1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 #include <linux/of_device.h> 69 #include <linux/of_platform.h> 70 #include <linux/of_address.h> 71 #include <linux/of_irq.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_CLEARING_FLAGS_THEN_SET_IRQ, 96 SI_GETTING_MESSAGES, 97 SI_ENABLE_INTERRUPTS1, 98 SI_ENABLE_INTERRUPTS2, 99 SI_DISABLE_INTERRUPTS1, 100 SI_DISABLE_INTERRUPTS2 101 /* FIXME - add watchdog stuff. */ 102 }; 103 104 /* Some BT-specific defines we need here. */ 105 #define IPMI_BT_INTMASK_REG 2 106 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 107 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 108 109 enum si_type { 110 SI_KCS, SI_SMIC, SI_BT 111 }; 112 static char *si_to_str[] = { "kcs", "smic", "bt" }; 113 114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 115 "ACPI", "SMBIOS", "PCI", 116 "device-tree", "default" }; 117 118 #define DEVICE_NAME "ipmi_si" 119 120 static struct platform_driver ipmi_driver; 121 122 /* 123 * Indexes into stats[] in smi_info below. 124 */ 125 enum si_stat_indexes { 126 /* 127 * Number of times the driver requested a timer while an operation 128 * was in progress. 129 */ 130 SI_STAT_short_timeouts = 0, 131 132 /* 133 * Number of times the driver requested a timer while nothing was in 134 * progress. 135 */ 136 SI_STAT_long_timeouts, 137 138 /* Number of times the interface was idle while being polled. */ 139 SI_STAT_idles, 140 141 /* Number of interrupts the driver handled. */ 142 SI_STAT_interrupts, 143 144 /* Number of time the driver got an ATTN from the hardware. */ 145 SI_STAT_attentions, 146 147 /* Number of times the driver requested flags from the hardware. */ 148 SI_STAT_flag_fetches, 149 150 /* Number of times the hardware didn't follow the state machine. */ 151 SI_STAT_hosed_count, 152 153 /* Number of completed messages. */ 154 SI_STAT_complete_transactions, 155 156 /* Number of IPMI events received from the hardware. */ 157 SI_STAT_events, 158 159 /* Number of watchdog pretimeouts. */ 160 SI_STAT_watchdog_pretimeouts, 161 162 /* Number of asynchronous messages received. */ 163 SI_STAT_incoming_messages, 164 165 166 /* This *must* remain last, add new values above this. */ 167 SI_NUM_STATS 168 }; 169 170 struct smi_info { 171 int intf_num; 172 ipmi_smi_t intf; 173 struct si_sm_data *si_sm; 174 struct si_sm_handlers *handlers; 175 enum si_type si_type; 176 spinlock_t si_lock; 177 struct list_head xmit_msgs; 178 struct list_head hp_xmit_msgs; 179 struct ipmi_smi_msg *curr_msg; 180 enum si_intf_state si_state; 181 182 /* 183 * Used to handle the various types of I/O that can occur with 184 * IPMI 185 */ 186 struct si_sm_io io; 187 int (*io_setup)(struct smi_info *info); 188 void (*io_cleanup)(struct smi_info *info); 189 int (*irq_setup)(struct smi_info *info); 190 void (*irq_cleanup)(struct smi_info *info); 191 unsigned int io_size; 192 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 193 void (*addr_source_cleanup)(struct smi_info *info); 194 void *addr_source_data; 195 196 /* 197 * Per-OEM handler, called from handle_flags(). Returns 1 198 * when handle_flags() needs to be re-run or 0 indicating it 199 * set si_state itself. 200 */ 201 int (*oem_data_avail_handler)(struct smi_info *smi_info); 202 203 /* 204 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 205 * is set to hold the flags until we are done handling everything 206 * from the flags. 207 */ 208 #define RECEIVE_MSG_AVAIL 0x01 209 #define EVENT_MSG_BUFFER_FULL 0x02 210 #define WDT_PRE_TIMEOUT_INT 0x08 211 #define OEM0_DATA_AVAIL 0x20 212 #define OEM1_DATA_AVAIL 0x40 213 #define OEM2_DATA_AVAIL 0x80 214 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 215 OEM1_DATA_AVAIL | \ 216 OEM2_DATA_AVAIL) 217 unsigned char msg_flags; 218 219 /* Does the BMC have an event buffer? */ 220 bool has_event_buffer; 221 222 /* 223 * If set to true, this will request events the next time the 224 * state machine is idle. 225 */ 226 atomic_t req_events; 227 228 /* 229 * If true, run the state machine to completion on every send 230 * call. Generally used after a panic to make sure stuff goes 231 * out. 232 */ 233 bool run_to_completion; 234 235 /* The I/O port of an SI interface. */ 236 int port; 237 238 /* 239 * The space between start addresses of the two ports. For 240 * instance, if the first port is 0xca2 and the spacing is 4, then 241 * the second port is 0xca6. 242 */ 243 unsigned int spacing; 244 245 /* zero if no irq; */ 246 int irq; 247 248 /* The timer for this si. */ 249 struct timer_list si_timer; 250 251 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 252 bool timer_running; 253 254 /* The time (in jiffies) the last timeout occurred at. */ 255 unsigned long last_timeout_jiffies; 256 257 /* Used to gracefully stop the timer without race conditions. */ 258 atomic_t stop_operation; 259 260 /* Are we waiting for the events, pretimeouts, received msgs? */ 261 atomic_t need_watch; 262 263 /* 264 * The driver will disable interrupts when it gets into a 265 * situation where it cannot handle messages due to lack of 266 * memory. Once that situation clears up, it will re-enable 267 * interrupts. 268 */ 269 bool interrupt_disabled; 270 271 /* From the get device id response... */ 272 struct ipmi_device_id device_id; 273 274 /* Driver model stuff. */ 275 struct device *dev; 276 struct platform_device *pdev; 277 278 /* 279 * True if we allocated the device, false if it came from 280 * someplace else (like PCI). 281 */ 282 bool dev_registered; 283 284 /* Slave address, could be reported from DMI. */ 285 unsigned char slave_addr; 286 287 /* Counters and things for the proc filesystem. */ 288 atomic_t stats[SI_NUM_STATS]; 289 290 struct task_struct *thread; 291 292 struct list_head link; 293 union ipmi_smi_info_union addr_info; 294 }; 295 296 #define smi_inc_stat(smi, stat) \ 297 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 298 #define smi_get_stat(smi, stat) \ 299 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 300 301 #define SI_MAX_PARMS 4 302 303 static int force_kipmid[SI_MAX_PARMS]; 304 static int num_force_kipmid; 305 #ifdef CONFIG_PCI 306 static bool pci_registered; 307 #endif 308 #ifdef CONFIG_ACPI 309 static bool pnp_registered; 310 #endif 311 #ifdef CONFIG_PARISC 312 static bool parisc_registered; 313 #endif 314 315 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 316 static int num_max_busy_us; 317 318 static bool unload_when_empty = true; 319 320 static int add_smi(struct smi_info *smi); 321 static int try_smi_init(struct smi_info *smi); 322 static void cleanup_one_si(struct smi_info *to_clean); 323 static void cleanup_ipmi_si(void); 324 325 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 326 static int register_xaction_notifier(struct notifier_block *nb) 327 { 328 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 329 } 330 331 static void deliver_recv_msg(struct smi_info *smi_info, 332 struct ipmi_smi_msg *msg) 333 { 334 /* Deliver the message to the upper layer. */ 335 ipmi_smi_msg_received(smi_info->intf, msg); 336 } 337 338 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 339 { 340 struct ipmi_smi_msg *msg = smi_info->curr_msg; 341 342 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 343 cCode = IPMI_ERR_UNSPECIFIED; 344 /* else use it as is */ 345 346 /* Make it a response */ 347 msg->rsp[0] = msg->data[0] | 4; 348 msg->rsp[1] = msg->data[1]; 349 msg->rsp[2] = cCode; 350 msg->rsp_size = 3; 351 352 smi_info->curr_msg = NULL; 353 deliver_recv_msg(smi_info, msg); 354 } 355 356 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 357 { 358 int rv; 359 struct list_head *entry = NULL; 360 #ifdef DEBUG_TIMING 361 struct timeval t; 362 #endif 363 364 /* Pick the high priority queue first. */ 365 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 366 entry = smi_info->hp_xmit_msgs.next; 367 } else if (!list_empty(&(smi_info->xmit_msgs))) { 368 entry = smi_info->xmit_msgs.next; 369 } 370 371 if (!entry) { 372 smi_info->curr_msg = NULL; 373 rv = SI_SM_IDLE; 374 } else { 375 int err; 376 377 list_del(entry); 378 smi_info->curr_msg = list_entry(entry, 379 struct ipmi_smi_msg, 380 link); 381 #ifdef DEBUG_TIMING 382 do_gettimeofday(&t); 383 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 384 #endif 385 err = atomic_notifier_call_chain(&xaction_notifier_list, 386 0, smi_info); 387 if (err & NOTIFY_STOP_MASK) { 388 rv = SI_SM_CALL_WITHOUT_DELAY; 389 goto out; 390 } 391 err = smi_info->handlers->start_transaction( 392 smi_info->si_sm, 393 smi_info->curr_msg->data, 394 smi_info->curr_msg->data_size); 395 if (err) 396 return_hosed_msg(smi_info, err); 397 398 rv = SI_SM_CALL_WITHOUT_DELAY; 399 } 400 out: 401 return rv; 402 } 403 404 static void start_enable_irq(struct smi_info *smi_info) 405 { 406 unsigned char msg[2]; 407 408 /* 409 * If we are enabling interrupts, we have to tell the 410 * BMC to use them. 411 */ 412 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 413 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 414 415 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 416 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 417 } 418 419 static void start_disable_irq(struct smi_info *smi_info) 420 { 421 unsigned char msg[2]; 422 423 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 424 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 425 426 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 427 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 428 } 429 430 static void start_clear_flags(struct smi_info *smi_info) 431 { 432 unsigned char msg[3]; 433 434 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 435 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 436 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 437 msg[2] = WDT_PRE_TIMEOUT_INT; 438 439 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 440 smi_info->si_state = SI_CLEARING_FLAGS; 441 } 442 443 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 444 { 445 smi_info->last_timeout_jiffies = jiffies; 446 mod_timer(&smi_info->si_timer, new_val); 447 smi_info->timer_running = true; 448 } 449 450 /* 451 * When we have a situtaion where we run out of memory and cannot 452 * allocate messages, we just leave them in the BMC and run the system 453 * polled until we can allocate some memory. Once we have some 454 * memory, we will re-enable the interrupt. 455 */ 456 static inline void disable_si_irq(struct smi_info *smi_info) 457 { 458 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 459 start_disable_irq(smi_info); 460 smi_info->interrupt_disabled = true; 461 if (!atomic_read(&smi_info->stop_operation)) 462 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 463 } 464 } 465 466 static inline void enable_si_irq(struct smi_info *smi_info) 467 { 468 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 469 start_enable_irq(smi_info); 470 smi_info->interrupt_disabled = false; 471 } 472 } 473 474 static void handle_flags(struct smi_info *smi_info) 475 { 476 retry: 477 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 478 /* Watchdog pre-timeout */ 479 smi_inc_stat(smi_info, watchdog_pretimeouts); 480 481 start_clear_flags(smi_info); 482 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 483 ipmi_smi_watchdog_pretimeout(smi_info->intf); 484 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 485 /* Messages available. */ 486 smi_info->curr_msg = ipmi_alloc_smi_msg(); 487 if (!smi_info->curr_msg) { 488 disable_si_irq(smi_info); 489 smi_info->si_state = SI_NORMAL; 490 return; 491 } 492 enable_si_irq(smi_info); 493 494 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 495 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 496 smi_info->curr_msg->data_size = 2; 497 498 smi_info->handlers->start_transaction( 499 smi_info->si_sm, 500 smi_info->curr_msg->data, 501 smi_info->curr_msg->data_size); 502 smi_info->si_state = SI_GETTING_MESSAGES; 503 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 504 /* Events available. */ 505 smi_info->curr_msg = ipmi_alloc_smi_msg(); 506 if (!smi_info->curr_msg) { 507 disable_si_irq(smi_info); 508 smi_info->si_state = SI_NORMAL; 509 return; 510 } 511 enable_si_irq(smi_info); 512 513 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 514 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 515 smi_info->curr_msg->data_size = 2; 516 517 smi_info->handlers->start_transaction( 518 smi_info->si_sm, 519 smi_info->curr_msg->data, 520 smi_info->curr_msg->data_size); 521 smi_info->si_state = SI_GETTING_EVENTS; 522 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 523 smi_info->oem_data_avail_handler) { 524 if (smi_info->oem_data_avail_handler(smi_info)) 525 goto retry; 526 } else 527 smi_info->si_state = SI_NORMAL; 528 } 529 530 static void handle_transaction_done(struct smi_info *smi_info) 531 { 532 struct ipmi_smi_msg *msg; 533 #ifdef DEBUG_TIMING 534 struct timeval t; 535 536 do_gettimeofday(&t); 537 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 538 #endif 539 switch (smi_info->si_state) { 540 case SI_NORMAL: 541 if (!smi_info->curr_msg) 542 break; 543 544 smi_info->curr_msg->rsp_size 545 = smi_info->handlers->get_result( 546 smi_info->si_sm, 547 smi_info->curr_msg->rsp, 548 IPMI_MAX_MSG_LENGTH); 549 550 /* 551 * Do this here becase deliver_recv_msg() releases the 552 * lock, and a new message can be put in during the 553 * time the lock is released. 