1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/seq_file.h> 47 #include <linux/timer.h> 48 #include <linux/errno.h> 49 #include <linux/spinlock.h> 50 #include <linux/slab.h> 51 #include <linux/delay.h> 52 #include <linux/list.h> 53 #include <linux/pci.h> 54 #include <linux/ioport.h> 55 #include <linux/notifier.h> 56 #include <linux/mutex.h> 57 #include <linux/kthread.h> 58 #include <asm/irq.h> 59 #include <linux/interrupt.h> 60 #include <linux/rcupdate.h> 61 #include <linux/ipmi.h> 62 #include <linux/ipmi_smi.h> 63 #include <asm/io.h> 64 #include "ipmi_si_sm.h" 65 #include <linux/init.h> 66 #include <linux/dmi.h> 67 #include <linux/string.h> 68 #include <linux/ctype.h> 69 #include <linux/pnp.h> 70 #include <linux/of_device.h> 71 #include <linux/of_platform.h> 72 #include <linux/of_address.h> 73 #include <linux/of_irq.h> 74 75 #define PFX "ipmi_si: " 76 77 /* Measure times between events in the driver. */ 78 #undef DEBUG_TIMING 79 80 /* Call every 10 ms. */ 81 #define SI_TIMEOUT_TIME_USEC 10000 82 #define SI_USEC_PER_JIFFY (1000000/HZ) 83 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 84 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 85 short timeout */ 86 87 enum si_intf_state { 88 SI_NORMAL, 89 SI_GETTING_FLAGS, 90 SI_GETTING_EVENTS, 91 SI_CLEARING_FLAGS, 92 SI_CLEARING_FLAGS_THEN_SET_IRQ, 93 SI_GETTING_MESSAGES, 94 SI_ENABLE_INTERRUPTS1, 95 SI_ENABLE_INTERRUPTS2, 96 SI_DISABLE_INTERRUPTS1, 97 SI_DISABLE_INTERRUPTS2 98 /* FIXME - add watchdog stuff. */ 99 }; 100 101 /* Some BT-specific defines we need here. */ 102 #define IPMI_BT_INTMASK_REG 2 103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106 enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108 }; 109 static char *si_to_str[] = { "kcs", "smic", "bt" }; 110 111 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI", 112 "ACPI", "SMBIOS", "PCI", 113 "device-tree", "default" }; 114 115 #define DEVICE_NAME "ipmi_si" 116 117 static struct platform_driver ipmi_driver; 118 119 /* 120 * Indexes into stats[] in smi_info below. 121 */ 122 enum si_stat_indexes { 123 /* 124 * Number of times the driver requested a timer while an operation 125 * was in progress. 126 */ 127 SI_STAT_short_timeouts = 0, 128 129 /* 130 * Number of times the driver requested a timer while nothing was in 131 * progress. 132 */ 133 SI_STAT_long_timeouts, 134 135 /* Number of times the interface was idle while being polled. */ 136 SI_STAT_idles, 137 138 /* Number of interrupts the driver handled. */ 139 SI_STAT_interrupts, 140 141 /* Number of time the driver got an ATTN from the hardware. */ 142 SI_STAT_attentions, 143 144 /* Number of times the driver requested flags from the hardware. */ 145 SI_STAT_flag_fetches, 146 147 /* Number of times the hardware didn't follow the state machine. */ 148 SI_STAT_hosed_count, 149 150 /* Number of completed messages. */ 151 SI_STAT_complete_transactions, 152 153 /* Number of IPMI events received from the hardware. */ 154 SI_STAT_events, 155 156 /* Number of watchdog pretimeouts. */ 157 SI_STAT_watchdog_pretimeouts, 158 159 /* Number of asyncronous messages received. */ 160 SI_STAT_incoming_messages, 161 162 163 /* This *must* remain last, add new values above this. */ 164 SI_NUM_STATS 165 }; 166 167 struct smi_info { 168 int intf_num; 169 ipmi_smi_t intf; 170 struct si_sm_data *si_sm; 171 struct si_sm_handlers *handlers; 172 enum si_type si_type; 173 spinlock_t si_lock; 174 spinlock_t msg_lock; 175 struct list_head xmit_msgs; 176 struct list_head hp_xmit_msgs; 177 struct ipmi_smi_msg *curr_msg; 178 enum si_intf_state si_state; 179 180 /* 181 * Used to handle the various types of I/O that can occur with 182 * IPMI 183 */ 184 struct si_sm_io io; 185 int (*io_setup)(struct smi_info *info); 186 void (*io_cleanup)(struct smi_info *info); 187 int (*irq_setup)(struct smi_info *info); 188 void (*irq_cleanup)(struct smi_info *info); 189 unsigned int io_size; 190 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 191 void (*addr_source_cleanup)(struct smi_info *info); 192 void *addr_source_data; 193 194 /* 195 * Per-OEM handler, called from handle_flags(). Returns 1 196 * when handle_flags() needs to be re-run or 0 indicating it 197 * set si_state itself. 198 */ 199 int (*oem_data_avail_handler)(struct smi_info *smi_info); 200 201 /* 202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 203 * is set to hold the flags until we are done handling everything 204 * from the flags. 205 */ 206 #define RECEIVE_MSG_AVAIL 0x01 207 #define EVENT_MSG_BUFFER_FULL 0x02 208 #define WDT_PRE_TIMEOUT_INT 0x08 209 #define OEM0_DATA_AVAIL 0x20 210 #define OEM1_DATA_AVAIL 0x40 211 #define OEM2_DATA_AVAIL 0x80 212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 213 OEM1_DATA_AVAIL | \ 214 OEM2_DATA_AVAIL) 215 unsigned char msg_flags; 216 217 /* Does the BMC have an event buffer? */ 218 char has_event_buffer; 219 220 /* 221 * If set to true, this will request events the next time the 222 * state machine is idle. 223 */ 224 atomic_t req_events; 225 226 /* 227 * If true, run the state machine to completion on every send 228 * call. Generally used after a panic to make sure stuff goes 229 * out. 230 */ 231 int run_to_completion; 232 233 /* The I/O port of an SI interface. */ 234 int port; 235 236 /* 237 * The space between start addresses of the two ports. For 238 * instance, if the first port is 0xca2 and the spacing is 4, then 239 * the second port is 0xca6. 240 */ 241 unsigned int spacing; 242 243 /* zero if no irq; */ 244 int irq; 245 246 /* The timer for this si. */ 247 struct timer_list si_timer; 248 249 /* The time (in jiffies) the last timeout occurred at. */ 250 unsigned long last_timeout_jiffies; 251 252 /* Used to gracefully stop the timer without race conditions. */ 253 atomic_t stop_operation; 254 255 /* 256 * The driver will disable interrupts when it gets into a 257 * situation where it cannot handle messages due to lack of 258 * memory. Once that situation clears up, it will re-enable 259 * interrupts. 260 */ 261 int interrupt_disabled; 262 263 /* From the get device id response... */ 264 struct ipmi_device_id device_id; 265 266 /* Driver model stuff. */ 267 struct device *dev; 268 struct platform_device *pdev; 269 270 /* 271 * True if we allocated the device, false if it came from 272 * someplace else (like PCI). 273 */ 274 int dev_registered; 275 276 /* Slave address, could be reported from DMI. */ 277 unsigned char slave_addr; 278 279 /* Counters and things for the proc filesystem. */ 280 atomic_t stats[SI_NUM_STATS]; 281 282 struct task_struct *thread; 283 284 struct list_head link; 285 union ipmi_smi_info_union addr_info; 286 }; 287 288 #define smi_inc_stat(smi, stat) \ 289 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 290 #define smi_get_stat(smi, stat) \ 291 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 292 293 #define SI_MAX_PARMS 4 294 295 static int force_kipmid[SI_MAX_PARMS]; 296 static int num_force_kipmid; 297 #ifdef CONFIG_PCI 298 static int pci_registered; 299 #endif 300 #ifdef CONFIG_ACPI 301 static int pnp_registered; 302 #endif 303 304 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 305 static int num_max_busy_us; 306 307 static int unload_when_empty = 1; 308 309 static int add_smi(struct smi_info *smi); 310 static int try_smi_init(struct smi_info *smi); 311 static void cleanup_one_si(struct smi_info *to_clean); 312 static void cleanup_ipmi_si(void); 313 314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 315 static int register_xaction_notifier(struct notifier_block *nb) 316 { 317 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 318 } 319 320 static void deliver_recv_msg(struct smi_info *smi_info, 321 struct ipmi_smi_msg *msg) 322 { 323 /* Deliver the message to the upper layer with the lock 324 released. */ 325 326 if (smi_info->run_to_completion) { 327 ipmi_smi_msg_received(smi_info->intf, msg); 328 } else { 329 spin_unlock(&(smi_info->si_lock)); 330 ipmi_smi_msg_received(smi_info->intf, msg); 331 spin_lock(&(smi_info->si_lock)); 332 } 333 } 334 335 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 336 { 337 struct ipmi_smi_msg *msg = smi_info->curr_msg; 338 339 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 340 cCode = IPMI_ERR_UNSPECIFIED; 341 /* else use it as is */ 342 343 /* Make it a response */ 344 msg->rsp[0] = msg->data[0] | 4; 345 msg->rsp[1] = msg->data[1]; 346 msg->rsp[2] = cCode; 347 msg->rsp_size = 3; 348 349 smi_info->curr_msg = NULL; 350 deliver_recv_msg(smi_info, msg); 351 } 352 353 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 354 { 355 int rv; 356 struct list_head *entry = NULL; 357 #ifdef DEBUG_TIMING 358 struct timeval t; 359 #endif 360 361 /* 362 * No need to save flags, we aleady have interrupts off and we 363 * already hold the SMI lock. 364 */ 365 if (!smi_info->run_to_completion) 366 spin_lock(&(smi_info->msg_lock)); 367 368 /* Pick the high priority queue first. */ 369 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 370 entry = smi_info->hp_xmit_msgs.next; 371 } else if (!list_empty(&(smi_info->xmit_msgs))) { 372 entry = smi_info->xmit_msgs.next; 373 } 374 375 if (!entry) { 376 smi_info->curr_msg = NULL; 377 rv = SI_SM_IDLE; 378 } else { 379 int err; 380 381 list_del(entry); 382 smi_info->curr_msg = list_entry(entry, 383 struct ipmi_smi_msg, 384 link); 385 #ifdef DEBUG_TIMING 386 do_gettimeofday(&t); 387 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 388 #endif 389 err = atomic_notifier_call_chain(&xaction_notifier_list, 390 0, smi_info); 391 if (err & NOTIFY_STOP_MASK) { 392 rv = SI_SM_CALL_WITHOUT_DELAY; 393 goto out; 394 } 395 err = smi_info->handlers->start_transaction( 396 smi_info->si_sm, 397 smi_info->curr_msg->data, 398 smi_info->curr_msg->data_size); 399 if (err) 400 return_hosed_msg(smi_info, err); 401 402 rv = SI_SM_CALL_WITHOUT_DELAY; 403 } 404 out: 405 if (!smi_info->run_to_completion) 406 spin_unlock(&(smi_info->msg_lock)); 407 408 return rv; 409 } 410 411 static void start_enable_irq(struct smi_info *smi_info) 412 { 413 unsigned char msg[2]; 414 415 /* 416 * If we are enabling interrupts, we have to tell the 417 * BMC to use them. 418 */ 419 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 420 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 421 422 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 423 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 424 } 425 426 static void start_disable_irq(struct smi_info *smi_info) 427 { 428 unsigned char msg[2]; 429 430 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 431 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 432 433 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 434 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 435 } 436 437 static void start_clear_flags(struct smi_info *smi_info) 438 { 439 unsigned char msg[3]; 440 441 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 444 msg[2] = WDT_PRE_TIMEOUT_INT; 445 446 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 447 smi_info->si_state = SI_CLEARING_FLAGS; 448 } 449 450 /* 451 * When we have a situtaion where we run out of memory and cannot 452 * allocate messages, we just leave them in the BMC and run the system 453 * polled until we can allocate some memory. Once we have some 454 * memory, we will re-enable the interrupt. 