	/* Try to claim any interrupts. */
1144 	if (new_smi->irq_setup)
1145 		new_smi->irq_setup(new_smi);
1146 
1147 	/* Set up the timer that drives the interface. */
1148 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1149 	new_smi->last_timeout_jiffies = jiffies;
1150 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1151 
1152 	/*
1153 	 * Check if the user forcefully enabled the daemon.
1154 	 */
1155 	if (new_smi->intf_num < num_force_kipmid)
1156 		enable = force_kipmid[new_smi->intf_num];
1157 	/*
1158 	 * The BT interface is efficient enough to not need a thread,
1159 	 * and there is no need for a thread if we have interrupts.
1160 	 */
1161 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1162 		enable = 1;
1163 
1164 	if (enable) {
1165 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1166 					      "kipmi%d", new_smi->intf_num);
1167 		if (IS_ERR(new_smi->thread)) {
1168 			dev_notice(new_smi->dev, "Could not start"
1169 				   " kernel thread due to error %ld, only using"
1170 				   " timers to drive the interface\n",
1171 				   PTR_ERR(new_smi->thread));
1172 			new_smi->thread = NULL;
1173 		}
1174 	}
1175 
1176 	return 0;
1177 }
1178 
1179 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1180 {
1181 	struct smi_info *smi = send_info;
1182 
1183 	data->addr_src = smi->addr_source;
1184 	data->dev = smi->dev;
1185 	data->addr_info = smi->addr_info;
1186 	get_device(smi->dev);
1187 
1188 	return 0;
1189 }
1190 
1191 static void set_maintenance_mode(void *send_info, int enable)
1192 {
1193 	struct smi_info   *smi_info = send_info;
1194 
1195 	if (!enable)
1196 		atomic_set(&smi_info->req_events, 0);
1197 }
1198 
1199 static struct ipmi_smi_handlers handlers = {
1200 	.owner                  = THIS_MODULE,
1201 	.start_processing       = smi_start_processing,
1202 	.get_smi_info		= get_smi_info,
1203 	.sender			= sender,
1204 	.request_events		= request_events,
1205 	.set_maintenance_mode   = set_maintenance_mode,
1206 	.set_run_to_completion  = set_run_to_completion,
1207 	.poll			= poll,
1208 };
1209 
1210 /*
1211  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1212  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1213  */
1214 
1215 static LIST_HEAD(smi_infos);
1216 static DEFINE_MUTEX(smi_infos_lock);
1217 static int smi_num; /* Used to sequence the SMIs */
1218 
1219 #define DEFAULT_REGSPACING	1
1220 #define DEFAULT_REGSIZE		1
1221 
1222 #ifdef CONFIG_ACPI
1223 static bool          si_tryacpi = 1;
1224 #endif
1225 #ifdef CONFIG_DMI
1226 static bool          si_trydmi = 1;
1227 #endif
1228 static bool          si_tryplatform = 1;
1229 #ifdef CONFIG_PCI
1230 static bool          si_trypci = 1;
1231 #endif
1232 static bool          si_trydefaults = 1;
1233 static char          *si_type[SI_MAX_PARMS];
1234 #define MAX_SI_TYPE_STR 30
1235 static char          si_type_str[MAX_SI_TYPE_STR];
1236 static unsigned long addrs[SI_MAX_PARMS];
1237 static unsigned int num_addrs;
1238 static unsigned int  ports[SI_MAX_PARMS];
1239 static unsigned int num_ports;
1240 static int           irqs[SI_MAX_PARMS];
1241 static unsigned int num_irqs;
1242 static int           regspacings[SI_MAX_PARMS];
1243 static unsigned int num_regspacings;
1244 static int           regsizes[SI_MAX_PARMS];
1245 static unsigned int num_regsizes;
1246 static int           regshifts[SI_MAX_PARMS];
1247 static unsigned int num_regshifts;
1248 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1249 static unsigned int num_slave_addrs;
1250 
1251 #define IPMI_IO_ADDR_SPACE  0
1252 #define IPMI_MEM_ADDR_SPACE 1
1253 static char *addr_space_to_str[] = { "i/o", "mem" };
1254 
1255 static int hotmod_handler(const char *val, struct kernel_param *kp);
1256 
1257 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1258 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1259 		 " Documentation/IPMI.txt in the kernel sources for the"
1260 		 " gory details.");
1261 
1262 #ifdef CONFIG_ACPI
1263 module_param_named(tryacpi, si_tryacpi, bool, 0);
1264 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1265 		 " default scan of the interfaces identified via ACPI");
1266 #endif
1267 #ifdef CONFIG_DMI
1268 module_param_named(trydmi, si_trydmi, bool, 0);
1269 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1270 		 " default scan of the interfaces identified via DMI");
1271 #endif
1272 module_param_named(tryplatform, si_tryplatform, bool, 0);
1273 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1274 		 " default scan of the interfaces identified via platform"
1275 		 " interfaces like openfirmware");
1276 #ifdef CONFIG_PCI
1277 module_param_named(trypci, si_trypci, bool, 0);
1278 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1279 		 " default scan of the interfaces identified via pci");
1280 #endif
1281 module_param_named(trydefaults, si_trydefaults, bool, 0);
1282 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1283 		 " default scan of the KCS and SMIC interface at the standard"
1284 		 " address");
1285 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1286 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1287 		 " interface separated by commas.  The types are 'kcs',"
1288 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1289 		 " the first interface to kcs and the second to bt");
1290 module_param_array(addrs, ulong, &num_addrs, 0);
1291 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1292 		 " addresses separated by commas.  Only use if an interface"
1293 		 " is in memory.  Otherwise, set it to zero or leave"
1294 		 " it blank.");
1295 module_param_array(ports, uint, &num_ports, 0);
1296 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1297 		 " addresses separated by commas.  Only use if an interface"
1298 		 " is a port.  Otherwise, set it to zero or leave"
1299 		 " it blank.");
1300 module_param_array(irqs, int, &num_irqs, 0);
1301 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1302 		 " addresses separated by commas.  Only use if an interface"
1303 		 " has an interrupt.  Otherwise, set it to zero or leave"
1304 		 " it blank.");
1305 module_param_array(regspacings, int, &num_regspacings, 0);
1306 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1307 		 " and each successive register used by the interface.  For"
1308 		 " instance, if the start address is 0xca2 and the spacing"
1309 		 " is 2, then the second address is at 0xca4.  Defaults"
1310 		 " to 1.");
1311 module_param_array(regsizes, int, &num_regsizes, 0);
1312 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1313 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1314 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1315 		 " the 8-bit IPMI register has to be read from a larger"
1316 		 " register.");
1317 module_param_array(regshifts, int, &num_regshifts, 0);
1318 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1319 		 " IPMI register, in bits.  For instance, if the data"
1320 		 " is read from a 32-bit word and the IPMI data is in"
1321 		 " bit 8-15, then the shift would be 8");
1322 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1323 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1324 		 " the controller.  Normally this is 0x20, but can be"
1325 		 " overridden by this parm.  This is an array indexed"
1326 		 " by interface number.");
1327 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1328 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1329 		 " disabled(0).  Normally the IPMI driver auto-detects"
1330 		 " this, but the value may be overridden by this parm.");
1331 module_param(unload_when_empty, int, 0);
1332 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1333 		 " specified or found, default is 1.  Setting to 0"
1334 		 " is useful for hot add of devices using hotmod.");
1335 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1336 MODULE_PARM_DESC(kipmid_max_busy_us,
1337 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1338 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1339 		 " if kipmid is using up a lot of CPU time.");
1340 
1341 
1342 static void std_irq_cleanup(struct smi_info *info)
1343 {
1344 	if (info->si_type == SI_BT)
1345 		/* Disable the interrupt in the BT interface. */
1346 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1347 	free_irq(info->irq, info);
1348 }
1349 
1350 static int std_irq_setup(struct smi_info *info)
1351 {
1352 	int rv;
1353 
1354 	if (!info->irq)
1355 		return 0;
1356 
1357 	if (info->si_type == SI_BT) {
1358 		rv = request_irq(info->irq,
1359 				 si_bt_irq_handler,
1360 				 IRQF_SHARED,
1361 				 DEVICE_NAME,
1362 				 info);
1363 		if (!rv)
1364 			/* Enable the interrupt in the BT interface. */
1365 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1366 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1367 	} else
1368 		rv = request_irq(info->irq,
1369 				 si_irq_handler,
1370 				 IRQF_SHARED,
1371 				 DEVICE_NAME,
1372 				 info);
1373 	if (rv) {
1374 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1375 			 " running polled\n",
1376 			 DEVICE_NAME, info->irq);
1377 		info->irq = 0;
1378 	} else {
1379 		info->irq_cleanup = std_irq_cleanup;
1380 		dev_info(info->dev, "Using irq %d\n", info->irq);
1381 	}
1382 
1383 	return rv;
1384 }
1385 
1386 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1387 {
1388 	unsigned int addr = io->addr_data;
1389 
1390 	return inb(addr + (offset * io->regspacing));
1391 }
1392 
1393 static void port_outb(struct si_sm_io *io, unsigned int offset,
1394 		      unsigned char b)
1395 {
1396 	unsigned int addr = io->addr_data;
1397 
1398 	outb(b, addr + (offset * io->regspacing));
1399 }
1400 
1401 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1402 {
1403 	unsigned int addr = io->addr_data;
1404 
1405 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1406 }
1407 
1408 static void port_outw(struct si_sm_io *io, unsigned int offset,
1409 		      unsigned char b)
1410 {
1411 	unsigned int addr = io->addr_data;
1412 
1413 	outw(b << io->regshift, addr + (offset * io->regspacing));
1414 }
1415 
1416 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1417 {
1418 	unsigned int addr = io->addr_data;
1419 
1420 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1421 }
1422 
1423 static void port_outl(struct si_sm_io *io, unsigned int offset,
1424 		      unsigned char b)
1425 {
1426 	unsigned int addr = io->addr_data;
1427 
1428 	outl(b << io->regshift, addr+(offset * io->regspacing));
1429 }
1430 
1431 static void port_cleanup(struct smi_info *info)
1432 {
1433 	unsigned int addr = info->io.addr_data;
1434 	int          idx;
1435 
1436 	if (addr) {
1437 		for (idx = 0; idx < info->io_size; idx++)
1438 			release_region(addr + idx * info->io.regspacing,
1439 				       info->io.regsize);
1440 	}
1441 }
1442 
1443 static int port_setup(struct smi_info *info)
1444 {
1445 	unsigned int addr = info->io.addr_data;
1446 	int          idx;
1447 
1448 	if (!addr)
1449 		return -ENODEV;
1450 
1451 	info->io_cleanup = port_cleanup;
1452 
1453 	/*
1454 	 * Figure out the actual inb/inw/inl/etc routine to use based
1455 	 * upon the register size.
