xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision a06c488d)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76 
77 #define PFX "ipmi_si: "
78 
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81 
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC	10000
84 #define SI_USEC_PER_JIFFY	(1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87 				      short timeout */
88 
89 enum si_intf_state {
90 	SI_NORMAL,
91 	SI_GETTING_FLAGS,
92 	SI_GETTING_EVENTS,
93 	SI_CLEARING_FLAGS,
94 	SI_GETTING_MESSAGES,
95 	SI_CHECKING_ENABLES,
96 	SI_SETTING_ENABLES
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 
109 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
110 
111 #define DEVICE_NAME "ipmi_si"
112 
113 static struct platform_driver ipmi_driver;
114 
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119 	/*
120 	 * Number of times the driver requested a timer while an operation
121 	 * was in progress.
122 	 */
123 	SI_STAT_short_timeouts = 0,
124 
125 	/*
126 	 * Number of times the driver requested a timer while nothing was in
127 	 * progress.
128 	 */
129 	SI_STAT_long_timeouts,
130 
131 	/* Number of times the interface was idle while being polled. */
132 	SI_STAT_idles,
133 
134 	/* Number of interrupts the driver handled. */
135 	SI_STAT_interrupts,
136 
137 	/* Number of time the driver got an ATTN from the hardware. */
138 	SI_STAT_attentions,
139 
140 	/* Number of times the driver requested flags from the hardware. */
141 	SI_STAT_flag_fetches,
142 
143 	/* Number of times the hardware didn't follow the state machine. */
144 	SI_STAT_hosed_count,
145 
146 	/* Number of completed messages. */
147 	SI_STAT_complete_transactions,
148 
149 	/* Number of IPMI events received from the hardware. */
150 	SI_STAT_events,
151 
152 	/* Number of watchdog pretimeouts. */
153 	SI_STAT_watchdog_pretimeouts,
154 
155 	/* Number of asynchronous messages received. */
156 	SI_STAT_incoming_messages,
157 
158 
159 	/* This *must* remain last, add new values above this. */
160 	SI_NUM_STATS
161 };
162 
163 struct smi_info {
164 	int                    intf_num;
165 	ipmi_smi_t             intf;
166 	struct si_sm_data      *si_sm;
167 	const struct si_sm_handlers *handlers;
168 	enum si_type           si_type;
169 	spinlock_t             si_lock;
170 	struct ipmi_smi_msg    *waiting_msg;
171 	struct ipmi_smi_msg    *curr_msg;
172 	enum si_intf_state     si_state;
173 
174 	/*
175 	 * Used to handle the various types of I/O that can occur with
176 	 * IPMI
177 	 */
178 	struct si_sm_io io;
179 	int (*io_setup)(struct smi_info *info);
180 	void (*io_cleanup)(struct smi_info *info);
181 	int (*irq_setup)(struct smi_info *info);
182 	void (*irq_cleanup)(struct smi_info *info);
183 	unsigned int io_size;
184 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 	void (*addr_source_cleanup)(struct smi_info *info);
186 	void *addr_source_data;
187 
188 	/*
189 	 * Per-OEM handler, called from handle_flags().  Returns 1
190 	 * when handle_flags() needs to be re-run or 0 indicating it
191 	 * set si_state itself.
192 	 */
193 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
194 
195 	/*
196 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 	 * is set to hold the flags until we are done handling everything
198 	 * from the flags.
199 	 */
200 #define RECEIVE_MSG_AVAIL	0x01
201 #define EVENT_MSG_BUFFER_FULL	0x02
202 #define WDT_PRE_TIMEOUT_INT	0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207 			     OEM1_DATA_AVAIL | \
208 			     OEM2_DATA_AVAIL)
209 	unsigned char       msg_flags;
210 
211 	/* Does the BMC have an event buffer? */
212 	bool		    has_event_buffer;
213 
214 	/*
215 	 * If set to true, this will request events the next time the
216 	 * state machine is idle.
217 	 */
218 	atomic_t            req_events;
219 
220 	/*
221 	 * If true, run the state machine to completion on every send
222 	 * call.  Generally used after a panic to make sure stuff goes
223 	 * out.
224 	 */
225 	bool                run_to_completion;
226 
227 	/* The I/O port of an SI interface. */
228 	int                 port;
229 
230 	/*
231 	 * The space between start addresses of the two ports.  For
232 	 * instance, if the first port is 0xca2 and the spacing is 4, then
233 	 * the second port is 0xca6.
234 	 */
235 	unsigned int        spacing;
236 
237 	/* zero if no irq; */
238 	int                 irq;
239 
240 	/* The timer for this si. */
241 	struct timer_list   si_timer;
242 
243 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 	bool		    timer_running;
245 
246 	/* The time (in jiffies) the last timeout occurred at. */
247 	unsigned long       last_timeout_jiffies;
248 
249 	/* Are we waiting for the events, pretimeouts, received msgs? */
250 	atomic_t            need_watch;
251 
252 	/*
253 	 * The driver will disable interrupts when it gets into a
254 	 * situation where it cannot handle messages due to lack of
255 	 * memory.  Once that situation clears up, it will re-enable
256 	 * interrupts.
257 	 */
258 	bool interrupt_disabled;
259 
260 	/*
261 	 * Does the BMC support events?
262 	 */
263 	bool supports_event_msg_buff;
264 
265 	/*
266 	 * Can we disable interrupts the global enables receive irq
267 	 * bit?  There are currently two forms of brokenness, some
268 	 * systems cannot disable the bit (which is technically within
269 	 * the spec but a bad idea) and some systems have the bit
270 	 * forced to zero even though interrupts work (which is
271 	 * clearly outside the spec).  The next bool tells which form
272 	 * of brokenness is present.
273 	 */
274 	bool cannot_disable_irq;
275 
276 	/*
277 	 * Some systems are broken and cannot set the irq enable
278 	 * bit, even if they support interrupts.
279 	 */
280 	bool irq_enable_broken;
281 
282 	/*
283 	 * Did we get an attention that we did not handle?
284 	 */
285 	bool got_attn;
286 
287 	/* From the get device id response... */
288 	struct ipmi_device_id device_id;
289 
290 	/* Driver model stuff. */
291 	struct device *dev;
292 	struct platform_device *pdev;
293 
294 	/*
295 	 * True if we allocated the device, false if it came from
296 	 * someplace else (like PCI).
297 	 */
298 	bool dev_registered;
299 
300 	/* Slave address, could be reported from DMI. */
301 	unsigned char slave_addr;
302 
303 	/* Counters and things for the proc filesystem. */
304 	atomic_t stats[SI_NUM_STATS];
305 
306 	struct task_struct *thread;
307 
308 	struct list_head link;
309 	union ipmi_smi_info_union addr_info;
310 };
311 
312 #define smi_inc_stat(smi, stat) \
313 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
314 #define smi_get_stat(smi, stat) \
315 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
316 
317 #define SI_MAX_PARMS 4
318 
319 static int force_kipmid[SI_MAX_PARMS];
320 static int num_force_kipmid;
321 #ifdef CONFIG_PCI
322 static bool pci_registered;
323 #endif
324 #ifdef CONFIG_PARISC
325 static bool parisc_registered;
326 #endif
327 
328 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
329 static int num_max_busy_us;
330 
331 static bool unload_when_empty = true;
332 
333 static int add_smi(struct smi_info *smi);
334 static int try_smi_init(struct smi_info *smi);
335 static void cleanup_one_si(struct smi_info *to_clean);
336 static void cleanup_ipmi_si(void);
337 
338 #ifdef DEBUG_TIMING
339 void debug_timestamp(char *msg)
340 {
341 	struct timespec64 t;
342 
343 	getnstimeofday64(&t);
344 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
345 }
346 #else
347 #define debug_timestamp(x)
348 #endif
349 
350 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
351 static int register_xaction_notifier(struct notifier_block *nb)
352 {
353 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
354 }
355 
356 static void deliver_recv_msg(struct smi_info *smi_info,
357 			     struct ipmi_smi_msg *msg)
358 {
359 	/* Deliver the message to the upper layer. */
360 	if (smi_info->intf)
361 		ipmi_smi_msg_received(smi_info->intf, msg);
362 	else
363 		ipmi_free_smi_msg(msg);
364 }
365 
366 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
367 {
368 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
369 
370 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
371 		cCode = IPMI_ERR_UNSPECIFIED;
372 	/* else use it as is */
373 
374 	/* Make it a response */
375 	msg->rsp[0] = msg->data[0] | 4;
376 	msg->rsp[1] = msg->data[1];
377 	msg->rsp[2] = cCode;
378 	msg->rsp_size = 3;
379 
380 	smi_info->curr_msg = NULL;
381 	deliver_recv_msg(smi_info, msg);
382 }
383 
384 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
385 {
386 	int              rv;
387 
388 	if (!smi_info->waiting_msg) {
389 		smi_info->curr_msg = NULL;
390 		rv = SI_SM_IDLE;
391 	} else {
392 		int err;
393 
394 		smi_info->curr_msg = smi_info->waiting_msg;
395 		smi_info->waiting_msg = NULL;
396 		debug_timestamp("Start2");
397 		err = atomic_notifier_call_chain(&xaction_notifier_list,
398 				0, smi_info);
399 		if (err & NOTIFY_STOP_MASK) {
400 			rv = SI_SM_CALL_WITHOUT_DELAY;
401 			goto out;
402 		}
403 		err = smi_info->handlers->start_transaction(
404 			smi_info->si_sm,
405 			smi_info->curr_msg->data,
406 			smi_info->curr_msg->data_size);
407 		if (err)
408 			return_hosed_msg(smi_info, err);
409 
410 		rv = SI_SM_CALL_WITHOUT_DELAY;
411 	}
412  out:
413 	return rv;
414 }
415 
416 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
417 {
418 	smi_info->last_timeout_jiffies = jiffies;
419 	mod_timer(&smi_info->si_timer, new_val);
420 	smi_info->timer_running = true;
421 }
422 
423 /*
424  * Start a new message and (re)start the timer and thread.
425  */
426 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
427 			  unsigned int size)
428 {
429 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
430 
431 	if (smi_info->thread)
432 		wake_up_process(smi_info->thread);
433 
434 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
435 }
436 
437 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
438 {
439 	unsigned char msg[2];
440 
441 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443 
444 	if (start_timer)
445 		start_new_msg(smi_info, msg, 2);
446 	else
447 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
448 	smi_info->si_state = SI_CHECKING_ENABLES;
449 }
450 
451 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
452 {
453 	unsigned char msg[3];
454 
455 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
456 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
457 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
458 	msg[2] = WDT_PRE_TIMEOUT_INT;
459 
460 	if (start_timer)
461 		start_new_msg(smi_info, msg, 3);
462 	else
463 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
464 	smi_info->si_state = SI_CLEARING_FLAGS;
465 }
466 
467 static void start_getting_msg_queue(struct smi_info *smi_info)
468 {
469 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
470 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
471 	smi_info->curr_msg->data_size = 2;
472 
473 	start_new_msg(smi_info, smi_info->curr_msg->data,
474 		      smi_info->curr_msg->data_size);
475 	smi_info->si_state = SI_GETTING_MESSAGES;
476 }
477 
478 static void start_getting_events(struct smi_info *smi_info)
479 {
480 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
482 	smi_info->curr_msg->data_size = 2;
483 
484 	start_new_msg(smi_info, smi_info->curr_msg->data,
485 		      smi_info->curr_msg->data_size);
486 	smi_info->si_state = SI_GETTING_EVENTS;
487 }
488 
489 /*
490  * When we have a situtaion where we run out of memory and cannot
491  * allocate messages, we just leave them in the BMC and run the system
492  * polled until we can allocate some memory.  Once we have some
493  * memory, we will re-enable the interrupt.
494  *
495  * Note that we cannot just use disable_irq(), since the interrupt may
496  * be shared.
497  */
498 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
499 {
500 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
501 		smi_info->interrupt_disabled = true;
502 		start_check_enables(smi_info, start_timer);
503 		return true;
504 	}
505 	return false;
506 }
507 
508 static inline bool enable_si_irq(struct smi_info *smi_info)
509 {
510 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
511 		smi_info->interrupt_disabled = false;
512 		start_check_enables(smi_info, true);
513 		return true;
514 	}
515 	return false;
516 }
517 
518 /*
519  * Allocate a message.  If unable to allocate, start the interrupt
520  * disable process and return NULL.  If able to allocate but
521  * interrupts are disabled, free the message and return NULL after
522  * starting the interrupt enable process.
523  */
524 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
525 {
526 	struct ipmi_smi_msg *msg;
527 
528 	msg = ipmi_alloc_smi_msg();
529 	if (!msg) {
530 		if (!disable_si_irq(smi_info, true))
531 			smi_info->si_state = SI_NORMAL;
532 	} else if (enable_si_irq(smi_info)) {
533 		ipmi_free_smi_msg(msg);
534 		msg = NULL;
535 	}
536 	return msg;
537 }
538 
539 static void handle_flags(struct smi_info *smi_info)
540 {
541  retry:
542 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
543 		/* Watchdog pre-timeout */
544 		smi_inc_stat(smi_info, watchdog_pretimeouts);
545 
546 		start_clear_flags(smi_info, true);
547 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
548 		if (smi_info->intf)
549 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
550 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
551 		/* Messages available. */
552 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
553 		if (!smi_info->curr_msg)
554 			return;
555 
556 		start_getting_msg_queue(smi_info);
557 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
558 		/* Events available. */
559 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
560 		if (!smi_info->curr_msg)
561 			return;
562 
563 		start_getting_events(smi_info);
564 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
565 		   smi_info->oem_data_avail_handler) {
566 		if (smi_info->oem_data_avail_handler(smi_info))
567 			goto retry;
568 	} else
569 		smi_info->si_state = SI_NORMAL;
570 }
571 
572 /*
573  * Global enables we care about.
