1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 69 #ifdef CONFIG_PPC_OF 70 #include <linux/of_device.h> 71 #include <linux/of_platform.h> 72 #endif 73 74 #define PFX "ipmi_si: " 75 76 /* Measure times between events in the driver. */ 77 #undef DEBUG_TIMING 78 79 /* Call every 10 ms. */ 80 #define SI_TIMEOUT_TIME_USEC 10000 81 #define SI_USEC_PER_JIFFY (1000000/HZ) 82 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 83 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 84 short timeout */ 85 86 enum si_intf_state { 87 SI_NORMAL, 88 SI_GETTING_FLAGS, 89 SI_GETTING_EVENTS, 90 SI_CLEARING_FLAGS, 91 SI_CLEARING_FLAGS_THEN_SET_IRQ, 92 SI_GETTING_MESSAGES, 93 SI_ENABLE_INTERRUPTS1, 94 SI_ENABLE_INTERRUPTS2, 95 SI_DISABLE_INTERRUPTS1, 96 SI_DISABLE_INTERRUPTS2 97 /* FIXME - add watchdog stuff. */ 98 }; 99 100 /* Some BT-specific defines we need here. */ 101 #define IPMI_BT_INTMASK_REG 2 102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 104 105 enum si_type { 106 SI_KCS, SI_SMIC, SI_BT 107 }; 108 static char *si_to_str[] = { "kcs", "smic", "bt" }; 109 110 #define DEVICE_NAME "ipmi_si" 111 112 static struct platform_driver ipmi_driver = { 113 .driver = { 114 .name = DEVICE_NAME, 115 .bus = &platform_bus_type 116 } 117 }; 118 119 120 /* 121 * Indexes into stats[] in smi_info below. 122 */ 123 enum si_stat_indexes { 124 /* 125 * Number of times the driver requested a timer while an operation 126 * was in progress. 127 */ 128 SI_STAT_short_timeouts = 0, 129 130 /* 131 * Number of times the driver requested a timer while nothing was in 132 * progress. 133 */ 134 SI_STAT_long_timeouts, 135 136 /* Number of times the interface was idle while being polled. */ 137 SI_STAT_idles, 138 139 /* Number of interrupts the driver handled. */ 140 SI_STAT_interrupts, 141 142 /* Number of time the driver got an ATTN from the hardware. */ 143 SI_STAT_attentions, 144 145 /* Number of times the driver requested flags from the hardware. */ 146 SI_STAT_flag_fetches, 147 148 /* Number of times the hardware didn't follow the state machine. */ 149 SI_STAT_hosed_count, 150 151 /* Number of completed messages. */ 152 SI_STAT_complete_transactions, 153 154 /* Number of IPMI events received from the hardware. */ 155 SI_STAT_events, 156 157 /* Number of watchdog pretimeouts. */ 158 SI_STAT_watchdog_pretimeouts, 159 160 /* Number of asyncronous messages received. */ 161 SI_STAT_incoming_messages, 162 163 164 /* This *must* remain last, add new values above this. */ 165 SI_NUM_STATS 166 }; 167 168 struct smi_info { 169 int intf_num; 170 ipmi_smi_t intf; 171 struct si_sm_data *si_sm; 172 struct si_sm_handlers *handlers; 173 enum si_type si_type; 174 spinlock_t si_lock; 175 spinlock_t msg_lock; 176 struct list_head xmit_msgs; 177 struct list_head hp_xmit_msgs; 178 struct ipmi_smi_msg *curr_msg; 179 enum si_intf_state si_state; 180 181 /* 182 * Used to handle the various types of I/O that can occur with 183 * IPMI 184 */ 185 struct si_sm_io io; 186 int (*io_setup)(struct smi_info *info); 187 void (*io_cleanup)(struct smi_info *info); 188 int (*irq_setup)(struct smi_info *info); 189 void (*irq_cleanup)(struct smi_info *info); 190 unsigned int io_size; 191 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */ 192 void (*addr_source_cleanup)(struct smi_info *info); 193 void *addr_source_data; 194 195 /* 196 * Per-OEM handler, called from handle_flags(). Returns 1 197 * when handle_flags() needs to be re-run or 0 indicating it 198 * set si_state itself. 199 */ 200 int (*oem_data_avail_handler)(struct smi_info *smi_info); 201 202 /* 203 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 204 * is set to hold the flags until we are done handling everything 205 * from the flags. 206 */ 207 #define RECEIVE_MSG_AVAIL 0x01 208 #define EVENT_MSG_BUFFER_FULL 0x02 209 #define WDT_PRE_TIMEOUT_INT 0x08 210 #define OEM0_DATA_AVAIL 0x20 211 #define OEM1_DATA_AVAIL 0x40 212 #define OEM2_DATA_AVAIL 0x80 213 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 214 OEM1_DATA_AVAIL | \ 215 OEM2_DATA_AVAIL) 216 unsigned char msg_flags; 217 218 /* Does the BMC have an event buffer? */ 219 char has_event_buffer; 220 221 /* 222 * If set to true, this will request events the next time the 223 * state machine is idle. 224 */ 225 atomic_t req_events; 226 227 /* 228 * If true, run the state machine to completion on every send 229 * call. Generally used after a panic to make sure stuff goes 230 * out. 231 */ 232 int run_to_completion; 233 234 /* The I/O port of an SI interface. */ 235 int port; 236 237 /* 238 * The space between start addresses of the two ports. For 239 * instance, if the first port is 0xca2 and the spacing is 4, then 240 * the second port is 0xca6. 241 */ 242 unsigned int spacing; 243 244 /* zero if no irq; */ 245 int irq; 246 247 /* The timer for this si. */ 248 struct timer_list si_timer; 249 250 /* The time (in jiffies) the last timeout occurred at. */ 251 unsigned long last_timeout_jiffies; 252 253 /* Used to gracefully stop the timer without race conditions. */ 254 atomic_t stop_operation; 255 256 /* 257 * The driver will disable interrupts when it gets into a 258 * situation where it cannot handle messages due to lack of 259 * memory. Once that situation clears up, it will re-enable 260 * interrupts. 261 */ 262 int interrupt_disabled; 263 264 /* From the get device id response... */ 265 struct ipmi_device_id device_id; 266 267 /* Driver model stuff. */ 268 struct device *dev; 269 struct platform_device *pdev; 270 271 /* 272 * True if we allocated the device, false if it came from 273 * someplace else (like PCI). 274 */ 275 int dev_registered; 276 277 /* Slave address, could be reported from DMI. */ 278 unsigned char slave_addr; 279 280 /* Counters and things for the proc filesystem. */ 281 atomic_t stats[SI_NUM_STATS]; 282 283 struct task_struct *thread; 284 285 struct list_head link; 286 }; 287 288 #define smi_inc_stat(smi, stat) \ 289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 290 #define smi_get_stat(smi, stat) \ 291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 292 293 #define SI_MAX_PARMS 4 294 295 static int force_kipmid[SI_MAX_PARMS]; 296 static int num_force_kipmid; 297 298 static int unload_when_empty = 1; 299 300 static int try_smi_init(struct smi_info *smi); 301 static void cleanup_one_si(struct smi_info *to_clean); 302 303 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 304 static int register_xaction_notifier(struct notifier_block *nb) 305 { 306 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 307 } 308 309 static void deliver_recv_msg(struct smi_info *smi_info, 310 struct ipmi_smi_msg *msg) 311 { 312 /* Deliver the message to the upper layer with the lock 313 released. */ 314 spin_unlock(&(smi_info->si_lock)); 315 ipmi_smi_msg_received(smi_info->intf, msg); 316 spin_lock(&(smi_info->si_lock)); 317 } 318 319 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 320 { 321 struct ipmi_smi_msg *msg = smi_info->curr_msg; 322 323 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 324 cCode = IPMI_ERR_UNSPECIFIED; 325 /* else use it as is */ 326 327 /* Make it a reponse */ 328 msg->rsp[0] = msg->data[0] | 4; 329 msg->rsp[1] = msg->data[1]; 330 msg->rsp[2] = cCode; 331 msg->rsp_size = 3; 332 333 smi_info->curr_msg = NULL; 334 deliver_recv_msg(smi_info, msg); 335 } 336 337 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 338 { 339 int rv; 340 struct list_head *entry = NULL; 341 #ifdef DEBUG_TIMING 342 struct timeval t; 343 #endif 344 345 /* 346 * No need to save flags, we aleady have interrupts off and we 347 * already hold the SMI lock. 348 */ 349 if (!smi_info->run_to_completion) 350 spin_lock(&(smi_info->msg_lock)); 351 352 /* Pick the high priority queue first. */ 353 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 354 entry = smi_info->hp_xmit_msgs.next; 355 } else if (!list_empty(&(smi_info->xmit_msgs))) { 356 entry = smi_info->xmit_msgs.next; 357 } 358 359 if (!entry) { 360 smi_info->curr_msg = NULL; 361 rv = SI_SM_IDLE; 362 } else { 363 int err; 364 365 list_del(entry); 366 smi_info->curr_msg = list_entry(entry, 367 struct ipmi_smi_msg, 368 link); 369 #ifdef DEBUG_TIMING 370 do_gettimeofday(&t); 371 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 372 #endif 373 err = atomic_notifier_call_chain(&xaction_notifier_list, 374 0, smi_info); 375 if (err & NOTIFY_STOP_MASK) { 376 rv = SI_SM_CALL_WITHOUT_DELAY; 377 goto out; 378 } 379 err = smi_info->handlers->start_transaction( 380 smi_info->si_sm, 381 smi_info->curr_msg->data, 382 smi_info->curr_msg->data_size); 383 if (err) 384 return_hosed_msg(smi_info, err); 385 386 rv = SI_SM_CALL_WITHOUT_DELAY; 387 } 388 out: 389 if (!smi_info->run_to_completion) 390 spin_unlock(&(smi_info->msg_lock)); 391 392 return rv; 393 } 394 395 static void start_enable_irq(struct smi_info *smi_info) 396 { 397 unsigned char msg[2]; 398 399 /* 400 * If we are enabling interrupts, we have to tell the 401 * BMC to use them. 402 */ 403 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 404 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 405 406 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 407 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 408 } 409 410 static void start_disable_irq(struct smi_info *smi_info) 411 { 412 unsigned char msg[2]; 413 414 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 415 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 416 417 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 418 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 419 } 420 421 static void start_clear_flags(struct smi_info *smi_info) 422 { 423 unsigned char msg[3]; 424 425 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 426 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 427 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 428 msg[2] = WDT_PRE_TIMEOUT_INT; 429 430 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 431 smi_info->si_state = SI_CLEARING_FLAGS; 432 } 433 434 /* 435 * When we have a situtaion where we run out of memory and cannot 436 * allocate messages, we just leave them in the BMC and run the system 437 * polled until we can allocate some memory. Once we have some 438 * memory, we will re-enable the interrupt. 