1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/of_device.h> 68 #include <linux/of_platform.h> 69 #include <linux/of_address.h> 70 #include <linux/of_irq.h> 71 72 #ifdef CONFIG_PARISC 73 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 74 #include <asm/parisc-device.h> 75 #endif 76 77 #define PFX "ipmi_si: " 78 79 /* Measure times between events in the driver. */ 80 #undef DEBUG_TIMING 81 82 /* Call every 10 ms. */ 83 #define SI_TIMEOUT_TIME_USEC 10000 84 #define SI_USEC_PER_JIFFY (1000000/HZ) 85 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 86 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 87 short timeout */ 88 89 enum si_intf_state { 90 SI_NORMAL, 91 SI_GETTING_FLAGS, 92 SI_GETTING_EVENTS, 93 SI_CLEARING_FLAGS, 94 SI_GETTING_MESSAGES, 95 SI_CHECKING_ENABLES, 96 SI_SETTING_ENABLES 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 #define DEVICE_NAME "ipmi_si" 111 112 static struct platform_driver ipmi_driver; 113 114 /* 115 * Indexes into stats[] in smi_info below. 116 */ 117 enum si_stat_indexes { 118 /* 119 * Number of times the driver requested a timer while an operation 120 * was in progress. 121 */ 122 SI_STAT_short_timeouts = 0, 123 124 /* 125 * Number of times the driver requested a timer while nothing was in 126 * progress. 127 */ 128 SI_STAT_long_timeouts, 129 130 /* Number of times the interface was idle while being polled. */ 131 SI_STAT_idles, 132 133 /* Number of interrupts the driver handled. */ 134 SI_STAT_interrupts, 135 136 /* Number of time the driver got an ATTN from the hardware. */ 137 SI_STAT_attentions, 138 139 /* Number of times the driver requested flags from the hardware. */ 140 SI_STAT_flag_fetches, 141 142 /* Number of times the hardware didn't follow the state machine. */ 143 SI_STAT_hosed_count, 144 145 /* Number of completed messages. */ 146 SI_STAT_complete_transactions, 147 148 /* Number of IPMI events received from the hardware. */ 149 SI_STAT_events, 150 151 /* Number of watchdog pretimeouts. */ 152 SI_STAT_watchdog_pretimeouts, 153 154 /* Number of asynchronous messages received. */ 155 SI_STAT_incoming_messages, 156 157 158 /* This *must* remain last, add new values above this. */ 159 SI_NUM_STATS 160 }; 161 162 struct smi_info { 163 int intf_num; 164 ipmi_smi_t intf; 165 struct si_sm_data *si_sm; 166 const struct si_sm_handlers *handlers; 167 enum si_type si_type; 168 spinlock_t si_lock; 169 struct ipmi_smi_msg *waiting_msg; 170 struct ipmi_smi_msg *curr_msg; 171 enum si_intf_state si_state; 172 173 /* 174 * Used to handle the various types of I/O that can occur with 175 * IPMI 176 */ 177 struct si_sm_io io; 178 int (*io_setup)(struct smi_info *info); 179 void (*io_cleanup)(struct smi_info *info); 180 int (*irq_setup)(struct smi_info *info); 181 void (*irq_cleanup)(struct smi_info *info); 182 unsigned int io_size; 183 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 184 void (*addr_source_cleanup)(struct smi_info *info); 185 void *addr_source_data; 186 187 /* 188 * Per-OEM handler, called from handle_flags(). Returns 1 189 * when handle_flags() needs to be re-run or 0 indicating it 190 * set si_state itself. 191 */ 192 int (*oem_data_avail_handler)(struct smi_info *smi_info); 193 194 /* 195 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 196 * is set to hold the flags until we are done handling everything 197 * from the flags. 198 */ 199 #define RECEIVE_MSG_AVAIL 0x01 200 #define EVENT_MSG_BUFFER_FULL 0x02 201 #define WDT_PRE_TIMEOUT_INT 0x08 202 #define OEM0_DATA_AVAIL 0x20 203 #define OEM1_DATA_AVAIL 0x40 204 #define OEM2_DATA_AVAIL 0x80 205 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 206 OEM1_DATA_AVAIL | \ 207 OEM2_DATA_AVAIL) 208 unsigned char msg_flags; 209 210 /* Does the BMC have an event buffer? */ 211 bool has_event_buffer; 212 213 /* 214 * If set to true, this will request events the next time the 215 * state machine is idle. 216 */ 217 atomic_t req_events; 218 219 /* 220 * If true, run the state machine to completion on every send 221 * call. Generally used after a panic to make sure stuff goes 222 * out. 223 */ 224 bool run_to_completion; 225 226 /* The I/O port of an SI interface. */ 227 int port; 228 229 /* 230 * The space between start addresses of the two ports. For 231 * instance, if the first port is 0xca2 and the spacing is 4, then 232 * the second port is 0xca6. 233 */ 234 unsigned int spacing; 235 236 /* zero if no irq; */ 237 int irq; 238 239 /* The timer for this si. */ 240 struct timer_list si_timer; 241 242 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 243 bool timer_running; 244 245 /* The time (in jiffies) the last timeout occurred at. */ 246 unsigned long last_timeout_jiffies; 247 248 /* Are we waiting for the events, pretimeouts, received msgs? */ 249 atomic_t need_watch; 250 251 /* 252 * The driver will disable interrupts when it gets into a 253 * situation where it cannot handle messages due to lack of 254 * memory. Once that situation clears up, it will re-enable 255 * interrupts. 256 */ 257 bool interrupt_disabled; 258 259 /* 260 * Does the BMC support events? 261 */ 262 bool supports_event_msg_buff; 263 264 /* 265 * Can we disable interrupts the global enables receive irq 266 * bit? There are currently two forms of brokenness, some 267 * systems cannot disable the bit (which is technically within 268 * the spec but a bad idea) and some systems have the bit 269 * forced to zero even though interrupts work (which is 270 * clearly outside the spec). The next bool tells which form 271 * of brokenness is present. 272 */ 273 bool cannot_disable_irq; 274 275 /* 276 * Some systems are broken and cannot set the irq enable 277 * bit, even if they support interrupts. 278 */ 279 bool irq_enable_broken; 280 281 /* 282 * Did we get an attention that we did not handle? 283 */ 284 bool got_attn; 285 286 /* From the get device id response... */ 287 struct ipmi_device_id device_id; 288 289 /* Driver model stuff. */ 290 struct device *dev; 291 struct platform_device *pdev; 292 293 /* 294 * True if we allocated the device, false if it came from 295 * someplace else (like PCI). 296 */ 297 bool dev_registered; 298 299 /* Slave address, could be reported from DMI. */ 300 unsigned char slave_addr; 301 302 /* Counters and things for the proc filesystem. */ 303 atomic_t stats[SI_NUM_STATS]; 304 305 struct task_struct *thread; 306 307 struct list_head link; 308 union ipmi_smi_info_union addr_info; 309 }; 310 311 #define smi_inc_stat(smi, stat) \ 312 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 313 #define smi_get_stat(smi, stat) \ 314 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 315 316 #define SI_MAX_PARMS 4 317 318 static int force_kipmid[SI_MAX_PARMS]; 319 static int num_force_kipmid; 320 #ifdef CONFIG_PCI 321 static bool pci_registered; 322 #endif 323 #ifdef CONFIG_PARISC 324 static bool parisc_registered; 325 #endif 326 327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 328 static int num_max_busy_us; 329 330 static bool unload_when_empty = true; 331 332 static int add_smi(struct smi_info *smi); 333 static int try_smi_init(struct smi_info *smi); 334 static void cleanup_one_si(struct smi_info *to_clean); 335 static void cleanup_ipmi_si(void); 336 337 #ifdef DEBUG_TIMING 338 void debug_timestamp(char *msg) 339 { 340 struct timespec64 t; 341 342 getnstimeofday64(&t); 343 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 344 } 345 #else 346 #define debug_timestamp(x) 347 #endif 348 349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 350 static int register_xaction_notifier(struct notifier_block *nb) 351 { 352 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 353 } 354 355 static void deliver_recv_msg(struct smi_info *smi_info, 356 struct ipmi_smi_msg *msg) 357 { 358 /* Deliver the message to the upper layer. */ 359 if (smi_info->intf) 360 ipmi_smi_msg_received(smi_info->intf, msg); 361 else 362 ipmi_free_smi_msg(msg); 363 } 364 365 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 366 { 367 struct ipmi_smi_msg *msg = smi_info->curr_msg; 368 369 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 370 cCode = IPMI_ERR_UNSPECIFIED; 371 /* else use it as is */ 372 373 /* Make it a response */ 374 msg->rsp[0] = msg->data[0] | 4; 375 msg->rsp[1] = msg->data[1]; 376 msg->rsp[2] = cCode; 377 msg->rsp_size = 3; 378 379 smi_info->curr_msg = NULL; 380 deliver_recv_msg(smi_info, msg); 381 } 382 383 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 384 { 385 int rv; 386 387 if (!smi_info->waiting_msg) { 388 smi_info->curr_msg = NULL; 389 rv = SI_SM_IDLE; 390 } else { 391 int err; 392 393 smi_info->curr_msg = smi_info->waiting_msg; 394 smi_info->waiting_msg = NULL; 395 debug_timestamp("Start2"); 396 err = atomic_notifier_call_chain(&xaction_notifier_list, 397 0, smi_info); 398 if (err & NOTIFY_STOP_MASK) { 399 rv = SI_SM_CALL_WITHOUT_DELAY; 400 goto out; 401 } 402 err = smi_info->handlers->start_transaction( 403 smi_info->si_sm, 404 smi_info->curr_msg->data, 405 smi_info->curr_msg->data_size); 406 if (err) 407 return_hosed_msg(smi_info, err); 408 409 rv = SI_SM_CALL_WITHOUT_DELAY; 410 } 411 out: 412 return rv; 413 } 414 415 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 416 { 417 smi_info->last_timeout_jiffies = jiffies; 418 mod_timer(&smi_info->si_timer, new_val); 419 smi_info->timer_running = true; 420 } 421 422 /* 423 * Start a new message and (re)start the timer and thread. 424 */ 425 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 426 unsigned int size) 427 { 428 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 429 430 if (smi_info->thread) 431 wake_up_process(smi_info->thread); 432 433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 434 } 435 436 static void start_check_enables(struct smi_info *smi_info, bool start_timer) 437 { 438 unsigned char msg[2]; 439 440 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 441 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 442 443 if (start_timer) 444 start_new_msg(smi_info, msg, 2); 445 else 446 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 447 smi_info->si_state = SI_CHECKING_ENABLES; 448 } 449 450 static void start_clear_flags(struct smi_info *smi_info, bool start_timer) 451 { 452 unsigned char msg[3]; 453 454 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 455 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 456 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 457 msg[2] = WDT_PRE_TIMEOUT_INT; 458 459 if (start_timer) 460 start_new_msg(smi_info, msg, 3); 461 else 462 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 463 smi_info->si_state = SI_CLEARING_FLAGS; 464 } 465 466 static void start_getting_msg_queue(struct smi_info *smi_info) 467 { 468 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 469 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 470 smi_info->curr_msg->data_size = 2; 471 472 start_new_msg(smi_info, smi_info->curr_msg->data, 473 smi_info->curr_msg->data_size); 474 smi_info->si_state = SI_GETTING_MESSAGES; 475 } 476 477 static void start_getting_events(struct smi_info *smi_info) 478 { 479 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 480 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 481 smi_info->curr_msg->data_size = 2; 482 483 start_new_msg(smi_info, smi_info->curr_msg->data, 484 smi_info->curr_msg->data_size); 485 smi_info->si_state = SI_GETTING_EVENTS; 486 } 487 488 /* 489 * When we have a situtaion where we run out of memory and cannot 490 * allocate messages, we just leave them in the BMC and run the system 491 * polled until we can allocate some memory. Once we have some 492 * memory, we will re-enable the interrupt. 493 * 494 * Note that we cannot just use disable_irq(), since the interrupt may 495 * be shared. 496 */ 497 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer) 498 { 499 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 500 smi_info->interrupt_disabled = true; 501 start_check_enables(smi_info, start_timer); 502 return true; 503 } 504 return false; 505 } 506 507 static inline bool enable_si_irq(struct smi_info *smi_info) 508 { 509 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 510 smi_info->interrupt_disabled = false; 511 start_check_enables(smi_info, true); 512 return true; 513 } 514 return false; 515 } 516 517 /* 518 * Allocate a message. If unable to allocate, start the interrupt 519 * disable process and return NULL. If able to allocate but 520 * interrupts are disabled, free the message and return NULL after 521 * starting the interrupt enable process. 522 */ 523 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 524 { 525 struct ipmi_smi_msg *msg; 526 527 msg = ipmi_alloc_smi_msg(); 528 if (!msg) { 529 if (!disable_si_irq(smi_info, true)) 530 smi_info->si_state = SI_NORMAL; 531 } else if (enable_si_irq(smi_info)) { 532 ipmi_free_smi_msg(msg); 533 msg = NULL; 534 } 535 return msg; 536 } 537 538 static void handle_flags(struct smi_info *smi_info) 539 { 540 retry: 541 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 542 /* Watchdog pre-timeout */ 543 smi_inc_stat(smi_info, watchdog_pretimeouts); 544 545 start_clear_flags(smi_info, true); 546 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 547 if (smi_info->intf) 548 ipmi_smi_watchdog_pretimeout(smi_info->intf); 549 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 550 /* Messages available. */ 551 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 552 if (!smi_info->curr_msg) 553 return; 554 555 start_getting_msg_queue(smi_info); 556 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 557 /* Events available. */ 558 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 559 if (!smi_info->curr_msg) 560 return; 561 562 start_getting_events(smi_info); 563 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 564 smi_info->oem_data_avail_handler) { 565 if (smi_info->oem_data_avail_handler(smi_info)) 566 goto retry; 567 } else 568 smi_info->si_state = SI_NORMAL; 569 } 570 571 /* 572 * Global enables we care about. 