574  */
575 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
576 			     IPMI_BMC_EVT_MSG_INTR)
577 
578 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
579 				 bool *irq_on)
580 {
581 	u8 enables = 0;
582 
583 	if (smi_info->supports_event_msg_buff)
584 		enables |= IPMI_BMC_EVT_MSG_BUFF;
585 
586 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
587 	     smi_info->cannot_disable_irq) &&
588 	    !smi_info->irq_enable_broken)
589 		enables |= IPMI_BMC_RCV_MSG_INTR;
590 
591 	if (smi_info->supports_event_msg_buff &&
592 	    smi_info->irq && !smi_info->interrupt_disabled &&
593 	    !smi_info->irq_enable_broken)
594 		enables |= IPMI_BMC_EVT_MSG_INTR;
595 
596 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
597 
598 	return enables;
599 }
600 
601 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
602 {
603 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
604 
605 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
606 
607 	if ((bool)irqstate == irq_on)
608 		return;
609 
610 	if (irq_on)
611 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
612 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
613 	else
614 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
615 }
616 
617 static void handle_transaction_done(struct smi_info *smi_info)
618 {
619 	struct ipmi_smi_msg *msg;
620 
621 	debug_timestamp("Done");
622 	switch (smi_info->si_state) {
623 	case SI_NORMAL:
624 		if (!smi_info->curr_msg)
625 			break;
626 
627 		smi_info->curr_msg->rsp_size
628 			= smi_info->handlers->get_result(
629 				smi_info->si_sm,
630 				smi_info->curr_msg->rsp,
631 				IPMI_MAX_MSG_LENGTH);
632 
633 		/*
634 		 * Do this here becase deliver_recv_msg() releases the
635 		 * lock, and a new message can be put in during the
636 		 * time the lock is released.
637 		 */
638 		msg = smi_info->curr_msg;
639 		smi_info->curr_msg = NULL;
640 		deliver_recv_msg(smi_info, msg);
641 		break;
642 
643 	case SI_GETTING_FLAGS:
644 	{
645 		unsigned char msg[4];
646 		unsigned int  len;
647 
648 		/* We got the flags from the SMI, now handle them. */
649 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
650 		if (msg[2] != 0) {
651 			/* Error fetching flags, just give up for now. */
652 			smi_info->si_state = SI_NORMAL;
653 		} else if (len < 4) {
654 			/*
655 			 * Hmm, no flags.  That's technically illegal, but
656 			 * don't use uninitialized data.
657 			 */
658 			smi_info->si_state = SI_NORMAL;
659 		} else {
660 			smi_info->msg_flags = msg[3];
661 			handle_flags(smi_info);
662 		}
663 		break;
664 	}
665 
666 	case SI_CLEARING_FLAGS:
667 	{
668 		unsigned char msg[3];
669 
670 		/* We cleared the flags. */
671 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
672 		if (msg[2] != 0) {
673 			/* Error clearing flags */
674 			dev_warn(smi_info->dev,
675 				 "Error clearing flags: %2.2x\n", msg[2]);
676 		}
677 		smi_info->si_state = SI_NORMAL;
678 		break;
679 	}
680 
681 	case SI_GETTING_EVENTS:
682 	{
683 		smi_info->curr_msg->rsp_size
684 			= smi_info->handlers->get_result(
685 				smi_info->si_sm,
686 				smi_info->curr_msg->rsp,
687 				IPMI_MAX_MSG_LENGTH);
688 
689 		/*
690 		 * Do this here becase deliver_recv_msg() releases the
691 		 * lock, and a new message can be put in during the
692 		 * time the lock is released.
693 		 */
694 		msg = smi_info->curr_msg;
695 		smi_info->curr_msg = NULL;
696 		if (msg->rsp[2] != 0) {
697 			/* Error getting event, probably done. */
698 			msg->done(msg);
699 
700 			/* Take off the event flag. */
701 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
702 			handle_flags(smi_info);
703 		} else {
704 			smi_inc_stat(smi_info, events);
705 
706 			/*
707 			 * Do this before we deliver the message
708 			 * because delivering the message releases the
709 			 * lock and something else can mess with the
710 			 * state.
711 			 */
712 			handle_flags(smi_info);
713 
714 			deliver_recv_msg(smi_info, msg);
715 		}
716 		break;
717 	}
718 
719 	case SI_GETTING_MESSAGES:
720 	{
721 		smi_info->curr_msg->rsp_size
722 			= smi_info->handlers->get_result(
723 				smi_info->si_sm,
724 				smi_info->curr_msg->rsp,
725 				IPMI_MAX_MSG_LENGTH);
726 
727 		/*
728 		 * Do this here becase deliver_recv_msg() releases the
729 		 * lock, and a new message can be put in during the
730 		 * time the lock is released.
731 		 */
732 		msg = smi_info->curr_msg;
733 		smi_info->curr_msg = NULL;
734 		if (msg->rsp[2] != 0) {
735 			/* Error getting event, probably done. */
736 			msg->done(msg);
737 
738 			/* Take off the msg flag. */
739 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
740 			handle_flags(smi_info);
741 		} else {
742 			smi_inc_stat(smi_info, incoming_messages);
743 
744 			/*
745 			 * Do this before we deliver the message
746 			 * because delivering the message releases the
747 			 * lock and something else can mess with the
748 			 * state.
749 			 */
750 			handle_flags(smi_info);
751 
752 			deliver_recv_msg(smi_info, msg);
753 		}
754 		break;
755 	}
756 
757 	case SI_CHECKING_ENABLES:
758 	{
759 		unsigned char msg[4];
760 		u8 enables;
761 		bool irq_on;
762 
763 		/* We got the flags from the SMI, now handle them. */
764 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
765 		if (msg[2] != 0) {
766 			dev_warn(smi_info->dev,
767 				 "Couldn't get irq info: %x.\n", msg[2]);
768 			dev_warn(smi_info->dev,
769 				 "Maybe ok, but ipmi might run very slowly.\n");
770 			smi_info->si_state = SI_NORMAL;
771 			break;
772 		}
773 		enables = current_global_enables(smi_info, 0, &irq_on);
774 		if (smi_info->si_type == SI_BT)
775 			/* BT has its own interrupt enable bit. */
776 			check_bt_irq(smi_info, irq_on);
777 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
778 			/* Enables are not correct, fix them. */
779 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
780 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
781 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
782 			smi_info->handlers->start_transaction(
783 				smi_info->si_sm, msg, 3);
784 			smi_info->si_state = SI_SETTING_ENABLES;
785 		} else if (smi_info->supports_event_msg_buff) {
786 			smi_info->curr_msg = ipmi_alloc_smi_msg();
787 			if (!smi_info->curr_msg) {
788 				smi_info->si_state = SI_NORMAL;
789 				break;
790 			}
791 			start_getting_msg_queue(smi_info);
792 		} else {
793 			smi_info->si_state = SI_NORMAL;
794 		}
795 		break;
796 	}
797 
798 	case SI_SETTING_ENABLES:
799 	{
800 		unsigned char msg[4];
801 
802 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
803 		if (msg[2] != 0)
804 			dev_warn(smi_info->dev,
805 				 "Could not set the global enables: 0x%x.\n",
806 				 msg[2]);
807 
808 		if (smi_info->supports_event_msg_buff) {
809 			smi_info->curr_msg = ipmi_alloc_smi_msg();
810 			if (!smi_info->curr_msg) {
811 				smi_info->si_state = SI_NORMAL;
812 				break;
813 			}
814 			start_getting_msg_queue(smi_info);
815 		} else {
816 			smi_info->si_state = SI_NORMAL;
817 		}
818 		break;
819 	}
820 	}
821 }
822 
823 /*
824  * Called on timeouts and events.  Timeouts should pass the elapsed
825  * time, interrupts should pass in zero.  Must be called with
826  * si_lock held and interrupts disabled.
827  */
828 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
829 					   int time)
830 {
831 	enum si_sm_result si_sm_result;
832 
833  restart:
834 	/*
835 	 * There used to be a loop here that waited a little while
836 	 * (around 25us) before giving up.  That turned out to be
837 	 * pointless, the minimum delays I was seeing were in the 300us
838 	 * range, which is far too long to wait in an interrupt.  So
839 	 * we just run until the state machine tells us something
840 	 * happened or it needs a delay.
841 	 */
842 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
843 	time = 0;
844 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
845 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
846 
847 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
848 		smi_inc_stat(smi_info, complete_transactions);
849 
850 		handle_transaction_done(smi_info);
851 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
852 	} else if (si_sm_result == SI_SM_HOSED) {
853 		smi_inc_stat(smi_info, hosed_count);
854 
855 		/*
856 		 * Do the before return_hosed_msg, because that
857 		 * releases the lock.
858 		 */
859 		smi_info->si_state = SI_NORMAL;
860 		if (smi_info->curr_msg != NULL) {
861 			/*
862 			 * If we were handling a user message, format
863 			 * a response to send to the upper layer to
864 			 * tell it about the error.
865 			 */
866 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
867 		}
868 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
869 	}
870 
871 	/*
872 	 * We prefer handling attn over new messages.  But don't do
873 	 * this if there is not yet an upper layer to handle anything.
874 	 */
875 	if (likely(smi_info->intf) &&
876 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
877 		unsigned char msg[2];
878 
879 		if (smi_info->si_state != SI_NORMAL) {
880 			/*
881 			 * We got an ATTN, but we are doing something else.
882 			 * Handle the ATTN later.
883 			 */
884 			smi_info->got_attn = true;
885 		} else {
886 			smi_info->got_attn = false;
887 			smi_inc_stat(smi_info, attentions);
888 
889 			/*
890 			 * Got a attn, send down a get message flags to see
891 			 * what's causing it.  It would be better to handle
892 			 * this in the upper layer, but due to the way
893 			 * interrupts work with the SMI, that's not really
894 			 * possible.
895 			 */
896 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
897 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
898 
899 			start_new_msg(smi_info, msg, 2);
900 			smi_info->si_state = SI_GETTING_FLAGS;
901 			goto restart;
902 		}
903 	}
904 
905 	/* If we are currently idle, try to start the next message. */
906 	if (si_sm_result == SI_SM_IDLE) {
907 		smi_inc_stat(smi_info, idles);
908 
909 		si_sm_result = start_next_msg(smi_info);
910 		if (si_sm_result != SI_SM_IDLE)
911 			goto restart;
912 	}
913 
914 	if ((si_sm_result == SI_SM_IDLE)
915 	    && (atomic_read(&smi_info->req_events))) {
916 		/*
917 		 * We are idle and the upper layer requested that I fetch
918 		 * events, so do so.
919 		 */
920 		atomic_set(&smi_info->req_events, 0);
921 
922 		/*
923 		 * Take this opportunity to check the interrupt and
924 		 * message enable state for the BMC.  The BMC can be
925 		 * asynchronously reset, and may thus get interrupts
926 		 * disable and messages disabled.
927 		 */
928 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
929 			start_check_enables(smi_info, true);
930 		} else {
931 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
932 			if (!smi_info->curr_msg)
933 				goto out;
934 
935 			start_getting_events(smi_info);
936 		}
937 		goto restart;
938 	}
939 
940 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
941 		/* Ok it if fails, the timer will just go off. */
942 		if (del_timer(&smi_info->si_timer))
943 			smi_info->timer_running = false;
944 	}
945 
946  out:
947 	return si_sm_result;
948 }
949 
950 static void check_start_timer_thread(struct smi_info *smi_info)
951 {
952 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
953 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
954 
955 		if (smi_info->thread)
956 			wake_up_process(smi_info->thread);
957 
958 		start_next_msg(smi_info);
959 		smi_event_handler(smi_info, 0);
960 	}
961 }
962 
963 static void flush_messages(void *send_info)
964 {
965 	struct smi_info *smi_info = send_info;
966 	enum si_sm_result result;
967 
968 	/*
969 	 * Currently, this function is called only in run-to-completion
970 	 * mode.  This means we are single-threaded, no need for locks.
971 	 */
972 	result = smi_event_handler(smi_info, 0);
973 	while (result != SI_SM_IDLE) {
974 		udelay(SI_SHORT_TIMEOUT_USEC);
975 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
976 	}
977 }
978 
979 static void sender(void                *send_info,
980 		   struct ipmi_smi_msg *msg)
981 {
982 	struct smi_info   *smi_info = send_info;
983 	unsigned long     flags;
984 
985 	debug_timestamp("Enqueue");
986 
987 	if (smi_info->run_to_completion) {
988 		/*
989 		 * If we are running to completion, start it.  Upper
990 		 * layer will call flush_messages to clear it out.
991 		 */
992 		smi_info->waiting_msg = msg;
993 		return;
994 	}
995 
996 	spin_lock_irqsave(&smi_info->si_lock, flags);
997 	/*
998 	 * The following two lines don't need to be under the lock for
999 	 * the lock's sake, but they do need SMP memory barriers to
1000 	 * avoid getting things out of order.  We are already claiming
1001 	 * the lock, anyway, so just do it under the lock to avoid the
1002 	 * ordering problem.
1003 	 */
1004 	BUG_ON(smi_info->waiting_msg);
1005 	smi_info->waiting_msg = msg;
1006 	check_start_timer_thread(smi_info);
1007 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1008 }
1009 
1010 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1011 {
1012 	struct smi_info   *smi_info = send_info;
1013 
1014 	smi_info->run_to_completion = i_run_to_completion;
1015 	if (i_run_to_completion)
1016 		flush_messages(smi_info);
1017 }
1018 
1019 /*
1020  * Use -1 in the nsec value of the busy waiting timespec to tell that
1021  * we are spinning in kipmid looking for something and not delaying
1022  * between checks
1023  */
1024 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1025 {
1026 	ts->tv_nsec = -1;
1027 }
1028 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1029 {
1030 	return ts->tv_nsec != -1;
1031 }
1032 
1033 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1034 					const struct smi_info *smi_info,
1035 					struct timespec64 *busy_until)
1036 {
1037 	unsigned int max_busy_us = 0;
1038 
1039 	if (smi_info->intf_num < num_max_busy_us)
1040 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1041 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1042 		ipmi_si_set_not_busy(busy_until);
1043 	else if (!ipmi_si_is_busy(busy_until)) {
1044 		getnstimeofday64(busy_until);
1045 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1046 	} else {
1047 		struct timespec64 now;
1048 
1049 		getnstimeofday64(&now);
1050 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1051 			ipmi_si_set_not_busy(busy_until);
1052 			return 0;
1053 		}
1054 	}
1055 	return 1;
1056 }
1057 
1058 
1059 /*
1060  * A busy-waiting loop for speeding up IPMI operation.
1061  *
1062  * Lousy hardware makes this hard.  This is only enabled for systems
1063  * that are not BT and do not have interrupts.  It starts spinning
1064  * when an operation is complete or until max_busy tells it to stop
1065  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1066  * Documentation/IPMI.txt for details.