554 */ 555 msg = smi_info->curr_msg; 556 smi_info->curr_msg = NULL; 557 deliver_recv_msg(smi_info, msg); 558 break; 559 560 case SI_GETTING_FLAGS: 561 { 562 unsigned char msg[4]; 563 unsigned int len; 564 565 /* We got the flags from the SMI, now handle them. */ 566 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 567 if (msg[2] != 0) { 568 /* Error fetching flags, just give up for now. */ 569 smi_info->si_state = SI_NORMAL; 570 } else if (len < 4) { 571 /* 572 * Hmm, no flags. That's technically illegal, but 573 * don't use uninitialized data. 574 */ 575 smi_info->si_state = SI_NORMAL; 576 } else { 577 smi_info->msg_flags = msg[3]; 578 handle_flags(smi_info); 579 } 580 break; 581 } 582 583 case SI_CLEARING_FLAGS: 584 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 585 { 586 unsigned char msg[3]; 587 588 /* We cleared the flags. */ 589 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 590 if (msg[2] != 0) { 591 /* Error clearing flags */ 592 dev_warn(smi_info->dev, 593 "Error clearing flags: %2.2x\n", msg[2]); 594 } 595 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 596 start_enable_irq(smi_info); 597 else 598 smi_info->si_state = SI_NORMAL; 599 break; 600 } 601 602 case SI_GETTING_EVENTS: 603 { 604 smi_info->curr_msg->rsp_size 605 = smi_info->handlers->get_result( 606 smi_info->si_sm, 607 smi_info->curr_msg->rsp, 608 IPMI_MAX_MSG_LENGTH); 609 610 /* 611 * Do this here becase deliver_recv_msg() releases the 612 * lock, and a new message can be put in during the 613 * time the lock is released. 614 */ 615 msg = smi_info->curr_msg; 616 smi_info->curr_msg = NULL; 617 if (msg->rsp[2] != 0) { 618 /* Error getting event, probably done. */ 619 msg->done(msg); 620 621 /* Take off the event flag. */ 622 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 623 handle_flags(smi_info); 624 } else { 625 smi_inc_stat(smi_info, events); 626 627 /* 628 * Do this before we deliver the message 629 * because delivering the message releases the 630 * lock and something else can mess with the 631 * state. 632 */ 633 handle_flags(smi_info); 634 635 deliver_recv_msg(smi_info, msg); 636 } 637 break; 638 } 639 640 case SI_GETTING_MESSAGES: 641 { 642 smi_info->curr_msg->rsp_size 643 = smi_info->handlers->get_result( 644 smi_info->si_sm, 645 smi_info->curr_msg->rsp, 646 IPMI_MAX_MSG_LENGTH); 647 648 /* 649 * Do this here becase deliver_recv_msg() releases the 650 * lock, and a new message can be put in during the 651 * time the lock is released. 652 */ 653 msg = smi_info->curr_msg; 654 smi_info->curr_msg = NULL; 655 if (msg->rsp[2] != 0) { 656 /* Error getting event, probably done. */ 657 msg->done(msg); 658 659 /* Take off the msg flag. */ 660 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 661 handle_flags(smi_info); 662 } else { 663 smi_inc_stat(smi_info, incoming_messages); 664 665 /* 666 * Do this before we deliver the message 667 * because delivering the message releases the 668 * lock and something else can mess with the 669 * state. 670 */ 671 handle_flags(smi_info); 672 673 deliver_recv_msg(smi_info, msg); 674 } 675 break; 676 } 677 678 case SI_ENABLE_INTERRUPTS1: 679 { 680 unsigned char msg[4]; 681 682 /* We got the flags from the SMI, now handle them. */ 683 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 684 if (msg[2] != 0) { 685 dev_warn(smi_info->dev, 686 "Couldn't get irq info: %x.\n", msg[2]); 687 dev_warn(smi_info->dev, 688 "Maybe ok, but ipmi might run very slowly.\n"); 689 smi_info->si_state = SI_NORMAL; 690 } else { 691 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 692 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 693 msg[2] = (msg[3] | 694 IPMI_BMC_RCV_MSG_INTR | 695 IPMI_BMC_EVT_MSG_INTR); 696 smi_info->handlers->start_transaction( 697 smi_info->si_sm, msg, 3); 698 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 699 } 700 break; 701 } 702 703 case SI_ENABLE_INTERRUPTS2: 704 { 705 unsigned char msg[4]; 706 707 /* We got the flags from the SMI, now handle them. */ 708 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 709 if (msg[2] != 0) { 710 dev_warn(smi_info->dev, 711 "Couldn't set irq info: %x.\n", msg[2]); 712 dev_warn(smi_info->dev, 713 "Maybe ok, but ipmi might run very slowly.\n"); 714 } else 715 smi_info->interrupt_disabled = false; 716 smi_info->si_state = SI_NORMAL; 717 break; 718 } 719 720 case SI_DISABLE_INTERRUPTS1: 721 { 722 unsigned char msg[4]; 723 724 /* We got the flags from the SMI, now handle them. */ 725 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 726 if (msg[2] != 0) { 727 dev_warn(smi_info->dev, "Could not disable interrupts" 728 ", failed get.\n"); 729 smi_info->si_state = SI_NORMAL; 730 } else { 731 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 732 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 733 msg[2] = (msg[3] & 734 ~(IPMI_BMC_RCV_MSG_INTR | 735 IPMI_BMC_EVT_MSG_INTR)); 736 smi_info->handlers->start_transaction( 737 smi_info->si_sm, msg, 3); 738 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 739 } 740 break; 741 } 742 743 case SI_DISABLE_INTERRUPTS2: 744 { 745 unsigned char msg[4]; 746 747 /* We got the flags from the SMI, now handle them. */ 748 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 749 if (msg[2] != 0) { 750 dev_warn(smi_info->dev, "Could not disable interrupts" 751 ", failed set.\n"); 752 } 753 smi_info->si_state = SI_NORMAL; 754 break; 755 } 756 } 757 } 758 759 /* 760 * Called on timeouts and events. Timeouts should pass the elapsed 761 * time, interrupts should pass in zero. Must be called with 762 * si_lock held and interrupts disabled. 763 */ 764 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 765 int time) 766 { 767 enum si_sm_result si_sm_result; 768 769 restart: 770 /* 771 * There used to be a loop here that waited a little while 772 * (around 25us) before giving up. That turned out to be 773 * pointless, the minimum delays I was seeing were in the 300us 774 * range, which is far too long to wait in an interrupt. So 775 * we just run until the state machine tells us something 776 * happened or it needs a delay. 777 */ 778 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 779 time = 0; 780 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 782 783 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 784 smi_inc_stat(smi_info, complete_transactions); 785 786 handle_transaction_done(smi_info); 787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 788 } else if (si_sm_result == SI_SM_HOSED) { 789 smi_inc_stat(smi_info, hosed_count); 790 791 /* 792 * Do the before return_hosed_msg, because that 793 * releases the lock. 794 */ 795 smi_info->si_state = SI_NORMAL; 796 if (smi_info->curr_msg != NULL) { 797 /* 798 * If we were handling a user message, format 799 * a response to send to the upper layer to 800 * tell it about the error. 801 */ 802 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 803 } 804 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 805 } 806 807 /* 808 * We prefer handling attn over new messages. But don't do 809 * this if there is not yet an upper layer to handle anything. 810 */ 811 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 812 unsigned char msg[2]; 813 814 smi_inc_stat(smi_info, attentions); 815 816 /* 817 * Got a attn, send down a get message flags to see 818 * what's causing it. It would be better to handle 819 * this in the upper layer, but due to the way 820 * interrupts work with the SMI, that's not really 821 * possible. 822 */ 823 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 824 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 825 826 smi_info->handlers->start_transaction( 827 smi_info->si_sm, msg, 2); 828 smi_info->si_state = SI_GETTING_FLAGS; 829 goto restart; 830 } 831 832 /* If we are currently idle, try to start the next message. */ 833 if (si_sm_result == SI_SM_IDLE) { 834 smi_inc_stat(smi_info, idles); 835 836 si_sm_result = start_next_msg(smi_info); 837 if (si_sm_result != SI_SM_IDLE) 838 goto restart; 839 } 840 841 if ((si_sm_result == SI_SM_IDLE) 842 && (atomic_read(&smi_info->req_events))) { 843 /* 844 * We are idle and the upper layer requested that I fetch 845 * events, so do so. 846 */ 847 atomic_set(&smi_info->req_events, 0); 848 849 smi_info->curr_msg = ipmi_alloc_smi_msg(); 850 if (!smi_info->curr_msg) 851 goto out; 852 853 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 854 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 855 smi_info->curr_msg->data_size = 2; 856 857 smi_info->handlers->start_transaction( 858 smi_info->si_sm, 859 smi_info->curr_msg->data, 860 smi_info->curr_msg->data_size); 861 smi_info->si_state = SI_GETTING_EVENTS; 862 goto restart; 863 } 864 out: 865 return si_sm_result; 866 } 867 868 static void check_start_timer_thread(struct smi_info *smi_info) 869 { 870 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 871 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 872 873 if (smi_info->thread) 874 wake_up_process(smi_info->thread); 875 876 start_next_msg(smi_info); 877 smi_event_handler(smi_info, 0); 878 } 879 } 880 881 static void sender(void *send_info, 882 struct ipmi_smi_msg *msg, 883 int priority) 884 { 885 struct smi_info *smi_info = send_info; 886 enum si_sm_result result; 887 unsigned long flags; 888 #ifdef DEBUG_TIMING 889 struct timeval t; 890 #endif 891 892 if (atomic_read(&smi_info->stop_operation)) { 893 msg->rsp[0] = msg->data[0] | 4; 894 msg->rsp[1] = msg->data[1]; 895 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 896 msg->rsp_size = 3; 897 deliver_recv_msg(smi_info, msg); 898 return; 899 } 900 901 #ifdef DEBUG_TIMING 902 do_gettimeofday(&t); 903 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 904 #endif 905 906 if (smi_info->run_to_completion) { 907 /* 908 * If we are running to completion, then throw it in 909 * the list and run transactions until everything is 910 * clear. Priority doesn't matter here. 911 */ 912 913 /* 914 * Run to completion means we are single-threaded, no 915 * need for locks. 916 */ 917 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 918 919 result = smi_event_handler(smi_info, 0); 920 while (result != SI_SM_IDLE) { 921 udelay(SI_SHORT_TIMEOUT_USEC); 922 result = smi_event_handler(smi_info, 923 SI_SHORT_TIMEOUT_USEC); 924 } 925 return; 926 } 927 928 spin_lock_irqsave(&smi_info->si_lock, flags); 929 if (priority > 0) 930 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 931 else 932 list_add_tail(&msg->link, &smi_info->xmit_msgs); 933 934 check_start_timer_thread(smi_info); 935 spin_unlock_irqrestore(&smi_info->si_lock, flags); 936 } 937 938 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 939 { 940 struct smi_info *smi_info = send_info; 941 enum si_sm_result result; 942 943 smi_info->run_to_completion = i_run_to_completion; 944 if (i_run_to_completion) { 945 result = smi_event_handler(smi_info, 0); 946 while (result != SI_SM_IDLE) { 947 udelay(SI_SHORT_TIMEOUT_USEC); 948 result = smi_event_handler(smi_info, 949 SI_SHORT_TIMEOUT_USEC); 950 } 951 } 952 } 953 954 /* 955 * Use -1 in the nsec value of the busy waiting timespec to tell that 956 * we are spinning in kipmid looking for something and not delaying 957 * between checks 958 */ 959 static inline void ipmi_si_set_not_busy(struct timespec *ts) 960 { 961 ts->tv_nsec = -1; 962 } 963 static inline int ipmi_si_is_busy(struct timespec *ts) 964 { 965 return ts->tv_nsec != -1; 966 } 967 968 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 969 const struct smi_info *smi_info, 970 struct timespec *busy_until) 971 { 972 unsigned int max_busy_us = 0; 973 974 if (smi_info->intf_num < num_max_busy_us) 975 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 976 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 977 ipmi_si_set_not_busy(busy_until); 978 else if (!ipmi_si_is_busy(busy_until)) { 979 getnstimeofday(busy_until); 980 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 981 } else { 982 struct timespec now; 983 getnstimeofday(&now); 984 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 985 ipmi_si_set_not_busy(busy_until); 986 return 0; 987 } 988 } 989 return 1; 990 } 991 992 993 /* 994 * A busy-waiting loop for speeding up IPMI operation. 