573 */ 574 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 575 IPMI_BMC_EVT_MSG_INTR) 576 577 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 578 bool *irq_on) 579 { 580 u8 enables = 0; 581 582 if (smi_info->supports_event_msg_buff) 583 enables |= IPMI_BMC_EVT_MSG_BUFF; 584 585 if (((smi_info->irq && !smi_info->interrupt_disabled) || 586 smi_info->cannot_disable_irq) && 587 !smi_info->irq_enable_broken) 588 enables |= IPMI_BMC_RCV_MSG_INTR; 589 590 if (smi_info->supports_event_msg_buff && 591 smi_info->irq && !smi_info->interrupt_disabled && 592 !smi_info->irq_enable_broken) 593 enables |= IPMI_BMC_EVT_MSG_INTR; 594 595 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 596 597 return enables; 598 } 599 600 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 601 { 602 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 603 604 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 605 606 if ((bool)irqstate == irq_on) 607 return; 608 609 if (irq_on) 610 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 611 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 612 else 613 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 614 } 615 616 static void handle_transaction_done(struct smi_info *smi_info) 617 { 618 struct ipmi_smi_msg *msg; 619 620 debug_timestamp("Done"); 621 switch (smi_info->si_state) { 622 case SI_NORMAL: 623 if (!smi_info->curr_msg) 624 break; 625 626 smi_info->curr_msg->rsp_size 627 = smi_info->handlers->get_result( 628 smi_info->si_sm, 629 smi_info->curr_msg->rsp, 630 IPMI_MAX_MSG_LENGTH); 631 632 /* 633 * Do this here becase deliver_recv_msg() releases the 634 * lock, and a new message can be put in during the 635 * time the lock is released. 636 */ 637 msg = smi_info->curr_msg; 638 smi_info->curr_msg = NULL; 639 deliver_recv_msg(smi_info, msg); 640 break; 641 642 case SI_GETTING_FLAGS: 643 { 644 unsigned char msg[4]; 645 unsigned int len; 646 647 /* We got the flags from the SMI, now handle them. */ 648 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 649 if (msg[2] != 0) { 650 /* Error fetching flags, just give up for now. */ 651 smi_info->si_state = SI_NORMAL; 652 } else if (len < 4) { 653 /* 654 * Hmm, no flags. That's technically illegal, but 655 * don't use uninitialized data. 656 */ 657 smi_info->si_state = SI_NORMAL; 658 } else { 659 smi_info->msg_flags = msg[3]; 660 handle_flags(smi_info); 661 } 662 break; 663 } 664 665 case SI_CLEARING_FLAGS: 666 { 667 unsigned char msg[3]; 668 669 /* We cleared the flags. */ 670 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 671 if (msg[2] != 0) { 672 /* Error clearing flags */ 673 dev_warn(smi_info->dev, 674 "Error clearing flags: %2.2x\n", msg[2]); 675 } 676 smi_info->si_state = SI_NORMAL; 677 break; 678 } 679 680 case SI_GETTING_EVENTS: 681 { 682 smi_info->curr_msg->rsp_size 683 = smi_info->handlers->get_result( 684 smi_info->si_sm, 685 smi_info->curr_msg->rsp, 686 IPMI_MAX_MSG_LENGTH); 687 688 /* 689 * Do this here becase deliver_recv_msg() releases the 690 * lock, and a new message can be put in during the 691 * time the lock is released. 692 */ 693 msg = smi_info->curr_msg; 694 smi_info->curr_msg = NULL; 695 if (msg->rsp[2] != 0) { 696 /* Error getting event, probably done. */ 697 msg->done(msg); 698 699 /* Take off the event flag. */ 700 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 701 handle_flags(smi_info); 702 } else { 703 smi_inc_stat(smi_info, events); 704 705 /* 706 * Do this before we deliver the message 707 * because delivering the message releases the 708 * lock and something else can mess with the 709 * state. 710 */ 711 handle_flags(smi_info); 712 713 deliver_recv_msg(smi_info, msg); 714 } 715 break; 716 } 717 718 case SI_GETTING_MESSAGES: 719 { 720 smi_info->curr_msg->rsp_size 721 = smi_info->handlers->get_result( 722 smi_info->si_sm, 723 smi_info->curr_msg->rsp, 724 IPMI_MAX_MSG_LENGTH); 725 726 /* 727 * Do this here becase deliver_recv_msg() releases the 728 * lock, and a new message can be put in during the 729 * time the lock is released. 730 */ 731 msg = smi_info->curr_msg; 732 smi_info->curr_msg = NULL; 733 if (msg->rsp[2] != 0) { 734 /* Error getting event, probably done. */ 735 msg->done(msg); 736 737 /* Take off the msg flag. */ 738 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 739 handle_flags(smi_info); 740 } else { 741 smi_inc_stat(smi_info, incoming_messages); 742 743 /* 744 * Do this before we deliver the message 745 * because delivering the message releases the 746 * lock and something else can mess with the 747 * state. 748 */ 749 handle_flags(smi_info); 750 751 deliver_recv_msg(smi_info, msg); 752 } 753 break; 754 } 755 756 case SI_CHECKING_ENABLES: 757 { 758 unsigned char msg[4]; 759 u8 enables; 760 bool irq_on; 761 762 /* We got the flags from the SMI, now handle them. */ 763 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 764 if (msg[2] != 0) { 765 dev_warn(smi_info->dev, 766 "Couldn't get irq info: %x.\n", msg[2]); 767 dev_warn(smi_info->dev, 768 "Maybe ok, but ipmi might run very slowly.\n"); 769 smi_info->si_state = SI_NORMAL; 770 break; 771 } 772 enables = current_global_enables(smi_info, 0, &irq_on); 773 if (smi_info->si_type == SI_BT) 774 /* BT has its own interrupt enable bit. */ 775 check_bt_irq(smi_info, irq_on); 776 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 777 /* Enables are not correct, fix them. */ 778 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 779 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 780 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 781 smi_info->handlers->start_transaction( 782 smi_info->si_sm, msg, 3); 783 smi_info->si_state = SI_SETTING_ENABLES; 784 } else if (smi_info->supports_event_msg_buff) { 785 smi_info->curr_msg = ipmi_alloc_smi_msg(); 786 if (!smi_info->curr_msg) { 787 smi_info->si_state = SI_NORMAL; 788 break; 789 } 790 start_getting_msg_queue(smi_info); 791 } else { 792 smi_info->si_state = SI_NORMAL; 793 } 794 break; 795 } 796 797 case SI_SETTING_ENABLES: 798 { 799 unsigned char msg[4]; 800 801 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 802 if (msg[2] != 0) 803 dev_warn(smi_info->dev, 804 "Could not set the global enables: 0x%x.\n", 805 msg[2]); 806 807 if (smi_info->supports_event_msg_buff) { 808 smi_info->curr_msg = ipmi_alloc_smi_msg(); 809 if (!smi_info->curr_msg) { 810 smi_info->si_state = SI_NORMAL; 811 break; 812 } 813 start_getting_msg_queue(smi_info); 814 } else { 815 smi_info->si_state = SI_NORMAL; 816 } 817 break; 818 } 819 } 820 } 821 822 /* 823 * Called on timeouts and events. Timeouts should pass the elapsed 824 * time, interrupts should pass in zero. Must be called with 825 * si_lock held and interrupts disabled. 826 */ 827 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 828 int time) 829 { 830 enum si_sm_result si_sm_result; 831 832 restart: 833 /* 834 * There used to be a loop here that waited a little while 835 * (around 25us) before giving up. That turned out to be 836 * pointless, the minimum delays I was seeing were in the 300us 837 * range, which is far too long to wait in an interrupt. So 838 * we just run until the state machine tells us something 839 * happened or it needs a delay. 840 */ 841 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 842 time = 0; 843 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 844 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 845 846 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 847 smi_inc_stat(smi_info, complete_transactions); 848 849 handle_transaction_done(smi_info); 850 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 851 } else if (si_sm_result == SI_SM_HOSED) { 852 smi_inc_stat(smi_info, hosed_count); 853 854 /* 855 * Do the before return_hosed_msg, because that 856 * releases the lock. 857 */ 858 smi_info->si_state = SI_NORMAL; 859 if (smi_info->curr_msg != NULL) { 860 /* 861 * If we were handling a user message, format 862 * a response to send to the upper layer to 863 * tell it about the error. 864 */ 865 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 866 } 867 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 868 } 869 870 /* 871 * We prefer handling attn over new messages. But don't do 872 * this if there is not yet an upper layer to handle anything. 873 */ 874 if (likely(smi_info->intf) && 875 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 876 unsigned char msg[2]; 877 878 if (smi_info->si_state != SI_NORMAL) { 879 /* 880 * We got an ATTN, but we are doing something else. 881 * Handle the ATTN later. 882 */ 883 smi_info->got_attn = true; 884 } else { 885 smi_info->got_attn = false; 886 smi_inc_stat(smi_info, attentions); 887 888 /* 889 * Got a attn, send down a get message flags to see 890 * what's causing it. It would be better to handle 891 * this in the upper layer, but due to the way 892 * interrupts work with the SMI, that's not really 893 * possible. 894 */ 895 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 896 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 897 898 start_new_msg(smi_info, msg, 2); 899 smi_info->si_state = SI_GETTING_FLAGS; 900 goto restart; 901 } 902 } 903 904 /* If we are currently idle, try to start the next message. */ 905 if (si_sm_result == SI_SM_IDLE) { 906 smi_inc_stat(smi_info, idles); 907 908 si_sm_result = start_next_msg(smi_info); 909 if (si_sm_result != SI_SM_IDLE) 910 goto restart; 911 } 912 913 if ((si_sm_result == SI_SM_IDLE) 914 && (atomic_read(&smi_info->req_events))) { 915 /* 916 * We are idle and the upper layer requested that I fetch 917 * events, so do so. 918 */ 919 atomic_set(&smi_info->req_events, 0); 920 921 /* 922 * Take this opportunity to check the interrupt and 923 * message enable state for the BMC. The BMC can be 924 * asynchronously reset, and may thus get interrupts 925 * disable and messages disabled. 926 */ 927 if (smi_info->supports_event_msg_buff || smi_info->irq) { 928 start_check_enables(smi_info, true); 929 } else { 930 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 931 if (!smi_info->curr_msg) 932 goto out; 933 934 start_getting_events(smi_info); 935 } 936 goto restart; 937 } 938 939 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 940 /* Ok it if fails, the timer will just go off. */ 941 if (del_timer(&smi_info->si_timer)) 942 smi_info->timer_running = false; 943 } 944 945 out: 946 return si_sm_result; 947 } 948 949 static void check_start_timer_thread(struct smi_info *smi_info) 950 { 951 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 952 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 953 954 if (smi_info->thread) 955 wake_up_process(smi_info->thread); 956 957 start_next_msg(smi_info); 958 smi_event_handler(smi_info, 0); 959 } 960 } 961 962 static void flush_messages(void *send_info) 963 { 964 struct smi_info *smi_info = send_info; 965 enum si_sm_result result; 966 967 /* 968 * Currently, this function is called only in run-to-completion 969 * mode. This means we are single-threaded, no need for locks. 970 */ 971 result = smi_event_handler(smi_info, 0); 972 while (result != SI_SM_IDLE) { 973 udelay(SI_SHORT_TIMEOUT_USEC); 974 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 975 } 976 } 977 978 static void sender(void *send_info, 979 struct ipmi_smi_msg *msg) 980 { 981 struct smi_info *smi_info = send_info; 982 unsigned long flags; 983 984 debug_timestamp("Enqueue"); 985 986 if (smi_info->run_to_completion) { 987 /* 988 * If we are running to completion, start it. Upper 989 * layer will call flush_messages to clear it out. 990 */ 991 smi_info->waiting_msg = msg; 992 return; 993 } 994 995 spin_lock_irqsave(&smi_info->si_lock, flags); 996 /* 997 * The following two lines don't need to be under the lock for 998 * the lock's sake, but they do need SMP memory barriers to 999 * avoid getting things out of order. We are already claiming 1000 * the lock, anyway, so just do it under the lock to avoid the 1001 * ordering problem. 1002 */ 1003 BUG_ON(smi_info->waiting_msg); 1004 smi_info->waiting_msg = msg; 1005 check_start_timer_thread(smi_info); 1006 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1007 } 1008 1009 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 1010 { 1011 struct smi_info *smi_info = send_info; 1012 1013 smi_info->run_to_completion = i_run_to_completion; 1014 if (i_run_to_completion) 1015 flush_messages(smi_info); 1016 } 1017 1018 /* 1019 * Use -1 in the nsec value of the busy waiting timespec to tell that 1020 * we are spinning in kipmid looking for something and not delaying 1021 * between checks 1022 */ 1023 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 1024 { 1025 ts->tv_nsec = -1; 1026 } 1027 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1028 { 1029 return ts->tv_nsec != -1; 1030 } 1031 1032 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1033 const struct smi_info *smi_info, 1034 struct timespec64 *busy_until) 1035 { 1036 unsigned int max_busy_us = 0; 1037 1038 if (smi_info->intf_num < num_max_busy_us) 1039 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1040 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1041 ipmi_si_set_not_busy(busy_until); 1042 else if (!ipmi_si_is_busy(busy_until)) { 1043 getnstimeofday64(busy_until); 1044 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1045 } else { 1046 struct timespec64 now; 1047 1048 getnstimeofday64(&now); 1049 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1050 ipmi_si_set_not_busy(busy_until); 1051 return 0; 1052 } 1053 } 1054 return 1; 1055 } 1056 1057 1058 /* 1059 * A busy-waiting loop for speeding up IPMI operation. 