455 */ 456 static inline void disable_si_irq(struct smi_info *smi_info) 457 { 458 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 459 start_disable_irq(smi_info); 460 smi_info->interrupt_disabled = 1; 461 if (!atomic_read(&smi_info->stop_operation)) 462 mod_timer(&smi_info->si_timer, 463 jiffies + SI_TIMEOUT_JIFFIES); 464 } 465 } 466 467 static inline void enable_si_irq(struct smi_info *smi_info) 468 { 469 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 470 start_enable_irq(smi_info); 471 smi_info->interrupt_disabled = 0; 472 } 473 } 474 475 static void handle_flags(struct smi_info *smi_info) 476 { 477 retry: 478 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 479 /* Watchdog pre-timeout */ 480 smi_inc_stat(smi_info, watchdog_pretimeouts); 481 482 start_clear_flags(smi_info); 483 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 484 spin_unlock(&(smi_info->si_lock)); 485 ipmi_smi_watchdog_pretimeout(smi_info->intf); 486 spin_lock(&(smi_info->si_lock)); 487 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 488 /* Messages available. */ 489 smi_info->curr_msg = ipmi_alloc_smi_msg(); 490 if (!smi_info->curr_msg) { 491 disable_si_irq(smi_info); 492 smi_info->si_state = SI_NORMAL; 493 return; 494 } 495 enable_si_irq(smi_info); 496 497 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 498 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 499 smi_info->curr_msg->data_size = 2; 500 501 smi_info->handlers->start_transaction( 502 smi_info->si_sm, 503 smi_info->curr_msg->data, 504 smi_info->curr_msg->data_size); 505 smi_info->si_state = SI_GETTING_MESSAGES; 506 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 507 /* Events available. */ 508 smi_info->curr_msg = ipmi_alloc_smi_msg(); 509 if (!smi_info->curr_msg) { 510 disable_si_irq(smi_info); 511 smi_info->si_state = SI_NORMAL; 512 return; 513 } 514 enable_si_irq(smi_info); 515 516 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 517 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 518 smi_info->curr_msg->data_size = 2; 519 520 smi_info->handlers->start_transaction( 521 smi_info->si_sm, 522 smi_info->curr_msg->data, 523 smi_info->curr_msg->data_size); 524 smi_info->si_state = SI_GETTING_EVENTS; 525 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 526 smi_info->oem_data_avail_handler) { 527 if (smi_info->oem_data_avail_handler(smi_info)) 528 goto retry; 529 } else 530 smi_info->si_state = SI_NORMAL; 531 } 532 533 static void handle_transaction_done(struct smi_info *smi_info) 534 { 535 struct ipmi_smi_msg *msg; 536 #ifdef DEBUG_TIMING 537 struct timeval t; 538 539 do_gettimeofday(&t); 540 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 541 #endif 542 switch (smi_info->si_state) { 543 case SI_NORMAL: 544 if (!smi_info->curr_msg) 545 break; 546 547 smi_info->curr_msg->rsp_size 548 = smi_info->handlers->get_result( 549 smi_info->si_sm, 550 smi_info->curr_msg->rsp, 551 IPMI_MAX_MSG_LENGTH); 552 553 /* 554 * Do this here becase deliver_recv_msg() releases the 555 * lock, and a new message can be put in during the 556 * time the lock is released. 557 */ 558 msg = smi_info->curr_msg; 559 smi_info->curr_msg = NULL; 560 deliver_recv_msg(smi_info, msg); 561 break; 562 563 case SI_GETTING_FLAGS: 564 { 565 unsigned char msg[4]; 566 unsigned int len; 567 568 /* We got the flags from the SMI, now handle them. */ 569 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 570 if (msg[2] != 0) { 571 /* Error fetching flags, just give up for now. */ 572 smi_info->si_state = SI_NORMAL; 573 } else if (len < 4) { 574 /* 575 * Hmm, no flags. That's technically illegal, but 576 * don't use uninitialized data. 577 */ 578 smi_info->si_state = SI_NORMAL; 579 } else { 580 smi_info->msg_flags = msg[3]; 581 handle_flags(smi_info); 582 } 583 break; 584 } 585 586 case SI_CLEARING_FLAGS: 587 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 588 { 589 unsigned char msg[3]; 590 591 /* We cleared the flags. */ 592 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 593 if (msg[2] != 0) { 594 /* Error clearing flags */ 595 dev_warn(smi_info->dev, 596 "Error clearing flags: %2.2x\n", msg[2]); 597 } 598 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 599 start_enable_irq(smi_info); 600 else 601 smi_info->si_state = SI_NORMAL; 602 break; 603 } 604 605 case SI_GETTING_EVENTS: 606 { 607 smi_info->curr_msg->rsp_size 608 = smi_info->handlers->get_result( 609 smi_info->si_sm, 610 smi_info->curr_msg->rsp, 611 IPMI_MAX_MSG_LENGTH); 612 613 /* 614 * Do this here becase deliver_recv_msg() releases the 615 * lock, and a new message can be put in during the 616 * time the lock is released. 617 */ 618 msg = smi_info->curr_msg; 619 smi_info->curr_msg = NULL; 620 if (msg->rsp[2] != 0) { 621 /* Error getting event, probably done. */ 622 msg->done(msg); 623 624 /* Take off the event flag. */ 625 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 626 handle_flags(smi_info); 627 } else { 628 smi_inc_stat(smi_info, events); 629 630 /* 631 * Do this before we deliver the message 632 * because delivering the message releases the 633 * lock and something else can mess with the 634 * state. 635 */ 636 handle_flags(smi_info); 637 638 deliver_recv_msg(smi_info, msg); 639 } 640 break; 641 } 642 643 case SI_GETTING_MESSAGES: 644 { 645 smi_info->curr_msg->rsp_size 646 = smi_info->handlers->get_result( 647 smi_info->si_sm, 648 smi_info->curr_msg->rsp, 649 IPMI_MAX_MSG_LENGTH); 650 651 /* 652 * Do this here becase deliver_recv_msg() releases the 653 * lock, and a new message can be put in during the 654 * time the lock is released. 655 */ 656 msg = smi_info->curr_msg; 657 smi_info->curr_msg = NULL; 658 if (msg->rsp[2] != 0) { 659 /* Error getting event, probably done. */ 660 msg->done(msg); 661 662 /* Take off the msg flag. */ 663 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 664 handle_flags(smi_info); 665 } else { 666 smi_inc_stat(smi_info, incoming_messages); 667 668 /* 669 * Do this before we deliver the message 670 * because delivering the message releases the 671 * lock and something else can mess with the 672 * state. 673 */ 674 handle_flags(smi_info); 675 676 deliver_recv_msg(smi_info, msg); 677 } 678 break; 679 } 680 681 case SI_ENABLE_INTERRUPTS1: 682 { 683 unsigned char msg[4]; 684 685 /* We got the flags from the SMI, now handle them. */ 686 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 687 if (msg[2] != 0) { 688 dev_warn(smi_info->dev, "Could not enable interrupts" 689 ", failed get, using polled mode.\n"); 690 smi_info->si_state = SI_NORMAL; 691 } else { 692 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 693 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 694 msg[2] = (msg[3] | 695 IPMI_BMC_RCV_MSG_INTR | 696 IPMI_BMC_EVT_MSG_INTR); 697 smi_info->handlers->start_transaction( 698 smi_info->si_sm, msg, 3); 699 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 700 } 701 break; 702 } 703 704 case SI_ENABLE_INTERRUPTS2: 705 { 706 unsigned char msg[4]; 707 708 /* We got the flags from the SMI, now handle them. */ 709 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 710 if (msg[2] != 0) 711 dev_warn(smi_info->dev, "Could not enable interrupts" 712 ", failed set, using polled mode.\n"); 713 else 714 smi_info->interrupt_disabled = 0; 715 smi_info->si_state = SI_NORMAL; 716 break; 717 } 718 719 case SI_DISABLE_INTERRUPTS1: 720 { 721 unsigned char msg[4]; 722 723 /* We got the flags from the SMI, now handle them. */ 724 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 725 if (msg[2] != 0) { 726 dev_warn(smi_info->dev, "Could not disable interrupts" 727 ", failed get.\n"); 728 smi_info->si_state = SI_NORMAL; 729 } else { 730 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 731 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 732 msg[2] = (msg[3] & 733 ~(IPMI_BMC_RCV_MSG_INTR | 734 IPMI_BMC_EVT_MSG_INTR)); 735 smi_info->handlers->start_transaction( 736 smi_info->si_sm, msg, 3); 737 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 738 } 739 break; 740 } 741 742 case SI_DISABLE_INTERRUPTS2: 743 { 744 unsigned char msg[4]; 745 746 /* We got the flags from the SMI, now handle them. */ 747 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 748 if (msg[2] != 0) { 749 dev_warn(smi_info->dev, "Could not disable interrupts" 750 ", failed set.\n"); 751 } 752 smi_info->si_state = SI_NORMAL; 753 break; 754 } 755 } 756 } 757 758 /* 759 * Called on timeouts and events. Timeouts should pass the elapsed 760 * time, interrupts should pass in zero. Must be called with 761 * si_lock held and interrupts disabled. 