xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision a2cce7a9)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76 
77 #define PFX "ipmi_si: "
78 
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81 
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC	10000
84 #define SI_USEC_PER_JIFFY	(1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87 				      short timeout */
88 
89 enum si_intf_state {
90 	SI_NORMAL,
91 	SI_GETTING_FLAGS,
92 	SI_GETTING_EVENTS,
93 	SI_CLEARING_FLAGS,
94 	SI_GETTING_MESSAGES,
95 	SI_CHECKING_ENABLES,
96 	SI_SETTING_ENABLES
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 #define DEVICE_NAME "ipmi_si"
111 
112 static struct platform_driver ipmi_driver;
113 
114 /*
115  * Indexes into stats[] in smi_info below.
116  */
117 enum si_stat_indexes {
118 	/*
119 	 * Number of times the driver requested a timer while an operation
120 	 * was in progress.
121 	 */
122 	SI_STAT_short_timeouts = 0,
123 
124 	/*
125 	 * Number of times the driver requested a timer while nothing was in
126 	 * progress.
127 	 */
128 	SI_STAT_long_timeouts,
129 
130 	/* Number of times the interface was idle while being polled. */
131 	SI_STAT_idles,
132 
133 	/* Number of interrupts the driver handled. */
134 	SI_STAT_interrupts,
135 
136 	/* Number of time the driver got an ATTN from the hardware. */
137 	SI_STAT_attentions,
138 
139 	/* Number of times the driver requested flags from the hardware. */
140 	SI_STAT_flag_fetches,
141 
142 	/* Number of times the hardware didn't follow the state machine. */
143 	SI_STAT_hosed_count,
144 
145 	/* Number of completed messages. */
146 	SI_STAT_complete_transactions,
147 
148 	/* Number of IPMI events received from the hardware. */
149 	SI_STAT_events,
150 
151 	/* Number of watchdog pretimeouts. */
152 	SI_STAT_watchdog_pretimeouts,
153 
154 	/* Number of asynchronous messages received. */
155 	SI_STAT_incoming_messages,
156 
157 
158 	/* This *must* remain last, add new values above this. */
159 	SI_NUM_STATS
160 };
161 
162 struct smi_info {
163 	int                    intf_num;
164 	ipmi_smi_t             intf;
165 	struct si_sm_data      *si_sm;
166 	const struct si_sm_handlers *handlers;
167 	enum si_type           si_type;
168 	spinlock_t             si_lock;
169 	struct ipmi_smi_msg    *waiting_msg;
170 	struct ipmi_smi_msg    *curr_msg;
171 	enum si_intf_state     si_state;
172 
173 	/*
174 	 * Used to handle the various types of I/O that can occur with
175 	 * IPMI
176 	 */
177 	struct si_sm_io io;
178 	int (*io_setup)(struct smi_info *info);
179 	void (*io_cleanup)(struct smi_info *info);
180 	int (*irq_setup)(struct smi_info *info);
181 	void (*irq_cleanup)(struct smi_info *info);
182 	unsigned int io_size;
183 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184 	void (*addr_source_cleanup)(struct smi_info *info);
185 	void *addr_source_data;
186 
187 	/*
188 	 * Per-OEM handler, called from handle_flags().  Returns 1
189 	 * when handle_flags() needs to be re-run or 0 indicating it
190 	 * set si_state itself.
191 	 */
192 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
193 
194 	/*
195 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196 	 * is set to hold the flags until we are done handling everything
197 	 * from the flags.
198 	 */
199 #define RECEIVE_MSG_AVAIL	0x01
200 #define EVENT_MSG_BUFFER_FULL	0x02
201 #define WDT_PRE_TIMEOUT_INT	0x08
202 #define OEM0_DATA_AVAIL     0x20
203 #define OEM1_DATA_AVAIL     0x40
204 #define OEM2_DATA_AVAIL     0x80
205 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
206 			     OEM1_DATA_AVAIL | \
207 			     OEM2_DATA_AVAIL)
208 	unsigned char       msg_flags;
209 
210 	/* Does the BMC have an event buffer? */
211 	bool		    has_event_buffer;
212 
213 	/*
214 	 * If set to true, this will request events the next time the
215 	 * state machine is idle.
216 	 */
217 	atomic_t            req_events;
218 
219 	/*
220 	 * If true, run the state machine to completion on every send
221 	 * call.  Generally used after a panic to make sure stuff goes
222 	 * out.
223 	 */
224 	bool                run_to_completion;
225 
226 	/* The I/O port of an SI interface. */
227 	int                 port;
228 
229 	/*
230 	 * The space between start addresses of the two ports.  For
231 	 * instance, if the first port is 0xca2 and the spacing is 4, then
232 	 * the second port is 0xca6.
233 	 */
234 	unsigned int        spacing;
235 
236 	/* zero if no irq; */
237 	int                 irq;
238 
239 	/* The timer for this si. */
240 	struct timer_list   si_timer;
241 
242 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
243 	bool		    timer_running;
244 
245 	/* The time (in jiffies) the last timeout occurred at. */
246 	unsigned long       last_timeout_jiffies;
247 
248 	/* Are we waiting for the events, pretimeouts, received msgs? */
249 	atomic_t            need_watch;
250 
251 	/*
252 	 * The driver will disable interrupts when it gets into a
253 	 * situation where it cannot handle messages due to lack of
254 	 * memory.  Once that situation clears up, it will re-enable
255 	 * interrupts.
256 	 */
257 	bool interrupt_disabled;
258 
259 	/*
260 	 * Does the BMC support events?
261 	 */
262 	bool supports_event_msg_buff;
263 
264 	/*
265 	 * Can we disable interrupts the global enables receive irq
266 	 * bit?  There are currently two forms of brokenness, some
267 	 * systems cannot disable the bit (which is technically within
268 	 * the spec but a bad idea) and some systems have the bit
269 	 * forced to zero even though interrupts work (which is
270 	 * clearly outside the spec).  The next bool tells which form
271 	 * of brokenness is present.
272 	 */
273 	bool cannot_disable_irq;
274 
275 	/*
276 	 * Some systems are broken and cannot set the irq enable
277 	 * bit, even if they support interrupts.
278 	 */
279 	bool irq_enable_broken;
280 
281 	/*
282 	 * Did we get an attention that we did not handle?
283 	 */
284 	bool got_attn;
285 
286 	/* From the get device id response... */
287 	struct ipmi_device_id device_id;
288 
289 	/* Driver model stuff. */
290 	struct device *dev;
291 	struct platform_device *pdev;
292 
293 	/*
294 	 * True if we allocated the device, false if it came from
295 	 * someplace else (like PCI).
296 	 */
297 	bool dev_registered;
298 
299 	/* Slave address, could be reported from DMI. */
300 	unsigned char slave_addr;
301 
302 	/* Counters and things for the proc filesystem. */
303 	atomic_t stats[SI_NUM_STATS];
304 
305 	struct task_struct *thread;
306 
307 	struct list_head link;
308 	union ipmi_smi_info_union addr_info;
309 };
310 
311 #define smi_inc_stat(smi, stat) \
312 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
313 #define smi_get_stat(smi, stat) \
314 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
315 
316 #define SI_MAX_PARMS 4
317 
318 static int force_kipmid[SI_MAX_PARMS];
319 static int num_force_kipmid;
320 #ifdef CONFIG_PCI
321 static bool pci_registered;
322 #endif
323 #ifdef CONFIG_PARISC
324 static bool parisc_registered;
325 #endif
326 
327 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
328 static int num_max_busy_us;
329 
330 static bool unload_when_empty = true;
331 
332 static int add_smi(struct smi_info *smi);
333 static int try_smi_init(struct smi_info *smi);
334 static void cleanup_one_si(struct smi_info *to_clean);
335 static void cleanup_ipmi_si(void);
336 
337 #ifdef DEBUG_TIMING
338 void debug_timestamp(char *msg)
339 {
340 	struct timespec64 t;
341 
342 	getnstimeofday64(&t);
343 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
344 }
345 #else
346 #define debug_timestamp(x)
347 #endif
348 
349 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
350 static int register_xaction_notifier(struct notifier_block *nb)
351 {
352 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
353 }
354 
355 static void deliver_recv_msg(struct smi_info *smi_info,
356 			     struct ipmi_smi_msg *msg)
357 {
358 	/* Deliver the message to the upper layer. */
359 	if (smi_info->intf)
360 		ipmi_smi_msg_received(smi_info->intf, msg);
361 	else
362 		ipmi_free_smi_msg(msg);
363 }
364 
365 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
366 {
367 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
368 
369 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
370 		cCode = IPMI_ERR_UNSPECIFIED;
371 	/* else use it as is */
372 
373 	/* Make it a response */
374 	msg->rsp[0] = msg->data[0] | 4;
375 	msg->rsp[1] = msg->data[1];
376 	msg->rsp[2] = cCode;
377 	msg->rsp_size = 3;
378 
379 	smi_info->curr_msg = NULL;
380 	deliver_recv_msg(smi_info, msg);
381 }
382 
383 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
384 {
385 	int              rv;
386 
387 	if (!smi_info->waiting_msg) {
388 		smi_info->curr_msg = NULL;
389 		rv = SI_SM_IDLE;
390 	} else {
391 		int err;
392 
393 		smi_info->curr_msg = smi_info->waiting_msg;
394 		smi_info->waiting_msg = NULL;
395 		debug_timestamp("Start2");
396 		err = atomic_notifier_call_chain(&xaction_notifier_list,
397 				0, smi_info);
398 		if (err & NOTIFY_STOP_MASK) {
399 			rv = SI_SM_CALL_WITHOUT_DELAY;
400 			goto out;
401 		}
402 		err = smi_info->handlers->start_transaction(
403 			smi_info->si_sm,
404 			smi_info->curr_msg->data,
405 			smi_info->curr_msg->data_size);
406 		if (err)
407 			return_hosed_msg(smi_info, err);
408 
409 		rv = SI_SM_CALL_WITHOUT_DELAY;
410 	}
411  out:
412 	return rv;
413 }
414 
415 static void start_check_enables(struct smi_info *smi_info)
416 {
417 	unsigned char msg[2];
418 
419 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421 
422 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423 	smi_info->si_state = SI_CHECKING_ENABLES;
424 }
425 
426 static void start_clear_flags(struct smi_info *smi_info)
427 {
428 	unsigned char msg[3];
429 
430 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
431 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
432 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
433 	msg[2] = WDT_PRE_TIMEOUT_INT;
434 
435 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
436 	smi_info->si_state = SI_CLEARING_FLAGS;
437 }
438 
439 static void start_getting_msg_queue(struct smi_info *smi_info)
440 {
441 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
443 	smi_info->curr_msg->data_size = 2;
444 
445 	smi_info->handlers->start_transaction(
446 		smi_info->si_sm,
447 		smi_info->curr_msg->data,
448 		smi_info->curr_msg->data_size);
449 	smi_info->si_state = SI_GETTING_MESSAGES;
450 }
451 
452 static void start_getting_events(struct smi_info *smi_info)
453 {
454 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
455 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
456 	smi_info->curr_msg->data_size = 2;
457 
458 	smi_info->handlers->start_transaction(
459 		smi_info->si_sm,
460 		smi_info->curr_msg->data,
461 		smi_info->curr_msg->data_size);
462 	smi_info->si_state = SI_GETTING_EVENTS;
463 }
464 
465 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
466 {
467 	smi_info->last_timeout_jiffies = jiffies;
468 	mod_timer(&smi_info->si_timer, new_val);
469 	smi_info->timer_running = true;
470 }
471 
472 /*
473  * When we have a situtaion where we run out of memory and cannot
474  * allocate messages, we just leave them in the BMC and run the system
475  * polled until we can allocate some memory.  Once we have some
476  * memory, we will re-enable the interrupt.
477  *
478  * Note that we cannot just use disable_irq(), since the interrupt may
479  * be shared.
480  */
481 static inline bool disable_si_irq(struct smi_info *smi_info)
482 {
483 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
484 		smi_info->interrupt_disabled = true;
485 		start_check_enables(smi_info);
486 		return true;
487 	}
488 	return false;
489 }
490 
491 static inline bool enable_si_irq(struct smi_info *smi_info)
492 {
493 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
494 		smi_info->interrupt_disabled = false;
495 		start_check_enables(smi_info);
496 		return true;
497 	}
498 	return false;
499 }
500 
501 /*
502  * Allocate a message.  If unable to allocate, start the interrupt
503  * disable process and return NULL.  If able to allocate but
504  * interrupts are disabled, free the message and return NULL after
505  * starting the interrupt enable process.
506  */
507 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
508 {
509 	struct ipmi_smi_msg *msg;
510 
511 	msg = ipmi_alloc_smi_msg();
512 	if (!msg) {
513 		if (!disable_si_irq(smi_info))
514 			smi_info->si_state = SI_NORMAL;
515 	} else if (enable_si_irq(smi_info)) {
516 		ipmi_free_smi_msg(msg);
517 		msg = NULL;
518 	}
519 	return msg;
520 }
521 
522 static void handle_flags(struct smi_info *smi_info)
523 {
524  retry:
525 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
526 		/* Watchdog pre-timeout */
527 		smi_inc_stat(smi_info, watchdog_pretimeouts);
528 
529 		start_clear_flags(smi_info);
530 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
531 		if (smi_info->intf)
532 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
533 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
534 		/* Messages available. */
535 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
536 		if (!smi_info->curr_msg)
537 			return;
538 
539 		start_getting_msg_queue(smi_info);
540 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
541 		/* Events available. */
542 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
543 		if (!smi_info->curr_msg)
544 			return;
545 
546 		start_getting_events(smi_info);
547 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
548 		   smi_info->oem_data_avail_handler) {
549 		if (smi_info->oem_data_avail_handler(smi_info))
550 			goto retry;
551 	} else
552 		smi_info->si_state = SI_NORMAL;
553 }
554 
555 /*
556  * Global enables we care about.