1456 	 */
1457 	switch (info->io.regsize) {
1458 	case 1:
1459 		info->io.inputb = port_inb;
1460 		info->io.outputb = port_outb;
1461 		break;
1462 	case 2:
1463 		info->io.inputb = port_inw;
1464 		info->io.outputb = port_outw;
1465 		break;
1466 	case 4:
1467 		info->io.inputb = port_inl;
1468 		info->io.outputb = port_outl;
1469 		break;
1470 	default:
1471 		dev_warn(info->dev, "Invalid register size: %d\n",
1472 			 info->io.regsize);
1473 		return -EINVAL;
1474 	}
1475 
1476 	/*
1477 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1478 	 * tables.  This causes problems when trying to register the
1479 	 * entire I/O region.  Therefore we must register each I/O
1480 	 * port separately.
1481 	 */
1482 	for (idx = 0; idx < info->io_size; idx++) {
1483 		if (request_region(addr + idx * info->io.regspacing,
1484 				   info->io.regsize, DEVICE_NAME) == NULL) {
1485 			/* Undo allocations */
1486 			while (idx--) {
1487 				release_region(addr + idx * info->io.regspacing,
1488 					       info->io.regsize);
1489 			}
1490 			return -EIO;
1491 		}
1492 	}
1493 	return 0;
1494 }
1495 
1496 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1497 {
1498 	return readb((io->addr)+(offset * io->regspacing));
1499 }
1500 
1501 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1502 		     unsigned char b)
1503 {
1504 	writeb(b, (io->addr)+(offset * io->regspacing));
1505 }
1506 
1507 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1508 {
1509 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1510 		& 0xff;
1511 }
1512 
1513 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1514 		     unsigned char b)
1515 {
1516 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1517 }
1518 
1519 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1520 {
1521 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1522 		& 0xff;
1523 }
1524 
1525 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1526 		     unsigned char b)
1527 {
1528 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1529 }
1530 
1531 #ifdef readq
1532 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1533 {
1534 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1535 		& 0xff;
1536 }
1537 
1538 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1539 		     unsigned char b)
1540 {
1541 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1542 }
1543 #endif
1544 
1545 static void mem_cleanup(struct smi_info *info)
1546 {
1547 	unsigned long addr = info->io.addr_data;
1548 	int           mapsize;
1549 
1550 	if (info->io.addr) {
1551 		iounmap(info->io.addr);
1552 
1553 		mapsize = ((info->io_size * info->io.regspacing)
1554 			   - (info->io.regspacing - info->io.regsize));
1555 
1556 		release_mem_region(addr, mapsize);
1557 	}
1558 }
1559 
1560 static int mem_setup(struct smi_info *info)
1561 {
1562 	unsigned long addr = info->io.addr_data;
1563 	int           mapsize;
1564 
1565 	if (!addr)
1566 		return -ENODEV;
1567 
1568 	info->io_cleanup = mem_cleanup;
1569 
1570 	/*
1571 	 * Figure out the actual readb/readw/readl/etc routine to use based
1572 	 * upon the register size.
1573 	 */
1574 	switch (info->io.regsize) {
1575 	case 1:
1576 		info->io.inputb = intf_mem_inb;
1577 		info->io.outputb = intf_mem_outb;
1578 		break;
1579 	case 2:
1580 		info->io.inputb = intf_mem_inw;
1581 		info->io.outputb = intf_mem_outw;
1582 		break;
1583 	case 4:
1584 		info->io.inputb = intf_mem_inl;
1585 		info->io.outputb = intf_mem_outl;
1586 		break;
1587 #ifdef readq
1588 	case 8:
1589 		info->io.inputb = mem_inq;
1590 		info->io.outputb = mem_outq;
1591 		break;
1592 #endif
1593 	default:
1594 		dev_warn(info->dev, "Invalid register size: %d\n",
1595 			 info->io.regsize);
1596 		return -EINVAL;
1597 	}
1598 
1599 	/*
1600 	 * Calculate the total amount of memory to claim.  This is an
1601 	 * unusual looking calculation, but it avoids claiming any
1602 	 * more memory than it has to.  It will claim everything
1603 	 * between the first address to the end of the last full
1604 	 * register.
1605 	 */
1606 	mapsize = ((info->io_size * info->io.regspacing)
1607 		   - (info->io.regspacing - info->io.regsize));
1608 
1609 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1610 		return -EIO;
1611 
1612 	info->io.addr = ioremap(addr, mapsize);
1613 	if (info->io.addr == NULL) {
1614 		release_mem_region(addr, mapsize);
1615 		return -EIO;
1616 	}
1617 	return 0;
1618 }
1619 
1620 /*
1621  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1622  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1623  * Options are:
1624  *   rsp=<regspacing>
1625  *   rsi=<regsize>
1626  *   rsh=<regshift>
1627  *   irq=<irq>
1628  *   ipmb=<ipmb addr>
1629  */
1630 enum hotmod_op { HM_ADD, HM_REMOVE };
1631 struct hotmod_vals {
1632 	char *name;
1633 	int  val;
1634 };
1635 static struct hotmod_vals hotmod_ops[] = {
1636 	{ "add",	HM_ADD },
1637 	{ "remove",	HM_REMOVE },
1638 	{ NULL }
1639 };
1640 static struct hotmod_vals hotmod_si[] = {
1641 	{ "kcs",	SI_KCS },
1642 	{ "smic",	SI_SMIC },
1643 	{ "bt",		SI_BT },
1644 	{ NULL }
1645 };
1646 static struct hotmod_vals hotmod_as[] = {
1647 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1648 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1649 	{ NULL }
1650 };
1651 
1652 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1653 {
1654 	char *s;
1655 	int  i;
1656 
1657 	s = strchr(*curr, ',');
1658 	if (!s) {
1659 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1660 		return -EINVAL;
1661 	}
1662 	*s = '\0';
1663 	s++;
1664 	for (i = 0; hotmod_ops[i].name; i++) {
1665 		if (strcmp(*curr, v[i].name) == 0) {
1666 			*val = v[i].val;
1667 			*curr = s;
1668 			return 0;
1669 		}
1670 	}
1671 
1672 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1673 	return -EINVAL;
1674 }
1675 
1676 static int check_hotmod_int_op(const char *curr, const char *option,
1677 			       const char *name, int *val)
1678 {
1679 	char *n;
1680 
1681 	if (strcmp(curr, name) == 0) {
1682 		if (!option) {
1683 			printk(KERN_WARNING PFX
1684 			       "No option given for '%s'\n",
1685 			       curr);
1686 			return -EINVAL;
1687 		}
1688 		*val = simple_strtoul(option, &n, 0);
1689 		if ((*n != '\0') || (*option == '\0')) {
1690 			printk(KERN_WARNING PFX
1691 			       "Bad option given for '%s'\n",
1692 			       curr);
1693 			return -EINVAL;
1694 		}
1695 		return 1;
1696 	}
1697 	return 0;
1698 }
1699 
1700 static struct smi_info *smi_info_alloc(void)
1701 {
1702 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1703 
1704 	if (info)
1705 		spin_lock_init(&info->si_lock);
1706 	return info;
1707 }
1708 
1709 static int hotmod_handler(const char *val, struct kernel_param *kp)
1710 {
1711 	char *str = kstrdup(val, GFP_KERNEL);
1712 	int  rv;
1713 	char *next, *curr, *s, *n, *o;
1714 	enum hotmod_op op;
1715 	enum si_type si_type;
1716 	int  addr_space;
1717 	unsigned long addr;
1718 	int regspacing;
1719 	int regsize;
1720 	int regshift;
1721 	int irq;
1722 	int ipmb;
1723 	int ival;
1724 	int len;
1725 	struct smi_info *info;
1726 
1727 	if (!str)
1728 		return -ENOMEM;
1729 
1730 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1731 	len = strlen(str);
1732 	ival = len - 1;
1733 	while ((ival >= 0) && isspace(str[ival])) {
1734 		str[ival] = '\0';
1735 		ival--;
1736 	}
1737 
1738 	for (curr = str; curr; curr = next) {
1739 		regspacing = 1;
1740 		regsize = 1;
1741 		regshift = 0;
1742 		irq = 0;
1743 		ipmb = 0; /* Choose the default if not specified */
1744 
1745 		next = strchr(curr, ':');
1746 		if (next) {
1747 			*next = '\0';
1748 			next++;
1749 		}
1750 
1751 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1752 		if (rv)
1753 			break;
1754 		op = ival;
1755 
1756 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1757 		if (rv)
1758 			break;
1759 		si_type = ival;