439 */ 440 static inline void disable_si_irq(struct smi_info *smi_info) 441 { 442 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 443 start_disable_irq(smi_info); 444 smi_info->interrupt_disabled = 1; 445 } 446 } 447 448 static inline void enable_si_irq(struct smi_info *smi_info) 449 { 450 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 451 start_enable_irq(smi_info); 452 smi_info->interrupt_disabled = 0; 453 } 454 } 455 456 static void handle_flags(struct smi_info *smi_info) 457 { 458 retry: 459 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 460 /* Watchdog pre-timeout */ 461 smi_inc_stat(smi_info, watchdog_pretimeouts); 462 463 start_clear_flags(smi_info); 464 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 465 spin_unlock(&(smi_info->si_lock)); 466 ipmi_smi_watchdog_pretimeout(smi_info->intf); 467 spin_lock(&(smi_info->si_lock)); 468 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 469 /* Messages available. */ 470 smi_info->curr_msg = ipmi_alloc_smi_msg(); 471 if (!smi_info->curr_msg) { 472 disable_si_irq(smi_info); 473 smi_info->si_state = SI_NORMAL; 474 return; 475 } 476 enable_si_irq(smi_info); 477 478 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 479 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 480 smi_info->curr_msg->data_size = 2; 481 482 smi_info->handlers->start_transaction( 483 smi_info->si_sm, 484 smi_info->curr_msg->data, 485 smi_info->curr_msg->data_size); 486 smi_info->si_state = SI_GETTING_MESSAGES; 487 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 488 /* Events available. */ 489 smi_info->curr_msg = ipmi_alloc_smi_msg(); 490 if (!smi_info->curr_msg) { 491 disable_si_irq(smi_info); 492 smi_info->si_state = SI_NORMAL; 493 return; 494 } 495 enable_si_irq(smi_info); 496 497 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 498 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 499 smi_info->curr_msg->data_size = 2; 500 501 smi_info->handlers->start_transaction( 502 smi_info->si_sm, 503 smi_info->curr_msg->data, 504 smi_info->curr_msg->data_size); 505 smi_info->si_state = SI_GETTING_EVENTS; 506 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 507 smi_info->oem_data_avail_handler) { 508 if (smi_info->oem_data_avail_handler(smi_info)) 509 goto retry; 510 } else 511 smi_info->si_state = SI_NORMAL; 512 } 513 514 static void handle_transaction_done(struct smi_info *smi_info) 515 { 516 struct ipmi_smi_msg *msg; 517 #ifdef DEBUG_TIMING 518 struct timeval t; 519 520 do_gettimeofday(&t); 521 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 522 #endif 523 switch (smi_info->si_state) { 524 case SI_NORMAL: 525 if (!smi_info->curr_msg) 526 break; 527 528 smi_info->curr_msg->rsp_size 529 = smi_info->handlers->get_result( 530 smi_info->si_sm, 531 smi_info->curr_msg->rsp, 532 IPMI_MAX_MSG_LENGTH); 533 534 /* 535 * Do this here becase deliver_recv_msg() releases the 536 * lock, and a new message can be put in during the 537 * time the lock is released. 538 */ 539 msg = smi_info->curr_msg; 540 smi_info->curr_msg = NULL; 541 deliver_recv_msg(smi_info, msg); 542 break; 543 544 case SI_GETTING_FLAGS: 545 { 546 unsigned char msg[4]; 547 unsigned int len; 548 549 /* We got the flags from the SMI, now handle them. */ 550 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 551 if (msg[2] != 0) { 552 /* Error fetching flags, just give up for now. */ 553 smi_info->si_state = SI_NORMAL; 554 } else if (len < 4) { 555 /* 556 * Hmm, no flags. That's technically illegal, but 557 * don't use uninitialized data. 558 */ 559 smi_info->si_state = SI_NORMAL; 560 } else { 561 smi_info->msg_flags = msg[3]; 562 handle_flags(smi_info); 563 } 564 break; 565 } 566 567 case SI_CLEARING_FLAGS: 568 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 569 { 570 unsigned char msg[3]; 571 572 /* We cleared the flags. */ 573 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 574 if (msg[2] != 0) { 575 /* Error clearing flags */ 576 printk(KERN_WARNING 577 "ipmi_si: Error clearing flags: %2.2x\n", 578 msg[2]); 579 } 580 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 581 start_enable_irq(smi_info); 582 else 583 smi_info->si_state = SI_NORMAL; 584 break; 585 } 586 587 case SI_GETTING_EVENTS: 588 { 589 smi_info->curr_msg->rsp_size 590 = smi_info->handlers->get_result( 591 smi_info->si_sm, 592 smi_info->curr_msg->rsp, 593 IPMI_MAX_MSG_LENGTH); 594 595 /* 596 * Do this here becase deliver_recv_msg() releases the 597 * lock, and a new message can be put in during the 598 * time the lock is released. 599 */ 600 msg = smi_info->curr_msg; 601 smi_info->curr_msg = NULL; 602 if (msg->rsp[2] != 0) { 603 /* Error getting event, probably done. */ 604 msg->done(msg); 605 606 /* Take off the event flag. */ 607 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 608 handle_flags(smi_info); 609 } else { 610 smi_inc_stat(smi_info, events); 611 612 /* 613 * Do this before we deliver the message 614 * because delivering the message releases the 615 * lock and something else can mess with the 616 * state. 617 */ 618 handle_flags(smi_info); 619 620 deliver_recv_msg(smi_info, msg); 621 } 622 break; 623 } 624 625 case SI_GETTING_MESSAGES: 626 { 627 smi_info->curr_msg->rsp_size 628 = smi_info->handlers->get_result( 629 smi_info->si_sm, 630 smi_info->curr_msg->rsp, 631 IPMI_MAX_MSG_LENGTH); 632 633 /* 634 * Do this here becase deliver_recv_msg() releases the 635 * lock, and a new message can be put in during the 636 * time the lock is released. 637 */ 638 msg = smi_info->curr_msg; 639 smi_info->curr_msg = NULL; 640 if (msg->rsp[2] != 0) { 641 /* Error getting event, probably done. */ 642 msg->done(msg); 643 644 /* Take off the msg flag. */ 645 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 646 handle_flags(smi_info); 647 } else { 648 smi_inc_stat(smi_info, incoming_messages); 649 650 /* 651 * Do this before we deliver the message 652 * because delivering the message releases the 653 * lock and something else can mess with the 654 * state. 655 */ 656 handle_flags(smi_info); 657 658 deliver_recv_msg(smi_info, msg); 659 } 660 break; 661 } 662 663 case SI_ENABLE_INTERRUPTS1: 664 { 665 unsigned char msg[4]; 666 667 /* We got the flags from the SMI, now handle them. */ 668 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 669 if (msg[2] != 0) { 670 printk(KERN_WARNING 671 "ipmi_si: Could not enable interrupts" 672 ", failed get, using polled mode.\n"); 673 smi_info->si_state = SI_NORMAL; 674 } else { 675 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 676 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 677 msg[2] = (msg[3] | 678 IPMI_BMC_RCV_MSG_INTR | 679 IPMI_BMC_EVT_MSG_INTR); 680 smi_info->handlers->start_transaction( 681 smi_info->si_sm, msg, 3); 682 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 683 } 684 break; 685 } 686 687 case SI_ENABLE_INTERRUPTS2: 688 { 689 unsigned char msg[4]; 690 691 /* We got the flags from the SMI, now handle them. */ 692 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 693 if (msg[2] != 0) { 694 printk(KERN_WARNING 695 "ipmi_si: Could not enable interrupts" 696 ", failed set, using polled mode.\n"); 697 } 698 smi_info->si_state = SI_NORMAL; 699 break; 700 } 701 702 case SI_DISABLE_INTERRUPTS1: 703 { 704 unsigned char msg[4]; 705 706 /* We got the flags from the SMI, now handle them. */ 707 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 708 if (msg[2] != 0) { 709 printk(KERN_WARNING 710 "ipmi_si: Could not disable interrupts" 711 ", failed get.\n"); 712 smi_info->si_state = SI_NORMAL; 713 } else { 714 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 715 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 716 msg[2] = (msg[3] & 717 ~(IPMI_BMC_RCV_MSG_INTR | 718 IPMI_BMC_EVT_MSG_INTR)); 719 smi_info->handlers->start_transaction( 720 smi_info->si_sm, msg, 3); 721 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 722 } 723 break; 724 } 725 726 case SI_DISABLE_INTERRUPTS2: 727 { 728 unsigned char msg[4]; 729 730 /* We got the flags from the SMI, now handle them. */ 731 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 732 if (msg[2] != 0) { 733 printk(KERN_WARNING 734 "ipmi_si: Could not disable interrupts" 735 ", failed set.\n"); 736 } 737 smi_info->si_state = SI_NORMAL; 738 break; 739 } 740 } 741 } 742 743 /* 744 * Called on timeouts and events. Timeouts should pass the elapsed 745 * time, interrupts should pass in zero. Must be called with 746 * si_lock held and interrupts disabled. 747 */ 748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 749 int time) 750 { 751 enum si_sm_result si_sm_result; 752 753 restart: 754 /* 755 * There used to be a loop here that waited a little while 756 * (around 25us) before giving up. That turned out to be 757 * pointless, the minimum delays I was seeing were in the 300us 758 * range, which is far too long to wait in an interrupt. So 759 * we just run until the state machine tells us something 760 * happened or it needs a delay. 761 */ 762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 763 time = 0; 764 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 765 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 766 767 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 768 smi_inc_stat(smi_info, complete_transactions); 769 770 handle_transaction_done(smi_info); 771 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 772 } else if (si_sm_result == SI_SM_HOSED) { 773 smi_inc_stat(smi_info, hosed_count); 774 775 /* 776 * Do the before return_hosed_msg, because that 777 * releases the lock. 778 */ 779 smi_info->si_state = SI_NORMAL; 780 if (smi_info->curr_msg != NULL) { 781 /* 782 * If we were handling a user message, format 783 * a response to send to the upper layer to 784 * tell it about the error. 785 */ 786 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 787 } 788 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 789 } 790 791 /* 792 * We prefer handling attn over new messages. But don't do 793 * this if there is not yet an upper layer to handle anything. 794 */ 795 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 796 unsigned char msg[2]; 797 798 smi_inc_stat(smi_info, attentions); 799 800 /* 801 * Got a attn, send down a get message flags to see 802 * what's causing it. It would be better to handle 803 * this in the upper layer, but due to the way 804 * interrupts work with the SMI, that's not really 805 * possible. 806 */ 807 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 808 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 809 810 smi_info->handlers->start_transaction( 811 smi_info->si_sm, msg, 2); 812 smi_info->si_state = SI_GETTING_FLAGS; 813 goto restart; 814 } 815 816 /* If we are currently idle, try to start the next message. */ 817 if (si_sm_result == SI_SM_IDLE) { 818 smi_inc_stat(smi_info, idles); 819 820 si_sm_result = start_next_msg(smi_info); 821 if (si_sm_result != SI_SM_IDLE) 822 goto restart; 823 } 824 825 if ((si_sm_result == SI_SM_IDLE) 826 && (atomic_read(&smi_info->req_events))) { 827 /* 828 * We are idle and the upper layer requested that I fetch 829 * events, so do so. 830 */ 831 atomic_set(&smi_info->req_events, 0); 832 833 smi_info->curr_msg = ipmi_alloc_smi_msg(); 834 if (!smi_info->curr_msg) 835 goto out; 836 837 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 838 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 839 smi_info->curr_msg->data_size = 2; 840 841 smi_info->handlers->start_transaction( 842 smi_info->si_sm, 843 smi_info->curr_msg->data, 844 smi_info->curr_msg->data_size); 845 smi_info->si_state = SI_GETTING_EVENTS; 846 goto restart; 847 } 848 out: 849 return si_sm_result; 850 } 851 852 static void sender(void *send_info, 853 struct ipmi_smi_msg *msg, 854 int priority) 855 { 856 struct smi_info *smi_info = send_info; 857 enum si_sm_result result; 858 unsigned long flags; 859 #ifdef DEBUG_TIMING 860 struct timeval t; 861 #endif 862 863 if (atomic_read(&smi_info->stop_operation)) { 864 msg->rsp[0] = msg->data[0] | 4; 865 msg->rsp[1] = msg->data[1]; 866 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 867 msg->rsp_size = 3; 868 deliver_recv_msg(smi_info, msg); 869 return; 870 } 871 872 #ifdef DEBUG_TIMING 873 do_gettimeofday(&t); 874 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 875 #endif 876 877 if (smi_info->run_to_completion) { 878 /* 879 * If we are running to completion, then throw it in 880 * the list and run transactions until everything is 881 * clear. Priority doesn't matter here. 882 */ 883 884 /* 885 * Run to completion means we are single-threaded, no 886 * need for locks. 