1060 * 1061 * Lousy hardware makes this hard. This is only enabled for systems 1062 * that are not BT and do not have interrupts. It starts spinning 1063 * when an operation is complete or until max_busy tells it to stop 1064 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1065 * Documentation/IPMI.txt for details. 1066 */ 1067 static int ipmi_thread(void *data) 1068 { 1069 struct smi_info *smi_info = data; 1070 unsigned long flags; 1071 enum si_sm_result smi_result; 1072 struct timespec64 busy_until; 1073 1074 ipmi_si_set_not_busy(&busy_until); 1075 set_user_nice(current, MAX_NICE); 1076 while (!kthread_should_stop()) { 1077 int busy_wait; 1078 1079 spin_lock_irqsave(&(smi_info->si_lock), flags); 1080 smi_result = smi_event_handler(smi_info, 0); 1081 1082 /* 1083 * If the driver is doing something, there is a possible 1084 * race with the timer. If the timer handler see idle, 1085 * and the thread here sees something else, the timer 1086 * handler won't restart the timer even though it is 1087 * required. So start it here if necessary. 1088 */ 1089 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1090 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1091 1092 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1093 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1094 &busy_until); 1095 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1096 ; /* do nothing */ 1097 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1098 schedule(); 1099 else if (smi_result == SI_SM_IDLE) { 1100 if (atomic_read(&smi_info->need_watch)) { 1101 schedule_timeout_interruptible(100); 1102 } else { 1103 /* Wait to be woken up when we are needed. */ 1104 __set_current_state(TASK_INTERRUPTIBLE); 1105 schedule(); 1106 } 1107 } else 1108 schedule_timeout_interruptible(1); 1109 } 1110 return 0; 1111 } 1112 1113 1114 static void poll(void *send_info) 1115 { 1116 struct smi_info *smi_info = send_info; 1117 unsigned long flags = 0; 1118 bool run_to_completion = smi_info->run_to_completion; 1119 1120 /* 1121 * Make sure there is some delay in the poll loop so we can 1122 * drive time forward and timeout things. 1123 */ 1124 udelay(10); 1125 if (!run_to_completion) 1126 spin_lock_irqsave(&smi_info->si_lock, flags); 1127 smi_event_handler(smi_info, 10); 1128 if (!run_to_completion) 1129 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1130 } 1131 1132 static void request_events(void *send_info) 1133 { 1134 struct smi_info *smi_info = send_info; 1135 1136 if (!smi_info->has_event_buffer) 1137 return; 1138 1139 atomic_set(&smi_info->req_events, 1); 1140 } 1141 1142 static void set_need_watch(void *send_info, bool enable) 1143 { 1144 struct smi_info *smi_info = send_info; 1145 unsigned long flags; 1146 1147 atomic_set(&smi_info->need_watch, enable); 1148 spin_lock_irqsave(&smi_info->si_lock, flags); 1149 check_start_timer_thread(smi_info); 1150 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1151 } 1152 1153 static int initialized; 1154 1155 static void smi_timeout(unsigned long data) 1156 { 1157 struct smi_info *smi_info = (struct smi_info *) data; 1158 enum si_sm_result smi_result; 1159 unsigned long flags; 1160 unsigned long jiffies_now; 1161 long time_diff; 1162 long timeout; 1163 1164 spin_lock_irqsave(&(smi_info->si_lock), flags); 1165 debug_timestamp("Timer"); 1166 1167 jiffies_now = jiffies; 1168 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1169 * SI_USEC_PER_JIFFY); 1170 smi_result = smi_event_handler(smi_info, time_diff); 1171 1172 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1173 /* Running with interrupts, only do long timeouts. */ 1174 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1175 smi_inc_stat(smi_info, long_timeouts); 1176 goto do_mod_timer; 1177 } 1178 1179 /* 1180 * If the state machine asks for a short delay, then shorten 1181 * the timer timeout. 1182 */ 1183 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1184 smi_inc_stat(smi_info, short_timeouts); 1185 timeout = jiffies + 1; 1186 } else { 1187 smi_inc_stat(smi_info, long_timeouts); 1188 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1189 } 1190 1191 do_mod_timer: 1192 if (smi_result != SI_SM_IDLE) 1193 smi_mod_timer(smi_info, timeout); 1194 else 1195 smi_info->timer_running = false; 1196 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1197 } 1198 1199 static irqreturn_t si_irq_handler(int irq, void *data) 1200 { 1201 struct smi_info *smi_info = data; 1202 unsigned long flags; 1203 1204 spin_lock_irqsave(&(smi_info->si_lock), flags); 1205 1206 smi_inc_stat(smi_info, interrupts); 1207 1208 debug_timestamp("Interrupt"); 1209 1210 smi_event_handler(smi_info, 0); 1211 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1212 return IRQ_HANDLED; 1213 } 1214 1215 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1216 { 1217 struct smi_info *smi_info = data; 1218 /* We need to clear the IRQ flag for the BT interface. */ 1219 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1220 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1221 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1222 return si_irq_handler(irq, data); 1223 } 1224 1225 static int smi_start_processing(void *send_info, 1226 ipmi_smi_t intf) 1227 { 1228 struct smi_info *new_smi = send_info; 1229 int enable = 0; 1230 1231 new_smi->intf = intf; 1232 1233 /* Set up the timer that drives the interface. */ 1234 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1235 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1236 1237 /* Try to claim any interrupts. */ 1238 if (new_smi->irq_setup) 1239 new_smi->irq_setup(new_smi); 1240 1241 /* 1242 * Check if the user forcefully enabled the daemon. 1243 */ 1244 if (new_smi->intf_num < num_force_kipmid) 1245 enable = force_kipmid[new_smi->intf_num]; 1246 /* 1247 * The BT interface is efficient enough to not need a thread, 1248 * and there is no need for a thread if we have interrupts. 1249 */ 1250 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1251 enable = 1; 1252 1253 if (enable) { 1254 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1255 "kipmi%d", new_smi->intf_num); 1256 if (IS_ERR(new_smi->thread)) { 1257 dev_notice(new_smi->dev, "Could not start" 1258 " kernel thread due to error %ld, only using" 1259 " timers to drive the interface\n", 1260 PTR_ERR(new_smi->thread)); 1261 new_smi->thread = NULL; 1262 } 1263 } 1264 1265 return 0; 1266 } 1267 1268 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1269 { 1270 struct smi_info *smi = send_info; 1271 1272 data->addr_src = smi->addr_source; 1273 data->dev = smi->dev; 1274 data->addr_info = smi->addr_info; 1275 get_device(smi->dev); 1276 1277 return 0; 1278 } 1279 1280 static void set_maintenance_mode(void *send_info, bool enable) 1281 { 1282 struct smi_info *smi_info = send_info; 1283 1284 if (!enable) 1285 atomic_set(&smi_info->req_events, 0); 1286 } 1287 1288 static const struct ipmi_smi_handlers handlers = { 1289 .owner = THIS_MODULE, 1290 .start_processing = smi_start_processing, 1291 .get_smi_info = get_smi_info, 1292 .sender = sender, 1293 .request_events = request_events, 1294 .set_need_watch = set_need_watch, 1295 .set_maintenance_mode = set_maintenance_mode, 1296 .set_run_to_completion = set_run_to_completion, 1297 .flush_messages = flush_messages, 1298 .poll = poll, 1299 }; 1300 1301 /* 1302 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1303 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1304 */ 1305 1306 static LIST_HEAD(smi_infos); 1307 static DEFINE_MUTEX(smi_infos_lock); 1308 static int smi_num; /* Used to sequence the SMIs */ 1309 1310 #define DEFAULT_REGSPACING 1 1311 #define DEFAULT_REGSIZE 1 1312 1313 #ifdef CONFIG_ACPI 1314 static bool si_tryacpi = true; 1315 #endif 1316 #ifdef CONFIG_DMI 1317 static bool si_trydmi = true; 1318 #endif 1319 static bool si_tryplatform = true; 1320 #ifdef CONFIG_PCI 1321 static bool si_trypci = true; 1322 #endif 1323 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS); 1324 static char *si_type[SI_MAX_PARMS]; 1325 #define MAX_SI_TYPE_STR 30 1326 static char si_type_str[MAX_SI_TYPE_STR]; 1327 static unsigned long addrs[SI_MAX_PARMS]; 1328 static unsigned int num_addrs; 1329 static unsigned int ports[SI_MAX_PARMS]; 1330 static unsigned int num_ports; 1331 static int irqs[SI_MAX_PARMS]; 1332 static unsigned int num_irqs; 1333 static int regspacings[SI_MAX_PARMS]; 1334 static unsigned int num_regspacings; 1335 static int regsizes[SI_MAX_PARMS]; 1336 static unsigned int num_regsizes; 1337 static int regshifts[SI_MAX_PARMS]; 1338 static unsigned int num_regshifts; 1339 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1340 static unsigned int num_slave_addrs; 1341 1342 #define IPMI_IO_ADDR_SPACE 0 1343 #define IPMI_MEM_ADDR_SPACE 1 1344 static char *addr_space_to_str[] = { "i/o", "mem" }; 1345 1346 static int hotmod_handler(const char *val, struct kernel_param *kp); 1347 1348 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1349 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1350 " Documentation/IPMI.txt in the kernel sources for the" 1351 " gory details."); 1352 1353 #ifdef CONFIG_ACPI 1354 module_param_named(tryacpi, si_tryacpi, bool, 0); 1355 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1356 " default scan of the interfaces identified via ACPI"); 1357 #endif 1358 #ifdef CONFIG_DMI 1359 module_param_named(trydmi, si_trydmi, bool, 0); 1360 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1361 " default scan of the interfaces identified via DMI"); 1362 #endif 1363 module_param_named(tryplatform, si_tryplatform, bool, 0); 1364 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1365 " default scan of the interfaces identified via platform" 1366 " interfaces like openfirmware"); 1367 #ifdef CONFIG_PCI 1368 module_param_named(trypci, si_trypci, bool, 0); 1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1370 " default scan of the interfaces identified via pci"); 1371 #endif 1372 module_param_named(trydefaults, si_trydefaults, bool, 0); 1373 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1374 " default scan of the KCS and SMIC interface at the standard" 1375 " address"); 1376 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1377 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1378 " interface separated by commas. The types are 'kcs'," 1379 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1380 " the first interface to kcs and the second to bt"); 1381 module_param_array(addrs, ulong, &num_addrs, 0); 1382 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1383 " addresses separated by commas. Only use if an interface" 1384 " is in memory. Otherwise, set it to zero or leave" 1385 " it blank."); 1386 module_param_array(ports, uint, &num_ports, 0); 1387 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1388 " addresses separated by commas. Only use if an interface" 1389 " is a port. Otherwise, set it to zero or leave" 1390 " it blank."); 1391 module_param_array(irqs, int, &num_irqs, 0); 1392 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1393 " addresses separated by commas. Only use if an interface" 1394 " has an interrupt. Otherwise, set it to zero or leave" 1395 " it blank."); 1396 module_param_array(regspacings, int, &num_regspacings, 0); 1397 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1398 " and each successive register used by the interface. For" 1399 " instance, if the start address is 0xca2 and the spacing" 1400 " is 2, then the second address is at 0xca4. Defaults" 1401 " to 1."); 1402 module_param_array(regsizes, int, &num_regsizes, 0); 1403 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1404 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1405 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1406 " the 8-bit IPMI register has to be read from a larger" 1407 " register."); 1408 module_param_array(regshifts, int, &num_regshifts, 0); 1409 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1410 " IPMI register, in bits. For instance, if the data" 1411 " is read from a 32-bit word and the IPMI data is in" 1412 " bit 8-15, then the shift would be 8"); 1413 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1414 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1415 " the controller. Normally this is 0x20, but can be" 1416 " overridden by this parm. This is an array indexed" 1417 " by interface number."); 1418 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1419 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1420 " disabled(0). Normally the IPMI driver auto-detects" 1421 " this, but the value may be overridden by this parm."); 1422 module_param(unload_when_empty, bool, 0); 1423 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1424 " specified or found, default is 1. Setting to 0" 1425 " is useful for hot add of devices using hotmod."); 1426 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1427 