1760 
1761 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1762 		if (rv)
1763 			break;
1764 
1765 		s = strchr(curr, ',');
1766 		if (s) {
1767 			*s = '\0';
1768 			s++;
1769 		}
1770 		addr = simple_strtoul(curr, &n, 0);
1771 		if ((*n != '\0') || (*curr == '\0')) {
1772 			printk(KERN_WARNING PFX "Invalid hotmod address"
1773 			       " '%s'\n", curr);
1774 			break;
1775 		}
1776 
1777 		while (s) {
1778 			curr = s;
1779 			s = strchr(curr, ',');
1780 			if (s) {
1781 				*s = '\0';
1782 				s++;
1783 			}
1784 			o = strchr(curr, '=');
1785 			if (o) {
1786 				*o = '\0';
1787 				o++;
1788 			}
1789 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1790 			if (rv < 0)
1791 				goto out;
1792 			else if (rv)
1793 				continue;
1794 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1795 			if (rv < 0)
1796 				goto out;
1797 			else if (rv)
1798 				continue;
1799 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1800 			if (rv < 0)
1801 				goto out;
1802 			else if (rv)
1803 				continue;
1804 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1805 			if (rv < 0)
1806 				goto out;
1807 			else if (rv)
1808 				continue;
1809 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1810 			if (rv < 0)
1811 				goto out;
1812 			else if (rv)
1813 				continue;
1814 
1815 			rv = -EINVAL;
1816 			printk(KERN_WARNING PFX
1817 			       "Invalid hotmod option '%s'\n",
1818 			       curr);
1819 			goto out;
1820 		}
1821 
1822 		if (op == HM_ADD) {
1823 			info = smi_info_alloc();
1824 			if (!info) {
1825 				rv = -ENOMEM;
1826 				goto out;
1827 			}
1828 
1829 			info->addr_source = SI_HOTMOD;
1830 			info->si_type = si_type;
1831 			info->io.addr_data = addr;
1832 			info->io.addr_type = addr_space;
1833 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1834 				info->io_setup = mem_setup;
1835 			else
1836 				info->io_setup = port_setup;
1837 
1838 			info->io.addr = NULL;
1839 			info->io.regspacing = regspacing;
1840 			if (!info->io.regspacing)
1841 				info->io.regspacing = DEFAULT_REGSPACING;
1842 			info->io.regsize = regsize;
1843 			if (!info->io.regsize)
1844 				info->io.regsize = DEFAULT_REGSPACING;
1845 			info->io.regshift = regshift;
1846 			info->irq = irq;
1847 			if (info->irq)
1848 				info->irq_setup = std_irq_setup;
1849 			info->slave_addr = ipmb;
1850 
1851 			rv = add_smi(info);
1852 			if (rv) {
1853 				kfree(info);
1854 				goto out;
1855 			}
1856 			rv = try_smi_init(info);
1857 			if (rv) {
1858 				cleanup_one_si(info);
1859 				goto out;
1860 			}
1861 		} else {
1862 			/* remove */
1863 			struct smi_info *e, *tmp_e;
1864 
1865 			mutex_lock(&smi_infos_lock);
1866 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1867 				if (e->io.addr_type != addr_space)
1868 					continue;
1869 				if (e->si_type != si_type)
1870 					continue;
1871 				if (e->io.addr_data == addr)
1872 					cleanup_one_si(e);
1873 			}
1874 			mutex_unlock(&smi_infos_lock);
1875 		}
1876 	}
1877 	rv = len;
1878  out:
1879 	kfree(str);
1880 	return rv;
1881 }
1882 
1883 static int hardcode_find_bmc(void)
1884 {
1885 	int ret = -ENODEV;
1886 	int             i;
1887 	struct smi_info *info;
1888 
1889 	for (i = 0; i < SI_MAX_PARMS; i++) {
1890 		if (!ports[i] && !addrs[i])
1891 			continue;
1892 
1893 		info = smi_info_alloc();
1894 		if (!info)
1895 			return -ENOMEM;
1896 
1897 		info->addr_source = SI_HARDCODED;
1898 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1899 
1900 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1901 			info->si_type = SI_KCS;
1902 		} else if (strcmp(si_type[i], "smic") == 0) {
1903 			info->si_type = SI_SMIC;
1904 		} else if (strcmp(si_type[i], "bt") == 0) {
1905 			info->si_type = SI_BT;
1906 		} else {
1907 			printk(KERN_WARNING PFX "Interface type specified "
1908 			       "for interface %d, was invalid: %s\n",
1909 			       i, si_type[i]);
1910 			kfree(info);
1911 			continue;
1912 		}
1913 
1914 		if (ports[i]) {
1915 			/* An I/O port */
1916 			info->io_setup = port_setup;
1917 			info->io.addr_data = ports[i];
1918 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1919 		} else if (addrs[i]) {
1920 			/* A memory port */
1921 			info->io_setup = mem_setup;
1922 			info->io.addr_data = addrs[i];
1923 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1924 		} else {
1925 			printk(KERN_WARNING PFX "Interface type specified "
1926 			       "for interface %d, but port and address were "
1927 			       "not set or set to zero.\n", i);
1928 			kfree(info);
1929 			continue;
1930 		}
1931 
1932 		info->io.addr = NULL;
1933 		info->io.regspacing = regspacings[i];
1934 		if (!info->io.regspacing)
1935 			info->io.regspacing = DEFAULT_REGSPACING;
1936 		info->io.regsize = regsizes[i];
1937 		if (!info->io.regsize)
1938 			info->io.regsize = DEFAULT_REGSPACING;
1939 		info->io.regshift = regshifts[i];
1940 		info->irq = irqs[i];
1941 		if (info->irq)
1942 			info->irq_setup = std_irq_setup;
1943 		info->slave_addr = slave_addrs[i];
1944 
1945 		if (!add_smi(info)) {
1946 			if (try_smi_init(info))
1947 				cleanup_one_si(info);
1948 			ret = 0;
1949 		} else {
1950 			kfree(info);
1951 		}
1952 	}
1953 	return ret;
1954 }
1955 
1956 #ifdef CONFIG_ACPI
1957 
1958 #include <linux/acpi.h>
1959 
1960 /*
1961  * Once we get an ACPI failure, we don't try any more, because we go
1962  * through the tables sequentially.  Once we don't find a table, there
1963  * are no more.
1964  */
1965 static int acpi_failure;
1966 
1967 /* For GPE-type interrupts. */
1968 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
1969 	u32 gpe_number, void *context)
1970 {
1971 	struct smi_info *smi_info = context;
1972 	unsigned long   flags;
1973 #ifdef DEBUG_TIMING
1974 	struct timeval t;
1975 #endif
1976 
1977 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1978 
1979 	smi_inc_stat(smi_info, interrupts);
1980 
1981 #ifdef DEBUG_TIMING
1982 	do_gettimeofday(&t);
1983 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1984 #endif
1985 	smi_event_handler(smi_info, 0);
1986 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1987 
1988 	return ACPI_INTERRUPT_HANDLED;
1989 }
1990 
1991 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1992 {
1993 	if (!info->irq)
1994 		return;
1995 
1996 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1997 }
1998 
1999 static int acpi_gpe_irq_setup(struct smi_info *info)
2000 {
2001 	acpi_status status;
2002 
2003 	if (!info->irq)
2004 		return 0;
2005 
2006 	/* FIXME - is level triggered right? */
2007 	status = acpi_install_gpe_handler(NULL,
2008 					  info->irq,
2009 					  ACPI_GPE_LEVEL_TRIGGERED,
2010 					  &ipmi_acpi_gpe,
2011 					  info);
2012 	if (status != AE_OK) {
2013 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2014 			 " running polled\n", DEVICE_NAME, info->irq);
2015 		info->irq = 0;
2016 		return -EINVAL;
2017 	} else {
2018 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2019 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2020 		return 0;
2021 	}
2022 }
2023 
2024 /*
2025  * Defined at
2026  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2027  */
2028 struct SPMITable {
2029 	s8	Signature[4];
2030 	u32	Length;
2031 	u8	Revision;
2032 	u8	Checksum;
2033 	s8	OEMID[6];
2034 	s8	OEMTableID[8];
2035 	s8	OEMRevision[4];
2036 	s8	CreatorID[4];
2037 	s8	CreatorRevision[4];
2038 	u8	InterfaceType;
2039 	u8	IPMIlegacy;
2040 	s16	SpecificationRevision;
2041 
2042 	/*
2043 	 * Bit 0 - SCI interrupt supported
2044 	 * Bit 1 - I/O APIC/SAPIC
2045 	 */
2046 	u8	InterruptType;
2047 
2048 	/*
2049 	 * If bit 0 of InterruptType is set, then this is the SCI
2050 	 * interrupt in the GPEx_STS register.
2051 	 */
2052 	u8	GPE;
2053 
2054 	s16	Reserved;
2055 
2056 	/*
2057 	 * If bit 1 of InterruptType is set, then this is the I/O
2058 	 * APIC/SAPIC interrupt.
