xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision a09d2831)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 #define DEVICE_NAME "ipmi_si"
111 
112 static struct platform_driver ipmi_driver = {
113 	.driver = {
114 		.name = DEVICE_NAME,
115 		.bus = &platform_bus_type
116 	}
117 };
118 
119 
120 /*
121  * Indexes into stats[] in smi_info below.
122  */
123 enum si_stat_indexes {
124 	/*
125 	 * Number of times the driver requested a timer while an operation
126 	 * was in progress.
127 	 */
128 	SI_STAT_short_timeouts = 0,
129 
130 	/*
131 	 * Number of times the driver requested a timer while nothing was in
132 	 * progress.
133 	 */
134 	SI_STAT_long_timeouts,
135 
136 	/* Number of times the interface was idle while being polled. */
137 	SI_STAT_idles,
138 
139 	/* Number of interrupts the driver handled. */
140 	SI_STAT_interrupts,
141 
142 	/* Number of time the driver got an ATTN from the hardware. */
143 	SI_STAT_attentions,
144 
145 	/* Number of times the driver requested flags from the hardware. */
146 	SI_STAT_flag_fetches,
147 
148 	/* Number of times the hardware didn't follow the state machine. */
149 	SI_STAT_hosed_count,
150 
151 	/* Number of completed messages. */
152 	SI_STAT_complete_transactions,
153 
154 	/* Number of IPMI events received from the hardware. */
155 	SI_STAT_events,
156 
157 	/* Number of watchdog pretimeouts. */
158 	SI_STAT_watchdog_pretimeouts,
159 
160 	/* Number of asyncronous messages received. */
161 	SI_STAT_incoming_messages,
162 
163 
164 	/* This *must* remain last, add new values above this. */
165 	SI_NUM_STATS
166 };
167 
168 struct smi_info {
169 	int                    intf_num;
170 	ipmi_smi_t             intf;
171 	struct si_sm_data      *si_sm;
172 	struct si_sm_handlers  *handlers;
173 	enum si_type           si_type;
174 	spinlock_t             si_lock;
175 	spinlock_t             msg_lock;
176 	struct list_head       xmit_msgs;
177 	struct list_head       hp_xmit_msgs;
178 	struct ipmi_smi_msg    *curr_msg;
179 	enum si_intf_state     si_state;
180 
181 	/*
182 	 * Used to handle the various types of I/O that can occur with
183 	 * IPMI
184 	 */
185 	struct si_sm_io io;
186 	int (*io_setup)(struct smi_info *info);
187 	void (*io_cleanup)(struct smi_info *info);
188 	int (*irq_setup)(struct smi_info *info);
189 	void (*irq_cleanup)(struct smi_info *info);
190 	unsigned int io_size;
191 	char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
192 	void (*addr_source_cleanup)(struct smi_info *info);
193 	void *addr_source_data;
194 
195 	/*
196 	 * Per-OEM handler, called from handle_flags().  Returns 1
197 	 * when handle_flags() needs to be re-run or 0 indicating it
198 	 * set si_state itself.
199 	 */
200 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
201 
202 	/*
203 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
204 	 * is set to hold the flags until we are done handling everything
205 	 * from the flags.
206 	 */
207 #define RECEIVE_MSG_AVAIL	0x01
208 #define EVENT_MSG_BUFFER_FULL	0x02
209 #define WDT_PRE_TIMEOUT_INT	0x08
210 #define OEM0_DATA_AVAIL     0x20
211 #define OEM1_DATA_AVAIL     0x40
212 #define OEM2_DATA_AVAIL     0x80
213 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
214 			     OEM1_DATA_AVAIL | \
215 			     OEM2_DATA_AVAIL)
216 	unsigned char       msg_flags;
217 
218 	/* Does the BMC have an event buffer? */
219 	char		    has_event_buffer;
220 
221 	/*
222 	 * If set to true, this will request events the next time the
223 	 * state machine is idle.
224 	 */
225 	atomic_t            req_events;
226 
227 	/*
228 	 * If true, run the state machine to completion on every send
229 	 * call.  Generally used after a panic to make sure stuff goes
230 	 * out.
231 	 */
232 	int                 run_to_completion;
233 
234 	/* The I/O port of an SI interface. */
235 	int                 port;
236 
237 	/*
238 	 * The space between start addresses of the two ports.  For
239 	 * instance, if the first port is 0xca2 and the spacing is 4, then
240 	 * the second port is 0xca6.
241 	 */
242 	unsigned int        spacing;
243 
244 	/* zero if no irq; */
245 	int                 irq;
246 
247 	/* The timer for this si. */
248 	struct timer_list   si_timer;
249 
250 	/* The time (in jiffies) the last timeout occurred at. */
251 	unsigned long       last_timeout_jiffies;
252 
253 	/* Used to gracefully stop the timer without race conditions. */
254 	atomic_t            stop_operation;
255 
256 	/*
257 	 * The driver will disable interrupts when it gets into a
258 	 * situation where it cannot handle messages due to lack of
259 	 * memory.  Once that situation clears up, it will re-enable
260 	 * interrupts.
261 	 */
262 	int interrupt_disabled;
263 
264 	/* From the get device id response... */
265 	struct ipmi_device_id device_id;
266 
267 	/* Driver model stuff. */
268 	struct device *dev;
269 	struct platform_device *pdev;
270 
271 	/*
272 	 * True if we allocated the device, false if it came from
273 	 * someplace else (like PCI).
274 	 */
275 	int dev_registered;
276 
277 	/* Slave address, could be reported from DMI. */
278 	unsigned char slave_addr;
279 
280 	/* Counters and things for the proc filesystem. */
281 	atomic_t stats[SI_NUM_STATS];
282 
283 	struct task_struct *thread;
284 
285 	struct list_head link;
286 };
287 
288 #define smi_inc_stat(smi, stat) \
289 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292 
293 #define SI_MAX_PARMS 4
294 
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297 
298 static int unload_when_empty = 1;
299 
300 static int try_smi_init(struct smi_info *smi);
301 static void cleanup_one_si(struct smi_info *to_clean);
302 
303 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
304 static int register_xaction_notifier(struct notifier_block *nb)
305 {
306 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
307 }
308 
309 static void deliver_recv_msg(struct smi_info *smi_info,
310 			     struct ipmi_smi_msg *msg)
311 {
312 	/* Deliver the message to the upper layer with the lock
313 	   released. */
314 	spin_unlock(&(smi_info->si_lock));
315 	ipmi_smi_msg_received(smi_info->intf, msg);
316 	spin_lock(&(smi_info->si_lock));
317 }
318 
319 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
320 {
321 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
322 
323 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
324 		cCode = IPMI_ERR_UNSPECIFIED;
325 	/* else use it as is */
326 
327 	/* Make it a reponse */
328 	msg->rsp[0] = msg->data[0] | 4;
329 	msg->rsp[1] = msg->data[1];
330 	msg->rsp[2] = cCode;
331 	msg->rsp_size = 3;
332 
333 	smi_info->curr_msg = NULL;
334 	deliver_recv_msg(smi_info, msg);
335 }
336 
337 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
338 {
339 	int              rv;
340 	struct list_head *entry = NULL;
341 #ifdef DEBUG_TIMING
342 	struct timeval t;
343 #endif
344 
345 	/*
346 	 * No need to save flags, we aleady have interrupts off and we
347 	 * already hold the SMI lock.
348 	 */
349 	if (!smi_info->run_to_completion)
350 		spin_lock(&(smi_info->msg_lock));
351 
352 	/* Pick the high priority queue first. */
353 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
354 		entry = smi_info->hp_xmit_msgs.next;
355 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
356 		entry = smi_info->xmit_msgs.next;
357 	}
358 
359 	if (!entry) {
360 		smi_info->curr_msg = NULL;
361 		rv = SI_SM_IDLE;
362 	} else {
363 		int err;
364 
365 		list_del(entry);
366 		smi_info->curr_msg = list_entry(entry,
367 						struct ipmi_smi_msg,
368 						link);
369 #ifdef DEBUG_TIMING
370 		do_gettimeofday(&t);
371 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
372 #endif
373 		err = atomic_notifier_call_chain(&xaction_notifier_list,
374 				0, smi_info);
375 		if (err & NOTIFY_STOP_MASK) {
376 			rv = SI_SM_CALL_WITHOUT_DELAY;
377 			goto out;
378 		}
379 		err = smi_info->handlers->start_transaction(
380 			smi_info->si_sm,
381 			smi_info->curr_msg->data,
382 			smi_info->curr_msg->data_size);
383 		if (err)
384 			return_hosed_msg(smi_info, err);
385 
386 		rv = SI_SM_CALL_WITHOUT_DELAY;
387 	}
388  out:
389 	if (!smi_info->run_to_completion)
390 		spin_unlock(&(smi_info->msg_lock));
391 
392 	return rv;
393 }
394 
395 static void start_enable_irq(struct smi_info *smi_info)
396 {
397 	unsigned char msg[2];
398 
399 	/*
400 	 * If we are enabling interrupts, we have to tell the
401 	 * BMC to use them.
402 	 */
403 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
404 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
405 
406 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
407 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
408 }
409 
410 static void start_disable_irq(struct smi_info *smi_info)
411 {
412 	unsigned char msg[2];
413 
414 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416 
417 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
419 }
420 
421 static void start_clear_flags(struct smi_info *smi_info)
422 {
423 	unsigned char msg[3];
424 
425 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
426 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
428 	msg[2] = WDT_PRE_TIMEOUT_INT;
429 
430 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
431 	smi_info->si_state = SI_CLEARING_FLAGS;
432 }
433 
434 /*
435  * When we have a situtaion where we run out of memory and cannot
436  * allocate messages, we just leave them in the BMC and run the system
437  * polled until we can allocate some memory.  Once we have some
438  * memory, we will re-enable the interrupt.
439  */
440 static inline void disable_si_irq(struct smi_info *smi_info)
441 {
442 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
443 		start_disable_irq(smi_info);
444 		smi_info->interrupt_disabled = 1;
445 	}
446 }
447 
448 static inline void enable_si_irq(struct smi_info *smi_info)
449 {
450 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
451 		start_enable_irq(smi_info);
452 		smi_info->interrupt_disabled = 0;
453 	}
454 }
455 
456 static void handle_flags(struct smi_info *smi_info)
457 {
458  retry:
459 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
460 		/* Watchdog pre-timeout */
461 		smi_inc_stat(smi_info, watchdog_pretimeouts);
462 
463 		start_clear_flags(smi_info);
464 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
465 		spin_unlock(&(smi_info->si_lock));
466 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
467 		spin_lock(&(smi_info->si_lock));
468 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
469 		/* Messages available. */
470 		smi_info->curr_msg = ipmi_alloc_smi_msg();
471 		if (!smi_info->curr_msg) {
472 			disable_si_irq(smi_info);
473 			smi_info->si_state = SI_NORMAL;
474 			return;
475 		}
476 		enable_si_irq(smi_info);
477 
478 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
479 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
480 		smi_info->curr_msg->data_size = 2;
481 
482 		smi_info->handlers->start_transaction(
483 			smi_info->si_sm,
484 			smi_info->curr_msg->data,
485 			smi_info->curr_msg->data_size);
486 		smi_info->si_state = SI_GETTING_MESSAGES;
487 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
488 		/* Events available. */
489 		smi_info->curr_msg = ipmi_alloc_smi_msg();
490 		if (!smi_info->curr_msg) {
491 			disable_si_irq(smi_info);
492 			smi_info->si_state = SI_NORMAL;
493 			return;
494 		}
495 		enable_si_irq(smi_info);
496 
497 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
499 		smi_info->curr_msg->data_size = 2;
500 
501 		smi_info->handlers->start_transaction(
502 			smi_info->si_sm,
503 			smi_info->curr_msg->data,
504 			smi_info->curr_msg->data_size);
505 		smi_info->si_state = SI_GETTING_EVENTS;
506 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
507 		   smi_info->oem_data_avail_handler) {
508 		if (smi_info->oem_data_avail_handler(smi_info))
509 			goto retry;
510 	} else
511 		smi_info->si_state = SI_NORMAL;
512 }
513 
514 static void handle_transaction_done(struct smi_info *smi_info)
515 {
516 	struct ipmi_smi_msg *msg;
517 #ifdef DEBUG_TIMING
518 	struct timeval t;
519 
520 	do_gettimeofday(&t);
521 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
522 #endif
523 	switch (smi_info->si_state) {
524 	case SI_NORMAL:
525 		if (!smi_info->curr_msg)
526 			break;
527 
528 		smi_info->curr_msg->rsp_size
529 			= smi_info->handlers->get_result(
530 				smi_info->si_sm,
531 				smi_info->curr_msg->rsp,
532 				IPMI_MAX_MSG_LENGTH);
533 
534 		/*
535 		 * Do this here becase deliver_recv_msg() releases the
536 		 * lock, and a new message can be put in during the
537 		 * time the lock is released.