1067  */
1068 static int ipmi_thread(void *data)
1069 {
1070 	struct smi_info *smi_info = data;
1071 	unsigned long flags;
1072 	enum si_sm_result smi_result;
1073 	struct timespec64 busy_until;
1074 
1075 	ipmi_si_set_not_busy(&busy_until);
1076 	set_user_nice(current, MAX_NICE);
1077 	while (!kthread_should_stop()) {
1078 		int busy_wait;
1079 
1080 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1081 		smi_result = smi_event_handler(smi_info, 0);
1082 
1083 		/*
1084 		 * If the driver is doing something, there is a possible
1085 		 * race with the timer.  If the timer handler see idle,
1086 		 * and the thread here sees something else, the timer
1087 		 * handler won't restart the timer even though it is
1088 		 * required.  So start it here if necessary.
1089 		 */
1090 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1091 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1092 
1093 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1094 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1095 						  &busy_until);
1096 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1097 			; /* do nothing */
1098 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1099 			schedule();
1100 		else if (smi_result == SI_SM_IDLE) {
1101 			if (atomic_read(&smi_info->need_watch)) {
1102 				schedule_timeout_interruptible(100);
1103 			} else {
1104 				/* Wait to be woken up when we are needed. */
1105 				__set_current_state(TASK_INTERRUPTIBLE);
1106 				schedule();
1107 			}
1108 		} else
1109 			schedule_timeout_interruptible(1);
1110 	}
1111 	return 0;
1112 }
1113 
1114 
1115 static void poll(void *send_info)
1116 {
1117 	struct smi_info *smi_info = send_info;
1118 	unsigned long flags = 0;
1119 	bool run_to_completion = smi_info->run_to_completion;
1120 
1121 	/*
1122 	 * Make sure there is some delay in the poll loop so we can
1123 	 * drive time forward and timeout things.
1124 	 */
1125 	udelay(10);
1126 	if (!run_to_completion)
1127 		spin_lock_irqsave(&smi_info->si_lock, flags);
1128 	smi_event_handler(smi_info, 10);
1129 	if (!run_to_completion)
1130 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1131 }
1132 
1133 static void request_events(void *send_info)
1134 {
1135 	struct smi_info *smi_info = send_info;
1136 
1137 	if (!smi_info->has_event_buffer)
1138 		return;
1139 
1140 	atomic_set(&smi_info->req_events, 1);
1141 }
1142 
1143 static void set_need_watch(void *send_info, bool enable)
1144 {
1145 	struct smi_info *smi_info = send_info;
1146 	unsigned long flags;
1147 
1148 	atomic_set(&smi_info->need_watch, enable);
1149 	spin_lock_irqsave(&smi_info->si_lock, flags);
1150 	check_start_timer_thread(smi_info);
1151 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1152 }
1153 
1154 static int initialized;
1155 
1156 static void smi_timeout(unsigned long data)
1157 {
1158 	struct smi_info   *smi_info = (struct smi_info *) data;
1159 	enum si_sm_result smi_result;
1160 	unsigned long     flags;
1161 	unsigned long     jiffies_now;
1162 	long              time_diff;
1163 	long		  timeout;
1164 
1165 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1166 	debug_timestamp("Timer");
1167 
1168 	jiffies_now = jiffies;
1169 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1170 		     * SI_USEC_PER_JIFFY);
1171 	smi_result = smi_event_handler(smi_info, time_diff);
1172 
1173 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1174 		/* Running with interrupts, only do long timeouts. */
1175 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1176 		smi_inc_stat(smi_info, long_timeouts);
1177 		goto do_mod_timer;
1178 	}
1179 
1180 	/*
1181 	 * If the state machine asks for a short delay, then shorten
1182 	 * the timer timeout.
1183 	 */
1184 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1185 		smi_inc_stat(smi_info, short_timeouts);
1186 		timeout = jiffies + 1;
1187 	} else {
1188 		smi_inc_stat(smi_info, long_timeouts);
1189 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1190 	}
1191 
1192  do_mod_timer:
1193 	if (smi_result != SI_SM_IDLE)
1194 		smi_mod_timer(smi_info, timeout);
1195 	else
1196 		smi_info->timer_running = false;
1197 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1198 }
1199 
1200 static irqreturn_t si_irq_handler(int irq, void *data)
1201 {
1202 	struct smi_info *smi_info = data;
1203 	unsigned long   flags;
1204 
1205 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1206 
1207 	smi_inc_stat(smi_info, interrupts);
1208 
1209 	debug_timestamp("Interrupt");
1210 
1211 	smi_event_handler(smi_info, 0);
1212 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1213 	return IRQ_HANDLED;
1214 }
1215 
1216 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1217 {
1218 	struct smi_info *smi_info = data;
1219 	/* We need to clear the IRQ flag for the BT interface. */
1220 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1221 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1222 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1223 	return si_irq_handler(irq, data);
1224 }
1225 
1226 static int smi_start_processing(void       *send_info,
1227 				ipmi_smi_t intf)
1228 {
1229 	struct smi_info *new_smi = send_info;
1230 	int             enable = 0;
1231 
1232 	new_smi->intf = intf;
1233 
1234 	/* Set up the timer that drives the interface. */
1235 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1236 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1237 
1238 	/* Try to claim any interrupts. */
1239 	if (new_smi->irq_setup)
1240 		new_smi->irq_setup(new_smi);
1241 
1242 	/*
1243 	 * Check if the user forcefully enabled the daemon.
1244 	 */
1245 	if (new_smi->intf_num < num_force_kipmid)
1246 		enable = force_kipmid[new_smi->intf_num];
1247 	/*
1248 	 * The BT interface is efficient enough to not need a thread,
1249 	 * and there is no need for a thread if we have interrupts.
1250 	 */
1251 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1252 		enable = 1;
1253 
1254 	if (enable) {
1255 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1256 					      "kipmi%d", new_smi->intf_num);
1257 		if (IS_ERR(new_smi->thread)) {
1258 			dev_notice(new_smi->dev, "Could not start"
1259 				   " kernel thread due to error %ld, only using"
1260 				   " timers to drive the interface\n",
1261 				   PTR_ERR(new_smi->thread));
1262 			new_smi->thread = NULL;
1263 		}
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1270 {
1271 	struct smi_info *smi = send_info;
1272 
1273 	data->addr_src = smi->addr_source;
1274 	data->dev = smi->dev;
1275 	data->addr_info = smi->addr_info;
1276 	get_device(smi->dev);
1277 
1278 	return 0;
1279 }
1280 
1281 static void set_maintenance_mode(void *send_info, bool enable)
1282 {
1283 	struct smi_info   *smi_info = send_info;
1284 
1285 	if (!enable)
1286 		atomic_set(&smi_info->req_events, 0);
1287 }
1288 
1289 static const struct ipmi_smi_handlers handlers = {
1290 	.owner                  = THIS_MODULE,
1291 	.start_processing       = smi_start_processing,
1292 	.get_smi_info		= get_smi_info,
1293 	.sender			= sender,
1294 	.request_events		= request_events,
1295 	.set_need_watch		= set_need_watch,
1296 	.set_maintenance_mode   = set_maintenance_mode,
1297 	.set_run_to_completion  = set_run_to_completion,
1298 	.flush_messages		= flush_messages,
1299 	.poll			= poll,
1300 };
1301 
1302 /*
1303  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1304  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1305  */
1306 
1307 static LIST_HEAD(smi_infos);
1308 static DEFINE_MUTEX(smi_infos_lock);
1309 static int smi_num; /* Used to sequence the SMIs */
1310 
1311 #define DEFAULT_REGSPACING	1
1312 #define DEFAULT_REGSIZE		1
1313 
1314 #ifdef CONFIG_ACPI
1315 static bool          si_tryacpi = true;
1316 #endif
1317 #ifdef CONFIG_DMI
1318 static bool          si_trydmi = true;
1319 #endif
1320 static bool          si_tryplatform = true;
1321 #ifdef CONFIG_PCI
1322 static bool          si_trypci = true;
1323 #endif
1324 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1325 static char          *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char          si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int  ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int           irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int           regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int           regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int           regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342 
1343 #define IPMI_IO_ADDR_SPACE  0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346 
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348 
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1351 		 " Documentation/IPMI.txt in the kernel sources for the"
1352 		 " gory details.");
1353 
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 		 " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362 		 " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1366 		 " default scan of the interfaces identified via platform"
1367 		 " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1371 		 " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_named(trydefaults, si_trydefaults, bool, 0);
1374 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1375 		 " default scan of the KCS and SMIC interface at the standard"
1376 		 " address");
1377 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1378 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1379 		 " interface separated by commas.  The types are 'kcs',"
1380 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1381 		 " the first interface to kcs and the second to bt");
1382 module_param_array(addrs, ulong, &num_addrs, 0);
1383 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1384 		 " addresses separated by commas.  Only use if an interface"
1385 		 " is in memory.  Otherwise, set it to zero or leave"
1386 		 " it blank.");
1387 module_param_array(ports, uint, &num_ports, 0);
1388 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1389 		 " addresses separated by commas.  Only use if an interface"
1390 		 " is a port.  Otherwise, set it to zero or leave"
1391 		 " it blank.");
1392 module_param_array(irqs, int, &num_irqs, 0);
1393 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1394 		 " addresses separated by commas.  Only use if an interface"
1395 		 " has an interrupt.  Otherwise, set it to zero or leave"
1396 		 " it blank.");
1397 module_param_array(regspacings, int, &num_regspacings, 0);
1398 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1399 		 " and each successive register used by the interface.  For"
1400 		 " instance, if the start address is 0xca2 and the spacing"
1401 		 " is 2, then the second address is at 0xca4.  Defaults"
1402 		 " to 1.");
1403 module_param_array(regsizes, int, &num_regsizes, 0);
1404 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1405 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1406 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1407 		 " the 8-bit IPMI register has to be read from a larger"
1408 		 " register.");
1409 module_param_array(regshifts, int, &num_regshifts, 0);
1410 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1411 		 " IPMI register, in bits.  For instance, if the data"
1412 		 " is read from a 32-bit word and the IPMI data is in"
1413 		 " bit 8-15, then the shift would be 8");
1414 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1415 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1416 		 " the controller.  Normally this is 0x20, but can be"
1417 		 " overridden by this parm.  This is an array indexed"
1418 		 " by interface number.");
1419 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1420 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1421 		 " disabled(0).  Normally the IPMI driver auto-detects"
1422 		 " this, but the value may be overridden by this parm.");
1423 module_param(unload_when_empty, bool, 0);
1424 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1425 		 " specified or found, default is 1.  Setting to 0"
1426 		 " is useful for hot add of devices using hotmod.");
1427 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1428 MODULE_PARM_DESC(kipmid_max_busy_us,
1429 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1430 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1431 		 " if kipmid is using up a lot of CPU time.");
1432 
1433 
1434 static void std_irq_cleanup(struct smi_info *info)
1435 {
1436 	if (info->si_type == SI_BT)
1437 		/* Disable the interrupt in the BT interface. */
1438 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1439 	free_irq(info->irq, info);
1440 }
1441 
1442 static int std_irq_setup(struct smi_info *info)
1443 {
1444 	int rv;
1445 
1446 	if (!info->irq)
1447 		return 0;
1448 
1449 	if (info->si_type == SI_BT) {
1450 		rv = request_irq(info->irq,
1451 				 si_bt_irq_handler,
1452 				 IRQF_SHARED,
1453 				 DEVICE_NAME,
1454 				 info);
1455 		if (!rv)
1456 			/* Enable the interrupt in the BT interface. */
1457 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1458 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1459 	} else
1460 		rv = request_irq(info->irq,
1461 				 si_irq_handler,
1462 				 IRQF_SHARED,
1463 				 DEVICE_NAME,
1464 				 info);
1465 	if (rv) {
1466 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1467 			 " running polled\n",
1468 			 DEVICE_NAME, info->irq);
1469 		info->irq = 0;
1470 	} else {
1471 		info->irq_cleanup = std_irq_cleanup;
1472 		dev_info(info->dev, "Using irq %d\n", info->irq);
1473 	}
1474 
1475 	return rv;
1476 }
1477 
1478 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1479 {
1480 	unsigned int addr = io->addr_data;
1481 
1482 	return inb(addr + (offset * io->regspacing));
1483 }
1484 
1485 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1486 		      unsigned char b)
1487 {
1488 	unsigned int addr = io->addr_data;
1489 
1490 	outb(b, addr + (offset * io->regspacing));
1491 }
1492 
1493 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1494 {
1495 	unsigned int addr = io->addr_data;
1496 
1497 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1498 }
1499 
1500 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1501 		      unsigned char b)
1502 {
1503 	unsigned int addr = io->addr_data;
1504 
1505 	outw(b << io->regshift, addr + (offset * io->regspacing));
1506 }
1507 
1508 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1509 {
1510 	unsigned int addr = io->addr_data;
1511 
1512 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1513 }
1514 
1515 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1516 		      unsigned char b)
1517 {
1518 	unsigned int addr = io->addr_data;
1519 
1520 	outl(b << io->regshift, addr+(offset * io->regspacing));
1521 }
1522 
1523 static void port_cleanup(struct smi_info *info)
1524 {
1525 	unsigned int addr = info->io.addr_data;
1526 	int          idx;
1527 
1528 	if (addr) {
1529 		for (idx = 0; idx < info->io_size; idx++)
1530 			release_region(addr + idx * info->io.regspacing,
1531 				       info->io.regsize);
1532 	}
1533 }
1534 
1535 static int port_setup(struct smi_info *info)
1536 {
1537 	unsigned int addr = info->io.addr_data;
1538 	int          idx;
1539 
1540 	if (!addr)
1541 		return -ENODEV;
1542 
1543 	info->io_cleanup = port_cleanup;
1544 
1545 	/*
1546 	 * Figure out the actual inb/inw/inl/etc routine to use based
1547 	 * upon the register size.
1548 	 */
1549 	switch (info->io.regsize) {
1550 	case 1:
1551 		info->io.inputb = port_inb;
1552 		info->io.outputb = port_outb;
1553 		break;
1554 	case 2:
1555 		info->io.inputb = port_inw;
1556 		info->io.outputb = port_outw;
1557 		break;
1558 	case 4:
1559 		info->io.inputb = port_inl;
1560 		info->io.outputb = port_outl;
1561 		break;
1562 	default:
1563 		dev_warn(info->dev, "Invalid register size: %d\n",
1564 			 info->io.regsize);
1565 		return -EINVAL;
1566 	}
1567 
1568 	/*
1569 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1570 	 * tables.  This causes problems when trying to register the
1571 	 * entire I/O region.  Therefore we must register each I/O
1572 	 * port separately.