995 * 996 * Lousy hardware makes this hard. This is only enabled for systems 997 * that are not BT and do not have interrupts. It starts spinning 998 * when an operation is complete or until max_busy tells it to stop 999 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1000 * Documentation/IPMI.txt for details. 1001 */ 1002 static int ipmi_thread(void *data) 1003 { 1004 struct smi_info *smi_info = data; 1005 unsigned long flags; 1006 enum si_sm_result smi_result; 1007 struct timespec busy_until; 1008 1009 ipmi_si_set_not_busy(&busy_until); 1010 set_user_nice(current, 19); 1011 while (!kthread_should_stop()) { 1012 int busy_wait; 1013 1014 spin_lock_irqsave(&(smi_info->si_lock), flags); 1015 smi_result = smi_event_handler(smi_info, 0); 1016 1017 /* 1018 * If the driver is doing something, there is a possible 1019 * race with the timer. If the timer handler see idle, 1020 * and the thread here sees something else, the timer 1021 * handler won't restart the timer even though it is 1022 * required. So start it here if necessary. 1023 */ 1024 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1025 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1026 1027 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1028 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1029 &busy_until); 1030 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1031 ; /* do nothing */ 1032 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1033 schedule(); 1034 else if (smi_result == SI_SM_IDLE) { 1035 if (atomic_read(&smi_info->need_watch)) { 1036 schedule_timeout_interruptible(100); 1037 } else { 1038 /* Wait to be woken up when we are needed. */ 1039 __set_current_state(TASK_INTERRUPTIBLE); 1040 schedule(); 1041 } 1042 } else 1043 schedule_timeout_interruptible(1); 1044 } 1045 return 0; 1046 } 1047 1048 1049 static void poll(void *send_info) 1050 { 1051 struct smi_info *smi_info = send_info; 1052 unsigned long flags = 0; 1053 bool run_to_completion = smi_info->run_to_completion; 1054 1055 /* 1056 * Make sure there is some delay in the poll loop so we can 1057 * drive time forward and timeout things. 1058 */ 1059 udelay(10); 1060 if (!run_to_completion) 1061 spin_lock_irqsave(&smi_info->si_lock, flags); 1062 smi_event_handler(smi_info, 10); 1063 if (!run_to_completion) 1064 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1065 } 1066 1067 static void request_events(void *send_info) 1068 { 1069 struct smi_info *smi_info = send_info; 1070 1071 if (atomic_read(&smi_info->stop_operation) || 1072 !smi_info->has_event_buffer) 1073 return; 1074 1075 atomic_set(&smi_info->req_events, 1); 1076 } 1077 1078 static void set_need_watch(void *send_info, bool enable) 1079 { 1080 struct smi_info *smi_info = send_info; 1081 unsigned long flags; 1082 1083 atomic_set(&smi_info->need_watch, enable); 1084 spin_lock_irqsave(&smi_info->si_lock, flags); 1085 check_start_timer_thread(smi_info); 1086 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1087 } 1088 1089 static int initialized; 1090 1091 static void smi_timeout(unsigned long data) 1092 { 1093 struct smi_info *smi_info = (struct smi_info *) data; 1094 enum si_sm_result smi_result; 1095 unsigned long flags; 1096 unsigned long jiffies_now; 1097 long time_diff; 1098 long timeout; 1099 #ifdef DEBUG_TIMING 1100 struct timeval t; 1101 #endif 1102 1103 spin_lock_irqsave(&(smi_info->si_lock), flags); 1104 #ifdef DEBUG_TIMING 1105 do_gettimeofday(&t); 1106 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1107 #endif 1108 jiffies_now = jiffies; 1109 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1110 * SI_USEC_PER_JIFFY); 1111 smi_result = smi_event_handler(smi_info, time_diff); 1112 1113 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1114 /* Running with interrupts, only do long timeouts. */ 1115 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1116 smi_inc_stat(smi_info, long_timeouts); 1117 goto do_mod_timer; 1118 } 1119 1120 /* 1121 * If the state machine asks for a short delay, then shorten 1122 * the timer timeout. 1123 */ 1124 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1125 smi_inc_stat(smi_info, short_timeouts); 1126 timeout = jiffies + 1; 1127 } else { 1128 smi_inc_stat(smi_info, long_timeouts); 1129 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1130 } 1131 1132 do_mod_timer: 1133 if (smi_result != SI_SM_IDLE) 1134 smi_mod_timer(smi_info, timeout); 1135 else 1136 smi_info->timer_running = false; 1137 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1138 } 1139 1140 static irqreturn_t si_irq_handler(int irq, void *data) 1141 { 1142 struct smi_info *smi_info = data; 1143 unsigned long flags; 1144 #ifdef DEBUG_TIMING 1145 struct timeval t; 1146 #endif 1147 1148 spin_lock_irqsave(&(smi_info->si_lock), flags); 1149 1150 smi_inc_stat(smi_info, interrupts); 1151 1152 #ifdef DEBUG_TIMING 1153 do_gettimeofday(&t); 1154 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1155 #endif 1156 smi_event_handler(smi_info, 0); 1157 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1158 return IRQ_HANDLED; 1159 } 1160 1161 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1162 { 1163 struct smi_info *smi_info = data; 1164 /* We need to clear the IRQ flag for the BT interface. */ 1165 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1166 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1167 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1168 return si_irq_handler(irq, data); 1169 } 1170 1171 static int smi_start_processing(void *send_info, 1172 ipmi_smi_t intf) 1173 { 1174 struct smi_info *new_smi = send_info; 1175 int enable = 0; 1176 1177 new_smi->intf = intf; 1178 1179 /* Try to claim any interrupts. */ 1180 if (new_smi->irq_setup) 1181 new_smi->irq_setup(new_smi); 1182 1183 /* Set up the timer that drives the interface. */ 1184 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1185 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1186 1187 /* 1188 * Check if the user forcefully enabled the daemon. 1189 */ 1190 if (new_smi->intf_num < num_force_kipmid) 1191 enable = force_kipmid[new_smi->intf_num]; 1192 /* 1193 * The BT interface is efficient enough to not need a thread, 1194 * and there is no need for a thread if we have interrupts. 1195 */ 1196 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1197 enable = 1; 1198 1199 if (enable) { 1200 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1201 "kipmi%d", new_smi->intf_num); 1202 if (IS_ERR(new_smi->thread)) { 1203 dev_notice(new_smi->dev, "Could not start" 1204 " kernel thread due to error %ld, only using" 1205 " timers to drive the interface\n", 1206 PTR_ERR(new_smi->thread)); 1207 new_smi->thread = NULL; 1208 } 1209 } 1210 1211 return 0; 1212 } 1213 1214 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1215 { 1216 struct smi_info *smi = send_info; 1217 1218 data->addr_src = smi->addr_source; 1219 data->dev = smi->dev; 1220 data->addr_info = smi->addr_info; 1221 get_device(smi->dev); 1222 1223 return 0; 1224 } 1225 1226 static void set_maintenance_mode(void *send_info, bool enable) 1227 { 1228 struct smi_info *smi_info = send_info; 1229 1230 if (!enable) 1231 atomic_set(&smi_info->req_events, 0); 1232 } 1233 1234 static struct ipmi_smi_handlers handlers = { 1235 .owner = THIS_MODULE, 1236 .start_processing = smi_start_processing, 1237 .get_smi_info = get_smi_info, 1238 .sender = sender, 1239 .request_events = request_events, 1240 .set_need_watch = set_need_watch, 1241 .set_maintenance_mode = set_maintenance_mode, 1242 .set_run_to_completion = set_run_to_completion, 1243 .poll = poll, 1244 }; 1245 1246 /* 1247 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1248 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1249 */ 1250 1251 static LIST_HEAD(smi_infos); 1252 static DEFINE_MUTEX(smi_infos_lock); 1253 static int smi_num; /* Used to sequence the SMIs */ 1254 1255 #define DEFAULT_REGSPACING 1 1256 #define DEFAULT_REGSIZE 1 1257 1258 #ifdef CONFIG_ACPI 1259 static bool si_tryacpi = 1; 1260 #endif 1261 #ifdef CONFIG_DMI 1262 static bool si_trydmi = 1; 1263 #endif 1264 static bool si_tryplatform = 1; 1265 #ifdef CONFIG_PCI 1266 static bool si_trypci = 1; 1267 #endif 1268 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS); 1269 static char *si_type[SI_MAX_PARMS]; 1270 #define MAX_SI_TYPE_STR 30 1271 static char si_type_str[MAX_SI_TYPE_STR]; 1272 static unsigned long addrs[SI_MAX_PARMS]; 1273 static unsigned int num_addrs; 1274 static unsigned int ports[SI_MAX_PARMS]; 1275 static unsigned int num_ports; 1276 static int irqs[SI_MAX_PARMS]; 1277 static unsigned int num_irqs; 1278 static int regspacings[SI_MAX_PARMS]; 1279 static unsigned int num_regspacings; 1280 static int regsizes[SI_MAX_PARMS]; 1281 static unsigned int num_regsizes; 1282 static int regshifts[SI_MAX_PARMS]; 1283 static unsigned int num_regshifts; 1284 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1285 static unsigned int num_slave_addrs; 1286 1287 #define IPMI_IO_ADDR_SPACE 0 1288 #define IPMI_MEM_ADDR_SPACE 1 1289 static char *addr_space_to_str[] = { "i/o", "mem" }; 1290 1291 static int hotmod_handler(const char *val, struct kernel_param *kp); 1292 1293 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1294 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1295 " Documentation/IPMI.txt in the kernel sources for the" 1296 " gory details."); 1297 1298 #ifdef CONFIG_ACPI 1299 module_param_named(tryacpi, si_tryacpi, bool, 0); 1300 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1301 " default scan of the interfaces identified via ACPI"); 1302 #endif 1303 #ifdef CONFIG_DMI 1304 module_param_named(trydmi, si_trydmi, bool, 0); 1305 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1306 " default scan of the interfaces identified via DMI"); 1307 #endif 1308 module_param_named(tryplatform, si_tryplatform, bool, 0); 1309 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1310 " default scan of the interfaces identified via platform" 1311 " interfaces like openfirmware"); 1312 #ifdef CONFIG_PCI 1313 module_param_named(trypci, si_trypci, bool, 0); 1314 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1315 " default scan of the interfaces identified via pci"); 1316 #endif 1317 module_param_named(trydefaults, si_trydefaults, bool, 0); 1318 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1319 " default scan of the KCS and SMIC interface at the standard" 1320 " address"); 1321 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1322 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1323 " interface separated by commas. The types are 'kcs'," 1324 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1325 " the first interface to kcs and the second to bt"); 1326 module_param_array(addrs, ulong, &num_addrs, 0); 1327 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1328 " addresses separated by commas. Only use if an interface" 1329 " is in memory. Otherwise, set it to zero or leave" 1330 " it blank."); 1331 module_param_array(ports, uint, &num_ports, 0); 1332 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1333 " addresses separated by commas. Only use if an interface" 1334 " is a port. Otherwise, set it to zero or leave" 1335 " it blank."); 1336 module_param_array(irqs, int, &num_irqs, 0); 1337 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1338 " addresses separated by commas. Only use if an interface" 1339 " has an interrupt. Otherwise, set it to zero or leave" 1340 " it blank."); 1341 module_param_array(regspacings, int, &num_regspacings, 0); 1342 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1343 " and each successive register used by the interface. For" 1344 " instance, if the start address is 0xca2 and the spacing" 1345 " is 2, then the second address is at 0xca4. Defaults" 1346 " to 1."); 1347 module_param_array(regsizes, int, &num_regsizes, 0); 1348 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1349 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1350 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1351 " the 8-bit IPMI register has to be read from a larger" 1352 " register."); 1353 module_param_array(regshifts, int, &num_regshifts, 0); 1354 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1355 " IPMI register, in bits. For instance, if the data" 1356 " is read from a 32-bit word and the IPMI data is in" 1357 " bit 8-15, then the shift would be 8"); 1358 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1359 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1360 " the controller. Normally this is 0x20, but can be" 1361 " overridden by this parm. This is an array indexed" 1362 " by interface number."); 1363 