887 */ 888 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 889 890 result = smi_event_handler(smi_info, 0); 891 while (result != SI_SM_IDLE) { 892 udelay(SI_SHORT_TIMEOUT_USEC); 893 result = smi_event_handler(smi_info, 894 SI_SHORT_TIMEOUT_USEC); 895 } 896 return; 897 } 898 899 spin_lock_irqsave(&smi_info->msg_lock, flags); 900 if (priority > 0) 901 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 902 else 903 list_add_tail(&msg->link, &smi_info->xmit_msgs); 904 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 905 906 spin_lock_irqsave(&smi_info->si_lock, flags); 907 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 908 start_next_msg(smi_info); 909 spin_unlock_irqrestore(&smi_info->si_lock, flags); 910 } 911 912 static void set_run_to_completion(void *send_info, int i_run_to_completion) 913 { 914 struct smi_info *smi_info = send_info; 915 enum si_sm_result result; 916 917 smi_info->run_to_completion = i_run_to_completion; 918 if (i_run_to_completion) { 919 result = smi_event_handler(smi_info, 0); 920 while (result != SI_SM_IDLE) { 921 udelay(SI_SHORT_TIMEOUT_USEC); 922 result = smi_event_handler(smi_info, 923 SI_SHORT_TIMEOUT_USEC); 924 } 925 } 926 } 927 928 static int ipmi_thread(void *data) 929 { 930 struct smi_info *smi_info = data; 931 unsigned long flags; 932 enum si_sm_result smi_result; 933 934 set_user_nice(current, 19); 935 while (!kthread_should_stop()) { 936 spin_lock_irqsave(&(smi_info->si_lock), flags); 937 smi_result = smi_event_handler(smi_info, 0); 938 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 939 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 940 ; /* do nothing */ 941 else if (smi_result == SI_SM_CALL_WITH_DELAY) 942 schedule(); 943 else 944 schedule_timeout_interruptible(1); 945 } 946 return 0; 947 } 948 949 950 static void poll(void *send_info) 951 { 952 struct smi_info *smi_info = send_info; 953 unsigned long flags; 954 955 /* 956 * Make sure there is some delay in the poll loop so we can 957 * drive time forward and timeout things. 958 */ 959 udelay(10); 960 spin_lock_irqsave(&smi_info->si_lock, flags); 961 smi_event_handler(smi_info, 10); 962 spin_unlock_irqrestore(&smi_info->si_lock, flags); 963 } 964 965 static void request_events(void *send_info) 966 { 967 struct smi_info *smi_info = send_info; 968 969 if (atomic_read(&smi_info->stop_operation) || 970 !smi_info->has_event_buffer) 971 return; 972 973 atomic_set(&smi_info->req_events, 1); 974 } 975 976 static int initialized; 977 978 static void smi_timeout(unsigned long data) 979 { 980 struct smi_info *smi_info = (struct smi_info *) data; 981 enum si_sm_result smi_result; 982 unsigned long flags; 983 unsigned long jiffies_now; 984 long time_diff; 985 #ifdef DEBUG_TIMING 986 struct timeval t; 987 #endif 988 989 spin_lock_irqsave(&(smi_info->si_lock), flags); 990 #ifdef DEBUG_TIMING 991 do_gettimeofday(&t); 992 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 993 #endif 994 jiffies_now = jiffies; 995 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 996 * SI_USEC_PER_JIFFY); 997 smi_result = smi_event_handler(smi_info, time_diff); 998 999 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1000 1001 smi_info->last_timeout_jiffies = jiffies_now; 1002 1003 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1004 /* Running with interrupts, only do long timeouts. */ 1005 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 1006 smi_inc_stat(smi_info, long_timeouts); 1007 goto do_add_timer; 1008 } 1009 1010 /* 1011 * If the state machine asks for a short delay, then shorten 1012 * the timer timeout. 1013 */ 1014 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1015 smi_inc_stat(smi_info, short_timeouts); 1016 smi_info->si_timer.expires = jiffies + 1; 1017 } else { 1018 smi_inc_stat(smi_info, long_timeouts); 1019 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 1020 } 1021 1022 do_add_timer: 1023 add_timer(&(smi_info->si_timer)); 1024 } 1025 1026 static irqreturn_t si_irq_handler(int irq, void *data) 1027 { 1028 struct smi_info *smi_info = data; 1029 unsigned long flags; 1030 #ifdef DEBUG_TIMING 1031 struct timeval t; 1032 #endif 1033 1034 spin_lock_irqsave(&(smi_info->si_lock), flags); 1035 1036 smi_inc_stat(smi_info, interrupts); 1037 1038 #ifdef DEBUG_TIMING 1039 do_gettimeofday(&t); 1040 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1041 #endif 1042 smi_event_handler(smi_info, 0); 1043 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1044 return IRQ_HANDLED; 1045 } 1046 1047 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1048 { 1049 struct smi_info *smi_info = data; 1050 /* We need to clear the IRQ flag for the BT interface. */ 1051 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1052 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1053 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1054 return si_irq_handler(irq, data); 1055 } 1056 1057 static int smi_start_processing(void *send_info, 1058 ipmi_smi_t intf) 1059 { 1060 struct smi_info *new_smi = send_info; 1061 int enable = 0; 1062 1063 new_smi->intf = intf; 1064 1065 /* Try to claim any interrupts. */ 1066 if (new_smi->irq_setup) 1067 new_smi->irq_setup(new_smi); 1068 1069 /* Set up the timer that drives the interface. */ 1070 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1071 new_smi->last_timeout_jiffies = jiffies; 1072 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1073 1074 /* 1075 * Check if the user forcefully enabled the daemon. 1076 */ 1077 if (new_smi->intf_num < num_force_kipmid) 1078 enable = force_kipmid[new_smi->intf_num]; 1079 /* 1080 * The BT interface is efficient enough to not need a thread, 1081 * and there is no need for a thread if we have interrupts. 1082 */ 1083 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1084 enable = 1; 1085 1086 if (enable) { 1087 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1088 "kipmi%d", new_smi->intf_num); 1089 if (IS_ERR(new_smi->thread)) { 1090 printk(KERN_NOTICE "ipmi_si_intf: Could not start" 1091 " kernel thread due to error %ld, only using" 1092 " timers to drive the interface\n", 1093 PTR_ERR(new_smi->thread)); 1094 new_smi->thread = NULL; 1095 } 1096 } 1097 1098 return 0; 1099 } 1100 1101 static void set_maintenance_mode(void *send_info, int enable) 1102 { 1103 struct smi_info *smi_info = send_info; 1104 1105 if (!enable) 1106 atomic_set(&smi_info->req_events, 0); 1107 } 1108 1109 static struct ipmi_smi_handlers handlers = { 1110 .owner = THIS_MODULE, 1111 .start_processing = smi_start_processing, 1112 .sender = sender, 1113 .request_events = request_events, 1114 .set_maintenance_mode = set_maintenance_mode, 1115 .set_run_to_completion = set_run_to_completion, 1116 .poll = poll, 1117 }; 1118 1119 /* 1120 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1121 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1122 */ 1123 1124 static LIST_HEAD(smi_infos); 1125 static DEFINE_MUTEX(smi_infos_lock); 1126 static int smi_num; /* Used to sequence the SMIs */ 1127 1128 #define DEFAULT_REGSPACING 1 1129 #define DEFAULT_REGSIZE 1 1130 1131 static int si_trydefaults = 1; 1132 static char *si_type[SI_MAX_PARMS]; 1133 #define MAX_SI_TYPE_STR 30 1134 static char si_type_str[MAX_SI_TYPE_STR]; 1135 static unsigned long addrs[SI_MAX_PARMS]; 1136 static unsigned int num_addrs; 1137 static unsigned int ports[SI_MAX_PARMS]; 1138 static unsigned int num_ports; 1139 static int irqs[SI_MAX_PARMS]; 1140 static unsigned int num_irqs; 1141 static int regspacings[SI_MAX_PARMS]; 1142 static unsigned int num_regspacings; 1143 static int regsizes[SI_MAX_PARMS]; 1144 static unsigned int num_regsizes; 1145 static int regshifts[SI_MAX_PARMS]; 1146 static unsigned int num_regshifts; 1147 static int slave_addrs[SI_MAX_PARMS]; 1148 static unsigned int num_slave_addrs; 1149 1150 #define IPMI_IO_ADDR_SPACE 0 1151 #define IPMI_MEM_ADDR_SPACE 1 1152 static char *addr_space_to_str[] = { "i/o", "mem" }; 1153 1154 static int hotmod_handler(const char *val, struct kernel_param *kp); 1155 1156 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1157 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1158 " Documentation/IPMI.txt in the kernel sources for the" 1159 " gory details."); 1160 1161 module_param_named(trydefaults, si_trydefaults, bool, 0); 1162 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1163 " default scan of the KCS and SMIC interface at the standard" 1164 " address"); 1165 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1166 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1167 " interface separated by commas. The types are 'kcs'," 1168 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1169 " the first interface to kcs and the second to bt"); 1170 module_param_array(addrs, ulong, &num_addrs, 0); 1171 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1172 " addresses separated by commas. Only use if an interface" 1173 " is in memory. Otherwise, set it to zero or leave" 1174 " it blank."); 1175 module_param_array(ports, uint, &num_ports, 0); 1176 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1177 " addresses separated by commas. Only use if an interface" 1178 " is a port. Otherwise, set it to zero or leave" 1179 " it blank."); 1180 module_param_array(irqs, int, &num_irqs, 0); 1181 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1182 " addresses separated by commas. Only use if an interface" 1183 " has an interrupt. Otherwise, set it to zero or leave" 1184 " it blank."); 1185 module_param_array(regspacings, int, &num_regspacings, 0); 1186 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1187 " and each successive register used by the interface. For" 1188 " instance, if the start address is 0xca2 and the spacing" 1189 " is 2, then the second address is at 0xca4. Defaults" 1190 " to 1."); 1191 module_param_array(regsizes, int, &num_regsizes, 0); 1192 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1193 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1194 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1195 " the 8-bit IPMI register has to be read from a larger" 1196 " register."); 1197 module_param_array(regshifts, int, &num_regshifts, 0); 1198 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1199 " IPMI register, in bits. For instance, if the data" 1200 " is read from a 32-bit word and the IPMI data is in" 1201 " bit 8-15, then the shift would be 8"); 1202 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1203 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1204 " the controller. Normally this is 0x20, but can be" 1205 " overridden by this parm. This is an array indexed" 1206 " by interface number."); 1207 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1208 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1209 " disabled(0). Normally the IPMI driver auto-detects" 1210 " this, but the value may be overridden by this parm."); 1211 module_param(unload_when_empty, int, 0); 1212 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1213 " specified or found, default is 1. Setting to 0" 1214 " is useful for hot add of devices using hotmod."); 1215 