MODULE_PARM_DESC(kipmid_max_busy_us, 1428 "Max time (in microseconds) to busy-wait for IPMI data before" 1429 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1430 " if kipmid is using up a lot of CPU time."); 1431 1432 1433 static void std_irq_cleanup(struct smi_info *info) 1434 { 1435 if (info->si_type == SI_BT) 1436 /* Disable the interrupt in the BT interface. */ 1437 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1438 free_irq(info->irq, info); 1439 } 1440 1441 static int std_irq_setup(struct smi_info *info) 1442 { 1443 int rv; 1444 1445 if (!info->irq) 1446 return 0; 1447 1448 if (info->si_type == SI_BT) { 1449 rv = request_irq(info->irq, 1450 si_bt_irq_handler, 1451 IRQF_SHARED, 1452 DEVICE_NAME, 1453 info); 1454 if (!rv) 1455 /* Enable the interrupt in the BT interface. */ 1456 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1457 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1458 } else 1459 rv = request_irq(info->irq, 1460 si_irq_handler, 1461 IRQF_SHARED, 1462 DEVICE_NAME, 1463 info); 1464 if (rv) { 1465 dev_warn(info->dev, "%s unable to claim interrupt %d," 1466 " running polled\n", 1467 DEVICE_NAME, info->irq); 1468 info->irq = 0; 1469 } else { 1470 info->irq_cleanup = std_irq_cleanup; 1471 dev_info(info->dev, "Using irq %d\n", info->irq); 1472 } 1473 1474 return rv; 1475 } 1476 1477 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) 1478 { 1479 unsigned int addr = io->addr_data; 1480 1481 return inb(addr + (offset * io->regspacing)); 1482 } 1483 1484 static void port_outb(const struct si_sm_io *io, unsigned int offset, 1485 unsigned char b) 1486 { 1487 unsigned int addr = io->addr_data; 1488 1489 outb(b, addr + (offset * io->regspacing)); 1490 } 1491 1492 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) 1493 { 1494 unsigned int addr = io->addr_data; 1495 1496 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1497 } 1498 1499 static void port_outw(const struct si_sm_io *io, unsigned int offset, 1500 unsigned char b) 1501 { 1502 unsigned int addr = io->addr_data; 1503 1504 outw(b << io->regshift, addr + (offset * io->regspacing)); 1505 } 1506 1507 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) 1508 { 1509 unsigned int addr = io->addr_data; 1510 1511 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1512 } 1513 1514 static void port_outl(const struct si_sm_io *io, unsigned int offset, 1515 unsigned char b) 1516 { 1517 unsigned int addr = io->addr_data; 1518 1519 outl(b << io->regshift, addr+(offset * io->regspacing)); 1520 } 1521 1522 static void port_cleanup(struct smi_info *info) 1523 { 1524 unsigned int addr = info->io.addr_data; 1525 int idx; 1526 1527 if (addr) { 1528 for (idx = 0; idx < info->io_size; idx++) 1529 release_region(addr + idx * info->io.regspacing, 1530 info->io.regsize); 1531 } 1532 } 1533 1534 static int port_setup(struct smi_info *info) 1535 { 1536 unsigned int addr = info->io.addr_data; 1537 int idx; 1538 1539 if (!addr) 1540 return -ENODEV; 1541 1542 info->io_cleanup = port_cleanup; 1543 1544 /* 1545 * Figure out the actual inb/inw/inl/etc routine to use based 1546 * upon the register size. 1547 */ 1548 switch (info->io.regsize) { 1549 case 1: 1550 info->io.inputb = port_inb; 1551 info->io.outputb = port_outb; 1552 break; 1553 case 2: 1554 info->io.inputb = port_inw; 1555 info->io.outputb = port_outw; 1556 break; 1557 case 4: 1558 info->io.inputb = port_inl; 1559 info->io.outputb = port_outl; 1560 break; 1561 default: 1562 dev_warn(info->dev, "Invalid register size: %d\n", 1563 info->io.regsize); 1564 return -EINVAL; 1565 } 1566 1567 /* 1568 * Some BIOSes reserve disjoint I/O regions in their ACPI 1569 * tables. This causes problems when trying to register the 1570 * entire I/O region. Therefore we must register each I/O 1571 * port separately. 1572 */ 1573 for (idx = 0; idx < info->io_size; idx++) { 1574 if (request_region(addr + idx * info->io.regspacing, 1575 info->io.regsize, DEVICE_NAME) == NULL) { 1576 /* Undo allocations */ 1577 while (idx--) { 1578 release_region(addr + idx * info->io.regspacing, 1579 info->io.regsize); 1580 } 1581 return -EIO; 1582 } 1583 } 1584 return 0; 1585 } 1586 1587 static unsigned char intf_mem_inb(const struct si_sm_io *io, 1588 unsigned int offset) 1589 { 1590 return readb((io->addr)+(offset * io->regspacing)); 1591 } 1592 1593 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, 1594 unsigned char b) 1595 { 1596 writeb(b, (io->addr)+(offset * io->regspacing)); 1597 } 1598 1599 static unsigned char intf_mem_inw(const struct si_sm_io *io, 1600 unsigned int offset) 1601 { 1602 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1603 & 0xff; 1604 } 1605 1606 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, 1607 unsigned char b) 1608 { 1609 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1610 } 1611 1612 static unsigned char intf_mem_inl(const struct si_sm_io *io, 1613 unsigned int offset) 1614 { 1615 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1616 & 0xff; 1617 } 1618 1619 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, 1620 unsigned char b) 1621 { 1622 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1623 } 1624 1625 #ifdef readq 1626 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) 1627 { 1628 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1629 & 0xff; 1630 } 1631 1632 static void mem_outq(const struct si_sm_io *io, unsigned int offset, 1633 unsigned char b) 1634 { 1635 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1636 } 1637 #endif 1638 1639 static void mem_cleanup(struct smi_info *info) 1640 { 1641 unsigned long addr = info->io.addr_data; 1642 int mapsize; 1643 1644 if (info->io.addr) { 1645 iounmap(info->io.addr); 1646 1647 mapsize = ((info->io_size * info->io.regspacing) 1648 - (info->io.regspacing - info->io.regsize)); 1649 1650 release_mem_region(addr, mapsize); 1651 } 1652 } 1653 1654 static int mem_setup(struct smi_info *info) 1655 { 1656 unsigned long addr = info->io.addr_data; 1657 int mapsize; 1658 1659 if (!addr) 1660 return -ENODEV; 1661 1662 info->io_cleanup = mem_cleanup; 1663 1664 /* 1665 * Figure out the actual readb/readw/readl/etc routine to use based 1666 * upon the register size. 1667 */ 1668 switch (info->io.regsize) { 1669 case 1: 1670 info->io.inputb = intf_mem_inb; 1671 info->io.outputb = intf_mem_outb; 1672 break; 1673 case 2: 1674 info->io.inputb = intf_mem_inw; 1675 info->io.outputb = intf_mem_outw; 1676 break; 1677 case 4: 1678 info->io.inputb = intf_mem_inl; 1679 info->io.outputb = intf_mem_outl; 1680 break; 1681 #ifdef readq 1682 case 8: 1683 info->io.inputb = mem_inq; 1684 info->io.outputb = mem_outq; 1685 break; 1686 #endif 1687 default: 1688 dev_warn(info->dev, "Invalid register size: %d\n", 1689 info->io.regsize); 1690 return -EINVAL; 1691 } 1692 1693 /* 1694 * Calculate the total amount of memory to claim. This is an 1695 * unusual looking calculation, but it avoids claiming any 1696 * more memory than it has to. It will claim everything 1697 * between the first address to the end of the last full 1698 * register. 1699 */ 1700 mapsize = ((info->io_size * info->io.regspacing) 1701 - (info->io.regspacing - info->io.regsize)); 1702 1703 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1704 return -EIO; 1705 1706 info->io.addr = ioremap(addr, mapsize); 1707 if (info->io.addr == NULL) { 1708 release_mem_region(addr, mapsize); 1709 return -EIO; 1710 } 1711 return 0; 1712 } 1713 1714 /* 1715 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1716 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1717 * Options are: 1718 * rsp=<regspacing> 1719 * rsi=<regsize> 1720 * rsh=<regshift> 1721 * irq=<irq> 1722 * ipmb=<ipmb addr> 1723 */ 1724 enum hotmod_op { HM_ADD, HM_REMOVE }; 1725 struct hotmod_vals { 1726 char *name; 1727 int val; 1728 }; 1729 static struct hotmod_vals hotmod_ops[] = { 1730 { "add", HM_ADD }, 1731 { "remove", HM_REMOVE }, 1732 { NULL } 1733 }; 1734 static struct hotmod_vals hotmod_si[] = { 1735 { "kcs", SI_KCS }, 1736 { "smic", SI_SMIC }, 1737 { "bt", SI_BT }, 1738 { NULL } 1739 }; 1740 static struct hotmod_vals hotmod_as[] = { 1741 { "mem", IPMI_MEM_ADDR_SPACE }, 1742 { "i/o", IPMI_IO_ADDR_SPACE }, 1743 { NULL } 1744 }; 1745 1746 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1747 { 1748 char *s; 1749 int i; 1750 1751 s = strchr(*curr, ','); 1752 if (!s) { 1753 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1754 return -EINVAL; 1755 } 1756 *s = '\0'; 1757 s++; 1758 for (i = 0; v[i].name; i++) { 1759 if (strcmp(*curr, v[i].name) == 0) { 1760 *val = v[i].val; 1761 *curr = s; 1762 return 0; 1763 } 1764 } 1765 1766 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1767 return -EINVAL; 1768 } 1769 1770 static int check_hotmod_int_op(const char *curr, const char *option, 1771 const char *name, int *val) 1772 { 1773 char *n; 1774 1775 if (strcmp(curr, name) == 0) { 1776 if (!option) { 1777 printk(KERN_WARNING PFX 1778 "No option given for '%s'\n", 1779 curr); 1780 return -EINVAL; 1781 } 1782 *val = simple_strtoul(option, &n, 0); 1783 if ((*n != '\0') || (*option == '\0')) { 1784 printk(KERN_WARNING PFX 1785 "Bad option given for '%s'\n", 1786 curr); 1787 return -EINVAL; 1788 } 1789 return 1; 1790 } 1791 return 0; 1792 } 1793 1794 static struct smi_info *smi_info_alloc(void) 1795 { 1796 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1797 1798 if (info) 1799 spin_lock_init(&info->si_lock); 1800 return info; 1801 } 1802 1803 static int hotmod_handler(const char *val, struct kernel_param *kp) 1804 { 1805 char *str = kstrdup(val, GFP_KERNEL); 1806 int rv; 1807 char *next, *curr, *s, *n, *o; 1808 enum hotmod_op op; 1809 enum si_type si_type; 1810 int addr_space; 1811 unsigned long addr; 1812 int regspacing; 1813 int regsize; 1814 int regshift; 1815 int irq; 1816 int ipmb; 1817 int ival; 1818 int len; 1819 struct smi_info *info; 1820 1821 if (!str) 1822 return -ENOMEM; 1823 1824 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1825 len = strlen(str); 1826 ival = len - 1; 1827 while ((ival >= 0) && isspace(str[ival])) { 1828 str[ival] = '\0'; 1829 ival--; 1830 } 1831 1832 for (curr = str; curr; curr = next) { 1833 regspacing = 1; 1834 regsize = 1; 1835 regshift = 0; 1836 irq = 0; 1837 ipmb = 0; /* Choose the default if not specified */ 1838 1839 next = strchr(curr, ':'); 1840 if (next) { 1841 *next = '\0'; 1842 next++; 1843 } 1844 1845 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1846 if (rv) 1847 break; 1848 op = ival; 1849 1850 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1851 if (rv) 1852 break; 1853 si_type = ival; 1854 1855 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1856 if (rv) 1857 break; 1858 1859 s = strchr(curr, ','); 1860 if (s) { 1861 *s = '\0'; 1862 s++; 1863 } 1864 addr = simple_strtoul(curr, &n, 0); 1865 if ((*n != '\0') || (*curr == '\0')) { 1866 printk(KERN_WARNING PFX "Invalid hotmod address" 1867 " '%s'\n", curr); 1868 break; 1869 } 1870 1871 while (s) { 1872 curr = s; 1873 s = strchr(curr, ','); 1874 if (s) { 1875 *s = '\0'; 1876 s++; 1877 } 1878 o = strchr(curr, '='); 1879 if (o) { 1880 *o = '\0'; 1881 o++; 1882 } 1883 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1884 if (rv < 0) 1885 goto out; 1886 else if (rv) 1887 continue; 1888 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1889 if (rv < 0) 1890 goto out; 1891 else if (rv) 1892 continue; 1893 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1894 if (rv < 0) 1895 goto out; 1896 else if (rv) 1897 continue; 1898 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1899 if (rv < 0) 1900 goto out; 1901 else if (rv) 1902 continue; 1903 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1904 if (rv < 0) 1905 goto out; 1906 else if (rv) 1907 continue; 1908 1909 rv = -EINVAL; 1910 printk(KERN_WARNING PFX 1911 "Invalid hotmod option '%s'\n", 1912 curr); 1913 goto out; 1914 } 1915 1916 if (op == HM_ADD) { 1917 info = smi_info_alloc(); 1918 if (!info) { 1919 rv = -ENOMEM; 1920 goto out; 1921 } 1922 1923 info->addr_source = SI_HOTMOD; 1924 info->si_type = si_type; 1925 info->io.addr_data = addr; 1926 info->io.addr_type = addr_space; 1927 if (addr_space == IPMI_MEM_ADDR_SPACE) 1928 info->io_setup = mem_setup; 1929 else 1930 info->io_setup = port_setup; 1931 1932 info->io.addr = NULL; 1933 info->io.regspacing = regspacing; 1934 if (!info->io.regspacing) 1935 info->io.regspacing = DEFAULT_REGSPACING; 1936 info->io.regsize = regsize; 1937 if (!info->io.regsize) 1938 info->io.regsize = DEFAULT_REGSPACING; 1939 info->io.regshift = regshift; 1940 info->irq = irq; 1941 if (info->irq) 1942 info->irq_setup = std_irq_setup; 1943 info->slave_addr = ipmb; 1944 1945 rv = add_smi(info); 1946 if (rv) { 1947 kfree(info); 1948 goto out; 1949 } 1950 rv = try_smi_init(info); 1951 if (rv) { 1952 cleanup_one_si(info); 1953 goto out; 1954 } 1955 } else { 1956 /* remove */ 1957 struct smi_info *e, *tmp_e; 1958 1959 mutex_lock(&smi_infos_lock); 1960 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1961 if (e->io.addr_type != addr_space) 1962 continue; 1963 if (e->si_type != si_type) 1964 continue; 1965 if (e->io.addr_data == addr) 1966 cleanup_one_si(e); 1967 } 1968 mutex_unlock(&smi_infos_lock); 1969 } 1970 } 1971 rv = len; 1972 out: 1973 kfree(str); 1974 return rv; 1975 } 1976 1977 static int hardcode_find_bmc(void) 1978 { 1979 int ret = -ENODEV; 1980 int i; 1981 struct smi_info *info; 1982 1983 for (i = 0; i < SI_MAX_PARMS; i++) { 1984 if (!ports[i] && !addrs[i]) 1985 continue; 1986 1987 info = smi_info_alloc(); 1988 if (!info) 1989 return -ENOMEM; 1990 1991 info->addr_source = SI_HARDCODED; 1992 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1993 1994 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1995 info->si_type = SI_KCS; 1996 } else if (strcmp(si_type[i], "smic") == 0) { 1997 info->si_type = SI_SMIC; 1998 } else if (strcmp(si_type[i], "bt") == 0) { 1999 info->si_type = SI_BT; 2000 } else { 2001 printk(KERN_WARNING PFX "Interface type specified " 2002 "for interface %d, was invalid: %s\n", 2003 i, si_type[i]); 2004 kfree(info); 2005 continue; 2006 } 2007 2008 if (ports[i]) { 2009 /* An I/O port */ 2010 info->io_setup = port_setup; 2011 info->io.addr_data = ports[i]; 2012 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2013 } else if (addrs[i]) { 2014 /* A memory port */ 2015 info->io_setup = mem_setup; 2016 info->io.addr_data = addrs[i]; 2017 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2018 } else { 2019 printk(KERN_WARNING PFX "Interface type specified " 2020 "for interface %d, but port and address were " 2021 "not set or set to zero.