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1364 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1365 " disabled(0). Normally the IPMI driver auto-detects" 1366 " this, but the value may be overridden by this parm."); 1367 module_param(unload_when_empty, bool, 0); 1368 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1369 " specified or found, default is 1. Setting to 0" 1370 " is useful for hot add of devices using hotmod."); 1371 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1372 MODULE_PARM_DESC(kipmid_max_busy_us, 1373 "Max time (in microseconds) to busy-wait for IPMI data before" 1374 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1375 " if kipmid is using up a lot of CPU time."); 1376 1377 1378 static void std_irq_cleanup(struct smi_info *info) 1379 { 1380 if (info->si_type == SI_BT) 1381 /* Disable the interrupt in the BT interface. */ 1382 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1383 free_irq(info->irq, info); 1384 } 1385 1386 static int std_irq_setup(struct smi_info *info) 1387 { 1388 int rv; 1389 1390 if (!info->irq) 1391 return 0; 1392 1393 if (info->si_type == SI_BT) { 1394 rv = request_irq(info->irq, 1395 si_bt_irq_handler, 1396 IRQF_SHARED, 1397 DEVICE_NAME, 1398 info); 1399 if (!rv) 1400 /* Enable the interrupt in the BT interface. */ 1401 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1402 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1403 } else 1404 rv = request_irq(info->irq, 1405 si_irq_handler, 1406 IRQF_SHARED, 1407 DEVICE_NAME, 1408 info); 1409 if (rv) { 1410 dev_warn(info->dev, "%s unable to claim interrupt %d," 1411 " running polled\n", 1412 DEVICE_NAME, info->irq); 1413 info->irq = 0; 1414 } else { 1415 info->irq_cleanup = std_irq_cleanup; 1416 dev_info(info->dev, "Using irq %d\n", info->irq); 1417 } 1418 1419 return rv; 1420 } 1421 1422 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1423 { 1424 unsigned int addr = io->addr_data; 1425 1426 return inb(addr + (offset * io->regspacing)); 1427 } 1428 1429 static void port_outb(struct si_sm_io *io, unsigned int offset, 1430 unsigned char b) 1431 { 1432 unsigned int addr = io->addr_data; 1433 1434 outb(b, addr + (offset * io->regspacing)); 1435 } 1436 1437 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1438 { 1439 unsigned int addr = io->addr_data; 1440 1441 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1442 } 1443 1444 static void port_outw(struct si_sm_io *io, unsigned int offset, 1445 unsigned char b) 1446 { 1447 unsigned int addr = io->addr_data; 1448 1449 outw(b << io->regshift, addr + (offset * io->regspacing)); 1450 } 1451 1452 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1453 { 1454 unsigned int addr = io->addr_data; 1455 1456 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1457 } 1458 1459 static void port_outl(struct si_sm_io *io, unsigned int offset, 1460 unsigned char b) 1461 { 1462 unsigned int addr = io->addr_data; 1463 1464 outl(b << io->regshift, addr+(offset * io->regspacing)); 1465 } 1466 1467 static void port_cleanup(struct smi_info *info) 1468 { 1469 unsigned int addr = info->io.addr_data; 1470 int idx; 1471 1472 if (addr) { 1473 for (idx = 0; idx < info->io_size; idx++) 1474 release_region(addr + idx * info->io.regspacing, 1475 info->io.regsize); 1476 } 1477 } 1478 1479 static int port_setup(struct smi_info *info) 1480 { 1481 unsigned int addr = info->io.addr_data; 1482 int idx; 1483 1484 if (!addr) 1485 return -ENODEV; 1486 1487 info->io_cleanup = port_cleanup; 1488 1489 /* 1490 * Figure out the actual inb/inw/inl/etc routine to use based 1491 * upon the register size. 1492 */ 1493 switch (info->io.regsize) { 1494 case 1: 1495 info->io.inputb = port_inb; 1496 info->io.outputb = port_outb; 1497 break; 1498 case 2: 1499 info->io.inputb = port_inw; 1500 info->io.outputb = port_outw; 1501 break; 1502 case 4: 1503 info->io.inputb = port_inl; 1504 info->io.outputb = port_outl; 1505 break; 1506 default: 1507 dev_warn(info->dev, "Invalid register size: %d\n", 1508 info->io.regsize); 1509 return -EINVAL; 1510 } 1511 1512 /* 1513 * Some BIOSes reserve disjoint I/O regions in their ACPI 1514 * tables. This causes problems when trying to register the 1515 * entire I/O region. Therefore we must register each I/O 1516 * port separately. 1517 */ 1518 for (idx = 0; idx < info->io_size; idx++) { 1519 if (request_region(addr + idx * info->io.regspacing, 1520 info->io.regsize, DEVICE_NAME) == NULL) { 1521 /* Undo allocations */ 1522 while (idx--) { 1523 release_region(addr + idx * info->io.regspacing, 1524 info->io.regsize); 1525 } 1526 return -EIO; 1527 } 1528 } 1529 return 0; 1530 } 1531 1532 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1533 { 1534 return readb((io->addr)+(offset * io->regspacing)); 1535 } 1536 1537 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1538 unsigned char b) 1539 { 1540 writeb(b, (io->addr)+(offset * io->regspacing)); 1541 } 1542 1543 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1544 { 1545 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1546 & 0xff; 1547 } 1548 1549 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1550 unsigned char b) 1551 { 1552 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1553 } 1554 1555 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1556 { 1557 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1558 & 0xff; 1559 } 1560 1561 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1562 unsigned char b) 1563 { 1564 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1565 } 1566 1567 #ifdef readq 1568 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1569 { 1570 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1571 & 0xff; 1572 } 1573 1574 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1575 unsigned char b) 1576 { 1577 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1578 } 1579 #endif 1580 1581 static void mem_cleanup(struct smi_info *info) 1582 { 1583 unsigned long addr = info->io.addr_data; 1584 int mapsize; 1585 1586 if (info->io.addr) { 1587 iounmap(info->io.addr); 1588 1589 mapsize = ((info->io_size * info->io.regspacing) 1590 - (info->io.regspacing - info->io.regsize)); 1591 1592 release_mem_region(addr, mapsize); 1593 } 1594 } 1595 1596 static int mem_setup(struct smi_info *info) 1597 { 1598 unsigned long addr = info->io.addr_data; 1599 int mapsize; 1600 1601 if (!addr) 1602 return -ENODEV; 1603 1604 info->io_cleanup = mem_cleanup; 1605 1606 /* 1607 * Figure out the actual readb/readw/readl/etc routine to use based 1608 * upon the register size. 1609 */ 1610 switch (info->io.regsize) { 1611 case 1: 1612 info->io.inputb = intf_mem_inb; 1613 info->io.outputb = intf_mem_outb; 1614 break; 1615 case 2: 1616 info->io.inputb = intf_mem_inw; 1617 info->io.outputb = intf_mem_outw; 1618 break; 1619 case 4: 1620 info->io.inputb = intf_mem_inl; 1621 info->io.outputb = intf_mem_outl; 1622 break; 1623 #ifdef readq 1624 case 8: 1625 info->io.inputb = mem_inq; 1626 info->io.outputb = mem_outq; 1627 break; 1628 #endif 1629 default: 1630 dev_warn(info->dev, "Invalid register size: %d\n", 1631 info->io.regsize); 1632 return -EINVAL; 1633 } 1634 1635 /* 1636 * Calculate the total amount of memory to claim. This is an 1637 * unusual looking calculation, but it avoids claiming any 1638 * more memory than it has to. It will claim everything 1639 * between the first address to the end of the last full 1640 * register. 1641 */ 1642 mapsize = ((info->io_size * info->io.regspacing) 1643 - (info->io.regspacing - info->io.regsize)); 1644 1645 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1646 return -EIO; 1647 1648 info->io.addr = ioremap(addr, mapsize); 1649 if (info->io.addr == NULL) { 1650 release_mem_region(addr, mapsize); 1651 return -EIO; 1652 } 1653 return 0; 1654 } 1655 1656 /* 1657 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1658 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1659 * Options are: 1660 * rsp=<regspacing> 1661 * rsi=<regsize> 1662 * rsh=<regshift> 1663 * irq=<irq> 1664 * ipmb=<ipmb addr> 1665 */ 1666 enum hotmod_op { HM_ADD, HM_REMOVE }; 1667 struct hotmod_vals { 1668 char *name; 1669 int val; 1670 }; 1671 static struct hotmod_vals hotmod_ops[] = { 1672 { "add", HM_ADD }, 1673 { "remove", HM_REMOVE }, 1674 { NULL } 1675 }; 1676 static struct hotmod_vals hotmod_si[] = { 1677 { "kcs", SI_KCS }, 1678 { "smic", SI_SMIC }, 1679 { "bt", SI_BT }, 1680 { NULL } 1681 }; 1682 static struct hotmod_vals hotmod_as[] = { 1683 { "mem", IPMI_MEM_ADDR_SPACE }, 1684 { "i/o", IPMI_IO_ADDR_SPACE }, 1685 { NULL } 1686 }; 1687 1688 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1689 { 1690 char *s; 1691 int i; 1692 1693 s = strchr(*curr, ','); 1694 if (!s) { 1695 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1696 return -EINVAL; 1697 } 1698 *s = '\0'; 1699 s++; 1700 for (i = 0; hotmod_ops[i].name; i++) { 1701 if (strcmp(*curr, v[i].name) == 0) { 1702 *val = v[i].val; 1703 *curr = s; 1704 return 0; 1705 } 1706 } 1707 1708 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1709 return -EINVAL; 1710 } 1711 1712 static int check_hotmod_int_op(const char *curr, const char *option, 1713 const char *name, int *val) 1714 { 1715 char *n; 1716 1717 if (strcmp(curr, name) == 0) { 1718 if (!option) { 1719 printk(KERN_WARNING PFX 1720 "No option given for '%s'\n", 1721 curr); 1722 return -EINVAL; 1723 } 1724 *val = simple_strtoul(option, &n, 0); 1725 if ((*n != '\0') || (*option == '\0')) { 1726 printk(KERN_WARNING PFX 1727 "Bad option given for '%s'\n", 1728 curr); 1729 return -EINVAL; 1730 } 1731 return 1; 1732 } 1733 return 0; 1734 } 1735 1736 static struct smi_info *smi_info_alloc(void) 1737 { 1738 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1739 1740 if (info) 1741 spin_lock_init(&info->si_lock); 1742 return info; 1743 } 1744 1745 static int hotmod_handler(const char *val, struct kernel_param *kp) 1746 { 1747 char *str = kstrdup(val, GFP_KERNEL); 1748 int rv; 1749 char *next, *curr, *s, *n, *o; 1750 enum hotmod_op op; 1751 enum si_type si_type; 1752 int addr_space; 1753 unsigned long addr; 1754 int regspacing; 1755 int regsize; 1756 int regshift; 1757 int irq; 1758 int ipmb; 1759 int ival; 1760 int len; 1761 struct smi_info *info; 1762 1763 if (!str) 1764 return -ENOMEM; 1765 1766 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1767 len = strlen(str); 1768 ival = len - 1; 1769 while ((ival >= 0) && isspace(str[ival])) { 1770 str[ival] = '\0'; 1771 ival--; 1772 } 1773 1774 for (curr = str; curr; curr = next) { 1775 regspacing = 1; 1776 regsize = 1; 1777 regshift = 0; 1778 irq = 0; 1779 ipmb = 0; /* Choose the default if not specified */ 1780 1781 next = strchr(curr, ':'); 1782 if (next) { 1783 *next = '\0'; 1784 next++; 1785 } 1786 1787 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1788 if (rv) 1789 break; 1790 op = ival; 1791 1792 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1793 if (rv) 1794 break; 1795 si_type = ival; 1796 1797 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1798 if (rv) 1799 break; 1800 1801 s = strchr(curr, ','); 1802 if (s) { 1803 *s = '\0'; 1804 s++; 1805 } 1806 addr = simple_strtoul(curr, &n, 0); 1807 if ((*n != '\0') || (*curr == '\0')) { 1808 printk(KERN_WARNING PFX "Invalid hotmod address" 1809 " '%s'\n", curr); 1810 break; 1811 } 1812 1813 while (s) { 1814 curr = s; 1815 s = strchr(curr, ','); 1816 if (s) { 1817 *s = '\0'; 1818 s++; 1819 } 1820 o = strchr(curr, '='); 1821 if (o) { 1822 *o = '\0'; 1823 o++; 1824 } 1825 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1826 if (rv < 0) 1827 goto out; 1828 else if (rv) 1829 continue; 1830 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1831 if (rv < 0) 1832 goto out; 1833 else if (rv) 1834 continue; 1835 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1836 if (rv < 0) 1837 goto out; 1838 else if (rv) 1839 continue; 1840 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1841 if (rv < 0) 1842 goto out; 1843 else if (rv) 1844 continue; 1845 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1846 if (rv < 0) 1847 goto out; 1848 else if (rv) 1849 continue; 1850 1851 rv = -EINVAL; 1852 printk(KERN_WARNING PFX 1853 "Invalid hotmod option '%s'\n", 1854 curr); 1855 goto out; 1856 } 1857 1858 if (op == HM_ADD) { 1859 info = smi_info_alloc(); 1860 if (!info) { 1861 rv = -ENOMEM; 1862 goto out; 1863 } 1864 1865 info->addr_source = SI_HOTMOD; 1866 info->si_type = si_type; 1867 info->io.addr_data = addr; 1868 info->io.addr_type = addr_space; 1869 if (addr_space == IPMI_MEM_ADDR_SPACE) 1870 info->io_setup = mem_setup; 1871 else 1872 info->io_setup = port_setup; 1873 1874 info->io.addr = NULL; 1875 info->io.regspacing = regspacing; 1876 if (!info->io.regspacing) 1877 info->io.regspacing = DEFAULT_REGSPACING; 1878 info->io.regsize = regsize; 1879 if (!info->io.regsize) 1880 info->io.regsize = DEFAULT_REGSPACING; 1881 info->io.regshift = regshift; 1882 info->irq = irq; 1883 if (info->irq) 1884 info->irq_setup = std_irq_setup; 1885 info->slave_addr = ipmb; 1886 1887 rv = add_smi(info); 1888 if (rv) { 1889 kfree(info); 1890 goto out; 1891 } 1892 rv = try_smi_init(info); 1893 if (rv) { 1894 cleanup_one_si(info); 1895 goto out; 1896 } 1897 } else { 1898 /* remove */ 1899 struct smi_info *e, *tmp_e; 1900 1901 mutex_lock(&smi_infos_lock); 1902 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1903 if (e->io.addr_type != addr_space) 1904 continue; 1905 if (e->si_type != si_type) 1906 continue; 1907 if (e->io.addr_data == addr) 1908 cleanup_one_si(e); 1909 } 1910 mutex_unlock(&smi_infos_lock); 1911 } 1912 } 1913 rv = len; 1914 out: 1915 kfree(str); 1916 return rv; 1917 } 1918 1919 static int hardcode_find_bmc(void) 1920 { 1921 int ret = -ENODEV; 1922 int i; 1923 struct smi_info *info; 1924 1925 for (i = 0; i < SI_MAX_PARMS; i++) { 1926 if (!ports[i] && !addrs[i]) 1927 continue; 1928 1929 info = smi_info_alloc(); 1930 if (!info) 1931 return -ENOMEM; 1932 1933 info->addr_source = SI_HARDCODED; 1934 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1935 1936 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1937 info->si_type = SI_KCS; 1938 } else if (strcmp(si_type[i], "smic") == 0) { 1939 info->si_type = SI_SMIC; 1940 } else if (strcmp(si_type[i], "bt") == 0) { 1941 info->si_type = SI_BT; 1942 } else { 1943 printk(KERN_WARNING PFX "Interface type specified " 1944 "for interface %d, was invalid: %s\n", 1945 i, si_type[i]); 1946 kfree(info); 1947 continue; 1948 } 1949 1950 if (ports[i]) { 1951 /* An I/O port */ 1952 info->io_setup = port_setup; 1953 info->io.addr_data = ports[i]; 1954 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1955 } else if (addrs[i]) { 1956 /* A memory port */ 1957 info->io_setup = mem_setup; 1958 info->io.addr_data = addrs[i]; 1959 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1960 } else { 1961 printk(KERN_WARNING PFX "Interface type specified " 1962 "for interface %d, but port and address were " 1963 "not set or set to zero.\n", i); 1964 kfree(info); 1965 continue; 1966 } 1967 1968 info->io.addr = NULL; 1969 info->io.regspacing = regspacings[i]; 1970 if (!info->io.regspacing) 1971 info->io.regspacing = DEFAULT_REGSPACING; 1972 info->io.regsize = regsizes[i]; 1973 if (!info->io.regsize) 1974 info->io.regsize = DEFAULT_REGSPACING; 1975 info->io.regshift = regshifts[i]; 1976 info->irq = irqs[i]; 1977 if (info->irq) 1978 info->irq_setup = std_irq_setup; 1979 info->slave_addr = slave_addrs[i]; 1980 1981 if (!add_smi(info)) { 1982 if (try_smi_init(info)) 1983 cleanup_one_si(info); 1984 ret = 0; 1985 } else { 1986 kfree(info); 1987 } 1988 } 1989 return ret; 1990 } 1991 1992 #ifdef CONFIG_ACPI 1993 1994 #include <linux/acpi.h> 1995 1996 /* 1997 * Once we get an ACPI failure, we don't try any more, because we go 1998 * through the tables sequentially. Once we don't find a table, there 1999 * are no more. 2000 */ 2001 static int acpi_failure; 2002 2003 /* For GPE-type interrupts. */ 2004 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2005 u32 gpe_number, void *context) 2006 { 2007 struct smi_info *smi_info = context; 2008 unsigned long flags; 2009 #ifdef DEBUG_TIMING 2010 struct timeval t; 2011 #endif 2012 2013 spin_lock_irqsave(&(smi_info->si_lock), flags); 2014 2015 smi_inc_stat(smi_info, interrupts); 2016 2017 #ifdef DEBUG_TIMING 2018 do_gettimeofday(&t); 2019 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 2020 #endif 2021 smi_event_handler(smi_info, 0); 2022 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2023 2024 return ACPI_INTERRUPT_HANDLED; 2025 } 2026 2027 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2028 { 2029 if (!info->irq) 2030 return; 2031 2032 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2033 } 2034 2035 static int acpi_gpe_irq_setup(struct smi_info *info) 2036 { 2037 acpi_status status; 2038 2039 if (!info->irq) 2040 return 0; 2041 2042 /* FIXME - is level triggered right? */ 2043 status = acpi_install_gpe_handler(NULL, 2044 info->irq, 2045 ACPI_GPE_LEVEL_TRIGGERED, 2046 &ipmi_acpi_gpe, 2047 info); 2048 if (status != AE_OK) { 2049 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2050 " running polled\n", DEVICE_NAME, info->irq); 2051 info->irq = 0; 2052 return -EINVAL; 2053 } else { 2054 info->irq_cleanup = acpi_gpe_irq_cleanup; 2055 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2056 return 0; 2057 } 2058 } 2059 2060 /* 2061 * Defined at 2062 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2063 */ 2064 struct SPMITable { 2065 s8 Signature[4]; 2066 u32 Length; 2067 u8 Revision; 2068 u8 Checksum; 2069 s8 OEMID[6]; 2070 s8 OEMTableID[8]; 2071 s8 OEMRevision[4]; 2072 s8 CreatorID[4]; 2073 s8 CreatorRevision[4]; 2074 u8 InterfaceType; 2075 u8 IPMIlegacy; 2076 s16 SpecificationRevision; 2077 2078 /* 2079 * Bit 0 - SCI interrupt supported 2080 * Bit 1 - I/O APIC/SAPIC 2081 */ 2082 u8 InterruptType; 2083 2084 /* 2085 * If bit 0 of InterruptType is set, then this is the SCI 2086 * interrupt in the GPEx_STS register. 2087 */ 2088 u8 GPE; 2089 2090 s16 Reserved; 2091 2092 /* 2093 * If bit 1 of InterruptType is set, then this is the I/O 2094 * APIC/SAPIC interrupt. 2095 */ 2096 u32 GlobalSystemInterrupt; 2097 2098 /* The actual register address. */ 2099 struct acpi_generic_address addr; 2100 2101 u8 UID[4]; 2102 2103 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2104 }; 2105 2106 static int try_init_spmi(struct SPMITable *spmi) 2107 { 2108 struct smi_info *info; 2109 int rv; 2110 2111 if (spmi->IPMIlegacy != 1) { 2112 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2113 return -ENODEV; 2114 } 2115 2116 info = smi_info_alloc(); 2117 if (!info) { 2118 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2119 return -ENOMEM; 2120 } 2121 2122 info->addr_source = SI_SPMI; 2123 printk(KERN_INFO PFX "probing via SPMI\n"); 2124 2125 /* Figure out the interface type. */ 2126 switch (spmi->InterfaceType) { 2127 case 1: /* KCS */ 2128 info->si_type = SI_KCS; 2129 break; 2130 case 2: /* SMIC */ 2131 info->si_type = SI_SMIC; 2132 break; 2133 case 3: /* BT */ 2134 info->si_type = SI_BT; 2135 break; 2136 default: 2137 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2138 spmi->InterfaceType); 2139 kfree(info); 2140 return -EIO; 2141 } 2142 2143 if (spmi->InterruptType & 1) { 2144 /* We've got a GPE interrupt. */ 2145 info->irq = spmi->GPE; 2146 info->irq_setup = acpi_gpe_irq_setup; 2147 } else if (spmi->InterruptType & 2) { 2148 /* We've got an APIC/SAPIC interrupt. */ 2149 info->irq = spmi->GlobalSystemInterrupt; 2150 info->irq_setup = std_irq_setup; 2151 } else { 2152 /* Use the default interrupt setting. */ 2153 info->irq = 0; 2154 info->irq_setup = NULL; 2155 } 2156 2157 if (spmi->addr.bit_width) { 2158 /* A (hopefully) properly formed register bit width. */ 2159 info->io.regspacing = spmi->addr.bit_width / 8; 2160 } else { 2161 info->io.regspacing = DEFAULT_REGSPACING; 2162 } 2163 info->io.regsize = info->io.regspacing; 2164 info->io.regshift = spmi->addr.bit_offset; 2165 2166 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2167 info->io_setup = mem_setup; 2168 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2169 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2170 info->io_setup = port_setup; 2171 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2172 } else { 2173 kfree(info); 2174 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2175 return -EIO; 2176 } 2177 info->io.addr_data = spmi->addr.address; 2178 2179 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2180 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2181 info->io.addr_data, info->io.regsize, info->io.regspacing, 2182 info->irq); 2183 2184 rv = add_smi(info); 2185 if (rv) 2186 kfree(info); 2187 2188 return rv; 2189 } 2190 2191 static void spmi_find_bmc(void) 2192 { 2193 acpi_status status; 2194 struct SPMITable *spmi; 2195 int i; 2196 2197 if (acpi_disabled) 2198 return; 2199 2200 if (acpi_failure) 2201 return; 2202 2203 for (i = 0; ; i++) { 2204 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2205 (struct acpi_table_header **)&spmi); 2206 if (status != AE_OK) 2207 return; 2208 2209 try_init_spmi(spmi); 2210 } 2211 } 2212 2213 static int ipmi_pnp_probe(struct pnp_dev *dev, 2214 const struct pnp_device_id *dev_id) 2215 { 2216 struct acpi_device *acpi_dev; 2217 struct smi_info *info; 2218 struct resource *res, *res_second; 2219 acpi_handle handle; 2220 acpi_status status; 2221 unsigned long long tmp; 2222 int rv; 2223 2224 acpi_dev = pnp_acpi_device(dev); 2225 if (!acpi_dev) 2226 return -ENODEV; 2227 2228 info = smi_info_alloc(); 2229 if (!info) 2230 return -ENOMEM; 2231 2232 info->addr_source = SI_ACPI; 2233 printk(KERN_INFO PFX "probing via ACPI\n"); 2234 2235 handle = acpi_dev->handle; 2236 info->addr_info.acpi_info.acpi_handle = handle; 2237 2238 /* _IFT tells us the interface type: KCS, BT, etc */ 2239 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2240 if (ACPI_FAILURE(status)) 2241 goto err_free; 2242 2243 switch (tmp) { 2244 case 1: 2245 info->si_type = SI_KCS; 2246 break; 2247 case 2: 2248 info->si_type = SI_SMIC; 2249 break; 2250 case 3: 2251 info->si_type = SI_BT; 2252 break; 2253 default: 2254 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2255 goto err_free; 2256 } 2257 2258 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2259 if (res) { 2260 info->io_setup = port_setup; 2261 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2262 } else { 2263 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2264 if (res) { 2265 info->io_setup = mem_setup; 2266 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2267 } 2268 } 2269 if (!res) { 2270 dev_err(&dev->dev, "no I/O or memory address\n"); 2271 goto err_free; 2272 } 2273 info->io.addr_data = res->start; 2274 2275 info->io.regspacing = DEFAULT_REGSPACING; 2276 res_second = pnp_get_resource(dev, 2277 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2278 IORESOURCE_IO : IORESOURCE_MEM, 2279 1); 2280 if (res_second) { 2281 if (res_second->start > info->io.addr_data) 2282 info->io.regspacing = res_second->start - info->io.addr_data; 2283 } 2284 info->io.regsize = DEFAULT_REGSPACING; 2285 info->io.regshift = 0; 2286 2287 /* If _GPE exists, use it; otherwise use standard interrupts */ 2288 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2289 if (ACPI_SUCCESS(status)) { 2290 info->irq = tmp; 2291 info->irq_setup = acpi_gpe_irq_setup; 2292 } else if (pnp_irq_valid(dev, 0)) { 2293 info->irq = pnp_irq(dev, 0); 2294 info->irq_setup = std_irq_setup; 2295 } 2296 2297 info->dev = &dev->dev; 2298 pnp_set_drvdata(dev, info); 2299 2300 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2301 res, info->io.regsize, info->io.regspacing, 2302 info->irq); 2303 2304 rv = add_smi(info); 2305 if (rv) 2306 kfree(info); 2307 2308 return rv; 2309 2310 err_free: 2311 kfree(info); 2312 return -EINVAL; 2313 } 2314 2315 static void ipmi_pnp_remove(struct pnp_dev *dev) 2316 { 2317 struct smi_info *info = pnp_get_drvdata(dev); 2318 2319 cleanup_one_si(info); 2320 } 2321 2322 static const struct pnp_device_id pnp_dev_table[] = { 2323 {"IPI0001", 0}, 2324 {"", 0}, 2325 }; 2326 2327 static struct pnp_driver ipmi_pnp_driver = { 2328 .name = DEVICE_NAME, 2329 .probe = ipmi_pnp_probe, 2330 .remove = ipmi_pnp_remove, 2331 .id_table = pnp_dev_table, 2332 }; 2333 2334 MODULE_DEVICE_TABLE(pnp, pnp_dev_table); 2335 #endif 2336 2337 #ifdef CONFIG_DMI 2338 struct dmi_ipmi_data { 2339 u8 type; 2340 u8 addr_space; 2341 unsigned long base_addr; 2342 u8 irq; 2343 u8 offset; 2344 u8 slave_addr; 2345 }; 2346 2347 static int decode_dmi(const struct dmi_header *dm, 2348 struct dmi_ipmi_data *dmi) 2349 { 2350 const u8 *data = (const u8 *)dm; 2351 unsigned long base_addr; 2352 u8 reg_spacing; 2353 u8 len = dm->length; 2354 2355 dmi->type = data[4]; 2356 2357 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2358 if (len >= 0x11) { 2359 if (base_addr & 1) { 2360 /* I/O */ 2361 base_addr &= 0xFFFE; 2362 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2363 } else 2364 /* Memory */ 2365 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2366 2367 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2368 is odd. */ 2369 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2370 2371 dmi->irq = data[0x11]; 2372 2373 /* The top two bits of byte 0x10 hold the register spacing. */ 2374 reg_spacing = (data[0x10] & 0xC0) >> 6; 2375 switch (reg_spacing) { 2376 case 0x00: /* Byte boundaries */ 2377 dmi->offset = 1; 2378 break; 2379 case 0x01: /* 32-bit boundaries */ 2380 dmi->offset = 4; 2381 break; 2382 case 0x02: /* 16-byte boundaries */ 2383 dmi->offset = 16; 2384 break; 2385 default: 2386 /* Some other interface, just ignore it. */ 2387 return -EIO; 2388 } 2389 } else { 2390 /* Old DMI spec. */ 2391 /* 2392 * Note that technically, the lower bit of the base 2393 * address should be 1 if the address is I/O and 0 if 2394 * the address is in memory. So many systems get that 2395 * wrong (and all that I have seen are I/O) so we just 2396 * ignore that bit and assume I/O. Systems that use 2397 * memory should use the newer spec, anyway. 