557  */
558 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
559 			     IPMI_BMC_EVT_MSG_INTR)
560 
561 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
562 				 bool *irq_on)
563 {
564 	u8 enables = 0;
565 
566 	if (smi_info->supports_event_msg_buff)
567 		enables |= IPMI_BMC_EVT_MSG_BUFF;
568 
569 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
570 	     smi_info->cannot_disable_irq) &&
571 	    !smi_info->irq_enable_broken)
572 		enables |= IPMI_BMC_RCV_MSG_INTR;
573 
574 	if (smi_info->supports_event_msg_buff &&
575 	    smi_info->irq && !smi_info->interrupt_disabled &&
576 	    !smi_info->irq_enable_broken)
577 		enables |= IPMI_BMC_EVT_MSG_INTR;
578 
579 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
580 
581 	return enables;
582 }
583 
584 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
585 {
586 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
587 
588 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
589 
590 	if ((bool)irqstate == irq_on)
591 		return;
592 
593 	if (irq_on)
594 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
595 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
596 	else
597 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
598 }
599 
600 static void handle_transaction_done(struct smi_info *smi_info)
601 {
602 	struct ipmi_smi_msg *msg;
603 
604 	debug_timestamp("Done");
605 	switch (smi_info->si_state) {
606 	case SI_NORMAL:
607 		if (!smi_info->curr_msg)
608 			break;
609 
610 		smi_info->curr_msg->rsp_size
611 			= smi_info->handlers->get_result(
612 				smi_info->si_sm,
613 				smi_info->curr_msg->rsp,
614 				IPMI_MAX_MSG_LENGTH);
615 
616 		/*
617 		 * Do this here becase deliver_recv_msg() releases the
618 		 * lock, and a new message can be put in during the
619 		 * time the lock is released.
620 		 */
621 		msg = smi_info->curr_msg;
622 		smi_info->curr_msg = NULL;
623 		deliver_recv_msg(smi_info, msg);
624 		break;
625 
626 	case SI_GETTING_FLAGS:
627 	{
628 		unsigned char msg[4];
629 		unsigned int  len;
630 
631 		/* We got the flags from the SMI, now handle them. */
632 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
633 		if (msg[2] != 0) {
634 			/* Error fetching flags, just give up for now. */
635 			smi_info->si_state = SI_NORMAL;
636 		} else if (len < 4) {
637 			/*
638 			 * Hmm, no flags.  That's technically illegal, but
639 			 * don't use uninitialized data.
640 			 */
641 			smi_info->si_state = SI_NORMAL;
642 		} else {
643 			smi_info->msg_flags = msg[3];
644 			handle_flags(smi_info);
645 		}
646 		break;
647 	}
648 
649 	case SI_CLEARING_FLAGS:
650 	{
651 		unsigned char msg[3];
652 
653 		/* We cleared the flags. */
654 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
655 		if (msg[2] != 0) {
656 			/* Error clearing flags */
657 			dev_warn(smi_info->dev,
658 				 "Error clearing flags: %2.2x\n", msg[2]);
659 		}
660 		smi_info->si_state = SI_NORMAL;
661 		break;
662 	}
663 
664 	case SI_GETTING_EVENTS:
665 	{
666 		smi_info->curr_msg->rsp_size
667 			= smi_info->handlers->get_result(
668 				smi_info->si_sm,
669 				smi_info->curr_msg->rsp,
670 				IPMI_MAX_MSG_LENGTH);
671 
672 		/*
673 		 * Do this here becase deliver_recv_msg() releases the
674 		 * lock, and a new message can be put in during the
675 		 * time the lock is released.
676 		 */
677 		msg = smi_info->curr_msg;
678 		smi_info->curr_msg = NULL;
679 		if (msg->rsp[2] != 0) {
680 			/* Error getting event, probably done. */
681 			msg->done(msg);
682 
683 			/* Take off the event flag. */
684 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
685 			handle_flags(smi_info);
686 		} else {
687 			smi_inc_stat(smi_info, events);
688 
689 			/*
690 			 * Do this before we deliver the message
691 			 * because delivering the message releases the
692 			 * lock and something else can mess with the
693 			 * state.
694 			 */
695 			handle_flags(smi_info);
696 
697 			deliver_recv_msg(smi_info, msg);
698 		}
699 		break;
700 	}
701 
702 	case SI_GETTING_MESSAGES:
703 	{
704 		smi_info->curr_msg->rsp_size
705 			= smi_info->handlers->get_result(
706 				smi_info->si_sm,
707 				smi_info->curr_msg->rsp,
708 				IPMI_MAX_MSG_LENGTH);
709 
710 		/*
711 		 * Do this here becase deliver_recv_msg() releases the
712 		 * lock, and a new message can be put in during the
713 		 * time the lock is released.
714 		 */
715 		msg = smi_info->curr_msg;
716 		smi_info->curr_msg = NULL;
717 		if (msg->rsp[2] != 0) {
718 			/* Error getting event, probably done. */
719 			msg->done(msg);
720 
721 			/* Take off the msg flag. */
722 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
723 			handle_flags(smi_info);
724 		} else {
725 			smi_inc_stat(smi_info, incoming_messages);
726 
727 			/*
728 			 * Do this before we deliver the message
729 			 * because delivering the message releases the
730 			 * lock and something else can mess with the
731 			 * state.
732 			 */
733 			handle_flags(smi_info);
734 
735 			deliver_recv_msg(smi_info, msg);
736 		}
737 		break;
738 	}
739 
740 	case SI_CHECKING_ENABLES:
741 	{
742 		unsigned char msg[4];
743 		u8 enables;
744 		bool irq_on;
745 
746 		/* We got the flags from the SMI, now handle them. */
747 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
748 		if (msg[2] != 0) {
749 			dev_warn(smi_info->dev,
750 				 "Couldn't get irq info: %x.\n", msg[2]);
751 			dev_warn(smi_info->dev,
752 				 "Maybe ok, but ipmi might run very slowly.\n");
753 			smi_info->si_state = SI_NORMAL;
754 			break;
755 		}
756 		enables = current_global_enables(smi_info, 0, &irq_on);
757 		if (smi_info->si_type == SI_BT)
758 			/* BT has its own interrupt enable bit. */
759 			check_bt_irq(smi_info, irq_on);
760 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
761 			/* Enables are not correct, fix them. */
762 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
763 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
764 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
765 			smi_info->handlers->start_transaction(
766 				smi_info->si_sm, msg, 3);
767 			smi_info->si_state = SI_SETTING_ENABLES;
768 		} else if (smi_info->supports_event_msg_buff) {
769 			smi_info->curr_msg = ipmi_alloc_smi_msg();
770 			if (!smi_info->curr_msg) {
771 				smi_info->si_state = SI_NORMAL;
772 				break;
773 			}
774 			start_getting_msg_queue(smi_info);
775 		} else {
776 			smi_info->si_state = SI_NORMAL;
777 		}
778 		break;
779 	}
780 
781 	case SI_SETTING_ENABLES:
782 	{
783 		unsigned char msg[4];
784 
785 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
786 		if (msg[2] != 0)
787 			dev_warn(smi_info->dev,
788 				 "Could not set the global enables: 0x%x.\n",
789 				 msg[2]);
790 
791 		if (smi_info->supports_event_msg_buff) {
792 			smi_info->curr_msg = ipmi_alloc_smi_msg();
793 			if (!smi_info->curr_msg) {
794 				smi_info->si_state = SI_NORMAL;
795 				break;
796 			}
797 			start_getting_msg_queue(smi_info);
798 		} else {
799 			smi_info->si_state = SI_NORMAL;
800 		}
801 		break;
802 	}
803 	}
804 }
805 
806 /*
807  * Called on timeouts and events.  Timeouts should pass the elapsed
808  * time, interrupts should pass in zero.  Must be called with
809  * si_lock held and interrupts disabled.
810  */
811 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
812 					   int time)
813 {
814 	enum si_sm_result si_sm_result;
815 
816  restart:
817 	/*
818 	 * There used to be a loop here that waited a little while
819 	 * (around 25us) before giving up.  That turned out to be
820 	 * pointless, the minimum delays I was seeing were in the 300us
821 	 * range, which is far too long to wait in an interrupt.  So
822 	 * we just run until the state machine tells us something
823 	 * happened or it needs a delay.
824 	 */
825 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
826 	time = 0;
827 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
828 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
829 
830 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
831 		smi_inc_stat(smi_info, complete_transactions);
832 
833 		handle_transaction_done(smi_info);
834 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
835 	} else if (si_sm_result == SI_SM_HOSED) {
836 		smi_inc_stat(smi_info, hosed_count);
837 
838 		/*
839 		 * Do the before return_hosed_msg, because that
840 		 * releases the lock.
841 		 */
842 		smi_info->si_state = SI_NORMAL;
843 		if (smi_info->curr_msg != NULL) {
844 			/*
845 			 * If we were handling a user message, format
846 			 * a response to send to the upper layer to
847 			 * tell it about the error.
848 			 */
849 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
850 		}
851 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
852 	}
853 
854 	/*
855 	 * We prefer handling attn over new messages.  But don't do
856 	 * this if there is not yet an upper layer to handle anything.
857 	 */
858 	if (likely(smi_info->intf) &&
859 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
860 		unsigned char msg[2];
861 
862 		if (smi_info->si_state != SI_NORMAL) {
863 			/*
864 			 * We got an ATTN, but we are doing something else.
865 			 * Handle the ATTN later.
866 			 */
867 			smi_info->got_attn = true;
868 		} else {
869 			smi_info->got_attn = false;
870 			smi_inc_stat(smi_info, attentions);
871 
872 			/*
873 			 * Got a attn, send down a get message flags to see
874 			 * what's causing it.  It would be better to handle
875 			 * this in the upper layer, but due to the way
876 			 * interrupts work with the SMI, that's not really
877 			 * possible.
878 			 */
879 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
880 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
881 
882 			smi_info->handlers->start_transaction(
883 				smi_info->si_sm, msg, 2);
884 			smi_info->si_state = SI_GETTING_FLAGS;
885 			goto restart;
886 		}
887 	}
888 
889 	/* If we are currently idle, try to start the next message. */
890 	if (si_sm_result == SI_SM_IDLE) {
891 		smi_inc_stat(smi_info, idles);
892 
893 		si_sm_result = start_next_msg(smi_info);
894 		if (si_sm_result != SI_SM_IDLE)
895 			goto restart;
896 	}
897 
898 	if ((si_sm_result == SI_SM_IDLE)
899 	    && (atomic_read(&smi_info->req_events))) {
900 		/*
901 		 * We are idle and the upper layer requested that I fetch
902 		 * events, so do so.
903 		 */
904 		atomic_set(&smi_info->req_events, 0);
905 
906 		/*
907 		 * Take this opportunity to check the interrupt and
908 		 * message enable state for the BMC.  The BMC can be
909 		 * asynchronously reset, and may thus get interrupts
910 		 * disable and messages disabled.
911 		 */
912 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
913 			start_check_enables(smi_info);
914 		} else {
915 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
916 			if (!smi_info->curr_msg)
917 				goto out;
918 
919 			start_getting_events(smi_info);
920 		}
921 		goto restart;
922 	}
923  out:
924 	return si_sm_result;
925 }
926 
927 static void check_start_timer_thread(struct smi_info *smi_info)
928 {
929 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
930 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
931 
932 		if (smi_info->thread)
933 			wake_up_process(smi_info->thread);
934 
935 		start_next_msg(smi_info);
936 		smi_event_handler(smi_info, 0);
937 	}
938 }
939 
940 static void flush_messages(void *send_info)
941 {
942 	struct smi_info *smi_info = send_info;
943 	enum si_sm_result result;
944 
945 	/*
946 	 * Currently, this function is called only in run-to-completion
947 	 * mode.  This means we are single-threaded, no need for locks.
948 	 */
949 	result = smi_event_handler(smi_info, 0);
950 	while (result != SI_SM_IDLE) {
951 		udelay(SI_SHORT_TIMEOUT_USEC);
952 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
953 	}
954 }
955 
956 static void sender(void                *send_info,
957 		   struct ipmi_smi_msg *msg)
958 {
959 	struct smi_info   *smi_info = send_info;
960 	unsigned long     flags;
961 
962 	debug_timestamp("Enqueue");
963 
964 	if (smi_info->run_to_completion) {
965 		/*
966 		 * If we are running to completion, start it.  Upper
967 		 * layer will call flush_messages to clear it out.
968 		 */
969 		smi_info->waiting_msg = msg;
970 		return;
971 	}
972 
973 	spin_lock_irqsave(&smi_info->si_lock, flags);
974 	/*
975 	 * The following two lines don't need to be under the lock for
976 	 * the lock's sake, but they do need SMP memory barriers to
977 	 * avoid getting things out of order.  We are already claiming
978 	 * the lock, anyway, so just do it under the lock to avoid the
979 	 * ordering problem.
980 	 */
981 	BUG_ON(smi_info->waiting_msg);
982 	smi_info->waiting_msg = msg;
983 	check_start_timer_thread(smi_info);
984 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
985 }
986 
987 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
988 {
989 	struct smi_info   *smi_info = send_info;
990 
991 	smi_info->run_to_completion = i_run_to_completion;
992 	if (i_run_to_completion)
993 		flush_messages(smi_info);
994 }
995 
996 /*
997  * Use -1 in the nsec value of the busy waiting timespec to tell that
998  * we are spinning in kipmid looking for something and not delaying
999  * between checks
1000  */
1001 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1002 {
1003 	ts->tv_nsec = -1;
1004 }
1005 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1006 {
1007 	return ts->tv_nsec != -1;
1008 }
1009 
1010 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1011 					const struct smi_info *smi_info,
1012 					struct timespec64 *busy_until)
1013 {
1014 	unsigned int max_busy_us = 0;
1015 
1016 	if (smi_info->intf_num < num_max_busy_us)
1017 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1018 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1019 		ipmi_si_set_not_busy(busy_until);
1020 	else if (!ipmi_si_is_busy(busy_until)) {
1021 		getnstimeofday64(busy_until);
1022 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1023 	} else {
1024 		struct timespec64 now;
1025 
1026 		getnstimeofday64(&now);
1027 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1028 			ipmi_si_set_not_busy(busy_until);
1029 			return 0;
1030 		}
1031 	}
1032 	return 1;
1033 }
1034 
1035 
1036 /*
1037  * A busy-waiting loop for speeding up IPMI operation.
1038  *
1039  * Lousy hardware makes this hard.  This is only enabled for systems
1040  * that are not BT and do not have interrupts.  It starts spinning
1041  * when an operation is complete or until max_busy tells it to stop
1042  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1043  * Documentation/IPMI.txt for details.
1044  */
1045 static int ipmi_thread(void *data)
1046 {
1047 	struct smi_info *smi_info = data;
1048 	unsigned long flags;
1049 	enum si_sm_result smi_result;
1050 	struct timespec64 busy_until;
1051 
1052 	ipmi_si_set_not_busy(&busy_until);
1053 	set_user_nice(current, MAX_NICE);
1054 	while (!kthread_should_stop()) {
1055 		int busy_wait;
1056 
1057 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1058 		smi_result = smi_event_handler(smi_info, 0);
1059 
1060 		/*
1061 		 * If the driver is doing something, there is a possible
1062 		 * race with the timer.  If the timer handler see idle,
1063 		 * and the thread here sees something else, the timer
1064 		 * handler won't restart the timer even though it is
1065 		 * required.  So start it here if necessary.