1573 	 */
1574 	for (idx = 0; idx < info->io_size; idx++) {
1575 		if (request_region(addr + idx * info->io.regspacing,
1576 				   info->io.regsize, DEVICE_NAME) == NULL) {
1577 			/* Undo allocations */
1578 			while (idx--) {
1579 				release_region(addr + idx * info->io.regspacing,
1580 					       info->io.regsize);
1581 			}
1582 			return -EIO;
1583 		}
1584 	}
1585 	return 0;
1586 }
1587 
1588 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1589 				  unsigned int offset)
1590 {
1591 	return readb((io->addr)+(offset * io->regspacing));
1592 }
1593 
1594 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1595 			  unsigned char b)
1596 {
1597 	writeb(b, (io->addr)+(offset * io->regspacing));
1598 }
1599 
1600 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1601 				  unsigned int offset)
1602 {
1603 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1604 		& 0xff;
1605 }
1606 
1607 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1608 			  unsigned char b)
1609 {
1610 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1611 }
1612 
1613 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1614 				  unsigned int offset)
1615 {
1616 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617 		& 0xff;
1618 }
1619 
1620 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1621 			  unsigned char b)
1622 {
1623 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625 
1626 #ifdef readq
1627 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1628 {
1629 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630 		& 0xff;
1631 }
1632 
1633 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1634 		     unsigned char b)
1635 {
1636 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638 #endif
1639 
1640 static void mem_cleanup(struct smi_info *info)
1641 {
1642 	unsigned long addr = info->io.addr_data;
1643 	int           mapsize;
1644 
1645 	if (info->io.addr) {
1646 		iounmap(info->io.addr);
1647 
1648 		mapsize = ((info->io_size * info->io.regspacing)
1649 			   - (info->io.regspacing - info->io.regsize));
1650 
1651 		release_mem_region(addr, mapsize);
1652 	}
1653 }
1654 
1655 static int mem_setup(struct smi_info *info)
1656 {
1657 	unsigned long addr = info->io.addr_data;
1658 	int           mapsize;
1659 
1660 	if (!addr)
1661 		return -ENODEV;
1662 
1663 	info->io_cleanup = mem_cleanup;
1664 
1665 	/*
1666 	 * Figure out the actual readb/readw/readl/etc routine to use based
1667 	 * upon the register size.
1668 	 */
1669 	switch (info->io.regsize) {
1670 	case 1:
1671 		info->io.inputb = intf_mem_inb;
1672 		info->io.outputb = intf_mem_outb;
1673 		break;
1674 	case 2:
1675 		info->io.inputb = intf_mem_inw;
1676 		info->io.outputb = intf_mem_outw;
1677 		break;
1678 	case 4:
1679 		info->io.inputb = intf_mem_inl;
1680 		info->io.outputb = intf_mem_outl;
1681 		break;
1682 #ifdef readq
1683 	case 8:
1684 		info->io.inputb = mem_inq;
1685 		info->io.outputb = mem_outq;
1686 		break;
1687 #endif
1688 	default:
1689 		dev_warn(info->dev, "Invalid register size: %d\n",
1690 			 info->io.regsize);
1691 		return -EINVAL;
1692 	}
1693 
1694 	/*
1695 	 * Calculate the total amount of memory to claim.  This is an
1696 	 * unusual looking calculation, but it avoids claiming any
1697 	 * more memory than it has to.  It will claim everything
1698 	 * between the first address to the end of the last full
1699 	 * register.
1700 	 */
1701 	mapsize = ((info->io_size * info->io.regspacing)
1702 		   - (info->io.regspacing - info->io.regsize));
1703 
1704 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1705 		return -EIO;
1706 
1707 	info->io.addr = ioremap(addr, mapsize);
1708 	if (info->io.addr == NULL) {
1709 		release_mem_region(addr, mapsize);
1710 		return -EIO;
1711 	}
1712 	return 0;
1713 }
1714 
1715 /*
1716  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1717  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1718  * Options are:
1719  *   rsp=<regspacing>
1720  *   rsi=<regsize>
1721  *   rsh=<regshift>
1722  *   irq=<irq>
1723  *   ipmb=<ipmb addr>
1724  */
1725 enum hotmod_op { HM_ADD, HM_REMOVE };
1726 struct hotmod_vals {
1727 	const char *name;
1728 	const int  val;
1729 };
1730 
1731 static const struct hotmod_vals hotmod_ops[] = {
1732 	{ "add",	HM_ADD },
1733 	{ "remove",	HM_REMOVE },
1734 	{ NULL }
1735 };
1736 
1737 static const struct hotmod_vals hotmod_si[] = {
1738 	{ "kcs",	SI_KCS },
1739 	{ "smic",	SI_SMIC },
1740 	{ "bt",		SI_BT },
1741 	{ NULL }
1742 };
1743 
1744 static const struct hotmod_vals hotmod_as[] = {
1745 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1746 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1747 	{ NULL }
1748 };
1749 
1750 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1751 		     char **curr)
1752 {
1753 	char *s;
1754 	int  i;
1755 
1756 	s = strchr(*curr, ',');
1757 	if (!s) {
1758 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1759 		return -EINVAL;
1760 	}
1761 	*s = '\0';
1762 	s++;
1763 	for (i = 0; v[i].name; i++) {
1764 		if (strcmp(*curr, v[i].name) == 0) {
1765 			*val = v[i].val;
1766 			*curr = s;
1767 			return 0;
1768 		}
1769 	}
1770 
1771 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1772 	return -EINVAL;
1773 }
1774 
1775 static int check_hotmod_int_op(const char *curr, const char *option,
1776 			       const char *name, int *val)
1777 {
1778 	char *n;
1779 
1780 	if (strcmp(curr, name) == 0) {
1781 		if (!option) {
1782 			printk(KERN_WARNING PFX
1783 			       "No option given for '%s'\n",
1784 			       curr);
1785 			return -EINVAL;
1786 		}
1787 		*val = simple_strtoul(option, &n, 0);
1788 		if ((*n != '\0') || (*option == '\0')) {
1789 			printk(KERN_WARNING PFX
1790 			       "Bad option given for '%s'\n",
1791 			       curr);
1792 			return -EINVAL;
1793 		}
1794 		return 1;
1795 	}
1796 	return 0;
1797 }
1798 
1799 static struct smi_info *smi_info_alloc(void)
1800 {
1801 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1802 
1803 	if (info)
1804 		spin_lock_init(&info->si_lock);
1805 	return info;
1806 }
1807 
1808 static int hotmod_handler(const char *val, struct kernel_param *kp)
1809 {
1810 	char *str = kstrdup(val, GFP_KERNEL);
1811 	int  rv;
1812 	char *next, *curr, *s, *n, *o;
1813 	enum hotmod_op op;
1814 	enum si_type si_type;
1815 	int  addr_space;
1816 	unsigned long addr;
1817 	int regspacing;
1818 	int regsize;
1819 	int regshift;
1820 	int irq;
1821 	int ipmb;
1822 	int ival;
1823 	int len;
1824 	struct smi_info *info;
1825 
1826 	if (!str)
1827 		return -ENOMEM;
1828 
1829 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1830 	len = strlen(str);
1831 	ival = len - 1;
1832 	while ((ival >= 0) && isspace(str[ival])) {
1833 		str[ival] = '\0';
1834 		ival--;
1835 	}
1836 
1837 	for (curr = str; curr; curr = next) {
1838 		regspacing = 1;
1839 		regsize = 1;
1840 		regshift = 0;
1841 		irq = 0;
1842 		ipmb = 0; /* Choose the default if not specified */
1843 
1844 		next = strchr(curr, ':');
1845 		if (next) {
1846 			*next = '\0';
1847 			next++;
1848 		}
1849 
1850 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1851 		if (rv)
1852 			break;
1853 		op = ival;
1854 
1855 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1856 		if (rv)
1857 			break;
1858 		si_type = ival;
1859 
1860 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1861 		if (rv)
1862 			break;
1863 
1864 		s = strchr(curr, ',');
1865 		if (s) {
1866 			*s = '\0';
1867 			s++;
1868 		}
1869 		addr = simple_strtoul(curr, &n, 0);
1870 		if ((*n != '\0') || (*curr == '\0')) {
1871 			printk(KERN_WARNING PFX "Invalid hotmod address"
1872 			       " '%s'\n", curr);
1873 			break;
1874 		}
1875 
1876 		while (s) {
1877 			curr = s;
1878 			s = strchr(curr, ',');
1879 			if (s) {
1880 				*s = '\0';
1881 				s++;
1882 			}
1883 			o = strchr(curr, '=');
1884 			if (o) {
1885 				*o = '\0';
1886 				o++;
1887 			}
1888 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1889 			if (rv < 0)
1890 				goto out;
1891 			else if (rv)
1892 				continue;
1893 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1894 			if (rv < 0)
1895 				goto out;
1896 			else if (rv)
1897 				continue;
1898 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1899 			if (rv < 0)
1900 				goto out;
1901 			else if (rv)
1902 				continue;
1903 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1904 			if (rv < 0)
1905 				goto out;
1906 			else if (rv)
1907 				continue;
1908 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1909 			if (rv < 0)
1910 				goto out;
1911 			else if (rv)
1912 				continue;
1913 
1914 			rv = -EINVAL;
1915 			printk(KERN_WARNING PFX
1916 			       "Invalid hotmod option '%s'\n",
1917 			       curr);
1918 			goto out;
1919 		}
1920 
1921 		if (op == HM_ADD) {
1922 			info = smi_info_alloc();
1923 			if (!info) {
1924 				rv = -ENOMEM;
1925 				goto out;
1926 			}
1927 
1928 			info->addr_source = SI_HOTMOD;
1929 			info->si_type = si_type;
1930 			info->io.addr_data = addr;
1931 			info->io.addr_type = addr_space;
1932 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1933 				info->io_setup = mem_setup;
1934 			else
1935 				info->io_setup = port_setup;
1936 
1937 			info->io.addr = NULL;
1938 			info->io.regspacing = regspacing;
1939 			if (!info->io.regspacing)
1940 				info->io.regspacing = DEFAULT_REGSPACING;
1941 			info->io.regsize = regsize;
1942 			if (!info->io.regsize)
1943 				info->io.regsize = DEFAULT_REGSPACING;
1944 			info->io.regshift = regshift;
1945 			info->irq = irq;
1946 			if (info->irq)
1947 				info->irq_setup = std_irq_setup;
1948 			info->slave_addr = ipmb;
1949 
1950 			rv = add_smi(info);
1951 			if (rv) {
1952 				kfree(info);
1953 				goto out;
1954 			}
1955 			rv = try_smi_init(info);
1956 			if (rv) {
1957 				cleanup_one_si(info);
1958 				goto out;
1959 			}
1960 		} else {
1961 			/* remove */
1962 			struct smi_info *e, *tmp_e;
1963 
1964 			mutex_lock(&smi_infos_lock);
1965 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1966 				if (e->io.addr_type != addr_space)
1967 					continue;
1968 				if (e->si_type != si_type)
1969 					continue;
1970 				if (e->io.addr_data == addr)
1971 					cleanup_one_si(e);
1972 			}
1973 			mutex_unlock(&smi_infos_lock);
1974 		}
1975 	}
1976 	rv = len;
1977  out:
1978 	kfree(str);
1979 	return rv;
1980 }
1981 
1982 static int hardcode_find_bmc(void)
1983 {
1984 	int ret = -ENODEV;
1985 	int             i;
1986 	struct smi_info *info;
1987 
1988 	for (i = 0; i < SI_MAX_PARMS; i++) {
1989 		if (!ports[i] && !addrs[i])
1990 			continue;
1991 
1992 		info = smi_info_alloc();
1993 		if (!info)
1994 			return -ENOMEM;
1995 
1996 		info->addr_source = SI_HARDCODED;
1997 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1998 
1999 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2000 			info->si_type = SI_KCS;
2001 		} else if (strcmp(si_type[i], "smic") == 0) {
2002 			info->si_type = SI_SMIC;
2003 		} else if (strcmp(si_type[i], "bt") == 0) {
2004 			info->si_type = SI_BT;
2005 		} else {
2006 			printk(KERN_WARNING PFX "Interface type specified "
2007 			       "for interface %d, was invalid: %s\n",
2008 			       i, si_type[i]);
2009 			kfree(info);
2010 			continue;
2011 		}
2012 
2013 		if (ports[i]) {
2014 			/* An I/O port */
2015 			info->io_setup = port_setup;
2016 			info->io.addr_data = ports[i];
2017 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2018 		} else if (addrs[i]) {
2019 			/* A memory port */
2020 			info->io_setup = mem_setup;
2021 			info->io.addr_data = addrs[i];
2022 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2023 		} else {
2024 			printk(KERN_WARNING PFX "Interface type specified "
2025 			       "for interface %d, but port and address were "
2026 			       "not set or set to zero.\n", i);
2027 			kfree(info);
2028 			continue;
2029 		}
2030 
2031 		info->io.addr = NULL;
2032 		info->io.regspacing = regspacings[i];
2033 		if (!info->io.regspacing)
2034 			info->io.regspacing = DEFAULT_REGSPACING;
2035 		info->io.regsize = regsizes[i];
2036 		if (!info->io.regsize)
2037 			info->io.regsize = DEFAULT_REGSPACING;
2038 		info->io.regshift = regshifts[i];
2039 		info->irq = irqs[i];
2040 		if (info->irq)
2041 			info->irq_setup = std_irq_setup;
2042 		info->slave_addr = slave_addrs[i];
2043 
2044 		if (!add_smi(info)) {
2045 			if (try_smi_init(info))
2046 				cleanup_one_si(info);
2047 			ret = 0;
2048 		} else {
2049 			kfree(info);
2050 		}
2051 	}
2052 	return ret;
2053 }
2054 
2055 #ifdef CONFIG_ACPI
2056 
2057 #include <linux/acpi.h>
2058 
2059 /*
2060  * Once we get an ACPI failure, we don't try any more, because we go
2061  * through the tables sequentially.  Once we don't find a table, there
2062  * are no more.