2398 */ 2399 dmi->base_addr = base_addr & 0xfffe; 2400 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2401 dmi->offset = 1; 2402 } 2403 2404 dmi->slave_addr = data[6]; 2405 2406 return 0; 2407 } 2408 2409 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2410 { 2411 struct smi_info *info; 2412 2413 info = smi_info_alloc(); 2414 if (!info) { 2415 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2416 return; 2417 } 2418 2419 info->addr_source = SI_SMBIOS; 2420 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2421 2422 switch (ipmi_data->type) { 2423 case 0x01: /* KCS */ 2424 info->si_type = SI_KCS; 2425 break; 2426 case 0x02: /* SMIC */ 2427 info->si_type = SI_SMIC; 2428 break; 2429 case 0x03: /* BT */ 2430 info->si_type = SI_BT; 2431 break; 2432 default: 2433 kfree(info); 2434 return; 2435 } 2436 2437 switch (ipmi_data->addr_space) { 2438 case IPMI_MEM_ADDR_SPACE: 2439 info->io_setup = mem_setup; 2440 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2441 break; 2442 2443 case IPMI_IO_ADDR_SPACE: 2444 info->io_setup = port_setup; 2445 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2446 break; 2447 2448 default: 2449 kfree(info); 2450 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2451 ipmi_data->addr_space); 2452 return; 2453 } 2454 info->io.addr_data = ipmi_data->base_addr; 2455 2456 info->io.regspacing = ipmi_data->offset; 2457 if (!info->io.regspacing) 2458 info->io.regspacing = DEFAULT_REGSPACING; 2459 info->io.regsize = DEFAULT_REGSPACING; 2460 info->io.regshift = 0; 2461 2462 info->slave_addr = ipmi_data->slave_addr; 2463 2464 info->irq = ipmi_data->irq; 2465 if (info->irq) 2466 info->irq_setup = std_irq_setup; 2467 2468 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2469 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2470 info->io.addr_data, info->io.regsize, info->io.regspacing, 2471 info->irq); 2472 2473 if (add_smi(info)) 2474 kfree(info); 2475 } 2476 2477 static void dmi_find_bmc(void) 2478 { 2479 const struct dmi_device *dev = NULL; 2480 struct dmi_ipmi_data data; 2481 int rv; 2482 2483 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2484 memset(&data, 0, sizeof(data)); 2485 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2486 &data); 2487 if (!rv) 2488 try_init_dmi(&data); 2489 } 2490 } 2491 #endif /* CONFIG_DMI */ 2492 2493 #ifdef CONFIG_PCI 2494 2495 #define PCI_ERMC_CLASSCODE 0x0C0700 2496 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2497 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2498 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2499 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2500 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2501 2502 #define PCI_HP_VENDOR_ID 0x103C 2503 #define PCI_MMC_DEVICE_ID 0x121A 2504 #define PCI_MMC_ADDR_CW 0x10 2505 2506 static void ipmi_pci_cleanup(struct smi_info *info) 2507 { 2508 struct pci_dev *pdev = info->addr_source_data; 2509 2510 pci_disable_device(pdev); 2511 } 2512 2513 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2514 { 2515 if (info->si_type == SI_KCS) { 2516 unsigned char status; 2517 int regspacing; 2518 2519 info->io.regsize = DEFAULT_REGSIZE; 2520 info->io.regshift = 0; 2521 info->io_size = 2; 2522 info->handlers = &kcs_smi_handlers; 2523 2524 /* detect 1, 4, 16byte spacing */ 2525 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2526 info->io.regspacing = regspacing; 2527 if (info->io_setup(info)) { 2528 dev_err(info->dev, 2529 "Could not setup I/O space\n"); 2530 return DEFAULT_REGSPACING; 2531 } 2532 /* write invalid cmd */ 2533 info->io.outputb(&info->io, 1, 0x10); 2534 /* read status back */ 2535 status = info->io.inputb(&info->io, 1); 2536 info->io_cleanup(info); 2537 if (status) 2538 return regspacing; 2539 regspacing *= 4; 2540 } 2541 } 2542 return DEFAULT_REGSPACING; 2543 } 2544 2545 static int ipmi_pci_probe(struct pci_dev *pdev, 2546 const struct pci_device_id *ent) 2547 { 2548 int rv; 2549 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2550 struct smi_info *info; 2551 2552 info = smi_info_alloc(); 2553 if (!info) 2554 return -ENOMEM; 2555 2556 info->addr_source = SI_PCI; 2557 dev_info(&pdev->dev, "probing via PCI"); 2558 2559 switch (class_type) { 2560 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2561 info->si_type = SI_SMIC; 2562 break; 2563 2564 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2565 info->si_type = SI_KCS; 2566 break; 2567 2568 case PCI_ERMC_CLASSCODE_TYPE_BT: 2569 info->si_type = SI_BT; 2570 break; 2571 2572 default: 2573 kfree(info); 2574 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2575 return -ENOMEM; 2576 } 2577 2578 rv = pci_enable_device(pdev); 2579 if (rv) { 2580 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2581 kfree(info); 2582 return rv; 2583 } 2584 2585 info->addr_source_cleanup = ipmi_pci_cleanup; 2586 info->addr_source_data = pdev; 2587 2588 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2589 info->io_setup = port_setup; 2590 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2591 } else { 2592 info->io_setup = mem_setup; 2593 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2594 } 2595 info->io.addr_data = pci_resource_start(pdev, 0); 2596 2597 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2598 info->io.regsize = DEFAULT_REGSIZE; 2599 info->io.regshift = 0; 2600 2601 info->irq = pdev->irq; 2602 if (info->irq) 2603 info->irq_setup = std_irq_setup; 2604 2605 info->dev = &pdev->dev; 2606 pci_set_drvdata(pdev, info); 2607 2608 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2609 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2610 info->irq); 2611 2612 rv = add_smi(info); 2613 if (rv) { 2614 kfree(info); 2615 pci_disable_device(pdev); 2616 } 2617 2618 return rv; 2619 } 2620 2621 static void ipmi_pci_remove(struct pci_dev *pdev) 2622 { 2623 struct smi_info *info = pci_get_drvdata(pdev); 2624 cleanup_one_si(info); 2625 pci_disable_device(pdev); 2626 } 2627 2628 static struct pci_device_id ipmi_pci_devices[] = { 2629 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2630 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2631 { 0, } 2632 }; 2633 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2634 2635 static struct pci_driver ipmi_pci_driver = { 2636 .name = DEVICE_NAME, 2637 .id_table = ipmi_pci_devices, 2638 .probe = ipmi_pci_probe, 2639 .remove = ipmi_pci_remove, 2640 }; 2641 #endif /* CONFIG_PCI */ 2642 2643 static struct of_device_id ipmi_match[]; 2644 static int ipmi_probe(struct platform_device *dev) 2645 { 2646 #ifdef CONFIG_OF 2647 const struct of_device_id *match; 2648 struct smi_info *info; 2649 struct resource resource; 2650 const __be32 *regsize, *regspacing, *regshift; 2651 struct device_node *np = dev->dev.of_node; 2652 int ret; 2653 int proplen; 2654 2655 dev_info(&dev->dev, "probing via device tree\n"); 2656 2657 match = of_match_device(ipmi_match, &dev->dev); 2658 if (!match) 2659 return -EINVAL; 2660 2661 ret = of_address_to_resource(np, 0, &resource); 2662 if (ret) { 2663 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2664 return ret; 2665 } 2666 2667 regsize = of_get_property(np, "reg-size", &proplen); 2668 if (regsize && proplen != 4) { 2669 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2670 return -EINVAL; 2671 } 2672 2673 regspacing = of_get_property(np, "reg-spacing", &proplen); 2674 if (regspacing && proplen != 4) { 2675 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2676 return -EINVAL; 2677 } 2678 2679 regshift = of_get_property(np, "reg-shift", &proplen); 2680 if (regshift && proplen != 4) { 2681 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2682 return -EINVAL; 2683 } 2684 2685 info = smi_info_alloc(); 2686 2687 if (!info) { 2688 dev_err(&dev->dev, 2689 "could not allocate memory for OF probe\n"); 2690 return -ENOMEM; 2691 } 2692 2693 info->si_type = (enum si_type) match->data; 2694 info->addr_source = SI_DEVICETREE; 2695 info->irq_setup = std_irq_setup; 2696 2697 if (resource.flags & IORESOURCE_IO) { 2698 info->io_setup = port_setup; 2699 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2700 } else { 2701 info->io_setup = mem_setup; 2702 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2703 } 2704 2705 info->io.addr_data = resource.start; 2706 2707 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2708 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2709 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2710 2711 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2712 info->dev = &dev->dev; 2713 2714 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2715 info->io.addr_data, info->io.regsize, info->io.regspacing, 2716 info->irq); 2717 2718 dev_set_drvdata(&dev->dev, info); 2719 2720 ret = add_smi(info); 2721 if (ret) { 2722 kfree(info); 2723 return ret; 2724 } 2725 #endif 2726 return 0; 2727 } 2728 2729 static int ipmi_remove(struct platform_device *dev) 2730 { 2731 #ifdef CONFIG_OF 2732 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2733 #endif 2734 return 0; 2735 } 2736 2737 static struct of_device_id ipmi_match[] = 2738 { 2739 { .type = "ipmi", .compatible = "ipmi-kcs", 2740 .data = (void *)(unsigned long) SI_KCS }, 2741 { .type = "ipmi", .compatible = "ipmi-smic", 2742 .data = (void *)(unsigned long) SI_SMIC }, 2743 { .type = "ipmi", .compatible = "ipmi-bt", 2744 .data = (void *)(unsigned long) SI_BT }, 2745 {}, 2746 }; 2747 2748 static struct platform_driver ipmi_driver = { 2749 .driver = { 2750 .name = DEVICE_NAME, 2751 .owner = THIS_MODULE, 2752 .of_match_table = ipmi_match, 2753 }, 2754 .probe = ipmi_probe, 2755 .remove = ipmi_remove, 2756 }; 2757 2758 #ifdef CONFIG_PARISC 2759 static int ipmi_parisc_probe(struct parisc_device *dev) 2760 { 2761 struct smi_info *info; 2762 int rv; 2763 2764 info = smi_info_alloc(); 2765 2766 if (!info) { 2767 dev_err(&dev->dev, 2768 "could not allocate memory for PARISC probe\n"); 2769 return -ENOMEM; 2770 } 2771 2772 info->si_type = SI_KCS; 2773 info->addr_source = SI_DEVICETREE; 2774 info->io_setup = mem_setup; 2775 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2776 info->io.addr_data = dev->hpa.start; 2777 info->io.regsize = 1; 2778 info->io.regspacing = 1; 2779 info->io.regshift = 0; 2780 info->irq = 0; /* no interrupt */ 2781 info->irq_setup = NULL; 2782 info->dev = &dev->dev; 2783 2784 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2785 2786 dev_set_drvdata(&dev->dev, info); 2787 2788 rv = add_smi(info); 2789 if (rv) { 2790 kfree(info); 2791 return rv; 2792 } 2793 2794 return 0; 2795 } 2796 2797 static int ipmi_parisc_remove(struct parisc_device *dev) 2798 { 2799 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2800 return 0; 2801 } 2802 2803 static struct parisc_device_id ipmi_parisc_tbl[] = { 2804 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2805 { 0, } 2806 }; 2807 2808 static struct parisc_driver ipmi_parisc_driver = { 2809 .name = "ipmi", 2810 .id_table = ipmi_parisc_tbl, 2811 .probe = ipmi_parisc_probe, 2812 .remove = ipmi_parisc_remove, 2813 }; 2814 #endif /* CONFIG_PARISC */ 2815 2816 static int wait_for_msg_done(struct smi_info *smi_info) 2817 { 2818 enum si_sm_result smi_result; 2819 2820 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2821 for (;;) { 2822 if (smi_result == SI_SM_CALL_WITH_DELAY || 2823 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2824 schedule_timeout_uninterruptible(1); 2825 smi_result = smi_info->handlers->event( 2826 smi_info->si_sm, jiffies_to_usecs(1)); 2827 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2828 smi_result = smi_info->handlers->event( 2829 smi_info->si_sm, 0); 2830 } else 2831 break; 2832 } 2833 if (smi_result == SI_SM_HOSED) 2834 /* 2835 * We couldn't get the state machine to run, so whatever's at 2836 * the port is probably not an IPMI SMI interface. 