2059 	 */
2060 	u32	GlobalSystemInterrupt;
2061 
2062 	/* The actual register address. */
2063 	struct acpi_generic_address addr;
2064 
2065 	u8	UID[4];
2066 
2067 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2068 };
2069 
2070 static int try_init_spmi(struct SPMITable *spmi)
2071 {
2072 	struct smi_info  *info;
2073 	int rv;
2074 
2075 	if (spmi->IPMIlegacy != 1) {
2076 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2077 		return -ENODEV;
2078 	}
2079 
2080 	info = smi_info_alloc();
2081 	if (!info) {
2082 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2083 		return -ENOMEM;
2084 	}
2085 
2086 	info->addr_source = SI_SPMI;
2087 	printk(KERN_INFO PFX "probing via SPMI\n");
2088 
2089 	/* Figure out the interface type. */
2090 	switch (spmi->InterfaceType) {
2091 	case 1:	/* KCS */
2092 		info->si_type = SI_KCS;
2093 		break;
2094 	case 2:	/* SMIC */
2095 		info->si_type = SI_SMIC;
2096 		break;
2097 	case 3:	/* BT */
2098 		info->si_type = SI_BT;
2099 		break;
2100 	default:
2101 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2102 		       spmi->InterfaceType);
2103 		kfree(info);
2104 		return -EIO;
2105 	}
2106 
2107 	if (spmi->InterruptType & 1) {
2108 		/* We've got a GPE interrupt. */
2109 		info->irq = spmi->GPE;
2110 		info->irq_setup = acpi_gpe_irq_setup;
2111 	} else if (spmi->InterruptType & 2) {
2112 		/* We've got an APIC/SAPIC interrupt. */
2113 		info->irq = spmi->GlobalSystemInterrupt;
2114 		info->irq_setup = std_irq_setup;
2115 	} else {
2116 		/* Use the default interrupt setting. */
2117 		info->irq = 0;
2118 		info->irq_setup = NULL;
2119 	}
2120 
2121 	if (spmi->addr.bit_width) {
2122 		/* A (hopefully) properly formed register bit width. */
2123 		info->io.regspacing = spmi->addr.bit_width / 8;
2124 	} else {
2125 		info->io.regspacing = DEFAULT_REGSPACING;
2126 	}
2127 	info->io.regsize = info->io.regspacing;
2128 	info->io.regshift = spmi->addr.bit_offset;
2129 
2130 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2131 		info->io_setup = mem_setup;
2132 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2133 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2134 		info->io_setup = port_setup;
2135 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2136 	} else {
2137 		kfree(info);
2138 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2139 		return -EIO;
2140 	}
2141 	info->io.addr_data = spmi->addr.address;
2142 
2143 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2144 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2145 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2146 		 info->irq);
2147 
2148 	rv = add_smi(info);
2149 	if (rv)
2150 		kfree(info);
2151 
2152 	return rv;
2153 }
2154 
2155 static void spmi_find_bmc(void)
2156 {
2157 	acpi_status      status;
2158 	struct SPMITable *spmi;
2159 	int              i;
2160 
2161 	if (acpi_disabled)
2162 		return;
2163 
2164 	if (acpi_failure)
2165 		return;
2166 
2167 	for (i = 0; ; i++) {
2168 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2169 					(struct acpi_table_header **)&spmi);
2170 		if (status != AE_OK)
2171 			return;
2172 
2173 		try_init_spmi(spmi);
2174 	}
2175 }
2176 
2177 static int ipmi_pnp_probe(struct pnp_dev *dev,
2178 				    const struct pnp_device_id *dev_id)
2179 {
2180 	struct acpi_device *acpi_dev;
2181 	struct smi_info *info;
2182 	struct resource *res, *res_second;
2183 	acpi_handle handle;
2184 	acpi_status status;
2185 	unsigned long long tmp;
2186 	int rv;
2187 
2188 	acpi_dev = pnp_acpi_device(dev);
2189 	if (!acpi_dev)
2190 		return -ENODEV;
2191 
2192 	info = smi_info_alloc();
2193 	if (!info)
2194 		return -ENOMEM;
2195 
2196 	info->addr_source = SI_ACPI;
2197 	printk(KERN_INFO PFX "probing via ACPI\n");
2198 
2199 	handle = acpi_dev->handle;
2200 	info->addr_info.acpi_info.acpi_handle = handle;
2201 
2202 	/* _IFT tells us the interface type: KCS, BT, etc */
2203 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2204 	if (ACPI_FAILURE(status))
2205 		goto err_free;
2206 
2207 	switch (tmp) {
2208 	case 1:
2209 		info->si_type = SI_KCS;
2210 		break;
2211 	case 2:
2212 		info->si_type = SI_SMIC;
2213 		break;
2214 	case 3:
2215 		info->si_type = SI_BT;
2216 		break;
2217 	default:
2218 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2219 		goto err_free;
2220 	}
2221 
2222 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2223 	if (res) {
2224 		info->io_setup = port_setup;
2225 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2226 	} else {
2227 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2228 		if (res) {
2229 			info->io_setup = mem_setup;
2230 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2231 		}
2232 	}
2233 	if (!res) {
2234 		dev_err(&dev->dev, "no I/O or memory address\n");
2235 		goto err_free;
2236 	}
2237 	info->io.addr_data = res->start;
2238 
2239 	info->io.regspacing = DEFAULT_REGSPACING;
2240 	res_second = pnp_get_resource(dev,
2241 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2242 					IORESOURCE_IO : IORESOURCE_MEM,
2243 			       1);
2244 	if (res_second) {
2245 		if (res_second->start > info->io.addr_data)
2246 			info->io.regspacing = res_second->start - info->io.addr_data;
2247 	}
2248 	info->io.regsize = DEFAULT_REGSPACING;
2249 	info->io.regshift = 0;
2250 
2251 	/* If _GPE exists, use it; otherwise use standard interrupts */
2252 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2253 	if (ACPI_SUCCESS(status)) {
2254 		info->irq = tmp;
2255 		info->irq_setup = acpi_gpe_irq_setup;
2256 	} else if (pnp_irq_valid(dev, 0)) {
2257 		info->irq = pnp_irq(dev, 0);
2258 		info->irq_setup = std_irq_setup;
2259 	}
2260 
2261 	info->dev = &dev->dev;
2262 	pnp_set_drvdata(dev, info);
2263 
2264 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2265 		 res, info->io.regsize, info->io.regspacing,
2266 		 info->irq);
2267 
2268 	rv = add_smi(info);
2269 	if (rv)
2270 		kfree(info);
2271 
2272 	return rv;
2273 
2274 err_free:
2275 	kfree(info);
2276 	return -EINVAL;
2277 }
2278 
2279 static void ipmi_pnp_remove(struct pnp_dev *dev)
2280 {
2281 	struct smi_info *info = pnp_get_drvdata(dev);
2282 
2283 	cleanup_one_si(info);
2284 }
2285 
2286 static const struct pnp_device_id pnp_dev_table[] = {
2287 	{"IPI0001", 0},
2288 	{"", 0},
2289 };
2290 
2291 static struct pnp_driver ipmi_pnp_driver = {
2292 	.name		= DEVICE_NAME,
2293 	.probe		= ipmi_pnp_probe,
2294 	.remove		= ipmi_pnp_remove,
2295 	.id_table	= pnp_dev_table,
2296 };
2297 
2298 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2299 #endif
2300 
2301 #ifdef CONFIG_DMI
2302 struct dmi_ipmi_data {
2303 	u8   		type;
2304 	u8   		addr_space;
2305 	unsigned long	base_addr;
2306 	u8   		irq;
2307 	u8              offset;
2308 	u8              slave_addr;
2309 };
2310 
2311 static int decode_dmi(const struct dmi_header *dm,
2312 				struct dmi_ipmi_data *dmi)
2313 {
2314 	const u8	*data = (const u8 *)dm;
2315 	unsigned long  	base_addr;
2316 	u8		reg_spacing;
2317 	u8              len = dm->length;
2318 
2319 	dmi->type = data[4];
2320 
2321 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2322 	if (len >= 0x11) {
2323 		if (base_addr & 1) {
2324 			/* I/O */
2325 			base_addr &= 0xFFFE;
2326 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2327 		} else
2328 			/* Memory */
2329 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2330 
2331 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2332 		   is odd. */
2333 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2334 
2335 		dmi->irq = data[0x11];
2336 
2337 		/* The top two bits of byte 0x10 hold the register spacing. */
2338 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2339 		switch (reg_spacing) {
2340 		case 0x00: /* Byte boundaries */
2341 		    dmi->offset = 1;
2342 		    break;
2343 		case 0x01: /* 32-bit boundaries */
2344 		    dmi->offset = 4;
2345 		    break;
2346 		case 0x02: /* 16-byte boundaries */
2347 		    dmi->offset = 16;
2348 		    break;
2349 		default:
2350 		    /* Some other interface, just ignore it. */
2351 		    return -EIO;
2352 		}
2353 	} else {
2354 		/* Old DMI spec. */
2355 		/*
2356 		 * Note that technically, the lower bit of the base
2357 		 * address should be 1 if the address is I/O and 0 if
2358 		 * the address is in memory.  So many systems get that
2359 		 * wrong (and all that I have seen are I/O) so we just
2360 		 * ignore that bit and assume I/O.  Systems that use
2361 		 * memory should use the newer spec, anyway.