1066 		 */
1067 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1068 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1069 
1070 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1071 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1072 						  &busy_until);
1073 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1074 			; /* do nothing */
1075 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1076 			schedule();
1077 		else if (smi_result == SI_SM_IDLE) {
1078 			if (atomic_read(&smi_info->need_watch)) {
1079 				schedule_timeout_interruptible(100);
1080 			} else {
1081 				/* Wait to be woken up when we are needed. */
1082 				__set_current_state(TASK_INTERRUPTIBLE);
1083 				schedule();
1084 			}
1085 		} else
1086 			schedule_timeout_interruptible(1);
1087 	}
1088 	return 0;
1089 }
1090 
1091 
1092 static void poll(void *send_info)
1093 {
1094 	struct smi_info *smi_info = send_info;
1095 	unsigned long flags = 0;
1096 	bool run_to_completion = smi_info->run_to_completion;
1097 
1098 	/*
1099 	 * Make sure there is some delay in the poll loop so we can
1100 	 * drive time forward and timeout things.
1101 	 */
1102 	udelay(10);
1103 	if (!run_to_completion)
1104 		spin_lock_irqsave(&smi_info->si_lock, flags);
1105 	smi_event_handler(smi_info, 10);
1106 	if (!run_to_completion)
1107 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1108 }
1109 
1110 static void request_events(void *send_info)
1111 {
1112 	struct smi_info *smi_info = send_info;
1113 
1114 	if (!smi_info->has_event_buffer)
1115 		return;
1116 
1117 	atomic_set(&smi_info->req_events, 1);
1118 }
1119 
1120 static void set_need_watch(void *send_info, bool enable)
1121 {
1122 	struct smi_info *smi_info = send_info;
1123 	unsigned long flags;
1124 
1125 	atomic_set(&smi_info->need_watch, enable);
1126 	spin_lock_irqsave(&smi_info->si_lock, flags);
1127 	check_start_timer_thread(smi_info);
1128 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1129 }
1130 
1131 static int initialized;
1132 
1133 static void smi_timeout(unsigned long data)
1134 {
1135 	struct smi_info   *smi_info = (struct smi_info *) data;
1136 	enum si_sm_result smi_result;
1137 	unsigned long     flags;
1138 	unsigned long     jiffies_now;
1139 	long              time_diff;
1140 	long		  timeout;
1141 
1142 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1143 	debug_timestamp("Timer");
1144 
1145 	jiffies_now = jiffies;
1146 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1147 		     * SI_USEC_PER_JIFFY);
1148 	smi_result = smi_event_handler(smi_info, time_diff);
1149 
1150 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1151 		/* Running with interrupts, only do long timeouts. */
1152 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1153 		smi_inc_stat(smi_info, long_timeouts);
1154 		goto do_mod_timer;
1155 	}
1156 
1157 	/*
1158 	 * If the state machine asks for a short delay, then shorten
1159 	 * the timer timeout.
1160 	 */
1161 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1162 		smi_inc_stat(smi_info, short_timeouts);
1163 		timeout = jiffies + 1;
1164 	} else {
1165 		smi_inc_stat(smi_info, long_timeouts);
1166 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1167 	}
1168 
1169  do_mod_timer:
1170 	if (smi_result != SI_SM_IDLE)
1171 		smi_mod_timer(smi_info, timeout);
1172 	else
1173 		smi_info->timer_running = false;
1174 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1175 }
1176 
1177 static irqreturn_t si_irq_handler(int irq, void *data)
1178 {
1179 	struct smi_info *smi_info = data;
1180 	unsigned long   flags;
1181 
1182 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1183 
1184 	smi_inc_stat(smi_info, interrupts);
1185 
1186 	debug_timestamp("Interrupt");
1187 
1188 	smi_event_handler(smi_info, 0);
1189 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1190 	return IRQ_HANDLED;
1191 }
1192 
1193 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1194 {
1195 	struct smi_info *smi_info = data;
1196 	/* We need to clear the IRQ flag for the BT interface. */
1197 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1198 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1199 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1200 	return si_irq_handler(irq, data);
1201 }
1202 
1203 static int smi_start_processing(void       *send_info,
1204 				ipmi_smi_t intf)
1205 {
1206 	struct smi_info *new_smi = send_info;
1207 	int             enable = 0;
1208 
1209 	new_smi->intf = intf;
1210 
1211 	/* Try to claim any interrupts. */
1212 	if (new_smi->irq_setup)
1213 		new_smi->irq_setup(new_smi);
1214 
1215 	/* Set up the timer that drives the interface. */
1216 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1217 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1218 
1219 	/*
1220 	 * Check if the user forcefully enabled the daemon.
1221 	 */
1222 	if (new_smi->intf_num < num_force_kipmid)
1223 		enable = force_kipmid[new_smi->intf_num];
1224 	/*
1225 	 * The BT interface is efficient enough to not need a thread,
1226 	 * and there is no need for a thread if we have interrupts.
1227 	 */
1228 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1229 		enable = 1;
1230 
1231 	if (enable) {
1232 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1233 					      "kipmi%d", new_smi->intf_num);
1234 		if (IS_ERR(new_smi->thread)) {
1235 			dev_notice(new_smi->dev, "Could not start"
1236 				   " kernel thread due to error %ld, only using"
1237 				   " timers to drive the interface\n",
1238 				   PTR_ERR(new_smi->thread));
1239 			new_smi->thread = NULL;
1240 		}
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1247 {
1248 	struct smi_info *smi = send_info;
1249 
1250 	data->addr_src = smi->addr_source;
1251 	data->dev = smi->dev;
1252 	data->addr_info = smi->addr_info;
1253 	get_device(smi->dev);
1254 
1255 	return 0;
1256 }
1257 
1258 static void set_maintenance_mode(void *send_info, bool enable)
1259 {
1260 	struct smi_info   *smi_info = send_info;
1261 
1262 	if (!enable)
1263 		atomic_set(&smi_info->req_events, 0);
1264 }
1265 
1266 static const struct ipmi_smi_handlers handlers = {
1267 	.owner                  = THIS_MODULE,
1268 	.start_processing       = smi_start_processing,
1269 	.get_smi_info		= get_smi_info,
1270 	.sender			= sender,
1271 	.request_events		= request_events,
1272 	.set_need_watch		= set_need_watch,
1273 	.set_maintenance_mode   = set_maintenance_mode,
1274 	.set_run_to_completion  = set_run_to_completion,
1275 	.flush_messages		= flush_messages,
1276 	.poll			= poll,
1277 };
1278 
1279 /*
1280  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1281  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1282  */
1283 
1284 static LIST_HEAD(smi_infos);
1285 static DEFINE_MUTEX(smi_infos_lock);
1286 static int smi_num; /* Used to sequence the SMIs */
1287 
1288 #define DEFAULT_REGSPACING	1
1289 #define DEFAULT_REGSIZE		1
1290 
1291 #ifdef CONFIG_ACPI
1292 static bool          si_tryacpi = true;
1293 #endif
1294 #ifdef CONFIG_DMI
1295 static bool          si_trydmi = true;
1296 #endif
1297 static bool          si_tryplatform = true;
1298 #ifdef CONFIG_PCI
1299 static bool          si_trypci = true;
1300 #endif
1301 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1302 static char          *si_type[SI_MAX_PARMS];
1303 #define MAX_SI_TYPE_STR 30
1304 static char          si_type_str[MAX_SI_TYPE_STR];
1305 static unsigned long addrs[SI_MAX_PARMS];
1306 static unsigned int num_addrs;
1307 static unsigned int  ports[SI_MAX_PARMS];
1308 static unsigned int num_ports;
1309 static int           irqs[SI_MAX_PARMS];
1310 static unsigned int num_irqs;
1311 static int           regspacings[SI_MAX_PARMS];
1312 static unsigned int num_regspacings;
1313 static int           regsizes[SI_MAX_PARMS];
1314 static unsigned int num_regsizes;
1315 static int           regshifts[SI_MAX_PARMS];
1316 static unsigned int num_regshifts;
1317 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1318 static unsigned int num_slave_addrs;
1319 
1320 #define IPMI_IO_ADDR_SPACE  0
1321 #define IPMI_MEM_ADDR_SPACE 1
1322 static char *addr_space_to_str[] = { "i/o", "mem" };
1323 
1324 static int hotmod_handler(const char *val, struct kernel_param *kp);
1325 
1326 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1327 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1328 		 " Documentation/IPMI.txt in the kernel sources for the"
1329 		 " gory details.");
1330 
1331 #ifdef CONFIG_ACPI
1332 module_param_named(tryacpi, si_tryacpi, bool, 0);
1333 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1334 		 " default scan of the interfaces identified via ACPI");
1335 #endif
1336 #ifdef CONFIG_DMI
1337 module_param_named(trydmi, si_trydmi, bool, 0);
1338 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1339 		 " default scan of the interfaces identified via DMI");
1340 #endif
1341 module_param_named(tryplatform, si_tryplatform, bool, 0);
1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343 		 " default scan of the interfaces identified via platform"
1344 		 " interfaces like openfirmware");
1345 #ifdef CONFIG_PCI
1346 module_param_named(trypci, si_trypci, bool, 0);
1347 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1348 		 " default scan of the interfaces identified via pci");
1349 #endif
1350 module_param_named(trydefaults, si_trydefaults, bool, 0);
1351 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1352 		 " default scan of the KCS and SMIC interface at the standard"
1353 		 " address");
1354 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1355 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1356 		 " interface separated by commas.  The types are 'kcs',"
1357 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1358 		 " the first interface to kcs and the second to bt");
1359 module_param_array(addrs, ulong, &num_addrs, 0);
1360 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1361 		 " addresses separated by commas.  Only use if an interface"
1362 		 " is in memory.  Otherwise, set it to zero or leave"
1363 		 " it blank.");
1364 module_param_array(ports, uint, &num_ports, 0);
1365 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1366 		 " addresses separated by commas.  Only use if an interface"
1367 		 " is a port.  Otherwise, set it to zero or leave"
1368 		 " it blank.");
1369 module_param_array(irqs, int, &num_irqs, 0);
1370 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1371 		 " addresses separated by commas.  Only use if an interface"
1372 		 " has an interrupt.  Otherwise, set it to zero or leave"
1373 		 " it blank.");
1374 module_param_array(regspacings, int, &num_regspacings, 0);
1375 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1376 		 " and each successive register used by the interface.  For"
1377 		 " instance, if the start address is 0xca2 and the spacing"
1378 		 " is 2, then the second address is at 0xca4.  Defaults"
1379 		 " to 1.");
1380 module_param_array(regsizes, int, &num_regsizes, 0);
1381 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1382 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1383 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1384 		 " the 8-bit IPMI register has to be read from a larger"
1385 		 " register.");
1386 module_param_array(regshifts, int, &num_regshifts, 0);
1387 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1388 		 " IPMI register, in bits.  For instance, if the data"
1389 		 " is read from a 32-bit word and the IPMI data is in"
1390 		 " bit 8-15, then the shift would be 8");
1391 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1392 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1393 		 " the controller.  Normally this is 0x20, but can be"
1394 		 " overridden by this parm.  This is an array indexed"
1395 		 " by interface number.");
1396 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1397 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1398 		 " disabled(0).  Normally the IPMI driver auto-detects"
1399 		 " this, but the value may be overridden by this parm.");
1400 module_param(unload_when_empty, bool, 0);
1401 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1402 		 " specified or found, default is 1.  Setting to 0"
1403 		 " is useful for hot add of devices using hotmod.");
1404 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1405 MODULE_PARM_DESC(kipmid_max_busy_us,
1406 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1407 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1408 		 " if kipmid is using up a lot of CPU time.");
1409 
1410 
1411 static void std_irq_cleanup(struct smi_info *info)
1412 {
1413 	if (info->si_type == SI_BT)
1414 		/* Disable the interrupt in the BT interface. */
1415 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1416 	free_irq(info->irq, info);
1417 }
1418 
1419 static int std_irq_setup(struct smi_info *info)
1420 {
1421 	int rv;
1422 
1423 	if (!info->irq)
1424 		return 0;
1425 
1426 	if (info->si_type == SI_BT) {
1427 		rv = request_irq(info->irq,
1428 				 si_bt_irq_handler,
1429 				 IRQF_SHARED,
1430 				 DEVICE_NAME,
1431 				 info);
1432 		if (!rv)
1433 			/* Enable the interrupt in the BT interface. */
1434 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1435 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1436 	} else
1437 		rv = request_irq(info->irq,
1438 				 si_irq_handler,
1439 				 IRQF_SHARED,
1440 				 DEVICE_NAME,
1441 				 info);
1442 	if (rv) {
1443 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1444 			 " running polled\n",
1445 			 DEVICE_NAME, info->irq);
1446 		info->irq = 0;
1447 	} else {
1448 		info->irq_cleanup = std_irq_cleanup;
1449 		dev_info(info->dev, "Using irq %d\n", info->irq);
1450 	}
1451 
1452 	return rv;
1453 }
1454 
1455 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1456 {
1457 	unsigned int addr = io->addr_data;
1458 
1459 	return inb(addr + (offset * io->regspacing));
1460 }
1461 
1462 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1463 		      unsigned char b)
1464 {
1465 	unsigned int addr = io->addr_data;
1466 
1467 	outb(b, addr + (offset * io->regspacing));
1468 }
1469 
1470 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1471 {
1472 	unsigned int addr = io->addr_data;
1473 
1474 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1475 }
1476 
1477 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1478 		      unsigned char b)
1479 {
1480 	unsigned int addr = io->addr_data;
1481 
1482 	outw(b << io->regshift, addr + (offset * io->regspacing));
1483 }
1484 
1485 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1486 {
1487 	unsigned int addr = io->addr_data;
1488 
1489 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1490 }
1491 
1492 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1493 		      unsigned char b)
1494 {
1495 	unsigned int addr = io->addr_data;
1496 
1497 	outl(b << io->regshift, addr+(offset * io->regspacing));
1498 }
1499 
1500 static void port_cleanup(struct smi_info *info)
1501 {
1502 	unsigned int addr = info->io.addr_data;
1503 	int          idx;
1504 
1505 	if (addr) {
1506 		for (idx = 0; idx < info->io_size; idx++)
1507 			release_region(addr + idx * info->io.regspacing,
1508 				       info->io.regsize);
1509 	}
1510 }
1511 
1512 static int port_setup(struct smi_info *info)
1513 {
1514 	unsigned int addr = info->io.addr_data;
1515 	int          idx;
1516 
1517 	if (!addr)
1518 		return -ENODEV;
1519 
1520 	info->io_cleanup = port_cleanup;
1521 
1522 	/*
1523 	 * Figure out the actual inb/inw/inl/etc routine to use based
1524 	 * upon the register size.