538 		 */
539 		msg = smi_info->curr_msg;
540 		smi_info->curr_msg = NULL;
541 		deliver_recv_msg(smi_info, msg);
542 		break;
543 
544 	case SI_GETTING_FLAGS:
545 	{
546 		unsigned char msg[4];
547 		unsigned int  len;
548 
549 		/* We got the flags from the SMI, now handle them. */
550 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
551 		if (msg[2] != 0) {
552 			/* Error fetching flags, just give up for now. */
553 			smi_info->si_state = SI_NORMAL;
554 		} else if (len < 4) {
555 			/*
556 			 * Hmm, no flags.  That's technically illegal, but
557 			 * don't use uninitialized data.
558 			 */
559 			smi_info->si_state = SI_NORMAL;
560 		} else {
561 			smi_info->msg_flags = msg[3];
562 			handle_flags(smi_info);
563 		}
564 		break;
565 	}
566 
567 	case SI_CLEARING_FLAGS:
568 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
569 	{
570 		unsigned char msg[3];
571 
572 		/* We cleared the flags. */
573 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
574 		if (msg[2] != 0) {
575 			/* Error clearing flags */
576 			printk(KERN_WARNING
577 			       "ipmi_si: Error clearing flags: %2.2x\n",
578 			       msg[2]);
579 		}
580 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
581 			start_enable_irq(smi_info);
582 		else
583 			smi_info->si_state = SI_NORMAL;
584 		break;
585 	}
586 
587 	case SI_GETTING_EVENTS:
588 	{
589 		smi_info->curr_msg->rsp_size
590 			= smi_info->handlers->get_result(
591 				smi_info->si_sm,
592 				smi_info->curr_msg->rsp,
593 				IPMI_MAX_MSG_LENGTH);
594 
595 		/*
596 		 * Do this here becase deliver_recv_msg() releases the
597 		 * lock, and a new message can be put in during the
598 		 * time the lock is released.
599 		 */
600 		msg = smi_info->curr_msg;
601 		smi_info->curr_msg = NULL;
602 		if (msg->rsp[2] != 0) {
603 			/* Error getting event, probably done. */
604 			msg->done(msg);
605 
606 			/* Take off the event flag. */
607 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
608 			handle_flags(smi_info);
609 		} else {
610 			smi_inc_stat(smi_info, events);
611 
612 			/*
613 			 * Do this before we deliver the message
614 			 * because delivering the message releases the
615 			 * lock and something else can mess with the
616 			 * state.
617 			 */
618 			handle_flags(smi_info);
619 
620 			deliver_recv_msg(smi_info, msg);
621 		}
622 		break;
623 	}
624 
625 	case SI_GETTING_MESSAGES:
626 	{
627 		smi_info->curr_msg->rsp_size
628 			= smi_info->handlers->get_result(
629 				smi_info->si_sm,
630 				smi_info->curr_msg->rsp,
631 				IPMI_MAX_MSG_LENGTH);
632 
633 		/*
634 		 * Do this here becase deliver_recv_msg() releases the
635 		 * lock, and a new message can be put in during the
636 		 * time the lock is released.
637 		 */
638 		msg = smi_info->curr_msg;
639 		smi_info->curr_msg = NULL;
640 		if (msg->rsp[2] != 0) {
641 			/* Error getting event, probably done. */
642 			msg->done(msg);
643 
644 			/* Take off the msg flag. */
645 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
646 			handle_flags(smi_info);
647 		} else {
648 			smi_inc_stat(smi_info, incoming_messages);
649 
650 			/*
651 			 * Do this before we deliver the message
652 			 * because delivering the message releases the
653 			 * lock and something else can mess with the
654 			 * state.
655 			 */
656 			handle_flags(smi_info);
657 
658 			deliver_recv_msg(smi_info, msg);
659 		}
660 		break;
661 	}
662 
663 	case SI_ENABLE_INTERRUPTS1:
664 	{
665 		unsigned char msg[4];
666 
667 		/* We got the flags from the SMI, now handle them. */
668 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
669 		if (msg[2] != 0) {
670 			printk(KERN_WARNING
671 			       "ipmi_si: Could not enable interrupts"
672 			       ", failed get, using polled mode.\n");
673 			smi_info->si_state = SI_NORMAL;
674 		} else {
675 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
676 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
677 			msg[2] = (msg[3] |
678 				  IPMI_BMC_RCV_MSG_INTR |
679 				  IPMI_BMC_EVT_MSG_INTR);
680 			smi_info->handlers->start_transaction(
681 				smi_info->si_sm, msg, 3);
682 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
683 		}
684 		break;
685 	}
686 
687 	case SI_ENABLE_INTERRUPTS2:
688 	{
689 		unsigned char msg[4];
690 
691 		/* We got the flags from the SMI, now handle them. */
692 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
693 		if (msg[2] != 0) {
694 			printk(KERN_WARNING
695 			       "ipmi_si: Could not enable interrupts"
696 			       ", failed set, using polled mode.\n");
697 		}
698 		smi_info->si_state = SI_NORMAL;
699 		break;
700 	}
701 
702 	case SI_DISABLE_INTERRUPTS1:
703 	{
704 		unsigned char msg[4];
705 
706 		/* We got the flags from the SMI, now handle them. */
707 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708 		if (msg[2] != 0) {
709 			printk(KERN_WARNING
710 			       "ipmi_si: Could not disable interrupts"
711 			       ", failed get.\n");
712 			smi_info->si_state = SI_NORMAL;
713 		} else {
714 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
715 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
716 			msg[2] = (msg[3] &
717 				  ~(IPMI_BMC_RCV_MSG_INTR |
718 				    IPMI_BMC_EVT_MSG_INTR));
719 			smi_info->handlers->start_transaction(
720 				smi_info->si_sm, msg, 3);
721 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
722 		}
723 		break;
724 	}
725 
726 	case SI_DISABLE_INTERRUPTS2:
727 	{
728 		unsigned char msg[4];
729 
730 		/* We got the flags from the SMI, now handle them. */
731 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732 		if (msg[2] != 0) {
733 			printk(KERN_WARNING
734 			       "ipmi_si: Could not disable interrupts"
735 			       ", failed set.\n");
736 		}
737 		smi_info->si_state = SI_NORMAL;
738 		break;
739 	}
740 	}
741 }
742 
743 /*
744  * Called on timeouts and events.  Timeouts should pass the elapsed
745  * time, interrupts should pass in zero.  Must be called with
746  * si_lock held and interrupts disabled.
747  */
748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749 					   int time)
750 {
751 	enum si_sm_result si_sm_result;
752 
753  restart:
754 	/*
755 	 * There used to be a loop here that waited a little while
756 	 * (around 25us) before giving up.  That turned out to be
757 	 * pointless, the minimum delays I was seeing were in the 300us
758 	 * range, which is far too long to wait in an interrupt.  So
759 	 * we just run until the state machine tells us something
760 	 * happened or it needs a delay.
761 	 */
762 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763 	time = 0;
764 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766 
767 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768 		smi_inc_stat(smi_info, complete_transactions);
769 
770 		handle_transaction_done(smi_info);
771 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772 	} else if (si_sm_result == SI_SM_HOSED) {
773 		smi_inc_stat(smi_info, hosed_count);
774 
775 		/*
776 		 * Do the before return_hosed_msg, because that
777 		 * releases the lock.
778 		 */
779 		smi_info->si_state = SI_NORMAL;
780 		if (smi_info->curr_msg != NULL) {
781 			/*
782 			 * If we were handling a user message, format
783 			 * a response to send to the upper layer to
784 			 * tell it about the error.
785 			 */
786 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787 		}
788 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789 	}
790 
791 	/*
792 	 * We prefer handling attn over new messages.  But don't do
793 	 * this if there is not yet an upper layer to handle anything.
794 	 */
795 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
796 		unsigned char msg[2];
797 
798 		smi_inc_stat(smi_info, attentions);
799 
800 		/*
801 		 * Got a attn, send down a get message flags to see
802 		 * what's causing it.  It would be better to handle
803 		 * this in the upper layer, but due to the way
804 		 * interrupts work with the SMI, that's not really
805 		 * possible.
806 		 */
807 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
808 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
809 
810 		smi_info->handlers->start_transaction(
811 			smi_info->si_sm, msg, 2);
812 		smi_info->si_state = SI_GETTING_FLAGS;
813 		goto restart;
814 	}
815 
816 	/* If we are currently idle, try to start the next message. */
817 	if (si_sm_result == SI_SM_IDLE) {
818 		smi_inc_stat(smi_info, idles);
819 
820 		si_sm_result = start_next_msg(smi_info);
821 		if (si_sm_result != SI_SM_IDLE)
822 			goto restart;
823 	}
824 
825 	if ((si_sm_result == SI_SM_IDLE)
826 	    && (atomic_read(&smi_info->req_events))) {
827 		/*
828 		 * We are idle and the upper layer requested that I fetch
829 		 * events, so do so.
830 		 */
831 		atomic_set(&smi_info->req_events, 0);
832 
833 		smi_info->curr_msg = ipmi_alloc_smi_msg();
834 		if (!smi_info->curr_msg)
835 			goto out;
836 
837 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
838 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
839 		smi_info->curr_msg->data_size = 2;
840 
841 		smi_info->handlers->start_transaction(
842 			smi_info->si_sm,
843 			smi_info->curr_msg->data,
844 			smi_info->curr_msg->data_size);
845 		smi_info->si_state = SI_GETTING_EVENTS;
846 		goto restart;
847 	}
848  out:
849 	return si_sm_result;
850 }
851 
852 static void sender(void                *send_info,
853 		   struct ipmi_smi_msg *msg,
854 		   int                 priority)
855 {
856 	struct smi_info   *smi_info = send_info;
857 	enum si_sm_result result;
858 	unsigned long     flags;
859 #ifdef DEBUG_TIMING
860 	struct timeval    t;
861 #endif
862 
863 	if (atomic_read(&smi_info->stop_operation)) {
864 		msg->rsp[0] = msg->data[0] | 4;
865 		msg->rsp[1] = msg->data[1];
866 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
867 		msg->rsp_size = 3;
868 		deliver_recv_msg(smi_info, msg);
869 		return;
870 	}
871 
872 #ifdef DEBUG_TIMING
873 	do_gettimeofday(&t);
874 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
875 #endif
876 
877 	if (smi_info->run_to_completion) {
878 		/*
879 		 * If we are running to completion, then throw it in
880 		 * the list and run transactions until everything is
881 		 * clear.  Priority doesn't matter here.
882 		 */
883 
884 		/*
885 		 * Run to completion means we are single-threaded, no
886 		 * need for locks.
887 		 */
888 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
889 
890 		result = smi_event_handler(smi_info, 0);
891 		while (result != SI_SM_IDLE) {
892 			udelay(SI_SHORT_TIMEOUT_USEC);
893 			result = smi_event_handler(smi_info,
894 						   SI_SHORT_TIMEOUT_USEC);
895 		}
896 		return;
897 	}
898 
899 	spin_lock_irqsave(&smi_info->msg_lock, flags);
900 	if (priority > 0)
901 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
902 	else
903 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
904 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
905 
906 	spin_lock_irqsave(&smi_info->si_lock, flags);
907 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
908 		start_next_msg(smi_info);
909 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
910 }
911 
912 static void set_run_to_completion(void *send_info, int i_run_to_completion)
913 {
914 	struct smi_info   *smi_info = send_info;
915 	enum si_sm_result result;
916 
917 	smi_info->run_to_completion = i_run_to_completion;
918 	if (i_run_to_completion) {
919 		result = smi_event_handler(smi_info, 0);
920 		while (result != SI_SM_IDLE) {
921 			udelay(SI_SHORT_TIMEOUT_USEC);
922 			result = smi_event_handler(smi_info,
923 						   SI_SHORT_TIMEOUT_USEC);
924 		}
925 	}
926 }
927 
928 static int ipmi_thread(void *data)
929 {
930 	struct smi_info *smi_info = data;
931 	unsigned long flags;
932 	enum si_sm_result smi_result;
933 
934 	set_user_nice(current, 19);
935 	while (!kthread_should_stop()) {
936 		spin_lock_irqsave(&(smi_info->si_lock), flags);
937 		smi_result = smi_event_handler(smi_info, 0);
938 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
939 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
940 			; /* do nothing */
941 		else if (smi_result == SI_SM_CALL_WITH_DELAY)
942 			schedule();
943 		else
944 			schedule_timeout_interruptible(1);
945 	}
946 	return 0;
947 }
948 
949 
950 static void poll(void *send_info)
951 {
952 	struct smi_info *smi_info = send_info;
953 	unsigned long flags;
954 
955 	/*
956 	 * Make sure there is some delay in the poll loop so we can
957 	 * drive time forward and timeout things.