1216 1217 static void std_irq_cleanup(struct smi_info *info) 1218 { 1219 if (info->si_type == SI_BT) 1220 /* Disable the interrupt in the BT interface. */ 1221 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1222 free_irq(info->irq, info); 1223 } 1224 1225 static int std_irq_setup(struct smi_info *info) 1226 { 1227 int rv; 1228 1229 if (!info->irq) 1230 return 0; 1231 1232 if (info->si_type == SI_BT) { 1233 rv = request_irq(info->irq, 1234 si_bt_irq_handler, 1235 IRQF_SHARED | IRQF_DISABLED, 1236 DEVICE_NAME, 1237 info); 1238 if (!rv) 1239 /* Enable the interrupt in the BT interface. */ 1240 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1241 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1242 } else 1243 rv = request_irq(info->irq, 1244 si_irq_handler, 1245 IRQF_SHARED | IRQF_DISABLED, 1246 DEVICE_NAME, 1247 info); 1248 if (rv) { 1249 printk(KERN_WARNING 1250 "ipmi_si: %s unable to claim interrupt %d," 1251 " running polled\n", 1252 DEVICE_NAME, info->irq); 1253 info->irq = 0; 1254 } else { 1255 info->irq_cleanup = std_irq_cleanup; 1256 printk(" Using irq %d\n", info->irq); 1257 } 1258 1259 return rv; 1260 } 1261 1262 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1263 { 1264 unsigned int addr = io->addr_data; 1265 1266 return inb(addr + (offset * io->regspacing)); 1267 } 1268 1269 static void port_outb(struct si_sm_io *io, unsigned int offset, 1270 unsigned char b) 1271 { 1272 unsigned int addr = io->addr_data; 1273 1274 outb(b, addr + (offset * io->regspacing)); 1275 } 1276 1277 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1278 { 1279 unsigned int addr = io->addr_data; 1280 1281 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1282 } 1283 1284 static void port_outw(struct si_sm_io *io, unsigned int offset, 1285 unsigned char b) 1286 { 1287 unsigned int addr = io->addr_data; 1288 1289 outw(b << io->regshift, addr + (offset * io->regspacing)); 1290 } 1291 1292 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1293 { 1294 unsigned int addr = io->addr_data; 1295 1296 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1297 } 1298 1299 static void port_outl(struct si_sm_io *io, unsigned int offset, 1300 unsigned char b) 1301 { 1302 unsigned int addr = io->addr_data; 1303 1304 outl(b << io->regshift, addr+(offset * io->regspacing)); 1305 } 1306 1307 static void port_cleanup(struct smi_info *info) 1308 { 1309 unsigned int addr = info->io.addr_data; 1310 int idx; 1311 1312 if (addr) { 1313 for (idx = 0; idx < info->io_size; idx++) 1314 release_region(addr + idx * info->io.regspacing, 1315 info->io.regsize); 1316 } 1317 } 1318 1319 static int port_setup(struct smi_info *info) 1320 { 1321 unsigned int addr = info->io.addr_data; 1322 int idx; 1323 1324 if (!addr) 1325 return -ENODEV; 1326 1327 info->io_cleanup = port_cleanup; 1328 1329 /* 1330 * Figure out the actual inb/inw/inl/etc routine to use based 1331 * upon the register size. 1332 */ 1333 switch (info->io.regsize) { 1334 case 1: 1335 info->io.inputb = port_inb; 1336 info->io.outputb = port_outb; 1337 break; 1338 case 2: 1339 info->io.inputb = port_inw; 1340 info->io.outputb = port_outw; 1341 break; 1342 case 4: 1343 info->io.inputb = port_inl; 1344 info->io.outputb = port_outl; 1345 break; 1346 default: 1347 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n", 1348 info->io.regsize); 1349 return -EINVAL; 1350 } 1351 1352 /* 1353 * Some BIOSes reserve disjoint I/O regions in their ACPI 1354 * tables. This causes problems when trying to register the 1355 * entire I/O region. Therefore we must register each I/O 1356 * port separately. 1357 */ 1358 for (idx = 0; idx < info->io_size; idx++) { 1359 if (request_region(addr + idx * info->io.regspacing, 1360 info->io.regsize, DEVICE_NAME) == NULL) { 1361 /* Undo allocations */ 1362 while (idx--) { 1363 release_region(addr + idx * info->io.regspacing, 1364 info->io.regsize); 1365 } 1366 return -EIO; 1367 } 1368 } 1369 return 0; 1370 } 1371 1372 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1373 { 1374 return readb((io->addr)+(offset * io->regspacing)); 1375 } 1376 1377 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1378 unsigned char b) 1379 { 1380 writeb(b, (io->addr)+(offset * io->regspacing)); 1381 } 1382 1383 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1384 { 1385 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1386 & 0xff; 1387 } 1388 1389 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1390 unsigned char b) 1391 { 1392 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1393 } 1394 1395 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1396 { 1397 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1398 & 0xff; 1399 } 1400 1401 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1402 unsigned char b) 1403 { 1404 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1405 } 1406 1407 #ifdef readq 1408 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1409 { 1410 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1411 & 0xff; 1412 } 1413 1414 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1415 unsigned char b) 1416 { 1417 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1418 } 1419 #endif 1420 1421 static void mem_cleanup(struct smi_info *info) 1422 { 1423 unsigned long addr = info->io.addr_data; 1424 int mapsize; 1425 1426 if (info->io.addr) { 1427 iounmap(info->io.addr); 1428 1429 mapsize = ((info->io_size * info->io.regspacing) 1430 - (info->io.regspacing - info->io.regsize)); 1431 1432 release_mem_region(addr, mapsize); 1433 } 1434 } 1435 1436 static int mem_setup(struct smi_info *info) 1437 { 1438 unsigned long addr = info->io.addr_data; 1439 int mapsize; 1440 1441 if (!addr) 1442 return -ENODEV; 1443 1444 info->io_cleanup = mem_cleanup; 1445 1446 /* 1447 * Figure out the actual readb/readw/readl/etc routine to use based 1448 * upon the register size. 1449 */ 1450 switch (info->io.regsize) { 1451 case 1: 1452 info->io.inputb = intf_mem_inb; 1453 info->io.outputb = intf_mem_outb; 1454 break; 1455 case 2: 1456 info->io.inputb = intf_mem_inw; 1457 info->io.outputb = intf_mem_outw; 1458 break; 1459 case 4: 1460 info->io.inputb = intf_mem_inl; 1461 info->io.outputb = intf_mem_outl; 1462 break; 1463 #ifdef readq 1464 case 8: 1465 info->io.inputb = mem_inq; 1466 info->io.outputb = mem_outq; 1467 break; 1468 #endif 1469 default: 1470 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n", 1471 info->io.regsize); 1472 return -EINVAL; 1473 } 1474 1475 /* 1476 * Calculate the total amount of memory to claim. This is an 1477 * unusual looking calculation, but it avoids claiming any 1478 * more memory than it has to. It will claim everything 1479 * between the first address to the end of the last full 1480 * register. 1481 */ 1482 mapsize = ((info->io_size * info->io.regspacing) 1483 - (info->io.regspacing - info->io.regsize)); 1484 1485 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1486 return -EIO; 1487 1488 info->io.addr = ioremap(addr, mapsize); 1489 if (info->io.addr == NULL) { 1490 release_mem_region(addr, mapsize); 1491 return -EIO; 1492 } 1493 return 0; 1494 } 1495 1496 /* 1497 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1498 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1499 * Options are: 1500 * rsp=<regspacing> 1501 * rsi=<regsize> 1502 * rsh=<regshift> 1503 * irq=<irq> 1504 * ipmb=<ipmb addr> 1505 */ 1506 enum hotmod_op { HM_ADD, HM_REMOVE }; 1507 struct hotmod_vals { 1508 char *name; 1509 int val; 1510 }; 1511 static struct hotmod_vals hotmod_ops[] = { 1512 { "add", HM_ADD }, 1513 { "remove", HM_REMOVE }, 1514 { NULL } 1515 }; 1516 static struct hotmod_vals hotmod_si[] = { 1517 { "kcs", SI_KCS }, 1518 { "smic", SI_SMIC }, 1519 { "bt", SI_BT }, 1520 { NULL } 1521 }; 1522 static struct hotmod_vals hotmod_as[] = { 1523 { "mem", IPMI_MEM_ADDR_SPACE }, 1524 { "i/o", IPMI_IO_ADDR_SPACE }, 1525 { NULL } 1526 }; 1527 1528 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1529 { 1530 char *s; 1531 int i; 1532 1533 s = strchr(*curr, ','); 1534 if (!s) { 1535 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1536 return -EINVAL; 1537 } 1538 *s = '\0'; 1539 s++; 1540 for (i = 0; hotmod_ops[i].name; i++) { 1541 if (strcmp(*curr, v[i].name) == 0) { 1542 *val = v[i].val; 1543 *curr = s; 1544 return 0; 1545 } 1546 } 1547 1548 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1549 return -EINVAL; 1550 } 1551 1552 static int check_hotmod_int_op(const char *curr, const char *option, 1553 const char *name, int *val) 1554 { 1555 char *n; 1556 1557 if (strcmp(curr, name) == 0) { 1558 if (!option) { 1559 printk(KERN_WARNING PFX 1560 "No option given for '%s'\n", 1561 curr); 1562 return -EINVAL; 1563 } 1564 *val = simple_strtoul(option, &n, 0); 1565 if ((*n != '\0') || (*option == '\0')) { 1566 printk(KERN_WARNING PFX 1567 "Bad option given for '%s'\n", 1568 curr); 1569 return -EINVAL; 1570 } 1571 return 1; 1572 } 1573 return 0; 1574 } 1575 1576 static int hotmod_handler(const char *val, struct kernel_param *kp) 1577 { 1578 char *str = kstrdup(val, GFP_KERNEL); 1579 int rv; 1580 char *next, *curr, *s, *n, *o; 1581 enum hotmod_op op; 1582 enum si_type si_type; 1583 int addr_space; 1584 unsigned long addr; 1585 int regspacing; 1586 int regsize; 1587 int regshift; 1588 int irq; 1589 int ipmb; 1590 int ival; 1591 int len; 1592 struct smi_info *info; 1593 1594 if (!str) 1595 return -ENOMEM; 1596 1597 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1598 len = strlen(str); 1599 ival = len - 1; 1600 while ((ival >= 0) && isspace(str[ival])) { 1601 str[ival] = '\0'; 1602 ival--; 1603 } 1604 1605 for (curr = str; curr; curr = next) { 1606 regspacing = 1; 1607 regsize = 1; 1608 regshift = 0; 1609 irq = 0; 1610 ipmb = 0x20; 1611 1612 next = strchr(curr, ':'); 1613 if (next) { 1614 *next = '\0'; 1615 next++; 1616 } 1617 1618 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1619 if (rv) 1620 break; 1621 op = ival; 1622 1623 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1624 if (rv) 1625 break; 1626 si_type = ival; 1627 1628 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1629 if (rv) 1630 break; 1631 1632 s = strchr(curr, ','); 1633 if (s) { 1634 *s = '\0'; 1635 s++; 1636 } 1637 addr = simple_strtoul(curr, &n, 0); 1638 if ((*n != '\0') || (*curr == '\0')) { 1639 printk(KERN_WARNING PFX "Invalid hotmod address" 1640 " '%s'\n", curr); 1641 break; 1642 } 1643 1644 while (s) { 1645 curr = s; 1646 s = strchr(curr, ','); 1647 if (s) { 1648 *s = '\0'; 1649 s++; 1650 } 1651 o = strchr(curr, '='); 1652 if (o) { 1653 *o = '\0'; 1654 o++; 1655 } 1656 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1657 if (rv < 0) 1658 goto out; 1659 else if (rv) 1660 continue; 1661 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1662 if (rv < 0) 1663 goto out; 1664 else if (rv) 1665 continue; 1666 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1667 if (rv < 0) 1668 goto out; 1669 else if (rv) 1670 continue; 1671 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1672 if (rv < 0) 1673 goto out; 1674 else if (rv) 1675 continue; 1676 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1677 if (rv < 0) 1678 goto out; 1679 else if (rv) 1680 continue; 1681 1682 rv = -EINVAL; 1683 printk(KERN_WARNING PFX 1684 "Invalid hotmod option '%s'\n", 1685 curr); 1686 goto out; 1687 } 1688 1689 if (op == HM_ADD) { 1690 info = kzalloc(sizeof(*info), GFP_KERNEL); 1691 if (!info) { 1692 rv = -ENOMEM; 1693 goto out; 1694 } 1695 1696 info->addr_source = "hotmod"; 1697 info->si_type = si_type; 1698 info->io.addr_data = addr; 1699 info->io.addr_type = addr_space; 1700 if (addr_space == IPMI_MEM_ADDR_SPACE) 1701 info->io_setup = mem_setup; 1702 else 1703 info->io_setup = port_setup; 1704 1705 info->io.addr = NULL; 1706 info->io.regspacing = regspacing; 1707 if (!info->io.regspacing) 1708 info->io.regspacing = DEFAULT_REGSPACING; 1709 info->io.regsize = regsize; 1710 if (!info->io.regsize) 1711 info->io.regsize = DEFAULT_REGSPACING; 1712 info->io.regshift = regshift; 1713 info->irq = irq; 1714 if (info->irq) 1715 info->irq_setup = std_irq_setup; 1716 info->slave_addr = ipmb; 1717 1718 try_smi_init(info); 1719 } else { 1720 /* remove */ 1721 struct smi_info *e, *tmp_e; 1722 1723 mutex_lock(&smi_infos_lock); 1724 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1725 if (e->io.addr_type != addr_space) 1726 continue; 1727 if (e->si_type != si_type) 1728 continue; 1729 if (e->io.addr_data == addr) 1730 cleanup_one_si(e); 1731 } 1732 mutex_unlock(&smi_infos_lock); 1733 } 1734 } 1735 rv = len; 1736 out: 1737 kfree(str); 1738 return rv; 1739 } 1740 1741 static __devinit void hardcode_find_bmc(void) 1742 { 1743 int i; 1744 struct smi_info *info; 1745 1746 for (i = 0; i < SI_MAX_PARMS; i++) { 1747 if (!ports[i] && !addrs[i]) 1748 continue; 1749 1750 info = kzalloc(sizeof(*info), GFP_KERNEL); 1751 if (!info) 1752 return; 1753 1754 info->addr_source = "hardcoded"; 1755 1756 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1757 info->si_type = SI_KCS; 1758 } else if (strcmp(si_type[i], "smic") == 0) { 1759 info->si_type = SI_SMIC; 1760 } else if (strcmp(si_type[i], "bt") == 0) { 1761 info->si_type = SI_BT; 1762 } else { 1763 printk(KERN_WARNING 1764 "ipmi_si: Interface type specified " 1765 "for interface %d, was invalid: %s\n", 1766 i, si_type[i]); 1767 kfree(info); 1768 continue; 1769 } 1770 1771 if (ports[i]) { 1772 /* An I/O port */ 1773 info->io_setup = port_setup; 1774 info->io.addr_data = ports[i]; 1775 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1776 } else if (addrs[i]) { 1777 /* A memory port */ 1778 info->io_setup = mem_setup; 1779 info->io.addr_data = addrs[i]; 1780 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1781 } else { 1782 printk(KERN_WARNING 1783 "ipmi_si: Interface type specified " 1784 "for interface %d, " 1785 "but port and address were not set or " 1786 "set to zero.\n", i); 1787 kfree(info); 1788 continue; 1789 } 1790 1791 info->io.addr = NULL; 1792 info->io.regspacing = regspacings[i]; 1793 if (!info->io.regspacing) 1794 info->io.regspacing = DEFAULT_REGSPACING; 1795 info->io.regsize = regsizes[i]; 1796 if (!info->io.regsize) 1797 info->io.regsize = DEFAULT_REGSPACING; 1798 info->io.regshift = regshifts[i]; 1799 info->irq = irqs[i]; 1800 if (info->irq) 1801 info->irq_setup = std_irq_setup; 1802 1803 try_smi_init(info); 1804 } 1805 } 1806 1807 #ifdef CONFIG_ACPI 1808 1809 #include <linux/acpi.h> 1810 1811 /* 1812 * Once we get an ACPI failure, we don't try any more, because we go 1813 * through the tables sequentially. Once we don't find a table, there 1814 * are no more. 1815 */ 1816 static int acpi_failure; 1817 1818 /* For GPE-type interrupts. */ 1819 static u32 ipmi_acpi_gpe(void *context) 1820 { 1821 struct smi_info *smi_info = context; 1822 unsigned long flags; 1823 #ifdef DEBUG_TIMING 1824 struct timeval t; 1825 #endif 1826 1827 spin_lock_irqsave(&(smi_info->si_lock), flags); 1828 1829 smi_inc_stat(smi_info, interrupts); 1830 1831 #ifdef DEBUG_TIMING 1832 do_gettimeofday(&t); 1833 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1834 #endif 1835 smi_event_handler(smi_info, 0); 1836 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1837 1838 return ACPI_INTERRUPT_HANDLED; 1839 } 1840 1841 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1842 { 1843 if (!info->irq) 1844 return; 1845 1846 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1847 } 1848 1849 static int acpi_gpe_irq_setup(struct smi_info *info) 1850 { 1851 acpi_status status; 1852 1853 if (!info->irq) 1854 return 0; 1855 1856 /* FIXME - is level triggered right? */ 1857 status = acpi_install_gpe_handler(NULL, 1858 info->irq, 1859 ACPI_GPE_LEVEL_TRIGGERED, 1860 &ipmi_acpi_gpe, 1861 info); 1862 if (status != AE_OK) { 1863 printk(KERN_WARNING 1864 "ipmi_si: %s unable to claim ACPI GPE %d," 1865 " running polled\n", 1866 DEVICE_NAME, info->irq); 1867 info->irq = 0; 1868 return -EINVAL; 1869 } else { 1870 info->irq_cleanup = acpi_gpe_irq_cleanup; 1871 printk(" Using ACPI GPE %d\n", info->irq); 1872 return 0; 1873 } 1874 } 1875 1876 /* 1877 * Defined at 1878 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/ 1879 * Docs/TechPapers/IA64/hpspmi.pdf 1880 */ 1881 struct SPMITable { 1882 s8 Signature[4]; 1883 u32 Length; 1884 u8 Revision; 1885 u8 Checksum; 1886 s8 OEMID[6]; 1887 s8 OEMTableID[8]; 1888 s8 OEMRevision[4]; 1889 s8 CreatorID[4]; 1890 s8 CreatorRevision[4]; 1891 u8 InterfaceType; 1892 u8 IPMIlegacy; 1893 s16 SpecificationRevision; 1894 1895 /* 1896 * Bit 0 - SCI interrupt supported 1897 * Bit 1 - I/O APIC/SAPIC 1898 */ 1899 u8 InterruptType; 1900 1901 /* 1902 * If bit 0 of InterruptType is set, then this is the SCI 1903 * interrupt in the GPEx_STS register. 1904 */ 1905 u8 GPE; 1906 1907 s16 Reserved; 1908 1909 /* 1910 * If bit 1 of InterruptType is set, then this is the I/O 1911 * APIC/SAPIC interrupt. 1912 */ 1913 u32 GlobalSystemInterrupt; 1914 1915 /* The actual register address. */ 1916 struct acpi_generic_address addr; 1917 1918 u8 UID[4]; 1919 1920 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1921 }; 1922 1923 static __devinit int try_init_spmi(struct SPMITable *spmi) 1924 { 1925 struct smi_info *info; 1926 u8 addr_space; 1927 1928 if (spmi->IPMIlegacy != 1) { 1929 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); 1930 return -ENODEV; 1931 } 1932 1933 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1934 addr_space = IPMI_MEM_ADDR_SPACE; 1935 else 1936 addr_space = IPMI_IO_ADDR_SPACE; 1937 1938 info = kzalloc(sizeof(*info), GFP_KERNEL); 1939 if (!info) { 1940 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); 1941 return -ENOMEM; 1942 } 1943 1944 info->addr_source = "SPMI"; 1945 1946 /* Figure out the interface type. */ 1947 switch (spmi->InterfaceType) { 1948 case 1: /* KCS */ 1949 info->si_type = SI_KCS; 1950 break; 1951 case 2: /* SMIC */ 1952 info->si_type = SI_SMIC; 1953 break; 1954 case 3: /* BT */ 1955 info->si_type = SI_BT; 1956 break; 1957 default: 1958 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", 1959 spmi->InterfaceType); 1960 kfree(info); 1961 return -EIO; 1962 } 1963 1964 if (spmi->InterruptType & 1) { 1965 /* We've got a GPE interrupt. */ 1966 info->irq = spmi->GPE; 1967 info->irq_setup = acpi_gpe_irq_setup; 1968 } else if (spmi->InterruptType & 2) { 1969 /* We've got an APIC/SAPIC interrupt. */ 1970 info->irq = spmi->GlobalSystemInterrupt; 1971 info->irq_setup = std_irq_setup; 1972 } else { 1973 /* Use the default interrupt setting. */ 1974 info->irq = 0; 1975 info->irq_setup = NULL; 1976 } 1977 1978 if (spmi->addr.bit_width) { 1979 /* A (hopefully) properly formed register bit width. */ 1980 info->io.regspacing = spmi->addr.bit_width / 8; 1981 } else { 1982 info->io.regspacing = DEFAULT_REGSPACING; 1983 } 1984 info->io.regsize = info->io.regspacing; 1985 info->io.regshift = spmi->addr.bit_offset; 1986 1987 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1988 info->io_setup = mem_setup; 1989 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1990 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1991 info->io_setup = port_setup; 1992 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1993 } else { 1994 kfree(info); 1995 printk(KERN_WARNING 1996 "ipmi_si: Unknown ACPI I/O Address type\n"); 1997 return -EIO; 1998 } 1999 info->io.addr_data = spmi->addr.address; 2000 2001 try_smi_init(info); 2002 2003 return 0; 2004 } 2005 2006 static __devinit void spmi_find_bmc(void) 2007 { 2008 acpi_status status; 2009 struct SPMITable *spmi; 2010 int i; 2011 2012 if (acpi_disabled) 2013 return; 2014 2015 if (acpi_failure) 2016 return; 2017 2018 for (i = 0; ; i++) { 2019 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2020 (struct acpi_table_header **)&spmi); 2021 if (status != AE_OK) 2022 return; 2023 2024 try_init_spmi(spmi); 2025 } 2026 } 2027 2028 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, 2029 const struct pnp_device_id *dev_id) 2030 { 2031 struct acpi_device *acpi_dev; 2032 struct smi_info *info; 2033 acpi_handle handle; 2034 acpi_status status; 2035 unsigned long long tmp; 2036 2037 acpi_dev = pnp_acpi_device(dev); 2038 if (!acpi_dev) 2039 return -ENODEV; 2040 2041 info = kzalloc(sizeof(*info), GFP_KERNEL); 2042 if (!info) 2043 return -ENOMEM; 2044 2045 info->addr_source = "ACPI"; 2046 2047 handle = acpi_dev->handle; 2048 2049 /* _IFT tells us the interface type: KCS, BT, etc */ 2050 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2051 if (ACPI_FAILURE(status)) 2052 goto err_free; 2053 2054 switch (tmp) { 2055 case 1: 2056 info->si_type = SI_KCS; 2057 break; 2058 case 2: 2059 info->si_type = SI_SMIC; 2060 break; 2061 case 3: 2062 info->si_type = SI_BT; 2063 break; 2064 default: 2065 dev_info(&dev->dev, "unknown interface type %lld\n", tmp); 2066 goto err_free; 2067 } 2068 2069 if (pnp_port_valid(dev, 0)) { 2070 info->io_setup = port_setup; 2071 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2072 info->io.addr_data = pnp_port_start(dev, 0); 2073 } else if (pnp_mem_valid(dev, 0)) { 2074 info->io_setup = mem_setup; 2075 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2076 info->io.addr_data = pnp_mem_start(dev, 0); 2077 } else { 2078 dev_err(&dev->dev, "no I/O or memory address\n"); 2079 goto err_free; 2080 } 2081 2082 info->io.regspacing = DEFAULT_REGSPACING; 2083 info->io.regsize = DEFAULT_REGSPACING; 2084 info->io.regshift = 0; 2085 2086 /* If _GPE exists, use it; otherwise use standard interrupts */ 2087 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2088 if (ACPI_SUCCESS(status)) { 2089 info->irq = tmp; 2090 info->irq_setup = acpi_gpe_irq_setup; 2091 } else if (pnp_irq_valid(dev, 0)) { 2092 info->irq = pnp_irq(dev, 0); 2093 info->irq_setup = std_irq_setup; 2094 } 2095 2096 info->dev = &acpi_dev->dev; 2097 pnp_set_drvdata(dev, info); 2098 2099 return try_smi_init(info); 2100 2101 err_free: 2102 kfree(info); 2103 return -EINVAL; 2104 } 2105 2106 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) 2107 { 2108 struct smi_info *info = pnp_get_drvdata(dev); 2109 2110 cleanup_one_si(info); 2111 } 2112 2113 static const struct pnp_device_id pnp_dev_table[] = { 2114 {"IPI0001", 0}, 2115 {"", 0}, 2116 }; 2117 2118 static struct pnp_driver ipmi_pnp_driver = { 2119 .name = DEVICE_NAME, 2120 .probe = ipmi_pnp_probe, 2121 .remove = __devexit_p(ipmi_pnp_remove), 2122 .id_table = pnp_dev_table, 2123 }; 2124 #endif 2125 2126 #ifdef CONFIG_DMI 2127 struct dmi_ipmi_data { 2128 u8 type; 2129 u8 addr_space; 2130 unsigned long base_addr; 2131 u8 irq; 2132 u8 offset; 2133 u8 slave_addr; 2134 }; 2135 2136 static int __devinit decode_dmi(const struct dmi_header *dm, 2137 struct dmi_ipmi_data *dmi) 2138 { 2139 const u8 *data = (const u8 *)dm; 2140 unsigned long base_addr; 2141 u8 reg_spacing; 2142 u8 len = dm->length; 2143 2144 dmi->type = data[4]; 2145 2146 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2147 if (len >= 0x11) { 2148 if (base_addr & 1) { 2149 /* I/O */ 2150 base_addr &= 0xFFFE; 2151 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2152 } else 2153 /* Memory */ 2154 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2155 2156 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2157 is odd. */ 2158 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2159 2160 dmi->irq = data[0x11]; 2161 2162 /* The top two bits of byte 0x10 hold the register spacing. */ 2163 reg_spacing = (data[0x10] & 0xC0) >> 6; 2164 switch (reg_spacing) { 2165 case 0x00: /* Byte boundaries */ 2166 dmi->offset = 1; 2167 break; 2168 case 0x01: /* 32-bit boundaries */ 2169 dmi->offset = 4; 2170 break; 2171 case 0x02: /* 16-byte boundaries */ 2172 dmi->offset = 16; 2173 break; 2174 default: 2175 /* Some other interface, just ignore it. */ 2176 return -EIO; 2177 } 2178 } else { 2179 /* Old DMI spec. */ 2180 /* 2181 * Note that technically, the lower bit of the base 2182 * address should be 1 if the address is I/O and 0 if 2183 * the address is in memory. So many systems get that 2184 * wrong (and all that I have seen are I/O) so we just 2185 * ignore that bit and assume I/O. Systems that use 2186 * memory should use the newer spec, anyway. 