2837 */ 2838 return -ENODEV; 2839 2840 return 0; 2841 } 2842 2843 static int try_get_dev_id(struct smi_info *smi_info) 2844 { 2845 unsigned char msg[2]; 2846 unsigned char *resp; 2847 unsigned long resp_len; 2848 int rv = 0; 2849 2850 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2851 if (!resp) 2852 return -ENOMEM; 2853 2854 /* 2855 * Do a Get Device ID command, since it comes back with some 2856 * useful info. 2857 */ 2858 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2859 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2860 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2861 2862 rv = wait_for_msg_done(smi_info); 2863 if (rv) 2864 goto out; 2865 2866 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2867 resp, IPMI_MAX_MSG_LENGTH); 2868 2869 /* Check and record info from the get device id, in case we need it. */ 2870 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2871 2872 out: 2873 kfree(resp); 2874 return rv; 2875 } 2876 2877 static int try_enable_event_buffer(struct smi_info *smi_info) 2878 { 2879 unsigned char msg[3]; 2880 unsigned char *resp; 2881 unsigned long resp_len; 2882 int rv = 0; 2883 2884 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2885 if (!resp) 2886 return -ENOMEM; 2887 2888 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2889 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2890 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2891 2892 rv = wait_for_msg_done(smi_info); 2893 if (rv) { 2894 printk(KERN_WARNING PFX "Error getting response from get" 2895 " global enables command, the event buffer is not" 2896 " enabled.\n"); 2897 goto out; 2898 } 2899 2900 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2901 resp, IPMI_MAX_MSG_LENGTH); 2902 2903 if (resp_len < 4 || 2904 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2905 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2906 resp[2] != 0) { 2907 printk(KERN_WARNING PFX "Invalid return from get global" 2908 " enables command, cannot enable the event buffer.\n"); 2909 rv = -EINVAL; 2910 goto out; 2911 } 2912 2913 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2914 /* buffer is already enabled, nothing to do. */ 2915 goto out; 2916 2917 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2918 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2919 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2920 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2921 2922 rv = wait_for_msg_done(smi_info); 2923 if (rv) { 2924 printk(KERN_WARNING PFX "Error getting response from set" 2925 " global, enables command, the event buffer is not" 2926 " enabled.\n"); 2927 goto out; 2928 } 2929 2930 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2931 resp, IPMI_MAX_MSG_LENGTH); 2932 2933 if (resp_len < 3 || 2934 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2935 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2936 printk(KERN_WARNING PFX "Invalid return from get global," 2937 "enables command, not enable the event buffer.\n"); 2938 rv = -EINVAL; 2939 goto out; 2940 } 2941 2942 if (resp[2] != 0) 2943 /* 2944 * An error when setting the event buffer bit means 2945 * that the event buffer is not supported. 2946 */ 2947 rv = -ENOENT; 2948 out: 2949 kfree(resp); 2950 return rv; 2951 } 2952 2953 static int smi_type_proc_show(struct seq_file *m, void *v) 2954 { 2955 struct smi_info *smi = m->private; 2956 2957 return seq_printf(m, "%s\n", si_to_str[smi->si_type]); 2958 } 2959 2960 static int smi_type_proc_open(struct inode *inode, struct file *file) 2961 { 2962 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 2963 } 2964 2965 static const struct file_operations smi_type_proc_ops = { 2966 .open = smi_type_proc_open, 2967 .read = seq_read, 2968 .llseek = seq_lseek, 2969 .release = single_release, 2970 }; 2971 2972 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 2973 { 2974 struct smi_info *smi = m->private; 2975 2976 seq_printf(m, "interrupts_enabled: %d\n", 2977 smi->irq && !smi->interrupt_disabled); 2978 seq_printf(m, "short_timeouts: %u\n", 2979 smi_get_stat(smi, short_timeouts)); 2980 seq_printf(m, "long_timeouts: %u\n", 2981 smi_get_stat(smi, long_timeouts)); 2982 seq_printf(m, "idles: %u\n", 2983 smi_get_stat(smi, idles)); 2984 seq_printf(m, "interrupts: %u\n", 2985 smi_get_stat(smi, interrupts)); 2986 seq_printf(m, "attentions: %u\n", 2987 smi_get_stat(smi, attentions)); 2988 seq_printf(m, "flag_fetches: %u\n", 2989 smi_get_stat(smi, flag_fetches)); 2990 seq_printf(m, "hosed_count: %u\n", 2991 smi_get_stat(smi, hosed_count)); 2992 seq_printf(m, "complete_transactions: %u\n", 2993 smi_get_stat(smi, complete_transactions)); 2994 seq_printf(m, "events: %u\n", 2995 smi_get_stat(smi, events)); 2996 seq_printf(m, "watchdog_pretimeouts: %u\n", 2997 smi_get_stat(smi, watchdog_pretimeouts)); 2998 seq_printf(m, "incoming_messages: %u\n", 2999 smi_get_stat(smi, incoming_messages)); 3000 return 0; 3001 } 3002 3003 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3004 { 3005 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3006 } 3007 3008 static const struct file_operations smi_si_stats_proc_ops = { 3009 .open = smi_si_stats_proc_open, 3010 .read = seq_read, 3011 .llseek = seq_lseek, 3012 .release = single_release, 3013 }; 3014 3015 static int smi_params_proc_show(struct seq_file *m, void *v) 3016 { 3017 struct smi_info *smi = m->private; 3018 3019 return seq_printf(m, 3020 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3021 si_to_str[smi->si_type], 3022 addr_space_to_str[smi->io.addr_type], 3023 smi->io.addr_data, 3024 smi->io.regspacing, 3025 smi->io.regsize, 3026 smi->io.regshift, 3027 smi->irq, 3028 smi->slave_addr); 3029 } 3030 3031 static int smi_params_proc_open(struct inode *inode, struct file *file) 3032 { 3033 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3034 } 3035 3036 static const struct file_operations smi_params_proc_ops = { 3037 .open = smi_params_proc_open, 3038 .read = seq_read, 3039 .llseek = seq_lseek, 3040 .release = single_release, 3041 }; 3042 3043 /* 3044 * oem_data_avail_to_receive_msg_avail 3045 * @info - smi_info structure with msg_flags set 3046 * 3047 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3048 * Returns 1 indicating need to re-run handle_flags(). 3049 */ 3050 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3051 { 3052 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3053 RECEIVE_MSG_AVAIL); 3054 return 1; 3055 } 3056 3057 /* 3058 * setup_dell_poweredge_oem_data_handler 3059 * @info - smi_info.device_id must be populated 3060 * 3061 * Systems that match, but have firmware version < 1.40 may assert 3062 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3063 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3064 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3065 * as RECEIVE_MSG_AVAIL instead. 3066 * 3067 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3068 * assert the OEM[012] bits, and if it did, the driver would have to 3069 * change to handle that properly, we don't actually check for the 3070 * firmware version. 3071 * Device ID = 0x20 BMC on PowerEdge 8G servers 3072 * Device Revision = 0x80 3073 * Firmware Revision1 = 0x01 BMC version 1.40 3074 * Firmware Revision2 = 0x40 BCD encoded 3075 * IPMI Version = 0x51 IPMI 1.5 3076 * Manufacturer ID = A2 02 00 Dell IANA 3077 * 3078 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3079 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3080 * 3081 */ 3082 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3083 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3084 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3085 #define DELL_IANA_MFR_ID 0x0002a2 3086 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3087 { 3088 struct ipmi_device_id *id = &smi_info->device_id; 3089 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3090 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3091 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3092 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3093 smi_info->oem_data_avail_handler = 3094 oem_data_avail_to_receive_msg_avail; 3095 } else if (ipmi_version_major(id) < 1 || 3096 (ipmi_version_major(id) == 1 && 3097 ipmi_version_minor(id) < 5)) { 3098 smi_info->oem_data_avail_handler = 3099 oem_data_avail_to_receive_msg_avail; 3100 } 3101 } 3102 } 3103 3104 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3105 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3106 { 3107 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3108 3109 /* Make it a response */ 3110 msg->rsp[0] = msg->data[0] | 4; 3111 msg->rsp[1] = msg->data[1]; 3112 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3113 msg->rsp_size = 3; 3114 smi_info->curr_msg = NULL; 3115 deliver_recv_msg(smi_info, msg); 3116 } 3117 3118 /* 3119 * dell_poweredge_bt_xaction_handler 3120 * @info - smi_info.device_id must be populated 3121 * 3122 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3123 * not respond to a Get SDR command if the length of the data 3124 * requested is exactly 0x3A, which leads to command timeouts and no 3125 * data returned. This intercepts such commands, and causes userspace 3126 * callers to try again with a different-sized buffer, which succeeds. 3127 */ 3128 3129 #define STORAGE_NETFN 0x0A 3130 #define STORAGE_CMD_GET_SDR 0x23 3131 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3132 unsigned long unused, 3133 void *in) 3134 { 3135 struct smi_info *smi_info = in; 3136 unsigned char *data = smi_info->curr_msg->data; 3137 unsigned int size = smi_info->curr_msg->data_size; 3138 if (size >= 8 && 3139 (data[0]>>2) == STORAGE_NETFN && 3140 data[1] == STORAGE_CMD_GET_SDR && 3141 data[7] == 0x3A) { 3142 return_hosed_msg_badsize(smi_info); 3143 return NOTIFY_STOP; 3144 } 3145 return NOTIFY_DONE; 3146 } 3147 3148 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3149 .notifier_call = dell_poweredge_bt_xaction_handler, 3150 }; 3151 3152 /* 3153 * setup_dell_poweredge_bt_xaction_handler 3154 * @info - smi_info.device_id must be filled in already 3155 * 3156 * Fills in smi_info.device_id.start_transaction_pre_hook 3157 * when we know what function to use there. 3158 */ 3159 static void 3160 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3161 { 3162 struct ipmi_device_id *id = &smi_info->device_id; 3163 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3164 smi_info->si_type == SI_BT) 3165 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3166 } 3167 3168 /* 3169 * setup_oem_data_handler 3170 * @info - smi_info.device_id must be filled in already 3171 * 3172 * Fills in smi_info.device_id.oem_data_available_handler 3173 * when we know what function to use there. 3174 */ 3175 3176 static void setup_oem_data_handler(struct smi_info *smi_info) 3177 { 3178 setup_dell_poweredge_oem_data_handler(smi_info); 3179 } 3180 3181 static void setup_xaction_handlers(struct smi_info *smi_info) 3182 { 3183 setup_dell_poweredge_bt_xaction_handler(smi_info); 3184 } 3185 3186 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3187 { 3188 if (smi_info->intf) { 3189 /* 3190 * The timer and thread are only running if the 3191 * interface has been started up and registered. 