958 	 */
959 	udelay(10);
960 	spin_lock_irqsave(&smi_info->si_lock, flags);
961 	smi_event_handler(smi_info, 10);
962 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
963 }
964 
965 static void request_events(void *send_info)
966 {
967 	struct smi_info *smi_info = send_info;
968 
969 	if (atomic_read(&smi_info->stop_operation) ||
970 				!smi_info->has_event_buffer)
971 		return;
972 
973 	atomic_set(&smi_info->req_events, 1);
974 }
975 
976 static int initialized;
977 
978 static void smi_timeout(unsigned long data)
979 {
980 	struct smi_info   *smi_info = (struct smi_info *) data;
981 	enum si_sm_result smi_result;
982 	unsigned long     flags;
983 	unsigned long     jiffies_now;
984 	long              time_diff;
985 #ifdef DEBUG_TIMING
986 	struct timeval    t;
987 #endif
988 
989 	spin_lock_irqsave(&(smi_info->si_lock), flags);
990 #ifdef DEBUG_TIMING
991 	do_gettimeofday(&t);
992 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
993 #endif
994 	jiffies_now = jiffies;
995 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
996 		     * SI_USEC_PER_JIFFY);
997 	smi_result = smi_event_handler(smi_info, time_diff);
998 
999 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1000 
1001 	smi_info->last_timeout_jiffies = jiffies_now;
1002 
1003 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1004 		/* Running with interrupts, only do long timeouts. */
1005 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1006 		smi_inc_stat(smi_info, long_timeouts);
1007 		goto do_add_timer;
1008 	}
1009 
1010 	/*
1011 	 * If the state machine asks for a short delay, then shorten
1012 	 * the timer timeout.
1013 	 */
1014 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1015 		smi_inc_stat(smi_info, short_timeouts);
1016 		smi_info->si_timer.expires = jiffies + 1;
1017 	} else {
1018 		smi_inc_stat(smi_info, long_timeouts);
1019 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1020 	}
1021 
1022  do_add_timer:
1023 	add_timer(&(smi_info->si_timer));
1024 }
1025 
1026 static irqreturn_t si_irq_handler(int irq, void *data)
1027 {
1028 	struct smi_info *smi_info = data;
1029 	unsigned long   flags;
1030 #ifdef DEBUG_TIMING
1031 	struct timeval  t;
1032 #endif
1033 
1034 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1035 
1036 	smi_inc_stat(smi_info, interrupts);
1037 
1038 #ifdef DEBUG_TIMING
1039 	do_gettimeofday(&t);
1040 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1041 #endif
1042 	smi_event_handler(smi_info, 0);
1043 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1044 	return IRQ_HANDLED;
1045 }
1046 
1047 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1048 {
1049 	struct smi_info *smi_info = data;
1050 	/* We need to clear the IRQ flag for the BT interface. */
1051 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1052 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1053 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1054 	return si_irq_handler(irq, data);
1055 }
1056 
1057 static int smi_start_processing(void       *send_info,
1058 				ipmi_smi_t intf)
1059 {
1060 	struct smi_info *new_smi = send_info;
1061 	int             enable = 0;
1062 
1063 	new_smi->intf = intf;
1064 
1065 	/* Try to claim any interrupts. */
1066 	if (new_smi->irq_setup)
1067 		new_smi->irq_setup(new_smi);
1068 
1069 	/* Set up the timer that drives the interface. */
1070 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1071 	new_smi->last_timeout_jiffies = jiffies;
1072 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1073 
1074 	/*
1075 	 * Check if the user forcefully enabled the daemon.
1076 	 */
1077 	if (new_smi->intf_num < num_force_kipmid)
1078 		enable = force_kipmid[new_smi->intf_num];
1079 	/*
1080 	 * The BT interface is efficient enough to not need a thread,
1081 	 * and there is no need for a thread if we have interrupts.
1082 	 */
1083 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1084 		enable = 1;
1085 
1086 	if (enable) {
1087 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1088 					      "kipmi%d", new_smi->intf_num);
1089 		if (IS_ERR(new_smi->thread)) {
1090 			printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1091 			       " kernel thread due to error %ld, only using"
1092 			       " timers to drive the interface\n",
1093 			       PTR_ERR(new_smi->thread));
1094 			new_smi->thread = NULL;
1095 		}
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 static void set_maintenance_mode(void *send_info, int enable)
1102 {
1103 	struct smi_info   *smi_info = send_info;
1104 
1105 	if (!enable)
1106 		atomic_set(&smi_info->req_events, 0);
1107 }
1108 
1109 static struct ipmi_smi_handlers handlers = {
1110 	.owner                  = THIS_MODULE,
1111 	.start_processing       = smi_start_processing,
1112 	.sender			= sender,
1113 	.request_events		= request_events,
1114 	.set_maintenance_mode   = set_maintenance_mode,
1115 	.set_run_to_completion  = set_run_to_completion,
1116 	.poll			= poll,
1117 };
1118 
1119 /*
1120  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1121  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1122  */
1123 
1124 static LIST_HEAD(smi_infos);
1125 static DEFINE_MUTEX(smi_infos_lock);
1126 static int smi_num; /* Used to sequence the SMIs */
1127 
1128 #define DEFAULT_REGSPACING	1
1129 #define DEFAULT_REGSIZE		1
1130 
1131 static int           si_trydefaults = 1;
1132 static char          *si_type[SI_MAX_PARMS];
1133 #define MAX_SI_TYPE_STR 30
1134 static char          si_type_str[MAX_SI_TYPE_STR];
1135 static unsigned long addrs[SI_MAX_PARMS];
1136 static unsigned int num_addrs;
1137 static unsigned int  ports[SI_MAX_PARMS];
1138 static unsigned int num_ports;
1139 static int           irqs[SI_MAX_PARMS];
1140 static unsigned int num_irqs;
1141 static int           regspacings[SI_MAX_PARMS];
1142 static unsigned int num_regspacings;
1143 static int           regsizes[SI_MAX_PARMS];
1144 static unsigned int num_regsizes;
1145 static int           regshifts[SI_MAX_PARMS];
1146 static unsigned int num_regshifts;
1147 static int slave_addrs[SI_MAX_PARMS];
1148 static unsigned int num_slave_addrs;
1149 
1150 #define IPMI_IO_ADDR_SPACE  0
1151 #define IPMI_MEM_ADDR_SPACE 1
1152 static char *addr_space_to_str[] = { "i/o", "mem" };
1153 
1154 static int hotmod_handler(const char *val, struct kernel_param *kp);
1155 
1156 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1157 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1158 		 " Documentation/IPMI.txt in the kernel sources for the"
1159 		 " gory details.");
1160 
1161 module_param_named(trydefaults, si_trydefaults, bool, 0);
1162 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1163 		 " default scan of the KCS and SMIC interface at the standard"
1164 		 " address");
1165 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1166 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1167 		 " interface separated by commas.  The types are 'kcs',"
1168 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1169 		 " the first interface to kcs and the second to bt");
1170 module_param_array(addrs, ulong, &num_addrs, 0);
1171 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1172 		 " addresses separated by commas.  Only use if an interface"
1173 		 " is in memory.  Otherwise, set it to zero or leave"
1174 		 " it blank.");
1175 module_param_array(ports, uint, &num_ports, 0);
1176 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1177 		 " addresses separated by commas.  Only use if an interface"
1178 		 " is a port.  Otherwise, set it to zero or leave"
1179 		 " it blank.");
1180 module_param_array(irqs, int, &num_irqs, 0);
1181 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1182 		 " addresses separated by commas.  Only use if an interface"
1183 		 " has an interrupt.  Otherwise, set it to zero or leave"
1184 		 " it blank.");
1185 module_param_array(regspacings, int, &num_regspacings, 0);
1186 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1187 		 " and each successive register used by the interface.  For"
1188 		 " instance, if the start address is 0xca2 and the spacing"
1189 		 " is 2, then the second address is at 0xca4.  Defaults"
1190 		 " to 1.");
1191 module_param_array(regsizes, int, &num_regsizes, 0);
1192 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1193 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1194 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1195 		 " the 8-bit IPMI register has to be read from a larger"
1196 		 " register.");
1197 module_param_array(regshifts, int, &num_regshifts, 0);
1198 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1199 		 " IPMI register, in bits.  For instance, if the data"
1200 		 " is read from a 32-bit word and the IPMI data is in"
1201 		 " bit 8-15, then the shift would be 8");
1202 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1203 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1204 		 " the controller.  Normally this is 0x20, but can be"
1205 		 " overridden by this parm.  This is an array indexed"
1206 		 " by interface number.");
1207 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1208 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1209 		 " disabled(0).  Normally the IPMI driver auto-detects"
1210 		 " this, but the value may be overridden by this parm.");
1211 module_param(unload_when_empty, int, 0);
1212 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1213 		 " specified or found, default is 1.  Setting to 0"
1214 		 " is useful for hot add of devices using hotmod.");
1215 
1216 
1217 static void std_irq_cleanup(struct smi_info *info)
1218 {
1219 	if (info->si_type == SI_BT)
1220 		/* Disable the interrupt in the BT interface. */
1221 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1222 	free_irq(info->irq, info);
1223 }
1224 
1225 static int std_irq_setup(struct smi_info *info)
1226 {
1227 	int rv;
1228 
1229 	if (!info->irq)
1230 		return 0;
1231 
1232 	if (info->si_type == SI_BT) {
1233 		rv = request_irq(info->irq,
1234 				 si_bt_irq_handler,
1235 				 IRQF_SHARED | IRQF_DISABLED,
1236 				 DEVICE_NAME,
1237 				 info);
1238 		if (!rv)
1239 			/* Enable the interrupt in the BT interface. */
1240 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1241 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1242 	} else
1243 		rv = request_irq(info->irq,
1244 				 si_irq_handler,
1245 				 IRQF_SHARED | IRQF_DISABLED,
1246 				 DEVICE_NAME,
1247 				 info);
1248 	if (rv) {
1249 		printk(KERN_WARNING
1250 		       "ipmi_si: %s unable to claim interrupt %d,"
1251 		       " running polled\n",
1252 		       DEVICE_NAME, info->irq);
1253 		info->irq = 0;
1254 	} else {
1255 		info->irq_cleanup = std_irq_cleanup;
1256 		printk("  Using irq %d\n", info->irq);
1257 	}
1258 
1259 	return rv;
1260 }
1261 
1262 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1263 {
1264 	unsigned int addr = io->addr_data;
1265 
1266 	return inb(addr + (offset * io->regspacing));
1267 }
1268 
1269 static void port_outb(struct si_sm_io *io, unsigned int offset,
1270 		      unsigned char b)
1271 {
1272 	unsigned int addr = io->addr_data;
1273 
1274 	outb(b, addr + (offset * io->regspacing));
1275 }
1276 
1277 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1278 {
1279 	unsigned int addr = io->addr_data;
1280 
1281 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1282 }
1283 
1284 static void port_outw(struct si_sm_io *io, unsigned int offset,
1285 		      unsigned char b)
1286 {
1287 	unsigned int addr = io->addr_data;
1288 
1289 	outw(b << io->regshift, addr + (offset * io->regspacing));
1290 }
1291 
1292 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1293 {
1294 	unsigned int addr = io->addr_data;
1295 
1296 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1297 }
1298 
1299 static void port_outl(struct si_sm_io *io, unsigned int offset,
1300 		      unsigned char b)
1301 {
1302 	unsigned int addr = io->addr_data;
1303 
1304 	outl(b << io->regshift, addr+(offset * io->regspacing));
1305 }
1306 
1307 static void port_cleanup(struct smi_info *info)
1308 {
1309 	unsigned int addr = info->io.addr_data;
1310 	int          idx;
1311 
1312 	if (addr) {
1313 		for (idx = 0; idx < info->io_size; idx++)
1314 			release_region(addr + idx * info->io.regspacing,
1315 				       info->io.regsize);
1316 	}
1317 }
1318 
1319 static int port_setup(struct smi_info *info)
1320 {
1321 	unsigned int addr = info->io.addr_data;
1322 	int          idx;
1323 
1324 	if (!addr)
1325 		return -ENODEV;
1326 
1327 	info->io_cleanup = port_cleanup;
1328 
1329 	/*
1330 	 * Figure out the actual inb/inw/inl/etc routine to use based
1331 	 * upon the register size.