762 */ 763 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 764 int time) 765 { 766 enum si_sm_result si_sm_result; 767 768 restart: 769 /* 770 * There used to be a loop here that waited a little while 771 * (around 25us) before giving up. That turned out to be 772 * pointless, the minimum delays I was seeing were in the 300us 773 * range, which is far too long to wait in an interrupt. So 774 * we just run until the state machine tells us something 775 * happened or it needs a delay. 776 */ 777 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 778 time = 0; 779 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 780 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 781 782 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 783 smi_inc_stat(smi_info, complete_transactions); 784 785 handle_transaction_done(smi_info); 786 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 787 } else if (si_sm_result == SI_SM_HOSED) { 788 smi_inc_stat(smi_info, hosed_count); 789 790 /* 791 * Do the before return_hosed_msg, because that 792 * releases the lock. 793 */ 794 smi_info->si_state = SI_NORMAL; 795 if (smi_info->curr_msg != NULL) { 796 /* 797 * If we were handling a user message, format 798 * a response to send to the upper layer to 799 * tell it about the error. 800 */ 801 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 802 } 803 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 804 } 805 806 /* 807 * We prefer handling attn over new messages. But don't do 808 * this if there is not yet an upper layer to handle anything. 809 */ 810 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 811 unsigned char msg[2]; 812 813 smi_inc_stat(smi_info, attentions); 814 815 /* 816 * Got a attn, send down a get message flags to see 817 * what's causing it. It would be better to handle 818 * this in the upper layer, but due to the way 819 * interrupts work with the SMI, that's not really 820 * possible. 821 */ 822 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 823 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 824 825 smi_info->handlers->start_transaction( 826 smi_info->si_sm, msg, 2); 827 smi_info->si_state = SI_GETTING_FLAGS; 828 goto restart; 829 } 830 831 /* If we are currently idle, try to start the next message. */ 832 if (si_sm_result == SI_SM_IDLE) { 833 smi_inc_stat(smi_info, idles); 834 835 si_sm_result = start_next_msg(smi_info); 836 if (si_sm_result != SI_SM_IDLE) 837 goto restart; 838 } 839 840 if ((si_sm_result == SI_SM_IDLE) 841 && (atomic_read(&smi_info->req_events))) { 842 /* 843 * We are idle and the upper layer requested that I fetch 844 * events, so do so. 845 */ 846 atomic_set(&smi_info->req_events, 0); 847 848 smi_info->curr_msg = ipmi_alloc_smi_msg(); 849 if (!smi_info->curr_msg) 850 goto out; 851 852 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 853 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 854 smi_info->curr_msg->data_size = 2; 855 856 smi_info->handlers->start_transaction( 857 smi_info->si_sm, 858 smi_info->curr_msg->data, 859 smi_info->curr_msg->data_size); 860 smi_info->si_state = SI_GETTING_EVENTS; 861 goto restart; 862 } 863 out: 864 return si_sm_result; 865 } 866 867 static void sender(void *send_info, 868 struct ipmi_smi_msg *msg, 869 int priority) 870 { 871 struct smi_info *smi_info = send_info; 872 enum si_sm_result result; 873 unsigned long flags; 874 #ifdef DEBUG_TIMING 875 struct timeval t; 876 #endif 877 878 if (atomic_read(&smi_info->stop_operation)) { 879 msg->rsp[0] = msg->data[0] | 4; 880 msg->rsp[1] = msg->data[1]; 881 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 882 msg->rsp_size = 3; 883 deliver_recv_msg(smi_info, msg); 884 return; 885 } 886 887 #ifdef DEBUG_TIMING 888 do_gettimeofday(&t); 889 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 890 #endif 891 892 /* 893 * last_timeout_jiffies is updated here to avoid 894 * smi_timeout() handler passing very large time_diff 895 * value to smi_event_handler() that causes 896 * the send command to abort. 897 */ 898 smi_info->last_timeout_jiffies = jiffies; 899 900 mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 901 902 if (smi_info->thread) 903 wake_up_process(smi_info->thread); 904 905 if (smi_info->run_to_completion) { 906 /* 907 * If we are running to completion, then throw it in 908 * the list and run transactions until everything is 909 * clear. Priority doesn't matter here. 910 */ 911 912 /* 913 * Run to completion means we are single-threaded, no 914 * need for locks. 915 */ 916 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 917 918 result = smi_event_handler(smi_info, 0); 919 while (result != SI_SM_IDLE) { 920 udelay(SI_SHORT_TIMEOUT_USEC); 921 result = smi_event_handler(smi_info, 922 SI_SHORT_TIMEOUT_USEC); 923 } 924 return; 925 } 926 927 spin_lock_irqsave(&smi_info->msg_lock, flags); 928 if (priority > 0) 929 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 930 else 931 list_add_tail(&msg->link, &smi_info->xmit_msgs); 932 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 933 934 spin_lock_irqsave(&smi_info->si_lock, flags); 935 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 936 start_next_msg(smi_info); 937 spin_unlock_irqrestore(&smi_info->si_lock, flags); 938 } 939 940 static void set_run_to_completion(void *send_info, int i_run_to_completion) 941 { 942 struct smi_info *smi_info = send_info; 943 enum si_sm_result result; 944 945 smi_info->run_to_completion = i_run_to_completion; 946 if (i_run_to_completion) { 947 result = smi_event_handler(smi_info, 0); 948 while (result != SI_SM_IDLE) { 949 udelay(SI_SHORT_TIMEOUT_USEC); 950 result = smi_event_handler(smi_info, 951 SI_SHORT_TIMEOUT_USEC); 952 } 953 } 954 } 955 956 /* 957 * Use -1 in the nsec value of the busy waiting timespec to tell that 958 * we are spinning in kipmid looking for something and not delaying 959 * between checks 960 */ 961 static inline void ipmi_si_set_not_busy(struct timespec *ts) 962 { 963 ts->tv_nsec = -1; 964 } 965 static inline int ipmi_si_is_busy(struct timespec *ts) 966 { 967 return ts->tv_nsec != -1; 968 } 969 970 static int ipmi_thread_busy_wait(enum si_sm_result smi_result, 971 const struct smi_info *smi_info, 972 struct timespec *busy_until) 973 { 974 unsigned int max_busy_us = 0; 975 976 if (smi_info->intf_num < num_max_busy_us) 977 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 978 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 979 ipmi_si_set_not_busy(busy_until); 980 else if (!ipmi_si_is_busy(busy_until)) { 981 getnstimeofday(busy_until); 982 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 983 } else { 984 struct timespec now; 985 getnstimeofday(&now); 986 if (unlikely(timespec_compare(&now, busy_until) > 0)) { 987 ipmi_si_set_not_busy(busy_until); 988 return 0; 989 } 990 } 991 return 1; 992 } 993 994 995 /* 996 * A busy-waiting loop for speeding up IPMI operation. 997 * 998 * Lousy hardware makes this hard. This is only enabled for systems 999 * that are not BT and do not have interrupts. It starts spinning 1000 * when an operation is complete or until max_busy tells it to stop 1001 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1002 * Documentation/IPMI.txt for details. 1003 */ 1004 static int ipmi_thread(void *data) 1005 { 1006 struct smi_info *smi_info = data; 1007 unsigned long flags; 1008 enum si_sm_result smi_result; 1009 struct timespec busy_until; 1010 1011 ipmi_si_set_not_busy(&busy_until); 1012 set_user_nice(current, 19); 1013 while (!kthread_should_stop()) { 1014 int busy_wait; 1015 1016 spin_lock_irqsave(&(smi_info->si_lock), flags); 1017 smi_result = smi_event_handler(smi_info, 0); 1018 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1019 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1020 &busy_until); 1021 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1022 ; /* do nothing */ 1023 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1024 schedule(); 1025 else if (smi_result == SI_SM_IDLE) 1026 schedule_timeout_interruptible(100); 1027 else 1028 schedule_timeout_interruptible(1); 1029 } 1030 return 0; 1031 } 1032 1033 1034 static void poll(void *send_info) 1035 { 1036 struct smi_info *smi_info = send_info; 1037 unsigned long flags; 1038 1039 /* 1040 * Make sure there is some delay in the poll loop so we can 1041 * drive time forward and timeout things. 1042 */ 1043 udelay(10); 1044 spin_lock_irqsave(&smi_info->si_lock, flags); 1045 smi_event_handler(smi_info, 10); 1046 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1047 } 1048 1049 static void request_events(void *send_info) 1050 { 1051 struct smi_info *smi_info = send_info; 1052 1053 if (atomic_read(&smi_info->stop_operation) || 1054 !smi_info->has_event_buffer) 1055 return; 1056 1057 atomic_set(&smi_info->req_events, 1); 1058 } 1059 1060 static int initialized; 1061 1062 static void smi_timeout(unsigned long data) 1063 { 1064 struct smi_info *smi_info = (struct smi_info *) data; 1065 enum si_sm_result smi_result; 1066 unsigned long flags; 1067 unsigned long jiffies_now; 1068 long time_diff; 1069 long timeout; 1070 #ifdef DEBUG_TIMING 1071 struct timeval t; 1072 #endif 1073 1074 spin_lock_irqsave(&(smi_info->si_lock), flags); 1075 #ifdef DEBUG_TIMING 1076 do_gettimeofday(&t); 1077 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1078 #endif 1079 jiffies_now = jiffies; 1080 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1081 * SI_USEC_PER_JIFFY); 1082 smi_result = smi_event_handler(smi_info, time_diff); 1083 1084 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1085 1086 smi_info->last_timeout_jiffies = jiffies_now; 1087 1088 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1089 /* Running with interrupts, only do long timeouts. */ 1090 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1091 smi_inc_stat(smi_info, long_timeouts); 1092 goto do_mod_timer; 1093 } 1094 1095 /* 1096 * If the state machine asks for a short delay, then shorten 1097 * the timer timeout. 