\n", i); 2022 kfree(info); 2023 continue; 2024 } 2025 2026 info->io.addr = NULL; 2027 info->io.regspacing = regspacings[i]; 2028 if (!info->io.regspacing) 2029 info->io.regspacing = DEFAULT_REGSPACING; 2030 info->io.regsize = regsizes[i]; 2031 if (!info->io.regsize) 2032 info->io.regsize = DEFAULT_REGSPACING; 2033 info->io.regshift = regshifts[i]; 2034 info->irq = irqs[i]; 2035 if (info->irq) 2036 info->irq_setup = std_irq_setup; 2037 info->slave_addr = slave_addrs[i]; 2038 2039 if (!add_smi(info)) { 2040 if (try_smi_init(info)) 2041 cleanup_one_si(info); 2042 ret = 0; 2043 } else { 2044 kfree(info); 2045 } 2046 } 2047 return ret; 2048 } 2049 2050 #ifdef CONFIG_ACPI 2051 2052 #include <linux/acpi.h> 2053 2054 /* 2055 * Once we get an ACPI failure, we don't try any more, because we go 2056 * through the tables sequentially. Once we don't find a table, there 2057 * are no more. 2058 */ 2059 static int acpi_failure; 2060 2061 /* For GPE-type interrupts. */ 2062 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2063 u32 gpe_number, void *context) 2064 { 2065 struct smi_info *smi_info = context; 2066 unsigned long flags; 2067 2068 spin_lock_irqsave(&(smi_info->si_lock), flags); 2069 2070 smi_inc_stat(smi_info, interrupts); 2071 2072 debug_timestamp("ACPI_GPE"); 2073 2074 smi_event_handler(smi_info, 0); 2075 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2076 2077 return ACPI_INTERRUPT_HANDLED; 2078 } 2079 2080 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2081 { 2082 if (!info->irq) 2083 return; 2084 2085 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2086 } 2087 2088 static int acpi_gpe_irq_setup(struct smi_info *info) 2089 { 2090 acpi_status status; 2091 2092 if (!info->irq) 2093 return 0; 2094 2095 status = acpi_install_gpe_handler(NULL, 2096 info->irq, 2097 ACPI_GPE_LEVEL_TRIGGERED, 2098 &ipmi_acpi_gpe, 2099 info); 2100 if (status != AE_OK) { 2101 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2102 " running polled\n", DEVICE_NAME, info->irq); 2103 info->irq = 0; 2104 return -EINVAL; 2105 } else { 2106 info->irq_cleanup = acpi_gpe_irq_cleanup; 2107 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2108 return 0; 2109 } 2110 } 2111 2112 /* 2113 * Defined at 2114 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2115 */ 2116 struct SPMITable { 2117 s8 Signature[4]; 2118 u32 Length; 2119 u8 Revision; 2120 u8 Checksum; 2121 s8 OEMID[6]; 2122 s8 OEMTableID[8]; 2123 s8 OEMRevision[4]; 2124 s8 CreatorID[4]; 2125 s8 CreatorRevision[4]; 2126 u8 InterfaceType; 2127 u8 IPMIlegacy; 2128 s16 SpecificationRevision; 2129 2130 /* 2131 * Bit 0 - SCI interrupt supported 2132 * Bit 1 - I/O APIC/SAPIC 2133 */ 2134 u8 InterruptType; 2135 2136 /* 2137 * If bit 0 of InterruptType is set, then this is the SCI 2138 * interrupt in the GPEx_STS register. 2139 */ 2140 u8 GPE; 2141 2142 s16 Reserved; 2143 2144 /* 2145 * If bit 1 of InterruptType is set, then this is the I/O 2146 * APIC/SAPIC interrupt. 2147 */ 2148 u32 GlobalSystemInterrupt; 2149 2150 /* The actual register address. */ 2151 struct acpi_generic_address addr; 2152 2153 u8 UID[4]; 2154 2155 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2156 }; 2157 2158 static int try_init_spmi(struct SPMITable *spmi) 2159 { 2160 struct smi_info *info; 2161 int rv; 2162 2163 if (spmi->IPMIlegacy != 1) { 2164 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2165 return -ENODEV; 2166 } 2167 2168 info = smi_info_alloc(); 2169 if (!info) { 2170 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2171 return -ENOMEM; 2172 } 2173 2174 info->addr_source = SI_SPMI; 2175 printk(KERN_INFO PFX "probing via SPMI\n"); 2176 2177 /* Figure out the interface type. */ 2178 switch (spmi->InterfaceType) { 2179 case 1: /* KCS */ 2180 info->si_type = SI_KCS; 2181 break; 2182 case 2: /* SMIC */ 2183 info->si_type = SI_SMIC; 2184 break; 2185 case 3: /* BT */ 2186 info->si_type = SI_BT; 2187 break; 2188 case 4: /* SSIF, just ignore */ 2189 kfree(info); 2190 return -EIO; 2191 default: 2192 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2193 spmi->InterfaceType); 2194 kfree(info); 2195 return -EIO; 2196 } 2197 2198 if (spmi->InterruptType & 1) { 2199 /* We've got a GPE interrupt. */ 2200 info->irq = spmi->GPE; 2201 info->irq_setup = acpi_gpe_irq_setup; 2202 } else if (spmi->InterruptType & 2) { 2203 /* We've got an APIC/SAPIC interrupt. */ 2204 info->irq = spmi->GlobalSystemInterrupt; 2205 info->irq_setup = std_irq_setup; 2206 } else { 2207 /* Use the default interrupt setting. */ 2208 info->irq = 0; 2209 info->irq_setup = NULL; 2210 } 2211 2212 if (spmi->addr.bit_width) { 2213 /* A (hopefully) properly formed register bit width. */ 2214 info->io.regspacing = spmi->addr.bit_width / 8; 2215 } else { 2216 info->io.regspacing = DEFAULT_REGSPACING; 2217 } 2218 info->io.regsize = info->io.regspacing; 2219 info->io.regshift = spmi->addr.bit_offset; 2220 2221 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2222 info->io_setup = mem_setup; 2223 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2224 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2225 info->io_setup = port_setup; 2226 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2227 } else { 2228 kfree(info); 2229 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2230 return -EIO; 2231 } 2232 info->io.addr_data = spmi->addr.address; 2233 2234 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2235 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2236 info->io.addr_data, info->io.regsize, info->io.regspacing, 2237 info->irq); 2238 2239 rv = add_smi(info); 2240 if (rv) 2241 kfree(info); 2242 2243 return rv; 2244 } 2245 2246 static void spmi_find_bmc(void) 2247 { 2248 acpi_status status; 2249 struct SPMITable *spmi; 2250 int i; 2251 2252 if (acpi_disabled) 2253 return; 2254 2255 if (acpi_failure) 2256 return; 2257 2258 for (i = 0; ; i++) { 2259 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2260 (struct acpi_table_header **)&spmi); 2261 if (status != AE_OK) 2262 return; 2263 2264 try_init_spmi(spmi); 2265 } 2266 } 2267 #endif 2268 2269 #ifdef CONFIG_DMI 2270 struct dmi_ipmi_data { 2271 u8 type; 2272 u8 addr_space; 2273 unsigned long base_addr; 2274 u8 irq; 2275 u8 offset; 2276 u8 slave_addr; 2277 }; 2278 2279 static int decode_dmi(const struct dmi_header *dm, 2280 struct dmi_ipmi_data *dmi) 2281 { 2282 const u8 *data = (const u8 *)dm; 2283 unsigned long base_addr; 2284 u8 reg_spacing; 2285 u8 len = dm->length; 2286 2287 dmi->type = data[4]; 2288 2289 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2290 if (len >= 0x11) { 2291 if (base_addr & 1) { 2292 /* I/O */ 2293 base_addr &= 0xFFFE; 2294 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2295 } else 2296 /* Memory */ 2297 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2298 2299 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2300 is odd. */ 2301 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2302 2303 dmi->irq = data[0x11]; 2304 2305 /* The top two bits of byte 0x10 hold the register spacing. */ 2306 reg_spacing = (data[0x10] & 0xC0) >> 6; 2307 switch (reg_spacing) { 2308 case 0x00: /* Byte boundaries */ 2309 dmi->offset = 1; 2310 break; 2311 case 0x01: /* 32-bit boundaries */ 2312 dmi->offset = 4; 2313 break; 2314 case 0x02: /* 16-byte boundaries */ 2315 dmi->offset = 16; 2316 break; 2317 default: 2318 /* Some other interface, just ignore it. */ 2319 return -EIO; 2320 } 2321 } else { 2322 /* Old DMI spec. */ 2323 /* 2324 * Note that technically, the lower bit of the base 2325 * address should be 1 if the address is I/O and 0 if 2326 * the address is in memory. So many systems get that 2327 * wrong (and all that I have seen are I/O) so we just 2328 * ignore that bit and assume I/O. Systems that use 2329 * memory should use the newer spec, anyway. 2330 */ 2331 dmi->base_addr = base_addr & 0xfffe; 2332 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2333 dmi->offset = 1; 2334 } 2335 2336 dmi->slave_addr = data[6]; 2337 2338 return 0; 2339 } 2340 2341 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2342 { 2343 struct smi_info *info; 2344 2345 info = smi_info_alloc(); 2346 if (!info) { 2347 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2348 return; 2349 } 2350 2351 info->addr_source = SI_SMBIOS; 2352 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2353 2354 switch (ipmi_data->type) { 2355 case 0x01: /* KCS */ 2356 info->si_type = SI_KCS; 2357 break; 2358 case 0x02: /* SMIC */ 2359 info->si_type = SI_SMIC; 2360 break; 2361 case 0x03: /* BT */ 2362 info->si_type = SI_BT; 2363 break; 2364 default: 2365 kfree(info); 2366 return; 2367 } 2368 2369 switch (ipmi_data->addr_space) { 2370 case IPMI_MEM_ADDR_SPACE: 2371 info->io_setup = mem_setup; 2372 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2373 break; 2374 2375 case IPMI_IO_ADDR_SPACE: 2376 info->io_setup = port_setup; 2377 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2378 break; 2379 2380 default: 2381 kfree(info); 2382 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2383 ipmi_data->addr_space); 2384 return; 2385 } 2386 info->io.addr_data = ipmi_data->base_addr; 2387 2388 info->io.regspacing = ipmi_data->offset; 2389 if (!info->io.regspacing) 2390 info->io.regspacing = DEFAULT_REGSPACING; 2391 info->io.regsize = DEFAULT_REGSPACING; 2392 info->io.regshift = 0; 2393 2394 info->slave_addr = ipmi_data->slave_addr; 2395 2396 info->irq = ipmi_data->irq; 2397 if (info->irq) 2398 info->irq_setup = std_irq_setup; 2399 2400 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2401 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2402 info->io.addr_data, info->io.regsize, info->io.regspacing, 2403 info->irq); 2404 2405 if (add_smi(info)) 2406 kfree(info); 2407 } 2408 2409 static void dmi_find_bmc(void) 2410 { 2411 const struct dmi_device *dev = NULL; 2412 struct dmi_ipmi_data data; 2413 int rv; 2414 2415 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2416 memset(&data, 0, sizeof(data)); 2417 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2418 &data); 2419 if (!rv) 2420 try_init_dmi(&data); 2421 } 2422 } 2423 #endif /* CONFIG_DMI */ 2424 2425 #ifdef CONFIG_PCI 2426 2427 #define PCI_ERMC_CLASSCODE 0x0C0700 2428 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2429 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2430 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2431 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2432 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2433 2434 #define PCI_HP_VENDOR_ID 0x103C 2435 #define PCI_MMC_DEVICE_ID 0x121A 2436 #define PCI_MMC_ADDR_CW 0x10 2437 2438 static void ipmi_pci_cleanup(struct smi_info *info) 2439 { 2440 struct pci_dev *pdev = info->addr_source_data; 2441 2442 pci_disable_device(pdev); 2443 } 2444 2445 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2446 { 2447 if (info->si_type == SI_KCS) { 2448 unsigned char status; 2449 int regspacing; 2450 2451 info->io.regsize = DEFAULT_REGSIZE; 2452 info->io.regshift = 0; 2453 info->io_size = 2; 2454 info->handlers = &kcs_smi_handlers; 2455 2456 /* detect 1, 4, 16byte spacing */ 2457 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2458 info->io.regspacing = regspacing; 2459 if (info->io_setup(info)) { 2460 dev_err(info->dev, 2461 "Could not setup I/O space\n"); 2462 return DEFAULT_REGSPACING; 2463 } 2464 /* write invalid cmd */ 2465 info->io.outputb(&info->io, 1, 0x10); 2466 /* read status back */ 2467 status = info->io.inputb(&info->io, 1); 2468 info->io_cleanup(info); 2469 if (status) 2470 return regspacing; 2471 regspacing *= 4; 2472 } 2473 } 2474 return DEFAULT_REGSPACING; 2475 } 2476 2477 static int ipmi_pci_probe(struct pci_dev *pdev, 2478 const struct pci_device_id *ent) 2479 { 2480 int rv; 2481 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2482 struct smi_info *info; 2483 2484 info = smi_info_alloc(); 2485 if (!info) 2486 return -ENOMEM; 2487 2488 info->addr_source = SI_PCI; 2489 dev_info(&pdev->dev, "probing via PCI"); 2490 2491 switch (class_type) { 2492 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2493 info->si_type = SI_SMIC; 2494 break; 2495 2496 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2497 info->si_type = SI_KCS; 2498 break; 2499 2500 case PCI_ERMC_CLASSCODE_TYPE_BT: 2501 info->si_type = SI_BT; 2502 break; 2503 2504 default: 2505 kfree(info); 2506 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2507 return -ENOMEM; 2508 } 2509 2510 rv = pci_enable_device(pdev); 2511 if (rv) { 2512 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2513 kfree(info); 2514 return rv; 2515 } 2516 2517 info->addr_source_cleanup = ipmi_pci_cleanup; 2518 info->addr_source_data = pdev; 2519 2520 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2521 info->io_setup = port_setup; 2522 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2523 } else { 2524 info->io_setup = mem_setup; 2525 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2526 } 2527 info->io.addr_data = pci_resource_start(pdev, 0); 2528 2529 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2530 info->io.regsize = DEFAULT_REGSIZE; 2531 info->io.regshift = 0; 2532 2533 info->irq = pdev->irq; 2534 if (info->irq) 2535 info->irq_setup = std_irq_setup; 2536 2537 info->dev = &pdev->dev; 2538 pci_set_drvdata(pdev, info); 2539 2540 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2541 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2542 info->irq); 2543 2544 rv = add_smi(info); 2545 if (rv) { 2546 kfree(info); 2547 pci_disable_device(pdev); 2548 } 2549 2550 return rv; 2551 } 2552 2553 static void ipmi_pci_remove(struct pci_dev *pdev) 2554 { 2555 struct smi_info *info = pci_get_drvdata(pdev); 2556 cleanup_one_si(info); 2557 pci_disable_device(pdev); 2558 } 2559 2560 static const struct pci_device_id ipmi_pci_devices[] = { 2561 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2562 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2563 { 0, } 2564 }; 2565 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2566 2567 static struct pci_driver ipmi_pci_driver = { 2568 .name = DEVICE_NAME, 2569 .id_table = ipmi_pci_devices, 2570 .probe = ipmi_pci_probe, 2571 .remove = ipmi_pci_remove, 2572 }; 2573 #endif /* CONFIG_PCI */ 2574 2575 #ifdef CONFIG_OF 2576 static const struct of_device_id of_ipmi_match[] = { 2577 { .type = "ipmi", .compatible = "ipmi-kcs", 2578 .data = (void *)(unsigned long) SI_KCS }, 2579 { .type = "ipmi", .compatible = "ipmi-smic", 2580 .data = (void *)(unsigned long) SI_SMIC }, 2581 { .type = "ipmi", .compatible = "ipmi-bt", 2582 .data = (void *)(unsigned long) SI_BT }, 2583 {}, 2584 }; 2585 MODULE_DEVICE_TABLE(of, of_ipmi_match); 2586 2587 static int of_ipmi_probe(struct platform_device *dev) 2588 { 2589 const struct of_device_id *match; 2590 struct smi_info *info; 2591 struct resource resource; 2592 const __be32 *regsize, *regspacing, *regshift; 2593 struct device_node *np = dev->dev.of_node; 2594 int ret; 2595 int proplen; 2596 2597 dev_info(&dev->dev, "probing via device tree\n"); 2598 2599 match = of_match_device(of_ipmi_match, &dev->dev); 2600 if (!match) 2601 return -ENODEV; 2602 2603 if (!of_device_is_available(np)) 2604 return -EINVAL; 2605 2606 ret = of_address_to_resource(np, 0, &resource); 2607 if (ret) { 2608 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2609 return ret; 2610 } 2611 2612 regsize = of_get_property(np, "reg-size", &proplen); 2613 if (regsize && proplen != 4) { 2614 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2615 return -EINVAL; 2616 } 2617 2618 regspacing = of_get_property(np, "reg-spacing", &proplen); 2619 if (regspacing && proplen != 4) { 2620 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2621 return -EINVAL; 2622 } 2623 2624 regshift = of_get_property(np, "reg-shift", &proplen); 2625 if (regshift && proplen != 4) { 2626 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2627 return -EINVAL; 2628 } 2629 2630 info = smi_info_alloc(); 2631 2632 if (!info) { 2633 dev_err(&dev->dev, 2634 "could not allocate memory for OF probe\n"); 2635 return -ENOMEM; 2636 } 2637 2638 info->si_type = (enum si_type) match->data; 2639 info->addr_source = SI_DEVICETREE; 2640 info->irq_setup = std_irq_setup; 2641 2642 if (resource.flags & IORESOURCE_IO) { 2643 info->io_setup = port_setup; 2644 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2645 } else { 2646 info->io_setup = mem_setup; 2647 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2648 } 2649 2650 info->io.addr_data = resource.start; 2651 2652 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2653 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2654 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2655 2656 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2657 info->dev = &dev->dev; 2658 2659 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2660 info->io.addr_data, info->io.regsize, info->io.regspacing, 2661 info->irq); 2662 2663 dev_set_drvdata(&dev->dev, info); 2664 2665 ret = add_smi(info); 2666 if (ret) { 2667 kfree(info); 2668 return ret; 2669 } 2670 return 0; 2671 } 2672 #else 2673 #define of_ipmi_match NULL 2674 static int of_ipmi_probe(struct platform_device *dev) 2675 { 2676 return -ENODEV; 2677 } 2678 #endif 2679 2680 #ifdef CONFIG_ACPI 2681 static int acpi_ipmi_probe(struct platform_device *dev) 2682 { 2683 struct smi_info *info; 2684 struct resource *res, *res_second; 2685 acpi_handle handle; 2686 acpi_status status; 2687 unsigned long long tmp; 2688 int rv = -EINVAL; 2689 2690 handle = ACPI_HANDLE(&dev->dev); 2691 if (!handle) 2692 return -ENODEV; 2693 2694 info = smi_info_alloc(); 2695 if (!info) 2696 return -ENOMEM; 2697 2698 info->addr_source = SI_ACPI; 2699 dev_info(&dev->dev, PFX "probing via ACPI\n"); 2700 2701 info->addr_info.acpi_info.acpi_handle = handle; 2702 2703 /* _IFT tells us the interface type: KCS, BT, etc */ 2704 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2705 if (ACPI_FAILURE(status)) { 2706 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); 2707 goto err_free; 2708 } 2709 2710 switch (tmp) { 2711 case 1: 2712 info->si_type = SI_KCS; 2713 break; 2714 case 2: 2715 info->si_type = SI_SMIC; 2716 break; 2717 case 3: 2718 info->si_type = SI_BT; 2719 break; 2720 case 4: /* SSIF, just ignore */ 2721 rv = -ENODEV; 2722 goto err_free; 2723 default: 2724 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2725 goto err_free; 2726 } 2727 2728 res = platform_get_resource(dev, IORESOURCE_IO, 0); 2729 if (res) { 2730 info->io_setup = port_setup; 2731 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2732 } else { 2733 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2734 if (res) { 2735 info->io_setup = mem_setup; 2736 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2737 } 2738 } 2739 if (!res) { 2740 dev_err(&dev->dev, "no I/O or memory address\n"); 2741 goto err_free; 2742 } 2743 info->io.addr_data = res->start; 2744 2745 info->io.regspacing = DEFAULT_REGSPACING; 2746 res_second = platform_get_resource(dev, 2747 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2748 IORESOURCE_IO : IORESOURCE_MEM, 2749 1); 2750 if (res_second) { 2751 if (res_second->start > info->io.addr_data) 2752 info->io.regspacing = 2753 res_second->start - info->io.addr_data; 2754 } 2755 info->io.regsize = DEFAULT_REGSPACING; 2756 info->io.regshift = 0; 2757 2758 /* If _GPE exists, use it; otherwise use standard interrupts */ 2759 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2760 if (ACPI_SUCCESS(status)) { 2761 info->irq = tmp; 2762 info->irq_setup = acpi_gpe_irq_setup; 2763 } else { 2764 int irq = platform_get_irq(dev, 0); 2765 2766 if (irq > 0) { 2767 info->irq = irq; 2768 info->irq_setup = std_irq_setup; 2769 } 2770 } 2771 2772 info->dev = &dev->dev; 2773 platform_set_drvdata(dev, info); 2774 2775 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2776 res, info->io.regsize, info->io.regspacing, 2777 info->irq); 2778 2779 rv = add_smi(info); 2780 if (rv) 2781 kfree(info); 2782 2783 return rv; 2784 2785 err_free: 2786 kfree(info); 2787 return rv; 2788 } 2789 2790 static const struct acpi_device_id acpi_ipmi_match[] = { 2791 { "IPI0001", 0 }, 2792 { }, 2793 }; 2794 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); 2795 #else 2796 static int acpi_ipmi_probe(struct platform_device *dev) 2797 { 2798 return -ENODEV; 2799 } 2800 #endif 2801 2802 static int ipmi_probe(struct platform_device *dev) 2803 { 2804 if (of_ipmi_probe(dev) == 0) 2805 return 0; 2806 2807 return acpi_ipmi_probe(dev); 2808 } 2809 2810 static int ipmi_remove(struct platform_device *dev) 2811 { 2812 struct smi_info *info = dev_get_drvdata(&dev->dev); 2813 2814 cleanup_one_si(info); 2815 return 0; 2816 } 2817 2818 static struct platform_driver ipmi_driver = { 2819 .driver = { 2820 .name = DEVICE_NAME, 2821 .of_match_table = of_ipmi_match, 2822 .acpi_match_table = ACPI_PTR(acpi_ipmi_match), 2823 }, 2824 .probe = ipmi_probe, 2825 .remove = ipmi_remove, 2826 }; 2827 2828 #ifdef CONFIG_PARISC 2829 static int ipmi_parisc_probe(struct parisc_device *dev) 2830 { 2831 struct smi_info *info; 2832 int rv; 2833 2834 info = smi_info_alloc(); 2835 2836 if (!info) { 2837 dev_err(&dev->dev, 2838 "could not allocate memory for PARISC probe\n"); 2839 return -ENOMEM; 2840 } 2841 2842 info->si_type = SI_KCS; 2843 info->addr_source = SI_DEVICETREE; 2844 info->io_setup = mem_setup; 2845 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2846 info->io.addr_data = dev->hpa.start; 2847 info->io.regsize = 1; 2848 info->io.regspacing = 1; 2849 info->io.regshift = 0; 2850 info->irq = 0; /* no interrupt */ 2851 info->irq_setup = NULL; 2852 info->dev = &dev->dev; 2853 2854 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2855 2856 dev_set_drvdata(&dev->dev, info); 2857 2858 rv = add_smi(info); 2859 if (rv) { 2860 kfree(info); 2861 return rv; 2862 } 2863 2864 return 0; 2865 } 2866 2867 static int ipmi_parisc_remove(struct parisc_device *dev) 2868 { 2869 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2870 return 0; 2871 } 2872 2873 static struct parisc_device_id ipmi_parisc_tbl[] = { 2874 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2875 { 0, } 2876 }; 2877 2878 static struct parisc_driver ipmi_parisc_driver = { 2879 .name = "ipmi", 2880 .id_table = ipmi_parisc_tbl, 2881 .probe = ipmi_parisc_probe, 2882 .remove = ipmi_parisc_remove, 2883 }; 2884 #endif /* CONFIG_PARISC */ 2885 2886 static int wait_for_msg_done(struct smi_info *smi_info) 2887 { 2888 enum si_sm_result smi_result; 2889 2890 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2891 for (;;) { 2892 if (smi_result == SI_SM_CALL_WITH_DELAY || 2893 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2894 schedule_timeout_uninterruptible(1); 2895 smi_result = smi_info->handlers->event( 2896 smi_info->si_sm, jiffies_to_usecs(1)); 2897 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2898 smi_result = smi_info->handlers->event( 2899 smi_info->si_sm, 0); 2900 } else 2901 break; 2902 } 2903 if (smi_result == SI_SM_HOSED) 2904 /* 2905 * We couldn't get the state machine to run, so whatever's at 2906 * the port is probably not an IPMI SMI interface. 2907 */ 2908 return -ENODEV; 2909 2910 return 0; 2911 } 2912 2913 static int try_get_dev_id(struct smi_info *smi_info) 2914 { 2915 unsigned char msg[2]; 2916 unsigned char *resp; 2917 unsigned long resp_len; 2918 int rv = 0; 2919 2920 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2921 if (!resp) 2922 return -ENOMEM; 2923 2924 /* 2925 * Do a Get Device ID command, since it comes back with some 2926 * useful info. 2927 */ 2928 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2929 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2930 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2931 2932 rv = wait_for_msg_done(smi_info); 2933 if (rv) 2934 goto out; 2935 2936 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2937 resp, IPMI_MAX_MSG_LENGTH); 2938 2939 /* Check and record info from the get device id, in case we need it. */ 2940 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2941 2942 out: 2943 kfree(resp); 2944 return rv; 2945 } 2946 2947 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 2948 { 2949 unsigned char msg[3]; 2950 unsigned char *resp; 2951 unsigned long resp_len; 2952 int rv; 2953 2954 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2955 if (!resp) 2956 return -ENOMEM; 2957 2958 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2959 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2960 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2961 2962 rv = wait_for_msg_done(smi_info); 2963 if (rv) { 2964 dev_warn(smi_info->dev, 2965 "Error getting response from get global enables command: %d\n", 2966 rv); 2967 goto out; 2968 } 2969 2970 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2971 resp, IPMI_MAX_MSG_LENGTH); 2972 2973 if (resp_len < 4 || 2974 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2975 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2976 resp[2] != 0) { 2977 dev_warn(smi_info->dev, 2978 "Invalid return from get global enables command: %ld %x %x %x\n", 2979 resp_len, resp[0], resp[1], resp[2]); 2980 rv = -EINVAL; 2981 goto out; 2982 } else { 2983 *enables = resp[3]; 2984 } 2985 2986 out: 2987 kfree(resp); 2988 return rv; 2989 } 2990 2991 /* 2992 * Returns 1 if it gets an error from the command. 