2187 */ 2188 dmi->base_addr = base_addr & 0xfffe; 2189 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2190 dmi->offset = 1; 2191 } 2192 2193 dmi->slave_addr = data[6]; 2194 2195 return 0; 2196 } 2197 2198 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2199 { 2200 struct smi_info *info; 2201 2202 info = kzalloc(sizeof(*info), GFP_KERNEL); 2203 if (!info) { 2204 printk(KERN_ERR 2205 "ipmi_si: Could not allocate SI data\n"); 2206 return; 2207 } 2208 2209 info->addr_source = "SMBIOS"; 2210 2211 switch (ipmi_data->type) { 2212 case 0x01: /* KCS */ 2213 info->si_type = SI_KCS; 2214 break; 2215 case 0x02: /* SMIC */ 2216 info->si_type = SI_SMIC; 2217 break; 2218 case 0x03: /* BT */ 2219 info->si_type = SI_BT; 2220 break; 2221 default: 2222 kfree(info); 2223 return; 2224 } 2225 2226 switch (ipmi_data->addr_space) { 2227 case IPMI_MEM_ADDR_SPACE: 2228 info->io_setup = mem_setup; 2229 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2230 break; 2231 2232 case IPMI_IO_ADDR_SPACE: 2233 info->io_setup = port_setup; 2234 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2235 break; 2236 2237 default: 2238 kfree(info); 2239 printk(KERN_WARNING 2240 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n", 2241 ipmi_data->addr_space); 2242 return; 2243 } 2244 info->io.addr_data = ipmi_data->base_addr; 2245 2246 info->io.regspacing = ipmi_data->offset; 2247 if (!info->io.regspacing) 2248 info->io.regspacing = DEFAULT_REGSPACING; 2249 info->io.regsize = DEFAULT_REGSPACING; 2250 info->io.regshift = 0; 2251 2252 info->slave_addr = ipmi_data->slave_addr; 2253 2254 info->irq = ipmi_data->irq; 2255 if (info->irq) 2256 info->irq_setup = std_irq_setup; 2257 2258 try_smi_init(info); 2259 } 2260 2261 static void __devinit dmi_find_bmc(void) 2262 { 2263 const struct dmi_device *dev = NULL; 2264 struct dmi_ipmi_data data; 2265 int rv; 2266 2267 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2268 memset(&data, 0, sizeof(data)); 2269 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2270 &data); 2271 if (!rv) 2272 try_init_dmi(&data); 2273 } 2274 } 2275 #endif /* CONFIG_DMI */ 2276 2277 #ifdef CONFIG_PCI 2278 2279 #define PCI_ERMC_CLASSCODE 0x0C0700 2280 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2281 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2282 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2283 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2284 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2285 2286 #define PCI_HP_VENDOR_ID 0x103C 2287 #define PCI_MMC_DEVICE_ID 0x121A 2288 #define PCI_MMC_ADDR_CW 0x10 2289 2290 static void ipmi_pci_cleanup(struct smi_info *info) 2291 { 2292 struct pci_dev *pdev = info->addr_source_data; 2293 2294 pci_disable_device(pdev); 2295 } 2296 2297 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2298 const struct pci_device_id *ent) 2299 { 2300 int rv; 2301 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2302 struct smi_info *info; 2303 2304 info = kzalloc(sizeof(*info), GFP_KERNEL); 2305 if (!info) 2306 return -ENOMEM; 2307 2308 info->addr_source = "PCI"; 2309 2310 switch (class_type) { 2311 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2312 info->si_type = SI_SMIC; 2313 break; 2314 2315 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2316 info->si_type = SI_KCS; 2317 break; 2318 2319 case PCI_ERMC_CLASSCODE_TYPE_BT: 2320 info->si_type = SI_BT; 2321 break; 2322 2323 default: 2324 kfree(info); 2325 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n", 2326 pci_name(pdev), class_type); 2327 return -ENOMEM; 2328 } 2329 2330 rv = pci_enable_device(pdev); 2331 if (rv) { 2332 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n", 2333 pci_name(pdev)); 2334 kfree(info); 2335 return rv; 2336 } 2337 2338 info->addr_source_cleanup = ipmi_pci_cleanup; 2339 info->addr_source_data = pdev; 2340 2341 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2342 info->io_setup = port_setup; 2343 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2344 } else { 2345 info->io_setup = mem_setup; 2346 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2347 } 2348 info->io.addr_data = pci_resource_start(pdev, 0); 2349 2350 info->io.regspacing = DEFAULT_REGSPACING; 2351 info->io.regsize = DEFAULT_REGSPACING; 2352 info->io.regshift = 0; 2353 2354 info->irq = pdev->irq; 2355 if (info->irq) 2356 info->irq_setup = std_irq_setup; 2357 2358 info->dev = &pdev->dev; 2359 pci_set_drvdata(pdev, info); 2360 2361 return try_smi_init(info); 2362 } 2363 2364 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2365 { 2366 struct smi_info *info = pci_get_drvdata(pdev); 2367 cleanup_one_si(info); 2368 } 2369 2370 #ifdef CONFIG_PM 2371 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2372 { 2373 return 0; 2374 } 2375 2376 static int ipmi_pci_resume(struct pci_dev *pdev) 2377 { 2378 return 0; 2379 } 2380 #endif 2381 2382 static struct pci_device_id ipmi_pci_devices[] = { 2383 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2384 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2385 { 0, } 2386 }; 2387 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2388 2389 static struct pci_driver ipmi_pci_driver = { 2390 .name = DEVICE_NAME, 2391 .id_table = ipmi_pci_devices, 2392 .probe = ipmi_pci_probe, 2393 .remove = __devexit_p(ipmi_pci_remove), 2394 #ifdef CONFIG_PM 2395 .suspend = ipmi_pci_suspend, 2396 .resume = ipmi_pci_resume, 2397 #endif 2398 }; 2399 #endif /* CONFIG_PCI */ 2400 2401 2402 #ifdef CONFIG_PPC_OF 2403 static int __devinit ipmi_of_probe(struct of_device *dev, 2404 const struct of_device_id *match) 2405 { 2406 struct smi_info *info; 2407 struct resource resource; 2408 const int *regsize, *regspacing, *regshift; 2409 struct device_node *np = dev->node; 2410 int ret; 2411 int proplen; 2412 2413 dev_info(&dev->dev, PFX "probing via device tree\n"); 2414 2415 ret = of_address_to_resource(np, 0, &resource); 2416 if (ret) { 2417 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2418 return ret; 2419 } 2420 2421 regsize = of_get_property(np, "reg-size", &proplen); 2422 if (regsize && proplen != 4) { 2423 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2424 return -EINVAL; 2425 } 2426 2427 regspacing = of_get_property(np, "reg-spacing", &proplen); 2428 if (regspacing && proplen != 4) { 2429 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2430 return -EINVAL; 2431 } 2432 2433 regshift = of_get_property(np, "reg-shift", &proplen); 2434 if (regshift && proplen != 4) { 2435 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2436 return -EINVAL; 2437 } 2438 2439 info = kzalloc(sizeof(*info), GFP_KERNEL); 2440 2441 if (!info) { 2442 dev_err(&dev->dev, 2443 PFX "could not allocate memory for OF probe\n"); 2444 return -ENOMEM; 2445 } 2446 2447 info->si_type = (enum si_type) match->data; 2448 info->addr_source = "device-tree"; 2449 info->irq_setup = std_irq_setup; 2450 2451 if (resource.flags & IORESOURCE_IO) { 2452 info->io_setup = port_setup; 2453 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2454 } else { 2455 info->io_setup = mem_setup; 2456 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2457 } 2458 2459 info->io.addr_data = resource.start; 2460 2461 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE; 2462 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING; 2463 info->io.regshift = regshift ? *regshift : 0; 2464 2465 info->irq = irq_of_parse_and_map(dev->node, 0); 2466 info->dev = &dev->dev; 2467 2468 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n", 2469 info->io.addr_data, info->io.regsize, info->io.regspacing, 2470 info->irq); 2471 2472 dev_set_drvdata(&dev->dev, info); 2473 2474 return try_smi_init(info); 2475 } 2476 2477 static int __devexit ipmi_of_remove(struct of_device *dev) 2478 { 2479 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2480 return 0; 2481 } 2482 2483 static struct of_device_id ipmi_match[] = 2484 { 2485 { .type = "ipmi", .compatible = "ipmi-kcs", 2486 .data = (void *)(unsigned long) SI_KCS }, 2487 { .type = "ipmi", .compatible = "ipmi-smic", 2488 .data = (void *)(unsigned long) SI_SMIC }, 2489 { .type = "ipmi", .compatible = "ipmi-bt", 2490 .data = (void *)(unsigned long) SI_BT }, 2491 {}, 2492 }; 2493 2494 static struct of_platform_driver ipmi_of_platform_driver = { 2495 .name = "ipmi", 2496 .match_table = ipmi_match, 2497 .probe = ipmi_of_probe, 2498 .remove = __devexit_p(ipmi_of_remove), 2499 }; 2500 #endif /* CONFIG_PPC_OF */ 2501 2502 static int wait_for_msg_done(struct smi_info *smi_info) 2503 { 2504 enum si_sm_result smi_result; 2505 2506 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2507 for (;;) { 2508 if (smi_result == SI_SM_CALL_WITH_DELAY || 2509 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2510 schedule_timeout_uninterruptible(1); 2511 smi_result = smi_info->handlers->event( 2512 smi_info->si_sm, 100); 2513 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2514 smi_result = smi_info->handlers->event( 2515 smi_info->si_sm, 0); 2516 } else 2517 break; 2518 } 2519 if (smi_result == SI_SM_HOSED) 2520 /* 2521 * We couldn't get the state machine to run, so whatever's at 2522 * the port is probably not an IPMI SMI interface. 