2063  */
2064 static int acpi_failure;
2065 
2066 /* For GPE-type interrupts. */
2067 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2068 	u32 gpe_number, void *context)
2069 {
2070 	struct smi_info *smi_info = context;
2071 	unsigned long   flags;
2072 
2073 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2074 
2075 	smi_inc_stat(smi_info, interrupts);
2076 
2077 	debug_timestamp("ACPI_GPE");
2078 
2079 	smi_event_handler(smi_info, 0);
2080 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2081 
2082 	return ACPI_INTERRUPT_HANDLED;
2083 }
2084 
2085 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2086 {
2087 	if (!info->irq)
2088 		return;
2089 
2090 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2091 }
2092 
2093 static int acpi_gpe_irq_setup(struct smi_info *info)
2094 {
2095 	acpi_status status;
2096 
2097 	if (!info->irq)
2098 		return 0;
2099 
2100 	status = acpi_install_gpe_handler(NULL,
2101 					  info->irq,
2102 					  ACPI_GPE_LEVEL_TRIGGERED,
2103 					  &ipmi_acpi_gpe,
2104 					  info);
2105 	if (status != AE_OK) {
2106 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2107 			 " running polled\n", DEVICE_NAME, info->irq);
2108 		info->irq = 0;
2109 		return -EINVAL;
2110 	} else {
2111 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2112 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2113 		return 0;
2114 	}
2115 }
2116 
2117 /*
2118  * Defined at
2119  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2120  */
2121 struct SPMITable {
2122 	s8	Signature[4];
2123 	u32	Length;
2124 	u8	Revision;
2125 	u8	Checksum;
2126 	s8	OEMID[6];
2127 	s8	OEMTableID[8];
2128 	s8	OEMRevision[4];
2129 	s8	CreatorID[4];
2130 	s8	CreatorRevision[4];
2131 	u8	InterfaceType;
2132 	u8	IPMIlegacy;
2133 	s16	SpecificationRevision;
2134 
2135 	/*
2136 	 * Bit 0 - SCI interrupt supported
2137 	 * Bit 1 - I/O APIC/SAPIC
2138 	 */
2139 	u8	InterruptType;
2140 
2141 	/*
2142 	 * If bit 0 of InterruptType is set, then this is the SCI
2143 	 * interrupt in the GPEx_STS register.
2144 	 */
2145 	u8	GPE;
2146 
2147 	s16	Reserved;
2148 
2149 	/*
2150 	 * If bit 1 of InterruptType is set, then this is the I/O
2151 	 * APIC/SAPIC interrupt.
2152 	 */
2153 	u32	GlobalSystemInterrupt;
2154 
2155 	/* The actual register address. */
2156 	struct acpi_generic_address addr;
2157 
2158 	u8	UID[4];
2159 
2160 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2161 };
2162 
2163 static int try_init_spmi(struct SPMITable *spmi)
2164 {
2165 	struct smi_info  *info;
2166 	int rv;
2167 
2168 	if (spmi->IPMIlegacy != 1) {
2169 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2170 		return -ENODEV;
2171 	}
2172 
2173 	info = smi_info_alloc();
2174 	if (!info) {
2175 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2176 		return -ENOMEM;
2177 	}
2178 
2179 	info->addr_source = SI_SPMI;
2180 	printk(KERN_INFO PFX "probing via SPMI\n");
2181 
2182 	/* Figure out the interface type. */
2183 	switch (spmi->InterfaceType) {
2184 	case 1:	/* KCS */
2185 		info->si_type = SI_KCS;
2186 		break;
2187 	case 2:	/* SMIC */
2188 		info->si_type = SI_SMIC;
2189 		break;
2190 	case 3:	/* BT */
2191 		info->si_type = SI_BT;
2192 		break;
2193 	case 4: /* SSIF, just ignore */
2194 		kfree(info);
2195 		return -EIO;
2196 	default:
2197 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2198 		       spmi->InterfaceType);
2199 		kfree(info);
2200 		return -EIO;
2201 	}
2202 
2203 	if (spmi->InterruptType & 1) {
2204 		/* We've got a GPE interrupt. */
2205 		info->irq = spmi->GPE;
2206 		info->irq_setup = acpi_gpe_irq_setup;
2207 	} else if (spmi->InterruptType & 2) {
2208 		/* We've got an APIC/SAPIC interrupt. */
2209 		info->irq = spmi->GlobalSystemInterrupt;
2210 		info->irq_setup = std_irq_setup;
2211 	} else {
2212 		/* Use the default interrupt setting. */
2213 		info->irq = 0;
2214 		info->irq_setup = NULL;
2215 	}
2216 
2217 	if (spmi->addr.bit_width) {
2218 		/* A (hopefully) properly formed register bit width. */
2219 		info->io.regspacing = spmi->addr.bit_width / 8;
2220 	} else {
2221 		info->io.regspacing = DEFAULT_REGSPACING;
2222 	}
2223 	info->io.regsize = info->io.regspacing;
2224 	info->io.regshift = spmi->addr.bit_offset;
2225 
2226 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2227 		info->io_setup = mem_setup;
2228 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2229 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2230 		info->io_setup = port_setup;
2231 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2232 	} else {
2233 		kfree(info);
2234 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2235 		return -EIO;
2236 	}
2237 	info->io.addr_data = spmi->addr.address;
2238 
2239 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2240 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2241 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2242 		 info->irq);
2243 
2244 	rv = add_smi(info);
2245 	if (rv)
2246 		kfree(info);
2247 
2248 	return rv;
2249 }
2250 
2251 static void spmi_find_bmc(void)
2252 {
2253 	acpi_status      status;
2254 	struct SPMITable *spmi;
2255 	int              i;
2256 
2257 	if (acpi_disabled)
2258 		return;
2259 
2260 	if (acpi_failure)
2261 		return;
2262 
2263 	for (i = 0; ; i++) {
2264 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2265 					(struct acpi_table_header **)&spmi);
2266 		if (status != AE_OK)
2267 			return;
2268 
2269 		try_init_spmi(spmi);
2270 	}
2271 }
2272 #endif
2273 
2274 #ifdef CONFIG_DMI
2275 struct dmi_ipmi_data {
2276 	u8   		type;
2277 	u8   		addr_space;
2278 	unsigned long	base_addr;
2279 	u8   		irq;
2280 	u8              offset;
2281 	u8              slave_addr;
2282 };
2283 
2284 static int decode_dmi(const struct dmi_header *dm,
2285 				struct dmi_ipmi_data *dmi)
2286 {
2287 	const u8	*data = (const u8 *)dm;
2288 	unsigned long  	base_addr;
2289 	u8		reg_spacing;
2290 	u8              len = dm->length;
2291 
2292 	dmi->type = data[4];
2293 
2294 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2295 	if (len >= 0x11) {
2296 		if (base_addr & 1) {
2297 			/* I/O */
2298 			base_addr &= 0xFFFE;
2299 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2300 		} else
2301 			/* Memory */
2302 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2303 
2304 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2305 		   is odd. */
2306 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2307 
2308 		dmi->irq = data[0x11];
2309 
2310 		/* The top two bits of byte 0x10 hold the register spacing. */
2311 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2312 		switch (reg_spacing) {
2313 		case 0x00: /* Byte boundaries */
2314 		    dmi->offset = 1;
2315 		    break;
2316 		case 0x01: /* 32-bit boundaries */
2317 		    dmi->offset = 4;
2318 		    break;
2319 		case 0x02: /* 16-byte boundaries */
2320 		    dmi->offset = 16;
2321 		    break;
2322 		default:
2323 		    /* Some other interface, just ignore it. */
2324 		    return -EIO;
2325 		}
2326 	} else {
2327 		/* Old DMI spec. */
2328 		/*
2329 		 * Note that technically, the lower bit of the base
2330 		 * address should be 1 if the address is I/O and 0 if
2331 		 * the address is in memory.  So many systems get that
2332 		 * wrong (and all that I have seen are I/O) so we just
2333 		 * ignore that bit and assume I/O.  Systems that use
2334 		 * memory should use the newer spec, anyway.
2335 		 */
2336 		dmi->base_addr = base_addr & 0xfffe;
2337 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2338 		dmi->offset = 1;
2339 	}
2340 
2341 	dmi->slave_addr = data[6];
2342 
2343 	return 0;
2344 }
2345 
2346 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2347 {
2348 	struct smi_info *info;
2349 
2350 	info = smi_info_alloc();
2351 	if (!info) {
2352 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2353 		return;
2354 	}
2355 
2356 	info->addr_source = SI_SMBIOS;
2357 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2358 
2359 	switch (ipmi_data->type) {
2360 	case 0x01: /* KCS */
2361 		info->si_type = SI_KCS;
2362 		break;
2363 	case 0x02: /* SMIC */
2364 		info->si_type = SI_SMIC;
2365 		break;
2366 	case 0x03: /* BT */
2367 		info->si_type = SI_BT;
2368 		break;
2369 	default:
2370 		kfree(info);
2371 		return;
2372 	}
2373 
2374 	switch (ipmi_data->addr_space) {
2375 	case IPMI_MEM_ADDR_SPACE:
2376 		info->io_setup = mem_setup;
2377 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2378 		break;
2379 
2380 	case IPMI_IO_ADDR_SPACE:
2381 		info->io_setup = port_setup;
2382 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2383 		break;
2384 
2385 	default:
2386 		kfree(info);
2387 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2388 		       ipmi_data->addr_space);
2389 		return;
2390 	}
2391 	info->io.addr_data = ipmi_data->base_addr;
2392 
2393 	info->io.regspacing = ipmi_data->offset;
2394 	if (!info->io.regspacing)
2395 		info->io.regspacing = DEFAULT_REGSPACING;
2396 	info->io.regsize = DEFAULT_REGSPACING;
2397 	info->io.regshift = 0;
2398 
2399 	info->slave_addr = ipmi_data->slave_addr;
2400 
2401 	info->irq = ipmi_data->irq;
2402 	if (info->irq)
2403 		info->irq_setup = std_irq_setup;
2404 
2405 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2406 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2407 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2408 		 info->irq);
2409 
2410 	if (add_smi(info))
2411 		kfree(info);
2412 }
2413 
2414 static void dmi_find_bmc(void)
2415 {
2416 	const struct dmi_device *dev = NULL;
2417 	struct dmi_ipmi_data data;
2418 	int                  rv;
2419 
2420 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2421 		memset(&data, 0, sizeof(data));
2422 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2423 				&data);
2424 		if (!rv)
2425 			try_init_dmi(&data);
2426 	}
2427 }
2428 #endif /* CONFIG_DMI */
2429 
2430 #ifdef CONFIG_PCI
2431 
2432 #define PCI_ERMC_CLASSCODE		0x0C0700
2433 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2434 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2435 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2436 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2437 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2438 
2439 #define PCI_HP_VENDOR_ID    0x103C
2440 #define PCI_MMC_DEVICE_ID   0x121A
2441 #define PCI_MMC_ADDR_CW     0x10
2442 
2443 static void ipmi_pci_cleanup(struct smi_info *info)
2444 {
2445 	struct pci_dev *pdev = info->addr_source_data;
2446 
2447 	pci_disable_device(pdev);
2448 }
2449 
2450 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2451 {
2452 	if (info->si_type == SI_KCS) {
2453 		unsigned char	status;
2454 		int		regspacing;
2455 
2456 		info->io.regsize = DEFAULT_REGSIZE;
2457 		info->io.regshift = 0;
2458 		info->io_size = 2;
2459 		info->handlers = &kcs_smi_handlers;
2460 
2461 		/* detect 1, 4, 16byte spacing */
2462 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2463 			info->io.regspacing = regspacing;
2464 			if (info->io_setup(info)) {
2465 				dev_err(info->dev,
2466 					"Could not setup I/O space\n");
2467 				return DEFAULT_REGSPACING;
2468 			}
2469 			/* write invalid cmd */
2470 			info->io.outputb(&info->io, 1, 0x10);
2471 			/* read status back */
2472 			status = info->io.inputb(&info->io, 1);
2473 			info->io_cleanup(info);
2474 			if (status)
2475 				return regspacing;
2476 			regspacing *= 4;
2477 		}
2478 	}
2479 	return DEFAULT_REGSPACING;
2480 }
2481 
2482 static int ipmi_pci_probe(struct pci_dev *pdev,
2483 				    const struct pci_device_id *ent)
2484 {
2485 	int rv;
2486 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2487 	struct smi_info *info;
2488 
2489 	info = smi_info_alloc();
2490 	if (!info)
2491 		return -ENOMEM;
2492 
2493 	info->addr_source = SI_PCI;
2494 	dev_info(&pdev->dev, "probing via PCI");
2495 
2496 	switch (class_type) {
2497 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2498 		info->si_type = SI_SMIC;
2499 		break;
2500 
2501 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2502 		info->si_type = SI_KCS;
2503 		break;
2504 
2505 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2506 		info->si_type = SI_BT;
2507 		break;
2508 
2509 	default:
2510 		kfree(info);
2511 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2512 		return -ENOMEM;
2513 	}
2514 
2515 	rv = pci_enable_device(pdev);
2516 	if (rv) {
2517 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2518 		kfree(info);
2519 		return rv;
2520 	}
2521 
2522 	info->addr_source_cleanup = ipmi_pci_cleanup;
2523 	info->addr_source_data = pdev;
2524 
2525 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2526 		info->io_setup = port_setup;
2527 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2528 	} else {
2529 		info->io_setup = mem_setup;
2530 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2531 	}
2532 	info->io.addr_data = pci_resource_start(pdev, 0);
2533 
2534 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2535 	info->io.regsize = DEFAULT_REGSIZE;
2536 	info->io.regshift = 0;
2537 
2538 	info->irq = pdev->irq;
2539 	if (info->irq)
2540 		info->irq_setup = std_irq_setup;
2541 
2542 	info->dev = &pdev->dev;
2543 	pci_set_drvdata(pdev, info);
2544 
2545 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2546 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2547 		info->irq);
2548 
2549 	rv = add_smi(info);
2550 	if (rv) {
2551 		kfree(info);
2552 		pci_disable_device(pdev);
2553 	}
2554 
2555 	return rv;
2556 }
2557 
2558 static void ipmi_pci_remove(struct pci_dev *pdev)
2559 {
2560 	struct smi_info *info = pci_get_drvdata(pdev);
2561 	cleanup_one_si(info);
2562 }
2563 
2564 static const struct pci_device_id ipmi_pci_devices[] = {
2565 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2566 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2567 	{ 0, }
2568 };
2569 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2570 
2571 static struct pci_driver ipmi_pci_driver = {
2572 	.name =         DEVICE_NAME,
2573 	.id_table =     ipmi_pci_devices,
2574 	.probe =        ipmi_pci_probe,
2575 	.remove =       ipmi_pci_remove,
2576 };
2577 #endif /* CONFIG_PCI */
2578 
2579 #ifdef CONFIG_OF
2580 static const struct of_device_id of_ipmi_match[] = {
2581 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2582 	  .data = (void *)(unsigned long) SI_KCS },
2583 	{ .type = "ipmi", .compatible = "ipmi-smic",
2584 	  .data = (void *)(unsigned long) SI_SMIC },
2585 	{ .type = "ipmi", .compatible = "ipmi-bt",