1332 	 */
1333 	switch (info->io.regsize) {
1334 	case 1:
1335 		info->io.inputb = port_inb;
1336 		info->io.outputb = port_outb;
1337 		break;
1338 	case 2:
1339 		info->io.inputb = port_inw;
1340 		info->io.outputb = port_outw;
1341 		break;
1342 	case 4:
1343 		info->io.inputb = port_inl;
1344 		info->io.outputb = port_outl;
1345 		break;
1346 	default:
1347 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1348 		       info->io.regsize);
1349 		return -EINVAL;
1350 	}
1351 
1352 	/*
1353 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1354 	 * tables.  This causes problems when trying to register the
1355 	 * entire I/O region.  Therefore we must register each I/O
1356 	 * port separately.
1357 	 */
1358 	for (idx = 0; idx < info->io_size; idx++) {
1359 		if (request_region(addr + idx * info->io.regspacing,
1360 				   info->io.regsize, DEVICE_NAME) == NULL) {
1361 			/* Undo allocations */
1362 			while (idx--) {
1363 				release_region(addr + idx * info->io.regspacing,
1364 					       info->io.regsize);
1365 			}
1366 			return -EIO;
1367 		}
1368 	}
1369 	return 0;
1370 }
1371 
1372 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1373 {
1374 	return readb((io->addr)+(offset * io->regspacing));
1375 }
1376 
1377 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1378 		     unsigned char b)
1379 {
1380 	writeb(b, (io->addr)+(offset * io->regspacing));
1381 }
1382 
1383 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1384 {
1385 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1386 		& 0xff;
1387 }
1388 
1389 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1390 		     unsigned char b)
1391 {
1392 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1393 }
1394 
1395 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1396 {
1397 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1398 		& 0xff;
1399 }
1400 
1401 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1402 		     unsigned char b)
1403 {
1404 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1405 }
1406 
1407 #ifdef readq
1408 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1409 {
1410 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1411 		& 0xff;
1412 }
1413 
1414 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1415 		     unsigned char b)
1416 {
1417 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1418 }
1419 #endif
1420 
1421 static void mem_cleanup(struct smi_info *info)
1422 {
1423 	unsigned long addr = info->io.addr_data;
1424 	int           mapsize;
1425 
1426 	if (info->io.addr) {
1427 		iounmap(info->io.addr);
1428 
1429 		mapsize = ((info->io_size * info->io.regspacing)
1430 			   - (info->io.regspacing - info->io.regsize));
1431 
1432 		release_mem_region(addr, mapsize);
1433 	}
1434 }
1435 
1436 static int mem_setup(struct smi_info *info)
1437 {
1438 	unsigned long addr = info->io.addr_data;
1439 	int           mapsize;
1440 
1441 	if (!addr)
1442 		return -ENODEV;
1443 
1444 	info->io_cleanup = mem_cleanup;
1445 
1446 	/*
1447 	 * Figure out the actual readb/readw/readl/etc routine to use based
1448 	 * upon the register size.
1449 	 */
1450 	switch (info->io.regsize) {
1451 	case 1:
1452 		info->io.inputb = intf_mem_inb;
1453 		info->io.outputb = intf_mem_outb;
1454 		break;
1455 	case 2:
1456 		info->io.inputb = intf_mem_inw;
1457 		info->io.outputb = intf_mem_outw;
1458 		break;
1459 	case 4:
1460 		info->io.inputb = intf_mem_inl;
1461 		info->io.outputb = intf_mem_outl;
1462 		break;
1463 #ifdef readq
1464 	case 8:
1465 		info->io.inputb = mem_inq;
1466 		info->io.outputb = mem_outq;
1467 		break;
1468 #endif
1469 	default:
1470 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1471 		       info->io.regsize);
1472 		return -EINVAL;
1473 	}
1474 
1475 	/*
1476 	 * Calculate the total amount of memory to claim.  This is an
1477 	 * unusual looking calculation, but it avoids claiming any
1478 	 * more memory than it has to.  It will claim everything
1479 	 * between the first address to the end of the last full
1480 	 * register.
1481 	 */
1482 	mapsize = ((info->io_size * info->io.regspacing)
1483 		   - (info->io.regspacing - info->io.regsize));
1484 
1485 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1486 		return -EIO;
1487 
1488 	info->io.addr = ioremap(addr, mapsize);
1489 	if (info->io.addr == NULL) {
1490 		release_mem_region(addr, mapsize);
1491 		return -EIO;
1492 	}
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1498  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1499  * Options are:
1500  *   rsp=<regspacing>
1501  *   rsi=<regsize>
1502  *   rsh=<regshift>
1503  *   irq=<irq>
1504  *   ipmb=<ipmb addr>
1505  */
1506 enum hotmod_op { HM_ADD, HM_REMOVE };
1507 struct hotmod_vals {
1508 	char *name;
1509 	int  val;
1510 };
1511 static struct hotmod_vals hotmod_ops[] = {
1512 	{ "add",	HM_ADD },
1513 	{ "remove",	HM_REMOVE },
1514 	{ NULL }
1515 };
1516 static struct hotmod_vals hotmod_si[] = {
1517 	{ "kcs",	SI_KCS },
1518 	{ "smic",	SI_SMIC },
1519 	{ "bt",		SI_BT },
1520 	{ NULL }
1521 };
1522 static struct hotmod_vals hotmod_as[] = {
1523 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1524 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1525 	{ NULL }
1526 };
1527 
1528 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1529 {
1530 	char *s;
1531 	int  i;
1532 
1533 	s = strchr(*curr, ',');
1534 	if (!s) {
1535 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1536 		return -EINVAL;
1537 	}
1538 	*s = '\0';
1539 	s++;
1540 	for (i = 0; hotmod_ops[i].name; i++) {
1541 		if (strcmp(*curr, v[i].name) == 0) {
1542 			*val = v[i].val;
1543 			*curr = s;
1544 			return 0;
1545 		}
1546 	}
1547 
1548 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1549 	return -EINVAL;
1550 }
1551 
1552 static int check_hotmod_int_op(const char *curr, const char *option,
1553 			       const char *name, int *val)
1554 {
1555 	char *n;
1556 
1557 	if (strcmp(curr, name) == 0) {
1558 		if (!option) {
1559 			printk(KERN_WARNING PFX
1560 			       "No option given for '%s'\n",
1561 			       curr);
1562 			return -EINVAL;
1563 		}
1564 		*val = simple_strtoul(option, &n, 0);
1565 		if ((*n != '\0') || (*option == '\0')) {
1566 			printk(KERN_WARNING PFX
1567 			       "Bad option given for '%s'\n",
1568 			       curr);
1569 			return -EINVAL;
1570 		}
1571 		return 1;
1572 	}
1573 	return 0;
1574 }
1575 
1576 static int hotmod_handler(const char *val, struct kernel_param *kp)
1577 {
1578 	char *str = kstrdup(val, GFP_KERNEL);
1579 	int  rv;
1580 	char *next, *curr, *s, *n, *o;
1581 	enum hotmod_op op;
1582 	enum si_type si_type;
1583 	int  addr_space;
1584 	unsigned long addr;
1585 	int regspacing;
1586 	int regsize;
1587 	int regshift;
1588 	int irq;
1589 	int ipmb;
1590 	int ival;
1591 	int len;
1592 	struct smi_info *info;
1593 
1594 	if (!str)
1595 		return -ENOMEM;
1596 
1597 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1598 	len = strlen(str);
1599 	ival = len - 1;
1600 	while ((ival >= 0) && isspace(str[ival])) {
1601 		str[ival] = '\0';
1602 		ival--;
1603 	}
1604 
1605 	for (curr = str; curr; curr = next) {
1606 		regspacing = 1;
1607 		regsize = 1;
1608 		regshift = 0;
1609 		irq = 0;
1610 		ipmb = 0x20;
1611 
1612 		next = strchr(curr, ':');
1613 		if (next) {
1614 			*next = '\0';
1615 			next++;
1616 		}
1617 
1618 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1619 		if (rv)
1620 			break;
1621 		op = ival;
1622 
1623 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1624 		if (rv)
1625 			break;
1626 		si_type = ival;
1627 
1628 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1629 		if (rv)
1630 			break;
1631 
1632 		s = strchr(curr, ',');
1633 		if (s) {
1634 			*s = '\0';
1635 			s++;
1636 		}
1637 		addr = simple_strtoul(curr, &n, 0);
1638 		if ((*n != '\0') || (*curr == '\0')) {
1639 			printk(KERN_WARNING PFX "Invalid hotmod address"
1640 			       " '%s'\n", curr);
1641 			break;
1642 		}
1643 
1644 		while (s) {
1645 			curr = s;
1646 			s = strchr(curr, ',');
1647 			if (s) {
1648 				*s = '\0';
1649 				s++;
1650 			}
1651 			o = strchr(curr, '=');
1652 			if (o) {
1653 				*o = '\0';
1654 				o++;
1655 			}
1656 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1657 			if (rv < 0)
1658 				goto out;
1659 			else if (rv)
1660 				continue;
1661 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1662 			if (rv < 0)
1663 				goto out;
1664 			else if (rv)
1665 				continue;
1666 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1667 			if (rv < 0)
1668 				goto out;
1669 			else if (rv)
1670 				continue;
1671 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1672 			if (rv < 0)
1673 				goto out;
1674 			else if (rv)
1675 				continue;
1676 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1677 			if (rv < 0)
1678 				goto out;
1679 			else if (rv)
1680 				continue;
1681 
1682 			rv = -EINVAL;
1683 			printk(KERN_WARNING PFX
1684 			       "Invalid hotmod option '%s'\n",
1685 			       curr);
1686 			goto out;
1687 		}
1688 
1689 		if (op == HM_ADD) {
1690 			info = kzalloc(sizeof(*info), GFP_KERNEL);
1691 			if (!info) {
1692 				rv = -ENOMEM;
1693 				goto out;
1694 			}
1695 
1696 			info->addr_source = "hotmod";
1697 			info->si_type = si_type;
1698 			info->io.addr_data = addr;
1699 			info->io.addr_type = addr_space;
1700 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1701 				info->io_setup = mem_setup;
1702 			else
1703 				info->io_setup = port_setup;
1704 
1705 			info->io.addr = NULL;
1706 			info->io.regspacing = regspacing;
1707 			if (!info->io.regspacing)
1708 				info->io.regspacing = DEFAULT_REGSPACING;
1709 			info->io.regsize = regsize;
1710 			if (!info->io.regsize)
1711 				info->io.regsize = DEFAULT_REGSPACING;
1712 			info->io.regshift = regshift;
1713 			info->irq = irq;
1714 			if (info->irq)
1715 				info->irq_setup = std_irq_setup;
1716 			info->slave_addr = ipmb;
1717 
1718 			try_smi_init(info);
1719 		} else {
1720 			/* remove */
1721 			struct smi_info *e, *tmp_e;
1722 
1723 			mutex_lock(&smi_infos_lock);
1724 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1725 				if (e->io.addr_type != addr_space)
1726 					continue;
1727 				if (e->si_type != si_type)
1728 					continue;
1729 				if (e->io.addr_data == addr)
1730 					cleanup_one_si(e);
1731 			}
1732 			mutex_unlock(&smi_infos_lock);
1733 		}
1734 	}
1735 	rv = len;
1736  out:
1737 	kfree(str);
1738 	return rv;
1739 }
1740 
1741 static __devinit void hardcode_find_bmc(void)
1742 {
1743 	int             i;
1744 	struct smi_info *info;
1745 
1746 	for (i = 0; i < SI_MAX_PARMS; i++) {
1747 		if (!ports[i] && !addrs[i])
1748 			continue;
1749 
1750 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1751 		if (!info)
1752 			return;
1753 
1754 		info->addr_source = "hardcoded";
1755 
1756 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1757 			info->si_type = SI_KCS;
1758 		} else if (strcmp(si_type[i], "smic") == 0) {
1759 			info->si_type = SI_SMIC;
1760 		} else if (strcmp(si_type[i], "bt") == 0) {
1761 			info->si_type = SI_BT;
1762 		} else {
1763 			printk(KERN_WARNING
1764 			       "ipmi_si: Interface type specified "
1765 			       "for interface %d, was invalid: %s\n",
1766 			       i, si_type[i]);
1767 			kfree(info);
1768 			continue;
1769 		}
1770 
1771 		if (ports[i]) {
1772 			/* An I/O port */
1773 			info->io_setup = port_setup;
1774 			info->io.addr_data = ports[i];
1775 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1776 		} else if (addrs[i]) {
1777 			/* A memory port */
1778 			info->io_setup = mem_setup;
1779 			info->io.addr_data = addrs[i];
1780 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1781 		} else {
1782 			printk(KERN_WARNING
1783 			       "ipmi_si: Interface type specified "
1784 			       "for interface %d, "
1785 			       "but port and address were not set or "
1786 			       "set to zero.\n", i);
1787 			kfree(info);
1788 			continue;
1789 		}
1790 
1791 		info->io.addr = NULL;
1792 		info->io.regspacing = regspacings[i];
1793 		if (!info->io.regspacing)
1794 			info->io.regspacing = DEFAULT_REGSPACING;
1795 		info->io.regsize = regsizes[i];
1796 		if (!info->io.regsize)
1797 			info->io.regsize = DEFAULT_REGSPACING;
1798 		info->io.regshift = regshifts[i];
1799 		info->irq = irqs[i];
1800 		if (info->irq)
1801 			info->irq_setup = std_irq_setup;
1802 
1803 		try_smi_init(info);
1804 	}
1805 }
1806 
1807 #ifdef CONFIG_ACPI
1808 
1809 #include <linux/acpi.h>
1810 
1811 /*
1812  * Once we get an ACPI failure, we don't try any more, because we go
1813  * through the tables sequentially.  Once we don't find a table, there
1814  * are no more.