1525 	 */
1526 	switch (info->io.regsize) {
1527 	case 1:
1528 		info->io.inputb = port_inb;
1529 		info->io.outputb = port_outb;
1530 		break;
1531 	case 2:
1532 		info->io.inputb = port_inw;
1533 		info->io.outputb = port_outw;
1534 		break;
1535 	case 4:
1536 		info->io.inputb = port_inl;
1537 		info->io.outputb = port_outl;
1538 		break;
1539 	default:
1540 		dev_warn(info->dev, "Invalid register size: %d\n",
1541 			 info->io.regsize);
1542 		return -EINVAL;
1543 	}
1544 
1545 	/*
1546 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1547 	 * tables.  This causes problems when trying to register the
1548 	 * entire I/O region.  Therefore we must register each I/O
1549 	 * port separately.
1550 	 */
1551 	for (idx = 0; idx < info->io_size; idx++) {
1552 		if (request_region(addr + idx * info->io.regspacing,
1553 				   info->io.regsize, DEVICE_NAME) == NULL) {
1554 			/* Undo allocations */
1555 			while (idx--) {
1556 				release_region(addr + idx * info->io.regspacing,
1557 					       info->io.regsize);
1558 			}
1559 			return -EIO;
1560 		}
1561 	}
1562 	return 0;
1563 }
1564 
1565 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1566 				  unsigned int offset)
1567 {
1568 	return readb((io->addr)+(offset * io->regspacing));
1569 }
1570 
1571 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1572 			  unsigned char b)
1573 {
1574 	writeb(b, (io->addr)+(offset * io->regspacing));
1575 }
1576 
1577 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1578 				  unsigned int offset)
1579 {
1580 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1581 		& 0xff;
1582 }
1583 
1584 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1585 			  unsigned char b)
1586 {
1587 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1588 }
1589 
1590 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1591 				  unsigned int offset)
1592 {
1593 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1594 		& 0xff;
1595 }
1596 
1597 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1598 			  unsigned char b)
1599 {
1600 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1601 }
1602 
1603 #ifdef readq
1604 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1605 {
1606 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1607 		& 0xff;
1608 }
1609 
1610 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1611 		     unsigned char b)
1612 {
1613 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1614 }
1615 #endif
1616 
1617 static void mem_cleanup(struct smi_info *info)
1618 {
1619 	unsigned long addr = info->io.addr_data;
1620 	int           mapsize;
1621 
1622 	if (info->io.addr) {
1623 		iounmap(info->io.addr);
1624 
1625 		mapsize = ((info->io_size * info->io.regspacing)
1626 			   - (info->io.regspacing - info->io.regsize));
1627 
1628 		release_mem_region(addr, mapsize);
1629 	}
1630 }
1631 
1632 static int mem_setup(struct smi_info *info)
1633 {
1634 	unsigned long addr = info->io.addr_data;
1635 	int           mapsize;
1636 
1637 	if (!addr)
1638 		return -ENODEV;
1639 
1640 	info->io_cleanup = mem_cleanup;
1641 
1642 	/*
1643 	 * Figure out the actual readb/readw/readl/etc routine to use based
1644 	 * upon the register size.
1645 	 */
1646 	switch (info->io.regsize) {
1647 	case 1:
1648 		info->io.inputb = intf_mem_inb;
1649 		info->io.outputb = intf_mem_outb;
1650 		break;
1651 	case 2:
1652 		info->io.inputb = intf_mem_inw;
1653 		info->io.outputb = intf_mem_outw;
1654 		break;
1655 	case 4:
1656 		info->io.inputb = intf_mem_inl;
1657 		info->io.outputb = intf_mem_outl;
1658 		break;
1659 #ifdef readq
1660 	case 8:
1661 		info->io.inputb = mem_inq;
1662 		info->io.outputb = mem_outq;
1663 		break;
1664 #endif
1665 	default:
1666 		dev_warn(info->dev, "Invalid register size: %d\n",
1667 			 info->io.regsize);
1668 		return -EINVAL;
1669 	}
1670 
1671 	/*
1672 	 * Calculate the total amount of memory to claim.  This is an
1673 	 * unusual looking calculation, but it avoids claiming any
1674 	 * more memory than it has to.  It will claim everything
1675 	 * between the first address to the end of the last full
1676 	 * register.
1677 	 */
1678 	mapsize = ((info->io_size * info->io.regspacing)
1679 		   - (info->io.regspacing - info->io.regsize));
1680 
1681 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1682 		return -EIO;
1683 
1684 	info->io.addr = ioremap(addr, mapsize);
1685 	if (info->io.addr == NULL) {
1686 		release_mem_region(addr, mapsize);
1687 		return -EIO;
1688 	}
1689 	return 0;
1690 }
1691 
1692 /*
1693  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1694  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1695  * Options are:
1696  *   rsp=<regspacing>
1697  *   rsi=<regsize>
1698  *   rsh=<regshift>
1699  *   irq=<irq>
1700  *   ipmb=<ipmb addr>
1701  */
1702 enum hotmod_op { HM_ADD, HM_REMOVE };
1703 struct hotmod_vals {
1704 	char *name;
1705 	int  val;
1706 };
1707 static struct hotmod_vals hotmod_ops[] = {
1708 	{ "add",	HM_ADD },
1709 	{ "remove",	HM_REMOVE },
1710 	{ NULL }
1711 };
1712 static struct hotmod_vals hotmod_si[] = {
1713 	{ "kcs",	SI_KCS },
1714 	{ "smic",	SI_SMIC },
1715 	{ "bt",		SI_BT },
1716 	{ NULL }
1717 };
1718 static struct hotmod_vals hotmod_as[] = {
1719 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1720 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1721 	{ NULL }
1722 };
1723 
1724 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1725 {
1726 	char *s;
1727 	int  i;
1728 
1729 	s = strchr(*curr, ',');
1730 	if (!s) {
1731 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1732 		return -EINVAL;
1733 	}
1734 	*s = '\0';
1735 	s++;
1736 	for (i = 0; v[i].name; i++) {
1737 		if (strcmp(*curr, v[i].name) == 0) {
1738 			*val = v[i].val;
1739 			*curr = s;
1740 			return 0;
1741 		}
1742 	}
1743 
1744 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1745 	return -EINVAL;
1746 }
1747 
1748 static int check_hotmod_int_op(const char *curr, const char *option,
1749 			       const char *name, int *val)
1750 {
1751 	char *n;
1752 
1753 	if (strcmp(curr, name) == 0) {
1754 		if (!option) {
1755 			printk(KERN_WARNING PFX
1756 			       "No option given for '%s'\n",
1757 			       curr);
1758 			return -EINVAL;
1759 		}
1760 		*val = simple_strtoul(option, &n, 0);
1761 		if ((*n != '\0') || (*option == '\0')) {
1762 			printk(KERN_WARNING PFX
1763 			       "Bad option given for '%s'\n",
1764 			       curr);
1765 			return -EINVAL;
1766 		}
1767 		return 1;
1768 	}
1769 	return 0;
1770 }
1771 
1772 static struct smi_info *smi_info_alloc(void)
1773 {
1774 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1775 
1776 	if (info)
1777 		spin_lock_init(&info->si_lock);
1778 	return info;
1779 }
1780 
1781 static int hotmod_handler(const char *val, struct kernel_param *kp)
1782 {
1783 	char *str = kstrdup(val, GFP_KERNEL);
1784 	int  rv;
1785 	char *next, *curr, *s, *n, *o;
1786 	enum hotmod_op op;
1787 	enum si_type si_type;
1788 	int  addr_space;
1789 	unsigned long addr;
1790 	int regspacing;
1791 	int regsize;
1792 	int regshift;
1793 	int irq;
1794 	int ipmb;
1795 	int ival;
1796 	int len;
1797 	struct smi_info *info;
1798 
1799 	if (!str)
1800 		return -ENOMEM;
1801 
1802 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1803 	len = strlen(str);
1804 	ival = len - 1;
1805 	while ((ival >= 0) && isspace(str[ival])) {
1806 		str[ival] = '\0';
1807 		ival--;
1808 	}
1809 
1810 	for (curr = str; curr; curr = next) {
1811 		regspacing = 1;
1812 		regsize = 1;
1813 		regshift = 0;
1814 		irq = 0;
1815 		ipmb = 0; /* Choose the default if not specified */
1816 
1817 		next = strchr(curr, ':');
1818 		if (next) {
1819 			*next = '\0';
1820 			next++;
1821 		}
1822 
1823 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1824 		if (rv)
1825 			break;
1826 		op = ival;
1827 
1828 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1829 		if (rv)
1830 			break;
1831 		si_type = ival;
1832 
1833 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1834 		if (rv)
1835 			break;
1836 
1837 		s = strchr(curr, ',');
1838 		if (s) {
1839 			*s = '\0';
1840 			s++;
1841 		}
1842 		addr = simple_strtoul(curr, &n, 0);
1843 		if ((*n != '\0') || (*curr == '\0')) {
1844 			printk(KERN_WARNING PFX "Invalid hotmod address"
1845 			       " '%s'\n", curr);
1846 			break;
1847 		}
1848 
1849 		while (s) {
1850 			curr = s;
1851 			s = strchr(curr, ',');
1852 			if (s) {
1853 				*s = '\0';
1854 				s++;
1855 			}
1856 			o = strchr(curr, '=');
1857 			if (o) {
1858 				*o = '\0';
1859 				o++;
1860 			}
1861 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1862 			if (rv < 0)
1863 				goto out;
1864 			else if (rv)
1865 				continue;
1866 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1867 			if (rv < 0)
1868 				goto out;
1869 			else if (rv)
1870 				continue;
1871 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1872 			if (rv < 0)
1873 				goto out;
1874 			else if (rv)
1875 				continue;
1876 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1877 			if (rv < 0)
1878 				goto out;
1879 			else if (rv)
1880 				continue;
1881 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1882 			if (rv < 0)
1883 				goto out;
1884 			else if (rv)
1885 				continue;
1886 
1887 			rv = -EINVAL;
1888 			printk(KERN_WARNING PFX
1889 			       "Invalid hotmod option '%s'\n",
1890 			       curr);
1891 			goto out;
1892 		}
1893 
1894 		if (op == HM_ADD) {
1895 			info = smi_info_alloc();
1896 			if (!info) {
1897 				rv = -ENOMEM;
1898 				goto out;
1899 			}
1900 
1901 			info->addr_source = SI_HOTMOD;
1902 			info->si_type = si_type;
1903 			info->io.addr_data = addr;
1904 			info->io.addr_type = addr_space;
1905 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1906 				info->io_setup = mem_setup;
1907 			else
1908 				info->io_setup = port_setup;
1909 
1910 			info->io.addr = NULL;
1911 			info->io.regspacing = regspacing;
1912 			if (!info->io.regspacing)
1913 				info->io.regspacing = DEFAULT_REGSPACING;
1914 			info->io.regsize = regsize;
1915 			if (!info->io.regsize)
1916 				info->io.regsize = DEFAULT_REGSPACING;
1917 			info->io.regshift = regshift;
1918 			info->irq = irq;
1919 			if (info->irq)
1920 				info->irq_setup = std_irq_setup;
1921 			info->slave_addr = ipmb;
1922 
1923 			rv = add_smi(info);
1924 			if (rv) {
1925 				kfree(info);
1926 				goto out;
1927 			}
1928 			rv = try_smi_init(info);
1929 			if (rv) {
1930 				cleanup_one_si(info);
1931 				goto out;
1932 			}
1933 		} else {
1934 			/* remove */
1935 			struct smi_info *e, *tmp_e;
1936 
1937 			mutex_lock(&smi_infos_lock);
1938 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1939 				if (e->io.addr_type != addr_space)
1940 					continue;
1941 				if (e->si_type != si_type)
1942 					continue;
1943 				if (e->io.addr_data == addr)
1944 					cleanup_one_si(e);
1945 			}
1946 			mutex_unlock(&smi_infos_lock);
1947 		}
1948 	}
1949 	rv = len;
1950  out:
1951 	kfree(str);
1952 	return rv;
1953 }
1954 
1955 static int hardcode_find_bmc(void)
1956 {
1957 	int ret = -ENODEV;
1958 	int             i;
1959 	struct smi_info *info;
1960 
1961 	for (i = 0; i < SI_MAX_PARMS; i++) {
1962 		if (!ports[i] && !addrs[i])
1963 			continue;
1964 
1965 		info = smi_info_alloc();
1966 		if (!info)
1967 			return -ENOMEM;
1968 
1969 		info->addr_source = SI_HARDCODED;
1970 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1971 
1972 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1973 			info->si_type = SI_KCS;
1974 		} else if (strcmp(si_type[i], "smic") == 0) {
1975 			info->si_type = SI_SMIC;
1976 		} else if (strcmp(si_type[i], "bt") == 0) {
1977 			info->si_type = SI_BT;
1978 		} else {
1979 			printk(KERN_WARNING PFX "Interface type specified "
1980 			       "for interface %d, was invalid: %s\n",
1981 			       i, si_type[i]);
1982 			kfree(info);
1983 			continue;
1984 		}
1985 
1986 		if (ports[i]) {
1987 			/* An I/O port */
1988 			info->io_setup = port_setup;
1989 			info->io.addr_data = ports[i];
1990 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1991 		} else if (addrs[i]) {
1992 			/* A memory port */
1993 			info->io_setup = mem_setup;
1994 			info->io.addr_data = addrs[i];
1995 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1996 		} else {
1997 			printk(KERN_WARNING PFX "Interface type specified "
1998 			       "for interface %d, but port and address were "
1999 			       "not set or set to zero.\n", i);
2000 			kfree(info);
2001 			continue;
2002 		}
2003 
2004 		info->io.addr = NULL;
2005 		info->io.regspacing = regspacings[i];
2006 		if (!info->io.regspacing)
2007 			info->io.regspacing = DEFAULT_REGSPACING;
2008 		info->io.regsize = regsizes[i];
2009 		if (!info->io.regsize)
2010 			info->io.regsize = DEFAULT_REGSPACING;
2011 		info->io.regshift = regshifts[i];
2012 		info->irq = irqs[i];
2013 		if (info->irq)
2014 			info->irq_setup = std_irq_setup;
2015 		info->slave_addr = slave_addrs[i];
2016 
2017 		if (!add_smi(info)) {
2018 			if (try_smi_init(info))
2019 				cleanup_one_si(info);
2020 			ret = 0;
2021 		} else {
2022 			kfree(info);
2023 		}
2024 	}
2025 	return ret;
2026 }
2027 
2028 #ifdef CONFIG_ACPI
2029 
2030 #include <linux/acpi.h>
2031 
2032 /*
2033  * Once we get an ACPI failure, we don't try any more, because we go
2034  * through the tables sequentially.  Once we don't find a table, there
2035  * are no more.