2993 */ 2994 static int set_global_enables(struct smi_info *smi_info, u8 enables) 2995 { 2996 unsigned char msg[3]; 2997 unsigned char *resp; 2998 unsigned long resp_len; 2999 int rv; 3000 3001 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3002 if (!resp) 3003 return -ENOMEM; 3004 3005 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3006 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3007 msg[2] = enables; 3008 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3009 3010 rv = wait_for_msg_done(smi_info); 3011 if (rv) { 3012 dev_warn(smi_info->dev, 3013 "Error getting response from set global enables command: %d\n", 3014 rv); 3015 goto out; 3016 } 3017 3018 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3019 resp, IPMI_MAX_MSG_LENGTH); 3020 3021 if (resp_len < 3 || 3022 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3023 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3024 dev_warn(smi_info->dev, 3025 "Invalid return from set global enables command: %ld %x %x\n", 3026 resp_len, resp[0], resp[1]); 3027 rv = -EINVAL; 3028 goto out; 3029 } 3030 3031 if (resp[2] != 0) 3032 rv = 1; 3033 3034 out: 3035 kfree(resp); 3036 return rv; 3037 } 3038 3039 /* 3040 * Some BMCs do not support clearing the receive irq bit in the global 3041 * enables (even if they don't support interrupts on the BMC). Check 3042 * for this and handle it properly. 3043 */ 3044 static void check_clr_rcv_irq(struct smi_info *smi_info) 3045 { 3046 u8 enables = 0; 3047 int rv; 3048 3049 rv = get_global_enables(smi_info, &enables); 3050 if (!rv) { 3051 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 3052 /* Already clear, should work ok. */ 3053 return; 3054 3055 enables &= ~IPMI_BMC_RCV_MSG_INTR; 3056 rv = set_global_enables(smi_info, enables); 3057 } 3058 3059 if (rv < 0) { 3060 dev_err(smi_info->dev, 3061 "Cannot check clearing the rcv irq: %d\n", rv); 3062 return; 3063 } 3064 3065 if (rv) { 3066 /* 3067 * An error when setting the event buffer bit means 3068 * clearing the bit is not supported. 3069 */ 3070 dev_warn(smi_info->dev, 3071 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3072 smi_info->cannot_disable_irq = true; 3073 } 3074 } 3075 3076 /* 3077 * Some BMCs do not support setting the interrupt bits in the global 3078 * enables even if they support interrupts. Clearly bad, but we can 3079 * compensate. 3080 */ 3081 static void check_set_rcv_irq(struct smi_info *smi_info) 3082 { 3083 u8 enables = 0; 3084 int rv; 3085 3086 if (!smi_info->irq) 3087 return; 3088 3089 rv = get_global_enables(smi_info, &enables); 3090 if (!rv) { 3091 enables |= IPMI_BMC_RCV_MSG_INTR; 3092 rv = set_global_enables(smi_info, enables); 3093 } 3094 3095 if (rv < 0) { 3096 dev_err(smi_info->dev, 3097 "Cannot check setting the rcv irq: %d\n", rv); 3098 return; 3099 } 3100 3101 if (rv) { 3102 /* 3103 * An error when setting the event buffer bit means 3104 * setting the bit is not supported. 3105 */ 3106 dev_warn(smi_info->dev, 3107 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3108 smi_info->cannot_disable_irq = true; 3109 smi_info->irq_enable_broken = true; 3110 } 3111 } 3112 3113 static int try_enable_event_buffer(struct smi_info *smi_info) 3114 { 3115 unsigned char msg[3]; 3116 unsigned char *resp; 3117 unsigned long resp_len; 3118 int rv = 0; 3119 3120 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3121 if (!resp) 3122 return -ENOMEM; 3123 3124 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3125 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3126 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3127 3128 rv = wait_for_msg_done(smi_info); 3129 if (rv) { 3130 printk(KERN_WARNING PFX "Error getting response from get" 3131 " global enables command, the event buffer is not" 3132 " enabled.\n"); 3133 goto out; 3134 } 3135 3136 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3137 resp, IPMI_MAX_MSG_LENGTH); 3138 3139 if (resp_len < 4 || 3140 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3141 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3142 resp[2] != 0) { 3143 printk(KERN_WARNING PFX "Invalid return from get global" 3144 " enables command, cannot enable the event buffer.\n"); 3145 rv = -EINVAL; 3146 goto out; 3147 } 3148 3149 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3150 /* buffer is already enabled, nothing to do. */ 3151 smi_info->supports_event_msg_buff = true; 3152 goto out; 3153 } 3154 3155 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3156 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3157 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3158 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3159 3160 rv = wait_for_msg_done(smi_info); 3161 if (rv) { 3162 printk(KERN_WARNING PFX "Error getting response from set" 3163 " global, enables command, the event buffer is not" 3164 " enabled.\n"); 3165 goto out; 3166 } 3167 3168 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3169 resp, IPMI_MAX_MSG_LENGTH); 3170 3171 if (resp_len < 3 || 3172 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3173 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3174 printk(KERN_WARNING PFX "Invalid return from get global," 3175 "enables command, not enable the event buffer.\n"); 3176 rv = -EINVAL; 3177 goto out; 3178 } 3179 3180 if (resp[2] != 0) 3181 /* 3182 * An error when setting the event buffer bit means 3183 * that the event buffer is not supported. 3184 */ 3185 rv = -ENOENT; 3186 else 3187 smi_info->supports_event_msg_buff = true; 3188 3189 out: 3190 kfree(resp); 3191 return rv; 3192 } 3193 3194 static int smi_type_proc_show(struct seq_file *m, void *v) 3195 { 3196 struct smi_info *smi = m->private; 3197 3198 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3199 3200 return 0; 3201 } 3202 3203 static int smi_type_proc_open(struct inode *inode, struct file *file) 3204 { 3205 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3206 } 3207 3208 static const struct file_operations smi_type_proc_ops = { 3209 .open = smi_type_proc_open, 3210 .read = seq_read, 3211 .llseek = seq_lseek, 3212 .release = single_release, 3213 }; 3214 3215 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3216 { 3217 struct smi_info *smi = m->private; 3218 3219 seq_printf(m, "interrupts_enabled: %d\n", 3220 smi->irq && !smi->interrupt_disabled); 3221 seq_printf(m, "short_timeouts: %u\n", 3222 smi_get_stat(smi, short_timeouts)); 3223 seq_printf(m, "long_timeouts: %u\n", 3224 smi_get_stat(smi, long_timeouts)); 3225 seq_printf(m, "idles: %u\n", 3226 smi_get_stat(smi, idles)); 3227 seq_printf(m, "interrupts: %u\n", 3228 smi_get_stat(smi, interrupts)); 3229 seq_printf(m, "attentions: %u\n", 3230 smi_get_stat(smi, attentions)); 3231 seq_printf(m, "flag_fetches: %u\n", 3232 smi_get_stat(smi, flag_fetches)); 3233 seq_printf(m, "hosed_count: %u\n", 3234 smi_get_stat(smi, hosed_count)); 3235 seq_printf(m, "complete_transactions: %u\n", 3236 smi_get_stat(smi, complete_transactions)); 3237 seq_printf(m, "events: %u\n", 3238 smi_get_stat(smi, events)); 3239 seq_printf(m, "watchdog_pretimeouts: %u\n", 3240 smi_get_stat(smi, watchdog_pretimeouts)); 3241 seq_printf(m, "incoming_messages: %u\n", 3242 smi_get_stat(smi, incoming_messages)); 3243 return 0; 3244 } 3245 3246 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3247 { 3248 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3249 } 3250 3251 static const struct file_operations smi_si_stats_proc_ops = { 3252 .open = smi_si_stats_proc_open, 3253 .read = seq_read, 3254 .llseek = seq_lseek, 3255 .release = single_release, 3256 }; 3257 3258 static int smi_params_proc_show(struct seq_file *m, void *v) 3259 { 3260 struct smi_info *smi = m->private; 3261 3262 seq_printf(m, 3263 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3264 si_to_str[smi->si_type], 3265 addr_space_to_str[smi->io.addr_type], 3266 smi->io.addr_data, 3267 smi->io.regspacing, 3268 smi->io.regsize, 3269 smi->io.regshift, 3270 smi->irq, 3271 smi->slave_addr); 3272 3273 return 0; 3274 } 3275 3276 static int smi_params_proc_open(struct inode *inode, struct file *file) 3277 { 3278 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3279 } 3280 3281 static const struct file_operations smi_params_proc_ops = { 3282 .open = smi_params_proc_open, 3283 .read = seq_read, 3284 .llseek = seq_lseek, 3285 .release = single_release, 3286 }; 3287 3288 /* 3289 * oem_data_avail_to_receive_msg_avail 3290 * @info - smi_info structure with msg_flags set 3291 * 3292 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3293 * Returns 1 indicating need to re-run handle_flags(). 3294 */ 3295 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3296 { 3297 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3298 RECEIVE_MSG_AVAIL); 3299 return 1; 3300 } 3301 3302 /* 3303 * setup_dell_poweredge_oem_data_handler 3304 * @info - smi_info.device_id must be populated 3305 * 3306 * Systems that match, but have firmware version < 1.40 may assert 3307 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3308 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3309 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3310 * as RECEIVE_MSG_AVAIL instead. 3311 * 3312 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3313 * assert the OEM[012] bits, and if it did, the driver would have to 3314 * change to handle that properly, we don't actually check for the 3315 * firmware version. 3316 * Device ID = 0x20 BMC on PowerEdge 8G servers 3317 * Device Revision = 0x80 3318 * Firmware Revision1 = 0x01 BMC version 1.40 3319 * Firmware Revision2 = 0x40 BCD encoded 3320 * IPMI Version = 0x51 IPMI 1.5 3321 * Manufacturer ID = A2 02 00 Dell IANA 3322 * 3323 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3324 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3325 * 3326 */ 3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3328 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3329 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3330 #define DELL_IANA_MFR_ID 0x0002a2 3331 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3332 { 3333 struct ipmi_device_id *id = &smi_info->device_id; 3334 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3335 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3336 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3337 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3338 smi_info->oem_data_avail_handler = 3339 oem_data_avail_to_receive_msg_avail; 3340 } else if (ipmi_version_major(id) < 1 || 3341 (ipmi_version_major(id) == 1 && 3342 ipmi_version_minor(id) < 5)) { 3343 smi_info->oem_data_avail_handler = 3344 oem_data_avail_to_receive_msg_avail; 3345 } 3346 } 3347 } 3348 3349 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3350 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3351 { 3352 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3353 3354 /* Make it a response */ 3355 msg->rsp[0] = msg->data[0] | 4; 3356 msg->rsp[1] = msg->data[1]; 3357 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3358 msg->rsp_size = 3; 3359 smi_info->curr_msg = NULL; 3360 deliver_recv_msg(smi_info, msg); 3361 } 3362 3363 /* 3364 * dell_poweredge_bt_xaction_handler 3365 * @info - smi_info.device_id must be populated 3366 * 3367 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3368 * not respond to a Get SDR command if the length of the data 3369 * requested is exactly 0x3A, which leads to command timeouts and no 3370 * data returned. This intercepts such commands, and causes userspace 3371 * callers to try again with a different-sized buffer, which succeeds. 3372 */ 3373 3374 #define STORAGE_NETFN 0x0A 3375 #define STORAGE_CMD_GET_SDR 0x23 3376 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3377 unsigned long unused, 3378 void *in) 3379 { 3380 struct smi_info *smi_info = in; 3381 unsigned char *data = smi_info->curr_msg->data; 3382 unsigned int size = smi_info->curr_msg->data_size; 3383 if (size >= 8 && 3384 (data[0]>>2) == STORAGE_NETFN && 3385 data[1] == STORAGE_CMD_GET_SDR && 3386 data[7] == 0x3A) { 3387 return_hosed_msg_badsize(smi_info); 3388 return NOTIFY_STOP; 3389 } 3390 return NOTIFY_DONE; 3391 } 3392 3393 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3394 .notifier_call = dell_poweredge_bt_xaction_handler, 3395 }; 3396 3397 /* 3398 * setup_dell_poweredge_bt_xaction_handler 3399 * @info - smi_info.device_id must be filled in already 3400 * 3401 * Fills in smi_info.device_id.start_transaction_pre_hook 3402 * when we know what function to use there. 3403 */ 3404 static void 3405 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3406 { 3407 struct ipmi_device_id *id = &smi_info->device_id; 3408 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3409 smi_info->si_type == SI_BT) 3410 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3411 } 3412 3413 /* 3414 * setup_oem_data_handler 3415 * @info - smi_info.device_id must be filled in already 3416 * 3417 * Fills in smi_info.device_id.oem_data_available_handler 3418 * when we know what function to use there. 