3192 */ 3193 if (smi_info->thread != NULL) 3194 kthread_stop(smi_info->thread); 3195 del_timer_sync(&smi_info->si_timer); 3196 } 3197 } 3198 3199 static struct ipmi_default_vals 3200 { 3201 int type; 3202 int port; 3203 } ipmi_defaults[] = 3204 { 3205 { .type = SI_KCS, .port = 0xca2 }, 3206 { .type = SI_SMIC, .port = 0xca9 }, 3207 { .type = SI_BT, .port = 0xe4 }, 3208 { .port = 0 } 3209 }; 3210 3211 static void default_find_bmc(void) 3212 { 3213 struct smi_info *info; 3214 int i; 3215 3216 for (i = 0; ; i++) { 3217 if (!ipmi_defaults[i].port) 3218 break; 3219 #ifdef CONFIG_PPC 3220 if (check_legacy_ioport(ipmi_defaults[i].port)) 3221 continue; 3222 #endif 3223 info = smi_info_alloc(); 3224 if (!info) 3225 return; 3226 3227 info->addr_source = SI_DEFAULT; 3228 3229 info->si_type = ipmi_defaults[i].type; 3230 info->io_setup = port_setup; 3231 info->io.addr_data = ipmi_defaults[i].port; 3232 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3233 3234 info->io.addr = NULL; 3235 info->io.regspacing = DEFAULT_REGSPACING; 3236 info->io.regsize = DEFAULT_REGSPACING; 3237 info->io.regshift = 0; 3238 3239 if (add_smi(info) == 0) { 3240 if ((try_smi_init(info)) == 0) { 3241 /* Found one... */ 3242 printk(KERN_INFO PFX "Found default %s" 3243 " state machine at %s address 0x%lx\n", 3244 si_to_str[info->si_type], 3245 addr_space_to_str[info->io.addr_type], 3246 info->io.addr_data); 3247 } else 3248 cleanup_one_si(info); 3249 } else { 3250 kfree(info); 3251 } 3252 } 3253 } 3254 3255 static int is_new_interface(struct smi_info *info) 3256 { 3257 struct smi_info *e; 3258 3259 list_for_each_entry(e, &smi_infos, link) { 3260 if (e->io.addr_type != info->io.addr_type) 3261 continue; 3262 if (e->io.addr_data == info->io.addr_data) 3263 return 0; 3264 } 3265 3266 return 1; 3267 } 3268 3269 static int add_smi(struct smi_info *new_smi) 3270 { 3271 int rv = 0; 3272 3273 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3274 ipmi_addr_src_to_str[new_smi->addr_source], 3275 si_to_str[new_smi->si_type]); 3276 mutex_lock(&smi_infos_lock); 3277 if (!is_new_interface(new_smi)) { 3278 printk(KERN_CONT " duplicate interface\n"); 3279 rv = -EBUSY; 3280 goto out_err; 3281 } 3282 3283 printk(KERN_CONT "\n"); 3284 3285 /* So we know not to free it unless we have allocated one. */ 3286 new_smi->intf = NULL; 3287 new_smi->si_sm = NULL; 3288 new_smi->handlers = NULL; 3289 3290 list_add_tail(&new_smi->link, &smi_infos); 3291 3292 out_err: 3293 mutex_unlock(&smi_infos_lock); 3294 return rv; 3295 } 3296 3297 static int try_smi_init(struct smi_info *new_smi) 3298 { 3299 int rv = 0; 3300 int i; 3301 3302 printk(KERN_INFO PFX "Trying %s-specified %s state" 3303 " machine at %s address 0x%lx, slave address 0x%x," 3304 " irq %d\n", 3305 ipmi_addr_src_to_str[new_smi->addr_source], 3306 si_to_str[new_smi->si_type], 3307 addr_space_to_str[new_smi->io.addr_type], 3308 new_smi->io.addr_data, 3309 new_smi->slave_addr, new_smi->irq); 3310 3311 switch (new_smi->si_type) { 3312 case SI_KCS: 3313 new_smi->handlers = &kcs_smi_handlers; 3314 break; 3315 3316 case SI_SMIC: 3317 new_smi->handlers = &smic_smi_handlers; 3318 break; 3319 3320 case SI_BT: 3321 new_smi->handlers = &bt_smi_handlers; 3322 break; 3323 3324 default: 3325 /* No support for anything else yet. */ 3326 rv = -EIO; 3327 goto out_err; 3328 } 3329 3330 /* Allocate the state machine's data and initialize it. */ 3331 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3332 if (!new_smi->si_sm) { 3333 printk(KERN_ERR PFX 3334 "Could not allocate state machine memory\n"); 3335 rv = -ENOMEM; 3336 goto out_err; 3337 } 3338 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3339 &new_smi->io); 3340 3341 /* Now that we know the I/O size, we can set up the I/O. */ 3342 rv = new_smi->io_setup(new_smi); 3343 if (rv) { 3344 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3345 goto out_err; 3346 } 3347 3348 /* Do low-level detection first. */ 3349 if (new_smi->handlers->detect(new_smi->si_sm)) { 3350 if (new_smi->addr_source) 3351 printk(KERN_INFO PFX "Interface detection failed\n"); 3352 rv = -ENODEV; 3353 goto out_err; 3354 } 3355 3356 /* 3357 * Attempt a get device id command. If it fails, we probably 3358 * don't have a BMC here. 3359 */ 3360 rv = try_get_dev_id(new_smi); 3361 if (rv) { 3362 if (new_smi->addr_source) 3363 printk(KERN_INFO PFX "There appears to be no BMC" 3364 " at this location\n"); 3365 goto out_err; 3366 } 3367 3368 setup_oem_data_handler(new_smi); 3369 setup_xaction_handlers(new_smi); 3370 3371 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3372 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3373 new_smi->curr_msg = NULL; 3374 atomic_set(&new_smi->req_events, 0); 3375 new_smi->run_to_completion = false; 3376 for (i = 0; i < SI_NUM_STATS; i++) 3377 atomic_set(&new_smi->stats[i], 0); 3378 3379 new_smi->interrupt_disabled = true; 3380 atomic_set(&new_smi->stop_operation, 0); 3381 atomic_set(&new_smi->need_watch, 0); 3382 new_smi->intf_num = smi_num; 3383 smi_num++; 3384 3385 rv = try_enable_event_buffer(new_smi); 3386 if (rv == 0) 3387 new_smi->has_event_buffer = true; 3388 3389 /* 3390 * Start clearing the flags before we enable interrupts or the 3391 * timer to avoid racing with the timer. 3392 */ 3393 start_clear_flags(new_smi); 3394 /* IRQ is defined to be set when non-zero. */ 3395 if (new_smi->irq) 3396 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3397 3398 if (!new_smi->dev) { 3399 /* 3400 * If we don't already have a device from something 3401 * else (like PCI), then register a new one. 3402 */ 3403 new_smi->pdev = platform_device_alloc("ipmi_si", 3404 new_smi->intf_num); 3405 if (!new_smi->pdev) { 3406 printk(KERN_ERR PFX 3407 "Unable to allocate platform device\n"); 3408 goto out_err; 3409 } 3410 new_smi->dev = &new_smi->pdev->dev; 3411 new_smi->dev->driver = &ipmi_driver.driver; 3412 3413 rv = platform_device_add(new_smi->pdev); 3414 if (rv) { 3415 printk(KERN_ERR PFX 3416 "Unable to register system interface device:" 3417 " %d\n", 3418 rv); 3419 goto out_err; 3420 } 3421 new_smi->dev_registered = true; 3422 } 3423 3424 rv = ipmi_register_smi(&handlers, 3425 new_smi, 3426 &new_smi->device_id, 3427 new_smi->dev, 3428 "bmc", 3429 new_smi->slave_addr); 3430 if (rv) { 3431 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3432 rv); 3433 goto out_err_stop_timer; 3434 } 3435 3436 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3437 &smi_type_proc_ops, 3438 new_smi); 3439 if (rv) { 3440 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3441 goto out_err_stop_timer; 3442 } 3443 3444 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3445 &smi_si_stats_proc_ops, 3446 new_smi); 3447 if (rv) { 3448 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3449 goto out_err_stop_timer; 3450 } 3451 3452 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3453 &smi_params_proc_ops, 3454 new_smi); 3455 if (rv) { 3456 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3457 goto out_err_stop_timer; 3458 } 3459 3460 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3461 si_to_str[new_smi->si_type]); 3462 3463 return 0; 3464 3465 out_err_stop_timer: 3466 atomic_inc(&new_smi->stop_operation); 3467 wait_for_timer_and_thread(new_smi); 3468 3469 out_err: 3470 new_smi->interrupt_disabled = true; 3471 3472 if (new_smi->intf) { 3473 ipmi_unregister_smi(new_smi->intf); 3474 new_smi->intf = NULL; 3475 } 3476 3477 if (new_smi->irq_cleanup) { 3478 new_smi->irq_cleanup(new_smi); 3479 new_smi->irq_cleanup = NULL; 3480 } 3481 3482 /* 3483 * Wait until we know that we are out of any interrupt 3484 * handlers might have been running before we freed the 3485 * interrupt. 3486 */ 3487 synchronize_sched(); 3488 3489 if (new_smi->si_sm) { 3490 if (new_smi->handlers) 3491 new_smi->handlers->cleanup(new_smi->si_sm); 3492 kfree(new_smi->si_sm); 3493 new_smi->si_sm = NULL; 3494 } 3495 if (new_smi->addr_source_cleanup) { 3496 new_smi->addr_source_cleanup(new_smi); 3497 new_smi->addr_source_cleanup = NULL; 3498 } 3499 if (new_smi->io_cleanup) { 3500 new_smi->io_cleanup(new_smi); 3501 new_smi->io_cleanup = NULL; 3502 } 3503 3504 if (new_smi->dev_registered) { 3505 platform_device_unregister(new_smi->pdev); 3506 new_smi->dev_registered = false; 3507 } 3508 3509 return rv; 3510 } 3511 3512 static int init_ipmi_si(void) 3513 { 3514 int i; 3515 char *str; 3516 int rv; 3517 struct smi_info *e; 3518 enum ipmi_addr_src type = SI_INVALID; 3519 3520 if (initialized) 3521 return 0; 3522 initialized = 1; 3523 3524 if (si_tryplatform) { 3525 rv = platform_driver_register(&ipmi_driver); 3526 if (rv) { 3527 printk(KERN_ERR PFX "Unable to register " 3528 "driver: %d\n", rv); 3529 return rv; 3530 } 3531 } 3532 3533 /* Parse out the si_type string into its components. */ 3534 str = si_type_str; 3535 if (*str != '\0') { 3536 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3537 si_type[i] = str; 3538 str = strchr(str, ','); 3539 if (str) { 3540 *str = '\0'; 3541 str++; 3542 } else { 3543 break; 3544 } 3545 } 3546 } 3547 3548 printk(KERN_INFO "IPMI System Interface driver.\n"); 3549 3550 /* If the user gave us a device, they presumably want us to use it */ 3551 if (!hardcode_find_bmc()) 3552 return 0; 3553 3554 #ifdef CONFIG_PCI 3555 if (si_trypci) { 3556 rv = pci_register_driver(&ipmi_pci_driver); 3557 if (rv) 3558 printk(KERN_ERR PFX "Unable to register " 3559 "PCI driver: %d\n", rv); 3560 else 3561 pci_registered = true; 3562 } 3563 #endif 3564 3565 #ifdef CONFIG_ACPI 3566 if (si_tryacpi) { 3567 pnp_register_driver(&ipmi_pnp_driver); 3568 pnp_registered = true; 3569 } 3570 #endif 3571 3572 #ifdef CONFIG_DMI 3573 if (si_trydmi) 3574 dmi_find_bmc(); 3575 #endif 3576 3577 #ifdef CONFIG_ACPI 3578 if (si_tryacpi) 3579 spmi_find_bmc(); 3580 #endif 3581 3582 #ifdef CONFIG_PARISC 3583 register_parisc_driver(&ipmi_parisc_driver); 3584 parisc_registered = true; 3585 /* poking PC IO addresses will crash machine, don't do it */ 3586 si_trydefaults = 0; 3587 #endif 3588 3589 /* We prefer devices with interrupts, but in the case of a machine 3590 with multiple BMCs we assume that there will be several instances 3591 of a given type so if we succeed in registering a type then also 3592 try to register everything else of the same type */ 3593 3594 mutex_lock(&smi_infos_lock); 3595 list_for_each_entry(e, &smi_infos, link) { 3596 /* Try to register a device if it has an IRQ and we either 3597 haven't successfully registered a device yet or this 3598 device has the same type as one we successfully registered */ 3599 if (e->irq && (!type || e->addr_source == type)) { 3600 if (!try_smi_init(e)) { 3601 type = e->addr_source; 3602 } 3603 } 3604 } 3605 3606 /* type will only have been set if we successfully registered an si */ 3607 if (type) { 3608 mutex_unlock(&smi_infos_lock); 3609 return 0; 3610 } 3611 3612 /* Fall back to the preferred device */ 3613 3614 list_for_each_entry(e, &smi_infos, link) { 3615 if (!e->irq && (!type || e->addr_source == type)) { 3616 if (!try_smi_init(e)) { 3617 type = e->addr_source; 3618 } 3619 } 3620 } 3621 mutex_unlock(&smi_infos_lock); 3622 3623 if (type) 3624 return 0; 3625 3626 if (si_trydefaults) { 3627 mutex_lock(&smi_infos_lock); 3628 if (list_empty(&smi_infos)) { 3629 /* No BMC was found, try defaults. */ 3630 mutex_unlock(&smi_infos_lock); 3631 default_find_bmc(); 3632 } else 3633 mutex_unlock(&smi_infos_lock); 3634 } 3635 3636 mutex_lock(&smi_infos_lock); 3637 if (unload_when_empty && list_empty(&smi_infos)) { 3638 mutex_unlock(&smi_infos_lock); 3639 cleanup_ipmi_si(); 3640 printk(KERN_WARNING PFX 3641 "Unable to find any System Interface(s)\n"); 3642 return -ENODEV; 3643 } else { 3644 mutex_unlock(&smi_infos_lock); 3645 return 0; 3646 } 3647 } 3648 module_init(init_ipmi_si); 3649 3650 static void cleanup_one_si(struct smi_info *to_clean) 3651 { 3652 int rv = 0; 3653 unsigned long flags; 3654 3655 if (!to_clean) 3656 return; 3657 3658 list_del(&to_clean->link); 3659 3660 /* Tell the driver that we are shutting down. */ 3661 atomic_inc(&to_clean->stop_operation); 3662 3663 /* 3664 * Make sure the timer and thread are stopped and will not run 3665 * again. 3666 */ 3667 wait_for_timer_and_thread(to_clean); 3668 3669 /* 3670 * Timeouts are stopped, now make sure the interrupts are off 3671 * for the device. A little tricky with locks to make sure 3672 * there are no races. 3673 */ 3674 spin_lock_irqsave(&to_clean->si_lock, flags); 3675 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3676 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3677 poll(to_clean); 3678 schedule_timeout_uninterruptible(1); 3679 spin_lock_irqsave(&to_clean->si_lock, flags); 3680 } 3681 disable_si_irq(to_clean); 3682 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3683 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3684 poll(to_clean); 3685 schedule_timeout_uninterruptible(1); 3686 } 3687 3688 /* Clean up interrupts and make sure that everything is done. */ 3689 if (to_clean->irq_cleanup) 3690 to_clean->irq_cleanup(to_clean); 3691 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3692 poll(to_clean); 3693 schedule_timeout_uninterruptible(1); 3694 } 3695 3696 if (to_clean->intf) 3697 rv = ipmi_unregister_smi(to_clean->intf); 3698 3699 if (rv) { 3700 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3701 rv); 3702 } 3703 3704 if (to_clean->handlers) 3705 to_clean->handlers->cleanup(to_clean->si_sm); 3706 3707 kfree(to_clean->si_sm); 3708 3709 if (to_clean->addr_source_cleanup) 3710 to_clean->addr_source_cleanup(to_clean); 3711 if (to_clean->io_cleanup) 3712 to_clean->io_cleanup(to_clean); 3713 3714 if (to_clean->dev_registered) 3715 platform_device_unregister(to_clean->pdev); 3716 3717 kfree(to_clean); 3718 } 3719 3720 static void cleanup_ipmi_si(void) 3721 { 3722 struct smi_info *e, *tmp_e; 3723 3724 if (!initialized) 3725 return; 3726 3727 #ifdef CONFIG_PCI 3728 if (pci_registered) 3729 pci_unregister_driver(&ipmi_pci_driver); 3730 #endif 3731 #ifdef CONFIG_ACPI 3732 if (pnp_registered) 3733 pnp_unregister_driver(&ipmi_pnp_driver); 3734 #endif 3735 #ifdef CONFIG_PARISC 3736 if (parisc_registered) 3737 unregister_parisc_driver(&ipmi_parisc_driver); 3738 #endif 3739 3740 platform_driver_unregister(&ipmi_driver); 3741 3742 mutex_lock(&smi_infos_lock); 3743 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3744 cleanup_one_si(e); 3745 mutex_unlock(&smi_infos_lock); 3746 } 3747 module_exit(cleanup_ipmi_si); 3748 3749 MODULE_LICENSE("GPL"); 3750 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3751 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3752 " system interfaces."); 3753