xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision abfbd895)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76 
77 #define PFX "ipmi_si: "
78 
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81 
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC	10000
84 #define SI_USEC_PER_JIFFY	(1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87 				      short timeout */
88 
89 enum si_intf_state {
90 	SI_NORMAL,
91 	SI_GETTING_FLAGS,
92 	SI_GETTING_EVENTS,
93 	SI_CLEARING_FLAGS,
94 	SI_GETTING_MESSAGES,
95 	SI_CHECKING_ENABLES,
96 	SI_SETTING_ENABLES
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 #define DEVICE_NAME "ipmi_si"
111 
112 static struct platform_driver ipmi_driver;
113 
114 /*
115  * Indexes into stats[] in smi_info below.
116  */
117 enum si_stat_indexes {
118 	/*
119 	 * Number of times the driver requested a timer while an operation
120 	 * was in progress.
121 	 */
122 	SI_STAT_short_timeouts = 0,
123 
124 	/*
125 	 * Number of times the driver requested a timer while nothing was in
126 	 * progress.
127 	 */
128 	SI_STAT_long_timeouts,
129 
130 	/* Number of times the interface was idle while being polled. */
131 	SI_STAT_idles,
132 
133 	/* Number of interrupts the driver handled. */
134 	SI_STAT_interrupts,
135 
136 	/* Number of time the driver got an ATTN from the hardware. */
137 	SI_STAT_attentions,
138 
139 	/* Number of times the driver requested flags from the hardware. */
140 	SI_STAT_flag_fetches,
141 
142 	/* Number of times the hardware didn't follow the state machine. */
143 	SI_STAT_hosed_count,
144 
145 	/* Number of completed messages. */
146 	SI_STAT_complete_transactions,
147 
148 	/* Number of IPMI events received from the hardware. */
149 	SI_STAT_events,
150 
151 	/* Number of watchdog pretimeouts. */
152 	SI_STAT_watchdog_pretimeouts,
153 
154 	/* Number of asynchronous messages received. */
155 	SI_STAT_incoming_messages,
156 
157 
158 	/* This *must* remain last, add new values above this. */
159 	SI_NUM_STATS
160 };
161 
162 struct smi_info {
163 	int                    intf_num;
164 	ipmi_smi_t             intf;
165 	struct si_sm_data      *si_sm;
166 	const struct si_sm_handlers *handlers;
167 	enum si_type           si_type;
168 	spinlock_t             si_lock;
169 	struct ipmi_smi_msg    *waiting_msg;
170 	struct ipmi_smi_msg    *curr_msg;
171 	enum si_intf_state     si_state;
172 
173 	/*
174 	 * Used to handle the various types of I/O that can occur with
175 	 * IPMI
176 	 */
177 	struct si_sm_io io;
178 	int (*io_setup)(struct smi_info *info);
179 	void (*io_cleanup)(struct smi_info *info);
180 	int (*irq_setup)(struct smi_info *info);
181 	void (*irq_cleanup)(struct smi_info *info);
182 	unsigned int io_size;
183 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 	void (*addr_source_cleanup)(struct smi_info *info);
185 	void *addr_source_data;
186 
187 	/*
188 	 * Per-OEM handler, called from handle_flags().  Returns 1
189 	 * when handle_flags() needs to be re-run or 0 indicating it
190 	 * set si_state itself.
191 	 */
192 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
193 
194 	/*
195 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 	 * is set to hold the flags until we are done handling everything
197 	 * from the flags.
198 	 */
199 #define RECEIVE_MSG_AVAIL	0x01
200 #define EVENT_MSG_BUFFER_FULL	0x02
201 #define WDT_PRE_TIMEOUT_INT	0x08
202 #define OEM0_DATA_AVAIL     0x20
203 #define OEM1_DATA_AVAIL     0x40
204 #define OEM2_DATA_AVAIL     0x80
205 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
206 			     OEM1_DATA_AVAIL | \
207 			     OEM2_DATA_AVAIL)
208 	unsigned char       msg_flags;
209 
210 	/* Does the BMC have an event buffer? */
211 	bool		    has_event_buffer;
212 
213 	/*
214 	 * If set to true, this will request events the next time the
215 	 * state machine is idle.
216 	 */
217 	atomic_t            req_events;
218 
219 	/*
220 	 * If true, run the state machine to completion on every send
221 	 * call.  Generally used after a panic to make sure stuff goes
222 	 * out.
223 	 */
224 	bool                run_to_completion;
225 
226 	/* The I/O port of an SI interface. */
227 	int                 port;
228 
229 	/*
230 	 * The space between start addresses of the two ports.  For
231 	 * instance, if the first port is 0xca2 and the spacing is 4, then
232 	 * the second port is 0xca6.
233 	 */
234 	unsigned int        spacing;
235 
236 	/* zero if no irq; */
237 	int                 irq;
238 
239 	/* The timer for this si. */
240 	struct timer_list   si_timer;
241 
242 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
243 	bool		    timer_running;
244 
245 	/* The time (in jiffies) the last timeout occurred at. */
246 	unsigned long       last_timeout_jiffies;
247 
248 	/* Are we waiting for the events, pretimeouts, received msgs? */
249 	atomic_t            need_watch;
250 
251 	/*
252 	 * The driver will disable interrupts when it gets into a
253 	 * situation where it cannot handle messages due to lack of
254 	 * memory.  Once that situation clears up, it will re-enable
255 	 * interrupts.
256 	 */
257 	bool interrupt_disabled;
258 
259 	/*
260 	 * Does the BMC support events?
261 	 */
262 	bool supports_event_msg_buff;
263 
264 	/*
265 	 * Can we disable interrupts the global enables receive irq
266 	 * bit?  There are currently two forms of brokenness, some
267 	 * systems cannot disable the bit (which is technically within
268 	 * the spec but a bad idea) and some systems have the bit
269 	 * forced to zero even though interrupts work (which is
270 	 * clearly outside the spec).  The next bool tells which form
271 	 * of brokenness is present.
272 	 */
273 	bool cannot_disable_irq;
274 
275 	/*
276 	 * Some systems are broken and cannot set the irq enable
277 	 * bit, even if they support interrupts.
278 	 */
279 	bool irq_enable_broken;
280 
281 	/*
282 	 * Did we get an attention that we did not handle?
283 	 */
284 	bool got_attn;
285 
286 	/* From the get device id response... */
287 	struct ipmi_device_id device_id;
288 
289 	/* Driver model stuff. */
290 	struct device *dev;
291 	struct platform_device *pdev;
292 
293 	/*
294 	 * True if we allocated the device, false if it came from
295 	 * someplace else (like PCI).
296 	 */
297 	bool dev_registered;
298 
299 	/* Slave address, could be reported from DMI. */
300 	unsigned char slave_addr;
301 
302 	/* Counters and things for the proc filesystem. */
303 	atomic_t stats[SI_NUM_STATS];
304 
305 	struct task_struct *thread;
306 
307 	struct list_head link;
308 	union ipmi_smi_info_union addr_info;
309 };
310 
311 #define smi_inc_stat(smi, stat) \
312 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
313 #define smi_get_stat(smi, stat) \
314 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
315 
316 #define SI_MAX_PARMS 4
317 
318 static int force_kipmid[SI_MAX_PARMS];
319 static int num_force_kipmid;
320 #ifdef CONFIG_PCI
321 static bool pci_registered;
322 #endif
323 #ifdef CONFIG_PARISC
324 static bool parisc_registered;
325 #endif
326 
327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
328 static int num_max_busy_us;
329 
330 static bool unload_when_empty = true;
331 
332 static int add_smi(struct smi_info *smi);
333 static int try_smi_init(struct smi_info *smi);
334 static void cleanup_one_si(struct smi_info *to_clean);
335 static void cleanup_ipmi_si(void);
336 
337 #ifdef DEBUG_TIMING
338 void debug_timestamp(char *msg)
339 {
340 	struct timespec64 t;
341 
342 	getnstimeofday64(&t);
343 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
344 }
345 #else
346 #define debug_timestamp(x)
347 #endif
348 
349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
350 static int register_xaction_notifier(struct notifier_block *nb)
351 {
352 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
353 }
354 
355 static void deliver_recv_msg(struct smi_info *smi_info,
356 			     struct ipmi_smi_msg *msg)
357 {
358 	/* Deliver the message to the upper layer. */
359 	if (smi_info->intf)
360 		ipmi_smi_msg_received(smi_info->intf, msg);
361 	else
362 		ipmi_free_smi_msg(msg);
363 }
364 
365 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
366 {
367 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
368 
369 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
370 		cCode = IPMI_ERR_UNSPECIFIED;
371 	/* else use it as is */
372 
373 	/* Make it a response */
374 	msg->rsp[0] = msg->data[0] | 4;
375 	msg->rsp[1] = msg->data[1];
376 	msg->rsp[2] = cCode;
377 	msg->rsp_size = 3;
378 
379 	smi_info->curr_msg = NULL;
380 	deliver_recv_msg(smi_info, msg);
381 }
382 
383 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
384 {
385 	int              rv;
386 
387 	if (!smi_info->waiting_msg) {
388 		smi_info->curr_msg = NULL;
389 		rv = SI_SM_IDLE;
390 	} else {
391 		int err;
392 
393 		smi_info->curr_msg = smi_info->waiting_msg;
394 		smi_info->waiting_msg = NULL;
395 		debug_timestamp("Start2");
396 		err = atomic_notifier_call_chain(&xaction_notifier_list,
397 				0, smi_info);
398 		if (err & NOTIFY_STOP_MASK) {
399 			rv = SI_SM_CALL_WITHOUT_DELAY;
400 			goto out;
401 		}
402 		err = smi_info->handlers->start_transaction(
403 			smi_info->si_sm,
404 			smi_info->curr_msg->data,
405 			smi_info->curr_msg->data_size);
406 		if (err)
407 			return_hosed_msg(smi_info, err);
408 
409 		rv = SI_SM_CALL_WITHOUT_DELAY;
410 	}
411  out:
412 	return rv;
413 }
414 
415 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
416 {
417 	smi_info->last_timeout_jiffies = jiffies;
418 	mod_timer(&smi_info->si_timer, new_val);
419 	smi_info->timer_running = true;
420 }
421 
422 /*
423  * Start a new message and (re)start the timer and thread.
424  */
425 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
426 			  unsigned int size)
427 {
428 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
429 
430 	if (smi_info->thread)
431 		wake_up_process(smi_info->thread);
432 
433 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
434 }
435 
436 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
437 {
438 	unsigned char msg[2];
439 
440 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
441 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
442 
443 	if (start_timer)
444 		start_new_msg(smi_info, msg, 2);
445 	else
446 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
447 	smi_info->si_state = SI_CHECKING_ENABLES;
448 }
449 
450 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
451 {
452 	unsigned char msg[3];
453 
454 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
455 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
456 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
457 	msg[2] = WDT_PRE_TIMEOUT_INT;
458 
459 	if (start_timer)
460 		start_new_msg(smi_info, msg, 3);
461 	else
462 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
463 	smi_info->si_state = SI_CLEARING_FLAGS;
464 }
465 
466 static void start_getting_msg_queue(struct smi_info *smi_info)
467 {
468 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
469 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
470 	smi_info->curr_msg->data_size = 2;
471 
472 	start_new_msg(smi_info, smi_info->curr_msg->data,
473 		      smi_info->curr_msg->data_size);
474 	smi_info->si_state = SI_GETTING_MESSAGES;
475 }
476 
477 static void start_getting_events(struct smi_info *smi_info)
478 {
479 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
480 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
481 	smi_info->curr_msg->data_size = 2;
482 
483 	start_new_msg(smi_info, smi_info->curr_msg->data,
484 		      smi_info->curr_msg->data_size);
485 	smi_info->si_state = SI_GETTING_EVENTS;
486 }
487 
488 /*
489  * When we have a situtaion where we run out of memory and cannot
490  * allocate messages, we just leave them in the BMC and run the system
491  * polled until we can allocate some memory.  Once we have some
492  * memory, we will re-enable the interrupt.
493  *
494  * Note that we cannot just use disable_irq(), since the interrupt may
495  * be shared.
496  */
497 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
498 {
499 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
500 		smi_info->interrupt_disabled = true;
501 		start_check_enables(smi_info, start_timer);
502 		return true;
503 	}
504 	return false;
505 }
506 
507 static inline bool enable_si_irq(struct smi_info *smi_info)
508 {
509 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
510 		smi_info->interrupt_disabled = false;
511 		start_check_enables(smi_info, true);
512 		return true;
513 	}
514 	return false;
515 }
516 
517 /*
518  * Allocate a message.  If unable to allocate, start the interrupt
519  * disable process and return NULL.  If able to allocate but
520  * interrupts are disabled, free the message and return NULL after
521  * starting the interrupt enable process.
522  */
523 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
524 {
525 	struct ipmi_smi_msg *msg;
526 
527 	msg = ipmi_alloc_smi_msg();
528 	if (!msg) {
529 		if (!disable_si_irq(smi_info, true))
530 			smi_info->si_state = SI_NORMAL;
531 	} else if (enable_si_irq(smi_info)) {
532 		ipmi_free_smi_msg(msg);
533 		msg = NULL;
534 	}
535 	return msg;
536 }
537 
538 static void handle_flags(struct smi_info *smi_info)
539 {
540  retry:
541 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
542 		/* Watchdog pre-timeout */
543 		smi_inc_stat(smi_info, watchdog_pretimeouts);
544 
545 		start_clear_flags(smi_info, true);
546 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
547 		if (smi_info->intf)
548 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
549 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
550 		/* Messages available. */
551 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
552 		if (!smi_info->curr_msg)
553 			return;
554 
555 		start_getting_msg_queue(smi_info);
556 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
557 		/* Events available. */
558 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
559 		if (!smi_info->curr_msg)
560 			return;
561 
562 		start_getting_events(smi_info);
563 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
564 		   smi_info->oem_data_avail_handler) {
565 		if (smi_info->oem_data_avail_handler(smi_info))
566 			goto retry;
567 	} else
568 		smi_info->si_state = SI_NORMAL;
569 }
570 
571 /*
572  * Global enables we care about.