1098 */ 1099 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1100 smi_inc_stat(smi_info, short_timeouts); 1101 timeout = jiffies + 1; 1102 } else { 1103 smi_inc_stat(smi_info, long_timeouts); 1104 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1105 } 1106 1107 do_mod_timer: 1108 if (smi_result != SI_SM_IDLE) 1109 mod_timer(&(smi_info->si_timer), timeout); 1110 } 1111 1112 static irqreturn_t si_irq_handler(int irq, void *data) 1113 { 1114 struct smi_info *smi_info = data; 1115 unsigned long flags; 1116 #ifdef DEBUG_TIMING 1117 struct timeval t; 1118 #endif 1119 1120 spin_lock_irqsave(&(smi_info->si_lock), flags); 1121 1122 smi_inc_stat(smi_info, interrupts); 1123 1124 #ifdef DEBUG_TIMING 1125 do_gettimeofday(&t); 1126 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1127 #endif 1128 smi_event_handler(smi_info, 0); 1129 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1130 return IRQ_HANDLED; 1131 } 1132 1133 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1134 { 1135 struct smi_info *smi_info = data; 1136 /* We need to clear the IRQ flag for the BT interface. */ 1137 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1138 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1139 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1140 return si_irq_handler(irq, data); 1141 } 1142 1143 static int smi_start_processing(void *send_info, 1144 ipmi_smi_t intf) 1145 { 1146 struct smi_info *new_smi = send_info; 1147 int enable = 0; 1148 1149 new_smi->intf = intf; 1150 1151 /* Try to claim any interrupts. */ 1152 if (new_smi->irq_setup) 1153 new_smi->irq_setup(new_smi); 1154 1155 /* Set up the timer that drives the interface. */ 1156 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1157 new_smi->last_timeout_jiffies = jiffies; 1158 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1159 1160 /* 1161 * Check if the user forcefully enabled the daemon. 1162 */ 1163 if (new_smi->intf_num < num_force_kipmid) 1164 enable = force_kipmid[new_smi->intf_num]; 1165 /* 1166 * The BT interface is efficient enough to not need a thread, 1167 * and there is no need for a thread if we have interrupts. 1168 */ 1169 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1170 enable = 1; 1171 1172 if (enable) { 1173 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1174 "kipmi%d", new_smi->intf_num); 1175 if (IS_ERR(new_smi->thread)) { 1176 dev_notice(new_smi->dev, "Could not start" 1177 " kernel thread due to error %ld, only using" 1178 " timers to drive the interface\n", 1179 PTR_ERR(new_smi->thread)); 1180 new_smi->thread = NULL; 1181 } 1182 } 1183 1184 return 0; 1185 } 1186 1187 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1188 { 1189 struct smi_info *smi = send_info; 1190 1191 data->addr_src = smi->addr_source; 1192 data->dev = smi->dev; 1193 data->addr_info = smi->addr_info; 1194 get_device(smi->dev); 1195 1196 return 0; 1197 } 1198 1199 static void set_maintenance_mode(void *send_info, int enable) 1200 { 1201 struct smi_info *smi_info = send_info; 1202 1203 if (!enable) 1204 atomic_set(&smi_info->req_events, 0); 1205 } 1206 1207 static struct ipmi_smi_handlers handlers = { 1208 .owner = THIS_MODULE, 1209 .start_processing = smi_start_processing, 1210 .get_smi_info = get_smi_info, 1211 .sender = sender, 1212 .request_events = request_events, 1213 .set_maintenance_mode = set_maintenance_mode, 1214 .set_run_to_completion = set_run_to_completion, 1215 .poll = poll, 1216 }; 1217 1218 /* 1219 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1220 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1221 */ 1222 1223 static LIST_HEAD(smi_infos); 1224 static DEFINE_MUTEX(smi_infos_lock); 1225 static int smi_num; /* Used to sequence the SMIs */ 1226 1227 #define DEFAULT_REGSPACING 1 1228 #define DEFAULT_REGSIZE 1 1229 1230 static bool si_trydefaults = 1; 1231 static char *si_type[SI_MAX_PARMS]; 1232 #define MAX_SI_TYPE_STR 30 1233 static char si_type_str[MAX_SI_TYPE_STR]; 1234 static unsigned long addrs[SI_MAX_PARMS]; 1235 static unsigned int num_addrs; 1236 static unsigned int ports[SI_MAX_PARMS]; 1237 static unsigned int num_ports; 1238 static int irqs[SI_MAX_PARMS]; 1239 static unsigned int num_irqs; 1240 static int regspacings[SI_MAX_PARMS]; 1241 static unsigned int num_regspacings; 1242 static int regsizes[SI_MAX_PARMS]; 1243 static unsigned int num_regsizes; 1244 static int regshifts[SI_MAX_PARMS]; 1245 static unsigned int num_regshifts; 1246 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1247 static unsigned int num_slave_addrs; 1248 1249 #define IPMI_IO_ADDR_SPACE 0 1250 #define IPMI_MEM_ADDR_SPACE 1 1251 static char *addr_space_to_str[] = { "i/o", "mem" }; 1252 1253 static int hotmod_handler(const char *val, struct kernel_param *kp); 1254 1255 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1256 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1257 " Documentation/IPMI.txt in the kernel sources for the" 1258 " gory details."); 1259 1260 module_param_named(trydefaults, si_trydefaults, bool, 0); 1261 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1262 " default scan of the KCS and SMIC interface at the standard" 1263 " address"); 1264 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1265 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1266 " interface separated by commas. The types are 'kcs'," 1267 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1268 " the first interface to kcs and the second to bt"); 1269 module_param_array(addrs, ulong, &num_addrs, 0); 1270 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1271 " addresses separated by commas. Only use if an interface" 1272 " is in memory. Otherwise, set it to zero or leave" 1273 " it blank."); 1274 module_param_array(ports, uint, &num_ports, 0); 1275 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1276 " addresses separated by commas. Only use if an interface" 1277 " is a port. Otherwise, set it to zero or leave" 1278 " it blank."); 1279 module_param_array(irqs, int, &num_irqs, 0); 1280 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1281 " addresses separated by commas. Only use if an interface" 1282 " has an interrupt. Otherwise, set it to zero or leave" 1283 " it blank."); 1284 module_param_array(regspacings, int, &num_regspacings, 0); 1285 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1286 " and each successive register used by the interface. For" 1287 " instance, if the start address is 0xca2 and the spacing" 1288 " is 2, then the second address is at 0xca4. Defaults" 1289 " to 1."); 1290 module_param_array(regsizes, int, &num_regsizes, 0); 1291 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1292 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1293 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1294 " the 8-bit IPMI register has to be read from a larger" 1295 " register."); 1296 module_param_array(regshifts, int, &num_regshifts, 0); 1297 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1298 " IPMI register, in bits. For instance, if the data" 1299 " is read from a 32-bit word and the IPMI data is in" 1300 " bit 8-15, then the shift would be 8"); 1301 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1302 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1303 " the controller. Normally this is 0x20, but can be" 1304 " overridden by this parm. This is an array indexed" 1305 " by interface number."); 1306 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1307 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1308 " disabled(0). Normally the IPMI driver auto-detects" 1309 " this, but the value may be overridden by this parm."); 1310 module_param(unload_when_empty, int, 0); 1311 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1312 " specified or found, default is 1. Setting to 0" 1313 " is useful for hot add of devices using hotmod."); 1314 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1315 MODULE_PARM_DESC(kipmid_max_busy_us, 1316 "Max time (in microseconds) to busy-wait for IPMI data before" 1317 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1318 " if kipmid is using up a lot of CPU time."); 1319 1320 1321 static void std_irq_cleanup(struct smi_info *info) 1322 { 1323 if (info->si_type == SI_BT) 1324 /* Disable the interrupt in the BT interface. */ 1325 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1326 free_irq(info->irq, info); 1327 } 1328 1329 static int std_irq_setup(struct smi_info *info) 1330 { 1331 int rv; 1332 1333 if (!info->irq) 1334 return 0; 1335 1336 if (info->si_type == SI_BT) { 1337 rv = request_irq(info->irq, 1338 si_bt_irq_handler, 1339 IRQF_SHARED | IRQF_DISABLED, 1340 DEVICE_NAME, 1341 info); 1342 if (!rv) 1343 /* Enable the interrupt in the BT interface. */ 1344 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1345 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1346 } else 1347 rv = request_irq(info->irq, 1348 si_irq_handler, 1349 IRQF_SHARED | IRQF_DISABLED, 1350 DEVICE_NAME, 1351 info); 1352 if (rv) { 1353 dev_warn(info->dev, "%s unable to claim interrupt %d," 1354 " running polled\n", 1355 DEVICE_NAME, info->irq); 1356 info->irq = 0; 1357 } else { 1358 info->irq_cleanup = std_irq_cleanup; 1359 dev_info(info->dev, "Using irq %d\n", info->irq); 1360 } 1361 1362 return rv; 1363 } 1364 1365 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1366 { 1367 unsigned int addr = io->addr_data; 1368 1369 return inb(addr + (offset * io->regspacing)); 1370 } 1371 1372 static void port_outb(struct si_sm_io *io, unsigned int offset, 1373 unsigned char b) 1374 { 1375 unsigned int addr = io->addr_data; 1376 1377 outb(b, addr + (offset * io->regspacing)); 1378 } 1379 1380 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1381 { 1382 unsigned int addr = io->addr_data; 1383 1384 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1385 } 1386 1387 static void port_outw(struct si_sm_io *io, unsigned int offset, 1388 unsigned char b) 1389 { 1390 unsigned int addr = io->addr_data; 1391 1392 outw(b << io->regshift, addr + (offset * io->regspacing)); 1393 } 1394 1395 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1396 { 1397 unsigned