1815  */
1816 static int acpi_failure;
1817 
1818 /* For GPE-type interrupts. */
1819 static u32 ipmi_acpi_gpe(void *context)
1820 {
1821 	struct smi_info *smi_info = context;
1822 	unsigned long   flags;
1823 #ifdef DEBUG_TIMING
1824 	struct timeval t;
1825 #endif
1826 
1827 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1828 
1829 	smi_inc_stat(smi_info, interrupts);
1830 
1831 #ifdef DEBUG_TIMING
1832 	do_gettimeofday(&t);
1833 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1834 #endif
1835 	smi_event_handler(smi_info, 0);
1836 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1837 
1838 	return ACPI_INTERRUPT_HANDLED;
1839 }
1840 
1841 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1842 {
1843 	if (!info->irq)
1844 		return;
1845 
1846 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1847 }
1848 
1849 static int acpi_gpe_irq_setup(struct smi_info *info)
1850 {
1851 	acpi_status status;
1852 
1853 	if (!info->irq)
1854 		return 0;
1855 
1856 	/* FIXME - is level triggered right? */
1857 	status = acpi_install_gpe_handler(NULL,
1858 					  info->irq,
1859 					  ACPI_GPE_LEVEL_TRIGGERED,
1860 					  &ipmi_acpi_gpe,
1861 					  info);
1862 	if (status != AE_OK) {
1863 		printk(KERN_WARNING
1864 		       "ipmi_si: %s unable to claim ACPI GPE %d,"
1865 		       " running polled\n",
1866 		       DEVICE_NAME, info->irq);
1867 		info->irq = 0;
1868 		return -EINVAL;
1869 	} else {
1870 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1871 		printk("  Using ACPI GPE %d\n", info->irq);
1872 		return 0;
1873 	}
1874 }
1875 
1876 /*
1877  * Defined at
1878  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1879  * Docs/TechPapers/IA64/hpspmi.pdf
1880  */
1881 struct SPMITable {
1882 	s8	Signature[4];
1883 	u32	Length;
1884 	u8	Revision;
1885 	u8	Checksum;
1886 	s8	OEMID[6];
1887 	s8	OEMTableID[8];
1888 	s8	OEMRevision[4];
1889 	s8	CreatorID[4];
1890 	s8	CreatorRevision[4];
1891 	u8	InterfaceType;
1892 	u8	IPMIlegacy;
1893 	s16	SpecificationRevision;
1894 
1895 	/*
1896 	 * Bit 0 - SCI interrupt supported
1897 	 * Bit 1 - I/O APIC/SAPIC
1898 	 */
1899 	u8	InterruptType;
1900 
1901 	/*
1902 	 * If bit 0 of InterruptType is set, then this is the SCI
1903 	 * interrupt in the GPEx_STS register.
1904 	 */
1905 	u8	GPE;
1906 
1907 	s16	Reserved;
1908 
1909 	/*
1910 	 * If bit 1 of InterruptType is set, then this is the I/O
1911 	 * APIC/SAPIC interrupt.
1912 	 */
1913 	u32	GlobalSystemInterrupt;
1914 
1915 	/* The actual register address. */
1916 	struct acpi_generic_address addr;
1917 
1918 	u8	UID[4];
1919 
1920 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1921 };
1922 
1923 static __devinit int try_init_spmi(struct SPMITable *spmi)
1924 {
1925 	struct smi_info  *info;
1926 	u8 		 addr_space;
1927 
1928 	if (spmi->IPMIlegacy != 1) {
1929 	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1930 	    return -ENODEV;
1931 	}
1932 
1933 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1934 		addr_space = IPMI_MEM_ADDR_SPACE;
1935 	else
1936 		addr_space = IPMI_IO_ADDR_SPACE;
1937 
1938 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1939 	if (!info) {
1940 		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1941 		return -ENOMEM;
1942 	}
1943 
1944 	info->addr_source = "SPMI";
1945 
1946 	/* Figure out the interface type. */
1947 	switch (spmi->InterfaceType) {
1948 	case 1:	/* KCS */
1949 		info->si_type = SI_KCS;
1950 		break;
1951 	case 2:	/* SMIC */
1952 		info->si_type = SI_SMIC;
1953 		break;
1954 	case 3:	/* BT */
1955 		info->si_type = SI_BT;
1956 		break;
1957 	default:
1958 		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1959 			spmi->InterfaceType);
1960 		kfree(info);
1961 		return -EIO;
1962 	}
1963 
1964 	if (spmi->InterruptType & 1) {
1965 		/* We've got a GPE interrupt. */
1966 		info->irq = spmi->GPE;
1967 		info->irq_setup = acpi_gpe_irq_setup;
1968 	} else if (spmi->InterruptType & 2) {
1969 		/* We've got an APIC/SAPIC interrupt. */
1970 		info->irq = spmi->GlobalSystemInterrupt;
1971 		info->irq_setup = std_irq_setup;
1972 	} else {
1973 		/* Use the default interrupt setting. */
1974 		info->irq = 0;
1975 		info->irq_setup = NULL;
1976 	}
1977 
1978 	if (spmi->addr.bit_width) {
1979 		/* A (hopefully) properly formed register bit width. */
1980 		info->io.regspacing = spmi->addr.bit_width / 8;
1981 	} else {
1982 		info->io.regspacing = DEFAULT_REGSPACING;
1983 	}
1984 	info->io.regsize = info->io.regspacing;
1985 	info->io.regshift = spmi->addr.bit_offset;
1986 
1987 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1988 		info->io_setup = mem_setup;
1989 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1990 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1991 		info->io_setup = port_setup;
1992 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
1993 	} else {
1994 		kfree(info);
1995 		printk(KERN_WARNING
1996 		       "ipmi_si: Unknown ACPI I/O Address type\n");
1997 		return -EIO;
1998 	}
1999 	info->io.addr_data = spmi->addr.address;
2000 
2001 	try_smi_init(info);
2002 
2003 	return 0;
2004 }
2005 
2006 static __devinit void spmi_find_bmc(void)
2007 {
2008 	acpi_status      status;
2009 	struct SPMITable *spmi;
2010 	int              i;
2011 
2012 	if (acpi_disabled)
2013 		return;
2014 
2015 	if (acpi_failure)
2016 		return;
2017 
2018 	for (i = 0; ; i++) {
2019 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2020 					(struct acpi_table_header **)&spmi);
2021 		if (status != AE_OK)
2022 			return;
2023 
2024 		try_init_spmi(spmi);
2025 	}
2026 }
2027 
2028 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2029 				    const struct pnp_device_id *dev_id)
2030 {
2031 	struct acpi_device *acpi_dev;
2032 	struct smi_info *info;
2033 	acpi_handle handle;
2034 	acpi_status status;
2035 	unsigned long long tmp;
2036 
2037 	acpi_dev = pnp_acpi_device(dev);
2038 	if (!acpi_dev)
2039 		return -ENODEV;
2040 
2041 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2042 	if (!info)
2043 		return -ENOMEM;
2044 
2045 	info->addr_source = "ACPI";
2046 
2047 	handle = acpi_dev->handle;
2048 
2049 	/* _IFT tells us the interface type: KCS, BT, etc */
2050 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2051 	if (ACPI_FAILURE(status))
2052 		goto err_free;
2053 
2054 	switch (tmp) {
2055 	case 1:
2056 		info->si_type = SI_KCS;
2057 		break;
2058 	case 2:
2059 		info->si_type = SI_SMIC;
2060 		break;
2061 	case 3:
2062 		info->si_type = SI_BT;
2063 		break;
2064 	default:
2065 		dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2066 		goto err_free;
2067 	}
2068 
2069 	if (pnp_port_valid(dev, 0)) {
2070 		info->io_setup = port_setup;
2071 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2072 		info->io.addr_data = pnp_port_start(dev, 0);
2073 	} else if (pnp_mem_valid(dev, 0)) {
2074 		info->io_setup = mem_setup;
2075 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2076 		info->io.addr_data = pnp_mem_start(dev, 0);
2077 	} else {
2078 		dev_err(&dev->dev, "no I/O or memory address\n");
2079 		goto err_free;
2080 	}
2081 
2082 	info->io.regspacing = DEFAULT_REGSPACING;
2083 	info->io.regsize = DEFAULT_REGSPACING;
2084 	info->io.regshift = 0;
2085 
2086 	/* If _GPE exists, use it; otherwise use standard interrupts */
2087 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2088 	if (ACPI_SUCCESS(status)) {
2089 		info->irq = tmp;
2090 		info->irq_setup = acpi_gpe_irq_setup;
2091 	} else if (pnp_irq_valid(dev, 0)) {
2092 		info->irq = pnp_irq(dev, 0);
2093 		info->irq_setup = std_irq_setup;
2094 	}
2095 
2096 	info->dev = &acpi_dev->dev;
2097 	pnp_set_drvdata(dev, info);
2098 
2099 	return try_smi_init(info);
2100 
2101 err_free:
2102 	kfree(info);
2103 	return -EINVAL;
2104 }
2105 
2106 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2107 {
2108 	struct smi_info *info = pnp_get_drvdata(dev);
2109 
2110 	cleanup_one_si(info);
2111 }
2112 
2113 static const struct pnp_device_id pnp_dev_table[] = {
2114 	{"IPI0001", 0},
2115 	{"", 0},
2116 };
2117 
2118 static struct pnp_driver ipmi_pnp_driver = {
2119 	.name		= DEVICE_NAME,
2120 	.probe		= ipmi_pnp_probe,
2121 	.remove		= __devexit_p(ipmi_pnp_remove),
2122 	.id_table	= pnp_dev_table,
2123 };
2124 #endif
2125 
2126 #ifdef CONFIG_DMI
2127 struct dmi_ipmi_data {
2128 	u8   		type;
2129 	u8   		addr_space;
2130 	unsigned long	base_addr;
2131 	u8   		irq;
2132 	u8              offset;
2133 	u8              slave_addr;
2134 };
2135 
2136 static int __devinit decode_dmi(const struct dmi_header *dm,
2137 				struct dmi_ipmi_data *dmi)
2138 {
2139 	const u8	*data = (const u8 *)dm;
2140 	unsigned long  	base_addr;
2141 	u8		reg_spacing;
2142 	u8              len = dm->length;
2143 
2144 	dmi->type = data[4];
2145 
2146 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2147 	if (len >= 0x11) {
2148 		if (base_addr & 1) {
2149 			/* I/O */
2150 			base_addr &= 0xFFFE;
2151 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2152 		} else
2153 			/* Memory */
2154 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2155 
2156 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2157 		   is odd. */
2158 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2159 
2160 		dmi->irq = data[0x11];
2161 
2162 		/* The top two bits of byte 0x10 hold the register spacing. */
2163 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2164 		switch (reg_spacing) {
2165 		case 0x00: /* Byte boundaries */
2166 		    dmi->offset = 1;
2167 		    break;
2168 		case 0x01: /* 32-bit boundaries */
2169 		    dmi->offset = 4;
2170 		    break;
2171 		case 0x02: /* 16-byte boundaries */
2172 		    dmi->offset = 16;
2173 		    break;
2174 		default:
2175 		    /* Some other interface, just ignore it. */
2176 		    return -EIO;
2177 		}
2178 	} else {
2179 		/* Old DMI spec. */
2180 		/*
2181 		 * Note that technically, the lower bit of the base
2182 		 * address should be 1 if the address is I/O and 0 if
2183 		 * the address is in memory.  So many systems get that
2184 		 * wrong (and all that I have seen are I/O) so we just
2185 		 * ignore that bit and assume I/O.  Systems that use
2186 		 * memory should use the newer spec, anyway.