573  */
574 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
575 			     IPMI_BMC_EVT_MSG_INTR)
576 
577 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
578 				 bool *irq_on)
579 {
580 	u8 enables = 0;
581 
582 	if (smi_info->supports_event_msg_buff)
583 		enables |= IPMI_BMC_EVT_MSG_BUFF;
584 
585 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
586 	     smi_info->cannot_disable_irq) &&
587 	    !smi_info->irq_enable_broken)
588 		enables |= IPMI_BMC_RCV_MSG_INTR;
589 
590 	if (smi_info->supports_event_msg_buff &&
591 	    smi_info->irq && !smi_info->interrupt_disabled &&
592 	    !smi_info->irq_enable_broken)
593 		enables |= IPMI_BMC_EVT_MSG_INTR;
594 
595 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
596 
597 	return enables;
598 }
599 
600 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
601 {
602 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
603 
604 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
605 
606 	if ((bool)irqstate == irq_on)
607 		return;
608 
609 	if (irq_on)
610 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
611 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
612 	else
613 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
614 }
615 
616 static void handle_transaction_done(struct smi_info *smi_info)
617 {
618 	struct ipmi_smi_msg *msg;
619 
620 	debug_timestamp("Done");
621 	switch (smi_info->si_state) {
622 	case SI_NORMAL:
623 		if (!smi_info->curr_msg)
624 			break;
625 
626 		smi_info->curr_msg->rsp_size
627 			= smi_info->handlers->get_result(
628 				smi_info->si_sm,
629 				smi_info->curr_msg->rsp,
630 				IPMI_MAX_MSG_LENGTH);
631 
632 		/*
633 		 * Do this here becase deliver_recv_msg() releases the
634 		 * lock, and a new message can be put in during the
635 		 * time the lock is released.
636 		 */
637 		msg = smi_info->curr_msg;
638 		smi_info->curr_msg = NULL;
639 		deliver_recv_msg(smi_info, msg);
640 		break;
641 
642 	case SI_GETTING_FLAGS:
643 	{
644 		unsigned char msg[4];
645 		unsigned int  len;
646 
647 		/* We got the flags from the SMI, now handle them. */
648 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
649 		if (msg[2] != 0) {
650 			/* Error fetching flags, just give up for now. */
651 			smi_info->si_state = SI_NORMAL;
652 		} else if (len < 4) {
653 			/*
654 			 * Hmm, no flags.  That's technically illegal, but
655 			 * don't use uninitialized data.
656 			 */
657 			smi_info->si_state = SI_NORMAL;
658 		} else {
659 			smi_info->msg_flags = msg[3];
660 			handle_flags(smi_info);
661 		}
662 		break;
663 	}
664 
665 	case SI_CLEARING_FLAGS:
666 	{
667 		unsigned char msg[3];
668 
669 		/* We cleared the flags. */
670 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
671 		if (msg[2] != 0) {
672 			/* Error clearing flags */
673 			dev_warn(smi_info->dev,
674 				 "Error clearing flags: %2.2x\n", msg[2]);
675 		}
676 		smi_info->si_state = SI_NORMAL;
677 		break;
678 	}
679 
680 	case SI_GETTING_EVENTS:
681 	{
682 		smi_info->curr_msg->rsp_size
683 			= smi_info->handlers->get_result(
684 				smi_info->si_sm,
685 				smi_info->curr_msg->rsp,
686 				IPMI_MAX_MSG_LENGTH);
687 
688 		/*
689 		 * Do this here becase deliver_recv_msg() releases the
690 		 * lock, and a new message can be put in during the
691 		 * time the lock is released.
692 		 */
693 		msg = smi_info->curr_msg;
694 		smi_info->curr_msg = NULL;
695 		if (msg->rsp[2] != 0) {
696 			/* Error getting event, probably done. */
697 			msg->done(msg);
698 
699 			/* Take off the event flag. */
700 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
701 			handle_flags(smi_info);
702 		} else {
703 			smi_inc_stat(smi_info, events);
704 
705 			/*
706 			 * Do this before we deliver the message
707 			 * because delivering the message releases the
708 			 * lock and something else can mess with the
709 			 * state.
710 			 */
711 			handle_flags(smi_info);
712 
713 			deliver_recv_msg(smi_info, msg);
714 		}
715 		break;
716 	}
717 
718 	case SI_GETTING_MESSAGES:
719 	{
720 		smi_info->curr_msg->rsp_size
721 			= smi_info->handlers->get_result(
722 				smi_info->si_sm,
723 				smi_info->curr_msg->rsp,
724 				IPMI_MAX_MSG_LENGTH);
725 
726 		/*
727 		 * Do this here becase deliver_recv_msg() releases the
728 		 * lock, and a new message can be put in during the
729 		 * time the lock is released.
730 		 */
731 		msg = smi_info->curr_msg;
732 		smi_info->curr_msg = NULL;
733 		if (msg->rsp[2] != 0) {
734 			/* Error getting event, probably done. */
735 			msg->done(msg);
736 
737 			/* Take off the msg flag. */
738 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
739 			handle_flags(smi_info);
740 		} else {
741 			smi_inc_stat(smi_info, incoming_messages);
742 
743 			/*
744 			 * Do this before we deliver the message
745 			 * because delivering the message releases the
746 			 * lock and something else can mess with the
747 			 * state.
748 			 */
749 			handle_flags(smi_info);
750 
751 			deliver_recv_msg(smi_info, msg);
752 		}
753 		break;
754 	}
755 
756 	case SI_CHECKING_ENABLES:
757 	{
758 		unsigned char msg[4];
759 		u8 enables;
760 		bool irq_on;
761 
762 		/* We got the flags from the SMI, now handle them. */
763 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
764 		if (msg[2] != 0) {
765 			dev_warn(smi_info->dev,
766 				 "Couldn't get irq info: %x.\n", msg[2]);
767 			dev_warn(smi_info->dev,
768 				 "Maybe ok, but ipmi might run very slowly.\n");
769 			smi_info->si_state = SI_NORMAL;
770 			break;
771 		}
772 		enables = current_global_enables(smi_info, 0, &irq_on);
773 		if (smi_info->si_type == SI_BT)
774 			/* BT has its own interrupt enable bit. */
775 			check_bt_irq(smi_info, irq_on);
776 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
777 			/* Enables are not correct, fix them. */
778 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
779 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
780 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
781 			smi_info->handlers->start_transaction(
782 				smi_info->si_sm, msg, 3);
783 			smi_info->si_state = SI_SETTING_ENABLES;
784 		} else if (smi_info->supports_event_msg_buff) {
785 			smi_info->curr_msg = ipmi_alloc_smi_msg();
786 			if (!smi_info->curr_msg) {
787 				smi_info->si_state = SI_NORMAL;
788 				break;
789 			}
790 			start_getting_msg_queue(smi_info);
791 		} else {
792 			smi_info->si_state = SI_NORMAL;
793 		}
794 		break;
795 	}
796 
797 	case SI_SETTING_ENABLES:
798 	{
799 		unsigned char msg[4];
800 
801 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
802 		if (msg[2] != 0)
803 			dev_warn(smi_info->dev,
804 				 "Could not set the global enables: 0x%x.\n",
805 				 msg[2]);
806 
807 		if (smi_info->supports_event_msg_buff) {
808 			smi_info->curr_msg = ipmi_alloc_smi_msg();
809 			if (!smi_info->curr_msg) {
810 				smi_info->si_state = SI_NORMAL;
811 				break;
812 			}
813 			start_getting_msg_queue(smi_info);
814 		} else {
815 			smi_info->si_state = SI_NORMAL;
816 		}
817 		break;
818 	}
819 	}
820 }
821 
822 /*
823  * Called on timeouts and events.  Timeouts should pass the elapsed
824  * time, interrupts should pass in zero.  Must be called with
825  * si_lock held and interrupts disabled.
826  */
827 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
828 					   int time)
829 {
830 	enum si_sm_result si_sm_result;
831 
832  restart:
833 	/*
834 	 * There used to be a loop here that waited a little while
835 	 * (around 25us) before giving up.  That turned out to be
836 	 * pointless, the minimum delays I was seeing were in the 300us
837 	 * range, which is far too long to wait in an interrupt.  So
838 	 * we just run until the state machine tells us something
839 	 * happened or it needs a delay.
840 	 */
841 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
842 	time = 0;
843 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
844 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
845 
846 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
847 		smi_inc_stat(smi_info, complete_transactions);
848 
849 		handle_transaction_done(smi_info);
850 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
851 	} else if (si_sm_result == SI_SM_HOSED) {
852 		smi_inc_stat(smi_info, hosed_count);
853 
854 		/*
855 		 * Do the before return_hosed_msg, because that
856 		 * releases the lock.
857 		 */
858 		smi_info->si_state = SI_NORMAL;
859 		if (smi_info->curr_msg != NULL) {
860 			/*
861 			 * If we were handling a user message, format
862 			 * a response to send to the upper layer to
863 			 * tell it about the error.
864 			 */
865 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
866 		}
867 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
868 	}
869 
870 	/*
871 	 * We prefer handling attn over new messages.  But don't do
872 	 * this if there is not yet an upper layer to handle anything.
873 	 */
874 	if (likely(smi_info->intf) &&
875 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
876 		unsigned char msg[2];
877 
878 		if (smi_info->si_state != SI_NORMAL) {
879 			/*
880 			 * We got an ATTN, but we are doing something else.
881 			 * Handle the ATTN later.
882 			 */
883 			smi_info->got_attn = true;
884 		} else {
885 			smi_info->got_attn = false;
886 			smi_inc_stat(smi_info, attentions);
887 
888 			/*
889 			 * Got a attn, send down a get message flags to see
890 			 * what's causing it.  It would be better to handle
891 			 * this in the upper layer, but due to the way
892 			 * interrupts work with the SMI, that's not really
893 			 * possible.
894 			 */
895 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
896 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
897 
898 			start_new_msg(smi_info, msg, 2);
899 			smi_info->si_state = SI_GETTING_FLAGS;
900 			goto restart;
901 		}
902 	}
903 
904 	/* If we are currently idle, try to start the next message. */
905 	if (si_sm_result == SI_SM_IDLE) {
906 		smi_inc_stat(smi_info, idles);
907 
908 		si_sm_result = start_next_msg(smi_info);
909 		if (si_sm_result != SI_SM_IDLE)
910 			goto restart;
911 	}
912 
913 	if ((si_sm_result == SI_SM_IDLE)
914 	    && (atomic_read(&smi_info->req_events))) {
915 		/*
916 		 * We are idle and the upper layer requested that I fetch
917 		 * events, so do so.
918 		 */
919 		atomic_set(&smi_info->req_events, 0);
920 
921 		/*
922 		 * Take this opportunity to check the interrupt and
923 		 * message enable state for the BMC.  The BMC can be
924 		 * asynchronously reset, and may thus get interrupts
925 		 * disable and messages disabled.
926 		 */
927 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
928 			start_check_enables(smi_info, true);
929 		} else {
930 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
931 			if (!smi_info->curr_msg)
932 				goto out;
933 
934 			start_getting_events(smi_info);
935 		}
936 		goto restart;
937 	}
938 
939 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
940 		/* Ok it if fails, the timer will just go off. */
941 		if (del_timer(&smi_info->si_timer))
942 			smi_info->timer_running = false;
943 	}
944 
945  out:
946 	return si_sm_result;
947 }
948 
949 static void check_start_timer_thread(struct smi_info *smi_info)
950 {
951 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
952 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
953 
954 		if (smi_info->thread)
955 			wake_up_process(smi_info->thread);
956 
957 		start_next_msg(smi_info);
958 		smi_event_handler(smi_info, 0);
959 	}
960 }
961 
962 static void flush_messages(void *send_info)
963 {
964 	struct smi_info *smi_info = send_info;
965 	enum si_sm_result result;
966 
967 	/*
968 	 * Currently, this function is called only in run-to-completion
969 	 * mode.  This means we are single-threaded, no need for locks.
970 	 */
971 	result = smi_event_handler(smi_info, 0);
972 	while (result != SI_SM_IDLE) {
973 		udelay(SI_SHORT_TIMEOUT_USEC);
974 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
975 	}
976 }
977 
978 static void sender(void                *send_info,
979 		   struct ipmi_smi_msg *msg)
980 {
981 	struct smi_info   *smi_info = send_info;
982 	unsigned long     flags;
983 
984 	debug_timestamp("Enqueue");
985 
986 	if (smi_info->run_to_completion) {
987 		/*
988 		 * If we are running to completion, start it.  Upper
989 		 * layer will call flush_messages to clear it out.
990 		 */
991 		smi_info->waiting_msg = msg;
992 		return;
993 	}
994 
995 	spin_lock_irqsave(&smi_info->si_lock, flags);
996 	/*
997 	 * The following two lines don't need to be under the lock for
998 	 * the lock's sake, but they do need SMP memory barriers to
999 	 * avoid getting things out of order.  We are already claiming
1000 	 * the lock, anyway, so just do it under the lock to avoid the
1001 	 * ordering problem.
1002 	 */
1003 	BUG_ON(smi_info->waiting_msg);
1004 	smi_info->waiting_msg = msg;
1005 	check_start_timer_thread(smi_info);
1006 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1007 }
1008 
1009 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1010 {
1011 	struct smi_info   *smi_info = send_info;
1012 
1013 	smi_info->run_to_completion = i_run_to_completion;
1014 	if (i_run_to_completion)
1015 		flush_messages(smi_info);
1016 }
1017 
1018 /*
1019  * Use -1 in the nsec value of the busy waiting timespec to tell that
1020  * we are spinning in kipmid looking for something and not delaying
1021  * between checks
1022  */
1023 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1024 {
1025 	ts->tv_nsec = -1;
1026 }
1027 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1028 {
1029 	return ts->tv_nsec != -1;
1030 }
1031 
1032 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1033 					const struct smi_info *smi_info,
1034 					struct timespec64 *busy_until)
1035 {
1036 	unsigned int max_busy_us = 0;
1037 
1038 	if (smi_info->intf_num < num_max_busy_us)
1039 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1040 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1041 		ipmi_si_set_not_busy(busy_until);
1042 	else if (!ipmi_si_is_busy(busy_until)) {
1043 		getnstimeofday64(busy_until);
1044 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1045 	} else {
1046 		struct timespec64 now;
1047 
1048 		getnstimeofday64(&now);
1049 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1050 			ipmi_si_set_not_busy(busy_until);
1051 			return 0;
1052 		}
1053 	}
1054 	return 1;
1055 }
1056 
1057 
1058 /*
1059  * A busy-waiting loop for speeding up IPMI operation.
1060  *
1061  * Lousy hardware makes this hard.  This is only enabled for systems
1062  * that are not BT and do not have interrupts.  It starts spinning
1063  * when an operation is complete or until max_busy tells it to stop
1064  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1065  * Documentation/IPMI.txt for details.
1066  */
1067 static int ipmi_thread(void *data)
1068 {
1069 	struct smi_info *smi_info = data;
1070 	unsigned long flags;
1071 	enum si_sm_result smi_result;
1072 	struct timespec64 busy_until;
1073 
1074 	ipmi_si_set_not_busy(&busy_until);
1075 	set_user_nice(current, MAX_NICE);
1076 	while (!kthread_should_stop()) {
1077 		int busy_wait;
1078 
1079 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1080 		smi_result = smi_event_handler(smi_info, 0);
1081 
1082 		/*
1083 		 * If the driver is doing something, there is a possible
1084 		 * race with the timer.  If the timer handler see idle,
1085 		 * and the thread here sees something else, the timer
1086 		 * handler won't restart the timer even though it is
1087 		 * required.  So start it here if necessary.