int addr = io->addr_data; 1398 1399 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1400 } 1401 1402 static void port_outl(struct si_sm_io *io, unsigned int offset, 1403 unsigned char b) 1404 { 1405 unsigned int addr = io->addr_data; 1406 1407 outl(b << io->regshift, addr+(offset * io->regspacing)); 1408 } 1409 1410 static void port_cleanup(struct smi_info *info) 1411 { 1412 unsigned int addr = info->io.addr_data; 1413 int idx; 1414 1415 if (addr) { 1416 for (idx = 0; idx < info->io_size; idx++) 1417 release_region(addr + idx * info->io.regspacing, 1418 info->io.regsize); 1419 } 1420 } 1421 1422 static int port_setup(struct smi_info *info) 1423 { 1424 unsigned int addr = info->io.addr_data; 1425 int idx; 1426 1427 if (!addr) 1428 return -ENODEV; 1429 1430 info->io_cleanup = port_cleanup; 1431 1432 /* 1433 * Figure out the actual inb/inw/inl/etc routine to use based 1434 * upon the register size. 1435 */ 1436 switch (info->io.regsize) { 1437 case 1: 1438 info->io.inputb = port_inb; 1439 info->io.outputb = port_outb; 1440 break; 1441 case 2: 1442 info->io.inputb = port_inw; 1443 info->io.outputb = port_outw; 1444 break; 1445 case 4: 1446 info->io.inputb = port_inl; 1447 info->io.outputb = port_outl; 1448 break; 1449 default: 1450 dev_warn(info->dev, "Invalid register size: %d\n", 1451 info->io.regsize); 1452 return -EINVAL; 1453 } 1454 1455 /* 1456 * Some BIOSes reserve disjoint I/O regions in their ACPI 1457 * tables. This causes problems when trying to register the 1458 * entire I/O region. Therefore we must register each I/O 1459 * port separately. 1460 */ 1461 for (idx = 0; idx < info->io_size; idx++) { 1462 if (request_region(addr + idx * info->io.regspacing, 1463 info->io.regsize, DEVICE_NAME) == NULL) { 1464 /* Undo allocations */ 1465 while (idx--) { 1466 release_region(addr + idx * info->io.regspacing, 1467 info->io.regsize); 1468 } 1469 return -EIO; 1470 } 1471 } 1472 return 0; 1473 } 1474 1475 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1476 { 1477 return readb((io->addr)+(offset * io->regspacing)); 1478 } 1479 1480 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1481 unsigned char b) 1482 { 1483 writeb(b, (io->addr)+(offset * io->regspacing)); 1484 } 1485 1486 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1487 { 1488 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1489 & 0xff; 1490 } 1491 1492 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1493 unsigned char b) 1494 { 1495 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1496 } 1497 1498 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1499 { 1500 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1501 & 0xff; 1502 } 1503 1504 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1505 unsigned char b) 1506 { 1507 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1508 } 1509 1510 #ifdef readq 1511 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1512 { 1513 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1514 & 0xff; 1515 } 1516 1517 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1518 unsigned char b) 1519 { 1520 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1521 } 1522 #endif 1523 1524 static void mem_cleanup(struct smi_info *info) 1525 { 1526 unsigned long addr = info->io.addr_data; 1527 int mapsize; 1528 1529 if (info->io.addr) { 1530 iounmap(info->io.addr); 1531 1532 mapsize = ((info->io_size * info->io.regspacing) 1533 - (info->io.regspacing - info->io.regsize)); 1534 1535 release_mem_region(addr, mapsize); 1536 } 1537 } 1538 1539 static int mem_setup(struct smi_info *info) 1540 { 1541 unsigned long addr = info->io.addr_data; 1542 int mapsize; 1543 1544 if (!addr) 1545 return -ENODEV; 1546 1547 info->io_cleanup = mem_cleanup; 1548 1549 /* 1550 * Figure out the actual readb/readw/readl/etc routine to use based 1551 * upon the register size. 1552 */ 1553 switch (info->io.regsize) { 1554 case 1: 1555 info->io.inputb = intf_mem_inb; 1556 info->io.outputb = intf_mem_outb; 1557 break; 1558 case 2: 1559 info->io.inputb = intf_mem_inw; 1560 info->io.outputb = intf_mem_outw; 1561 break; 1562 case 4: 1563 info->io.inputb = intf_mem_inl; 1564 info->io.outputb = intf_mem_outl; 1565 break; 1566 #ifdef readq 1567 case 8: 1568 info->io.inputb = mem_inq; 1569 info->io.outputb = mem_outq; 1570 break; 1571 #endif 1572 default: 1573 dev_warn(info->dev, "Invalid register size: %d\n", 1574 info->io.regsize); 1575 return -EINVAL; 1576 } 1577 1578 /* 1579 * Calculate the total amount of memory to claim. This is an 1580 * unusual looking calculation, but it avoids claiming any 1581 * more memory than it has to. It will claim everything 1582 * between the first address to the end of the last full 1583 * register. 1584 */ 1585 mapsize = ((info->io_size * info->io.regspacing) 1586 - (info->io.regspacing - info->io.regsize)); 1587 1588 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1589 return -EIO; 1590 1591 info->io.addr = ioremap(addr, mapsize); 1592 if (info->io.addr == NULL) { 1593 release_mem_region(addr, mapsize); 1594 return -EIO; 1595 } 1596 return 0; 1597 } 1598 1599 /* 1600 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1601 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1602 * Options are: 1603 * rsp=<regspacing> 1604 * rsi=<regsize> 1605 * rsh=<regshift> 1606 * irq=<irq> 1607 * ipmb=<ipmb addr> 1608 */ 1609 enum hotmod_op { HM_ADD, HM_REMOVE }; 1610 struct hotmod_vals { 1611 char *name; 1612 int val; 1613 }; 1614 static struct hotmod_vals hotmod_ops[] = { 1615 { "add", HM_ADD }, 1616 { "remove", HM_REMOVE }, 1617 { NULL } 1618 }; 1619 static struct hotmod_vals hotmod_si[] = { 1620 { "kcs", SI_KCS }, 1621 { "smic", SI_SMIC }, 1622 { "bt", SI_BT }, 1623 { NULL } 1624 }; 1625 static struct hotmod_vals hotmod_as[] = { 1626 { "mem", IPMI_MEM_ADDR_SPACE }, 1627 { "i/o", IPMI_IO_ADDR_SPACE }, 1628 { NULL } 1629 }; 1630 1631 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1632 { 1633 char *s; 1634 int i; 1635 1636 s = strchr(*curr, ','); 1637 if (!s) { 1638 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1639 return -EINVAL; 1640 } 1641 *s = '\0'; 1642 s++; 1643 for (i = 0; hotmod_ops[i].name; i++) { 1644 if (strcmp(*curr, v[i].name) == 0) { 1645 *val = v[i].val; 1646 *curr = s; 1647 return 0; 1648 } 1649 } 1650 1651 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1652 return -EINVAL; 1653 } 1654 1655 static int check_hotmod_int_op(const char *curr, const char *option, 1656 const char *name, int *val) 1657 { 1658 char *n; 1659 1660 if (strcmp(curr, name) == 0) { 1661 if (!option) { 1662 printk(KERN_WARNING PFX 1663 "No option given for '%s'\n", 1664 curr); 1665 return -EINVAL; 1666 } 1667 *val = simple_strtoul(option, &n, 0); 1668 if ((*n != '\0') || (*option == '\0')) { 1669 printk(KERN_WARNING PFX 1670 "Bad option given for '%s'\n", 1671 curr); 1672 return -EINVAL; 1673 } 1674 return 1; 1675 } 1676 return 0; 1677 } 1678 1679 static struct smi_info *smi_info_alloc(void) 1680 { 1681 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1682 1683 if (info) { 1684 spin_lock_init(&info->si_lock); 1685 spin_lock_init(&info->msg_lock); 1686 } 1687 return info; 1688 } 1689 1690 static int hotmod_handler(const char *val, struct kernel_param *kp) 1691 { 1692 char *str = kstrdup(val, GFP_KERNEL); 1693 int rv; 1694 char *next, *curr, *s, *n, *o; 1695 enum hotmod_op op; 1696 enum si_type si_type; 1697 int addr_space; 1698 unsigned long addr; 1699 int regspacing; 1700 int regsize; 1701 int regshift; 1702 int irq; 1703 int ipmb; 1704 int ival; 1705 int len; 1706 struct smi_info *info; 1707 1708 if (!str) 1709 return -ENOMEM; 1710 1711 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1712 len = strlen(str); 1713 ival = len - 1; 1714 while ((ival >= 0) && isspace(str[ival])) { 1715 str[ival] = '\0'; 1716 ival--; 1717 } 1718 1719 for (curr = str; curr; curr = next) { 1720 regspacing = 1; 1721 regsize = 1; 1722 regshift = 0; 1723 irq = 0; 1724 ipmb = 0; /* Choose the default if not specified */ 1725 1726 next = strchr(curr, ':'); 1727 if (next) { 1728 *next = '\0'; 1729 next++; 1730 } 1731 1732 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1733 if (rv) 1734 break; 1735 op = ival; 1736 1737 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1738 if (rv) 1739 break; 1740 si_type = ival; 1741 1742 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1743 if (rv) 1744 break; 1745 1746 s = strchr(curr, ','); 1747 if (s) { 1748 *s = '\0'; 1749 s++; 1750 } 1751 addr = simple_strtoul(curr, &n, 0); 1752 if ((*n != '\0') || (*curr == '\0')) { 1753 printk(KERN_WARNING PFX "Invalid hotmod address" 1754 " '%s'\n", curr); 1755 break; 1756 } 1757 1758 while (s) { 1759 curr = s; 1760 s = strchr(curr, ','); 1761 if (s) { 1762 *s = '\0'; 1763 s++; 1764 } 1765 o = strchr(curr, '='); 1766 if (o) { 1767 *o = '\0'; 1768 o++; 1769 } 1770 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1771 if (rv < 0) 1772 goto out; 1773 else if (rv) 1774 continue; 1775 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1776 if (rv < 0) 1777 goto out; 1778 else if (rv) 1779 continue; 1780 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1781 if (rv < 0) 1782 goto out; 1783 else if (rv) 1784 continue; 1785 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1786 if (rv < 0) 1787 goto out; 1788 else if (rv) 1789 continue; 1790 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1791 if (rv < 0) 1792 goto out; 1793 else if (rv) 1794 continue; 1795 1796 rv = -EINVAL; 1797 printk(KERN_WARNING PFX 1798 "Invalid hotmod option '%s'\n", 1799 curr); 1800 goto out; 1801 } 1802 1803 if (op == HM_ADD) { 1804 info = smi_info_alloc(); 1805 if (!info) { 1806 rv = -ENOMEM; 1807 goto out; 1808 } 1809 1810 info->addr_source = SI_HOTMOD; 1811 info->si_type = si_type; 1812 info->io.addr_data = addr; 1813 info->io.addr_type = addr_space; 1814 if (addr_space == IPMI_MEM_ADDR_SPACE) 1815 info->io_setup = mem_setup; 1816 else 1817 info->io_setup = port_setup; 1818 1819 info->io.addr = NULL; 1820 info->io.regspacing = regspacing; 1821 if (!info->io.regspacing) 1822 info->io.regspacing = DEFAULT_REGSPACING; 1823 info->io.regsize = regsize; 1824 if (!info->io.regsize) 1825 info->io.regsize = DEFAULT_REGSPACING; 1826 info->io.regshift = regshift; 1827 info->irq = irq; 1828 if (info->irq) 1829 info->irq_setup = std_irq_setup; 1830 info->slave_addr = ipmb; 1831 1832 if (!add_smi(info)) { 1833 if (try_smi_init(info)) 1834 cleanup_one_si(info); 1835 } else { 1836 kfree(info); 1837 } 1838 } else { 1839 /* remove */ 1840 struct smi_info *e, *tmp_e; 1841 1842 mutex_lock(&smi_infos_lock); 1843 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1844 if (e->io.addr_type != addr_space) 1845 continue; 1846 if (e->si_type != si_type) 1847 continue; 1848 if (e->io.addr_data == addr) 1849 cleanup_one_si(e); 1850 } 1851 mutex_unlock(&smi_infos_lock); 1852 } 1853 } 1854 rv = len; 1855 out: 1856 kfree(str); 1857 return rv; 1858 } 1859 1860 static int __devinit hardcode_find_bmc(void) 1861 { 1862 int ret = -ENODEV; 1863 int i; 1864 struct smi_info *info; 1865 1866 for (i = 0; i < SI_MAX_PARMS; i++) { 1867 if (!ports[i] && !addrs[i]) 1868 continue; 1869 1870 info = smi_info_alloc(); 1871 if (!info) 1872 return -ENOMEM; 1873 1874 info->addr_source = SI_HARDCODED; 1875 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1876 1877 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1878 info->si_type = SI_KCS; 1879 } else if (strcmp(si_type[i], "smic") == 0) { 1880 info->si_type = SI_SMIC; 1881 } else if (strcmp(si_type[i], "bt") == 0) { 1882 info->si_type = SI_BT; 1883 } else { 1884 printk(KERN_WARNING PFX "Interface type specified " 1885 "for interface %d, was invalid: %s\n", 1886 i, si_type[i]); 1887 kfree(info); 1888 continue; 1889 } 1890 1891 if (ports[i]) { 1892 /* An I/O port */ 1893 info->io_setup = port_setup; 1894 info->io.addr_data = ports[i]; 1895 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1896 } else if (addrs[i]) { 1897 /* A memory port */ 1898 info->io_setup = mem_setup; 1899 info->io.addr_data = addrs[i]; 1900 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1901 } else { 1902 printk(KERN_WARNING PFX "Interface type specified " 1903 "for interface %d, but port and address were " 1904 "not set or set to zero.\n", i); 1905 kfree(info); 1906 continue; 1907 } 1908 1909 info->io.addr = NULL; 1910 info->io.regspacing = regspacings[i]; 1911 if (!info->io.regspacing) 1912 info->io.regspacing = DEFAULT_REGSPACING; 1913 info->io.regsize = regsizes[i]; 1914 if (!info->io.regsize) 1915 info->io.regsize = DEFAULT_REGSPACING; 1916 info->io.regshift = regshifts[i]; 1917 info->irq = irqs[i]; 1918 if (info->irq) 1919 info->irq_setup = std_irq_setup; 1920 info->slave_addr = slave_addrs[i]; 1921 1922 if (!add_smi(info)) { 1923 if (try_smi_init(info)) 1924 cleanup_one_si(info); 1925 ret = 0; 1926 } else { 1927 kfree(info); 1928 } 1929 } 1930 return ret; 1931 } 1932 1933 #ifdef CONFIG_ACPI 1934 1935 #include <linux/acpi.h> 1936 1937 /* 1938 * Once we get an ACPI failure, we don't try any more, because we go 1939 * through the tables sequentially. Once we don't find a table, there 1940 * are no more. 1941 */ 1942 static int acpi_failure; 1943 1944 /* For GPE-type interrupts. */ 1945 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 1946 u32 gpe_number, void *context) 1947 { 1948 struct smi_info *smi_info = context; 1949 unsigned long flags; 1950 #ifdef DEBUG_TIMING 1951 struct timeval t; 1952 #endif 1953 1954 spin_lock_irqsave(&(smi_info->si_lock), flags); 1955 1956 smi_inc_stat(smi_info, interrupts); 1957 1958 #ifdef DEBUG_TIMING 1959 do_gettimeofday(&t); 1960 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1961 #endif 1962 smi_event_handler(smi_info, 0); 1963 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1964 1965 return ACPI_INTERRUPT_HANDLED; 1966 } 1967 1968 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1969 { 1970 if (!info->irq) 1971 return; 1972 1973 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1974 } 1975 1976 static int acpi_gpe_irq_setup(struct smi_info *info) 1977 { 1978 acpi_status status; 1979 1980 if (!info->irq) 1981 return 0; 1982 1983 /* FIXME - is level triggered right? */ 1984 status = acpi_install_gpe_handler(NULL, 1985 info->irq, 1986 ACPI_GPE_LEVEL_TRIGGERED, 1987 &ipmi_acpi_gpe, 1988 info); 1989 if (status != AE_OK) { 1990 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 1991 " running polled\n", DEVICE_NAME, info->irq); 1992 info->irq = 0; 1993 return -EINVAL; 1994 } else { 1995 info->irq_cleanup = acpi_gpe_irq_cleanup; 1996 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 1997 return 0; 1998 } 1999 } 2000 2001 /* 2002 * Defined at 2003 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2004 */ 2005 struct SPMITable { 2006 s8 Signature[4]; 2007 u32 Length; 2008 u8 Revision; 2009 u8 Checksum; 2010 s8 OEMID[6]; 2011 s8 OEMTableID[8]; 2012 s8 OEMRevision[4]; 2013 s8 CreatorID[4]; 2014 s8 CreatorRevision[4]; 2015 u8 InterfaceType; 2016 u8 IPMIlegacy; 2017 s16 SpecificationRevision; 2018 2019 /* 2020 * Bit 0 - SCI interrupt supported 2021 * Bit 1 - I/O APIC/SAPIC 2022 */ 2023 u8 InterruptType; 2024 2025 /* 2026 * If bit 0 of InterruptType is set, then this is the SCI 2027 * interrupt in the GPEx_STS register. 2028 */ 2029 u8 GPE; 2030 2031 s16 Reserved; 2032 2033 /* 2034 * If bit 1 of InterruptType is set, then this is the I/O 2035 * APIC/SAPIC interrupt. 2036 */ 2037 u32 GlobalSystemInterrupt; 2038 2039 /* The actual register address. */ 2040 struct acpi_generic_address addr; 2041 2042 u8 UID[4]; 2043 2044 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2045 }; 2046 2047 static int __devinit try_init_spmi(struct SPMITable *spmi) 2048 { 2049 struct smi_info *info; 2050 2051 if (spmi->IPMIlegacy != 1) { 2052 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2053 return -ENODEV; 2054 } 2055 2056 info = smi_info_alloc(); 2057 if (!info) { 2058 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2059 return -ENOMEM; 2060 } 2061 2062 info->addr_source = SI_SPMI; 2063 printk(KERN_INFO PFX "probing via SPMI\n"); 2064 2065 /* Figure out the interface type. */ 2066 switch (spmi->InterfaceType) { 2067 case 1: /* KCS */ 2068 info->si_type = SI_KCS; 2069 break; 2070 case 2: /* SMIC */ 2071 info->si_type = SI_SMIC; 2072 break; 2073 case 3: /* BT */ 2074 info->si_type = SI_BT; 2075 break; 2076 default: 2077 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2078 spmi->InterfaceType); 2079 kfree(info); 2080 return -EIO; 2081 } 2082 2083 if (spmi->InterruptType & 1) { 2084 /* We've got a GPE interrupt. */ 2085 info->irq = spmi->GPE; 2086 info->irq_setup = acpi_gpe_irq_setup; 2087 } else if (spmi->InterruptType & 2) { 2088 /* We've got an APIC/SAPIC interrupt. */ 2089 info->irq = spmi->GlobalSystemInterrupt; 2090 info->irq_setup = std_irq_setup; 2091 } else { 2092 /* Use the default interrupt setting. */ 2093 info->irq = 0; 2094 info->irq_setup = NULL; 2095 } 2096 2097 if (spmi->addr.bit_width) { 2098 /* A (hopefully) properly formed register bit width. */ 2099 info->io.regspacing = spmi->addr.bit_width / 8; 2100 } else { 2101 info->io.regspacing = DEFAULT_REGSPACING; 2102 } 2103 info->io.regsize = info->io.regspacing; 2104 info->io.regshift = spmi->addr.bit_offset; 2105 2106 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2107 info->io_setup = mem_setup; 2108 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2109 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2110 info->io_setup = port_setup; 2111 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2112 } else { 2113 kfree(info); 2114 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2115 return -EIO; 2116 } 2117 info->io.addr_data = spmi->addr.address; 2118 2119 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2120 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2121 info->io.addr_data, info->io.regsize, info->io.regspacing, 2122 info->irq); 2123 2124 if (add_smi(info)) 2125 kfree(info); 2126 2127 return 0; 2128 } 2129 2130 static void __devinit spmi_find_bmc(void) 2131 { 2132 acpi_status status; 2133 struct SPMITable *spmi; 2134 int i; 2135 2136 if (acpi_disabled) 2137 return; 2138 2139 if (acpi_failure) 2140 return; 2141 2142 for (i = 0; ; i++) { 2143 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2144 (struct acpi_table_header **)&spmi); 2145 if (status != AE_OK) 2146 return; 2147 2148 try_init_spmi(spmi); 2149 } 2150 } 2151 2152 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev, 2153 const struct pnp_device_id *dev_id) 2154 { 2155 struct acpi_device *acpi_dev; 2156 struct smi_info *info; 2157 struct resource *res, *res_second; 2158 acpi_handle handle; 2159 acpi_status status; 2160 unsigned long long tmp; 2161 2162 acpi_dev = pnp_acpi_device(dev); 2163 if (!acpi_dev) 2164 return -ENODEV; 2165 2166 info = smi_info_alloc(); 2167 if (!info) 2168 return -ENOMEM; 2169 2170 info->addr_source = SI_ACPI; 2171 printk(KERN_INFO PFX "probing via ACPI\n"); 2172 2173 handle = acpi_dev->handle; 2174 info->addr_info.acpi_info.acpi_handle = handle; 2175 2176 /* _IFT tells us the interface type: KCS, BT, etc */ 2177 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2178 if (ACPI_FAILURE(status)) 2179 goto err_free; 2180 2181 switch (tmp) { 2182 case 1: 2183 info->si_type = SI_KCS; 2184 break; 2185 case 2: 2186 info->si_type = SI_SMIC; 2187 break; 2188 case 3: 2189 info->si_type = SI_BT; 2190 break; 2191 default: 2192 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2193 goto err_free; 2194 } 2195 2196 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2197 if (res) { 2198 info->io_setup = port_setup; 2199 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2200 } else { 2201 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2202 if (res) { 2203 info->io_setup = mem_setup; 2204 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2205 } 2206 } 2207 if (!res) { 2208 dev_err(&dev->dev, "no I/O or memory address\n"); 2209 goto err_free; 2210 } 2211 info->io.addr_data = res->start; 2212 2213 info->io.regspacing = DEFAULT_REGSPACING; 2214 res_second = pnp_get_resource(dev, 2215 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2216 IORESOURCE_IO : IORESOURCE_MEM, 2217 1); 2218 if (res_second) { 2219 if (res_second->start > info->io.addr_data) 2220 info->io.regspacing = res_second->start - info->io.addr_data; 2221 } 2222 info->io.regsize = DEFAULT_REGSPACING; 2223 info->io.regshift = 0; 2224 2225 /* If _GPE exists, use it; otherwise use standard interrupts */ 2226 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2227 if (ACPI_SUCCESS(status)) { 2228 info->irq = tmp; 2229 info->irq_setup = acpi_gpe_irq_setup; 2230 } else if (pnp_irq_valid(dev, 0)) { 2231 info->irq = pnp_irq(dev, 0); 2232 info->irq_setup = std_irq_setup; 2233 } 2234 2235 info->dev = &dev->dev; 2236 pnp_set_drvdata(dev, info); 2237 2238 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2239 res, info->io.regsize, info->io.regspacing, 2240 info->irq); 2241 2242 if (add_smi(info)) 2243 goto err_free; 2244 2245 return 0; 2246 2247 err_free: 2248 kfree(info); 2249 return -EINVAL; 2250 } 2251 2252 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev) 2253 { 2254 struct smi_info *info = pnp_get_drvdata(dev); 2255 2256 cleanup_one_si(info); 2257 } 2258 2259 static const struct pnp_device_id pnp_dev_table[] = { 2260 {"IPI0001", 0}, 2261 {"", 0}, 2262 }; 2263 2264 static struct pnp_driver ipmi_pnp_driver = { 2265 .name = DEVICE_NAME, 2266 .probe = ipmi_pnp_probe, 2267 .remove = __devexit_p(ipmi_pnp_remove), 2268 .id_table = pnp_dev_table, 2269 }; 2270 #endif 2271 2272 #ifdef CONFIG_DMI 2273 struct dmi_ipmi_data { 2274 u8 type; 2275 u8 addr_space; 2276 unsigned long base_addr; 2277 u8 irq; 2278 u8 offset; 2279 u8 slave_addr; 2280 }; 2281 2282 static int __devinit decode_dmi(const struct dmi_header *dm, 2283 struct dmi_ipmi_data *dmi) 2284 { 2285 const u8 *data = (const u8 *)dm; 2286 unsigned long base_addr; 2287 u8 reg_spacing; 2288 u8 len = dm->length; 2289 2290 dmi->type = data[4]; 2291 2292 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2293 if (len >= 0x11) { 2294 if (base_addr & 1) { 2295 /* I/O */ 2296 base_addr &= 0xFFFE; 2297 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2298 } else 2299 /* Memory */ 2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2301 2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2303 is odd. */ 2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2305 2306 dmi->irq = data[0x11]; 2307 2308 /* The top two bits of byte 0x10 hold the register spacing. */ 2309 reg_spacing = (data[0x10] & 0xC0) >> 6; 2310 switch (reg_spacing) { 2311 case 0x00: /* Byte boundaries */ 2312 dmi->offset = 1; 2313 break; 2314 case 0x01: /* 32-bit boundaries */ 2315 dmi->offset = 4; 2316 break; 2317 case 0x02: /* 16-byte boundaries */ 2318 dmi->offset = 16; 2319 break; 2320 default: 2321 /* Some other interface, just ignore it. */ 2322 return -EIO; 2323 } 2324 } else { 2325 /* Old DMI spec. */ 2326 /* 2327 * Note that technically, the lower bit of the base 2328 * address should be 1 if the address is I/O and 0 if 2329 * the address is in memory. So many systems get that 2330 * wrong (and all that I have seen are I/O) so we just 2331 * ignore that bit and assume I/O. Systems that use 2332 * memory should use the newer spec, anyway. 2333 */ 2334 dmi->base_addr = base_addr & 0xfffe; 2335 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2336 dmi->offset = 1; 2337 } 2338 2339 dmi->slave_addr = data[6]; 2340 2341 return 0; 2342 } 2343 2344 static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2345 { 2346 struct smi_info *info; 2347 2348 info = smi_info_alloc(); 2349 if (!info) { 2350 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2351 return; 2352 } 2353 2354 info->addr_source = SI_SMBIOS; 2355 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2356 2357 switch (ipmi_data->type) { 2358 case 0x01: /* KCS */ 2359 info->si_type = SI_KCS; 2360 break; 2361 case 0x02: /* SMIC */ 2362 info->si_type = SI_SMIC; 2363 break; 2364 case 0x03: /* BT */ 2365 info->si_type = SI_BT; 2366 break; 2367 default: 2368 kfree(info); 2369 return; 2370 } 2371 2372 switch (ipmi_data->addr_space) { 2373 case IPMI_MEM_ADDR_SPACE: 2374 info->io_setup = mem_setup; 2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2376 break; 2377 2378 case IPMI_IO_ADDR_SPACE: 2379 info->io_setup = port_setup; 2380 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2381 break; 2382 2383 default: 2384 kfree(info); 2385 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2386 ipmi_data->addr_space); 2387 return; 2388 } 2389 info->io.addr_data = ipmi_data->base_addr; 2390 2391 info->io.regspacing = ipmi_data->offset; 2392 if (!info->io.regspacing) 2393 info->io.regspacing = DEFAULT_REGSPACING; 2394 info->io.regsize = DEFAULT_REGSPACING; 2395 info->io.regshift = 0; 2396 2397 info->slave_addr = ipmi_data->slave_addr; 2398 2399 info->irq = ipmi_data->irq; 2400 if (info->irq) 2401 info->irq_setup = std_irq_setup; 2402 2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2405 info->io.addr_data, info->io.regsize, info->io.regspacing, 2406 info->irq); 2407 2408 if (add_smi(info)) 2409 kfree(info); 2410 } 2411 2412 static void __devinit dmi_find_bmc(void) 2413 { 2414 const struct dmi_device *dev = NULL; 2415 struct dmi_ipmi_data data; 2416 int rv; 2417 2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2419 memset(&data, 0, sizeof(data)); 2420 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2421 &data); 2422 if (!rv) 2423 try_init_dmi(&data); 2424 } 2425 } 2426 #endif /* CONFIG_DMI */ 2427 2428 #ifdef CONFIG_PCI 2429 2430 #define PCI_ERMC_CLASSCODE 0x0C0700 2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2436 2437 #define PCI_HP_VENDOR_ID 0x103C 2438 #define PCI_MMC_DEVICE_ID 0x121A 2439 #define PCI_MMC_ADDR_CW 0x10 2440 2441 static void ipmi_pci_cleanup(struct smi_info *info) 2442 { 2443 struct pci_dev *pdev = info->addr_source_data; 2444 2445 pci_disable_device(pdev); 2446 } 2447 2448 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2449 const struct pci_device_id *ent) 2450 { 2451 int rv; 2452 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2453 struct smi_info *info; 2454 2455 info = smi_info_alloc(); 2456 if (!info) 2457 return -ENOMEM; 2458 2459 info->addr_source = SI_PCI; 2460 dev_info(&pdev->dev, "probing via PCI"); 2461 2462 switch (class_type) { 2463 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2464 info->si_type = SI_SMIC; 2465 break; 2466 2467 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2468 info->si_type = SI_KCS; 2469 break; 2470 2471 case PCI_ERMC_CLASSCODE_TYPE_BT: 2472 info->si_type = SI_BT; 2473 break; 2474 2475 default: 2476 kfree(info); 2477 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2478 return -ENOMEM; 2479 } 2480 2481 rv = pci_enable_device(pdev); 2482 if (rv) { 2483 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2484 kfree(info); 2485 return rv; 2486 } 2487 2488 info->addr_source_cleanup = ipmi_pci_cleanup; 2489 info->addr_source_data = pdev; 2490 2491 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2492 info->io_setup = port_setup; 2493 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2494 } else { 2495 info->io_setup = mem_setup; 2496 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2497 } 2498 info->io.addr_data = pci_resource_start(pdev, 0); 2499 2500 info->io.regspacing = DEFAULT_REGSPACING; 2501 info->io.regsize = DEFAULT_REGSPACING; 2502 info->io.regshift = 0; 2503 2504 info->irq = pdev->irq; 2505 if (info->irq) 2506 info->irq_setup = std_irq_setup; 2507 2508 info->dev = &pdev->dev; 2509 pci_set_drvdata(pdev, info); 2510 2511 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2512 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2513 info->irq); 2514 2515 if (add_smi(info)) 2516 kfree(info); 2517 2518 return 0; 2519 } 2520 2521 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2522 { 2523 struct smi_info *info = pci_get_drvdata(pdev); 2524 cleanup_one_si(info); 2525 } 2526 2527 #ifdef CONFIG_PM 2528 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2529 { 2530 return 0; 2531 } 2532 2533 static int ipmi_pci_resume(struct pci_dev *pdev) 2534 { 2535 return 0; 2536 } 2537 #endif 2538 2539 static struct pci_device_id ipmi_pci_devices[] = { 2540 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2541 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2542 { 0, } 2543 }; 2544 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2545 2546 static struct pci_driver ipmi_pci_driver = { 2547 .name = DEVICE_NAME, 2548 .id_table = ipmi_pci_devices, 2549 .probe = ipmi_pci_probe, 2550 .remove = __devexit_p(ipmi_pci_remove), 2551 #ifdef CONFIG_PM 2552 .suspend = ipmi_pci_suspend, 2553 .resume = ipmi_pci_resume, 2554 #endif 2555 }; 2556 #endif /* CONFIG_PCI */ 2557 2558 static struct of_device_id ipmi_match[]; 2559 static int __devinit ipmi_probe(struct platform_device *dev) 2560 { 2561 #ifdef CONFIG_OF 2562 const struct of_device_id *match; 2563 struct smi_info *info; 2564 struct resource resource; 2565 const __be32 *regsize, *regspacing, *regshift; 2566 struct device_node *np = dev->dev.of_node; 2567 int ret; 2568 int proplen; 2569 2570 dev_info(&dev->dev, "probing via device tree\n"); 2571 2572 match = of_match_device(ipmi_match, &dev->dev); 2573 if (!match) 2574 return -EINVAL; 2575 2576 ret = of_address_to_resource(np, 0, &resource); 2577 if (ret) { 2578 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2579 return ret; 2580 } 2581 2582 regsize = of_get_property(np, "reg-size", &proplen); 2583 if (regsize && proplen != 4) { 2584 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2585 return -EINVAL; 2586 } 2587 2588 regspacing = of_get_property(np, "reg-spacing", &proplen); 2589 if (regspacing && proplen != 4) { 2590 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2591 return -EINVAL; 2592 } 2593 2594 regshift = of_get_property(np, "reg-shift", &proplen); 2595 if (regshift && proplen != 4) { 2596 