2187 		 */
2188 		dmi->base_addr = base_addr & 0xfffe;
2189 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2190 		dmi->offset = 1;
2191 	}
2192 
2193 	dmi->slave_addr = data[6];
2194 
2195 	return 0;
2196 }
2197 
2198 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2199 {
2200 	struct smi_info *info;
2201 
2202 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2203 	if (!info) {
2204 		printk(KERN_ERR
2205 		       "ipmi_si: Could not allocate SI data\n");
2206 		return;
2207 	}
2208 
2209 	info->addr_source = "SMBIOS";
2210 
2211 	switch (ipmi_data->type) {
2212 	case 0x01: /* KCS */
2213 		info->si_type = SI_KCS;
2214 		break;
2215 	case 0x02: /* SMIC */
2216 		info->si_type = SI_SMIC;
2217 		break;
2218 	case 0x03: /* BT */
2219 		info->si_type = SI_BT;
2220 		break;
2221 	default:
2222 		kfree(info);
2223 		return;
2224 	}
2225 
2226 	switch (ipmi_data->addr_space) {
2227 	case IPMI_MEM_ADDR_SPACE:
2228 		info->io_setup = mem_setup;
2229 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2230 		break;
2231 
2232 	case IPMI_IO_ADDR_SPACE:
2233 		info->io_setup = port_setup;
2234 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235 		break;
2236 
2237 	default:
2238 		kfree(info);
2239 		printk(KERN_WARNING
2240 		       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2241 		       ipmi_data->addr_space);
2242 		return;
2243 	}
2244 	info->io.addr_data = ipmi_data->base_addr;
2245 
2246 	info->io.regspacing = ipmi_data->offset;
2247 	if (!info->io.regspacing)
2248 		info->io.regspacing = DEFAULT_REGSPACING;
2249 	info->io.regsize = DEFAULT_REGSPACING;
2250 	info->io.regshift = 0;
2251 
2252 	info->slave_addr = ipmi_data->slave_addr;
2253 
2254 	info->irq = ipmi_data->irq;
2255 	if (info->irq)
2256 		info->irq_setup = std_irq_setup;
2257 
2258 	try_smi_init(info);
2259 }
2260 
2261 static void __devinit dmi_find_bmc(void)
2262 {
2263 	const struct dmi_device *dev = NULL;
2264 	struct dmi_ipmi_data data;
2265 	int                  rv;
2266 
2267 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2268 		memset(&data, 0, sizeof(data));
2269 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2270 				&data);
2271 		if (!rv)
2272 			try_init_dmi(&data);
2273 	}
2274 }
2275 #endif /* CONFIG_DMI */
2276 
2277 #ifdef CONFIG_PCI
2278 
2279 #define PCI_ERMC_CLASSCODE		0x0C0700
2280 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2281 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2282 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2283 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2284 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2285 
2286 #define PCI_HP_VENDOR_ID    0x103C
2287 #define PCI_MMC_DEVICE_ID   0x121A
2288 #define PCI_MMC_ADDR_CW     0x10
2289 
2290 static void ipmi_pci_cleanup(struct smi_info *info)
2291 {
2292 	struct pci_dev *pdev = info->addr_source_data;
2293 
2294 	pci_disable_device(pdev);
2295 }
2296 
2297 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2298 				    const struct pci_device_id *ent)
2299 {
2300 	int rv;
2301 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2302 	struct smi_info *info;
2303 
2304 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2305 	if (!info)
2306 		return -ENOMEM;
2307 
2308 	info->addr_source = "PCI";
2309 
2310 	switch (class_type) {
2311 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2312 		info->si_type = SI_SMIC;
2313 		break;
2314 
2315 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2316 		info->si_type = SI_KCS;
2317 		break;
2318 
2319 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2320 		info->si_type = SI_BT;
2321 		break;
2322 
2323 	default:
2324 		kfree(info);
2325 		printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2326 		       pci_name(pdev), class_type);
2327 		return -ENOMEM;
2328 	}
2329 
2330 	rv = pci_enable_device(pdev);
2331 	if (rv) {
2332 		printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2333 		       pci_name(pdev));
2334 		kfree(info);
2335 		return rv;
2336 	}
2337 
2338 	info->addr_source_cleanup = ipmi_pci_cleanup;
2339 	info->addr_source_data = pdev;
2340 
2341 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2342 		info->io_setup = port_setup;
2343 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2344 	} else {
2345 		info->io_setup = mem_setup;
2346 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2347 	}
2348 	info->io.addr_data = pci_resource_start(pdev, 0);
2349 
2350 	info->io.regspacing = DEFAULT_REGSPACING;
2351 	info->io.regsize = DEFAULT_REGSPACING;
2352 	info->io.regshift = 0;
2353 
2354 	info->irq = pdev->irq;
2355 	if (info->irq)
2356 		info->irq_setup = std_irq_setup;
2357 
2358 	info->dev = &pdev->dev;
2359 	pci_set_drvdata(pdev, info);
2360 
2361 	return try_smi_init(info);
2362 }
2363 
2364 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2365 {
2366 	struct smi_info *info = pci_get_drvdata(pdev);
2367 	cleanup_one_si(info);
2368 }
2369 
2370 #ifdef CONFIG_PM
2371 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2372 {
2373 	return 0;
2374 }
2375 
2376 static int ipmi_pci_resume(struct pci_dev *pdev)
2377 {
2378 	return 0;
2379 }
2380 #endif
2381 
2382 static struct pci_device_id ipmi_pci_devices[] = {
2383 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2384 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2385 	{ 0, }
2386 };
2387 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2388 
2389 static struct pci_driver ipmi_pci_driver = {
2390 	.name =         DEVICE_NAME,
2391 	.id_table =     ipmi_pci_devices,
2392 	.probe =        ipmi_pci_probe,
2393 	.remove =       __devexit_p(ipmi_pci_remove),
2394 #ifdef CONFIG_PM
2395 	.suspend =      ipmi_pci_suspend,
2396 	.resume =       ipmi_pci_resume,
2397 #endif
2398 };
2399 #endif /* CONFIG_PCI */
2400 
2401 
2402 #ifdef CONFIG_PPC_OF
2403 static int __devinit ipmi_of_probe(struct of_device *dev,
2404 			 const struct of_device_id *match)
2405 {
2406 	struct smi_info *info;
2407 	struct resource resource;
2408 	const int *regsize, *regspacing, *regshift;
2409 	struct device_node *np = dev->node;
2410 	int ret;
2411 	int proplen;
2412 
2413 	dev_info(&dev->dev, PFX "probing via device tree\n");
2414 
2415 	ret = of_address_to_resource(np, 0, &resource);
2416 	if (ret) {
2417 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2418 		return ret;
2419 	}
2420 
2421 	regsize = of_get_property(np, "reg-size", &proplen);
2422 	if (regsize && proplen != 4) {
2423 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2424 		return -EINVAL;
2425 	}
2426 
2427 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2428 	if (regspacing && proplen != 4) {
2429 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2430 		return -EINVAL;
2431 	}
2432 
2433 	regshift = of_get_property(np, "reg-shift", &proplen);
2434 	if (regshift && proplen != 4) {
2435 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2436 		return -EINVAL;
2437 	}
2438 
2439 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2440 
2441 	if (!info) {
2442 		dev_err(&dev->dev,
2443 			PFX "could not allocate memory for OF probe\n");
2444 		return -ENOMEM;
2445 	}
2446 
2447 	info->si_type		= (enum si_type) match->data;
2448 	info->addr_source	= "device-tree";
2449 	info->irq_setup		= std_irq_setup;
2450 
2451 	if (resource.flags & IORESOURCE_IO) {
2452 		info->io_setup		= port_setup;
2453 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2454 	} else {
2455 		info->io_setup		= mem_setup;
2456 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2457 	}
2458 
2459 	info->io.addr_data	= resource.start;
2460 
2461 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2462 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2463 	info->io.regshift	= regshift ? *regshift : 0;
2464 
2465 	info->irq		= irq_of_parse_and_map(dev->node, 0);
2466 	info->dev		= &dev->dev;
2467 
2468 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2469 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2470 		info->irq);
2471 
2472 	dev_set_drvdata(&dev->dev, info);
2473 
2474 	return try_smi_init(info);
2475 }
2476 
2477 static int __devexit ipmi_of_remove(struct of_device *dev)
2478 {
2479 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2480 	return 0;
2481 }
2482 
2483 static struct of_device_id ipmi_match[] =
2484 {
2485 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2486 	  .data = (void *)(unsigned long) SI_KCS },
2487 	{ .type = "ipmi", .compatible = "ipmi-smic",
2488 	  .data = (void *)(unsigned long) SI_SMIC },
2489 	{ .type = "ipmi", .compatible = "ipmi-bt",
2490 	  .data = (void *)(unsigned long) SI_BT },
2491 	{},
2492 };
2493 
2494 static struct of_platform_driver ipmi_of_platform_driver = {
2495 	.name		= "ipmi",
2496 	.match_table	= ipmi_match,
2497 	.probe		= ipmi_of_probe,
2498 	.remove		= __devexit_p(ipmi_of_remove),
2499 };
2500 #endif /* CONFIG_PPC_OF */
2501 
2502 static int wait_for_msg_done(struct smi_info *smi_info)
2503 {
2504 	enum si_sm_result     smi_result;
2505 
2506 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2507 	for (;;) {
2508 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2509 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2510 			schedule_timeout_uninterruptible(1);
2511 			smi_result = smi_info->handlers->event(
2512 				smi_info->si_sm, 100);
2513 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2514 			smi_result = smi_info->handlers->event(
2515 				smi_info->si_sm, 0);
2516 		} else
2517 			break;
2518 	}
2519 	if (smi_result == SI_SM_HOSED)
2520 		/*
2521 		 * We couldn't get the state machine to run, so whatever's at
2522 		 * the port is probably not an IPMI SMI interface.
2523 		 */
2524 		return -ENODEV;
2525 
2526 	return 0;
2527 }
2528 
2529 static int try_get_dev_id(struct smi_info *smi_info)
2530 {
2531 	unsigned char         msg[2];
2532 	unsigned char         *resp;
2533 	unsigned long         resp_len;
2534 	int                   rv = 0;
2535 
2536 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2537 	if (!resp)
2538 		return -ENOMEM;
2539 
2540 	/*
2541 	 * Do a Get Device ID command, since it comes back with some
2542 	 * useful info.
2543 	 */
2544 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2545 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2546 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2547 
2548 	rv = wait_for_msg_done(smi_info);
2549 	if (rv)
2550 		goto out;
2551 
2552 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2553 						  resp, IPMI_MAX_MSG_LENGTH);
2554 
2555 	/* Check and record info from the get device id, in case we need it. */
2556 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2557 
2558  out:
2559 	kfree(resp);
2560 	return rv;
2561 }
2562 
2563 static int try_enable_event_buffer(struct smi_info *smi_info)
2564 {
2565 	unsigned char         msg[3];
2566 	unsigned char         *resp;
2567 	unsigned long         resp_len;
2568 	int                   rv = 0;
2569 
2570 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2571 	if (!resp)
2572 		return -ENOMEM;
2573 
2574 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2575 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2576 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2577 
2578 	rv = wait_for_msg_done(smi_info);
2579 	if (rv) {
2580 		printk(KERN_WARNING
2581 		       "ipmi_si: Error getting response from get global,"
2582 		       " enables command, the event buffer is not"
2583 		       " enabled.\n");
2584 		goto out;
2585 	}
2586 
2587 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2588 						  resp, IPMI_MAX_MSG_LENGTH);
2589 
2590 	if (resp_len < 4 ||
2591 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2592 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2593 			resp[2] != 0) {
2594 		printk(KERN_WARNING
2595 		       "ipmi_si: Invalid return from get global"
2596 		       " enables command, cannot enable the event"
2597 		       " buffer.\n");
2598 		rv = -EINVAL;
2599 		goto out;
2600 	}
2601 
2602 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2603 		/* buffer is already enabled, nothing to do. */
2604 		goto out;
2605 
2606 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2607 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2608 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2609 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2610 
2611 	rv = wait_for_msg_done(smi_info);
2612 	if (rv) {
2613 		printk(KERN_WARNING
2614 		       "ipmi_si: Error getting response from set global,"
2615 		       " enables command, the event buffer is not"
2616 		       " enabled.\n");
2617 		goto out;
2618 	}
2619 
2620 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2621 						  resp, IPMI_MAX_MSG_LENGTH);
2622 
2623 	if (resp_len < 3 ||
2624 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2625 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2626 		printk(KERN_WARNING
2627 		       "ipmi_si: Invalid return from get global,"
2628 		       "enables command, not enable the event"
2629 		       " buffer.\n");
2630 		rv = -EINVAL;
2631 		goto out;
2632 	}
2633 
2634 	if (resp[2] != 0)
2635 		/*
2636 		 * An error when setting the event buffer bit means
2637 		 * that the event buffer is not supported.