1088 		 */
1089 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1090 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1091 
1092 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1093 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1094 						  &busy_until);
1095 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1096 			; /* do nothing */
1097 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1098 			schedule();
1099 		else if (smi_result == SI_SM_IDLE) {
1100 			if (atomic_read(&smi_info->need_watch)) {
1101 				schedule_timeout_interruptible(100);
1102 			} else {
1103 				/* Wait to be woken up when we are needed. */
1104 				__set_current_state(TASK_INTERRUPTIBLE);
1105 				schedule();
1106 			}
1107 		} else
1108 			schedule_timeout_interruptible(1);
1109 	}
1110 	return 0;
1111 }
1112 
1113 
1114 static void poll(void *send_info)
1115 {
1116 	struct smi_info *smi_info = send_info;
1117 	unsigned long flags = 0;
1118 	bool run_to_completion = smi_info->run_to_completion;
1119 
1120 	/*
1121 	 * Make sure there is some delay in the poll loop so we can
1122 	 * drive time forward and timeout things.
1123 	 */
1124 	udelay(10);
1125 	if (!run_to_completion)
1126 		spin_lock_irqsave(&smi_info->si_lock, flags);
1127 	smi_event_handler(smi_info, 10);
1128 	if (!run_to_completion)
1129 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1130 }
1131 
1132 static void request_events(void *send_info)
1133 {
1134 	struct smi_info *smi_info = send_info;
1135 
1136 	if (!smi_info->has_event_buffer)
1137 		return;
1138 
1139 	atomic_set(&smi_info->req_events, 1);
1140 }
1141 
1142 static void set_need_watch(void *send_info, bool enable)
1143 {
1144 	struct smi_info *smi_info = send_info;
1145 	unsigned long flags;
1146 
1147 	atomic_set(&smi_info->need_watch, enable);
1148 	spin_lock_irqsave(&smi_info->si_lock, flags);
1149 	check_start_timer_thread(smi_info);
1150 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1151 }
1152 
1153 static int initialized;
1154 
1155 static void smi_timeout(unsigned long data)
1156 {
1157 	struct smi_info   *smi_info = (struct smi_info *) data;
1158 	enum si_sm_result smi_result;
1159 	unsigned long     flags;
1160 	unsigned long     jiffies_now;
1161 	long              time_diff;
1162 	long		  timeout;
1163 
1164 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1165 	debug_timestamp("Timer");
1166 
1167 	jiffies_now = jiffies;
1168 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1169 		     * SI_USEC_PER_JIFFY);
1170 	smi_result = smi_event_handler(smi_info, time_diff);
1171 
1172 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1173 		/* Running with interrupts, only do long timeouts. */
1174 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1175 		smi_inc_stat(smi_info, long_timeouts);
1176 		goto do_mod_timer;
1177 	}
1178 
1179 	/*
1180 	 * If the state machine asks for a short delay, then shorten
1181 	 * the timer timeout.
1182 	 */
1183 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1184 		smi_inc_stat(smi_info, short_timeouts);
1185 		timeout = jiffies + 1;
1186 	} else {
1187 		smi_inc_stat(smi_info, long_timeouts);
1188 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1189 	}
1190 
1191  do_mod_timer:
1192 	if (smi_result != SI_SM_IDLE)
1193 		smi_mod_timer(smi_info, timeout);
1194 	else
1195 		smi_info->timer_running = false;
1196 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1197 }
1198 
1199 static irqreturn_t si_irq_handler(int irq, void *data)
1200 {
1201 	struct smi_info *smi_info = data;
1202 	unsigned long   flags;
1203 
1204 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1205 
1206 	smi_inc_stat(smi_info, interrupts);
1207 
1208 	debug_timestamp("Interrupt");
1209 
1210 	smi_event_handler(smi_info, 0);
1211 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1212 	return IRQ_HANDLED;
1213 }
1214 
1215 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1216 {
1217 	struct smi_info *smi_info = data;
1218 	/* We need to clear the IRQ flag for the BT interface. */
1219 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1220 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1221 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1222 	return si_irq_handler(irq, data);
1223 }
1224 
1225 static int smi_start_processing(void       *send_info,
1226 				ipmi_smi_t intf)
1227 {
1228 	struct smi_info *new_smi = send_info;
1229 	int             enable = 0;
1230 
1231 	new_smi->intf = intf;
1232 
1233 	/* Set up the timer that drives the interface. */
1234 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1235 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1236 
1237 	/* Try to claim any interrupts. */
1238 	if (new_smi->irq_setup)
1239 		new_smi->irq_setup(new_smi);
1240 
1241 	/*
1242 	 * Check if the user forcefully enabled the daemon.
1243 	 */
1244 	if (new_smi->intf_num < num_force_kipmid)
1245 		enable = force_kipmid[new_smi->intf_num];
1246 	/*
1247 	 * The BT interface is efficient enough to not need a thread,
1248 	 * and there is no need for a thread if we have interrupts.
1249 	 */
1250 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1251 		enable = 1;
1252 
1253 	if (enable) {
1254 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1255 					      "kipmi%d", new_smi->intf_num);
1256 		if (IS_ERR(new_smi->thread)) {
1257 			dev_notice(new_smi->dev, "Could not start"
1258 				   " kernel thread due to error %ld, only using"
1259 				   " timers to drive the interface\n",
1260 				   PTR_ERR(new_smi->thread));
1261 			new_smi->thread = NULL;
1262 		}
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1269 {
1270 	struct smi_info *smi = send_info;
1271 
1272 	data->addr_src = smi->addr_source;
1273 	data->dev = smi->dev;
1274 	data->addr_info = smi->addr_info;
1275 	get_device(smi->dev);
1276 
1277 	return 0;
1278 }
1279 
1280 static void set_maintenance_mode(void *send_info, bool enable)
1281 {
1282 	struct smi_info   *smi_info = send_info;
1283 
1284 	if (!enable)
1285 		atomic_set(&smi_info->req_events, 0);
1286 }
1287 
1288 static const struct ipmi_smi_handlers handlers = {
1289 	.owner                  = THIS_MODULE,
1290 	.start_processing       = smi_start_processing,
1291 	.get_smi_info		= get_smi_info,
1292 	.sender			= sender,
1293 	.request_events		= request_events,
1294 	.set_need_watch		= set_need_watch,
1295 	.set_maintenance_mode   = set_maintenance_mode,
1296 	.set_run_to_completion  = set_run_to_completion,
1297 	.flush_messages		= flush_messages,
1298 	.poll			= poll,
1299 };
1300 
1301 /*
1302  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1303  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1304  */
1305 
1306 static LIST_HEAD(smi_infos);
1307 static DEFINE_MUTEX(smi_infos_lock);
1308 static int smi_num; /* Used to sequence the SMIs */
1309 
1310 #define DEFAULT_REGSPACING	1
1311 #define DEFAULT_REGSIZE		1
1312 
1313 #ifdef CONFIG_ACPI
1314 static bool          si_tryacpi = true;
1315 #endif
1316 #ifdef CONFIG_DMI
1317 static bool          si_trydmi = true;
1318 #endif
1319 static bool          si_tryplatform = true;
1320 #ifdef CONFIG_PCI
1321 static bool          si_trypci = true;
1322 #endif
1323 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1324 static char          *si_type[SI_MAX_PARMS];
1325 #define MAX_SI_TYPE_STR 30
1326 static char          si_type_str[MAX_SI_TYPE_STR];
1327 static unsigned long addrs[SI_MAX_PARMS];
1328 static unsigned int num_addrs;
1329 static unsigned int  ports[SI_MAX_PARMS];
1330 static unsigned int num_ports;
1331 static int           irqs[SI_MAX_PARMS];
1332 static unsigned int num_irqs;
1333 static int           regspacings[SI_MAX_PARMS];
1334 static unsigned int num_regspacings;
1335 static int           regsizes[SI_MAX_PARMS];
1336 static unsigned int num_regsizes;
1337 static int           regshifts[SI_MAX_PARMS];
1338 static unsigned int num_regshifts;
1339 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1340 static unsigned int num_slave_addrs;
1341 
1342 #define IPMI_IO_ADDR_SPACE  0
1343 #define IPMI_MEM_ADDR_SPACE 1
1344 static char *addr_space_to_str[] = { "i/o", "mem" };
1345 
1346 static int hotmod_handler(const char *val, struct kernel_param *kp);
1347 
1348 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1349 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1350 		 " Documentation/IPMI.txt in the kernel sources for the"
1351 		 " gory details.");
1352 
1353 #ifdef CONFIG_ACPI
1354 module_param_named(tryacpi, si_tryacpi, bool, 0);
1355 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1356 		 " default scan of the interfaces identified via ACPI");
1357 #endif
1358 #ifdef CONFIG_DMI
1359 module_param_named(trydmi, si_trydmi, bool, 0);
1360 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1361 		 " default scan of the interfaces identified via DMI");
1362 #endif
1363 module_param_named(tryplatform, si_tryplatform, bool, 0);
1364 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1365 		 " default scan of the interfaces identified via platform"
1366 		 " interfaces like openfirmware");
1367 #ifdef CONFIG_PCI
1368 module_param_named(trypci, si_trypci, bool, 0);
1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1370 		 " default scan of the interfaces identified via pci");
1371 #endif
1372 module_param_named(trydefaults, si_trydefaults, bool, 0);
1373 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1374 		 " default scan of the KCS and SMIC interface at the standard"
1375 		 " address");
1376 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1377 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1378 		 " interface separated by commas.  The types are 'kcs',"
1379 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1380 		 " the first interface to kcs and the second to bt");
1381 module_param_array(addrs, ulong, &num_addrs, 0);
1382 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1383 		 " addresses separated by commas.  Only use if an interface"
1384 		 " is in memory.  Otherwise, set it to zero or leave"
1385 		 " it blank.");
1386 module_param_array(ports, uint, &num_ports, 0);
1387 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1388 		 " addresses separated by commas.  Only use if an interface"
1389 		 " is a port.  Otherwise, set it to zero or leave"
1390 		 " it blank.");
1391 module_param_array(irqs, int, &num_irqs, 0);
1392 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1393 		 " addresses separated by commas.  Only use if an interface"
1394 		 " has an interrupt.  Otherwise, set it to zero or leave"
1395 		 " it blank.");
1396 module_param_array(regspacings, int, &num_regspacings, 0);
1397 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1398 		 " and each successive register used by the interface.  For"
1399 		 " instance, if the start address is 0xca2 and the spacing"
1400 		 " is 2, then the second address is at 0xca4.  Defaults"
1401 		 " to 1.");
1402 module_param_array(regsizes, int, &num_regsizes, 0);
1403 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1404 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1405 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1406 		 " the 8-bit IPMI register has to be read from a larger"
1407 		 " register.");
1408 module_param_array(regshifts, int, &num_regshifts, 0);
1409 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1410 		 " IPMI register, in bits.  For instance, if the data"
1411 		 " is read from a 32-bit word and the IPMI data is in"
1412 		 " bit 8-15, then the shift would be 8");
1413 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1414 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1415 		 " the controller.  Normally this is 0x20, but can be"
1416 		 " overridden by this parm.  This is an array indexed"
1417 		 " by interface number.");
1418 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1419 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1420 		 " disabled(0).  Normally the IPMI driver auto-detects"
1421 		 " this, but the value may be overridden by this parm.");
1422 module_param(unload_when_empty, bool, 0);
1423 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1424 		 " specified or found, default is 1.  Setting to 0"
1425 		 " is useful for hot add of devices using hotmod.");
1426 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1427 MODULE_PARM_DESC(kipmid_max_busy_us,
1428 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1429 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1430 		 " if kipmid is using up a lot of CPU time.");
1431 
1432 
1433 static void std_irq_cleanup(struct smi_info *info)
1434 {
1435 	if (info->si_type == SI_BT)
1436 		/* Disable the interrupt in the BT interface. */
1437 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1438 	free_irq(info->irq, info);
1439 }
1440 
1441 static int std_irq_setup(struct smi_info *info)
1442 {
1443 	int rv;
1444 
1445 	if (!info->irq)
1446 		return 0;
1447 
1448 	if (info->si_type == SI_BT) {
1449 		rv = request_irq(info->irq,
1450 				 si_bt_irq_handler,
1451 				 IRQF_SHARED,
1452 				 DEVICE_NAME,
1453 				 info);
1454 		if (!rv)
1455 			/* Enable the interrupt in the BT interface. */
1456 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1457 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1458 	} else
1459 		rv = request_irq(info->irq,
1460 				 si_irq_handler,
1461 				 IRQF_SHARED,
1462 				 DEVICE_NAME,
1463 				 info);
1464 	if (rv) {
1465 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1466 			 " running polled\n",
1467 			 DEVICE_NAME, info->irq);
1468 		info->irq = 0;
1469 	} else {
1470 		info->irq_cleanup = std_irq_cleanup;
1471 		dev_info(info->dev, "Using irq %d\n", info->irq);
1472 	}
1473 
1474 	return rv;
1475 }
1476 
1477 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1478 {
1479 	unsigned int addr = io->addr_data;
1480 
1481 	return inb(addr + (offset * io->regspacing));
1482 }
1483 
1484 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1485 		      unsigned char b)
1486 {
1487 	unsigned int addr = io->addr_data;
1488 
1489 	outb(b, addr + (offset * io->regspacing));
1490 }
1491 
1492 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1493 {
1494 	unsigned int addr = io->addr_data;
1495 
1496 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1497 }
1498 
1499 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1500 		      unsigned char b)
1501 {
1502 	unsigned int addr = io->addr_data;
1503 
1504 	outw(b << io->regshift, addr + (offset * io->regspacing));
1505 }
1506 
1507 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1508 {
1509 	unsigned int addr = io->addr_data;
1510 
1511 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1512 }
1513 
1514 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1515 		      unsigned char b)
1516 {
1517 	unsigned int addr = io->addr_data;
1518 
1519 	outl(b << io->regshift, addr+(offset * io->regspacing));
1520 }
1521 
1522 static void port_cleanup(struct smi_info *info)
1523 {
1524 	unsigned int addr = info->io.addr_data;
1525 	int          idx;
1526 
1527 	if (addr) {
1528 		for (idx = 0; idx < info->io_size; idx++)
1529 			release_region(addr + idx * info->io.regspacing,
1530 				       info->io.regsize);
1531 	}
1532 }
1533 
1534 static int port_setup(struct smi_info *info)
1535 {
1536 	unsigned int addr = info->io.addr_data;
1537 	int          idx;
1538 
1539 	if (!addr)
1540 		return -ENODEV;
1541 
1542 	info->io_cleanup = port_cleanup;
1543 
1544 	/*
1545 	 * Figure out the actual inb/inw/inl/etc routine to use based
1546 	 * upon the register size.