2523 */ 2524 return -ENODEV; 2525 2526 return 0; 2527 } 2528 2529 static int try_get_dev_id(struct smi_info *smi_info) 2530 { 2531 unsigned char msg[2]; 2532 unsigned char *resp; 2533 unsigned long resp_len; 2534 int rv = 0; 2535 2536 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2537 if (!resp) 2538 return -ENOMEM; 2539 2540 /* 2541 * Do a Get Device ID command, since it comes back with some 2542 * useful info. 2543 */ 2544 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2545 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2546 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2547 2548 rv = wait_for_msg_done(smi_info); 2549 if (rv) 2550 goto out; 2551 2552 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2553 resp, IPMI_MAX_MSG_LENGTH); 2554 2555 /* Check and record info from the get device id, in case we need it. */ 2556 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2557 2558 out: 2559 kfree(resp); 2560 return rv; 2561 } 2562 2563 static int try_enable_event_buffer(struct smi_info *smi_info) 2564 { 2565 unsigned char msg[3]; 2566 unsigned char *resp; 2567 unsigned long resp_len; 2568 int rv = 0; 2569 2570 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2571 if (!resp) 2572 return -ENOMEM; 2573 2574 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2575 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2576 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2577 2578 rv = wait_for_msg_done(smi_info); 2579 if (rv) { 2580 printk(KERN_WARNING 2581 "ipmi_si: Error getting response from get global," 2582 " enables command, the event buffer is not" 2583 " enabled.\n"); 2584 goto out; 2585 } 2586 2587 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2588 resp, IPMI_MAX_MSG_LENGTH); 2589 2590 if (resp_len < 4 || 2591 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2592 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2593 resp[2] != 0) { 2594 printk(KERN_WARNING 2595 "ipmi_si: Invalid return from get global" 2596 " enables command, cannot enable the event" 2597 " buffer.\n"); 2598 rv = -EINVAL; 2599 goto out; 2600 } 2601 2602 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2603 /* buffer is already enabled, nothing to do. */ 2604 goto out; 2605 2606 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2607 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2608 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2609 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2610 2611 rv = wait_for_msg_done(smi_info); 2612 if (rv) { 2613 printk(KERN_WARNING 2614 "ipmi_si: Error getting response from set global," 2615 " enables command, the event buffer is not" 2616 " enabled.\n"); 2617 goto out; 2618 } 2619 2620 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2621 resp, IPMI_MAX_MSG_LENGTH); 2622 2623 if (resp_len < 3 || 2624 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2625 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2626 printk(KERN_WARNING 2627 "ipmi_si: Invalid return from get global," 2628 "enables command, not enable the event" 2629 " buffer.\n"); 2630 rv = -EINVAL; 2631 goto out; 2632 } 2633 2634 if (resp[2] != 0) 2635 /* 2636 * An error when setting the event buffer bit means 2637 * that the event buffer is not supported. 2638 */ 2639 rv = -ENOENT; 2640 out: 2641 kfree(resp); 2642 return rv; 2643 } 2644 2645 static int type_file_read_proc(char *page, char **start, off_t off, 2646 int count, int *eof, void *data) 2647 { 2648 struct smi_info *smi = data; 2649 2650 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2651 } 2652 2653 static int stat_file_read_proc(char *page, char **start, off_t off, 2654 int count, int *eof, void *data) 2655 { 2656 char *out = (char *) page; 2657 struct smi_info *smi = data; 2658 2659 out += sprintf(out, "interrupts_enabled: %d\n", 2660 smi->irq && !smi->interrupt_disabled); 2661 out += sprintf(out, "short_timeouts: %u\n", 2662 smi_get_stat(smi, short_timeouts)); 2663 out += sprintf(out, "long_timeouts: %u\n", 2664 smi_get_stat(smi, long_timeouts)); 2665 out += sprintf(out, "idles: %u\n", 2666 smi_get_stat(smi, idles)); 2667 out += sprintf(out, "interrupts: %u\n", 2668 smi_get_stat(smi, interrupts)); 2669 out += sprintf(out, "attentions: %u\n", 2670 smi_get_stat(smi, attentions)); 2671 out += sprintf(out, "flag_fetches: %u\n", 2672 smi_get_stat(smi, flag_fetches)); 2673 out += sprintf(out, "hosed_count: %u\n", 2674 smi_get_stat(smi, hosed_count)); 2675 out += sprintf(out, "complete_transactions: %u\n", 2676 smi_get_stat(smi, complete_transactions)); 2677 out += sprintf(out, "events: %u\n", 2678 smi_get_stat(smi, events)); 2679 out += sprintf(out, "watchdog_pretimeouts: %u\n", 2680 smi_get_stat(smi, watchdog_pretimeouts)); 2681 out += sprintf(out, "incoming_messages: %u\n", 2682 smi_get_stat(smi, incoming_messages)); 2683 2684 return out - page; 2685 } 2686 2687 static int param_read_proc(char *page, char **start, off_t off, 2688 int count, int *eof, void *data) 2689 { 2690 struct smi_info *smi = data; 2691 2692 return sprintf(page, 2693 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2694 si_to_str[smi->si_type], 2695 addr_space_to_str[smi->io.addr_type], 2696 smi->io.addr_data, 2697 smi->io.regspacing, 2698 smi->io.regsize, 2699 smi->io.regshift, 2700 smi->irq, 2701 smi->slave_addr); 2702 } 2703 2704 /* 2705 * oem_data_avail_to_receive_msg_avail 2706 * @info - smi_info structure with msg_flags set 2707 * 2708 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2709 * Returns 1 indicating need to re-run handle_flags(). 2710 */ 2711 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2712 { 2713 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2714 RECEIVE_MSG_AVAIL); 2715 return 1; 2716 } 2717 2718 /* 2719 * setup_dell_poweredge_oem_data_handler 2720 * @info - smi_info.device_id must be populated 2721 * 2722 * Systems that match, but have firmware version < 1.40 may assert 2723 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2724 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2725 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2726 * as RECEIVE_MSG_AVAIL instead. 2727 * 2728 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2729 * assert the OEM[012] bits, and if it did, the driver would have to 2730 * change to handle that properly, we don't actually check for the 2731 * firmware version. 2732 * Device ID = 0x20 BMC on PowerEdge 8G servers 2733 * Device Revision = 0x80 2734 * Firmware Revision1 = 0x01 BMC version 1.40 2735 * Firmware Revision2 = 0x40 BCD encoded 2736 * IPMI Version = 0x51 IPMI 1.5 2737 * Manufacturer ID = A2 02 00 Dell IANA 2738 * 2739 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2740 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2741 * 2742 */ 2743 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2744 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2745 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2746 #define DELL_IANA_MFR_ID 0x0002a2 2747 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2748 { 2749 struct ipmi_device_id *id = &smi_info->device_id; 2750 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2751 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2752 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2753 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2754 smi_info->oem_data_avail_handler = 2755 oem_data_avail_to_receive_msg_avail; 2756 } else if (ipmi_version_major(id) < 1 || 2757 (ipmi_version_major(id) == 1 && 2758 ipmi_version_minor(id) < 5)) { 2759 smi_info->oem_data_avail_handler = 2760 oem_data_avail_to_receive_msg_avail; 2761 } 2762 } 2763 } 2764 2765 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2766 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2767 { 2768 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2769 2770 /* Make it a reponse */ 2771 msg->rsp[0] = msg->data[0] | 4; 2772 msg->rsp[1] = msg->data[1]; 2773 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2774 msg->rsp_size = 3; 2775 smi_info->curr_msg = NULL; 2776 deliver_recv_msg(smi_info, msg); 2777 } 2778 2779 /* 2780 * dell_poweredge_bt_xaction_handler 2781 * @info - smi_info.device_id must be populated 2782 * 2783 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2784 * not respond to a Get SDR command if the length of the data 2785 * requested is exactly 0x3A, which leads to command timeouts and no 2786 * data returned. This intercepts such commands, and causes userspace 2787 * callers to try again with a different-sized buffer, which succeeds. 2788 */ 2789 2790 #define STORAGE_NETFN 0x0A 2791 #define STORAGE_CMD_GET_SDR 0x23 2792 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2793 unsigned long unused, 2794 void *in) 2795 { 2796 struct smi_info *smi_info = in; 2797 unsigned char *data = smi_info->curr_msg->data; 2798 unsigned int size = smi_info->curr_msg->data_size; 2799 if (size >= 8 && 2800 (data[0]>>2) == STORAGE_NETFN && 2801 data[1] == STORAGE_CMD_GET_SDR && 2802 data[7] == 0x3A) { 2803 return_hosed_msg_badsize(smi_info); 2804 return NOTIFY_STOP; 2805 } 2806 return NOTIFY_DONE; 2807 } 2808 2809 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2810 .notifier_call = dell_poweredge_bt_xaction_handler, 2811 }; 2812 2813 /* 2814 * setup_dell_poweredge_bt_xaction_handler 2815 * @info - smi_info.device_id must be filled in already 2816 * 2817 * Fills in smi_info.device_id.start_transaction_pre_hook 2818 * when we know what function to use there. 2819 */ 2820 static void 2821 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2822 { 2823 struct ipmi_device_id *id = &smi_info->device_id; 2824 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2825 smi_info->si_type == SI_BT) 2826 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2827 } 2828 2829 /* 2830 * setup_oem_data_handler 2831 * @info - smi_info.device_id must be filled in already 2832 * 2833 * Fills in smi_info.device_id.oem_data_available_handler 2834 * when we know what function to use there. 2835 */ 2836 2837 static void setup_oem_data_handler(struct smi_info *smi_info) 2838 { 2839 setup_dell_poweredge_oem_data_handler(smi_info); 2840 } 2841 2842 static void setup_xaction_handlers(struct smi_info *smi_info) 2843 { 2844 setup_dell_poweredge_bt_xaction_handler(smi_info); 2845 } 2846 2847 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2848 { 2849 if (smi_info->intf) { 2850 /* 2851 * The timer and thread are only running if the 2852 * interface has been started up and registered. 