2638 		 */
2639 		rv = -ENOENT;
2640  out:
2641 	kfree(resp);
2642 	return rv;
2643 }
2644 
2645 static int type_file_read_proc(char *page, char **start, off_t off,
2646 			       int count, int *eof, void *data)
2647 {
2648 	struct smi_info *smi = data;
2649 
2650 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2651 }
2652 
2653 static int stat_file_read_proc(char *page, char **start, off_t off,
2654 			       int count, int *eof, void *data)
2655 {
2656 	char            *out = (char *) page;
2657 	struct smi_info *smi = data;
2658 
2659 	out += sprintf(out, "interrupts_enabled:    %d\n",
2660 		       smi->irq && !smi->interrupt_disabled);
2661 	out += sprintf(out, "short_timeouts:        %u\n",
2662 		       smi_get_stat(smi, short_timeouts));
2663 	out += sprintf(out, "long_timeouts:         %u\n",
2664 		       smi_get_stat(smi, long_timeouts));
2665 	out += sprintf(out, "idles:                 %u\n",
2666 		       smi_get_stat(smi, idles));
2667 	out += sprintf(out, "interrupts:            %u\n",
2668 		       smi_get_stat(smi, interrupts));
2669 	out += sprintf(out, "attentions:            %u\n",
2670 		       smi_get_stat(smi, attentions));
2671 	out += sprintf(out, "flag_fetches:          %u\n",
2672 		       smi_get_stat(smi, flag_fetches));
2673 	out += sprintf(out, "hosed_count:           %u\n",
2674 		       smi_get_stat(smi, hosed_count));
2675 	out += sprintf(out, "complete_transactions: %u\n",
2676 		       smi_get_stat(smi, complete_transactions));
2677 	out += sprintf(out, "events:                %u\n",
2678 		       smi_get_stat(smi, events));
2679 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2680 		       smi_get_stat(smi, watchdog_pretimeouts));
2681 	out += sprintf(out, "incoming_messages:     %u\n",
2682 		       smi_get_stat(smi, incoming_messages));
2683 
2684 	return out - page;
2685 }
2686 
2687 static int param_read_proc(char *page, char **start, off_t off,
2688 			   int count, int *eof, void *data)
2689 {
2690 	struct smi_info *smi = data;
2691 
2692 	return sprintf(page,
2693 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2694 		       si_to_str[smi->si_type],
2695 		       addr_space_to_str[smi->io.addr_type],
2696 		       smi->io.addr_data,
2697 		       smi->io.regspacing,
2698 		       smi->io.regsize,
2699 		       smi->io.regshift,
2700 		       smi->irq,
2701 		       smi->slave_addr);
2702 }
2703 
2704 /*
2705  * oem_data_avail_to_receive_msg_avail
2706  * @info - smi_info structure with msg_flags set
2707  *
2708  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2709  * Returns 1 indicating need to re-run handle_flags().
2710  */
2711 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2712 {
2713 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2714 			       RECEIVE_MSG_AVAIL);
2715 	return 1;
2716 }
2717 
2718 /*
2719  * setup_dell_poweredge_oem_data_handler
2720  * @info - smi_info.device_id must be populated
2721  *
2722  * Systems that match, but have firmware version < 1.40 may assert
2723  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2724  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2725  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2726  * as RECEIVE_MSG_AVAIL instead.
2727  *
2728  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2729  * assert the OEM[012] bits, and if it did, the driver would have to
2730  * change to handle that properly, we don't actually check for the
2731  * firmware version.
2732  * Device ID = 0x20                BMC on PowerEdge 8G servers
2733  * Device Revision = 0x80
2734  * Firmware Revision1 = 0x01       BMC version 1.40
2735  * Firmware Revision2 = 0x40       BCD encoded
2736  * IPMI Version = 0x51             IPMI 1.5
2737  * Manufacturer ID = A2 02 00      Dell IANA
2738  *
2739  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2740  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2741  *
2742  */
2743 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2744 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2745 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2746 #define DELL_IANA_MFR_ID 0x0002a2
2747 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2748 {
2749 	struct ipmi_device_id *id = &smi_info->device_id;
2750 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2751 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2752 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2753 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2754 			smi_info->oem_data_avail_handler =
2755 				oem_data_avail_to_receive_msg_avail;
2756 		} else if (ipmi_version_major(id) < 1 ||
2757 			   (ipmi_version_major(id) == 1 &&
2758 			    ipmi_version_minor(id) < 5)) {
2759 			smi_info->oem_data_avail_handler =
2760 				oem_data_avail_to_receive_msg_avail;
2761 		}
2762 	}
2763 }
2764 
2765 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2766 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2767 {
2768 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2769 
2770 	/* Make it a reponse */
2771 	msg->rsp[0] = msg->data[0] | 4;
2772 	msg->rsp[1] = msg->data[1];
2773 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2774 	msg->rsp_size = 3;
2775 	smi_info->curr_msg = NULL;
2776 	deliver_recv_msg(smi_info, msg);
2777 }
2778 
2779 /*
2780  * dell_poweredge_bt_xaction_handler
2781  * @info - smi_info.device_id must be populated
2782  *
2783  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2784  * not respond to a Get SDR command if the length of the data
2785  * requested is exactly 0x3A, which leads to command timeouts and no
2786  * data returned.  This intercepts such commands, and causes userspace
2787  * callers to try again with a different-sized buffer, which succeeds.
2788  */
2789 
2790 #define STORAGE_NETFN 0x0A
2791 #define STORAGE_CMD_GET_SDR 0x23
2792 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2793 					     unsigned long unused,
2794 					     void *in)
2795 {
2796 	struct smi_info *smi_info = in;
2797 	unsigned char *data = smi_info->curr_msg->data;
2798 	unsigned int size   = smi_info->curr_msg->data_size;
2799 	if (size >= 8 &&
2800 	    (data[0]>>2) == STORAGE_NETFN &&
2801 	    data[1] == STORAGE_CMD_GET_SDR &&
2802 	    data[7] == 0x3A) {
2803 		return_hosed_msg_badsize(smi_info);
2804 		return NOTIFY_STOP;
2805 	}
2806 	return NOTIFY_DONE;
2807 }
2808 
2809 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2810 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2811 };
2812 
2813 /*
2814  * setup_dell_poweredge_bt_xaction_handler
2815  * @info - smi_info.device_id must be filled in already
2816  *
2817  * Fills in smi_info.device_id.start_transaction_pre_hook
2818  * when we know what function to use there.
2819  */
2820 static void
2821 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2822 {
2823 	struct ipmi_device_id *id = &smi_info->device_id;
2824 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2825 	    smi_info->si_type == SI_BT)
2826 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2827 }
2828 
2829 /*
2830  * setup_oem_data_handler
2831  * @info - smi_info.device_id must be filled in already
2832  *
2833  * Fills in smi_info.device_id.oem_data_available_handler
2834  * when we know what function to use there.
2835  */
2836 
2837 static void setup_oem_data_handler(struct smi_info *smi_info)
2838 {
2839 	setup_dell_poweredge_oem_data_handler(smi_info);
2840 }
2841 
2842 static void setup_xaction_handlers(struct smi_info *smi_info)
2843 {
2844 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2845 }
2846 
2847 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2848 {
2849 	if (smi_info->intf) {
2850 		/*
2851 		 * The timer and thread are only running if the
2852 		 * interface has been started up and registered.
2853 		 */
2854 		if (smi_info->thread != NULL)
2855 			kthread_stop(smi_info->thread);
2856 		del_timer_sync(&smi_info->si_timer);
2857 	}
2858 }
2859 
2860 static __devinitdata struct ipmi_default_vals
2861 {
2862 	int type;
2863 	int port;
2864 } ipmi_defaults[] =
2865 {
2866 	{ .type = SI_KCS, .port = 0xca2 },
2867 	{ .type = SI_SMIC, .port = 0xca9 },
2868 	{ .type = SI_BT, .port = 0xe4 },
2869 	{ .port = 0 }
2870 };
2871 
2872 static __devinit void default_find_bmc(void)
2873 {
2874 	struct smi_info *info;
2875 	int             i;
2876 
2877 	for (i = 0; ; i++) {
2878 		if (!ipmi_defaults[i].port)
2879 			break;
2880 #ifdef CONFIG_PPC
2881 		if (check_legacy_ioport(ipmi_defaults[i].port))
2882 			continue;
2883 #endif
2884 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2885 		if (!info)
2886 			return;
2887 
2888 		info->addr_source = NULL;
2889 
2890 		info->si_type = ipmi_defaults[i].type;
2891 		info->io_setup = port_setup;
2892 		info->io.addr_data = ipmi_defaults[i].port;
2893 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2894 
2895 		info->io.addr = NULL;
2896 		info->io.regspacing = DEFAULT_REGSPACING;
2897 		info->io.regsize = DEFAULT_REGSPACING;
2898 		info->io.regshift = 0;
2899 
2900 		if (try_smi_init(info) == 0) {
2901 			/* Found one... */
2902 			printk(KERN_INFO "ipmi_si: Found default %s state"
2903 			       " machine at %s address 0x%lx\n",
2904 			       si_to_str[info->si_type],
2905 			       addr_space_to_str[info->io.addr_type],
2906 			       info->io.addr_data);
2907 			return;
2908 		}
2909 	}
2910 }
2911 
2912 static int is_new_interface(struct smi_info *info)
2913 {
2914 	struct smi_info *e;
2915 
2916 	list_for_each_entry(e, &smi_infos, link) {
2917 		if (e->io.addr_type != info->io.addr_type)
2918 			continue;
2919 		if (e->io.addr_data == info->io.addr_data)
2920 			return 0;
2921 	}
2922 
2923 	return 1;
2924 }
2925 
2926 static int try_smi_init(struct smi_info *new_smi)
2927 {
2928 	int rv;
2929 	int i;
2930 
2931 	if (new_smi->addr_source) {
2932 		printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2933 		       " machine at %s address 0x%lx, slave address 0x%x,"
2934 		       " irq %d\n",
2935 		       new_smi->addr_source,
2936 		       si_to_str[new_smi->si_type],
2937 		       addr_space_to_str[new_smi->io.addr_type],
2938 		       new_smi->io.addr_data,
2939 		       new_smi->slave_addr, new_smi->irq);
2940 	}
2941 
2942 	mutex_lock(&smi_infos_lock);
2943 	if (!is_new_interface(new_smi)) {
2944 		printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2945 		rv = -EBUSY;
2946 		goto out_err;
2947 	}
2948 
2949 	/* So we know not to free it unless we have allocated one. */
2950 	new_smi->intf = NULL;
2951 	new_smi->si_sm = NULL;
2952 	new_smi->handlers = NULL;
2953 
2954 	switch (new_smi->si_type) {
2955 	case SI_KCS:
2956 		new_smi->handlers = &kcs_smi_handlers;
2957 		break;
2958 
2959 	case SI_SMIC:
2960 		new_smi->handlers = &smic_smi_handlers;
2961 		break;
2962 
2963 	case SI_BT:
2964 		new_smi->handlers = &bt_smi_handlers;
2965 		break;
2966 
2967 	default:
2968 		/* No support for anything else yet. */
2969 		rv = -EIO;
2970 		goto out_err;
2971 	}
2972 
2973 	/* Allocate the state machine's data and initialize it. */
2974 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2975 	if (!new_smi->si_sm) {
2976 		printk(KERN_ERR "Could not allocate state machine memory\n");
2977 		rv = -ENOMEM;
2978 		goto out_err;
2979 	}
2980 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2981 							&new_smi->io);
2982 
2983 	/* Now that we know the I/O size, we can set up the I/O. */
2984 	rv = new_smi->io_setup(new_smi);
2985 	if (rv) {
2986 		printk(KERN_ERR "Could not set up I/O space\n");
2987 		goto out_err;
2988 	}
2989 
2990 	spin_lock_init(&(new_smi->si_lock));
2991 	spin_lock_init(&(new_smi->msg_lock));
2992 
2993 	/* Do low-level detection first. */
2994 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2995 		if (new_smi->addr_source)
2996 			printk(KERN_INFO "ipmi_si: Interface detection"
2997 			       " failed\n");
2998 		rv = -ENODEV;
2999 		goto out_err;
3000 	}
3001 
3002 	/*
3003 	 * Attempt a get device id command.  If it fails, we probably
3004 	 * don't have a BMC here.