2586 	  .data = (void *)(unsigned long) SI_BT },
2587 	{},
2588 };
2589 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2590 
2591 static int of_ipmi_probe(struct platform_device *dev)
2592 {
2593 	const struct of_device_id *match;
2594 	struct smi_info *info;
2595 	struct resource resource;
2596 	const __be32 *regsize, *regspacing, *regshift;
2597 	struct device_node *np = dev->dev.of_node;
2598 	int ret;
2599 	int proplen;
2600 
2601 	dev_info(&dev->dev, "probing via device tree\n");
2602 
2603 	match = of_match_device(of_ipmi_match, &dev->dev);
2604 	if (!match)
2605 		return -ENODEV;
2606 
2607 	if (!of_device_is_available(np))
2608 		return -EINVAL;
2609 
2610 	ret = of_address_to_resource(np, 0, &resource);
2611 	if (ret) {
2612 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2613 		return ret;
2614 	}
2615 
2616 	regsize = of_get_property(np, "reg-size", &proplen);
2617 	if (regsize && proplen != 4) {
2618 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2619 		return -EINVAL;
2620 	}
2621 
2622 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2623 	if (regspacing && proplen != 4) {
2624 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2625 		return -EINVAL;
2626 	}
2627 
2628 	regshift = of_get_property(np, "reg-shift", &proplen);
2629 	if (regshift && proplen != 4) {
2630 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2631 		return -EINVAL;
2632 	}
2633 
2634 	info = smi_info_alloc();
2635 
2636 	if (!info) {
2637 		dev_err(&dev->dev,
2638 			"could not allocate memory for OF probe\n");
2639 		return -ENOMEM;
2640 	}
2641 
2642 	info->si_type		= (enum si_type) match->data;
2643 	info->addr_source	= SI_DEVICETREE;
2644 	info->irq_setup		= std_irq_setup;
2645 
2646 	if (resource.flags & IORESOURCE_IO) {
2647 		info->io_setup		= port_setup;
2648 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2649 	} else {
2650 		info->io_setup		= mem_setup;
2651 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2652 	}
2653 
2654 	info->io.addr_data	= resource.start;
2655 
2656 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2657 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2658 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2659 
2660 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2661 	info->dev		= &dev->dev;
2662 
2663 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2664 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2665 		info->irq);
2666 
2667 	dev_set_drvdata(&dev->dev, info);
2668 
2669 	ret = add_smi(info);
2670 	if (ret) {
2671 		kfree(info);
2672 		return ret;
2673 	}
2674 	return 0;
2675 }
2676 #else
2677 #define of_ipmi_match NULL
2678 static int of_ipmi_probe(struct platform_device *dev)
2679 {
2680 	return -ENODEV;
2681 }
2682 #endif
2683 
2684 #ifdef CONFIG_ACPI
2685 static int acpi_ipmi_probe(struct platform_device *dev)
2686 {
2687 	struct smi_info *info;
2688 	struct resource *res, *res_second;
2689 	acpi_handle handle;
2690 	acpi_status status;
2691 	unsigned long long tmp;
2692 	int rv = -EINVAL;
2693 
2694 	handle = ACPI_HANDLE(&dev->dev);
2695 	if (!handle)
2696 		return -ENODEV;
2697 
2698 	info = smi_info_alloc();
2699 	if (!info)
2700 		return -ENOMEM;
2701 
2702 	info->addr_source = SI_ACPI;
2703 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2704 
2705 	info->addr_info.acpi_info.acpi_handle = handle;
2706 
2707 	/* _IFT tells us the interface type: KCS, BT, etc */
2708 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2709 	if (ACPI_FAILURE(status)) {
2710 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2711 		goto err_free;
2712 	}
2713 
2714 	switch (tmp) {
2715 	case 1:
2716 		info->si_type = SI_KCS;
2717 		break;
2718 	case 2:
2719 		info->si_type = SI_SMIC;
2720 		break;
2721 	case 3:
2722 		info->si_type = SI_BT;
2723 		break;
2724 	case 4: /* SSIF, just ignore */
2725 		rv = -ENODEV;
2726 		goto err_free;
2727 	default:
2728 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2729 		goto err_free;
2730 	}
2731 
2732 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2733 	if (res) {
2734 		info->io_setup = port_setup;
2735 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2736 	} else {
2737 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2738 		if (res) {
2739 			info->io_setup = mem_setup;
2740 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2741 		}
2742 	}
2743 	if (!res) {
2744 		dev_err(&dev->dev, "no I/O or memory address\n");
2745 		goto err_free;
2746 	}
2747 	info->io.addr_data = res->start;
2748 
2749 	info->io.regspacing = DEFAULT_REGSPACING;
2750 	res_second = platform_get_resource(dev,
2751 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2752 					IORESOURCE_IO : IORESOURCE_MEM,
2753 			       1);
2754 	if (res_second) {
2755 		if (res_second->start > info->io.addr_data)
2756 			info->io.regspacing =
2757 				res_second->start - info->io.addr_data;
2758 	}
2759 	info->io.regsize = DEFAULT_REGSPACING;
2760 	info->io.regshift = 0;
2761 
2762 	/* If _GPE exists, use it; otherwise use standard interrupts */
2763 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2764 	if (ACPI_SUCCESS(status)) {
2765 		info->irq = tmp;
2766 		info->irq_setup = acpi_gpe_irq_setup;
2767 	} else {
2768 		int irq = platform_get_irq(dev, 0);
2769 
2770 		if (irq > 0) {
2771 			info->irq = irq;
2772 			info->irq_setup = std_irq_setup;
2773 		}
2774 	}
2775 
2776 	info->dev = &dev->dev;
2777 	platform_set_drvdata(dev, info);
2778 
2779 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2780 		 res, info->io.regsize, info->io.regspacing,
2781 		 info->irq);
2782 
2783 	rv = add_smi(info);
2784 	if (rv)
2785 		kfree(info);
2786 
2787 	return rv;
2788 
2789 err_free:
2790 	kfree(info);
2791 	return rv;
2792 }
2793 
2794 static const struct acpi_device_id acpi_ipmi_match[] = {
2795 	{ "IPI0001", 0 },
2796 	{ },
2797 };
2798 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2799 #else
2800 static int acpi_ipmi_probe(struct platform_device *dev)
2801 {
2802 	return -ENODEV;
2803 }
2804 #endif
2805 
2806 static int ipmi_probe(struct platform_device *dev)
2807 {
2808 	if (of_ipmi_probe(dev) == 0)
2809 		return 0;
2810 
2811 	return acpi_ipmi_probe(dev);
2812 }
2813 
2814 static int ipmi_remove(struct platform_device *dev)
2815 {
2816 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2817 
2818 	cleanup_one_si(info);
2819 	return 0;
2820 }
2821 
2822 static struct platform_driver ipmi_driver = {
2823 	.driver = {
2824 		.name = DEVICE_NAME,
2825 		.of_match_table = of_ipmi_match,
2826 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2827 	},
2828 	.probe		= ipmi_probe,
2829 	.remove		= ipmi_remove,
2830 };
2831 
2832 #ifdef CONFIG_PARISC
2833 static int ipmi_parisc_probe(struct parisc_device *dev)
2834 {
2835 	struct smi_info *info;
2836 	int rv;
2837 
2838 	info = smi_info_alloc();
2839 
2840 	if (!info) {
2841 		dev_err(&dev->dev,
2842 			"could not allocate memory for PARISC probe\n");
2843 		return -ENOMEM;
2844 	}
2845 
2846 	info->si_type		= SI_KCS;
2847 	info->addr_source	= SI_DEVICETREE;
2848 	info->io_setup		= mem_setup;
2849 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2850 	info->io.addr_data	= dev->hpa.start;
2851 	info->io.regsize	= 1;
2852 	info->io.regspacing	= 1;
2853 	info->io.regshift	= 0;
2854 	info->irq		= 0; /* no interrupt */
2855 	info->irq_setup		= NULL;
2856 	info->dev		= &dev->dev;
2857 
2858 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2859 
2860 	dev_set_drvdata(&dev->dev, info);
2861 
2862 	rv = add_smi(info);
2863 	if (rv) {
2864 		kfree(info);
2865 		return rv;
2866 	}
2867 
2868 	return 0;
2869 }
2870 
2871 static int ipmi_parisc_remove(struct parisc_device *dev)
2872 {
2873 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2874 	return 0;
2875 }
2876 
2877 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2878 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2879 	{ 0, }
2880 };
2881 
2882 static struct parisc_driver ipmi_parisc_driver = {
2883 	.name =		"ipmi",
2884 	.id_table =	ipmi_parisc_tbl,
2885 	.probe =	ipmi_parisc_probe,
2886 	.remove =	ipmi_parisc_remove,
2887 };
2888 #endif /* CONFIG_PARISC */
2889 
2890 static int wait_for_msg_done(struct smi_info *smi_info)
2891 {
2892 	enum si_sm_result     smi_result;
2893 
2894 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2895 	for (;;) {
2896 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2897 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2898 			schedule_timeout_uninterruptible(1);
2899 			smi_result = smi_info->handlers->event(
2900 				smi_info->si_sm, jiffies_to_usecs(1));
2901 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2902 			smi_result = smi_info->handlers->event(
2903 				smi_info->si_sm, 0);
2904 		} else
2905 			break;
2906 	}
2907 	if (smi_result == SI_SM_HOSED)
2908 		/*
2909 		 * We couldn't get the state machine to run, so whatever's at
2910 		 * the port is probably not an IPMI SMI interface.
2911 		 */
2912 		return -ENODEV;
2913 
2914 	return 0;
2915 }
2916 
2917 static int try_get_dev_id(struct smi_info *smi_info)
2918 {
2919 	unsigned char         msg[2];
2920 	unsigned char         *resp;
2921 	unsigned long         resp_len;
2922 	int                   rv = 0;
2923 
2924 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2925 	if (!resp)
2926 		return -ENOMEM;
2927 
2928 	/*
2929 	 * Do a Get Device ID command, since it comes back with some
2930 	 * useful info.
2931 	 */
2932 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2933 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2934 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2935 
2936 	rv = wait_for_msg_done(smi_info);
2937 	if (rv)
2938 		goto out;
2939 
2940 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2941 						  resp, IPMI_MAX_MSG_LENGTH);
2942 
2943 	/* Check and record info from the get device id, in case we need it. */
2944 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2945 
2946  out:
2947 	kfree(resp);
2948 	return rv;
2949 }
2950 
2951 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2952 {
2953 	unsigned char         msg[3];
2954 	unsigned char         *resp;
2955 	unsigned long         resp_len;
2956 	int                   rv;
2957 
2958 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2959 	if (!resp)
2960 		return -ENOMEM;
2961 
2962 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2963 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2964 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2965 
2966 	rv = wait_for_msg_done(smi_info);
2967 	if (rv) {
2968 		dev_warn(smi_info->dev,
2969 			 "Error getting response from get global enables command: %d\n",
2970 			 rv);
2971 		goto out;
2972 	}
2973 
2974 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2975 						  resp, IPMI_MAX_MSG_LENGTH);
2976 
2977 	if (resp_len < 4 ||
2978 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2979 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2980 			resp[2] != 0) {
2981 		dev_warn(smi_info->dev,
2982 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2983 			 resp_len, resp[0], resp[1], resp[2]);
2984 		rv = -EINVAL;
2985 		goto out;
2986 	} else {
2987 		*enables = resp[3];
2988 	}
2989 
2990 out:
2991 	kfree(resp);
2992 	return rv;
2993 }
2994 
2995 /*
2996  * Returns 1 if it gets an error from the command.
2997  */
2998 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2999 {
3000 	unsigned char         msg[3];
3001 	unsigned char         *resp;
3002 	unsigned long         resp_len;
3003 	int                   rv;
3004 
3005 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3006 	if (!resp)
3007 		return -ENOMEM;
3008 
3009 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3010 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3011 	msg[2] = enables;
3012 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3013 
3014 	rv = wait_for_msg_done(smi_info);
3015 	if (rv) {
3016 		dev_warn(smi_info->dev,
3017 			 "Error getting response from set global enables command: %d\n",
3018 			 rv);
3019 		goto out;
3020 	}
3021 
3022 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3023 						  resp, IPMI_MAX_MSG_LENGTH);
3024 
3025 	if (resp_len < 3 ||
3026 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3027 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3028 		dev_warn(smi_info->dev,
3029 			 "Invalid return from set global enables command: %ld %x %x\n",
3030 			 resp_len, resp[0], resp[1]);
3031 		rv = -EINVAL;
3032 		goto out;
3033 	}
3034 
3035 	if (resp[2] != 0)
3036 		rv = 1;
3037 
3038 out:
3039 	kfree(resp);
3040 	return rv;
3041 }
3042 
3043 /*
3044  * Some BMCs do not support clearing the receive irq bit in the global
3045  * enables (even if they don't support interrupts on the BMC).  Check
3046  * for this and handle it properly.
3047  */
3048 static void check_clr_rcv_irq(struct smi_info *smi_info)
3049 {
3050 	u8 enables = 0;
3051 	int rv;
3052 
3053 	rv = get_global_enables(smi_info, &enables);
3054 	if (!rv) {
3055 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3056 			/* Already clear, should work ok. */
3057 			return;
3058 
3059 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3060 		rv = set_global_enables(smi_info, enables);
3061 	}
3062 
3063 	if (rv < 0) {
3064 		dev_err(smi_info->dev,
3065 			"Cannot check clearing the rcv irq: %d\n", rv);
3066 		return;
3067 	}
3068 
3069 	if (rv) {
3070 		/*
3071 		 * An error when setting the event buffer bit means
3072 		 * clearing the bit is not supported.
3073 		 */
3074 		dev_warn(smi_info->dev,
3075 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3076 		smi_info->cannot_disable_irq = true;
3077 	}
3078 }
3079 
3080 /*
3081  * Some BMCs do not support setting the interrupt bits in the global
3082  * enables even if they support interrupts.  Clearly bad, but we can
3083  * compensate.
3084  */
3085 static void check_set_rcv_irq(struct smi_info *smi_info)
3086 {
3087 	u8 enables = 0;
3088 	int rv;
3089 
3090 	if (!smi_info->irq)
3091 		return;
3092 
3093 	rv = get_global_enables(smi_info, &enables);
3094 	if (!rv) {
3095 		enables |= IPMI_BMC_RCV_MSG_INTR;
3096 		rv = set_global_enables(smi_info, enables);
3097 	}
3098 
3099 	if (rv < 0) {
3100 		dev_err(smi_info->dev,
3101 			"Cannot check setting the rcv irq: %d\n", rv);
3102 		return;
3103 	}
3104 
3105 	if (rv) {
3106 		/*
3107 		 * An error when setting the event buffer bit means
3108 		 * setting the bit is not supported.