2362 		 */
2363 		dmi->base_addr = base_addr & 0xfffe;
2364 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2365 		dmi->offset = 1;
2366 	}
2367 
2368 	dmi->slave_addr = data[6];
2369 
2370 	return 0;
2371 }
2372 
2373 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2374 {
2375 	struct smi_info *info;
2376 
2377 	info = smi_info_alloc();
2378 	if (!info) {
2379 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2380 		return;
2381 	}
2382 
2383 	info->addr_source = SI_SMBIOS;
2384 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2385 
2386 	switch (ipmi_data->type) {
2387 	case 0x01: /* KCS */
2388 		info->si_type = SI_KCS;
2389 		break;
2390 	case 0x02: /* SMIC */
2391 		info->si_type = SI_SMIC;
2392 		break;
2393 	case 0x03: /* BT */
2394 		info->si_type = SI_BT;
2395 		break;
2396 	default:
2397 		kfree(info);
2398 		return;
2399 	}
2400 
2401 	switch (ipmi_data->addr_space) {
2402 	case IPMI_MEM_ADDR_SPACE:
2403 		info->io_setup = mem_setup;
2404 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2405 		break;
2406 
2407 	case IPMI_IO_ADDR_SPACE:
2408 		info->io_setup = port_setup;
2409 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2410 		break;
2411 
2412 	default:
2413 		kfree(info);
2414 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2415 		       ipmi_data->addr_space);
2416 		return;
2417 	}
2418 	info->io.addr_data = ipmi_data->base_addr;
2419 
2420 	info->io.regspacing = ipmi_data->offset;
2421 	if (!info->io.regspacing)
2422 		info->io.regspacing = DEFAULT_REGSPACING;
2423 	info->io.regsize = DEFAULT_REGSPACING;
2424 	info->io.regshift = 0;
2425 
2426 	info->slave_addr = ipmi_data->slave_addr;
2427 
2428 	info->irq = ipmi_data->irq;
2429 	if (info->irq)
2430 		info->irq_setup = std_irq_setup;
2431 
2432 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2433 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2434 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2435 		 info->irq);
2436 
2437 	if (add_smi(info))
2438 		kfree(info);
2439 }
2440 
2441 static void dmi_find_bmc(void)
2442 {
2443 	const struct dmi_device *dev = NULL;
2444 	struct dmi_ipmi_data data;
2445 	int                  rv;
2446 
2447 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2448 		memset(&data, 0, sizeof(data));
2449 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2450 				&data);
2451 		if (!rv)
2452 			try_init_dmi(&data);
2453 	}
2454 }
2455 #endif /* CONFIG_DMI */
2456 
2457 #ifdef CONFIG_PCI
2458 
2459 #define PCI_ERMC_CLASSCODE		0x0C0700
2460 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2461 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2462 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2463 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2464 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2465 
2466 #define PCI_HP_VENDOR_ID    0x103C
2467 #define PCI_MMC_DEVICE_ID   0x121A
2468 #define PCI_MMC_ADDR_CW     0x10
2469 
2470 static void ipmi_pci_cleanup(struct smi_info *info)
2471 {
2472 	struct pci_dev *pdev = info->addr_source_data;
2473 
2474 	pci_disable_device(pdev);
2475 }
2476 
2477 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2478 {
2479 	if (info->si_type == SI_KCS) {
2480 		unsigned char	status;
2481 		int		regspacing;
2482 
2483 		info->io.regsize = DEFAULT_REGSIZE;
2484 		info->io.regshift = 0;
2485 		info->io_size = 2;
2486 		info->handlers = &kcs_smi_handlers;
2487 
2488 		/* detect 1, 4, 16byte spacing */
2489 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2490 			info->io.regspacing = regspacing;
2491 			if (info->io_setup(info)) {
2492 				dev_err(info->dev,
2493 					"Could not setup I/O space\n");
2494 				return DEFAULT_REGSPACING;
2495 			}
2496 			/* write invalid cmd */
2497 			info->io.outputb(&info->io, 1, 0x10);
2498 			/* read status back */
2499 			status = info->io.inputb(&info->io, 1);
2500 			info->io_cleanup(info);
2501 			if (status)
2502 				return regspacing;
2503 			regspacing *= 4;
2504 		}
2505 	}
2506 	return DEFAULT_REGSPACING;
2507 }
2508 
2509 static int ipmi_pci_probe(struct pci_dev *pdev,
2510 				    const struct pci_device_id *ent)
2511 {
2512 	int rv;
2513 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2514 	struct smi_info *info;
2515 
2516 	info = smi_info_alloc();
2517 	if (!info)
2518 		return -ENOMEM;
2519 
2520 	info->addr_source = SI_PCI;
2521 	dev_info(&pdev->dev, "probing via PCI");
2522 
2523 	switch (class_type) {
2524 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2525 		info->si_type = SI_SMIC;
2526 		break;
2527 
2528 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2529 		info->si_type = SI_KCS;
2530 		break;
2531 
2532 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2533 		info->si_type = SI_BT;
2534 		break;
2535 
2536 	default:
2537 		kfree(info);
2538 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2539 		return -ENOMEM;
2540 	}
2541 
2542 	rv = pci_enable_device(pdev);
2543 	if (rv) {
2544 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2545 		kfree(info);
2546 		return rv;
2547 	}
2548 
2549 	info->addr_source_cleanup = ipmi_pci_cleanup;
2550 	info->addr_source_data = pdev;
2551 
2552 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2553 		info->io_setup = port_setup;
2554 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2555 	} else {
2556 		info->io_setup = mem_setup;
2557 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2558 	}
2559 	info->io.addr_data = pci_resource_start(pdev, 0);
2560 
2561 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2562 	info->io.regsize = DEFAULT_REGSIZE;
2563 	info->io.regshift = 0;
2564 
2565 	info->irq = pdev->irq;
2566 	if (info->irq)
2567 		info->irq_setup = std_irq_setup;
2568 
2569 	info->dev = &pdev->dev;
2570 	pci_set_drvdata(pdev, info);
2571 
2572 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2573 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2574 		info->irq);
2575 
2576 	rv = add_smi(info);
2577 	if (rv) {
2578 		kfree(info);
2579 		pci_disable_device(pdev);
2580 	}
2581 
2582 	return rv;
2583 }
2584 
2585 static void ipmi_pci_remove(struct pci_dev *pdev)
2586 {
2587 	struct smi_info *info = pci_get_drvdata(pdev);
2588 	cleanup_one_si(info);
2589 	pci_disable_device(pdev);
2590 }
2591 
2592 static struct pci_device_id ipmi_pci_devices[] = {
2593 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2594 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2595 	{ 0, }
2596 };
2597 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2598 
2599 static struct pci_driver ipmi_pci_driver = {
2600 	.name =         DEVICE_NAME,
2601 	.id_table =     ipmi_pci_devices,
2602 	.probe =        ipmi_pci_probe,
2603 	.remove =       ipmi_pci_remove,
2604 };
2605 #endif /* CONFIG_PCI */
2606 
2607 static struct of_device_id ipmi_match[];
2608 static int ipmi_probe(struct platform_device *dev)
2609 {
2610 #ifdef CONFIG_OF
2611 	const struct of_device_id *match;
2612 	struct smi_info *info;
2613 	struct resource resource;
2614 	const __be32 *regsize, *regspacing, *regshift;
2615 	struct device_node *np = dev->dev.of_node;
2616 	int ret;
2617 	int proplen;
2618 
2619 	dev_info(&dev->dev, "probing via device tree\n");
2620 
2621 	match = of_match_device(ipmi_match, &dev->dev);
2622 	if (!match)
2623 		return -EINVAL;
2624 
2625 	ret = of_address_to_resource(np, 0, &resource);
2626 	if (ret) {
2627 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2628 		return ret;
2629 	}
2630 
2631 	regsize = of_get_property(np, "reg-size", &proplen);
2632 	if (regsize && proplen != 4) {
2633 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2634 		return -EINVAL;
2635 	}
2636 
2637 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2638 	if (regspacing && proplen != 4) {
2639 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2640 		return -EINVAL;
2641 	}
2642 
2643 	regshift = of_get_property(np, "reg-shift", &proplen);
2644 	if (regshift && proplen != 4) {
2645 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2646 		return -EINVAL;
2647 	}
2648 
2649 	info = smi_info_alloc();
2650 
2651 	if (!info) {
2652 		dev_err(&dev->dev,
2653 			"could not allocate memory for OF probe\n");
2654 		return -ENOMEM;
2655 	}
2656 
2657 	info->si_type		= (enum si_type) match->data;
2658 	info->addr_source	= SI_DEVICETREE;
2659 	info->irq_setup		= std_irq_setup;
2660 
2661 	if (resource.flags & IORESOURCE_IO) {
2662 		info->io_setup		= port_setup;
2663 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2664 	} else {
2665 		info->io_setup		= mem_setup;
2666 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2667 	}
2668 
2669 	info->io.addr_data	= resource.start;
2670 
2671 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2672 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2673 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2674 
2675 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2676 	info->dev		= &dev->dev;
2677 
2678 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2679 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2680 		info->irq);
2681 
2682 	dev_set_drvdata(&dev->dev, info);
2683 
2684 	ret = add_smi(info);
2685 	if (ret) {
2686 		kfree(info);
2687 		return ret;
2688 	}
2689 #endif
2690 	return 0;
2691 }
2692 
2693 static int ipmi_remove(struct platform_device *dev)
2694 {
2695 #ifdef CONFIG_OF
2696 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2697 #endif
2698 	return 0;
2699 }
2700 
2701 static struct of_device_id ipmi_match[] =
2702 {
2703 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2704 	  .data = (void *)(unsigned long) SI_KCS },
2705 	{ .type = "ipmi", .compatible = "ipmi-smic",
2706 	  .data = (void *)(unsigned long) SI_SMIC },
2707 	{ .type = "ipmi", .compatible = "ipmi-bt",
2708 	  .data = (void *)(unsigned long) SI_BT },
2709 	{},
2710 };
2711 
2712 static struct platform_driver ipmi_driver = {
2713 	.driver = {
2714 		.name = DEVICE_NAME,
2715 		.owner = THIS_MODULE,
2716 		.of_match_table = ipmi_match,
2717 	},
2718 	.probe		= ipmi_probe,
2719 	.remove		= ipmi_remove,
2720 };
2721 
2722 #ifdef CONFIG_PARISC
2723 static int ipmi_parisc_probe(struct parisc_device *dev)
2724 {
2725 	struct smi_info *info;
2726 	int rv;
2727 
2728 	info = smi_info_alloc();
2729 
2730 	if (!info) {
2731 		dev_err(&dev->dev,
2732 			"could not allocate memory for PARISC probe\n");
2733 		return -ENOMEM;
2734 	}
2735 
2736 	info->si_type		= SI_KCS;
2737 	info->addr_source	= SI_DEVICETREE;
2738 	info->io_setup		= mem_setup;
2739 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2740 	info->io.addr_data	= dev->hpa.start;
2741 	info->io.regsize	= 1;
2742 	info->io.regspacing	= 1;
2743 	info->io.regshift	= 0;
2744 	info->irq		= 0; /* no interrupt */
2745 	info->irq_setup		= NULL;
2746 	info->dev		= &dev->dev;
2747 
2748 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2749 
2750 	dev_set_drvdata(&dev->dev, info);
2751 
2752 	rv = add_smi(info);
2753 	if (rv) {
2754 		kfree(info);
2755 		return rv;
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 static int ipmi_parisc_remove(struct parisc_device *dev)
2762 {
2763 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2764 	return 0;
2765 }
2766 
2767 static struct parisc_device_id ipmi_parisc_tbl[] = {
2768 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2769 	{ 0, }
2770 };
2771 
2772 static struct parisc_driver ipmi_parisc_driver = {
2773 	.name =		"ipmi",
2774 	.id_table =	ipmi_parisc_tbl,
2775 	.probe =	ipmi_parisc_probe,
2776 	.remove =	ipmi_parisc_remove,
2777 };
2778 #endif /* CONFIG_PARISC */
2779 
2780 static int wait_for_msg_done(struct smi_info *smi_info)
2781 {
2782 	enum si_sm_result     smi_result;
2783 
2784 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2785 	for (;;) {
2786 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2787 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2788 			schedule_timeout_uninterruptible(1);
2789 			smi_result = smi_info->handlers->event(
2790 				smi_info->si_sm, jiffies_to_usecs(1));
2791 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2792 			smi_result = smi_info->handlers->event(
2793 				smi_info->si_sm, 0);
2794 		} else
2795 			break;
2796 	}
2797 	if (smi_result == SI_SM_HOSED)
2798 		/*
2799 		 * We couldn't get the state machine to run, so whatever's at
2800 		 * the port is probably not an IPMI SMI interface.