2036  */
2037 static int acpi_failure;
2038 
2039 /* For GPE-type interrupts. */
2040 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2041 	u32 gpe_number, void *context)
2042 {
2043 	struct smi_info *smi_info = context;
2044 	unsigned long   flags;
2045 
2046 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2047 
2048 	smi_inc_stat(smi_info, interrupts);
2049 
2050 	debug_timestamp("ACPI_GPE");
2051 
2052 	smi_event_handler(smi_info, 0);
2053 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2054 
2055 	return ACPI_INTERRUPT_HANDLED;
2056 }
2057 
2058 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2059 {
2060 	if (!info->irq)
2061 		return;
2062 
2063 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2064 }
2065 
2066 static int acpi_gpe_irq_setup(struct smi_info *info)
2067 {
2068 	acpi_status status;
2069 
2070 	if (!info->irq)
2071 		return 0;
2072 
2073 	status = acpi_install_gpe_handler(NULL,
2074 					  info->irq,
2075 					  ACPI_GPE_LEVEL_TRIGGERED,
2076 					  &ipmi_acpi_gpe,
2077 					  info);
2078 	if (status != AE_OK) {
2079 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2080 			 " running polled\n", DEVICE_NAME, info->irq);
2081 		info->irq = 0;
2082 		return -EINVAL;
2083 	} else {
2084 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2085 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2086 		return 0;
2087 	}
2088 }
2089 
2090 /*
2091  * Defined at
2092  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2093  */
2094 struct SPMITable {
2095 	s8	Signature[4];
2096 	u32	Length;
2097 	u8	Revision;
2098 	u8	Checksum;
2099 	s8	OEMID[6];
2100 	s8	OEMTableID[8];
2101 	s8	OEMRevision[4];
2102 	s8	CreatorID[4];
2103 	s8	CreatorRevision[4];
2104 	u8	InterfaceType;
2105 	u8	IPMIlegacy;
2106 	s16	SpecificationRevision;
2107 
2108 	/*
2109 	 * Bit 0 - SCI interrupt supported
2110 	 * Bit 1 - I/O APIC/SAPIC
2111 	 */
2112 	u8	InterruptType;
2113 
2114 	/*
2115 	 * If bit 0 of InterruptType is set, then this is the SCI
2116 	 * interrupt in the GPEx_STS register.
2117 	 */
2118 	u8	GPE;
2119 
2120 	s16	Reserved;
2121 
2122 	/*
2123 	 * If bit 1 of InterruptType is set, then this is the I/O
2124 	 * APIC/SAPIC interrupt.
2125 	 */
2126 	u32	GlobalSystemInterrupt;
2127 
2128 	/* The actual register address. */
2129 	struct acpi_generic_address addr;
2130 
2131 	u8	UID[4];
2132 
2133 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2134 };
2135 
2136 static int try_init_spmi(struct SPMITable *spmi)
2137 {
2138 	struct smi_info  *info;
2139 	int rv;
2140 
2141 	if (spmi->IPMIlegacy != 1) {
2142 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2143 		return -ENODEV;
2144 	}
2145 
2146 	info = smi_info_alloc();
2147 	if (!info) {
2148 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2149 		return -ENOMEM;
2150 	}
2151 
2152 	info->addr_source = SI_SPMI;
2153 	printk(KERN_INFO PFX "probing via SPMI\n");
2154 
2155 	/* Figure out the interface type. */
2156 	switch (spmi->InterfaceType) {
2157 	case 1:	/* KCS */
2158 		info->si_type = SI_KCS;
2159 		break;
2160 	case 2:	/* SMIC */
2161 		info->si_type = SI_SMIC;
2162 		break;
2163 	case 3:	/* BT */
2164 		info->si_type = SI_BT;
2165 		break;
2166 	case 4: /* SSIF, just ignore */
2167 		kfree(info);
2168 		return -EIO;
2169 	default:
2170 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2171 		       spmi->InterfaceType);
2172 		kfree(info);
2173 		return -EIO;
2174 	}
2175 
2176 	if (spmi->InterruptType & 1) {
2177 		/* We've got a GPE interrupt. */
2178 		info->irq = spmi->GPE;
2179 		info->irq_setup = acpi_gpe_irq_setup;
2180 	} else if (spmi->InterruptType & 2) {
2181 		/* We've got an APIC/SAPIC interrupt. */
2182 		info->irq = spmi->GlobalSystemInterrupt;
2183 		info->irq_setup = std_irq_setup;
2184 	} else {
2185 		/* Use the default interrupt setting. */
2186 		info->irq = 0;
2187 		info->irq_setup = NULL;
2188 	}
2189 
2190 	if (spmi->addr.bit_width) {
2191 		/* A (hopefully) properly formed register bit width. */
2192 		info->io.regspacing = spmi->addr.bit_width / 8;
2193 	} else {
2194 		info->io.regspacing = DEFAULT_REGSPACING;
2195 	}
2196 	info->io.regsize = info->io.regspacing;
2197 	info->io.regshift = spmi->addr.bit_offset;
2198 
2199 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2200 		info->io_setup = mem_setup;
2201 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2202 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2203 		info->io_setup = port_setup;
2204 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2205 	} else {
2206 		kfree(info);
2207 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2208 		return -EIO;
2209 	}
2210 	info->io.addr_data = spmi->addr.address;
2211 
2212 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2213 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2214 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2215 		 info->irq);
2216 
2217 	rv = add_smi(info);
2218 	if (rv)
2219 		kfree(info);
2220 
2221 	return rv;
2222 }
2223 
2224 static void spmi_find_bmc(void)
2225 {
2226 	acpi_status      status;
2227 	struct SPMITable *spmi;
2228 	int              i;
2229 
2230 	if (acpi_disabled)
2231 		return;
2232 
2233 	if (acpi_failure)
2234 		return;
2235 
2236 	for (i = 0; ; i++) {
2237 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2238 					(struct acpi_table_header **)&spmi);
2239 		if (status != AE_OK)
2240 			return;
2241 
2242 		try_init_spmi(spmi);
2243 	}
2244 }
2245 #endif
2246 
2247 #ifdef CONFIG_DMI
2248 struct dmi_ipmi_data {
2249 	u8   		type;
2250 	u8   		addr_space;
2251 	unsigned long	base_addr;
2252 	u8   		irq;
2253 	u8              offset;
2254 	u8              slave_addr;
2255 };
2256 
2257 static int decode_dmi(const struct dmi_header *dm,
2258 				struct dmi_ipmi_data *dmi)
2259 {
2260 	const u8	*data = (const u8 *)dm;
2261 	unsigned long  	base_addr;
2262 	u8		reg_spacing;
2263 	u8              len = dm->length;
2264 
2265 	dmi->type = data[4];
2266 
2267 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2268 	if (len >= 0x11) {
2269 		if (base_addr & 1) {
2270 			/* I/O */
2271 			base_addr &= 0xFFFE;
2272 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2273 		} else
2274 			/* Memory */
2275 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2276 
2277 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2278 		   is odd. */
2279 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2280 
2281 		dmi->irq = data[0x11];
2282 
2283 		/* The top two bits of byte 0x10 hold the register spacing. */
2284 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2285 		switch (reg_spacing) {
2286 		case 0x00: /* Byte boundaries */
2287 		    dmi->offset = 1;
2288 		    break;
2289 		case 0x01: /* 32-bit boundaries */
2290 		    dmi->offset = 4;
2291 		    break;
2292 		case 0x02: /* 16-byte boundaries */
2293 		    dmi->offset = 16;
2294 		    break;
2295 		default:
2296 		    /* Some other interface, just ignore it. */
2297 		    return -EIO;
2298 		}
2299 	} else {
2300 		/* Old DMI spec. */
2301 		/*
2302 		 * Note that technically, the lower bit of the base
2303 		 * address should be 1 if the address is I/O and 0 if
2304 		 * the address is in memory.  So many systems get that
2305 		 * wrong (and all that I have seen are I/O) so we just
2306 		 * ignore that bit and assume I/O.  Systems that use
2307 		 * memory should use the newer spec, anyway.
2308 		 */
2309 		dmi->base_addr = base_addr & 0xfffe;
2310 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2311 		dmi->offset = 1;
2312 	}
2313 
2314 	dmi->slave_addr = data[6];
2315 
2316 	return 0;
2317 }
2318 
2319 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2320 {
2321 	struct smi_info *info;
2322 
2323 	info = smi_info_alloc();
2324 	if (!info) {
2325 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2326 		return;
2327 	}
2328 
2329 	info->addr_source = SI_SMBIOS;
2330 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2331 
2332 	switch (ipmi_data->type) {
2333 	case 0x01: /* KCS */
2334 		info->si_type = SI_KCS;
2335 		break;
2336 	case 0x02: /* SMIC */
2337 		info->si_type = SI_SMIC;
2338 		break;
2339 	case 0x03: /* BT */
2340 		info->si_type = SI_BT;
2341 		break;
2342 	default:
2343 		kfree(info);
2344 		return;
2345 	}
2346 
2347 	switch (ipmi_data->addr_space) {
2348 	case IPMI_MEM_ADDR_SPACE:
2349 		info->io_setup = mem_setup;
2350 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2351 		break;
2352 
2353 	case IPMI_IO_ADDR_SPACE:
2354 		info->io_setup = port_setup;
2355 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2356 		break;
2357 
2358 	default:
2359 		kfree(info);
2360 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2361 		       ipmi_data->addr_space);
2362 		return;
2363 	}
2364 	info->io.addr_data = ipmi_data->base_addr;
2365 
2366 	info->io.regspacing = ipmi_data->offset;
2367 	if (!info->io.regspacing)
2368 		info->io.regspacing = DEFAULT_REGSPACING;
2369 	info->io.regsize = DEFAULT_REGSPACING;
2370 	info->io.regshift = 0;
2371 
2372 	info->slave_addr = ipmi_data->slave_addr;
2373 
2374 	info->irq = ipmi_data->irq;
2375 	if (info->irq)
2376 		info->irq_setup = std_irq_setup;
2377 
2378 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2379 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2380 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2381 		 info->irq);
2382 
2383 	if (add_smi(info))
2384 		kfree(info);
2385 }
2386 
2387 static void dmi_find_bmc(void)
2388 {
2389 	const struct dmi_device *dev = NULL;
2390 	struct dmi_ipmi_data data;
2391 	int                  rv;
2392 
2393 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2394 		memset(&data, 0, sizeof(data));
2395 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2396 				&data);
2397 		if (!rv)
2398 			try_init_dmi(&data);
2399 	}
2400 }
2401 #endif /* CONFIG_DMI */
2402 
2403 #ifdef CONFIG_PCI
2404 
2405 #define PCI_ERMC_CLASSCODE		0x0C0700
2406 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2407 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2408 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2409 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2410 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2411 
2412 #define PCI_HP_VENDOR_ID    0x103C
2413 #define PCI_MMC_DEVICE_ID   0x121A
2414 #define PCI_MMC_ADDR_CW     0x10
2415 
2416 static void ipmi_pci_cleanup(struct smi_info *info)
2417 {
2418 	struct pci_dev *pdev = info->addr_source_data;
2419 
2420 	pci_disable_device(pdev);
2421 }
2422 
2423 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2424 {
2425 	if (info->si_type == SI_KCS) {
2426 		unsigned char	status;
2427 		int		regspacing;
2428 
2429 		info->io.regsize = DEFAULT_REGSIZE;
2430 		info->io.regshift = 0;
2431 		info->io_size = 2;
2432 		info->handlers = &kcs_smi_handlers;
2433 
2434 		/* detect 1, 4, 16byte spacing */
2435 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2436 			info->io.regspacing = regspacing;
2437 			if (info->io_setup(info)) {
2438 				dev_err(info->dev,
2439 					"Could not setup I/O space\n");
2440 				return DEFAULT_REGSPACING;
2441 			}
2442 			/* write invalid cmd */
2443 			info->io.outputb(&info->io, 1, 0x10);
2444 			/* read status back */
2445 			status = info->io.inputb(&info->io, 1);
2446 			info->io_cleanup(info);
2447 			if (status)
2448 				return regspacing;
2449 			regspacing *= 4;
2450 		}
2451 	}
2452 	return DEFAULT_REGSPACING;
2453 }
2454 
2455 static int ipmi_pci_probe(struct pci_dev *pdev,
2456 				    const struct pci_device_id *ent)
2457 {
2458 	int rv;
2459 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2460 	struct smi_info *info;
2461 
2462 	info = smi_info_alloc();
2463 	if (!info)
2464 		return -ENOMEM;
2465 
2466 	info->addr_source = SI_PCI;
2467 	dev_info(&pdev->dev, "probing via PCI");
2468 
2469 	switch (class_type) {
2470 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2471 		info->si_type = SI_SMIC;
2472 		break;
2473 
2474 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2475 		info->si_type = SI_KCS;
2476 		break;
2477 
2478 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2479 		info->si_type = SI_BT;
2480 		break;
2481 
2482 	default:
2483 		kfree(info);
2484 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2485 		return -ENOMEM;
2486 	}
2487 
2488 	rv = pci_enable_device(pdev);
2489 	if (rv) {
2490 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2491 		kfree(info);
2492 		return rv;
2493 	}
2494 
2495 	info->addr_source_cleanup = ipmi_pci_cleanup;
2496 	info->addr_source_data = pdev;
2497 
2498 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2499 		info->io_setup = port_setup;
2500 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2501 	} else {
2502 		info->io_setup = mem_setup;
2503 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2504 	}
2505 	info->io.addr_data = pci_resource_start(pdev, 0);
2506 
2507 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2508 	info->io.regsize = DEFAULT_REGSIZE;
2509 	info->io.regshift = 0;
2510 
2511 	info->irq = pdev->irq;
2512 	if (info->irq)
2513 		info->irq_setup = std_irq_setup;
2514 
2515 	info->dev = &pdev->dev;
2516 	pci_set_drvdata(pdev, info);
2517 
2518 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2519 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2520 		info->irq);
2521 
2522 	rv = add_smi(info);
2523 	if (rv) {
2524 		kfree(info);
2525 		pci_disable_device(pdev);
2526 	}
2527 
2528 	return rv;
2529 }
2530 
2531 static void ipmi_pci_remove(struct pci_dev *pdev)
2532 {
2533 	struct smi_info *info = pci_get_drvdata(pdev);
2534 	cleanup_one_si(info);
2535 	pci_disable_device(pdev);
2536 }
2537 
2538 static const struct pci_device_id ipmi_pci_devices[] = {
2539 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2540 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2541 	{ 0, }
2542 };
2543 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2544 
2545 static struct pci_driver ipmi_pci_driver = {
2546 	.name =         DEVICE_NAME,
2547 	.id_table =     ipmi_pci_devices,
2548 	.probe =        ipmi_pci_probe,
2549 	.remove =       ipmi_pci_remove,
2550 };
2551 #endif /* CONFIG_PCI */
2552 
2553 #ifdef CONFIG_OF