3109 		 */
3110 		dev_warn(smi_info->dev,
3111 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3112 		smi_info->cannot_disable_irq = true;
3113 		smi_info->irq_enable_broken = true;
3114 	}
3115 }
3116 
3117 static int try_enable_event_buffer(struct smi_info *smi_info)
3118 {
3119 	unsigned char         msg[3];
3120 	unsigned char         *resp;
3121 	unsigned long         resp_len;
3122 	int                   rv = 0;
3123 
3124 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3125 	if (!resp)
3126 		return -ENOMEM;
3127 
3128 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3129 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3130 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3131 
3132 	rv = wait_for_msg_done(smi_info);
3133 	if (rv) {
3134 		printk(KERN_WARNING PFX "Error getting response from get"
3135 		       " global enables command, the event buffer is not"
3136 		       " enabled.\n");
3137 		goto out;
3138 	}
3139 
3140 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3141 						  resp, IPMI_MAX_MSG_LENGTH);
3142 
3143 	if (resp_len < 4 ||
3144 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3145 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3146 			resp[2] != 0) {
3147 		printk(KERN_WARNING PFX "Invalid return from get global"
3148 		       " enables command, cannot enable the event buffer.\n");
3149 		rv = -EINVAL;
3150 		goto out;
3151 	}
3152 
3153 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3154 		/* buffer is already enabled, nothing to do. */
3155 		smi_info->supports_event_msg_buff = true;
3156 		goto out;
3157 	}
3158 
3159 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3160 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3161 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3162 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3163 
3164 	rv = wait_for_msg_done(smi_info);
3165 	if (rv) {
3166 		printk(KERN_WARNING PFX "Error getting response from set"
3167 		       " global, enables command, the event buffer is not"
3168 		       " enabled.\n");
3169 		goto out;
3170 	}
3171 
3172 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3173 						  resp, IPMI_MAX_MSG_LENGTH);
3174 
3175 	if (resp_len < 3 ||
3176 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3177 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3178 		printk(KERN_WARNING PFX "Invalid return from get global,"
3179 		       "enables command, not enable the event buffer.\n");
3180 		rv = -EINVAL;
3181 		goto out;
3182 	}
3183 
3184 	if (resp[2] != 0)
3185 		/*
3186 		 * An error when setting the event buffer bit means
3187 		 * that the event buffer is not supported.
3188 		 */
3189 		rv = -ENOENT;
3190 	else
3191 		smi_info->supports_event_msg_buff = true;
3192 
3193  out:
3194 	kfree(resp);
3195 	return rv;
3196 }
3197 
3198 static int smi_type_proc_show(struct seq_file *m, void *v)
3199 {
3200 	struct smi_info *smi = m->private;
3201 
3202 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3203 
3204 	return 0;
3205 }
3206 
3207 static int smi_type_proc_open(struct inode *inode, struct file *file)
3208 {
3209 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3210 }
3211 
3212 static const struct file_operations smi_type_proc_ops = {
3213 	.open		= smi_type_proc_open,
3214 	.read		= seq_read,
3215 	.llseek		= seq_lseek,
3216 	.release	= single_release,
3217 };
3218 
3219 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3220 {
3221 	struct smi_info *smi = m->private;
3222 
3223 	seq_printf(m, "interrupts_enabled:    %d\n",
3224 		       smi->irq && !smi->interrupt_disabled);
3225 	seq_printf(m, "short_timeouts:        %u\n",
3226 		       smi_get_stat(smi, short_timeouts));
3227 	seq_printf(m, "long_timeouts:         %u\n",
3228 		       smi_get_stat(smi, long_timeouts));
3229 	seq_printf(m, "idles:                 %u\n",
3230 		       smi_get_stat(smi, idles));
3231 	seq_printf(m, "interrupts:            %u\n",
3232 		       smi_get_stat(smi, interrupts));
3233 	seq_printf(m, "attentions:            %u\n",
3234 		       smi_get_stat(smi, attentions));
3235 	seq_printf(m, "flag_fetches:          %u\n",
3236 		       smi_get_stat(smi, flag_fetches));
3237 	seq_printf(m, "hosed_count:           %u\n",
3238 		       smi_get_stat(smi, hosed_count));
3239 	seq_printf(m, "complete_transactions: %u\n",
3240 		       smi_get_stat(smi, complete_transactions));
3241 	seq_printf(m, "events:                %u\n",
3242 		       smi_get_stat(smi, events));
3243 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3244 		       smi_get_stat(smi, watchdog_pretimeouts));
3245 	seq_printf(m, "incoming_messages:     %u\n",
3246 		       smi_get_stat(smi, incoming_messages));
3247 	return 0;
3248 }
3249 
3250 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3251 {
3252 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3253 }
3254 
3255 static const struct file_operations smi_si_stats_proc_ops = {
3256 	.open		= smi_si_stats_proc_open,
3257 	.read		= seq_read,
3258 	.llseek		= seq_lseek,
3259 	.release	= single_release,
3260 };
3261 
3262 static int smi_params_proc_show(struct seq_file *m, void *v)
3263 {
3264 	struct smi_info *smi = m->private;
3265 
3266 	seq_printf(m,
3267 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3268 		   si_to_str[smi->si_type],
3269 		   addr_space_to_str[smi->io.addr_type],
3270 		   smi->io.addr_data,
3271 		   smi->io.regspacing,
3272 		   smi->io.regsize,
3273 		   smi->io.regshift,
3274 		   smi->irq,
3275 		   smi->slave_addr);
3276 
3277 	return 0;
3278 }
3279 
3280 static int smi_params_proc_open(struct inode *inode, struct file *file)
3281 {
3282 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3283 }
3284 
3285 static const struct file_operations smi_params_proc_ops = {
3286 	.open		= smi_params_proc_open,
3287 	.read		= seq_read,
3288 	.llseek		= seq_lseek,
3289 	.release	= single_release,
3290 };
3291 
3292 /*
3293  * oem_data_avail_to_receive_msg_avail
3294  * @info - smi_info structure with msg_flags set
3295  *
3296  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3297  * Returns 1 indicating need to re-run handle_flags().
3298  */
3299 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3300 {
3301 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3302 			       RECEIVE_MSG_AVAIL);
3303 	return 1;
3304 }
3305 
3306 /*
3307  * setup_dell_poweredge_oem_data_handler
3308  * @info - smi_info.device_id must be populated
3309  *
3310  * Systems that match, but have firmware version < 1.40 may assert
3311  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3312  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3313  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3314  * as RECEIVE_MSG_AVAIL instead.
3315  *
3316  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3317  * assert the OEM[012] bits, and if it did, the driver would have to
3318  * change to handle that properly, we don't actually check for the
3319  * firmware version.
3320  * Device ID = 0x20                BMC on PowerEdge 8G servers
3321  * Device Revision = 0x80
3322  * Firmware Revision1 = 0x01       BMC version 1.40
3323  * Firmware Revision2 = 0x40       BCD encoded
3324  * IPMI Version = 0x51             IPMI 1.5
3325  * Manufacturer ID = A2 02 00      Dell IANA
3326  *
3327  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3328  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3329  *
3330  */
3331 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3332 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3333 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3334 #define DELL_IANA_MFR_ID 0x0002a2
3335 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3336 {
3337 	struct ipmi_device_id *id = &smi_info->device_id;
3338 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3339 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3340 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3341 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3342 			smi_info->oem_data_avail_handler =
3343 				oem_data_avail_to_receive_msg_avail;
3344 		} else if (ipmi_version_major(id) < 1 ||
3345 			   (ipmi_version_major(id) == 1 &&
3346 			    ipmi_version_minor(id) < 5)) {
3347 			smi_info->oem_data_avail_handler =
3348 				oem_data_avail_to_receive_msg_avail;
3349 		}
3350 	}
3351 }
3352 
3353 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3354 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3355 {
3356 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3357 
3358 	/* Make it a response */
3359 	msg->rsp[0] = msg->data[0] | 4;
3360 	msg->rsp[1] = msg->data[1];
3361 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3362 	msg->rsp_size = 3;
3363 	smi_info->curr_msg = NULL;
3364 	deliver_recv_msg(smi_info, msg);
3365 }
3366 
3367 /*
3368  * dell_poweredge_bt_xaction_handler
3369  * @info - smi_info.device_id must be populated
3370  *
3371  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3372  * not respond to a Get SDR command if the length of the data
3373  * requested is exactly 0x3A, which leads to command timeouts and no
3374  * data returned.  This intercepts such commands, and causes userspace
3375  * callers to try again with a different-sized buffer, which succeeds.
3376  */
3377 
3378 #define STORAGE_NETFN 0x0A
3379 #define STORAGE_CMD_GET_SDR 0x23
3380 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3381 					     unsigned long unused,
3382 					     void *in)
3383 {
3384 	struct smi_info *smi_info = in;
3385 	unsigned char *data = smi_info->curr_msg->data;
3386 	unsigned int size   = smi_info->curr_msg->data_size;
3387 	if (size >= 8 &&
3388 	    (data[0]>>2) == STORAGE_NETFN &&
3389 	    data[1] == STORAGE_CMD_GET_SDR &&
3390 	    data[7] == 0x3A) {
3391 		return_hosed_msg_badsize(smi_info);
3392 		return NOTIFY_STOP;
3393 	}
3394 	return NOTIFY_DONE;
3395 }
3396 
3397 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3398 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3399 };
3400 
3401 /*
3402  * setup_dell_poweredge_bt_xaction_handler
3403  * @info - smi_info.device_id must be filled in already
3404  *
3405  * Fills in smi_info.device_id.start_transaction_pre_hook
3406  * when we know what function to use there.
3407  */
3408 static void
3409 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3410 {
3411 	struct ipmi_device_id *id = &smi_info->device_id;
3412 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3413 	    smi_info->si_type == SI_BT)
3414 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3415 }
3416 
3417 /*
3418  * setup_oem_data_handler
3419  * @info - smi_info.device_id must be filled in already
3420  *
3421  * Fills in smi_info.device_id.oem_data_available_handler
3422  * when we know what function to use there.
3423  */
3424 
3425 static void setup_oem_data_handler(struct smi_info *smi_info)
3426 {
3427 	setup_dell_poweredge_oem_data_handler(smi_info);
3428 }
3429 
3430 static void setup_xaction_handlers(struct smi_info *smi_info)
3431 {
3432 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3433 }
3434 
3435 static void check_for_broken_irqs(struct smi_info *smi_info)
3436 {
3437 	check_clr_rcv_irq(smi_info);
3438 	check_set_rcv_irq(smi_info);
3439 }
3440 
3441 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3442 {
3443 	if (smi_info->thread != NULL)
3444 		kthread_stop(smi_info->thread);
3445 	if (smi_info->timer_running)
3446 		del_timer_sync(&smi_info->si_timer);
3447 }
3448 
3449 static const struct ipmi_default_vals
3450 {
3451 	const int type;
3452 	const int port;
3453 } ipmi_defaults[] =
3454 {
3455 	{ .type = SI_KCS, .port = 0xca2 },
3456 	{ .type = SI_SMIC, .port = 0xca9 },
3457 	{ .type = SI_BT, .port = 0xe4 },
3458 	{ .port = 0 }
3459 };
3460 
3461 static void default_find_bmc(void)
3462 {
3463 	struct smi_info *info;
3464 	int             i;
3465 
3466 	for (i = 0; ; i++) {
3467 		if (!ipmi_defaults[i].port)
3468 			break;
3469 #ifdef CONFIG_PPC
3470 		if (check_legacy_ioport(ipmi_defaults[i].port))
3471 			continue;
3472 #endif
3473 		info = smi_info_alloc();
3474 		if (!info)
3475 			return;
3476 
3477 		info->addr_source = SI_DEFAULT;
3478 
3479 		info->si_type = ipmi_defaults[i].type;
3480 		info->io_setup = port_setup;
3481 		info->io.addr_data = ipmi_defaults[i].port;
3482 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3483 
3484 		info->io.addr = NULL;
3485 		info->io.regspacing = DEFAULT_REGSPACING;
3486 		info->io.regsize = DEFAULT_REGSPACING;
3487 		info->io.regshift = 0;
3488 
3489 		if (add_smi(info) == 0) {
3490 			if ((try_smi_init(info)) == 0) {
3491 				/* Found one... */
3492 				printk(KERN_INFO PFX "Found default %s"
3493 				" state machine at %s address 0x%lx\n",
3494 				si_to_str[info->si_type],
3495 				addr_space_to_str[info->io.addr_type],
3496 				info->io.addr_data);
3497 			} else
3498 				cleanup_one_si(info);
3499 		} else {
3500 			kfree(info);
3501 		}
3502 	}
3503 }
3504 
3505 static int is_new_interface(struct smi_info *info)
3506 {
3507 	struct smi_info *e;
3508 
3509 	list_for_each_entry(e, &smi_infos, link) {
3510 		if (e->io.addr_type != info->io.addr_type)
3511 			continue;
3512 		if (e->io.addr_data == info->io.addr_data)
3513 			return 0;
3514 	}
3515 
3516 	return 1;
3517 }
3518 
3519 static int add_smi(struct smi_info *new_smi)
3520 {
3521 	int rv = 0;
3522 
3523 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3524 	       ipmi_addr_src_to_str(new_smi->addr_source),
3525 	       si_to_str[new_smi->si_type]);
3526 	mutex_lock(&smi_infos_lock);
3527 	if (!is_new_interface(new_smi)) {
3528 		printk(KERN_CONT " duplicate interface\n");
3529 		rv = -EBUSY;
3530 		goto out_err;
3531 	}
3532 
3533 	printk(KERN_CONT "\n");
3534 
3535 	/* So we know not to free it unless we have allocated one. */
3536 	new_smi->intf = NULL;
3537 	new_smi->si_sm = NULL;
3538 	new_smi->handlers = NULL;
3539 
3540 	list_add_tail(&new_smi->link, &smi_infos);
3541 
3542 out_err:
3543 	mutex_unlock(&smi_infos_lock);
3544 	return rv;
3545 }
3546 
3547 static int try_smi_init(struct smi_info *new_smi)
3548 {
3549 	int rv = 0;
3550 	int i;
3551 
3552 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3553 	       " machine at %s address 0x%lx, slave address 0x%x,"
3554 	       " irq %d\n",
3555 	       ipmi_addr_src_to_str(new_smi->addr_source),
3556 	       si_to_str[new_smi->si_type],
3557 	       addr_space_to_str[new_smi->io.addr_type],
3558 	       new_smi->io.addr_data,
3559 	       new_smi->slave_addr, new_smi->irq);
3560 
3561 	switch (new_smi->si_type) {
3562 	case SI_KCS:
3563 		new_smi->handlers = &kcs_smi_handlers;
3564 		break;
3565 
3566 	case SI_SMIC:
3567 		new_smi->handlers = &smic_smi_handlers;
3568 		break;
3569 
3570 	case SI_BT:
3571 		new_smi->handlers = &bt_smi_handlers;
3572 		break;
3573 
3574 	default:
3575 		/* No support for anything else yet. */
3576 		rv = -EIO;
3577 		goto out_err;
3578 	}
3579 
3580 	/* Allocate the state machine's data and initialize it. */
3581 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3582 	if (!new_smi->si_sm) {
3583 		printk(KERN_ERR PFX
3584 		       "Could not allocate state machine memory\n");
3585 		rv = -ENOMEM;
3586 		goto out_err;
3587 	}
3588 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3589 							&new_smi->io);
3590 
3591 	/* Now that we know the I/O size, we can set up the I/O. */
3592 	rv = new_smi->io_setup(new_smi);
3593 	if (rv) {
3594 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3595 		goto out_err;
3596 	}
3597 
3598 	/* Do low-level detection first. */
3599 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3600 		if (new_smi->addr_source)
3601 			printk(KERN_INFO PFX "Interface detection failed\n");
3602 		rv = -ENODEV;
3603 		goto out_err;
3604 	}
3605 
3606 	/*
3607 	 * Attempt a get device id command.  If it fails, we probably
3608 	 * don't have a BMC here.