1547 	 */
1548 	switch (info->io.regsize) {
1549 	case 1:
1550 		info->io.inputb = port_inb;
1551 		info->io.outputb = port_outb;
1552 		break;
1553 	case 2:
1554 		info->io.inputb = port_inw;
1555 		info->io.outputb = port_outw;
1556 		break;
1557 	case 4:
1558 		info->io.inputb = port_inl;
1559 		info->io.outputb = port_outl;
1560 		break;
1561 	default:
1562 		dev_warn(info->dev, "Invalid register size: %d\n",
1563 			 info->io.regsize);
1564 		return -EINVAL;
1565 	}
1566 
1567 	/*
1568 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1569 	 * tables.  This causes problems when trying to register the
1570 	 * entire I/O region.  Therefore we must register each I/O
1571 	 * port separately.
1572 	 */
1573 	for (idx = 0; idx < info->io_size; idx++) {
1574 		if (request_region(addr + idx * info->io.regspacing,
1575 				   info->io.regsize, DEVICE_NAME) == NULL) {
1576 			/* Undo allocations */
1577 			while (idx--) {
1578 				release_region(addr + idx * info->io.regspacing,
1579 					       info->io.regsize);
1580 			}
1581 			return -EIO;
1582 		}
1583 	}
1584 	return 0;
1585 }
1586 
1587 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1588 				  unsigned int offset)
1589 {
1590 	return readb((io->addr)+(offset * io->regspacing));
1591 }
1592 
1593 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1594 			  unsigned char b)
1595 {
1596 	writeb(b, (io->addr)+(offset * io->regspacing));
1597 }
1598 
1599 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1600 				  unsigned int offset)
1601 {
1602 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1603 		& 0xff;
1604 }
1605 
1606 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1607 			  unsigned char b)
1608 {
1609 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1610 }
1611 
1612 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1613 				  unsigned int offset)
1614 {
1615 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1616 		& 0xff;
1617 }
1618 
1619 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1620 			  unsigned char b)
1621 {
1622 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1623 }
1624 
1625 #ifdef readq
1626 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1627 {
1628 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1629 		& 0xff;
1630 }
1631 
1632 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1633 		     unsigned char b)
1634 {
1635 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1636 }
1637 #endif
1638 
1639 static void mem_cleanup(struct smi_info *info)
1640 {
1641 	unsigned long addr = info->io.addr_data;
1642 	int           mapsize;
1643 
1644 	if (info->io.addr) {
1645 		iounmap(info->io.addr);
1646 
1647 		mapsize = ((info->io_size * info->io.regspacing)
1648 			   - (info->io.regspacing - info->io.regsize));
1649 
1650 		release_mem_region(addr, mapsize);
1651 	}
1652 }
1653 
1654 static int mem_setup(struct smi_info *info)
1655 {
1656 	unsigned long addr = info->io.addr_data;
1657 	int           mapsize;
1658 
1659 	if (!addr)
1660 		return -ENODEV;
1661 
1662 	info->io_cleanup = mem_cleanup;
1663 
1664 	/*
1665 	 * Figure out the actual readb/readw/readl/etc routine to use based
1666 	 * upon the register size.
1667 	 */
1668 	switch (info->io.regsize) {
1669 	case 1:
1670 		info->io.inputb = intf_mem_inb;
1671 		info->io.outputb = intf_mem_outb;
1672 		break;
1673 	case 2:
1674 		info->io.inputb = intf_mem_inw;
1675 		info->io.outputb = intf_mem_outw;
1676 		break;
1677 	case 4:
1678 		info->io.inputb = intf_mem_inl;
1679 		info->io.outputb = intf_mem_outl;
1680 		break;
1681 #ifdef readq
1682 	case 8:
1683 		info->io.inputb = mem_inq;
1684 		info->io.outputb = mem_outq;
1685 		break;
1686 #endif
1687 	default:
1688 		dev_warn(info->dev, "Invalid register size: %d\n",
1689 			 info->io.regsize);
1690 		return -EINVAL;
1691 	}
1692 
1693 	/*
1694 	 * Calculate the total amount of memory to claim.  This is an
1695 	 * unusual looking calculation, but it avoids claiming any
1696 	 * more memory than it has to.  It will claim everything
1697 	 * between the first address to the end of the last full
1698 	 * register.
1699 	 */
1700 	mapsize = ((info->io_size * info->io.regspacing)
1701 		   - (info->io.regspacing - info->io.regsize));
1702 
1703 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1704 		return -EIO;
1705 
1706 	info->io.addr = ioremap(addr, mapsize);
1707 	if (info->io.addr == NULL) {
1708 		release_mem_region(addr, mapsize);
1709 		return -EIO;
1710 	}
1711 	return 0;
1712 }
1713 
1714 /*
1715  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1716  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1717  * Options are:
1718  *   rsp=<regspacing>
1719  *   rsi=<regsize>
1720  *   rsh=<regshift>
1721  *   irq=<irq>
1722  *   ipmb=<ipmb addr>
1723  */
1724 enum hotmod_op { HM_ADD, HM_REMOVE };
1725 struct hotmod_vals {
1726 	char *name;
1727 	int  val;
1728 };
1729 static struct hotmod_vals hotmod_ops[] = {
1730 	{ "add",	HM_ADD },
1731 	{ "remove",	HM_REMOVE },
1732 	{ NULL }
1733 };
1734 static struct hotmod_vals hotmod_si[] = {
1735 	{ "kcs",	SI_KCS },
1736 	{ "smic",	SI_SMIC },
1737 	{ "bt",		SI_BT },
1738 	{ NULL }
1739 };
1740 static struct hotmod_vals hotmod_as[] = {
1741 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1742 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1743 	{ NULL }
1744 };
1745 
1746 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1747 {
1748 	char *s;
1749 	int  i;
1750 
1751 	s = strchr(*curr, ',');
1752 	if (!s) {
1753 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1754 		return -EINVAL;
1755 	}
1756 	*s = '\0';
1757 	s++;
1758 	for (i = 0; v[i].name; i++) {
1759 		if (strcmp(*curr, v[i].name) == 0) {
1760 			*val = v[i].val;
1761 			*curr = s;
1762 			return 0;
1763 		}
1764 	}
1765 
1766 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1767 	return -EINVAL;
1768 }
1769 
1770 static int check_hotmod_int_op(const char *curr, const char *option,
1771 			       const char *name, int *val)
1772 {
1773 	char *n;
1774 
1775 	if (strcmp(curr, name) == 0) {
1776 		if (!option) {
1777 			printk(KERN_WARNING PFX
1778 			       "No option given for '%s'\n",
1779 			       curr);
1780 			return -EINVAL;
1781 		}
1782 		*val = simple_strtoul(option, &n, 0);
1783 		if ((*n != '\0') || (*option == '\0')) {
1784 			printk(KERN_WARNING PFX
1785 			       "Bad option given for '%s'\n",
1786 			       curr);
1787 			return -EINVAL;
1788 		}
1789 		return 1;
1790 	}
1791 	return 0;
1792 }
1793 
1794 static struct smi_info *smi_info_alloc(void)
1795 {
1796 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1797 
1798 	if (info)
1799 		spin_lock_init(&info->si_lock);
1800 	return info;
1801 }
1802 
1803 static int hotmod_handler(const char *val, struct kernel_param *kp)
1804 {
1805 	char *str = kstrdup(val, GFP_KERNEL);
1806 	int  rv;
1807 	char *next, *curr, *s, *n, *o;
1808 	enum hotmod_op op;
1809 	enum si_type si_type;
1810 	int  addr_space;
1811 	unsigned long addr;
1812 	int regspacing;
1813 	int regsize;
1814 	int regshift;
1815 	int irq;
1816 	int ipmb;
1817 	int ival;
1818 	int len;
1819 	struct smi_info *info;
1820 
1821 	if (!str)
1822 		return -ENOMEM;
1823 
1824 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1825 	len = strlen(str);
1826 	ival = len - 1;
1827 	while ((ival >= 0) && isspace(str[ival])) {
1828 		str[ival] = '\0';
1829 		ival--;
1830 	}
1831 
1832 	for (curr = str; curr; curr = next) {
1833 		regspacing = 1;
1834 		regsize = 1;
1835 		regshift = 0;
1836 		irq = 0;
1837 		ipmb = 0; /* Choose the default if not specified */
1838 
1839 		next = strchr(curr, ':');
1840 		if (next) {
1841 			*next = '\0';
1842 			next++;
1843 		}
1844 
1845 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1846 		if (rv)
1847 			break;
1848 		op = ival;
1849 
1850 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1851 		if (rv)
1852 			break;
1853 		si_type = ival;
1854 
1855 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1856 		if (rv)
1857 			break;
1858 
1859 		s = strchr(curr, ',');
1860 		if (s) {
1861 			*s = '\0';
1862 			s++;
1863 		}
1864 		addr = simple_strtoul(curr, &n, 0);
1865 		if ((*n != '\0') || (*curr == '\0')) {
1866 			printk(KERN_WARNING PFX "Invalid hotmod address"
1867 			       " '%s'\n", curr);
1868 			break;
1869 		}
1870 
1871 		while (s) {
1872 			curr = s;
1873 			s = strchr(curr, ',');
1874 			if (s) {
1875 				*s = '\0';
1876 				s++;
1877 			}
1878 			o = strchr(curr, '=');
1879 			if (o) {
1880 				*o = '\0';
1881 				o++;
1882 			}
1883 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1884 			if (rv < 0)
1885 				goto out;
1886 			else if (rv)
1887 				continue;
1888 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1889 			if (rv < 0)
1890 				goto out;
1891 			else if (rv)
1892 				continue;
1893 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1894 			if (rv < 0)
1895 				goto out;
1896 			else if (rv)
1897 				continue;
1898 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1899 			if (rv < 0)
1900 				goto out;
1901 			else if (rv)
1902 				continue;
1903 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1904 			if (rv < 0)
1905 				goto out;
1906 			else if (rv)
1907 				continue;
1908 
1909 			rv = -EINVAL;
1910 			printk(KERN_WARNING PFX
1911 			       "Invalid hotmod option '%s'\n",
1912 			       curr);
1913 			goto out;
1914 		}
1915 
1916 		if (op == HM_ADD) {
1917 			info = smi_info_alloc();
1918 			if (!info) {
1919 				rv = -ENOMEM;
1920 				goto out;
1921 			}
1922 
1923 			info->addr_source = SI_HOTMOD;
1924 			info->si_type = si_type;
1925 			info->io.addr_data = addr;
1926 			info->io.addr_type = addr_space;
1927 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1928 				info->io_setup = mem_setup;
1929 			else
1930 				info->io_setup = port_setup;
1931 
1932 			info->io.addr = NULL;
1933 			info->io.regspacing = regspacing;
1934 			if (!info->io.regspacing)
1935 				info->io.regspacing = DEFAULT_REGSPACING;
1936 			info->io.regsize = regsize;
1937 			if (!info->io.regsize)
1938 				info->io.regsize = DEFAULT_REGSPACING;
1939 			info->io.regshift = regshift;
1940 			info->irq = irq;
1941 			if (info->irq)
1942 				info->irq_setup = std_irq_setup;
1943 			info->slave_addr = ipmb;
1944 
1945 			rv = add_smi(info);
1946 			if (rv) {
1947 				kfree(info);
1948 				goto out;
1949 			}
1950 			rv = try_smi_init(info);
1951 			if (rv) {
1952 				cleanup_one_si(info);
1953 				goto out;
1954 			}
1955 		} else {
1956 			/* remove */
1957 			struct smi_info *e, *tmp_e;
1958 
1959 			mutex_lock(&smi_infos_lock);
1960 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1961 				if (e->io.addr_type != addr_space)
1962 					continue;
1963 				if (e->si_type != si_type)
1964 					continue;
1965 				if (e->io.addr_data == addr)
1966 					cleanup_one_si(e);
1967 			}
1968 			mutex_unlock(&smi_infos_lock);
1969 		}
1970 	}
1971 	rv = len;
1972  out:
1973 	kfree(str);
1974 	return rv;
1975 }
1976 
1977 static int hardcode_find_bmc(void)
1978 {
1979 	int ret = -ENODEV;
1980 	int             i;
1981 	struct smi_info *info;
1982 
1983 	for (i = 0; i < SI_MAX_PARMS; i++) {
1984 		if (!ports[i] && !addrs[i])
1985 			continue;
1986 
1987 		info = smi_info_alloc();
1988 		if (!info)
1989 			return -ENOMEM;
1990 
1991 		info->addr_source = SI_HARDCODED;
1992 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1993 
1994 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1995 			info->si_type = SI_KCS;
1996 		} else if (strcmp(si_type[i], "smic") == 0) {
1997 			info->si_type = SI_SMIC;
1998 		} else if (strcmp(si_type[i], "bt") == 0) {
1999 			info->si_type = SI_BT;
2000 		} else {
2001 			printk(KERN_WARNING PFX "Interface type specified "
2002 			       "for interface %d, was invalid: %s\n",
2003 			       i, si_type[i]);
2004 			kfree(info);
2005 			continue;
2006 		}
2007 
2008 		if (ports[i]) {
2009 			/* An I/O port */
2010 			info->io_setup = port_setup;
2011 			info->io.addr_data = ports[i];
2012 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2013 		} else if (addrs[i]) {
2014 			/* A memory port */
2015 			info->io_setup = mem_setup;
2016 			info->io.addr_data = addrs[i];
2017 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2018 		} else {
2019 			printk(KERN_WARNING PFX "Interface type specified "
2020 			       "for interface %d, but port and address were "
2021 			       "not set or set to zero.\n", i);
2022 			kfree(info);
2023 			continue;
2024 		}
2025 
2026 		info->io.addr = NULL;
2027 		info->io.regspacing = regspacings[i];
2028 		if (!info->io.regspacing)
2029 			info->io.regspacing = DEFAULT_REGSPACING;
2030 		info->io.regsize = regsizes[i];
2031 		if (!info->io.regsize)
2032 			info->io.regsize = DEFAULT_REGSPACING;
2033 		info->io.regshift = regshifts[i];
2034 		info->irq = irqs[i];
2035 		if (info->irq)
2036 			info->irq_setup = std_irq_setup;
2037 		info->slave_addr = slave_addrs[i];
2038 
2039 		if (!add_smi(info)) {
2040 			if (try_smi_init(info))
2041 				cleanup_one_si(info);
2042 			ret = 0;
2043 		} else {
2044 			kfree(info);
2045 		}
2046 	}
2047 	return ret;
2048 }
2049 
2050 #ifdef CONFIG_ACPI
2051 
2052 #include <linux/acpi.h>
2053 
2054 /*
2055  * Once we get an ACPI failure, we don't try any more, because we go
2056  * through the tables sequentially.  Once we don't find a table, there
2057  * are no more.