2853 */ 2854 if (smi_info->thread != NULL) 2855 kthread_stop(smi_info->thread); 2856 del_timer_sync(&smi_info->si_timer); 2857 } 2858 } 2859 2860 static __devinitdata struct ipmi_default_vals 2861 { 2862 int type; 2863 int port; 2864 } ipmi_defaults[] = 2865 { 2866 { .type = SI_KCS, .port = 0xca2 }, 2867 { .type = SI_SMIC, .port = 0xca9 }, 2868 { .type = SI_BT, .port = 0xe4 }, 2869 { .port = 0 } 2870 }; 2871 2872 static __devinit void default_find_bmc(void) 2873 { 2874 struct smi_info *info; 2875 int i; 2876 2877 for (i = 0; ; i++) { 2878 if (!ipmi_defaults[i].port) 2879 break; 2880 #ifdef CONFIG_PPC 2881 if (check_legacy_ioport(ipmi_defaults[i].port)) 2882 continue; 2883 #endif 2884 info = kzalloc(sizeof(*info), GFP_KERNEL); 2885 if (!info) 2886 return; 2887 2888 info->addr_source = NULL; 2889 2890 info->si_type = ipmi_defaults[i].type; 2891 info->io_setup = port_setup; 2892 info->io.addr_data = ipmi_defaults[i].port; 2893 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2894 2895 info->io.addr = NULL; 2896 info->io.regspacing = DEFAULT_REGSPACING; 2897 info->io.regsize = DEFAULT_REGSPACING; 2898 info->io.regshift = 0; 2899 2900 if (try_smi_init(info) == 0) { 2901 /* Found one... */ 2902 printk(KERN_INFO "ipmi_si: Found default %s state" 2903 " machine at %s address 0x%lx\n", 2904 si_to_str[info->si_type], 2905 addr_space_to_str[info->io.addr_type], 2906 info->io.addr_data); 2907 return; 2908 } 2909 } 2910 } 2911 2912 static int is_new_interface(struct smi_info *info) 2913 { 2914 struct smi_info *e; 2915 2916 list_for_each_entry(e, &smi_infos, link) { 2917 if (e->io.addr_type != info->io.addr_type) 2918 continue; 2919 if (e->io.addr_data == info->io.addr_data) 2920 return 0; 2921 } 2922 2923 return 1; 2924 } 2925 2926 static int try_smi_init(struct smi_info *new_smi) 2927 { 2928 int rv; 2929 int i; 2930 2931 if (new_smi->addr_source) { 2932 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state" 2933 " machine at %s address 0x%lx, slave address 0x%x," 2934 " irq %d\n", 2935 new_smi->addr_source, 2936 si_to_str[new_smi->si_type], 2937 addr_space_to_str[new_smi->io.addr_type], 2938 new_smi->io.addr_data, 2939 new_smi->slave_addr, new_smi->irq); 2940 } 2941 2942 mutex_lock(&smi_infos_lock); 2943 if (!is_new_interface(new_smi)) { 2944 printk(KERN_WARNING "ipmi_si: duplicate interface\n"); 2945 rv = -EBUSY; 2946 goto out_err; 2947 } 2948 2949 /* So we know not to free it unless we have allocated one. */ 2950 new_smi->intf = NULL; 2951 new_smi->si_sm = NULL; 2952 new_smi->handlers = NULL; 2953 2954 switch (new_smi->si_type) { 2955 case SI_KCS: 2956 new_smi->handlers = &kcs_smi_handlers; 2957 break; 2958 2959 case SI_SMIC: 2960 new_smi->handlers = &smic_smi_handlers; 2961 break; 2962 2963 case SI_BT: 2964 new_smi->handlers = &bt_smi_handlers; 2965 break; 2966 2967 default: 2968 /* No support for anything else yet. */ 2969 rv = -EIO; 2970 goto out_err; 2971 } 2972 2973 /* Allocate the state machine's data and initialize it. */ 2974 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2975 if (!new_smi->si_sm) { 2976 printk(KERN_ERR "Could not allocate state machine memory\n"); 2977 rv = -ENOMEM; 2978 goto out_err; 2979 } 2980 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 2981 &new_smi->io); 2982 2983 /* Now that we know the I/O size, we can set up the I/O. */ 2984 rv = new_smi->io_setup(new_smi); 2985 if (rv) { 2986 printk(KERN_ERR "Could not set up I/O space\n"); 2987 goto out_err; 2988 } 2989 2990 spin_lock_init(&(new_smi->si_lock)); 2991 spin_lock_init(&(new_smi->msg_lock)); 2992 2993 /* Do low-level detection first. */ 2994 if (new_smi->handlers->detect(new_smi->si_sm)) { 2995 if (new_smi->addr_source) 2996 printk(KERN_INFO "ipmi_si: Interface detection" 2997 " failed\n"); 2998 rv = -ENODEV; 2999 goto out_err; 3000 } 3001 3002 /* 3003 * Attempt a get device id command. If it fails, we probably 3004 * don't have a BMC here. 3005 */ 3006 rv = try_get_dev_id(new_smi); 3007 if (rv) { 3008 if (new_smi->addr_source) 3009 printk(KERN_INFO "ipmi_si: There appears to be no BMC" 3010 " at this location\n"); 3011 goto out_err; 3012 } 3013 3014 setup_oem_data_handler(new_smi); 3015 setup_xaction_handlers(new_smi); 3016 3017 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3018 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3019 new_smi->curr_msg = NULL; 3020 atomic_set(&new_smi->req_events, 0); 3021 new_smi->run_to_completion = 0; 3022 for (i = 0; i < SI_NUM_STATS; i++) 3023 atomic_set(&new_smi->stats[i], 0); 3024 3025 new_smi->interrupt_disabled = 0; 3026 atomic_set(&new_smi->stop_operation, 0); 3027 new_smi->intf_num = smi_num; 3028 smi_num++; 3029 3030 rv = try_enable_event_buffer(new_smi); 3031 if (rv == 0) 3032 new_smi->has_event_buffer = 1; 3033 3034 /* 3035 * Start clearing the flags before we enable interrupts or the 3036 * timer to avoid racing with the timer. 3037 */ 3038 start_clear_flags(new_smi); 3039 /* IRQ is defined to be set when non-zero. */ 3040 if (new_smi->irq) 3041 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3042 3043 if (!new_smi->dev) { 3044 /* 3045 * If we don't already have a device from something 3046 * else (like PCI), then register a new one. 3047 */ 3048 new_smi->pdev = platform_device_alloc("ipmi_si", 3049 new_smi->intf_num); 3050 if (!new_smi->pdev) { 3051 printk(KERN_ERR 3052 "ipmi_si_intf:" 3053 " Unable to allocate platform device\n"); 3054 goto out_err; 3055 } 3056 new_smi->dev = &new_smi->pdev->dev; 3057 new_smi->dev->driver = &ipmi_driver.driver; 3058 3059 rv = platform_device_add(new_smi->pdev); 3060 if (rv) { 3061 printk(KERN_ERR 3062 "ipmi_si_intf:" 3063 " Unable to register system interface device:" 3064 " %d\n", 3065 rv); 3066 goto out_err; 3067 } 3068 new_smi->dev_registered = 1; 3069 } 3070 3071 rv = ipmi_register_smi(&handlers, 3072 new_smi, 3073 &new_smi->device_id, 3074 new_smi->dev, 3075 "bmc", 3076 new_smi->slave_addr); 3077 if (rv) { 3078 printk(KERN_ERR 3079 "ipmi_si: Unable to register device: error %d\n", 3080 rv); 3081 goto out_err_stop_timer; 3082 } 3083 3084 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3085 type_file_read_proc, 3086 new_smi); 3087 if (rv) { 3088 printk(KERN_ERR 3089 "ipmi_si: Unable to create proc entry: %d\n", 3090 rv); 3091 goto out_err_stop_timer; 3092 } 3093 3094 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3095 stat_file_read_proc, 3096 new_smi); 3097 if (rv) { 3098 printk(KERN_ERR 3099 "ipmi_si: Unable to create proc entry: %d\n", 3100 rv); 3101 goto out_err_stop_timer; 3102 } 3103 3104 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3105 param_read_proc, 3106 new_smi); 3107 if (rv) { 3108 printk(KERN_ERR 3109 "ipmi_si: Unable to create proc entry: %d\n", 3110 rv); 3111 goto out_err_stop_timer; 3112 } 3113 3114 list_add_tail(&new_smi->link, &smi_infos); 3115 3116 mutex_unlock(&smi_infos_lock); 3117 3118 printk(KERN_INFO "IPMI %s interface initialized\n", 3119 si_to_str[new_smi->si_type]); 3120 3121 return 0; 3122 3123 out_err_stop_timer: 3124 atomic_inc(&new_smi->stop_operation); 3125 wait_for_timer_and_thread(new_smi); 3126 3127 out_err: 3128 if (new_smi->intf) 3129 ipmi_unregister_smi(new_smi->intf); 3130 3131 if (new_smi->irq_cleanup) 3132 new_smi->irq_cleanup(new_smi); 3133 3134 /* 3135 * Wait until we know that we are out of any interrupt 3136 * handlers might have been running before we freed the 3137 * interrupt. 3138 */ 3139 synchronize_sched(); 3140 3141 if (new_smi->si_sm) { 3142 if (new_smi->handlers) 3143 new_smi->handlers->cleanup(new_smi->si_sm); 3144 kfree(new_smi->si_sm); 3145 } 3146 if (new_smi->addr_source_cleanup) 3147 new_smi->addr_source_cleanup(new_smi); 3148 if (new_smi->io_cleanup) 3149 new_smi->io_cleanup(new_smi); 3150 3151 if (new_smi->dev_registered) 3152 platform_device_unregister(new_smi->pdev); 3153 3154 kfree(new_smi); 3155 3156 mutex_unlock(&smi_infos_lock); 3157 3158 return rv; 3159 } 3160 3161 static __devinit int init_ipmi_si(void) 3162 { 3163 int i; 3164 char *str; 3165 int rv; 3166 3167 if (initialized) 3168 return 0; 3169 initialized = 1; 3170 3171 /* Register the device drivers. */ 3172 rv = driver_register(&ipmi_driver.driver); 3173 if (rv) { 3174 printk(KERN_ERR 3175 "init_ipmi_si: Unable to register driver: %d\n", 3176 rv); 3177 return rv; 3178 } 3179 3180 3181 /* Parse out the si_type string into its components. */ 3182 str = si_type_str; 3183 if (*str != '\0') { 3184 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3185 si_type[i] = str; 3186 str = strchr(str, ','); 3187 if (str) { 3188 *str = '\0'; 3189 str++; 3190 } else { 3191 break; 3192 } 3193 } 3194 } 3195 3196 printk(KERN_INFO "IPMI System Interface driver.\n"); 3197 3198 hardcode_find_bmc(); 3199 3200 #ifdef CONFIG_DMI 3201 dmi_find_bmc(); 3202 #endif 3203 3204 #ifdef CONFIG_ACPI 3205 spmi_find_bmc(); 3206 #endif 3207 #ifdef CONFIG_ACPI 3208 pnp_register_driver(&ipmi_pnp_driver); 3209 #endif 3210 3211 #ifdef CONFIG_PCI 3212 rv = pci_register_driver(&ipmi_pci_driver); 3213 if (rv) 3214 printk(KERN_ERR 3215 "init_ipmi_si: Unable to register PCI driver: %d\n", 3216 rv); 3217 #endif 3218 3219 #ifdef CONFIG_PPC_OF 3220 of_register_platform_driver(&ipmi_of_platform_driver); 3221 #endif 3222 3223 if (si_trydefaults) { 3224 mutex_lock(&smi_infos_lock); 3225 if (list_empty(&smi_infos)) { 3226 /* No BMC was found, try defaults. */ 3227 mutex_unlock(&smi_infos_lock); 3228 default_find_bmc(); 3229 } else { 3230 mutex_unlock(&smi_infos_lock); 3231 } 3232 } 3233 3234 mutex_lock(&smi_infos_lock); 3235 if (unload_when_empty && list_empty(&smi_infos)) { 3236 mutex_unlock(&smi_infos_lock); 3237 #ifdef CONFIG_PCI 3238 pci_unregister_driver(&ipmi_pci_driver); 3239 #endif 3240 3241 #ifdef CONFIG_PPC_OF 3242 of_unregister_platform_driver(&ipmi_of_platform_driver); 3243 #endif 3244 driver_unregister(&ipmi_driver.driver); 3245 printk(KERN_WARNING 3246 "ipmi_si: Unable to find any System Interface(s)\n"); 3247 return -ENODEV; 3248 } else { 3249 mutex_unlock(&smi_infos_lock); 3250 return 0; 3251 } 3252 } 3253 module_init(init_ipmi_si); 3254 3255 static void cleanup_one_si(struct smi_info *to_clean) 3256 { 3257 int rv; 3258 unsigned long flags; 3259 3260 if (!to_clean) 3261 return; 3262 3263 list_del(&to_clean->link); 3264 3265 /* Tell the driver that we are shutting down. */ 3266 atomic_inc(&to_clean->stop_operation); 3267 3268 /* 3269 * Make sure the timer and thread are stopped and will not run 3270 * again. 3271 */ 3272 wait_for_timer_and_thread(to_clean); 3273 3274 /* 3275 * Timeouts are stopped, now make sure the interrupts are off 3276 * for the device. A little tricky with locks to make sure 3277 * there are no races. 3278 */ 3279 spin_lock_irqsave(&to_clean->si_lock, flags); 3280 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3281 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3282 poll(to_clean); 3283 schedule_timeout_uninterruptible(1); 3284 spin_lock_irqsave(&to_clean->si_lock, flags); 3285 } 3286 disable_si_irq(to_clean); 3287 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3288 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3289 poll(to_clean); 3290 schedule_timeout_uninterruptible(1); 3291 } 3292 3293 /* Clean up interrupts and make sure that everything is done. */ 3294 if (to_clean->irq_cleanup) 3295 to_clean->irq_cleanup(to_clean); 3296 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3297 poll(to_clean); 3298 schedule_timeout_uninterruptible(1); 3299 } 3300 3301 rv = ipmi_unregister_smi(to_clean->intf); 3302 if (rv) { 3303 printk(KERN_ERR 3304 "ipmi_si: Unable to unregister device: errno=%d\n", 3305 rv); 3306 } 3307 3308 to_clean->handlers->cleanup(to_clean->si_sm); 3309 3310 kfree(to_clean->si_sm); 3311 3312 if (to_clean->addr_source_cleanup) 3313 to_clean->addr_source_cleanup(to_clean); 3314 if (to_clean->io_cleanup) 3315 to_clean->io_cleanup(to_clean); 3316 3317 if (to_clean->dev_registered) 3318 platform_device_unregister(to_clean->pdev); 3319 3320 kfree(to_clean); 3321 } 3322 3323 static __exit void cleanup_ipmi_si(void) 3324 { 3325 struct smi_info *e, *tmp_e; 3326 3327 if (!initialized) 3328 return; 3329 3330 #ifdef CONFIG_PCI 3331 pci_unregister_driver(&ipmi_pci_driver); 3332 #endif 3333 #ifdef CONFIG_ACPI 3334 pnp_unregister_driver(&ipmi_pnp_driver); 3335 #endif 3336 3337 #ifdef CONFIG_PPC_OF 3338 of_unregister_platform_driver(&ipmi_of_platform_driver); 3339 #endif 3340 3341 mutex_lock(&smi_infos_lock); 3342 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3343 cleanup_one_si(e); 3344 mutex_unlock(&smi_infos_lock); 3345 3346 driver_unregister(&ipmi_driver.driver); 3347 } 3348 module_exit(cleanup_ipmi_si); 3349 3350 MODULE_LICENSE("GPL"); 3351 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3352 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3353 " system interfaces."); 3354