3609 	 */
3610 	rv = try_get_dev_id(new_smi);
3611 	if (rv) {
3612 		if (new_smi->addr_source)
3613 			printk(KERN_INFO PFX "There appears to be no BMC"
3614 			       " at this location\n");
3615 		goto out_err;
3616 	}
3617 
3618 	setup_oem_data_handler(new_smi);
3619 	setup_xaction_handlers(new_smi);
3620 	check_for_broken_irqs(new_smi);
3621 
3622 	new_smi->waiting_msg = NULL;
3623 	new_smi->curr_msg = NULL;
3624 	atomic_set(&new_smi->req_events, 0);
3625 	new_smi->run_to_completion = false;
3626 	for (i = 0; i < SI_NUM_STATS; i++)
3627 		atomic_set(&new_smi->stats[i], 0);
3628 
3629 	new_smi->interrupt_disabled = true;
3630 	atomic_set(&new_smi->need_watch, 0);
3631 	new_smi->intf_num = smi_num;
3632 	smi_num++;
3633 
3634 	rv = try_enable_event_buffer(new_smi);
3635 	if (rv == 0)
3636 		new_smi->has_event_buffer = true;
3637 
3638 	/*
3639 	 * Start clearing the flags before we enable interrupts or the
3640 	 * timer to avoid racing with the timer.
3641 	 */
3642 	start_clear_flags(new_smi, false);
3643 
3644 	/*
3645 	 * IRQ is defined to be set when non-zero.  req_events will
3646 	 * cause a global flags check that will enable interrupts.
3647 	 */
3648 	if (new_smi->irq) {
3649 		new_smi->interrupt_disabled = false;
3650 		atomic_set(&new_smi->req_events, 1);
3651 	}
3652 
3653 	if (!new_smi->dev) {
3654 		/*
3655 		 * If we don't already have a device from something
3656 		 * else (like PCI), then register a new one.
3657 		 */
3658 		new_smi->pdev = platform_device_alloc("ipmi_si",
3659 						      new_smi->intf_num);
3660 		if (!new_smi->pdev) {
3661 			printk(KERN_ERR PFX
3662 			       "Unable to allocate platform device\n");
3663 			goto out_err;
3664 		}
3665 		new_smi->dev = &new_smi->pdev->dev;
3666 		new_smi->dev->driver = &ipmi_driver.driver;
3667 
3668 		rv = platform_device_add(new_smi->pdev);
3669 		if (rv) {
3670 			printk(KERN_ERR PFX
3671 			       "Unable to register system interface device:"
3672 			       " %d\n",
3673 			       rv);
3674 			goto out_err;
3675 		}
3676 		new_smi->dev_registered = true;
3677 	}
3678 
3679 	rv = ipmi_register_smi(&handlers,
3680 			       new_smi,
3681 			       &new_smi->device_id,
3682 			       new_smi->dev,
3683 			       new_smi->slave_addr);
3684 	if (rv) {
3685 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3686 			rv);
3687 		goto out_err_stop_timer;
3688 	}
3689 
3690 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3691 				     &smi_type_proc_ops,
3692 				     new_smi);
3693 	if (rv) {
3694 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3695 		goto out_err_stop_timer;
3696 	}
3697 
3698 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3699 				     &smi_si_stats_proc_ops,
3700 				     new_smi);
3701 	if (rv) {
3702 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3703 		goto out_err_stop_timer;
3704 	}
3705 
3706 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3707 				     &smi_params_proc_ops,
3708 				     new_smi);
3709 	if (rv) {
3710 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3711 		goto out_err_stop_timer;
3712 	}
3713 
3714 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3715 		 si_to_str[new_smi->si_type]);
3716 
3717 	return 0;
3718 
3719  out_err_stop_timer:
3720 	wait_for_timer_and_thread(new_smi);
3721 
3722  out_err:
3723 	new_smi->interrupt_disabled = true;
3724 
3725 	if (new_smi->intf) {
3726 		ipmi_smi_t intf = new_smi->intf;
3727 		new_smi->intf = NULL;
3728 		ipmi_unregister_smi(intf);
3729 	}
3730 
3731 	if (new_smi->irq_cleanup) {
3732 		new_smi->irq_cleanup(new_smi);
3733 		new_smi->irq_cleanup = NULL;
3734 	}
3735 
3736 	/*
3737 	 * Wait until we know that we are out of any interrupt
3738 	 * handlers might have been running before we freed the
3739 	 * interrupt.
3740 	 */
3741 	synchronize_sched();
3742 
3743 	if (new_smi->si_sm) {
3744 		if (new_smi->handlers)
3745 			new_smi->handlers->cleanup(new_smi->si_sm);
3746 		kfree(new_smi->si_sm);
3747 		new_smi->si_sm = NULL;
3748 	}
3749 	if (new_smi->addr_source_cleanup) {
3750 		new_smi->addr_source_cleanup(new_smi);
3751 		new_smi->addr_source_cleanup = NULL;
3752 	}
3753 	if (new_smi->io_cleanup) {
3754 		new_smi->io_cleanup(new_smi);
3755 		new_smi->io_cleanup = NULL;
3756 	}
3757 
3758 	if (new_smi->dev_registered) {
3759 		platform_device_unregister(new_smi->pdev);
3760 		new_smi->dev_registered = false;
3761 	}
3762 
3763 	return rv;
3764 }
3765 
3766 static int init_ipmi_si(void)
3767 {
3768 	int  i;
3769 	char *str;
3770 	int  rv;
3771 	struct smi_info *e;
3772 	enum ipmi_addr_src type = SI_INVALID;
3773 
3774 	if (initialized)
3775 		return 0;
3776 	initialized = 1;
3777 
3778 	if (si_tryplatform) {
3779 		rv = platform_driver_register(&ipmi_driver);
3780 		if (rv) {
3781 			printk(KERN_ERR PFX "Unable to register "
3782 			       "driver: %d\n", rv);
3783 			return rv;
3784 		}
3785 	}
3786 
3787 	/* Parse out the si_type string into its components. */
3788 	str = si_type_str;
3789 	if (*str != '\0') {
3790 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3791 			si_type[i] = str;
3792 			str = strchr(str, ',');
3793 			if (str) {
3794 				*str = '\0';
3795 				str++;
3796 			} else {
3797 				break;
3798 			}
3799 		}
3800 	}
3801 
3802 	printk(KERN_INFO "IPMI System Interface driver.\n");
3803 
3804 	/* If the user gave us a device, they presumably want us to use it */
3805 	if (!hardcode_find_bmc())
3806 		return 0;
3807 
3808 #ifdef CONFIG_PCI
3809 	if (si_trypci) {
3810 		rv = pci_register_driver(&ipmi_pci_driver);
3811 		if (rv)
3812 			printk(KERN_ERR PFX "Unable to register "
3813 			       "PCI driver: %d\n", rv);
3814 		else
3815 			pci_registered = true;
3816 	}
3817 #endif
3818 
3819 #ifdef CONFIG_DMI
3820 	if (si_trydmi)
3821 		dmi_find_bmc();
3822 #endif
3823 
3824 #ifdef CONFIG_ACPI
3825 	if (si_tryacpi)
3826 		spmi_find_bmc();
3827 #endif
3828 
3829 #ifdef CONFIG_PARISC
3830 	register_parisc_driver(&ipmi_parisc_driver);
3831 	parisc_registered = true;
3832 	/* poking PC IO addresses will crash machine, don't do it */
3833 	si_trydefaults = 0;
3834 #endif
3835 
3836 	/* We prefer devices with interrupts, but in the case of a machine
3837 	   with multiple BMCs we assume that there will be several instances
3838 	   of a given type so if we succeed in registering a type then also
3839 	   try to register everything else of the same type */
3840 
3841 	mutex_lock(&smi_infos_lock);
3842 	list_for_each_entry(e, &smi_infos, link) {
3843 		/* Try to register a device if it has an IRQ and we either
3844 		   haven't successfully registered a device yet or this
3845 		   device has the same type as one we successfully registered */
3846 		if (e->irq && (!type || e->addr_source == type)) {
3847 			if (!try_smi_init(e)) {
3848 				type = e->addr_source;
3849 			}
3850 		}
3851 	}
3852 
3853 	/* type will only have been set if we successfully registered an si */
3854 	if (type) {
3855 		mutex_unlock(&smi_infos_lock);
3856 		return 0;
3857 	}
3858 
3859 	/* Fall back to the preferred device */
3860 
3861 	list_for_each_entry(e, &smi_infos, link) {
3862 		if (!e->irq && (!type || e->addr_source == type)) {
3863 			if (!try_smi_init(e)) {
3864 				type = e->addr_source;
3865 			}
3866 		}
3867 	}
3868 	mutex_unlock(&smi_infos_lock);
3869 
3870 	if (type)
3871 		return 0;
3872 
3873 	if (si_trydefaults) {
3874 		mutex_lock(&smi_infos_lock);
3875 		if (list_empty(&smi_infos)) {
3876 			/* No BMC was found, try defaults. */
3877 			mutex_unlock(&smi_infos_lock);
3878 			default_find_bmc();
3879 		} else
3880 			mutex_unlock(&smi_infos_lock);
3881 	}
3882 
3883 	mutex_lock(&smi_infos_lock);
3884 	if (unload_when_empty && list_empty(&smi_infos)) {
3885 		mutex_unlock(&smi_infos_lock);
3886 		cleanup_ipmi_si();
3887 		printk(KERN_WARNING PFX
3888 		       "Unable to find any System Interface(s)\n");
3889 		return -ENODEV;
3890 	} else {
3891 		mutex_unlock(&smi_infos_lock);
3892 		return 0;
3893 	}
3894 }
3895 module_init(init_ipmi_si);
3896 
3897 static void cleanup_one_si(struct smi_info *to_clean)
3898 {
3899 	int           rv = 0;
3900 
3901 	if (!to_clean)
3902 		return;
3903 
3904 	if (to_clean->intf) {
3905 		ipmi_smi_t intf = to_clean->intf;
3906 
3907 		to_clean->intf = NULL;
3908 		rv = ipmi_unregister_smi(intf);
3909 		if (rv) {
3910 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3911 			       rv);
3912 		}
3913 	}
3914 
3915 	if (to_clean->dev)
3916 		dev_set_drvdata(to_clean->dev, NULL);
3917 
3918 	list_del(&to_clean->link);
3919 
3920 	/*
3921 	 * Make sure that interrupts, the timer and the thread are
3922 	 * stopped and will not run again.
3923 	 */
3924 	if (to_clean->irq_cleanup)
3925 		to_clean->irq_cleanup(to_clean);
3926 	wait_for_timer_and_thread(to_clean);
3927 
3928 	/*
3929 	 * Timeouts are stopped, now make sure the interrupts are off
3930 	 * in the BMC.  Note that timers and CPU interrupts are off,
3931 	 * so no need for locks.
3932 	 */
3933 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3934 		poll(to_clean);
3935 		schedule_timeout_uninterruptible(1);
3936 	}
3937 	disable_si_irq(to_clean, false);
3938 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3939 		poll(to_clean);
3940 		schedule_timeout_uninterruptible(1);
3941 	}
3942 
3943 	if (to_clean->handlers)
3944 		to_clean->handlers->cleanup(to_clean->si_sm);
3945 
3946 	kfree(to_clean->si_sm);
3947 
3948 	if (to_clean->addr_source_cleanup)
3949 		to_clean->addr_source_cleanup(to_clean);
3950 	if (to_clean->io_cleanup)
3951 		to_clean->io_cleanup(to_clean);
3952 
3953 	if (to_clean->dev_registered)
3954 		platform_device_unregister(to_clean->pdev);
3955 
3956 	kfree(to_clean);
3957 }
3958 
3959 static void cleanup_ipmi_si(void)
3960 {
3961 	struct smi_info *e, *tmp_e;
3962 
3963 	if (!initialized)
3964 		return;
3965 
3966 #ifdef CONFIG_PCI
3967 	if (pci_registered)
3968 		pci_unregister_driver(&ipmi_pci_driver);
3969 #endif
3970 #ifdef CONFIG_PARISC
3971 	if (parisc_registered)
3972 		unregister_parisc_driver(&ipmi_parisc_driver);
3973 #endif
3974 
3975 	platform_driver_unregister(&ipmi_driver);
3976 
3977 	mutex_lock(&smi_infos_lock);
3978 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3979 		cleanup_one_si(e);
3980 	mutex_unlock(&smi_infos_lock);
3981 }
3982 module_exit(cleanup_ipmi_si);
3983 
3984 MODULE_LICENSE("GPL");
3985 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3986 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3987 		   " system interfaces.");
3988