2058  */
2059 static int acpi_failure;
2060 
2061 /* For GPE-type interrupts. */
2062 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2063 	u32 gpe_number, void *context)
2064 {
2065 	struct smi_info *smi_info = context;
2066 	unsigned long   flags;
2067 
2068 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2069 
2070 	smi_inc_stat(smi_info, interrupts);
2071 
2072 	debug_timestamp("ACPI_GPE");
2073 
2074 	smi_event_handler(smi_info, 0);
2075 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2076 
2077 	return ACPI_INTERRUPT_HANDLED;
2078 }
2079 
2080 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2081 {
2082 	if (!info->irq)
2083 		return;
2084 
2085 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2086 }
2087 
2088 static int acpi_gpe_irq_setup(struct smi_info *info)
2089 {
2090 	acpi_status status;
2091 
2092 	if (!info->irq)
2093 		return 0;
2094 
2095 	status = acpi_install_gpe_handler(NULL,
2096 					  info->irq,
2097 					  ACPI_GPE_LEVEL_TRIGGERED,
2098 					  &ipmi_acpi_gpe,
2099 					  info);
2100 	if (status != AE_OK) {
2101 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2102 			 " running polled\n", DEVICE_NAME, info->irq);
2103 		info->irq = 0;
2104 		return -EINVAL;
2105 	} else {
2106 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2107 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2108 		return 0;
2109 	}
2110 }
2111 
2112 /*
2113  * Defined at
2114  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2115  */
2116 struct SPMITable {
2117 	s8	Signature[4];
2118 	u32	Length;
2119 	u8	Revision;
2120 	u8	Checksum;
2121 	s8	OEMID[6];
2122 	s8	OEMTableID[8];
2123 	s8	OEMRevision[4];
2124 	s8	CreatorID[4];
2125 	s8	CreatorRevision[4];
2126 	u8	InterfaceType;
2127 	u8	IPMIlegacy;
2128 	s16	SpecificationRevision;
2129 
2130 	/*
2131 	 * Bit 0 - SCI interrupt supported
2132 	 * Bit 1 - I/O APIC/SAPIC
2133 	 */
2134 	u8	InterruptType;
2135 
2136 	/*
2137 	 * If bit 0 of InterruptType is set, then this is the SCI
2138 	 * interrupt in the GPEx_STS register.
2139 	 */
2140 	u8	GPE;
2141 
2142 	s16	Reserved;
2143 
2144 	/*
2145 	 * If bit 1 of InterruptType is set, then this is the I/O
2146 	 * APIC/SAPIC interrupt.
2147 	 */
2148 	u32	GlobalSystemInterrupt;
2149 
2150 	/* The actual register address. */
2151 	struct acpi_generic_address addr;
2152 
2153 	u8	UID[4];
2154 
2155 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2156 };
2157 
2158 static int try_init_spmi(struct SPMITable *spmi)
2159 {
2160 	struct smi_info  *info;
2161 	int rv;
2162 
2163 	if (spmi->IPMIlegacy != 1) {
2164 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2165 		return -ENODEV;
2166 	}
2167 
2168 	info = smi_info_alloc();
2169 	if (!info) {
2170 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2171 		return -ENOMEM;
2172 	}
2173 
2174 	info->addr_source = SI_SPMI;
2175 	printk(KERN_INFO PFX "probing via SPMI\n");
2176 
2177 	/* Figure out the interface type. */
2178 	switch (spmi->InterfaceType) {
2179 	case 1:	/* KCS */
2180 		info->si_type = SI_KCS;
2181 		break;
2182 	case 2:	/* SMIC */
2183 		info->si_type = SI_SMIC;
2184 		break;
2185 	case 3:	/* BT */
2186 		info->si_type = SI_BT;
2187 		break;
2188 	case 4: /* SSIF, just ignore */
2189 		kfree(info);
2190 		return -EIO;
2191 	default:
2192 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2193 		       spmi->InterfaceType);
2194 		kfree(info);
2195 		return -EIO;
2196 	}
2197 
2198 	if (spmi->InterruptType & 1) {
2199 		/* We've got a GPE interrupt. */
2200 		info->irq = spmi->GPE;
2201 		info->irq_setup = acpi_gpe_irq_setup;
2202 	} else if (spmi->InterruptType & 2) {
2203 		/* We've got an APIC/SAPIC interrupt. */
2204 		info->irq = spmi->GlobalSystemInterrupt;
2205 		info->irq_setup = std_irq_setup;
2206 	} else {
2207 		/* Use the default interrupt setting. */
2208 		info->irq = 0;
2209 		info->irq_setup = NULL;
2210 	}
2211 
2212 	if (spmi->addr.bit_width) {
2213 		/* A (hopefully) properly formed register bit width. */
2214 		info->io.regspacing = spmi->addr.bit_width / 8;
2215 	} else {
2216 		info->io.regspacing = DEFAULT_REGSPACING;
2217 	}
2218 	info->io.regsize = info->io.regspacing;
2219 	info->io.regshift = spmi->addr.bit_offset;
2220 
2221 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2222 		info->io_setup = mem_setup;
2223 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2224 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2225 		info->io_setup = port_setup;
2226 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2227 	} else {
2228 		kfree(info);
2229 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2230 		return -EIO;
2231 	}
2232 	info->io.addr_data = spmi->addr.address;
2233 
2234 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2235 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2236 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2237 		 info->irq);
2238 
2239 	rv = add_smi(info);
2240 	if (rv)
2241 		kfree(info);
2242 
2243 	return rv;
2244 }
2245 
2246 static void spmi_find_bmc(void)
2247 {
2248 	acpi_status      status;
2249 	struct SPMITable *spmi;
2250 	int              i;
2251 
2252 	if (acpi_disabled)
2253 		return;
2254 
2255 	if (acpi_failure)
2256 		return;
2257 
2258 	for (i = 0; ; i++) {
2259 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2260 					(struct acpi_table_header **)&spmi);
2261 		if (status != AE_OK)
2262 			return;
2263 
2264 		try_init_spmi(spmi);
2265 	}
2266 }
2267 #endif
2268 
2269 #ifdef CONFIG_DMI
2270 struct dmi_ipmi_data {
2271 	u8   		type;
2272 	u8   		addr_space;
2273 	unsigned long	base_addr;
2274 	u8   		irq;
2275 	u8              offset;
2276 	u8              slave_addr;
2277 };
2278 
2279 static int decode_dmi(const struct dmi_header *dm,
2280 				struct dmi_ipmi_data *dmi)
2281 {
2282 	const u8	*data = (const u8 *)dm;
2283 	unsigned long  	base_addr;
2284 	u8		reg_spacing;
2285 	u8              len = dm->length;
2286 
2287 	dmi->type = data[4];
2288 
2289 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2290 	if (len >= 0x11) {
2291 		if (base_addr & 1) {
2292 			/* I/O */
2293 			base_addr &= 0xFFFE;
2294 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2295 		} else
2296 			/* Memory */
2297 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2298 
2299 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2300 		   is odd. */
2301 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2302 
2303 		dmi->irq = data[0x11];
2304 
2305 		/* The top two bits of byte 0x10 hold the register spacing. */
2306 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2307 		switch (reg_spacing) {
2308 		case 0x00: /* Byte boundaries */
2309 		    dmi->offset = 1;
2310 		    break;
2311 		case 0x01: /* 32-bit boundaries */
2312 		    dmi->offset = 4;
2313 		    break;
2314 		case 0x02: /* 16-byte boundaries */
2315 		    dmi->offset = 16;
2316 		    break;
2317 		default:
2318 		    /* Some other interface, just ignore it. */
2319 		    return -EIO;
2320 		}
2321 	} else {
2322 		/* Old DMI spec. */
2323 		/*
2324 		 * Note that technically, the lower bit of the base
2325 		 * address should be 1 if the address is I/O and 0 if
2326 		 * the address is in memory.  So many systems get that
2327 		 * wrong (and all that I have seen are I/O) so we just
2328 		 * ignore that bit and assume I/O.  Systems that use
2329 		 * memory should use the newer spec, anyway.
2330 		 */
2331 		dmi->base_addr = base_addr & 0xfffe;
2332 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2333 		dmi->offset = 1;
2334 	}
2335 
2336 	dmi->slave_addr = data[6];
2337 
2338 	return 0;
2339 }
2340 
2341 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2342 {
2343 	struct smi_info *info;
2344 
2345 	info = smi_info_alloc();
2346 	if (!info) {
2347 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2348 		return;
2349 	}
2350 
2351 	info->addr_source = SI_SMBIOS;
2352 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2353 
2354 	switch (ipmi_data->type) {
2355 	case 0x01: /* KCS */
2356 		info->si_type = SI_KCS;
2357 		break;
2358 	case 0x02: /* SMIC */
2359 		info->si_type = SI_SMIC;
2360 		break;
2361 	case 0x03: /* BT */
2362 		info->si_type = SI_BT;
2363 		break;
2364 	default:
2365 		kfree(info);
2366 		return;
2367 	}
2368 
2369 	switch (ipmi_data->addr_space) {
2370 	case IPMI_MEM_ADDR_SPACE:
2371 		info->io_setup = mem_setup;
2372 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2373 		break;
2374 
2375 	case IPMI_IO_ADDR_SPACE:
2376 		info->io_setup = port_setup;
2377 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2378 		break;
2379 
2380 	default:
2381 		kfree(info);
2382 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2383 		       ipmi_data->addr_space);
2384 		return;
2385 	}
2386 	info->io.addr_data = ipmi_data->base_addr;
2387 
2388 	info->io.regspacing = ipmi_data->offset;
2389 	if (!info->io.regspacing)
2390 		info->io.regspacing = DEFAULT_REGSPACING;
2391 	info->io.regsize = DEFAULT_REGSPACING;
2392 	info->io.regshift = 0;
2393 
2394 	info->slave_addr = ipmi_data->slave_addr;
2395 
2396 	info->irq = ipmi_data->irq;
2397 	if (info->irq)
2398 		info->irq_setup = std_irq_setup;
2399 
2400 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2401 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2402 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2403 		 info->irq);
2404 
2405 	if (add_smi(info))
2406 		kfree(info);
2407 }
2408 
2409 static void dmi_find_bmc(void)
2410 {
2411 	const struct dmi_device *dev = NULL;
2412 	struct dmi_ipmi_data data;
2413 	int                  rv;
2414 
2415 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2416 		memset(&data, 0, sizeof(data));
2417 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2418 				&data);
2419 		if (!rv)
2420 			try_init_dmi(&data);
2421 	}
2422 }
2423 #endif /* CONFIG_DMI */
2424 
2425 #ifdef CONFIG_PCI
2426 
2427 #define PCI_ERMC_CLASSCODE		0x0C0700
2428 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2429 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2430 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2431 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2432 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2433 
2434 #define PCI_HP_VENDOR_ID    0x103C
2435 #define PCI_MMC_DEVICE_ID   0x121A
2436 #define PCI_MMC_ADDR_CW     0x10
2437 
2438 static void ipmi_pci_cleanup(struct smi_info *info)
2439 {
2440 	struct pci_dev *pdev = info->addr_source_data;
2441 
2442 	pci_disable_device(pdev);
2443 }
2444 
2445 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2446 {
2447 	if (info->si_type == SI_KCS) {
2448 		unsigned char	status;
2449 		int		regspacing;
2450 
2451 		info->io.regsize = DEFAULT_REGSIZE;
2452 		info->io.regshift = 0;
2453 		info->io_size = 2;
2454 		info->handlers = &kcs_smi_handlers;
2455 
2456 		/* detect 1, 4, 16byte spacing */
2457 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2458 			info->io.regspacing = regspacing;
2459 			if (info->io_setup(info)) {
2460 				dev_err(info->dev,
2461 					"Could not setup I/O space\n");
2462 				return DEFAULT_REGSPACING;
2463 			}
2464 			/* write invalid cmd */
2465 			info->io.outputb(&info->io, 1, 0x10);
2466 			/* read status back */
2467 			status = info->io.inputb(&info->io, 1);
2468 			info->io_cleanup(info);
2469 			if (status)
2470 				return regspacing;
2471 			regspacing *= 4;
2472 		}
2473 	}
2474 	return DEFAULT_REGSPACING;
2475 }
2476 
2477 static int ipmi_pci_probe(struct pci_dev *pdev,
2478 				    const struct pci_device_id *ent)
2479 {
2480 	int rv;
2481 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2482 	struct smi_info *info;
2483 
2484 	info = smi_info_alloc();
2485 	if (!info)
2486 		return -ENOMEM;
2487 
2488 	info->addr_source = SI_PCI;
2489 	dev_info(&pdev->dev, "probing via PCI");
2490 
2491 	switch (class_type) {
2492 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2493 		info->si_type = SI_SMIC;
2494 		break;
2495 
2496 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2497 		info->si_type = SI_KCS;
2498 		break;
2499 
2500 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2501 		info->si_type = SI_BT;
2502 		break;
2503 
2504 	default:
2505 		kfree(info);
2506 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2507 		return -ENOMEM;
2508 	}
2509 
2510 	rv = pci_enable_device(pdev);
2511 	if (rv) {
2512 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2513 		kfree(info);
2514 		return rv;
2515 	}
2516 
2517 	info->addr_source_cleanup = ipmi_pci_cleanup;
2518 	info->addr_source_data = pdev;
2519 
2520 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2521 		info->io_setup = port_setup;
2522 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2523 	} else {
2524 		info->io_setup = mem_setup;
2525 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2526 	}
2527 	info->io.addr_data = pci_resource_start(pdev, 0);
2528 
2529 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2530 	info->io.regsize = DEFAULT_REGSIZE;
2531 	info->io.regshift = 0;
2532 
2533 	info->irq = pdev->irq;
2534 	if (info->irq)
2535 		info->irq_setup = std_irq_setup;
2536 
2537 	info->dev = &pdev->dev;
2538 	pci_set_drvdata(pdev, info);
2539 
2540 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2541 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2542 		info->irq);
2543 
2544 	rv = add_smi(info);
2545 	if (rv) {
2546 		kfree(info);
2547 		pci_disable_device(pdev);
2548 	}
2549 
2550 	return rv;
2551 }
2552 
2553 static void ipmi_pci_remove(struct pci_dev *pdev)
2554 {
2555 	struct smi_info *info = pci_get_drvdata(pdev);
2556 	cleanup_one_si(info);
2557 	pci_disable_device(pdev);
2558 }
2559 
2560 static const struct pci_device_id ipmi_pci_devices[] = {
2561 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2562 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2563 	{ 0, }
2564 };
2565 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2566 
2567 static struct pci_driver ipmi_pci_driver = {
2568 	.name =         DEVICE_NAME,
2569 	.id_table =     ipmi_pci_devices,
2570 	.probe =        ipmi_pci_probe,
2571 	.remove =       ipmi_pci_remove,