2801 		 */
2802 		return -ENODEV;
2803 
2804 	return 0;
2805 }
2806 
2807 static int try_get_dev_id(struct smi_info *smi_info)
2808 {
2809 	unsigned char         msg[2];
2810 	unsigned char         *resp;
2811 	unsigned long         resp_len;
2812 	int                   rv = 0;
2813 
2814 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2815 	if (!resp)
2816 		return -ENOMEM;
2817 
2818 	/*
2819 	 * Do a Get Device ID command, since it comes back with some
2820 	 * useful info.
2821 	 */
2822 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2823 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2824 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2825 
2826 	rv = wait_for_msg_done(smi_info);
2827 	if (rv)
2828 		goto out;
2829 
2830 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2831 						  resp, IPMI_MAX_MSG_LENGTH);
2832 
2833 	/* Check and record info from the get device id, in case we need it. */
2834 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2835 
2836  out:
2837 	kfree(resp);
2838 	return rv;
2839 }
2840 
2841 static int try_enable_event_buffer(struct smi_info *smi_info)
2842 {
2843 	unsigned char         msg[3];
2844 	unsigned char         *resp;
2845 	unsigned long         resp_len;
2846 	int                   rv = 0;
2847 
2848 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2849 	if (!resp)
2850 		return -ENOMEM;
2851 
2852 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2853 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2854 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2855 
2856 	rv = wait_for_msg_done(smi_info);
2857 	if (rv) {
2858 		printk(KERN_WARNING PFX "Error getting response from get"
2859 		       " global enables command, the event buffer is not"
2860 		       " enabled.\n");
2861 		goto out;
2862 	}
2863 
2864 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2865 						  resp, IPMI_MAX_MSG_LENGTH);
2866 
2867 	if (resp_len < 4 ||
2868 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2869 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2870 			resp[2] != 0) {
2871 		printk(KERN_WARNING PFX "Invalid return from get global"
2872 		       " enables command, cannot enable the event buffer.\n");
2873 		rv = -EINVAL;
2874 		goto out;
2875 	}
2876 
2877 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2878 		/* buffer is already enabled, nothing to do. */
2879 		goto out;
2880 
2881 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2882 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2883 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2884 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2885 
2886 	rv = wait_for_msg_done(smi_info);
2887 	if (rv) {
2888 		printk(KERN_WARNING PFX "Error getting response from set"
2889 		       " global, enables command, the event buffer is not"
2890 		       " enabled.\n");
2891 		goto out;
2892 	}
2893 
2894 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2895 						  resp, IPMI_MAX_MSG_LENGTH);
2896 
2897 	if (resp_len < 3 ||
2898 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2899 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2900 		printk(KERN_WARNING PFX "Invalid return from get global,"
2901 		       "enables command, not enable the event buffer.\n");
2902 		rv = -EINVAL;
2903 		goto out;
2904 	}
2905 
2906 	if (resp[2] != 0)
2907 		/*
2908 		 * An error when setting the event buffer bit means
2909 		 * that the event buffer is not supported.
2910 		 */
2911 		rv = -ENOENT;
2912  out:
2913 	kfree(resp);
2914 	return rv;
2915 }
2916 
2917 static int smi_type_proc_show(struct seq_file *m, void *v)
2918 {
2919 	struct smi_info *smi = m->private;
2920 
2921 	return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2922 }
2923 
2924 static int smi_type_proc_open(struct inode *inode, struct file *file)
2925 {
2926 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2927 }
2928 
2929 static const struct file_operations smi_type_proc_ops = {
2930 	.open		= smi_type_proc_open,
2931 	.read		= seq_read,
2932 	.llseek		= seq_lseek,
2933 	.release	= single_release,
2934 };
2935 
2936 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2937 {
2938 	struct smi_info *smi = m->private;
2939 
2940 	seq_printf(m, "interrupts_enabled:    %d\n",
2941 		       smi->irq && !smi->interrupt_disabled);
2942 	seq_printf(m, "short_timeouts:        %u\n",
2943 		       smi_get_stat(smi, short_timeouts));
2944 	seq_printf(m, "long_timeouts:         %u\n",
2945 		       smi_get_stat(smi, long_timeouts));
2946 	seq_printf(m, "idles:                 %u\n",
2947 		       smi_get_stat(smi, idles));
2948 	seq_printf(m, "interrupts:            %u\n",
2949 		       smi_get_stat(smi, interrupts));
2950 	seq_printf(m, "attentions:            %u\n",
2951 		       smi_get_stat(smi, attentions));
2952 	seq_printf(m, "flag_fetches:          %u\n",
2953 		       smi_get_stat(smi, flag_fetches));
2954 	seq_printf(m, "hosed_count:           %u\n",
2955 		       smi_get_stat(smi, hosed_count));
2956 	seq_printf(m, "complete_transactions: %u\n",
2957 		       smi_get_stat(smi, complete_transactions));
2958 	seq_printf(m, "events:                %u\n",
2959 		       smi_get_stat(smi, events));
2960 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
2961 		       smi_get_stat(smi, watchdog_pretimeouts));
2962 	seq_printf(m, "incoming_messages:     %u\n",
2963 		       smi_get_stat(smi, incoming_messages));
2964 	return 0;
2965 }
2966 
2967 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
2968 {
2969 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
2970 }
2971 
2972 static const struct file_operations smi_si_stats_proc_ops = {
2973 	.open		= smi_si_stats_proc_open,
2974 	.read		= seq_read,
2975 	.llseek		= seq_lseek,
2976 	.release	= single_release,
2977 };
2978 
2979 static int smi_params_proc_show(struct seq_file *m, void *v)
2980 {
2981 	struct smi_info *smi = m->private;
2982 
2983 	return seq_printf(m,
2984 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2985 		       si_to_str[smi->si_type],
2986 		       addr_space_to_str[smi->io.addr_type],
2987 		       smi->io.addr_data,
2988 		       smi->io.regspacing,
2989 		       smi->io.regsize,
2990 		       smi->io.regshift,
2991 		       smi->irq,
2992 		       smi->slave_addr);
2993 }
2994 
2995 static int smi_params_proc_open(struct inode *inode, struct file *file)
2996 {
2997 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
2998 }
2999 
3000 static const struct file_operations smi_params_proc_ops = {
3001 	.open		= smi_params_proc_open,
3002 	.read		= seq_read,
3003 	.llseek		= seq_lseek,
3004 	.release	= single_release,
3005 };
3006 
3007 /*
3008  * oem_data_avail_to_receive_msg_avail
3009  * @info - smi_info structure with msg_flags set
3010  *
3011  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3012  * Returns 1 indicating need to re-run handle_flags().
3013  */
3014 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3015 {
3016 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3017 			       RECEIVE_MSG_AVAIL);
3018 	return 1;
3019 }
3020 
3021 /*
3022  * setup_dell_poweredge_oem_data_handler
3023  * @info - smi_info.device_id must be populated
3024  *
3025  * Systems that match, but have firmware version < 1.40 may assert
3026  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3027  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3028  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3029  * as RECEIVE_MSG_AVAIL instead.
3030  *
3031  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3032  * assert the OEM[012] bits, and if it did, the driver would have to
3033  * change to handle that properly, we don't actually check for the
3034  * firmware version.
3035  * Device ID = 0x20                BMC on PowerEdge 8G servers
3036  * Device Revision = 0x80
3037  * Firmware Revision1 = 0x01       BMC version 1.40
3038  * Firmware Revision2 = 0x40       BCD encoded
3039  * IPMI Version = 0x51             IPMI 1.5
3040  * Manufacturer ID = A2 02 00      Dell IANA
3041  *
3042  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3043  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3044  *
3045  */
3046 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3047 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3048 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3049 #define DELL_IANA_MFR_ID 0x0002a2
3050 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3051 {
3052 	struct ipmi_device_id *id = &smi_info->device_id;
3053 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3054 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3055 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3056 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3057 			smi_info->oem_data_avail_handler =
3058 				oem_data_avail_to_receive_msg_avail;
3059 		} else if (ipmi_version_major(id) < 1 ||
3060 			   (ipmi_version_major(id) == 1 &&
3061 			    ipmi_version_minor(id) < 5)) {
3062 			smi_info->oem_data_avail_handler =
3063 				oem_data_avail_to_receive_msg_avail;
3064 		}
3065 	}
3066 }
3067 
3068 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3069 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3070 {
3071 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3072 
3073 	/* Make it a response */
3074 	msg->rsp[0] = msg->data[0] | 4;
3075 	msg->rsp[1] = msg->data[1];
3076 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3077 	msg->rsp_size = 3;
3078 	smi_info->curr_msg = NULL;
3079 	deliver_recv_msg(smi_info, msg);
3080 }
3081 
3082 /*
3083  * dell_poweredge_bt_xaction_handler
3084  * @info - smi_info.device_id must be populated
3085  *
3086  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3087  * not respond to a Get SDR command if the length of the data
3088  * requested is exactly 0x3A, which leads to command timeouts and no
3089  * data returned.  This intercepts such commands, and causes userspace
3090  * callers to try again with a different-sized buffer, which succeeds.