2554 static const struct of_device_id of_ipmi_match[] = {
2555 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2556 	  .data = (void *)(unsigned long) SI_KCS },
2557 	{ .type = "ipmi", .compatible = "ipmi-smic",
2558 	  .data = (void *)(unsigned long) SI_SMIC },
2559 	{ .type = "ipmi", .compatible = "ipmi-bt",
2560 	  .data = (void *)(unsigned long) SI_BT },
2561 	{},
2562 };
2563 
2564 static int of_ipmi_probe(struct platform_device *dev)
2565 {
2566 	const struct of_device_id *match;
2567 	struct smi_info *info;
2568 	struct resource resource;
2569 	const __be32 *regsize, *regspacing, *regshift;
2570 	struct device_node *np = dev->dev.of_node;
2571 	int ret;
2572 	int proplen;
2573 
2574 	dev_info(&dev->dev, "probing via device tree\n");
2575 
2576 	match = of_match_device(of_ipmi_match, &dev->dev);
2577 	if (!match)
2578 		return -ENODEV;
2579 
2580 	if (!of_device_is_available(np))
2581 		return -EINVAL;
2582 
2583 	ret = of_address_to_resource(np, 0, &resource);
2584 	if (ret) {
2585 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2586 		return ret;
2587 	}
2588 
2589 	regsize = of_get_property(np, "reg-size", &proplen);
2590 	if (regsize && proplen != 4) {
2591 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2592 		return -EINVAL;
2593 	}
2594 
2595 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2596 	if (regspacing && proplen != 4) {
2597 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2598 		return -EINVAL;
2599 	}
2600 
2601 	regshift = of_get_property(np, "reg-shift", &proplen);
2602 	if (regshift && proplen != 4) {
2603 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2604 		return -EINVAL;
2605 	}
2606 
2607 	info = smi_info_alloc();
2608 
2609 	if (!info) {
2610 		dev_err(&dev->dev,
2611 			"could not allocate memory for OF probe\n");
2612 		return -ENOMEM;
2613 	}
2614 
2615 	info->si_type		= (enum si_type) match->data;
2616 	info->addr_source	= SI_DEVICETREE;
2617 	info->irq_setup		= std_irq_setup;
2618 
2619 	if (resource.flags & IORESOURCE_IO) {
2620 		info->io_setup		= port_setup;
2621 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2622 	} else {
2623 		info->io_setup		= mem_setup;
2624 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2625 	}
2626 
2627 	info->io.addr_data	= resource.start;
2628 
2629 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2630 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2631 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2632 
2633 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2634 	info->dev		= &dev->dev;
2635 
2636 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2637 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2638 		info->irq);
2639 
2640 	dev_set_drvdata(&dev->dev, info);
2641 
2642 	ret = add_smi(info);
2643 	if (ret) {
2644 		kfree(info);
2645 		return ret;
2646 	}
2647 	return 0;
2648 }
2649 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2650 #else
2651 #define of_ipmi_match NULL
2652 static int of_ipmi_probe(struct platform_device *dev)
2653 {
2654 	return -ENODEV;
2655 }
2656 #endif
2657 
2658 #ifdef CONFIG_ACPI
2659 static int acpi_ipmi_probe(struct platform_device *dev)
2660 {
2661 	struct smi_info *info;
2662 	struct resource *res, *res_second;
2663 	acpi_handle handle;
2664 	acpi_status status;
2665 	unsigned long long tmp;
2666 	int rv = -EINVAL;
2667 
2668 	handle = ACPI_HANDLE(&dev->dev);
2669 	if (!handle)
2670 		return -ENODEV;
2671 
2672 	info = smi_info_alloc();
2673 	if (!info)
2674 		return -ENOMEM;
2675 
2676 	info->addr_source = SI_ACPI;
2677 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2678 
2679 	info->addr_info.acpi_info.acpi_handle = handle;
2680 
2681 	/* _IFT tells us the interface type: KCS, BT, etc */
2682 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2683 	if (ACPI_FAILURE(status)) {
2684 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2685 		goto err_free;
2686 	}
2687 
2688 	switch (tmp) {
2689 	case 1:
2690 		info->si_type = SI_KCS;
2691 		break;
2692 	case 2:
2693 		info->si_type = SI_SMIC;
2694 		break;
2695 	case 3:
2696 		info->si_type = SI_BT;
2697 		break;
2698 	case 4: /* SSIF, just ignore */
2699 		rv = -ENODEV;
2700 		goto err_free;
2701 	default:
2702 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2703 		goto err_free;
2704 	}
2705 
2706 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2707 	if (res) {
2708 		info->io_setup = port_setup;
2709 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2710 	} else {
2711 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2712 		if (res) {
2713 			info->io_setup = mem_setup;
2714 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2715 		}
2716 	}
2717 	if (!res) {
2718 		dev_err(&dev->dev, "no I/O or memory address\n");
2719 		goto err_free;
2720 	}
2721 	info->io.addr_data = res->start;
2722 
2723 	info->io.regspacing = DEFAULT_REGSPACING;
2724 	res_second = platform_get_resource(dev,
2725 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2726 					IORESOURCE_IO : IORESOURCE_MEM,
2727 			       1);
2728 	if (res_second) {
2729 		if (res_second->start > info->io.addr_data)
2730 			info->io.regspacing =
2731 				res_second->start - info->io.addr_data;
2732 	}
2733 	info->io.regsize = DEFAULT_REGSPACING;
2734 	info->io.regshift = 0;
2735 
2736 	/* If _GPE exists, use it; otherwise use standard interrupts */
2737 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2738 	if (ACPI_SUCCESS(status)) {
2739 		info->irq = tmp;
2740 		info->irq_setup = acpi_gpe_irq_setup;
2741 	} else {
2742 		int irq = platform_get_irq(dev, 0);
2743 
2744 		if (irq > 0) {
2745 			info->irq = irq;
2746 			info->irq_setup = std_irq_setup;
2747 		}
2748 	}
2749 
2750 	info->dev = &dev->dev;
2751 	platform_set_drvdata(dev, info);
2752 
2753 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2754 		 res, info->io.regsize, info->io.regspacing,
2755 		 info->irq);
2756 
2757 	rv = add_smi(info);
2758 	if (rv)
2759 		kfree(info);
2760 
2761 	return rv;
2762 
2763 err_free:
2764 	kfree(info);
2765 	return rv;
2766 }
2767 
2768 static const struct acpi_device_id acpi_ipmi_match[] = {
2769 	{ "IPI0001", 0 },
2770 	{ },
2771 };
2772 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2773 #else
2774 static int acpi_ipmi_probe(struct platform_device *dev)
2775 {
2776 	return -ENODEV;
2777 }
2778 #endif
2779 
2780 static int ipmi_probe(struct platform_device *dev)
2781 {
2782 	if (of_ipmi_probe(dev) == 0)
2783 		return 0;
2784 
2785 	return acpi_ipmi_probe(dev);
2786 }
2787 
2788 static int ipmi_remove(struct platform_device *dev)
2789 {
2790 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2791 
2792 	cleanup_one_si(info);
2793 	return 0;
2794 }
2795 
2796 static struct platform_driver ipmi_driver = {
2797 	.driver = {
2798 		.name = DEVICE_NAME,
2799 		.of_match_table = of_ipmi_match,
2800 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2801 	},
2802 	.probe		= ipmi_probe,
2803 	.remove		= ipmi_remove,
2804 };
2805 
2806 #ifdef CONFIG_PARISC
2807 static int ipmi_parisc_probe(struct parisc_device *dev)
2808 {
2809 	struct smi_info *info;
2810 	int rv;
2811 
2812 	info = smi_info_alloc();
2813 
2814 	if (!info) {
2815 		dev_err(&dev->dev,
2816 			"could not allocate memory for PARISC probe\n");
2817 		return -ENOMEM;
2818 	}
2819 
2820 	info->si_type		= SI_KCS;
2821 	info->addr_source	= SI_DEVICETREE;
2822 	info->io_setup		= mem_setup;
2823 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2824 	info->io.addr_data	= dev->hpa.start;
2825 	info->io.regsize	= 1;
2826 	info->io.regspacing	= 1;
2827 	info->io.regshift	= 0;
2828 	info->irq		= 0; /* no interrupt */
2829 	info->irq_setup		= NULL;
2830 	info->dev		= &dev->dev;
2831 
2832 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2833 
2834 	dev_set_drvdata(&dev->dev, info);
2835 
2836 	rv = add_smi(info);
2837 	if (rv) {
2838 		kfree(info);
2839 		return rv;
2840 	}
2841 
2842 	return 0;
2843 }
2844 
2845 static int ipmi_parisc_remove(struct parisc_device *dev)
2846 {
2847 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2848 	return 0;
2849 }
2850 
2851 static struct parisc_device_id ipmi_parisc_tbl[] = {
2852 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2853 	{ 0, }
2854 };
2855 
2856 static struct parisc_driver ipmi_parisc_driver = {
2857 	.name =		"ipmi",
2858 	.id_table =	ipmi_parisc_tbl,
2859 	.probe =	ipmi_parisc_probe,
2860 	.remove =	ipmi_parisc_remove,
2861 };
2862 #endif /* CONFIG_PARISC */
2863 
2864 static int wait_for_msg_done(struct smi_info *smi_info)
2865 {
2866 	enum si_sm_result     smi_result;
2867 
2868 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2869 	for (;;) {
2870 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2871 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2872 			schedule_timeout_uninterruptible(1);
2873 			smi_result = smi_info->handlers->event(
2874 				smi_info->si_sm, jiffies_to_usecs(1));
2875 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2876 			smi_result = smi_info->handlers->event(
2877 				smi_info->si_sm, 0);
2878 		} else
2879 			break;
2880 	}
2881 	if (smi_result == SI_SM_HOSED)
2882 		/*
2883 		 * We couldn't get the state machine to run, so whatever's at
2884 		 * the port is probably not an IPMI SMI interface.
2885 		 */
2886 		return -ENODEV;
2887 
2888 	return 0;
2889 }
2890 
2891 static int try_get_dev_id(struct smi_info *smi_info)
2892 {
2893 	unsigned char         msg[2];
2894 	unsigned char         *resp;
2895 	unsigned long         resp_len;
2896 	int                   rv = 0;
2897 
2898 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2899 	if (!resp)
2900 		return -ENOMEM;
2901 
2902 	/*
2903 	 * Do a Get Device ID command, since it comes back with some
2904 	 * useful info.
2905 	 */
2906 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2907 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2908 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2909 
2910 	rv = wait_for_msg_done(smi_info);
2911 	if (rv)
2912 		goto out;
2913 
2914 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2915 						  resp, IPMI_MAX_MSG_LENGTH);
2916 
2917 	/* Check and record info from the get device id, in case we need it. */
2918 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2919 
2920  out:
2921 	kfree(resp);
2922 	return rv;
2923 }
2924 
2925 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2926 {
2927 	unsigned char         msg[3];
2928 	unsigned char         *resp;
2929 	unsigned long         resp_len;
2930 	int                   rv;
2931 
2932 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2933 	if (!resp)
2934 		return -ENOMEM;
2935 
2936 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2937 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2938 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2939 
2940 	rv = wait_for_msg_done(smi_info);
2941 	if (rv) {
2942 		dev_warn(smi_info->dev,
2943 			 "Error getting response from get global enables command: %d\n",
2944 			 rv);
2945 		goto out;
2946 	}
2947 
2948 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2949 						  resp, IPMI_MAX_MSG_LENGTH);
2950 
2951 	if (resp_len < 4 ||
2952 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2953 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2954 			resp[2] != 0) {
2955 		dev_warn(smi_info->dev,
2956 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2957 			 resp_len, resp[0], resp[1], resp[2]);
2958 		rv = -EINVAL;
2959 		goto out;
2960 	} else {
2961 		*enables = resp[3];
2962 	}
2963 
2964 out:
2965 	kfree(resp);
2966 	return rv;
2967 }
2968 
2969 /*
2970  * Returns 1 if it gets an error from the command.
2971  */
2972 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2973 {
2974 	unsigned char         msg[3];
2975 	unsigned char         *resp;
2976 	unsigned long         resp_len;
2977 	int                   rv;
2978 
2979 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2980 	if (!resp)
2981 		return -ENOMEM;
2982 
2983 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2984 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2985 	msg[2] = enables;
2986 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2987 
2988 	rv = wait_for_msg_done(smi_info);
2989 	if (rv) {
2990 		dev_warn(smi_info->dev,
2991 			 "Error getting response from set global enables command: %d\n",
2992 			 rv);
2993 		goto out;
2994 	}
2995 
2996 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2997 						  resp, IPMI_MAX_MSG_LENGTH);
2998 
2999 	if (resp_len < 3 ||
3000 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3001 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3002 		dev_warn(smi_info->dev,
3003 			 "Invalid return from set global enables command: %ld %x %x\n",
3004 			 resp_len, resp[0], resp[1]);
3005 		rv = -EINVAL;
3006 		goto out;
3007 	}
3008 
3009 	if (resp[2] != 0)
3010 		rv = 1;
3011 
3012 out:
3013 	kfree(resp);
3014 	return rv;
3015 }
3016 
3017 /*
3018  * Some BMCs do not support clearing the receive irq bit in the global
3019  * enables (even if they don't support interrupts on the BMC).  Check
3020  * for this and handle it properly.
3021  */
3022 static void check_clr_rcv_irq(struct smi_info *smi_info)
3023 {
3024 	u8 enables = 0;
3025 	int rv;
3026 
3027 	rv = get_global_enables(smi_info, &enables);
3028 	if (!rv) {
3029 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3030 			/* Already clear, should work ok. */
3031 			return;
3032 
3033 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3034 		rv = set_global_enables(smi_info, enables);
3035 	}
3036 
3037 	if (rv < 0) {
3038 		dev_err(smi_info->dev,
3039 			"Cannot check clearing the rcv irq: %d\n", rv);
3040 		return;
3041 	}
3042 
3043 	if (rv) {
3044 		/*
3045 		 * An error when setting the event buffer bit means
3046 		 * clearing the bit is not supported.
3047 		 */
3048 		dev_warn(smi_info->dev,
3049 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3050 		smi_info->cannot_disable_irq = true;
3051 	}
3052 }
3053 
3054 /*
3055  * Some BMCs do not support setting the interrupt bits in the global
3056  * enables even if they support interrupts.  Clearly bad, but we can
3057  * compensate.