2572 };
2573 #endif /* CONFIG_PCI */
2574 
2575 #ifdef CONFIG_OF
2576 static const struct of_device_id of_ipmi_match[] = {
2577 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2578 	  .data = (void *)(unsigned long) SI_KCS },
2579 	{ .type = "ipmi", .compatible = "ipmi-smic",
2580 	  .data = (void *)(unsigned long) SI_SMIC },
2581 	{ .type = "ipmi", .compatible = "ipmi-bt",
2582 	  .data = (void *)(unsigned long) SI_BT },
2583 	{},
2584 };
2585 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2586 
2587 static int of_ipmi_probe(struct platform_device *dev)
2588 {
2589 	const struct of_device_id *match;
2590 	struct smi_info *info;
2591 	struct resource resource;
2592 	const __be32 *regsize, *regspacing, *regshift;
2593 	struct device_node *np = dev->dev.of_node;
2594 	int ret;
2595 	int proplen;
2596 
2597 	dev_info(&dev->dev, "probing via device tree\n");
2598 
2599 	match = of_match_device(of_ipmi_match, &dev->dev);
2600 	if (!match)
2601 		return -ENODEV;
2602 
2603 	if (!of_device_is_available(np))
2604 		return -EINVAL;
2605 
2606 	ret = of_address_to_resource(np, 0, &resource);
2607 	if (ret) {
2608 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2609 		return ret;
2610 	}
2611 
2612 	regsize = of_get_property(np, "reg-size", &proplen);
2613 	if (regsize && proplen != 4) {
2614 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2615 		return -EINVAL;
2616 	}
2617 
2618 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2619 	if (regspacing && proplen != 4) {
2620 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2621 		return -EINVAL;
2622 	}
2623 
2624 	regshift = of_get_property(np, "reg-shift", &proplen);
2625 	if (regshift && proplen != 4) {
2626 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2627 		return -EINVAL;
2628 	}
2629 
2630 	info = smi_info_alloc();
2631 
2632 	if (!info) {
2633 		dev_err(&dev->dev,
2634 			"could not allocate memory for OF probe\n");
2635 		return -ENOMEM;
2636 	}
2637 
2638 	info->si_type		= (enum si_type) match->data;
2639 	info->addr_source	= SI_DEVICETREE;
2640 	info->irq_setup		= std_irq_setup;
2641 
2642 	if (resource.flags & IORESOURCE_IO) {
2643 		info->io_setup		= port_setup;
2644 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2645 	} else {
2646 		info->io_setup		= mem_setup;
2647 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2648 	}
2649 
2650 	info->io.addr_data	= resource.start;
2651 
2652 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2653 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2654 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2655 
2656 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2657 	info->dev		= &dev->dev;
2658 
2659 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2660 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2661 		info->irq);
2662 
2663 	dev_set_drvdata(&dev->dev, info);
2664 
2665 	ret = add_smi(info);
2666 	if (ret) {
2667 		kfree(info);
2668 		return ret;
2669 	}
2670 	return 0;
2671 }
2672 #else
2673 #define of_ipmi_match NULL
2674 static int of_ipmi_probe(struct platform_device *dev)
2675 {
2676 	return -ENODEV;
2677 }
2678 #endif
2679 
2680 #ifdef CONFIG_ACPI
2681 static int acpi_ipmi_probe(struct platform_device *dev)
2682 {
2683 	struct smi_info *info;
2684 	struct resource *res, *res_second;
2685 	acpi_handle handle;
2686 	acpi_status status;
2687 	unsigned long long tmp;
2688 	int rv = -EINVAL;
2689 
2690 	handle = ACPI_HANDLE(&dev->dev);
2691 	if (!handle)
2692 		return -ENODEV;
2693 
2694 	info = smi_info_alloc();
2695 	if (!info)
2696 		return -ENOMEM;
2697 
2698 	info->addr_source = SI_ACPI;
2699 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2700 
2701 	info->addr_info.acpi_info.acpi_handle = handle;
2702 
2703 	/* _IFT tells us the interface type: KCS, BT, etc */
2704 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2705 	if (ACPI_FAILURE(status)) {
2706 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2707 		goto err_free;
2708 	}
2709 
2710 	switch (tmp) {
2711 	case 1:
2712 		info->si_type = SI_KCS;
2713 		break;
2714 	case 2:
2715 		info->si_type = SI_SMIC;
2716 		break;
2717 	case 3:
2718 		info->si_type = SI_BT;
2719 		break;
2720 	case 4: /* SSIF, just ignore */
2721 		rv = -ENODEV;
2722 		goto err_free;
2723 	default:
2724 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2725 		goto err_free;
2726 	}
2727 
2728 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2729 	if (res) {
2730 		info->io_setup = port_setup;
2731 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2732 	} else {
2733 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2734 		if (res) {
2735 			info->io_setup = mem_setup;
2736 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2737 		}
2738 	}
2739 	if (!res) {
2740 		dev_err(&dev->dev, "no I/O or memory address\n");
2741 		goto err_free;
2742 	}
2743 	info->io.addr_data = res->start;
2744 
2745 	info->io.regspacing = DEFAULT_REGSPACING;
2746 	res_second = platform_get_resource(dev,
2747 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2748 					IORESOURCE_IO : IORESOURCE_MEM,
2749 			       1);
2750 	if (res_second) {
2751 		if (res_second->start > info->io.addr_data)
2752 			info->io.regspacing =
2753 				res_second->start - info->io.addr_data;
2754 	}
2755 	info->io.regsize = DEFAULT_REGSPACING;
2756 	info->io.regshift = 0;
2757 
2758 	/* If _GPE exists, use it; otherwise use standard interrupts */
2759 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2760 	if (ACPI_SUCCESS(status)) {
2761 		info->irq = tmp;
2762 		info->irq_setup = acpi_gpe_irq_setup;
2763 	} else {
2764 		int irq = platform_get_irq(dev, 0);
2765 
2766 		if (irq > 0) {
2767 			info->irq = irq;
2768 			info->irq_setup = std_irq_setup;
2769 		}
2770 	}
2771 
2772 	info->dev = &dev->dev;
2773 	platform_set_drvdata(dev, info);
2774 
2775 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2776 		 res, info->io.regsize, info->io.regspacing,
2777 		 info->irq);
2778 
2779 	rv = add_smi(info);
2780 	if (rv)
2781 		kfree(info);
2782 
2783 	return rv;
2784 
2785 err_free:
2786 	kfree(info);
2787 	return rv;
2788 }
2789 
2790 static const struct acpi_device_id acpi_ipmi_match[] = {
2791 	{ "IPI0001", 0 },
2792 	{ },
2793 };
2794 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2795 #else
2796 static int acpi_ipmi_probe(struct platform_device *dev)
2797 {
2798 	return -ENODEV;
2799 }
2800 #endif
2801 
2802 static int ipmi_probe(struct platform_device *dev)
2803 {
2804 	if (of_ipmi_probe(dev) == 0)
2805 		return 0;
2806 
2807 	return acpi_ipmi_probe(dev);
2808 }
2809 
2810 static int ipmi_remove(struct platform_device *dev)
2811 {
2812 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2813 
2814 	cleanup_one_si(info);
2815 	return 0;
2816 }
2817 
2818 static struct platform_driver ipmi_driver = {
2819 	.driver = {
2820 		.name = DEVICE_NAME,
2821 		.of_match_table = of_ipmi_match,
2822 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2823 	},
2824 	.probe		= ipmi_probe,
2825 	.remove		= ipmi_remove,
2826 };
2827 
2828 #ifdef CONFIG_PARISC
2829 static int ipmi_parisc_probe(struct parisc_device *dev)
2830 {
2831 	struct smi_info *info;
2832 	int rv;
2833 
2834 	info = smi_info_alloc();
2835 
2836 	if (!info) {
2837 		dev_err(&dev->dev,
2838 			"could not allocate memory for PARISC probe\n");
2839 		return -ENOMEM;
2840 	}
2841 
2842 	info->si_type		= SI_KCS;
2843 	info->addr_source	= SI_DEVICETREE;
2844 	info->io_setup		= mem_setup;
2845 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2846 	info->io.addr_data	= dev->hpa.start;
2847 	info->io.regsize	= 1;
2848 	info->io.regspacing	= 1;
2849 	info->io.regshift	= 0;
2850 	info->irq		= 0; /* no interrupt */
2851 	info->irq_setup		= NULL;
2852 	info->dev		= &dev->dev;
2853 
2854 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2855 
2856 	dev_set_drvdata(&dev->dev, info);
2857 
2858 	rv = add_smi(info);
2859 	if (rv) {
2860 		kfree(info);
2861 		return rv;
2862 	}
2863 
2864 	return 0;
2865 }
2866 
2867 static int ipmi_parisc_remove(struct parisc_device *dev)
2868 {
2869 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2870 	return 0;
2871 }
2872 
2873 static struct parisc_device_id ipmi_parisc_tbl[] = {
2874 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2875 	{ 0, }
2876 };
2877 
2878 static struct parisc_driver ipmi_parisc_driver = {
2879 	.name =		"ipmi",
2880 	.id_table =	ipmi_parisc_tbl,
2881 	.probe =	ipmi_parisc_probe,
2882 	.remove =	ipmi_parisc_remove,
2883 };
2884 #endif /* CONFIG_PARISC */
2885 
2886 static int wait_for_msg_done(struct smi_info *smi_info)
2887 {
2888 	enum si_sm_result     smi_result;
2889 
2890 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2891 	for (;;) {
2892 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2893 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2894 			schedule_timeout_uninterruptible(1);
2895 			smi_result = smi_info->handlers->event(
2896 				smi_info->si_sm, jiffies_to_usecs(1));
2897 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2898 			smi_result = smi_info->handlers->event(
2899 				smi_info->si_sm, 0);
2900 		} else
2901 			break;
2902 	}
2903 	if (smi_result == SI_SM_HOSED)
2904 		/*
2905 		 * We couldn't get the state machine to run, so whatever's at
2906 		 * the port is probably not an IPMI SMI interface.
2907 		 */
2908 		return -ENODEV;
2909 
2910 	return 0;
2911 }
2912 
2913 static int try_get_dev_id(struct smi_info *smi_info)
2914 {
2915 	unsigned char         msg[2];
2916 	unsigned char         *resp;
2917 	unsigned long         resp_len;
2918 	int                   rv = 0;
2919 
2920 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921 	if (!resp)
2922 		return -ENOMEM;
2923 
2924 	/*
2925 	 * Do a Get Device ID command, since it comes back with some
2926 	 * useful info.
2927 	 */
2928 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2930 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931 
2932 	rv = wait_for_msg_done(smi_info);
2933 	if (rv)
2934 		goto out;
2935 
2936 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2937 						  resp, IPMI_MAX_MSG_LENGTH);
2938 
2939 	/* Check and record info from the get device id, in case we need it. */
2940 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2941 
2942  out:
2943 	kfree(resp);
2944 	return rv;
2945 }
2946 
2947 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2948 {
2949 	unsigned char         msg[3];
2950 	unsigned char         *resp;
2951 	unsigned long         resp_len;
2952 	int                   rv;
2953 
2954 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2955 	if (!resp)
2956 		return -ENOMEM;
2957 
2958 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2960 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2961 
2962 	rv = wait_for_msg_done(smi_info);
2963 	if (rv) {
2964 		dev_warn(smi_info->dev,
2965 			 "Error getting response from get global enables command: %d\n",
2966 			 rv);
2967 		goto out;
2968 	}
2969 
2970 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2971 						  resp, IPMI_MAX_MSG_LENGTH);
2972 
2973 	if (resp_len < 4 ||
2974 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2975 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2976 			resp[2] != 0) {
2977 		dev_warn(smi_info->dev,
2978 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2979 			 resp_len, resp[0], resp[1], resp[2]);
2980 		rv = -EINVAL;
2981 		goto out;
2982 	} else {
2983 		*enables = resp[3];
2984 	}
2985 
2986 out:
2987 	kfree(resp);
2988 	return rv;
2989 }
2990 
2991 /*
2992  * Returns 1 if it gets an error from the command.
2993  */
2994 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2995 {
2996 	unsigned char         msg[3];
2997 	unsigned char         *resp;
2998 	unsigned long         resp_len;
2999 	int                   rv;
3000 
3001 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3002 	if (!resp)
3003 		return -ENOMEM;
3004 
3005 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3006 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3007 	msg[2] = enables;
3008 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3009 
3010 	rv = wait_for_msg_done(smi_info);
3011 	if (rv) {
3012 		dev_warn(smi_info->dev,
3013 			 "Error getting response from set global enables command: %d\n",
3014 			 rv);
3015 		goto out;
3016 	}
3017 
3018 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3019 						  resp, IPMI_MAX_MSG_LENGTH);
3020 
3021 	if (resp_len < 3 ||
3022 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3023 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3024 		dev_warn(smi_info->dev,
3025 			 "Invalid return from set global enables command: %ld %x %x\n",
3026 			 resp_len, resp[0], resp[1]);
3027 		rv = -EINVAL;
3028 		goto out;
3029 	}
3030 
3031 	if (resp[2] != 0)
3032 		rv = 1;
3033 
3034 out:
3035 	kfree(resp);
3036 	return rv;
3037 }
3038 
3039 /*
3040  * Some BMCs do not support clearing the receive irq bit in the global
3041  * enables (even if they don't support interrupts on the BMC).  Check
3042  * for this and handle it properly.
3043  */
3044 static void check_clr_rcv_irq(struct smi_info *smi_info)
3045 {
3046 	u8 enables = 0;
3047 	int rv;
3048 
3049 	rv = get_global_enables(smi_info, &enables);
3050 	if (!rv) {
3051 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3052 			/* Already clear, should work ok. */
3053 			return;
3054 
3055 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3056 		rv = set_global_enables(smi_info, enables);
3057 	}
3058 
3059 	if (rv < 0) {
3060 		dev_err(smi_info->dev,
3061 			"Cannot check clearing the rcv irq: %d\n", rv);
3062 		return;
3063 	}
3064 
3065 	if (rv) {
3066 		/*
3067 		 * An error when setting the event buffer bit means
3068 		 * clearing the bit is not supported.
3069 		 */
3070 		dev_warn(smi_info->dev,
3071 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3072 		smi_info->cannot_disable_irq = true;
3073 	}
3074 }
3075 
3076 /*
3077  * Some BMCs do not support setting the interrupt bits in the global
3078  * enables even if they support interrupts.  Clearly bad, but we can
3079  * compensate.