3091  */
3092 
3093 #define STORAGE_NETFN 0x0A
3094 #define STORAGE_CMD_GET_SDR 0x23
3095 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3096 					     unsigned long unused,
3097 					     void *in)
3098 {
3099 	struct smi_info *smi_info = in;
3100 	unsigned char *data = smi_info->curr_msg->data;
3101 	unsigned int size   = smi_info->curr_msg->data_size;
3102 	if (size >= 8 &&
3103 	    (data[0]>>2) == STORAGE_NETFN &&
3104 	    data[1] == STORAGE_CMD_GET_SDR &&
3105 	    data[7] == 0x3A) {
3106 		return_hosed_msg_badsize(smi_info);
3107 		return NOTIFY_STOP;
3108 	}
3109 	return NOTIFY_DONE;
3110 }
3111 
3112 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3113 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3114 };
3115 
3116 /*
3117  * setup_dell_poweredge_bt_xaction_handler
3118  * @info - smi_info.device_id must be filled in already
3119  *
3120  * Fills in smi_info.device_id.start_transaction_pre_hook
3121  * when we know what function to use there.
3122  */
3123 static void
3124 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3125 {
3126 	struct ipmi_device_id *id = &smi_info->device_id;
3127 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3128 	    smi_info->si_type == SI_BT)
3129 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3130 }
3131 
3132 /*
3133  * setup_oem_data_handler
3134  * @info - smi_info.device_id must be filled in already
3135  *
3136  * Fills in smi_info.device_id.oem_data_available_handler
3137  * when we know what function to use there.
3138  */
3139 
3140 static void setup_oem_data_handler(struct smi_info *smi_info)
3141 {
3142 	setup_dell_poweredge_oem_data_handler(smi_info);
3143 }
3144 
3145 static void setup_xaction_handlers(struct smi_info *smi_info)
3146 {
3147 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3148 }
3149 
3150 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3151 {
3152 	if (smi_info->intf) {
3153 		/*
3154 		 * The timer and thread are only running if the
3155 		 * interface has been started up and registered.
3156 		 */
3157 		if (smi_info->thread != NULL)
3158 			kthread_stop(smi_info->thread);
3159 		del_timer_sync(&smi_info->si_timer);
3160 	}
3161 }
3162 
3163 static struct ipmi_default_vals
3164 {
3165 	int type;
3166 	int port;
3167 } ipmi_defaults[] =
3168 {
3169 	{ .type = SI_KCS, .port = 0xca2 },
3170 	{ .type = SI_SMIC, .port = 0xca9 },
3171 	{ .type = SI_BT, .port = 0xe4 },
3172 	{ .port = 0 }
3173 };
3174 
3175 static void default_find_bmc(void)
3176 {
3177 	struct smi_info *info;
3178 	int             i;
3179 
3180 	for (i = 0; ; i++) {
3181 		if (!ipmi_defaults[i].port)
3182 			break;
3183 #ifdef CONFIG_PPC
3184 		if (check_legacy_ioport(ipmi_defaults[i].port))
3185 			continue;
3186 #endif
3187 		info = smi_info_alloc();
3188 		if (!info)
3189 			return;
3190 
3191 		info->addr_source = SI_DEFAULT;
3192 
3193 		info->si_type = ipmi_defaults[i].type;
3194 		info->io_setup = port_setup;
3195 		info->io.addr_data = ipmi_defaults[i].port;
3196 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3197 
3198 		info->io.addr = NULL;
3199 		info->io.regspacing = DEFAULT_REGSPACING;
3200 		info->io.regsize = DEFAULT_REGSPACING;
3201 		info->io.regshift = 0;
3202 
3203 		if (add_smi(info) == 0) {
3204 			if ((try_smi_init(info)) == 0) {
3205 				/* Found one... */
3206 				printk(KERN_INFO PFX "Found default %s"
3207 				" state machine at %s address 0x%lx\n",
3208 				si_to_str[info->si_type],
3209 				addr_space_to_str[info->io.addr_type],
3210 				info->io.addr_data);
3211 			} else
3212 				cleanup_one_si(info);
3213 		} else {
3214 			kfree(info);
3215 		}
3216 	}
3217 }
3218 
3219 static int is_new_interface(struct smi_info *info)
3220 {
3221 	struct smi_info *e;
3222 
3223 	list_for_each_entry(e, &smi_infos, link) {
3224 		if (e->io.addr_type != info->io.addr_type)
3225 			continue;
3226 		if (e->io.addr_data == info->io.addr_data)
3227 			return 0;
3228 	}
3229 
3230 	return 1;
3231 }
3232 
3233 static int add_smi(struct smi_info *new_smi)
3234 {
3235 	int rv = 0;
3236 
3237 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3238 			ipmi_addr_src_to_str[new_smi->addr_source],
3239 			si_to_str[new_smi->si_type]);
3240 	mutex_lock(&smi_infos_lock);
3241 	if (!is_new_interface(new_smi)) {
3242 		printk(KERN_CONT " duplicate interface\n");
3243 		rv = -EBUSY;
3244 		goto out_err;
3245 	}
3246 
3247 	printk(KERN_CONT "\n");
3248 
3249 	/* So we know not to free it unless we have allocated one. */
3250 	new_smi->intf = NULL;
3251 	new_smi->si_sm = NULL;
3252 	new_smi->handlers = NULL;
3253 
3254 	list_add_tail(&new_smi->link, &smi_infos);
3255 
3256 out_err:
3257 	mutex_unlock(&smi_infos_lock);
3258 	return rv;
3259 }
3260 
3261 static int try_smi_init(struct smi_info *new_smi)
3262 {
3263 	int rv = 0;
3264 	int i;
3265 
3266 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3267 	       " machine at %s address 0x%lx, slave address 0x%x,"
3268 	       " irq %d\n",
3269 	       ipmi_addr_src_to_str[new_smi->addr_source],
3270 	       si_to_str[new_smi->si_type],
3271 	       addr_space_to_str[new_smi->io.addr_type],
3272 	       new_smi->io.addr_data,
3273 	       new_smi->slave_addr, new_smi->irq);
3274 
3275 	switch (new_smi->si_type) {
3276 	case SI_KCS:
3277 		new_smi->handlers = &kcs_smi_handlers;
3278 		break;
3279 
3280 	case SI_SMIC:
3281 		new_smi->handlers = &smic_smi_handlers;
3282 		break;
3283 
3284 	case SI_BT:
3285 		new_smi->handlers = &bt_smi_handlers;
3286 		break;
3287 
3288 	default:
3289 		/* No support for anything else yet. */
3290 		rv = -EIO;
3291 		goto out_err;
3292 	}
3293 
3294 	/* Allocate the state machine's data and initialize it. */
3295 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3296 	if (!new_smi->si_sm) {
3297 		printk(KERN_ERR PFX
3298 		       "Could not allocate state machine memory\n");
3299 		rv = -ENOMEM;
3300 		goto out_err;
3301 	}
3302 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3303 							&new_smi->io);
3304 
3305 	/* Now that we know the I/O size, we can set up the I/O. */
3306 	rv = new_smi->io_setup(new_smi);
3307 	if (rv) {
3308 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3309 		goto out_err;
3310 	}
3311 
3312 	/* Do low-level detection first. */
3313 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3314 		if (new_smi->addr_source)
3315 			printk(KERN_INFO PFX "Interface detection failed\n");
3316 		rv = -ENODEV;
3317 		goto out_err;
3318 	}
3319 
3320 	/*
3321 	 * Attempt a get device id command.  If it fails, we probably
3322 	 * don't have a BMC here.
3323 	 */
3324 	rv = try_get_dev_id(new_smi);
3325 	if (rv) {
3326 		if (new_smi->addr_source)
3327 			printk(KERN_INFO PFX "There appears to be no BMC"
3328 			       " at this location\n");
3329 		goto out_err;
3330 	}
3331 
3332 	setup_oem_data_handler(new_smi);
3333 	setup_xaction_handlers(new_smi);
3334 
3335 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3336 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3337 	new_smi->curr_msg = NULL;
3338 	atomic_set(&new_smi->req_events, 0);
3339 	new_smi->run_to_completion = 0;
3340 	for (i = 0; i < SI_NUM_STATS; i++)
3341 		atomic_set(&new_smi->stats[i], 0);
3342 
3343 	new_smi->interrupt_disabled = 1;
3344 	atomic_set(&new_smi->stop_operation, 0);
3345 	new_smi->intf_num = smi_num;
3346 	smi_num++;
3347 
3348 	rv = try_enable_event_buffer(new_smi);
3349 	if (rv == 0)
3350 		new_smi->has_event_buffer = 1;
3351 
3352 	/*
3353 	 * Start clearing the flags before we enable interrupts or the
3354 	 * timer to avoid racing with the timer.
3355 	 */
3356 	start_clear_flags(new_smi);
3357 	/* IRQ is defined to be set when non-zero. */
3358 	if (new_smi->irq)
3359 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3360 
3361 	if (!new_smi->dev) {
3362 		/*
3363 		 * If we don't already have a device from something
3364 		 * else (like PCI), then register a new one.
3365 		 */
3366 		new_smi->pdev = platform_device_alloc("ipmi_si",
3367 						      new_smi->intf_num);
3368 		if (!new_smi->pdev) {
3369 			printk(KERN_ERR PFX
3370 			       "Unable to allocate platform device\n");
3371 			goto out_err;
3372 		}
3373 		new_smi->dev = &new_smi->pdev->dev;
3374 		new_smi->dev->driver = &ipmi_driver.driver;
3375 
3376 		rv = platform_device_add(new_smi->pdev);
3377 		if (rv) {
3378 			printk(KERN_ERR PFX
3379 			       "Unable to register system interface device:"
3380 			       " %d\n",
3381 			       rv);
3382 			goto out_err;
3383 		}
3384 		new_smi->dev_registered = 1;
3385 	}
3386 
3387 	rv = ipmi_register_smi(&handlers,
3388 			       new_smi,
3389 			       &new_smi->device_id,
3390 			       new_smi->dev,
3391 			       "bmc",
3392 			       new_smi->slave_addr);
3393 	if (rv) {
3394 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3395 			rv);
3396 		goto out_err_stop_timer;
3397 	}
3398 
3399 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3400 				     &smi_type_proc_ops,
3401 				     new_smi);
3402 	if (rv) {
3403 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3404 		goto out_err_stop_timer;
3405 	}
3406 
3407 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3408 				     &smi_si_stats_proc_ops,
3409 				     new_smi);
3410 	if (rv) {
3411 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3412 		goto out_err_stop_timer;
3413 	}
3414 
3415 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3416 				     &smi_params_proc_ops,
3417 				     new_smi);
3418 	if (rv) {
3419 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3420 		goto out_err_stop_timer;
3421 	}
3422 
3423 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3424 		 si_to_str[new_smi->si_type]);
3425 
3426 	return 0;
3427 
3428  out_err_stop_timer:
3429 	atomic_inc(&new_smi->stop_operation);
3430 	wait_for_timer_and_thread(new_smi);
3431 
3432  out_err:
3433 	new_smi->interrupt_disabled = 1;
3434 
3435 	if (new_smi->intf) {
3436 		ipmi_unregister_smi(new_smi->intf);
3437 		new_smi->intf = NULL;
3438 	}
3439 
3440 	if (new_smi->irq_cleanup) {
3441 		new_smi->irq_cleanup(new_smi);
3442 		new_smi->irq_cleanup = NULL;
3443 	}
3444 
3445 	/*
3446 	 * Wait until we know that we are out of any interrupt
3447 	 * handlers might have been running before we freed the
3448 	 * interrupt.