3058  */
3059 static void check_set_rcv_irq(struct smi_info *smi_info)
3060 {
3061 	u8 enables = 0;
3062 	int rv;
3063 
3064 	if (!smi_info->irq)
3065 		return;
3066 
3067 	rv = get_global_enables(smi_info, &enables);
3068 	if (!rv) {
3069 		enables |= IPMI_BMC_RCV_MSG_INTR;
3070 		rv = set_global_enables(smi_info, enables);
3071 	}
3072 
3073 	if (rv < 0) {
3074 		dev_err(smi_info->dev,
3075 			"Cannot check setting the rcv irq: %d\n", rv);
3076 		return;
3077 	}
3078 
3079 	if (rv) {
3080 		/*
3081 		 * An error when setting the event buffer bit means
3082 		 * setting the bit is not supported.
3083 		 */
3084 		dev_warn(smi_info->dev,
3085 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086 		smi_info->cannot_disable_irq = true;
3087 		smi_info->irq_enable_broken = true;
3088 	}
3089 }
3090 
3091 static int try_enable_event_buffer(struct smi_info *smi_info)
3092 {
3093 	unsigned char         msg[3];
3094 	unsigned char         *resp;
3095 	unsigned long         resp_len;
3096 	int                   rv = 0;
3097 
3098 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3099 	if (!resp)
3100 		return -ENOMEM;
3101 
3102 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3103 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3104 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3105 
3106 	rv = wait_for_msg_done(smi_info);
3107 	if (rv) {
3108 		printk(KERN_WARNING PFX "Error getting response from get"
3109 		       " global enables command, the event buffer is not"
3110 		       " enabled.\n");
3111 		goto out;
3112 	}
3113 
3114 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3115 						  resp, IPMI_MAX_MSG_LENGTH);
3116 
3117 	if (resp_len < 4 ||
3118 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3119 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3120 			resp[2] != 0) {
3121 		printk(KERN_WARNING PFX "Invalid return from get global"
3122 		       " enables command, cannot enable the event buffer.\n");
3123 		rv = -EINVAL;
3124 		goto out;
3125 	}
3126 
3127 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3128 		/* buffer is already enabled, nothing to do. */
3129 		smi_info->supports_event_msg_buff = true;
3130 		goto out;
3131 	}
3132 
3133 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3134 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3135 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3136 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3137 
3138 	rv = wait_for_msg_done(smi_info);
3139 	if (rv) {
3140 		printk(KERN_WARNING PFX "Error getting response from set"
3141 		       " global, enables command, the event buffer is not"
3142 		       " enabled.\n");
3143 		goto out;
3144 	}
3145 
3146 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3147 						  resp, IPMI_MAX_MSG_LENGTH);
3148 
3149 	if (resp_len < 3 ||
3150 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3151 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3152 		printk(KERN_WARNING PFX "Invalid return from get global,"
3153 		       "enables command, not enable the event buffer.\n");
3154 		rv = -EINVAL;
3155 		goto out;
3156 	}
3157 
3158 	if (resp[2] != 0)
3159 		/*
3160 		 * An error when setting the event buffer bit means
3161 		 * that the event buffer is not supported.
3162 		 */
3163 		rv = -ENOENT;
3164 	else
3165 		smi_info->supports_event_msg_buff = true;
3166 
3167  out:
3168 	kfree(resp);
3169 	return rv;
3170 }
3171 
3172 static int smi_type_proc_show(struct seq_file *m, void *v)
3173 {
3174 	struct smi_info *smi = m->private;
3175 
3176 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3177 
3178 	return 0;
3179 }
3180 
3181 static int smi_type_proc_open(struct inode *inode, struct file *file)
3182 {
3183 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3184 }
3185 
3186 static const struct file_operations smi_type_proc_ops = {
3187 	.open		= smi_type_proc_open,
3188 	.read		= seq_read,
3189 	.llseek		= seq_lseek,
3190 	.release	= single_release,
3191 };
3192 
3193 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3194 {
3195 	struct smi_info *smi = m->private;
3196 
3197 	seq_printf(m, "interrupts_enabled:    %d\n",
3198 		       smi->irq && !smi->interrupt_disabled);
3199 	seq_printf(m, "short_timeouts:        %u\n",
3200 		       smi_get_stat(smi, short_timeouts));
3201 	seq_printf(m, "long_timeouts:         %u\n",
3202 		       smi_get_stat(smi, long_timeouts));
3203 	seq_printf(m, "idles:                 %u\n",
3204 		       smi_get_stat(smi, idles));
3205 	seq_printf(m, "interrupts:            %u\n",
3206 		       smi_get_stat(smi, interrupts));
3207 	seq_printf(m, "attentions:            %u\n",
3208 		       smi_get_stat(smi, attentions));
3209 	seq_printf(m, "flag_fetches:          %u\n",
3210 		       smi_get_stat(smi, flag_fetches));
3211 	seq_printf(m, "hosed_count:           %u\n",
3212 		       smi_get_stat(smi, hosed_count));
3213 	seq_printf(m, "complete_transactions: %u\n",
3214 		       smi_get_stat(smi, complete_transactions));
3215 	seq_printf(m, "events:                %u\n",
3216 		       smi_get_stat(smi, events));
3217 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3218 		       smi_get_stat(smi, watchdog_pretimeouts));
3219 	seq_printf(m, "incoming_messages:     %u\n",
3220 		       smi_get_stat(smi, incoming_messages));
3221 	return 0;
3222 }
3223 
3224 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3225 {
3226 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3227 }
3228 
3229 static const struct file_operations smi_si_stats_proc_ops = {
3230 	.open		= smi_si_stats_proc_open,
3231 	.read		= seq_read,
3232 	.llseek		= seq_lseek,
3233 	.release	= single_release,
3234 };
3235 
3236 static int smi_params_proc_show(struct seq_file *m, void *v)
3237 {
3238 	struct smi_info *smi = m->private;
3239 
3240 	seq_printf(m,
3241 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3242 		   si_to_str[smi->si_type],
3243 		   addr_space_to_str[smi->io.addr_type],
3244 		   smi->io.addr_data,
3245 		   smi->io.regspacing,
3246 		   smi->io.regsize,
3247 		   smi->io.regshift,
3248 		   smi->irq,
3249 		   smi->slave_addr);
3250 
3251 	return 0;
3252 }
3253 
3254 static int smi_params_proc_open(struct inode *inode, struct file *file)
3255 {
3256 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3257 }
3258 
3259 static const struct file_operations smi_params_proc_ops = {
3260 	.open		= smi_params_proc_open,
3261 	.read		= seq_read,
3262 	.llseek		= seq_lseek,
3263 	.release	= single_release,
3264 };
3265 
3266 /*
3267  * oem_data_avail_to_receive_msg_avail
3268  * @info - smi_info structure with msg_flags set
3269  *
3270  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3271  * Returns 1 indicating need to re-run handle_flags().
3272  */
3273 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3274 {
3275 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3276 			       RECEIVE_MSG_AVAIL);
3277 	return 1;
3278 }
3279 
3280 /*
3281  * setup_dell_poweredge_oem_data_handler
3282  * @info - smi_info.device_id must be populated
3283  *
3284  * Systems that match, but have firmware version < 1.40 may assert
3285  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3286  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3287  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3288  * as RECEIVE_MSG_AVAIL instead.
3289  *
3290  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3291  * assert the OEM[012] bits, and if it did, the driver would have to
3292  * change to handle that properly, we don't actually check for the
3293  * firmware version.
3294  * Device ID = 0x20                BMC on PowerEdge 8G servers
3295  * Device Revision = 0x80
3296  * Firmware Revision1 = 0x01       BMC version 1.40
3297  * Firmware Revision2 = 0x40       BCD encoded
3298  * IPMI Version = 0x51             IPMI 1.5
3299  * Manufacturer ID = A2 02 00      Dell IANA
3300  *
3301  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3302  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3303  *
3304  */
3305 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3306 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3307 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3308 #define DELL_IANA_MFR_ID 0x0002a2
3309 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3310 {
3311 	struct ipmi_device_id *id = &smi_info->device_id;
3312 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3313 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3314 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3315 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3316 			smi_info->oem_data_avail_handler =
3317 				oem_data_avail_to_receive_msg_avail;
3318 		} else if (ipmi_version_major(id) < 1 ||
3319 			   (ipmi_version_major(id) == 1 &&
3320 			    ipmi_version_minor(id) < 5)) {
3321 			smi_info->oem_data_avail_handler =
3322 				oem_data_avail_to_receive_msg_avail;
3323 		}
3324 	}
3325 }
3326 
3327 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3328 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3329 {
3330 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3331 
3332 	/* Make it a response */
3333 	msg->rsp[0] = msg->data[0] | 4;
3334 	msg->rsp[1] = msg->data[1];
3335 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3336 	msg->rsp_size = 3;
3337 	smi_info->curr_msg = NULL;
3338 	deliver_recv_msg(smi_info, msg);
3339 }
3340 
3341 /*
3342  * dell_poweredge_bt_xaction_handler
3343  * @info - smi_info.device_id must be populated
3344  *
3345  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3346  * not respond to a Get SDR command if the length of the data
3347  * requested is exactly 0x3A, which leads to command timeouts and no
3348  * data returned.  This intercepts such commands, and causes userspace
3349  * callers to try again with a different-sized buffer, which succeeds.
3350  */
3351 
3352 #define STORAGE_NETFN 0x0A
3353 #define STORAGE_CMD_GET_SDR 0x23
3354 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3355 					     unsigned long unused,
3356 					     void *in)
3357 {
3358 	struct smi_info *smi_info = in;
3359 	unsigned char *data = smi_info->curr_msg->data;
3360 	unsigned int size   = smi_info->curr_msg->data_size;
3361 	if (size >= 8 &&
3362 	    (data[0]>>2) == STORAGE_NETFN &&
3363 	    data[1] == STORAGE_CMD_GET_SDR &&
3364 	    data[7] == 0x3A) {
3365 		return_hosed_msg_badsize(smi_info);
3366 		return NOTIFY_STOP;
3367 	}
3368 	return NOTIFY_DONE;
3369 }
3370 
3371 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3372 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3373 };
3374 
3375 /*
3376  * setup_dell_poweredge_bt_xaction_handler
3377  * @info - smi_info.device_id must be filled in already
3378  *
3379  * Fills in smi_info.device_id.start_transaction_pre_hook
3380  * when we know what function to use there.
3381  */
3382 static void
3383 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3384 {
3385 	struct ipmi_device_id *id = &smi_info->device_id;
3386 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3387 	    smi_info->si_type == SI_BT)
3388 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3389 }
3390 
3391 /*
3392  * setup_oem_data_handler
3393  * @info - smi_info.device_id must be filled in already
3394  *
3395  * Fills in smi_info.device_id.oem_data_available_handler
3396  * when we know what function to use there.
3397  */
3398 
3399 static void setup_oem_data_handler(struct smi_info *smi_info)
3400 {
3401 	setup_dell_poweredge_oem_data_handler(smi_info);
3402 }
3403 
3404 static void setup_xaction_handlers(struct smi_info *smi_info)
3405 {
3406 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3407 }
3408 
3409 static void check_for_broken_irqs(struct smi_info *smi_info)
3410 {
3411 	check_clr_rcv_irq(smi_info);
3412 	check_set_rcv_irq(smi_info);
3413 }
3414 
3415 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3416 {
3417 	if (smi_info->thread != NULL)
3418 		kthread_stop(smi_info->thread);
3419 	if (smi_info->timer_running)
3420 		del_timer_sync(&smi_info->si_timer);
3421 }
3422 
3423 static const struct ipmi_default_vals
3424 {
3425 	int type;
3426 	int port;
3427 } ipmi_defaults[] =
3428 {
3429 	{ .type = SI_KCS, .port = 0xca2 },
3430 	{ .type = SI_SMIC, .port = 0xca9 },
3431 	{ .type = SI_BT, .port = 0xe4 },
3432 	{ .port = 0 }
3433 };
3434 
3435 static void default_find_bmc(void)
3436 {
3437 	struct smi_info *info;
3438 	int             i;
3439 
3440 	for (i = 0; ; i++) {
3441 		if (!ipmi_defaults[i].port)
3442 			break;
3443 #ifdef CONFIG_PPC
3444 		if (check_legacy_ioport(ipmi_defaults[i].port))
3445 			continue;
3446 #endif
3447 		info = smi_info_alloc();
3448 		if (!info)
3449 			return;
3450 
3451 		info->addr_source = SI_DEFAULT;
3452 
3453 		info->si_type = ipmi_defaults[i].type;
3454 		info->io_setup = port_setup;
3455 		info->io.addr_data = ipmi_defaults[i].port;
3456 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3457 
3458 		info->io.addr = NULL;
3459 		info->io.regspacing = DEFAULT_REGSPACING;
3460 		info->io.regsize = DEFAULT_REGSPACING;
3461 		info->io.regshift = 0;
3462 
3463 		if (add_smi(info) == 0) {
3464 			if ((try_smi_init(info)) == 0) {
3465 				/* Found one... */
3466 				printk(KERN_INFO PFX "Found default %s"
3467 				" state machine at %s address 0x%lx\n",
3468 				si_to_str[info->si_type],
3469 				addr_space_to_str[info->io.addr_type],
3470 				info->io.addr_data);
3471 			} else
3472 				cleanup_one_si(info);
3473 		} else {
3474 			kfree(info);
3475 		}
3476 	}
3477 }
3478 
3479 static int is_new_interface(struct smi_info *info)
3480 {
3481 	struct smi_info *e;
3482 
3483 	list_for_each_entry(e, &smi_infos, link) {
3484 		if (e->io.addr_type != info->io.addr_type)
3485 			continue;
3486 		if (e->io.addr_data == info->io.addr_data)
3487 			return 0;
3488 	}
3489 
3490 	return 1;
3491 }
3492 
3493 static int add_smi(struct smi_info *new_smi)
3494 {
3495 	int rv = 0;
3496 
3497 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3498 	       ipmi_addr_src_to_str(new_smi->addr_source),
3499 	       si_to_str[new_smi->si_type]);
3500 	mutex_lock(&smi_infos_lock);
3501 	if (!is_new_interface(new_smi)) {
3502 		printk(KERN_CONT " duplicate interface\n");
3503 		rv = -EBUSY;
3504 		goto out_err;
3505 	}
3506 
3507 	printk(KERN_CONT "\n");
3508 
3509 	/* So we know not to free it unless we have allocated one. */
3510 	new_smi->intf = NULL;
3511 	new_smi->si_sm = NULL;
3512 	new_smi->handlers = NULL;
3513 
3514 	list_add_tail(&new_smi->link, &smi_infos);
3515 
3516 out_err:
3517 	mutex_unlock(&smi_infos_lock);
3518 	return rv;
3519 }
3520 
3521 static int try_smi_init(struct smi_info *new_smi)
3522 {
3523 	int rv = 0;
3524 	int i;
3525 
3526 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3527 	       " machine at %s address 0x%lx, slave address 0x%x,"
3528 	       " irq %d\n",
3529 	       ipmi_addr_src_to_str(new_smi->addr_source),
3530 	       si_to_str[new_smi->si_type],
3531 	       addr_space_to_str[new_smi->io.addr_type],
3532 	       new_smi->io.addr_data,
3533 	       new_smi->slave_addr, new_smi->irq);
3534 
3535 	switch (new_smi->si_type) {
3536 	case SI_KCS:
3537 		new_smi->handlers = &kcs_smi_handlers;
3538 		break;
3539 
3540 	case SI_SMIC:
3541 		new_smi->handlers = &smic_smi_handlers;
3542 		break;
3543 
3544 	case SI_BT:
3545 		new_smi->handlers = &bt_smi_handlers;
3546 		break;
3547 
3548 	default:
3549 		/* No support for anything else yet. */
3550 		rv = -EIO;
3551 		goto out_err;
3552 	}
3553 
3554 	/* Allocate the state machine's data and initialize it. */
3555 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3556 	if (!new_smi->si_sm) {
3557 		printk(KERN_ERR PFX
3558 		       "Could not allocate state machine memory\n");
3559 		rv = -ENOMEM;
3560 		goto out_err;
3561 	}
3562 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3563 							&new_smi->io);
3564 
3565 	/* Now that we know the I/O size, we can set up the I/O. */
3566 	rv = new_smi->io_setup(new_smi);
3567 	if (rv) {
3568 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3569 		goto out_err;
3570 	}
3571 
3572 	/* Do low-level detection first. */
3573 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3574 		if (new_smi->addr_source)
3575 			printk(KERN_INFO PFX "Interface detection failed\n");
3576 		rv = -ENODEV;
3577 		goto out_err;
3578 	}
3579 
3580 	/*
3581 	 * Attempt a get device id command.  If it fails, we probably
3582 	 * don't have a BMC here.