3005 	 */
3006 	rv = try_get_dev_id(new_smi);
3007 	if (rv) {
3008 		if (new_smi->addr_source)
3009 			printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3010 			       " at this location\n");
3011 		goto out_err;
3012 	}
3013 
3014 	setup_oem_data_handler(new_smi);
3015 	setup_xaction_handlers(new_smi);
3016 
3017 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3018 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3019 	new_smi->curr_msg = NULL;
3020 	atomic_set(&new_smi->req_events, 0);
3021 	new_smi->run_to_completion = 0;
3022 	for (i = 0; i < SI_NUM_STATS; i++)
3023 		atomic_set(&new_smi->stats[i], 0);
3024 
3025 	new_smi->interrupt_disabled = 0;
3026 	atomic_set(&new_smi->stop_operation, 0);
3027 	new_smi->intf_num = smi_num;
3028 	smi_num++;
3029 
3030 	rv = try_enable_event_buffer(new_smi);
3031 	if (rv == 0)
3032 		new_smi->has_event_buffer = 1;
3033 
3034 	/*
3035 	 * Start clearing the flags before we enable interrupts or the
3036 	 * timer to avoid racing with the timer.
3037 	 */
3038 	start_clear_flags(new_smi);
3039 	/* IRQ is defined to be set when non-zero. */
3040 	if (new_smi->irq)
3041 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3042 
3043 	if (!new_smi->dev) {
3044 		/*
3045 		 * If we don't already have a device from something
3046 		 * else (like PCI), then register a new one.
3047 		 */
3048 		new_smi->pdev = platform_device_alloc("ipmi_si",
3049 						      new_smi->intf_num);
3050 		if (!new_smi->pdev) {
3051 			printk(KERN_ERR
3052 			       "ipmi_si_intf:"
3053 			       " Unable to allocate platform device\n");
3054 			goto out_err;
3055 		}
3056 		new_smi->dev = &new_smi->pdev->dev;
3057 		new_smi->dev->driver = &ipmi_driver.driver;
3058 
3059 		rv = platform_device_add(new_smi->pdev);
3060 		if (rv) {
3061 			printk(KERN_ERR
3062 			       "ipmi_si_intf:"
3063 			       " Unable to register system interface device:"
3064 			       " %d\n",
3065 			       rv);
3066 			goto out_err;
3067 		}
3068 		new_smi->dev_registered = 1;
3069 	}
3070 
3071 	rv = ipmi_register_smi(&handlers,
3072 			       new_smi,
3073 			       &new_smi->device_id,
3074 			       new_smi->dev,
3075 			       "bmc",
3076 			       new_smi->slave_addr);
3077 	if (rv) {
3078 		printk(KERN_ERR
3079 		       "ipmi_si: Unable to register device: error %d\n",
3080 		       rv);
3081 		goto out_err_stop_timer;
3082 	}
3083 
3084 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3085 				     type_file_read_proc,
3086 				     new_smi);
3087 	if (rv) {
3088 		printk(KERN_ERR
3089 		       "ipmi_si: Unable to create proc entry: %d\n",
3090 		       rv);
3091 		goto out_err_stop_timer;
3092 	}
3093 
3094 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3095 				     stat_file_read_proc,
3096 				     new_smi);
3097 	if (rv) {
3098 		printk(KERN_ERR
3099 		       "ipmi_si: Unable to create proc entry: %d\n",
3100 		       rv);
3101 		goto out_err_stop_timer;
3102 	}
3103 
3104 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3105 				     param_read_proc,
3106 				     new_smi);
3107 	if (rv) {
3108 		printk(KERN_ERR
3109 		       "ipmi_si: Unable to create proc entry: %d\n",
3110 		       rv);
3111 		goto out_err_stop_timer;
3112 	}
3113 
3114 	list_add_tail(&new_smi->link, &smi_infos);
3115 
3116 	mutex_unlock(&smi_infos_lock);
3117 
3118 	printk(KERN_INFO "IPMI %s interface initialized\n",
3119 	       si_to_str[new_smi->si_type]);
3120 
3121 	return 0;
3122 
3123  out_err_stop_timer:
3124 	atomic_inc(&new_smi->stop_operation);
3125 	wait_for_timer_and_thread(new_smi);
3126 
3127  out_err:
3128 	if (new_smi->intf)
3129 		ipmi_unregister_smi(new_smi->intf);
3130 
3131 	if (new_smi->irq_cleanup)
3132 		new_smi->irq_cleanup(new_smi);
3133 
3134 	/*
3135 	 * Wait until we know that we are out of any interrupt
3136 	 * handlers might have been running before we freed the
3137 	 * interrupt.
3138 	 */
3139 	synchronize_sched();
3140 
3141 	if (new_smi->si_sm) {
3142 		if (new_smi->handlers)
3143 			new_smi->handlers->cleanup(new_smi->si_sm);
3144 		kfree(new_smi->si_sm);
3145 	}
3146 	if (new_smi->addr_source_cleanup)
3147 		new_smi->addr_source_cleanup(new_smi);
3148 	if (new_smi->io_cleanup)
3149 		new_smi->io_cleanup(new_smi);
3150 
3151 	if (new_smi->dev_registered)
3152 		platform_device_unregister(new_smi->pdev);
3153 
3154 	kfree(new_smi);
3155 
3156 	mutex_unlock(&smi_infos_lock);
3157 
3158 	return rv;
3159 }
3160 
3161 static __devinit int init_ipmi_si(void)
3162 {
3163 	int  i;
3164 	char *str;
3165 	int  rv;
3166 
3167 	if (initialized)
3168 		return 0;
3169 	initialized = 1;
3170 
3171 	/* Register the device drivers. */
3172 	rv = driver_register(&ipmi_driver.driver);
3173 	if (rv) {
3174 		printk(KERN_ERR
3175 		       "init_ipmi_si: Unable to register driver: %d\n",
3176 		       rv);
3177 		return rv;
3178 	}
3179 
3180 
3181 	/* Parse out the si_type string into its components. */
3182 	str = si_type_str;
3183 	if (*str != '\0') {
3184 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3185 			si_type[i] = str;
3186 			str = strchr(str, ',');
3187 			if (str) {
3188 				*str = '\0';
3189 				str++;
3190 			} else {
3191 				break;
3192 			}
3193 		}
3194 	}
3195 
3196 	printk(KERN_INFO "IPMI System Interface driver.\n");
3197 
3198 	hardcode_find_bmc();
3199 
3200 #ifdef CONFIG_DMI
3201 	dmi_find_bmc();
3202 #endif
3203 
3204 #ifdef CONFIG_ACPI
3205 	spmi_find_bmc();
3206 #endif
3207 #ifdef CONFIG_ACPI
3208 	pnp_register_driver(&ipmi_pnp_driver);
3209 #endif
3210 
3211 #ifdef CONFIG_PCI
3212 	rv = pci_register_driver(&ipmi_pci_driver);
3213 	if (rv)
3214 		printk(KERN_ERR
3215 		       "init_ipmi_si: Unable to register PCI driver: %d\n",
3216 		       rv);
3217 #endif
3218 
3219 #ifdef CONFIG_PPC_OF
3220 	of_register_platform_driver(&ipmi_of_platform_driver);
3221 #endif
3222 
3223 	if (si_trydefaults) {
3224 		mutex_lock(&smi_infos_lock);
3225 		if (list_empty(&smi_infos)) {
3226 			/* No BMC was found, try defaults. */
3227 			mutex_unlock(&smi_infos_lock);
3228 			default_find_bmc();
3229 		} else {
3230 			mutex_unlock(&smi_infos_lock);
3231 		}
3232 	}
3233 
3234 	mutex_lock(&smi_infos_lock);
3235 	if (unload_when_empty && list_empty(&smi_infos)) {
3236 		mutex_unlock(&smi_infos_lock);
3237 #ifdef CONFIG_PCI
3238 		pci_unregister_driver(&ipmi_pci_driver);
3239 #endif
3240 
3241 #ifdef CONFIG_PPC_OF
3242 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3243 #endif
3244 		driver_unregister(&ipmi_driver.driver);
3245 		printk(KERN_WARNING
3246 		       "ipmi_si: Unable to find any System Interface(s)\n");
3247 		return -ENODEV;
3248 	} else {
3249 		mutex_unlock(&smi_infos_lock);
3250 		return 0;
3251 	}
3252 }
3253 module_init(init_ipmi_si);
3254 
3255 static void cleanup_one_si(struct smi_info *to_clean)
3256 {
3257 	int           rv;
3258 	unsigned long flags;
3259 
3260 	if (!to_clean)
3261 		return;
3262 
3263 	list_del(&to_clean->link);
3264 
3265 	/* Tell the driver that we are shutting down. */
3266 	atomic_inc(&to_clean->stop_operation);
3267 
3268 	/*
3269 	 * Make sure the timer and thread are stopped and will not run
3270 	 * again.
3271 	 */
3272 	wait_for_timer_and_thread(to_clean);
3273 
3274 	/*
3275 	 * Timeouts are stopped, now make sure the interrupts are off
3276 	 * for the device.  A little tricky with locks to make sure
3277 	 * there are no races.
3278 	 */
3279 	spin_lock_irqsave(&to_clean->si_lock, flags);
3280 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3281 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3282 		poll(to_clean);
3283 		schedule_timeout_uninterruptible(1);
3284 		spin_lock_irqsave(&to_clean->si_lock, flags);
3285 	}
3286 	disable_si_irq(to_clean);
3287 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3288 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3289 		poll(to_clean);
3290 		schedule_timeout_uninterruptible(1);
3291 	}
3292 
3293 	/* Clean up interrupts and make sure that everything is done. */
3294 	if (to_clean->irq_cleanup)
3295 		to_clean->irq_cleanup(to_clean);
3296 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3297 		poll(to_clean);
3298 		schedule_timeout_uninterruptible(1);
3299 	}
3300 
3301 	rv = ipmi_unregister_smi(to_clean->intf);
3302 	if (rv) {
3303 		printk(KERN_ERR
3304 		       "ipmi_si: Unable to unregister device: errno=%d\n",
3305 		       rv);
3306 	}
3307 
3308 	to_clean->handlers->cleanup(to_clean->si_sm);
3309 
3310 	kfree(to_clean->si_sm);
3311 
3312 	if (to_clean->addr_source_cleanup)
3313 		to_clean->addr_source_cleanup(to_clean);
3314 	if (to_clean->io_cleanup)
3315 		to_clean->io_cleanup(to_clean);
3316 
3317 	if (to_clean->dev_registered)
3318 		platform_device_unregister(to_clean->pdev);
3319 
3320 	kfree(to_clean);
3321 }
3322 
3323 static __exit void cleanup_ipmi_si(void)
3324 {
3325 	struct smi_info *e, *tmp_e;
3326 
3327 	if (!initialized)
3328 		return;
3329 
3330 #ifdef CONFIG_PCI
3331 	pci_unregister_driver(&ipmi_pci_driver);
3332 #endif
3333 #ifdef CONFIG_ACPI
3334 	pnp_unregister_driver(&ipmi_pnp_driver);
3335 #endif
3336 
3337 #ifdef CONFIG_PPC_OF
3338 	of_unregister_platform_driver(&ipmi_of_platform_driver);
3339 #endif
3340 
3341 	mutex_lock(&smi_infos_lock);
3342 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3343 		cleanup_one_si(e);
3344 	mutex_unlock(&smi_infos_lock);
3345 
3346 	driver_unregister(&ipmi_driver.driver);
3347 }
3348 module_exit(cleanup_ipmi_si);
3349 
3350 MODULE_LICENSE("GPL");
3351 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3352 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3353 		   " system interfaces.");
3354