3080  */
3081 static void check_set_rcv_irq(struct smi_info *smi_info)
3082 {
3083 	u8 enables = 0;
3084 	int rv;
3085 
3086 	if (!smi_info->irq)
3087 		return;
3088 
3089 	rv = get_global_enables(smi_info, &enables);
3090 	if (!rv) {
3091 		enables |= IPMI_BMC_RCV_MSG_INTR;
3092 		rv = set_global_enables(smi_info, enables);
3093 	}
3094 
3095 	if (rv < 0) {
3096 		dev_err(smi_info->dev,
3097 			"Cannot check setting the rcv irq: %d\n", rv);
3098 		return;
3099 	}
3100 
3101 	if (rv) {
3102 		/*
3103 		 * An error when setting the event buffer bit means
3104 		 * setting the bit is not supported.
3105 		 */
3106 		dev_warn(smi_info->dev,
3107 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3108 		smi_info->cannot_disable_irq = true;
3109 		smi_info->irq_enable_broken = true;
3110 	}
3111 }
3112 
3113 static int try_enable_event_buffer(struct smi_info *smi_info)
3114 {
3115 	unsigned char         msg[3];
3116 	unsigned char         *resp;
3117 	unsigned long         resp_len;
3118 	int                   rv = 0;
3119 
3120 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3121 	if (!resp)
3122 		return -ENOMEM;
3123 
3124 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3125 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3126 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3127 
3128 	rv = wait_for_msg_done(smi_info);
3129 	if (rv) {
3130 		printk(KERN_WARNING PFX "Error getting response from get"
3131 		       " global enables command, the event buffer is not"
3132 		       " enabled.\n");
3133 		goto out;
3134 	}
3135 
3136 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3137 						  resp, IPMI_MAX_MSG_LENGTH);
3138 
3139 	if (resp_len < 4 ||
3140 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3141 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3142 			resp[2] != 0) {
3143 		printk(KERN_WARNING PFX "Invalid return from get global"
3144 		       " enables command, cannot enable the event buffer.\n");
3145 		rv = -EINVAL;
3146 		goto out;
3147 	}
3148 
3149 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3150 		/* buffer is already enabled, nothing to do. */
3151 		smi_info->supports_event_msg_buff = true;
3152 		goto out;
3153 	}
3154 
3155 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3156 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3157 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3158 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3159 
3160 	rv = wait_for_msg_done(smi_info);
3161 	if (rv) {
3162 		printk(KERN_WARNING PFX "Error getting response from set"
3163 		       " global, enables command, the event buffer is not"
3164 		       " enabled.\n");
3165 		goto out;
3166 	}
3167 
3168 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3169 						  resp, IPMI_MAX_MSG_LENGTH);
3170 
3171 	if (resp_len < 3 ||
3172 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3173 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3174 		printk(KERN_WARNING PFX "Invalid return from get global,"
3175 		       "enables command, not enable the event buffer.\n");
3176 		rv = -EINVAL;
3177 		goto out;
3178 	}
3179 
3180 	if (resp[2] != 0)
3181 		/*
3182 		 * An error when setting the event buffer bit means
3183 		 * that the event buffer is not supported.
3184 		 */
3185 		rv = -ENOENT;
3186 	else
3187 		smi_info->supports_event_msg_buff = true;
3188 
3189  out:
3190 	kfree(resp);
3191 	return rv;
3192 }
3193 
3194 static int smi_type_proc_show(struct seq_file *m, void *v)
3195 {
3196 	struct smi_info *smi = m->private;
3197 
3198 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3199 
3200 	return 0;
3201 }
3202 
3203 static int smi_type_proc_open(struct inode *inode, struct file *file)
3204 {
3205 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3206 }
3207 
3208 static const struct file_operations smi_type_proc_ops = {
3209 	.open		= smi_type_proc_open,
3210 	.read		= seq_read,
3211 	.llseek		= seq_lseek,
3212 	.release	= single_release,
3213 };
3214 
3215 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3216 {
3217 	struct smi_info *smi = m->private;
3218 
3219 	seq_printf(m, "interrupts_enabled:    %d\n",
3220 		       smi->irq && !smi->interrupt_disabled);
3221 	seq_printf(m, "short_timeouts:        %u\n",
3222 		       smi_get_stat(smi, short_timeouts));
3223 	seq_printf(m, "long_timeouts:         %u\n",
3224 		       smi_get_stat(smi, long_timeouts));
3225 	seq_printf(m, "idles:                 %u\n",
3226 		       smi_get_stat(smi, idles));
3227 	seq_printf(m, "interrupts:            %u\n",
3228 		       smi_get_stat(smi, interrupts));
3229 	seq_printf(m, "attentions:            %u\n",
3230 		       smi_get_stat(smi, attentions));
3231 	seq_printf(m, "flag_fetches:          %u\n",
3232 		       smi_get_stat(smi, flag_fetches));
3233 	seq_printf(m, "hosed_count:           %u\n",
3234 		       smi_get_stat(smi, hosed_count));
3235 	seq_printf(m, "complete_transactions: %u\n",
3236 		       smi_get_stat(smi, complete_transactions));
3237 	seq_printf(m, "events:                %u\n",
3238 		       smi_get_stat(smi, events));
3239 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3240 		       smi_get_stat(smi, watchdog_pretimeouts));
3241 	seq_printf(m, "incoming_messages:     %u\n",
3242 		       smi_get_stat(smi, incoming_messages));
3243 	return 0;
3244 }
3245 
3246 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3247 {
3248 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3249 }
3250 
3251 static const struct file_operations smi_si_stats_proc_ops = {
3252 	.open		= smi_si_stats_proc_open,
3253 	.read		= seq_read,
3254 	.llseek		= seq_lseek,
3255 	.release	= single_release,
3256 };
3257 
3258 static int smi_params_proc_show(struct seq_file *m, void *v)
3259 {
3260 	struct smi_info *smi = m->private;
3261 
3262 	seq_printf(m,
3263 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3264 		   si_to_str[smi->si_type],
3265 		   addr_space_to_str[smi->io.addr_type],
3266 		   smi->io.addr_data,
3267 		   smi->io.regspacing,
3268 		   smi->io.regsize,
3269 		   smi->io.regshift,
3270 		   smi->irq,
3271 		   smi->slave_addr);
3272 
3273 	return 0;
3274 }
3275 
3276 static int smi_params_proc_open(struct inode *inode, struct file *file)
3277 {
3278 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3279 }
3280 
3281 static const struct file_operations smi_params_proc_ops = {
3282 	.open		= smi_params_proc_open,
3283 	.read		= seq_read,
3284 	.llseek		= seq_lseek,
3285 	.release	= single_release,
3286 };
3287 
3288 /*
3289  * oem_data_avail_to_receive_msg_avail
3290  * @info - smi_info structure with msg_flags set
3291  *
3292  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3293  * Returns 1 indicating need to re-run handle_flags().
3294  */
3295 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3296 {
3297 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3298 			       RECEIVE_MSG_AVAIL);
3299 	return 1;
3300 }
3301 
3302 /*
3303  * setup_dell_poweredge_oem_data_handler
3304  * @info - smi_info.device_id must be populated
3305  *
3306  * Systems that match, but have firmware version < 1.40 may assert
3307  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3308  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3309  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3310  * as RECEIVE_MSG_AVAIL instead.
3311  *
3312  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3313  * assert the OEM[012] bits, and if it did, the driver would have to
3314  * change to handle that properly, we don't actually check for the
3315  * firmware version.
3316  * Device ID = 0x20                BMC on PowerEdge 8G servers
3317  * Device Revision = 0x80
3318  * Firmware Revision1 = 0x01       BMC version 1.40
3319  * Firmware Revision2 = 0x40       BCD encoded
3320  * IPMI Version = 0x51             IPMI 1.5
3321  * Manufacturer ID = A2 02 00      Dell IANA
3322  *
3323  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3324  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3325  *
3326  */
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3328 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3329 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3330 #define DELL_IANA_MFR_ID 0x0002a2
3331 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3332 {
3333 	struct ipmi_device_id *id = &smi_info->device_id;
3334 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3335 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3336 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3337 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3338 			smi_info->oem_data_avail_handler =
3339 				oem_data_avail_to_receive_msg_avail;
3340 		} else if (ipmi_version_major(id) < 1 ||
3341 			   (ipmi_version_major(id) == 1 &&
3342 			    ipmi_version_minor(id) < 5)) {
3343 			smi_info->oem_data_avail_handler =
3344 				oem_data_avail_to_receive_msg_avail;
3345 		}
3346 	}
3347 }
3348 
3349 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3350 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3351 {
3352 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3353 
3354 	/* Make it a response */
3355 	msg->rsp[0] = msg->data[0] | 4;
3356 	msg->rsp[1] = msg->data[1];
3357 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3358 	msg->rsp_size = 3;
3359 	smi_info->curr_msg = NULL;
3360 	deliver_recv_msg(smi_info, msg);
3361 }
3362 
3363 /*
3364  * dell_poweredge_bt_xaction_handler
3365  * @info - smi_info.device_id must be populated
3366  *
3367  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3368  * not respond to a Get SDR command if the length of the data
3369  * requested is exactly 0x3A, which leads to command timeouts and no
3370  * data returned.  This intercepts such commands, and causes userspace
3371  * callers to try again with a different-sized buffer, which succeeds.
3372  */
3373 
3374 #define STORAGE_NETFN 0x0A
3375 #define STORAGE_CMD_GET_SDR 0x23
3376 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3377 					     unsigned long unused,
3378 					     void *in)
3379 {
3380 	struct smi_info *smi_info = in;
3381 	unsigned char *data = smi_info->curr_msg->data;
3382 	unsigned int size   = smi_info->curr_msg->data_size;
3383 	if (size >= 8 &&
3384 	    (data[0]>>2) == STORAGE_NETFN &&
3385 	    data[1] == STORAGE_CMD_GET_SDR &&
3386 	    data[7] == 0x3A) {
3387 		return_hosed_msg_badsize(smi_info);
3388 		return NOTIFY_STOP;
3389 	}
3390 	return NOTIFY_DONE;
3391 }
3392 
3393 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3394 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3395 };
3396 
3397 /*
3398  * setup_dell_poweredge_bt_xaction_handler
3399  * @info - smi_info.device_id must be filled in already
3400  *
3401  * Fills in smi_info.device_id.start_transaction_pre_hook
3402  * when we know what function to use there.
3403  */
3404 static void
3405 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3406 {
3407 	struct ipmi_device_id *id = &smi_info->device_id;
3408 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3409 	    smi_info->si_type == SI_BT)
3410 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3411 }
3412 
3413 /*
3414  * setup_oem_data_handler
3415  * @info - smi_info.device_id must be filled in already
3416  *
3417  * Fills in smi_info.device_id.oem_data_available_handler
3418  * when we know what function to use there.
3419  */
3420 
3421 static void setup_oem_data_handler(struct smi_info *smi_info)
3422 {
3423 	setup_dell_poweredge_oem_data_handler(smi_info);
3424 }
3425 
3426 static void setup_xaction_handlers(struct smi_info *smi_info)
3427 {
3428 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3429 }
3430 
3431 static void check_for_broken_irqs(struct smi_info *smi_info)
3432 {
3433 	check_clr_rcv_irq(smi_info);
3434 	check_set_rcv_irq(smi_info);
3435 }
3436 
3437 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3438 {
3439 	if (smi_info->thread != NULL)
3440 		kthread_stop(smi_info->thread);
3441 	if (smi_info->timer_running)
3442 		del_timer_sync(&smi_info->si_timer);
3443 }
3444 
3445 static const struct ipmi_default_vals
3446 {
3447 	int type;
3448 	int port;
3449 } ipmi_defaults[] =
3450 {
3451 	{ .type = SI_KCS, .port = 0xca2 },
3452 	{ .type = SI_SMIC, .port = 0xca9 },
3453 	{ .type = SI_BT, .port = 0xe4 },
3454 	{ .port = 0 }
3455 };
3456 
3457 static void default_find_bmc(void)
3458 {
3459 	struct smi_info *info;
3460 	int             i;
3461 
3462 	for (i = 0; ; i++) {
3463 		if (!ipmi_defaults[i].port)
3464 			break;
3465 #ifdef CONFIG_PPC
3466 		if (check_legacy_ioport(ipmi_defaults[i].port))
3467 			continue;
3468 #endif
3469 		info = smi_info_alloc();
3470 		if (!info)
3471 			return;
3472 
3473 		info->addr_source = SI_DEFAULT;
3474 
3475 		info->si_type = ipmi_defaults[i].type;
3476 		info->io_setup = port_setup;
3477 		info->io.addr_data = ipmi_defaults[i].port;
3478 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3479 
3480 		info->io.addr = NULL;
3481 		info->io.regspacing = DEFAULT_REGSPACING;
3482 		info->io.regsize = DEFAULT_REGSPACING;
3483 		info->io.regshift = 0;
3484 
3485 		if (add_smi(info) == 0) {
3486 			if ((try_smi_init(info)) == 0) {
3487 				/* Found one... */
3488 				printk(KERN_INFO PFX "Found default %s"
3489 				" state machine at %s address 0x%lx\n",
3490 				si_to_str[info->si_type],
3491 				addr_space_to_str[info->io.addr_type],
3492 				info->io.addr_data);
3493 			} else
3494 				cleanup_one_si(info);
3495 		} else {
3496 			kfree(info);
3497 		}
3498 	}
3499 }
3500 
3501 static int is_new_interface(struct smi_info *info)
3502 {
3503 	struct smi_info *e;
3504 
3505 	list_for_each_entry(e, &smi_infos, link) {
3506 		if (e->io.addr_type != info->io.addr_type)
3507 			continue;
3508 		if (e->io.addr_data == info->io.addr_data)
3509 			return 0;
3510 	}
3511 
3512 	return 1;
3513 }
3514 
3515 static int add_smi(struct smi_info *new_smi)
3516 {
3517 	int rv = 0;
3518 
3519 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3520 	       ipmi_addr_src_to_str(new_smi->addr_source),
3521 	       si_to_str[new_smi->si_type]);
3522 	mutex_lock(&smi_infos_lock);
3523 	if (!is_new_interface(new_smi)) {
3524 		printk(KERN_CONT " duplicate interface\n");
3525 		rv = -EBUSY;
3526 		goto out_err;
3527 	}
3528 
3529 	printk(KERN_CONT "\n");
3530 
3531 	/* So we know not to free it unless we have allocated one. */
3532 	new_smi->intf = NULL;
3533 	new_smi->si_sm = NULL;
3534 	new_smi->handlers = NULL;
3535 
3536 	list_add_tail(&new_smi->link, &smi_infos);
3537 
3538 out_err:
3539 	mutex_unlock(&smi_infos_lock);
3540 	return rv;
3541 }
3542 
3543 static int try_smi_init(struct smi_info *new_smi)
3544 {
3545 	int rv = 0;
3546 	int i;
3547 
3548 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3549 	       " machine at %s address 0x%lx, slave address 0x%x,"
3550 	       " irq %d\n",
3551 	       ipmi_addr_src_to_str(new_smi->addr_source),
3552 	       si_to_str[new_smi->si_type],
3553 	       addr_space_to_str[new_smi->io.addr_type],
3554 	       new_smi->io.addr_data,
3555 	       new_smi->slave_addr, new_smi->irq);
3556 
3557 	switch (new_smi->si_type) {
3558 	case SI_KCS:
3559 		new_smi->handlers = &kcs_smi_handlers;
3560 		break;
3561 
3562 	case SI_SMIC:
3563 		new_smi->handlers = &smic_smi_handlers;
3564 		break;
3565 
3566 	case SI_BT:
3567 		new_smi->handlers = &bt_smi_handlers;
3568 		break;
3569 
3570 	default:
3571 		/* No support for anything else yet. */
3572 		rv = -EIO;
3573 		goto out_err;
3574 	}
3575 
3576 	/* Allocate the state machine's data and initialize it. */
3577 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3578 	if (!new_smi->si_sm) {
3579 		printk(KERN_ERR PFX
3580 		       "Could not allocate state machine memory\n");
3581 		rv = -ENOMEM;
3582 		goto out_err;
3583 	}
3584 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3585 							&new_smi->io);
3586 
3587 	/* Now that we know the I/O size, we can set up the I/O. */
3588 	rv = new_smi->io_setup(new_smi);
3589 	if (rv) {
3590 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3591 		goto out_err;
3592 	}
3593 
3594 	/* Do low-level detection first. */
3595 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3596 		if (new_smi->addr_source)
3597 			printk(KERN_INFO PFX "Interface detection failed\n");
3598 		rv = -ENODEV;
3599 		goto out_err;
3600 	}
3601 
3602 	/*
3603 	 * Attempt a get device id command.  If it fails, we probably
3604 	 * don't have a BMC here.