3419 */ 3420 3421 static void setup_oem_data_handler(struct smi_info *smi_info) 3422 { 3423 setup_dell_poweredge_oem_data_handler(smi_info); 3424 } 3425 3426 static void setup_xaction_handlers(struct smi_info *smi_info) 3427 { 3428 setup_dell_poweredge_bt_xaction_handler(smi_info); 3429 } 3430 3431 static void check_for_broken_irqs(struct smi_info *smi_info) 3432 { 3433 check_clr_rcv_irq(smi_info); 3434 check_set_rcv_irq(smi_info); 3435 } 3436 3437 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3438 { 3439 if (smi_info->thread != NULL) 3440 kthread_stop(smi_info->thread); 3441 if (smi_info->timer_running) 3442 del_timer_sync(&smi_info->si_timer); 3443 } 3444 3445 static const struct ipmi_default_vals 3446 { 3447 int type; 3448 int port; 3449 } ipmi_defaults[] = 3450 { 3451 { .type = SI_KCS, .port = 0xca2 }, 3452 { .type = SI_SMIC, .port = 0xca9 }, 3453 { .type = SI_BT, .port = 0xe4 }, 3454 { .port = 0 } 3455 }; 3456 3457 static void default_find_bmc(void) 3458 { 3459 struct smi_info *info; 3460 int i; 3461 3462 for (i = 0; ; i++) { 3463 if (!ipmi_defaults[i].port) 3464 break; 3465 #ifdef CONFIG_PPC 3466 if (check_legacy_ioport(ipmi_defaults[i].port)) 3467 continue; 3468 #endif 3469 info = smi_info_alloc(); 3470 if (!info) 3471 return; 3472 3473 info->addr_source = SI_DEFAULT; 3474 3475 info->si_type = ipmi_defaults[i].type; 3476 info->io_setup = port_setup; 3477 info->io.addr_data = ipmi_defaults[i].port; 3478 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3479 3480 info->io.addr = NULL; 3481 info->io.regspacing = DEFAULT_REGSPACING; 3482 info->io.regsize = DEFAULT_REGSPACING; 3483 info->io.regshift = 0; 3484 3485 if (add_smi(info) == 0) { 3486 if ((try_smi_init(info)) == 0) { 3487 /* Found one... */ 3488 printk(KERN_INFO PFX "Found default %s" 3489 " state machine at %s address 0x%lx\n", 3490 si_to_str[info->si_type], 3491 addr_space_to_str[info->io.addr_type], 3492 info->io.addr_data); 3493 } else 3494 cleanup_one_si(info); 3495 } else { 3496 kfree(info); 3497 } 3498 } 3499 } 3500 3501 static int is_new_interface(struct smi_info *info) 3502 { 3503 struct smi_info *e; 3504 3505 list_for_each_entry(e, &smi_infos, link) { 3506 if (e->io.addr_type != info->io.addr_type) 3507 continue; 3508 if (e->io.addr_data == info->io.addr_data) 3509 return 0; 3510 } 3511 3512 return 1; 3513 } 3514 3515 static int add_smi(struct smi_info *new_smi) 3516 { 3517 int rv = 0; 3518 3519 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3520 ipmi_addr_src_to_str(new_smi->addr_source), 3521 si_to_str[new_smi->si_type]); 3522 mutex_lock(&smi_infos_lock); 3523 if (!is_new_interface(new_smi)) { 3524 printk(KERN_CONT " duplicate interface\n"); 3525 rv = -EBUSY; 3526 goto out_err; 3527 } 3528 3529 printk(KERN_CONT "\n"); 3530 3531 /* So we know not to free it unless we have allocated one. */ 3532 new_smi->intf = NULL; 3533 new_smi->si_sm = NULL; 3534 new_smi->handlers = NULL; 3535 3536 list_add_tail(&new_smi->link, &smi_infos); 3537 3538 out_err: 3539 mutex_unlock(&smi_infos_lock); 3540 return rv; 3541 } 3542 3543 static int try_smi_init(struct smi_info *new_smi) 3544 { 3545 int rv = 0; 3546 int i; 3547 3548 printk(KERN_INFO PFX "Trying %s-specified %s state" 3549 " machine at %s address 0x%lx, slave address 0x%x," 3550 " irq %d\n", 3551 ipmi_addr_src_to_str(new_smi->addr_source), 3552 si_to_str[new_smi->si_type], 3553 addr_space_to_str[new_smi->io.addr_type], 3554 new_smi->io.addr_data, 3555 new_smi->slave_addr, new_smi->irq); 3556 3557 switch (new_smi->si_type) { 3558 case SI_KCS: 3559 new_smi->handlers = &kcs_smi_handlers; 3560 break; 3561 3562 case SI_SMIC: 3563 new_smi->handlers = &smic_smi_handlers; 3564 break; 3565 3566 case SI_BT: 3567 new_smi->handlers = &bt_smi_handlers; 3568 break; 3569 3570 default: 3571 /* No support for anything else yet. */ 3572 rv = -EIO; 3573 goto out_err; 3574 } 3575 3576 /* Allocate the state machine's data and initialize it. */ 3577 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3578 if (!new_smi->si_sm) { 3579 printk(KERN_ERR PFX 3580 "Could not allocate state machine memory\n"); 3581 rv = -ENOMEM; 3582 goto out_err; 3583 } 3584 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3585 &new_smi->io); 3586 3587 /* Now that we know the I/O size, we can set up the I/O. */ 3588 rv = new_smi->io_setup(new_smi); 3589 if (rv) { 3590 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3591 goto out_err; 3592 } 3593 3594 /* Do low-level detection first. */ 3595 if (new_smi->handlers->detect(new_smi->si_sm)) { 3596 if (new_smi->addr_source) 3597 printk(KERN_INFO PFX "Interface detection failed\n"); 3598 rv = -ENODEV; 3599 goto out_err; 3600 } 3601 3602 /* 3603 * Attempt a get device id command. If it fails, we probably 3604 * don't have a BMC here. 3605 */ 3606 rv = try_get_dev_id(new_smi); 3607 if (rv) { 3608 if (new_smi->addr_source) 3609 printk(KERN_INFO PFX "There appears to be no BMC" 3610 " at this location\n"); 3611 goto out_err; 3612 } 3613 3614 setup_oem_data_handler(new_smi); 3615 setup_xaction_handlers(new_smi); 3616 check_for_broken_irqs(new_smi); 3617 3618 new_smi->waiting_msg = NULL; 3619 new_smi->curr_msg = NULL; 3620 atomic_set(&new_smi->req_events, 0); 3621 new_smi->run_to_completion = false; 3622 for (i = 0; i < SI_NUM_STATS; i++) 3623 atomic_set(&new_smi->stats[i], 0); 3624 3625 new_smi->interrupt_disabled = true; 3626 atomic_set(&new_smi->need_watch, 0); 3627 new_smi->intf_num = smi_num; 3628 smi_num++; 3629 3630 rv = try_enable_event_buffer(new_smi); 3631 if (rv == 0) 3632 new_smi->has_event_buffer = true; 3633 3634 /* 3635 * Start clearing the flags before we enable interrupts or the 3636 * timer to avoid racing with the timer. 3637 */ 3638 start_clear_flags(new_smi, false); 3639 3640 /* 3641 * IRQ is defined to be set when non-zero. req_events will 3642 * cause a global flags check that will enable interrupts. 3643 */ 3644 if (new_smi->irq) { 3645 new_smi->interrupt_disabled = false; 3646 atomic_set(&new_smi->req_events, 1); 3647 } 3648 3649 if (!new_smi->dev) { 3650 /* 3651 * If we don't already have a device from something 3652 * else (like PCI), then register a new one. 3653 */ 3654 new_smi->pdev = platform_device_alloc("ipmi_si", 3655 new_smi->intf_num); 3656 if (!new_smi->pdev) { 3657 printk(KERN_ERR PFX 3658 "Unable to allocate platform device\n"); 3659 goto out_err; 3660 } 3661 new_smi->dev = &new_smi->pdev->dev; 3662 new_smi->dev->driver = &ipmi_driver.driver; 3663 3664 rv = platform_device_add(new_smi->pdev); 3665 if (rv) { 3666 printk(KERN_ERR PFX 3667 "Unable to register system interface device:" 3668 " %d\n", 3669 rv); 3670 goto out_err; 3671 } 3672 new_smi->dev_registered = true; 3673 } 3674 3675 rv = ipmi_register_smi(&handlers, 3676 new_smi, 3677 &new_smi->device_id, 3678 new_smi->dev, 3679 new_smi->slave_addr); 3680 if (rv) { 3681 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3682 rv); 3683 goto out_err_stop_timer; 3684 } 3685 3686 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3687 &smi_type_proc_ops, 3688 new_smi); 3689 if (rv) { 3690 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3691 goto out_err_stop_timer; 3692 } 3693 3694 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3695 &smi_si_stats_proc_ops, 3696 new_smi); 3697 if (rv) { 3698 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3699 goto out_err_stop_timer; 3700 } 3701 3702 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3703 &smi_params_proc_ops, 3704 new_smi); 3705 if (rv) { 3706 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3707 goto out_err_stop_timer; 3708 } 3709 3710 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3711 si_to_str[new_smi->si_type]); 3712 3713 return 0; 3714 3715 out_err_stop_timer: 3716 wait_for_timer_and_thread(new_smi); 3717 3718 out_err: 3719 new_smi->interrupt_disabled = true; 3720 3721 if (new_smi->intf) { 3722 ipmi_smi_t intf = new_smi->intf; 3723 new_smi->intf = NULL; 3724 ipmi_unregister_smi(intf); 3725 } 3726 3727 if (new_smi->irq_cleanup) { 3728 new_smi->irq_cleanup(new_smi); 3729 new_smi->irq_cleanup = NULL; 3730 } 3731 3732 /* 3733 * Wait until we know that we are out of any interrupt 3734 * handlers might have been running before we freed the 3735 * interrupt. 3736 */ 3737 synchronize_sched(); 3738 3739 if (new_smi->si_sm) { 3740 if (new_smi->handlers) 3741 new_smi->handlers->cleanup(new_smi->si_sm); 3742 kfree(new_smi->si_sm); 3743 new_smi->si_sm = NULL; 3744 } 3745 if (new_smi->addr_source_cleanup) { 3746 new_smi->addr_source_cleanup(new_smi); 3747 new_smi->addr_source_cleanup = NULL; 3748 } 3749 if (new_smi->io_cleanup) { 3750 new_smi->io_cleanup(new_smi); 3751 new_smi->io_cleanup = NULL; 3752 } 3753 3754 if (new_smi->dev_registered) { 3755 platform_device_unregister(new_smi->pdev); 3756 new_smi->dev_registered = false; 3757 } 3758 3759 return rv; 3760 } 3761 3762 static int init_ipmi_si(void) 3763 { 3764 int i; 3765 char *str; 3766 int rv; 3767 struct smi_info *e; 3768 enum ipmi_addr_src type = SI_INVALID; 3769 3770 if (initialized) 3771 return 0; 3772 initialized = 1; 3773 3774 if (si_tryplatform) { 3775 rv = platform_driver_register(&ipmi_driver); 3776 if (rv) { 3777 printk(KERN_ERR PFX "Unable to register " 3778 "driver: %d\n", rv); 3779 return rv; 3780 } 3781 } 3782 3783 /* Parse out the si_type string into its components. */ 3784 str = si_type_str; 3785 if (*str != '\0') { 3786 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3787 si_type[i] = str; 3788 str = strchr(str, ','); 3789 if (str) { 3790 *str = '\0'; 3791 str++; 3792 } else { 3793 break; 3794 } 3795 } 3796 } 3797 3798 printk(KERN_INFO "IPMI System Interface driver.\n"); 3799 3800 /* If the user gave us a device, they presumably want us to use it */ 3801 if (!hardcode_find_bmc()) 3802 return 0; 3803 3804 #ifdef CONFIG_PCI 3805 if (si_trypci) { 3806 rv = pci_register_driver(&ipmi_pci_driver); 3807 if (rv) 3808 printk(KERN_ERR PFX "Unable to register " 3809 "PCI driver: %d\n", rv); 3810 else 3811 pci_registered = true; 3812 } 3813 #endif 3814 3815 #ifdef CONFIG_DMI 3816 if (si_trydmi) 3817 dmi_find_bmc(); 3818 #endif 3819 3820 #ifdef CONFIG_ACPI 3821 if (si_tryacpi) 3822 spmi_find_bmc(); 3823 #endif 3824 3825 #ifdef CONFIG_PARISC 3826 register_parisc_driver(&ipmi_parisc_driver); 3827 parisc_registered = true; 3828 /* poking PC IO addresses will crash machine, don't do it */ 3829 si_trydefaults = 0; 3830 #endif 3831 3832 /* We prefer devices with interrupts, but in the case of a machine 3833 with multiple BMCs we assume that there will be several instances 3834 of a given type so if we succeed in registering a type then also 3835 try to register everything else of the same type */ 3836 3837 mutex_lock(&smi_infos_lock); 3838 list_for_each_entry(e, &smi_infos, link) { 3839 /* Try to register a device if it has an IRQ and we either 3840 haven't successfully registered a device yet or this 3841 device has the same type as one we successfully registered */ 3842 if (e->irq && (!type || e->addr_source == type)) { 3843 if (!try_smi_init(e)) { 3844 type = e->addr_source; 3845 } 3846 } 3847 } 3848 3849 /* type will only have been set if we successfully registered an si */ 3850 if (type) { 3851 mutex_unlock(&smi_infos_lock); 3852 return 0; 3853 } 3854 3855 /* Fall back to the preferred device */ 3856 3857 list_for_each_entry(e, &smi_infos, link) { 3858 if (!e->irq && (!type || e->addr_source == type)) { 3859 if (!try_smi_init(e)) { 3860 type = e->addr_source; 3861 } 3862 } 3863 } 3864 mutex_unlock(&smi_infos_lock); 3865 3866 if (type) 3867 return 0; 3868 3869 if (si_trydefaults) { 3870 mutex_lock(&smi_infos_lock); 3871 if (list_empty(&smi_infos)) { 3872 /* No BMC was found, try defaults. */ 3873 mutex_unlock(&smi_infos_lock); 3874 default_find_bmc(); 3875 } else 3876 mutex_unlock(&smi_infos_lock); 3877 } 3878 3879 mutex_lock(&smi_infos_lock); 3880 if (unload_when_empty && list_empty(&smi_infos)) { 3881 mutex_unlock(&smi_infos_lock); 3882 cleanup_ipmi_si(); 3883 printk(KERN_WARNING PFX 3884 "Unable to find any System Interface(s)\n"); 3885 return -ENODEV; 3886 } else { 3887 mutex_unlock(&smi_infos_lock); 3888 return 0; 3889 } 3890 } 3891 module_init(init_ipmi_si); 3892 3893 static void cleanup_one_si(struct smi_info *to_clean) 3894 { 3895 int rv = 0; 3896 3897 if (!to_clean) 3898 return; 3899 3900 if (to_clean->intf) { 3901 ipmi_smi_t intf = to_clean->intf; 3902 3903 to_clean->intf = NULL; 3904 rv = ipmi_unregister_smi(intf); 3905 if (rv) { 3906 pr_err(PFX "Unable to unregister device: errno=%d\n", 3907 rv); 3908 } 3909 } 3910 3911 if (to_clean->dev) 3912 dev_set_drvdata(to_clean->dev, NULL); 3913 3914 list_del(&to_clean->link); 3915 3916 /* 3917 * Make sure that interrupts, the timer and the thread are 3918 * stopped and will not run again. 3919 */ 3920 if (to_clean->irq_cleanup) 3921 to_clean->irq_cleanup(to_clean); 3922 wait_for_timer_and_thread(to_clean); 3923 3924 /* 3925 * Timeouts are stopped, now make sure the interrupts are off 3926 * in the BMC. Note that timers and CPU interrupts are off, 3927 * so no need for locks. 3928 */ 3929 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3930 poll(to_clean); 3931 schedule_timeout_uninterruptible(1); 3932 } 3933 disable_si_irq(to_clean, false); 3934 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3935 poll(to_clean); 3936 schedule_timeout_uninterruptible(1); 3937 } 3938 3939 if (to_clean->handlers) 3940 to_clean->handlers->cleanup(to_clean->si_sm); 3941 3942 kfree(to_clean->si_sm); 3943 3944 if (to_clean->addr_source_cleanup) 3945 to_clean->addr_source_cleanup(to_clean); 3946 if (to_clean->io_cleanup) 3947 to_clean->io_cleanup(to_clean); 3948 3949 if (to_clean->dev_registered) 3950 platform_device_unregister(to_clean->pdev); 3951 3952 kfree(to_clean); 3953 } 3954 3955 static void cleanup_ipmi_si(void) 3956 { 3957 struct smi_info *e, *tmp_e; 3958 3959 if (!initialized) 3960 return; 3961 3962 #ifdef CONFIG_PCI 3963 if (pci_registered) 3964 pci_unregister_driver(&ipmi_pci_driver); 3965 #endif 3966 #ifdef CONFIG_PARISC 3967 if (parisc_registered) 3968 unregister_parisc_driver(&ipmi_parisc_driver); 3969 #endif 3970 3971 platform_driver_unregister(&ipmi_driver); 3972 3973 mutex_lock(&smi_infos_lock); 3974 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3975 cleanup_one_si(e); 3976 mutex_unlock(&smi_infos_lock); 3977 } 3978 module_exit(cleanup_ipmi_si); 3979 3980 MODULE_LICENSE("GPL"); 3981 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3982 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3983 " system interfaces."); 3984