3583 	 */
3584 	rv = try_get_dev_id(new_smi);
3585 	if (rv) {
3586 		if (new_smi->addr_source)
3587 			printk(KERN_INFO PFX "There appears to be no BMC"
3588 			       " at this location\n");
3589 		goto out_err;
3590 	}
3591 
3592 	setup_oem_data_handler(new_smi);
3593 	setup_xaction_handlers(new_smi);
3594 	check_for_broken_irqs(new_smi);
3595 
3596 	new_smi->waiting_msg = NULL;
3597 	new_smi->curr_msg = NULL;
3598 	atomic_set(&new_smi->req_events, 0);
3599 	new_smi->run_to_completion = false;
3600 	for (i = 0; i < SI_NUM_STATS; i++)
3601 		atomic_set(&new_smi->stats[i], 0);
3602 
3603 	new_smi->interrupt_disabled = true;
3604 	atomic_set(&new_smi->need_watch, 0);
3605 	new_smi->intf_num = smi_num;
3606 	smi_num++;
3607 
3608 	rv = try_enable_event_buffer(new_smi);
3609 	if (rv == 0)
3610 		new_smi->has_event_buffer = true;
3611 
3612 	/*
3613 	 * Start clearing the flags before we enable interrupts or the
3614 	 * timer to avoid racing with the timer.
3615 	 */
3616 	start_clear_flags(new_smi);
3617 
3618 	/*
3619 	 * IRQ is defined to be set when non-zero.  req_events will
3620 	 * cause a global flags check that will enable interrupts.
3621 	 */
3622 	if (new_smi->irq) {
3623 		new_smi->interrupt_disabled = false;
3624 		atomic_set(&new_smi->req_events, 1);
3625 	}
3626 
3627 	if (!new_smi->dev) {
3628 		/*
3629 		 * If we don't already have a device from something
3630 		 * else (like PCI), then register a new one.
3631 		 */
3632 		new_smi->pdev = platform_device_alloc("ipmi_si",
3633 						      new_smi->intf_num);
3634 		if (!new_smi->pdev) {
3635 			printk(KERN_ERR PFX
3636 			       "Unable to allocate platform device\n");
3637 			goto out_err;
3638 		}
3639 		new_smi->dev = &new_smi->pdev->dev;
3640 		new_smi->dev->driver = &ipmi_driver.driver;
3641 
3642 		rv = platform_device_add(new_smi->pdev);
3643 		if (rv) {
3644 			printk(KERN_ERR PFX
3645 			       "Unable to register system interface device:"
3646 			       " %d\n",
3647 			       rv);
3648 			goto out_err;
3649 		}
3650 		new_smi->dev_registered = true;
3651 	}
3652 
3653 	rv = ipmi_register_smi(&handlers,
3654 			       new_smi,
3655 			       &new_smi->device_id,
3656 			       new_smi->dev,
3657 			       new_smi->slave_addr);
3658 	if (rv) {
3659 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3660 			rv);
3661 		goto out_err_stop_timer;
3662 	}
3663 
3664 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3665 				     &smi_type_proc_ops,
3666 				     new_smi);
3667 	if (rv) {
3668 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3669 		goto out_err_stop_timer;
3670 	}
3671 
3672 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3673 				     &smi_si_stats_proc_ops,
3674 				     new_smi);
3675 	if (rv) {
3676 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3677 		goto out_err_stop_timer;
3678 	}
3679 
3680 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3681 				     &smi_params_proc_ops,
3682 				     new_smi);
3683 	if (rv) {
3684 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3685 		goto out_err_stop_timer;
3686 	}
3687 
3688 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3689 		 si_to_str[new_smi->si_type]);
3690 
3691 	return 0;
3692 
3693  out_err_stop_timer:
3694 	wait_for_timer_and_thread(new_smi);
3695 
3696  out_err:
3697 	new_smi->interrupt_disabled = true;
3698 
3699 	if (new_smi->intf) {
3700 		ipmi_smi_t intf = new_smi->intf;
3701 		new_smi->intf = NULL;
3702 		ipmi_unregister_smi(intf);
3703 	}
3704 
3705 	if (new_smi->irq_cleanup) {
3706 		new_smi->irq_cleanup(new_smi);
3707 		new_smi->irq_cleanup = NULL;
3708 	}
3709 
3710 	/*
3711 	 * Wait until we know that we are out of any interrupt
3712 	 * handlers might have been running before we freed the
3713 	 * interrupt.
3714 	 */
3715 	synchronize_sched();
3716 
3717 	if (new_smi->si_sm) {
3718 		if (new_smi->handlers)
3719 			new_smi->handlers->cleanup(new_smi->si_sm);
3720 		kfree(new_smi->si_sm);
3721 		new_smi->si_sm = NULL;
3722 	}
3723 	if (new_smi->addr_source_cleanup) {
3724 		new_smi->addr_source_cleanup(new_smi);
3725 		new_smi->addr_source_cleanup = NULL;
3726 	}
3727 	if (new_smi->io_cleanup) {
3728 		new_smi->io_cleanup(new_smi);
3729 		new_smi->io_cleanup = NULL;
3730 	}
3731 
3732 	if (new_smi->dev_registered) {
3733 		platform_device_unregister(new_smi->pdev);
3734 		new_smi->dev_registered = false;
3735 	}
3736 
3737 	return rv;
3738 }
3739 
3740 static int init_ipmi_si(void)
3741 {
3742 	int  i;
3743 	char *str;
3744 	int  rv;
3745 	struct smi_info *e;
3746 	enum ipmi_addr_src type = SI_INVALID;
3747 
3748 	if (initialized)
3749 		return 0;
3750 	initialized = 1;
3751 
3752 	if (si_tryplatform) {
3753 		rv = platform_driver_register(&ipmi_driver);
3754 		if (rv) {
3755 			printk(KERN_ERR PFX "Unable to register "
3756 			       "driver: %d\n", rv);
3757 			return rv;
3758 		}
3759 	}
3760 
3761 	/* Parse out the si_type string into its components. */
3762 	str = si_type_str;
3763 	if (*str != '\0') {
3764 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3765 			si_type[i] = str;
3766 			str = strchr(str, ',');
3767 			if (str) {
3768 				*str = '\0';
3769 				str++;
3770 			} else {
3771 				break;
3772 			}
3773 		}
3774 	}
3775 
3776 	printk(KERN_INFO "IPMI System Interface driver.\n");
3777 
3778 	/* If the user gave us a device, they presumably want us to use it */
3779 	if (!hardcode_find_bmc())
3780 		return 0;
3781 
3782 #ifdef CONFIG_PCI
3783 	if (si_trypci) {
3784 		rv = pci_register_driver(&ipmi_pci_driver);
3785 		if (rv)
3786 			printk(KERN_ERR PFX "Unable to register "
3787 			       "PCI driver: %d\n", rv);
3788 		else
3789 			pci_registered = true;
3790 	}
3791 #endif
3792 
3793 #ifdef CONFIG_DMI
3794 	if (si_trydmi)
3795 		dmi_find_bmc();
3796 #endif
3797 
3798 #ifdef CONFIG_ACPI
3799 	if (si_tryacpi)
3800 		spmi_find_bmc();
3801 #endif
3802 
3803 #ifdef CONFIG_PARISC
3804 	register_parisc_driver(&ipmi_parisc_driver);
3805 	parisc_registered = true;
3806 	/* poking PC IO addresses will crash machine, don't do it */
3807 	si_trydefaults = 0;
3808 #endif
3809 
3810 	/* We prefer devices with interrupts, but in the case of a machine
3811 	   with multiple BMCs we assume that there will be several instances
3812 	   of a given type so if we succeed in registering a type then also
3813 	   try to register everything else of the same type */
3814 
3815 	mutex_lock(&smi_infos_lock);
3816 	list_for_each_entry(e, &smi_infos, link) {
3817 		/* Try to register a device if it has an IRQ and we either
3818 		   haven't successfully registered a device yet or this
3819 		   device has the same type as one we successfully registered */
3820 		if (e->irq && (!type || e->addr_source == type)) {
3821 			if (!try_smi_init(e)) {
3822 				type = e->addr_source;
3823 			}
3824 		}
3825 	}
3826 
3827 	/* type will only have been set if we successfully registered an si */
3828 	if (type) {
3829 		mutex_unlock(&smi_infos_lock);
3830 		return 0;
3831 	}
3832 
3833 	/* Fall back to the preferred device */
3834 
3835 	list_for_each_entry(e, &smi_infos, link) {
3836 		if (!e->irq && (!type || e->addr_source == type)) {
3837 			if (!try_smi_init(e)) {
3838 				type = e->addr_source;
3839 			}
3840 		}
3841 	}
3842 	mutex_unlock(&smi_infos_lock);
3843 
3844 	if (type)
3845 		return 0;
3846 
3847 	if (si_trydefaults) {
3848 		mutex_lock(&smi_infos_lock);
3849 		if (list_empty(&smi_infos)) {
3850 			/* No BMC was found, try defaults. */
3851 			mutex_unlock(&smi_infos_lock);
3852 			default_find_bmc();
3853 		} else
3854 			mutex_unlock(&smi_infos_lock);
3855 	}
3856 
3857 	mutex_lock(&smi_infos_lock);
3858 	if (unload_when_empty && list_empty(&smi_infos)) {
3859 		mutex_unlock(&smi_infos_lock);
3860 		cleanup_ipmi_si();
3861 		printk(KERN_WARNING PFX
3862 		       "Unable to find any System Interface(s)\n");
3863 		return -ENODEV;
3864 	} else {
3865 		mutex_unlock(&smi_infos_lock);
3866 		return 0;
3867 	}
3868 }
3869 module_init(init_ipmi_si);
3870 
3871 static void cleanup_one_si(struct smi_info *to_clean)
3872 {
3873 	int           rv = 0;
3874 
3875 	if (!to_clean)
3876 		return;
3877 
3878 	if (to_clean->intf) {
3879 		ipmi_smi_t intf = to_clean->intf;
3880 
3881 		to_clean->intf = NULL;
3882 		rv = ipmi_unregister_smi(intf);
3883 		if (rv) {
3884 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3885 			       rv);
3886 		}
3887 	}
3888 
3889 	if (to_clean->dev)
3890 		dev_set_drvdata(to_clean->dev, NULL);
3891 
3892 	list_del(&to_clean->link);
3893 
3894 	/*
3895 	 * Make sure that interrupts, the timer and the thread are
3896 	 * stopped and will not run again.
3897 	 */
3898 	if (to_clean->irq_cleanup)
3899 		to_clean->irq_cleanup(to_clean);
3900 	wait_for_timer_and_thread(to_clean);
3901 
3902 	/*
3903 	 * Timeouts are stopped, now make sure the interrupts are off
3904 	 * in the BMC.  Note that timers and CPU interrupts are off,
3905 	 * so no need for locks.
3906 	 */
3907 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3908 		poll(to_clean);
3909 		schedule_timeout_uninterruptible(1);
3910 	}
3911 	disable_si_irq(to_clean);
3912 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3913 		poll(to_clean);
3914 		schedule_timeout_uninterruptible(1);
3915 	}
3916 
3917 	if (to_clean->handlers)
3918 		to_clean->handlers->cleanup(to_clean->si_sm);
3919 
3920 	kfree(to_clean->si_sm);
3921 
3922 	if (to_clean->addr_source_cleanup)
3923 		to_clean->addr_source_cleanup(to_clean);
3924 	if (to_clean->io_cleanup)
3925 		to_clean->io_cleanup(to_clean);
3926 
3927 	if (to_clean->dev_registered)
3928 		platform_device_unregister(to_clean->pdev);
3929 
3930 	kfree(to_clean);
3931 }
3932 
3933 static void cleanup_ipmi_si(void)
3934 {
3935 	struct smi_info *e, *tmp_e;
3936 
3937 	if (!initialized)
3938 		return;
3939 
3940 #ifdef CONFIG_PCI
3941 	if (pci_registered)
3942 		pci_unregister_driver(&ipmi_pci_driver);
3943 #endif
3944 #ifdef CONFIG_PARISC
3945 	if (parisc_registered)
3946 		unregister_parisc_driver(&ipmi_parisc_driver);
3947 #endif
3948 
3949 	platform_driver_unregister(&ipmi_driver);
3950 
3951 	mutex_lock(&smi_infos_lock);
3952 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3953 		cleanup_one_si(e);
3954 	mutex_unlock(&smi_infos_lock);
3955 }
3956 module_exit(cleanup_ipmi_si);
3957 
3958 MODULE_LICENSE("GPL");
3959 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3960 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3961 		   " system interfaces.");
3962