3605 	 */
3606 	rv = try_get_dev_id(new_smi);
3607 	if (rv) {
3608 		if (new_smi->addr_source)
3609 			printk(KERN_INFO PFX "There appears to be no BMC"
3610 			       " at this location\n");
3611 		goto out_err;
3612 	}
3613 
3614 	setup_oem_data_handler(new_smi);
3615 	setup_xaction_handlers(new_smi);
3616 	check_for_broken_irqs(new_smi);
3617 
3618 	new_smi->waiting_msg = NULL;
3619 	new_smi->curr_msg = NULL;
3620 	atomic_set(&new_smi->req_events, 0);
3621 	new_smi->run_to_completion = false;
3622 	for (i = 0; i < SI_NUM_STATS; i++)
3623 		atomic_set(&new_smi->stats[i], 0);
3624 
3625 	new_smi->interrupt_disabled = true;
3626 	atomic_set(&new_smi->need_watch, 0);
3627 	new_smi->intf_num = smi_num;
3628 	smi_num++;
3629 
3630 	rv = try_enable_event_buffer(new_smi);
3631 	if (rv == 0)
3632 		new_smi->has_event_buffer = true;
3633 
3634 	/*
3635 	 * Start clearing the flags before we enable interrupts or the
3636 	 * timer to avoid racing with the timer.
3637 	 */
3638 	start_clear_flags(new_smi, false);
3639 
3640 	/*
3641 	 * IRQ is defined to be set when non-zero.  req_events will
3642 	 * cause a global flags check that will enable interrupts.
3643 	 */
3644 	if (new_smi->irq) {
3645 		new_smi->interrupt_disabled = false;
3646 		atomic_set(&new_smi->req_events, 1);
3647 	}
3648 
3649 	if (!new_smi->dev) {
3650 		/*
3651 		 * If we don't already have a device from something
3652 		 * else (like PCI), then register a new one.
3653 		 */
3654 		new_smi->pdev = platform_device_alloc("ipmi_si",
3655 						      new_smi->intf_num);
3656 		if (!new_smi->pdev) {
3657 			printk(KERN_ERR PFX
3658 			       "Unable to allocate platform device\n");
3659 			goto out_err;
3660 		}
3661 		new_smi->dev = &new_smi->pdev->dev;
3662 		new_smi->dev->driver = &ipmi_driver.driver;
3663 
3664 		rv = platform_device_add(new_smi->pdev);
3665 		if (rv) {
3666 			printk(KERN_ERR PFX
3667 			       "Unable to register system interface device:"
3668 			       " %d\n",
3669 			       rv);
3670 			goto out_err;
3671 		}
3672 		new_smi->dev_registered = true;
3673 	}
3674 
3675 	rv = ipmi_register_smi(&handlers,
3676 			       new_smi,
3677 			       &new_smi->device_id,
3678 			       new_smi->dev,
3679 			       new_smi->slave_addr);
3680 	if (rv) {
3681 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3682 			rv);
3683 		goto out_err_stop_timer;
3684 	}
3685 
3686 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3687 				     &smi_type_proc_ops,
3688 				     new_smi);
3689 	if (rv) {
3690 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3691 		goto out_err_stop_timer;
3692 	}
3693 
3694 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3695 				     &smi_si_stats_proc_ops,
3696 				     new_smi);
3697 	if (rv) {
3698 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3699 		goto out_err_stop_timer;
3700 	}
3701 
3702 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3703 				     &smi_params_proc_ops,
3704 				     new_smi);
3705 	if (rv) {
3706 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3707 		goto out_err_stop_timer;
3708 	}
3709 
3710 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3711 		 si_to_str[new_smi->si_type]);
3712 
3713 	return 0;
3714 
3715  out_err_stop_timer:
3716 	wait_for_timer_and_thread(new_smi);
3717 
3718  out_err:
3719 	new_smi->interrupt_disabled = true;
3720 
3721 	if (new_smi->intf) {
3722 		ipmi_smi_t intf = new_smi->intf;
3723 		new_smi->intf = NULL;
3724 		ipmi_unregister_smi(intf);
3725 	}
3726 
3727 	if (new_smi->irq_cleanup) {
3728 		new_smi->irq_cleanup(new_smi);
3729 		new_smi->irq_cleanup = NULL;
3730 	}
3731 
3732 	/*
3733 	 * Wait until we know that we are out of any interrupt
3734 	 * handlers might have been running before we freed the
3735 	 * interrupt.
3736 	 */
3737 	synchronize_sched();
3738 
3739 	if (new_smi->si_sm) {
3740 		if (new_smi->handlers)
3741 			new_smi->handlers->cleanup(new_smi->si_sm);
3742 		kfree(new_smi->si_sm);
3743 		new_smi->si_sm = NULL;
3744 	}
3745 	if (new_smi->addr_source_cleanup) {
3746 		new_smi->addr_source_cleanup(new_smi);
3747 		new_smi->addr_source_cleanup = NULL;
3748 	}
3749 	if (new_smi->io_cleanup) {
3750 		new_smi->io_cleanup(new_smi);
3751 		new_smi->io_cleanup = NULL;
3752 	}
3753 
3754 	if (new_smi->dev_registered) {
3755 		platform_device_unregister(new_smi->pdev);
3756 		new_smi->dev_registered = false;
3757 	}
3758 
3759 	return rv;
3760 }
3761 
3762 static int init_ipmi_si(void)
3763 {
3764 	int  i;
3765 	char *str;
3766 	int  rv;
3767 	struct smi_info *e;
3768 	enum ipmi_addr_src type = SI_INVALID;
3769 
3770 	if (initialized)
3771 		return 0;
3772 	initialized = 1;
3773 
3774 	if (si_tryplatform) {
3775 		rv = platform_driver_register(&ipmi_driver);
3776 		if (rv) {
3777 			printk(KERN_ERR PFX "Unable to register "
3778 			       "driver: %d\n", rv);
3779 			return rv;
3780 		}
3781 	}
3782 
3783 	/* Parse out the si_type string into its components. */
3784 	str = si_type_str;
3785 	if (*str != '\0') {
3786 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3787 			si_type[i] = str;
3788 			str = strchr(str, ',');
3789 			if (str) {
3790 				*str = '\0';
3791 				str++;
3792 			} else {
3793 				break;
3794 			}
3795 		}
3796 	}
3797 
3798 	printk(KERN_INFO "IPMI System Interface driver.\n");
3799 
3800 	/* If the user gave us a device, they presumably want us to use it */
3801 	if (!hardcode_find_bmc())
3802 		return 0;
3803 
3804 #ifdef CONFIG_PCI
3805 	if (si_trypci) {
3806 		rv = pci_register_driver(&ipmi_pci_driver);
3807 		if (rv)
3808 			printk(KERN_ERR PFX "Unable to register "
3809 			       "PCI driver: %d\n", rv);
3810 		else
3811 			pci_registered = true;
3812 	}
3813 #endif
3814 
3815 #ifdef CONFIG_DMI
3816 	if (si_trydmi)
3817 		dmi_find_bmc();
3818 #endif
3819 
3820 #ifdef CONFIG_ACPI
3821 	if (si_tryacpi)
3822 		spmi_find_bmc();
3823 #endif
3824 
3825 #ifdef CONFIG_PARISC
3826 	register_parisc_driver(&ipmi_parisc_driver);
3827 	parisc_registered = true;
3828 	/* poking PC IO addresses will crash machine, don't do it */
3829 	si_trydefaults = 0;
3830 #endif
3831 
3832 	/* We prefer devices with interrupts, but in the case of a machine
3833 	   with multiple BMCs we assume that there will be several instances
3834 	   of a given type so if we succeed in registering a type then also
3835 	   try to register everything else of the same type */
3836 
3837 	mutex_lock(&smi_infos_lock);
3838 	list_for_each_entry(e, &smi_infos, link) {
3839 		/* Try to register a device if it has an IRQ and we either
3840 		   haven't successfully registered a device yet or this
3841 		   device has the same type as one we successfully registered */
3842 		if (e->irq && (!type || e->addr_source == type)) {
3843 			if (!try_smi_init(e)) {
3844 				type = e->addr_source;
3845 			}
3846 		}
3847 	}
3848 
3849 	/* type will only have been set if we successfully registered an si */
3850 	if (type) {
3851 		mutex_unlock(&smi_infos_lock);
3852 		return 0;
3853 	}
3854 
3855 	/* Fall back to the preferred device */
3856 
3857 	list_for_each_entry(e, &smi_infos, link) {
3858 		if (!e->irq && (!type || e->addr_source == type)) {
3859 			if (!try_smi_init(e)) {
3860 				type = e->addr_source;
3861 			}
3862 		}
3863 	}
3864 	mutex_unlock(&smi_infos_lock);
3865 
3866 	if (type)
3867 		return 0;
3868 
3869 	if (si_trydefaults) {
3870 		mutex_lock(&smi_infos_lock);
3871 		if (list_empty(&smi_infos)) {
3872 			/* No BMC was found, try defaults. */
3873 			mutex_unlock(&smi_infos_lock);
3874 			default_find_bmc();
3875 		} else
3876 			mutex_unlock(&smi_infos_lock);
3877 	}
3878 
3879 	mutex_lock(&smi_infos_lock);
3880 	if (unload_when_empty && list_empty(&smi_infos)) {
3881 		mutex_unlock(&smi_infos_lock);
3882 		cleanup_ipmi_si();
3883 		printk(KERN_WARNING PFX
3884 		       "Unable to find any System Interface(s)\n");
3885 		return -ENODEV;
3886 	} else {
3887 		mutex_unlock(&smi_infos_lock);
3888 		return 0;
3889 	}
3890 }
3891 module_init(init_ipmi_si);
3892 
3893 static void cleanup_one_si(struct smi_info *to_clean)
3894 {
3895 	int           rv = 0;
3896 
3897 	if (!to_clean)
3898 		return;
3899 
3900 	if (to_clean->intf) {
3901 		ipmi_smi_t intf = to_clean->intf;
3902 
3903 		to_clean->intf = NULL;
3904 		rv = ipmi_unregister_smi(intf);
3905 		if (rv) {
3906 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3907 			       rv);
3908 		}
3909 	}
3910 
3911 	if (to_clean->dev)
3912 		dev_set_drvdata(to_clean->dev, NULL);
3913 
3914 	list_del(&to_clean->link);
3915 
3916 	/*
3917 	 * Make sure that interrupts, the timer and the thread are
3918 	 * stopped and will not run again.
3919 	 */
3920 	if (to_clean->irq_cleanup)
3921 		to_clean->irq_cleanup(to_clean);
3922 	wait_for_timer_and_thread(to_clean);
3923 
3924 	/*
3925 	 * Timeouts are stopped, now make sure the interrupts are off
3926 	 * in the BMC.  Note that timers and CPU interrupts are off,
3927 	 * so no need for locks.
3928 	 */
3929 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3930 		poll(to_clean);
3931 		schedule_timeout_uninterruptible(1);
3932 	}
3933 	disable_si_irq(to_clean, false);
3934 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3935 		poll(to_clean);
3936 		schedule_timeout_uninterruptible(1);
3937 	}
3938 
3939 	if (to_clean->handlers)
3940 		to_clean->handlers->cleanup(to_clean->si_sm);
3941 
3942 	kfree(to_clean->si_sm);
3943 
3944 	if (to_clean->addr_source_cleanup)
3945 		to_clean->addr_source_cleanup(to_clean);
3946 	if (to_clean->io_cleanup)
3947 		to_clean->io_cleanup(to_clean);
3948 
3949 	if (to_clean->dev_registered)
3950 		platform_device_unregister(to_clean->pdev);
3951 
3952 	kfree(to_clean);
3953 }
3954 
3955 static void cleanup_ipmi_si(void)
3956 {
3957 	struct smi_info *e, *tmp_e;
3958 
3959 	if (!initialized)
3960 		return;
3961 
3962 #ifdef CONFIG_PCI
3963 	if (pci_registered)
3964 		pci_unregister_driver(&ipmi_pci_driver);
3965 #endif
3966 #ifdef CONFIG_PARISC
3967 	if (parisc_registered)
3968 		unregister_parisc_driver(&ipmi_parisc_driver);
3969 #endif
3970 
3971 	platform_driver_unregister(&ipmi_driver);
3972 
3973 	mutex_lock(&smi_infos_lock);
3974 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3975 		cleanup_one_si(e);
3976 	mutex_unlock(&smi_infos_lock);
3977 }
3978 module_exit(cleanup_ipmi_si);
3979 
3980 MODULE_LICENSE("GPL");
3981 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3982 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3983 		   " system interfaces.");
3984