3449 	 */
3450 	synchronize_sched();
3451 
3452 	if (new_smi->si_sm) {
3453 		if (new_smi->handlers)
3454 			new_smi->handlers->cleanup(new_smi->si_sm);
3455 		kfree(new_smi->si_sm);
3456 		new_smi->si_sm = NULL;
3457 	}
3458 	if (new_smi->addr_source_cleanup) {
3459 		new_smi->addr_source_cleanup(new_smi);
3460 		new_smi->addr_source_cleanup = NULL;
3461 	}
3462 	if (new_smi->io_cleanup) {
3463 		new_smi->io_cleanup(new_smi);
3464 		new_smi->io_cleanup = NULL;
3465 	}
3466 
3467 	if (new_smi->dev_registered) {
3468 		platform_device_unregister(new_smi->pdev);
3469 		new_smi->dev_registered = 0;
3470 	}
3471 
3472 	return rv;
3473 }
3474 
3475 static int init_ipmi_si(void)
3476 {
3477 	int  i;
3478 	char *str;
3479 	int  rv;
3480 	struct smi_info *e;
3481 	enum ipmi_addr_src type = SI_INVALID;
3482 
3483 	if (initialized)
3484 		return 0;
3485 	initialized = 1;
3486 
3487 	if (si_tryplatform) {
3488 		rv = platform_driver_register(&ipmi_driver);
3489 		if (rv) {
3490 			printk(KERN_ERR PFX "Unable to register "
3491 			       "driver: %d\n", rv);
3492 			return rv;
3493 		}
3494 	}
3495 
3496 	/* Parse out the si_type string into its components. */
3497 	str = si_type_str;
3498 	if (*str != '\0') {
3499 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3500 			si_type[i] = str;
3501 			str = strchr(str, ',');
3502 			if (str) {
3503 				*str = '\0';
3504 				str++;
3505 			} else {
3506 				break;
3507 			}
3508 		}
3509 	}
3510 
3511 	printk(KERN_INFO "IPMI System Interface driver.\n");
3512 
3513 	/* If the user gave us a device, they presumably want us to use it */
3514 	if (!hardcode_find_bmc())
3515 		return 0;
3516 
3517 #ifdef CONFIG_PCI
3518 	if (si_trypci) {
3519 		rv = pci_register_driver(&ipmi_pci_driver);
3520 		if (rv)
3521 			printk(KERN_ERR PFX "Unable to register "
3522 			       "PCI driver: %d\n", rv);
3523 		else
3524 			pci_registered = 1;
3525 	}
3526 #endif
3527 
3528 #ifdef CONFIG_ACPI
3529 	if (si_tryacpi) {
3530 		pnp_register_driver(&ipmi_pnp_driver);
3531 		pnp_registered = 1;
3532 	}
3533 #endif
3534 
3535 #ifdef CONFIG_DMI
3536 	if (si_trydmi)
3537 		dmi_find_bmc();
3538 #endif
3539 
3540 #ifdef CONFIG_ACPI
3541 	if (si_tryacpi)
3542 		spmi_find_bmc();
3543 #endif
3544 
3545 #ifdef CONFIG_PARISC
3546 	register_parisc_driver(&ipmi_parisc_driver);
3547 	parisc_registered = 1;
3548 	/* poking PC IO addresses will crash machine, don't do it */
3549 	si_trydefaults = 0;
3550 #endif
3551 
3552 	/* We prefer devices with interrupts, but in the case of a machine
3553 	   with multiple BMCs we assume that there will be several instances
3554 	   of a given type so if we succeed in registering a type then also
3555 	   try to register everything else of the same type */
3556 
3557 	mutex_lock(&smi_infos_lock);
3558 	list_for_each_entry(e, &smi_infos, link) {
3559 		/* Try to register a device if it has an IRQ and we either
3560 		   haven't successfully registered a device yet or this
3561 		   device has the same type as one we successfully registered */
3562 		if (e->irq && (!type || e->addr_source == type)) {
3563 			if (!try_smi_init(e)) {
3564 				type = e->addr_source;
3565 			}
3566 		}
3567 	}
3568 
3569 	/* type will only have been set if we successfully registered an si */
3570 	if (type) {
3571 		mutex_unlock(&smi_infos_lock);
3572 		return 0;
3573 	}
3574 
3575 	/* Fall back to the preferred device */
3576 
3577 	list_for_each_entry(e, &smi_infos, link) {
3578 		if (!e->irq && (!type || e->addr_source == type)) {
3579 			if (!try_smi_init(e)) {
3580 				type = e->addr_source;
3581 			}
3582 		}
3583 	}
3584 	mutex_unlock(&smi_infos_lock);
3585 
3586 	if (type)
3587 		return 0;
3588 
3589 	if (si_trydefaults) {
3590 		mutex_lock(&smi_infos_lock);
3591 		if (list_empty(&smi_infos)) {
3592 			/* No BMC was found, try defaults. */
3593 			mutex_unlock(&smi_infos_lock);
3594 			default_find_bmc();
3595 		} else
3596 			mutex_unlock(&smi_infos_lock);
3597 	}
3598 
3599 	mutex_lock(&smi_infos_lock);
3600 	if (unload_when_empty && list_empty(&smi_infos)) {
3601 		mutex_unlock(&smi_infos_lock);
3602 		cleanup_ipmi_si();
3603 		printk(KERN_WARNING PFX
3604 		       "Unable to find any System Interface(s)\n");
3605 		return -ENODEV;
3606 	} else {
3607 		mutex_unlock(&smi_infos_lock);
3608 		return 0;
3609 	}
3610 }
3611 module_init(init_ipmi_si);
3612 
3613 static void cleanup_one_si(struct smi_info *to_clean)
3614 {
3615 	int           rv = 0;
3616 	unsigned long flags;
3617 
3618 	if (!to_clean)
3619 		return;
3620 
3621 	list_del(&to_clean->link);
3622 
3623 	/* Tell the driver that we are shutting down. */
3624 	atomic_inc(&to_clean->stop_operation);
3625 
3626 	/*
3627 	 * Make sure the timer and thread are stopped and will not run
3628 	 * again.
3629 	 */
3630 	wait_for_timer_and_thread(to_clean);
3631 
3632 	/*
3633 	 * Timeouts are stopped, now make sure the interrupts are off
3634 	 * for the device.  A little tricky with locks to make sure
3635 	 * there are no races.
3636 	 */
3637 	spin_lock_irqsave(&to_clean->si_lock, flags);
3638 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3639 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3640 		poll(to_clean);
3641 		schedule_timeout_uninterruptible(1);
3642 		spin_lock_irqsave(&to_clean->si_lock, flags);
3643 	}
3644 	disable_si_irq(to_clean);
3645 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3646 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3647 		poll(to_clean);
3648 		schedule_timeout_uninterruptible(1);
3649 	}
3650 
3651 	/* Clean up interrupts and make sure that everything is done. */
3652 	if (to_clean->irq_cleanup)
3653 		to_clean->irq_cleanup(to_clean);
3654 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3655 		poll(to_clean);
3656 		schedule_timeout_uninterruptible(1);
3657 	}
3658 
3659 	if (to_clean->intf)
3660 		rv = ipmi_unregister_smi(to_clean->intf);
3661 
3662 	if (rv) {
3663 		printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3664 		       rv);
3665 	}
3666 
3667 	if (to_clean->handlers)
3668 		to_clean->handlers->cleanup(to_clean->si_sm);
3669 
3670 	kfree(to_clean->si_sm);
3671 
3672 	if (to_clean->addr_source_cleanup)
3673 		to_clean->addr_source_cleanup(to_clean);
3674 	if (to_clean->io_cleanup)
3675 		to_clean->io_cleanup(to_clean);
3676 
3677 	if (to_clean->dev_registered)
3678 		platform_device_unregister(to_clean->pdev);
3679 
3680 	kfree(to_clean);
3681 }
3682 
3683 static void cleanup_ipmi_si(void)
3684 {
3685 	struct smi_info *e, *tmp_e;
3686 
3687 	if (!initialized)
3688 		return;
3689 
3690 #ifdef CONFIG_PCI
3691 	if (pci_registered)
3692 		pci_unregister_driver(&ipmi_pci_driver);
3693 #endif
3694 #ifdef CONFIG_ACPI
3695 	if (pnp_registered)
3696 		pnp_unregister_driver(&ipmi_pnp_driver);
3697 #endif
3698 #ifdef CONFIG_PARISC
3699 	if (parisc_registered)
3700 		unregister_parisc_driver(&ipmi_parisc_driver);
3701 #endif
3702 
3703 	platform_driver_unregister(&ipmi_driver);
3704 
3705 	mutex_lock(&smi_infos_lock);
3706 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3707 		cleanup_one_si(e);
3708 	mutex_unlock(&smi_infos_lock);
3709 }
3710 module_exit(cleanup_ipmi_si);
3711 
3712 MODULE_LICENSE("GPL");
3713 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3714 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3715 		   " system interfaces.");
3716