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2597 return -EINVAL; 2598 } 2599 2600 info = smi_info_alloc(); 2601 2602 if (!info) { 2603 dev_err(&dev->dev, 2604 "could not allocate memory for OF probe\n"); 2605 return -ENOMEM; 2606 } 2607 2608 info->si_type = (enum si_type) match->data; 2609 info->addr_source = SI_DEVICETREE; 2610 info->irq_setup = std_irq_setup; 2611 2612 if (resource.flags & IORESOURCE_IO) { 2613 info->io_setup = port_setup; 2614 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2615 } else { 2616 info->io_setup = mem_setup; 2617 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2618 } 2619 2620 info->io.addr_data = resource.start; 2621 2622 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2623 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2624 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2625 2626 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2627 info->dev = &dev->dev; 2628 2629 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2630 info->io.addr_data, info->io.regsize, info->io.regspacing, 2631 info->irq); 2632 2633 dev_set_drvdata(&dev->dev, info); 2634 2635 if (add_smi(info)) { 2636 kfree(info); 2637 return -EBUSY; 2638 } 2639 #endif 2640 return 0; 2641 } 2642 2643 static int __devexit ipmi_remove(struct platform_device *dev) 2644 { 2645 #ifdef CONFIG_OF 2646 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2647 #endif 2648 return 0; 2649 } 2650 2651 static struct of_device_id ipmi_match[] = 2652 { 2653 { .type = "ipmi", .compatible = "ipmi-kcs", 2654 .data = (void *)(unsigned long) SI_KCS }, 2655 { .type = "ipmi", .compatible = "ipmi-smic", 2656 .data = (void *)(unsigned long) SI_SMIC }, 2657 { .type = "ipmi", .compatible = "ipmi-bt", 2658 .data = (void *)(unsigned long) SI_BT }, 2659 {}, 2660 }; 2661 2662 static struct platform_driver ipmi_driver = { 2663 .driver = { 2664 .name = DEVICE_NAME, 2665 .owner = THIS_MODULE, 2666 .of_match_table = ipmi_match, 2667 }, 2668 .probe = ipmi_probe, 2669 .remove = __devexit_p(ipmi_remove), 2670 }; 2671 2672 static int wait_for_msg_done(struct smi_info *smi_info) 2673 { 2674 enum si_sm_result smi_result; 2675 2676 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2677 for (;;) { 2678 if (smi_result == SI_SM_CALL_WITH_DELAY || 2679 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2680 schedule_timeout_uninterruptible(1); 2681 smi_result = smi_info->handlers->event( 2682 smi_info->si_sm, 100); 2683 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2684 smi_result = smi_info->handlers->event( 2685 smi_info->si_sm, 0); 2686 } else 2687 break; 2688 } 2689 if (smi_result == SI_SM_HOSED) 2690 /* 2691 * We couldn't get the state machine to run, so whatever's at 2692 * the port is probably not an IPMI SMI interface. 2693 */ 2694 return -ENODEV; 2695 2696 return 0; 2697 } 2698 2699 static int try_get_dev_id(struct smi_info *smi_info) 2700 { 2701 unsigned char msg[2]; 2702 unsigned char *resp; 2703 unsigned long resp_len; 2704 int rv = 0; 2705 2706 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2707 if (!resp) 2708 return -ENOMEM; 2709 2710 /* 2711 * Do a Get Device ID command, since it comes back with some 2712 * useful info. 2713 */ 2714 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2715 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2716 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2717 2718 rv = wait_for_msg_done(smi_info); 2719 if (rv) 2720 goto out; 2721 2722 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2723 resp, IPMI_MAX_MSG_LENGTH); 2724 2725 /* Check and record info from the get device id, in case we need it. */ 2726 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2727 2728 out: 2729 kfree(resp); 2730 return rv; 2731 } 2732 2733 static int try_enable_event_buffer(struct smi_info *smi_info) 2734 { 2735 unsigned char msg[3]; 2736 unsigned char *resp; 2737 unsigned long resp_len; 2738 int rv = 0; 2739 2740 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2741 if (!resp) 2742 return -ENOMEM; 2743 2744 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2745 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2746 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2747 2748 rv = wait_for_msg_done(smi_info); 2749 if (rv) { 2750 printk(KERN_WARNING PFX "Error getting response from get" 2751 " global enables command, the event buffer is not" 2752 " enabled.\n"); 2753 goto out; 2754 } 2755 2756 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2757 resp, IPMI_MAX_MSG_LENGTH); 2758 2759 if (resp_len < 4 || 2760 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2761 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2762 resp[2] != 0) { 2763 printk(KERN_WARNING PFX "Invalid return from get global" 2764 " enables command, cannot enable the event buffer.\n"); 2765 rv = -EINVAL; 2766 goto out; 2767 } 2768 2769 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2770 /* buffer is already enabled, nothing to do. */ 2771 goto out; 2772 2773 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2774 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2775 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2776 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2777 2778 rv = wait_for_msg_done(smi_info); 2779 if (rv) { 2780 printk(KERN_WARNING PFX "Error getting response from set" 2781 " global, enables command, the event buffer is not" 2782 " enabled.\n"); 2783 goto out; 2784 } 2785 2786 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2787 resp, IPMI_MAX_MSG_LENGTH); 2788 2789 if (resp_len < 3 || 2790 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2791 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2792 printk(KERN_WARNING PFX "Invalid return from get global," 2793 "enables command, not enable the event buffer.\n"); 2794 rv = -EINVAL; 2795 goto out; 2796 } 2797 2798 if (resp[2] != 0) 2799 /* 2800 * An error when setting the event buffer bit means 2801 * that the event buffer is not supported. 2802 */ 2803 rv = -ENOENT; 2804 out: 2805 kfree(resp); 2806 return rv; 2807 } 2808 2809 static int smi_type_proc_show(struct seq_file *m, void *v) 2810 { 2811 struct smi_info *smi = m->private; 2812 2813 return seq_printf(m, "%s\n", si_to_str[smi->si_type]); 2814 } 2815 2816 static int smi_type_proc_open(struct inode *inode, struct file *file) 2817 { 2818 return single_open(file, smi_type_proc_show, PDE(inode)->data); 2819 } 2820 2821 static const struct file_operations smi_type_proc_ops = { 2822 .open = smi_type_proc_open, 2823 .read = seq_read, 2824 .llseek = seq_lseek, 2825 .release = single_release, 2826 }; 2827 2828 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 2829 { 2830 struct smi_info *smi = m->private; 2831 2832 seq_printf(m, "interrupts_enabled: %d\n", 2833 smi->irq && !smi->interrupt_disabled); 2834 seq_printf(m, "short_timeouts: %u\n", 2835 smi_get_stat(smi, short_timeouts)); 2836 seq_printf(m, "long_timeouts: %u\n", 2837 smi_get_stat(smi, long_timeouts)); 2838 seq_printf(m, "idles: %u\n", 2839 smi_get_stat(smi, idles)); 2840 seq_printf(m, "interrupts: %u\n", 2841 smi_get_stat(smi, interrupts)); 2842 seq_printf(m, "attentions: %u\n", 2843 smi_get_stat(smi, attentions)); 2844 seq_printf(m, "flag_fetches: %u\n", 2845 smi_get_stat(smi, flag_fetches)); 2846 seq_printf(m, "hosed_count: %u\n", 2847 smi_get_stat(smi, hosed_count)); 2848 seq_printf(m, "complete_transactions: %u\n", 2849 smi_get_stat(smi, complete_transactions)); 2850 seq_printf(m, "events: %u\n", 2851 smi_get_stat(smi, events)); 2852 seq_printf(m, "watchdog_pretimeouts: %u\n", 2853 smi_get_stat(smi, watchdog_pretimeouts)); 2854 seq_printf(m, "incoming_messages: %u\n", 2855 smi_get_stat(smi, incoming_messages)); 2856 return 0; 2857 } 2858 2859 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 2860 { 2861 return single_open(file, smi_si_stats_proc_show, PDE(inode)->data); 2862 } 2863 2864 static const struct file_operations smi_si_stats_proc_ops = { 2865 .open = smi_si_stats_proc_open, 2866 .read = seq_read, 2867 .llseek = seq_lseek, 2868 .release = single_release, 2869 }; 2870 2871 static int smi_params_proc_show(struct seq_file *m, void *v) 2872 { 2873 struct smi_info *smi = m->private; 2874 2875 return seq_printf(m, 2876 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2877 si_to_str[smi->si_type], 2878 addr_space_to_str[smi->io.addr_type], 2879 smi->io.addr_data, 2880 smi->io.regspacing, 2881 smi->io.regsize, 2882 smi->io.regshift, 2883 smi->irq, 2884 smi->slave_addr); 2885 } 2886 2887 static int smi_params_proc_open(struct inode *inode, struct file *file) 2888 { 2889 return single_open(file, smi_params_proc_show, PDE(inode)->data); 2890 } 2891 2892 static const struct file_operations smi_params_proc_ops = { 2893 .open = smi_params_proc_open, 2894 .read = seq_read, 2895 .llseek = seq_lseek, 2896 .release = single_release, 2897 }; 2898 2899 /* 2900 * oem_data_avail_to_receive_msg_avail 2901 * @info - smi_info structure with msg_flags set 2902 * 2903 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2904 * Returns 1 indicating need to re-run handle_flags(). 2905 */ 2906 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2907 { 2908 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2909 RECEIVE_MSG_AVAIL); 2910 return 1; 2911 } 2912 2913 /* 2914 * setup_dell_poweredge_oem_data_handler 2915 * @info - smi_info.device_id must be populated 2916 * 2917 * Systems that match, but have firmware version < 1.40 may assert 2918 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2919 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2920 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2921 * as RECEIVE_MSG_AVAIL instead. 2922 * 2923 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2924 * assert the OEM[012] bits, and if it did, the driver would have to 2925 * change to handle that properly, we don't actually check for the 2926 * firmware version. 2927 * Device ID = 0x20 BMC on PowerEdge 8G servers 2928 * Device Revision = 0x80 2929 * Firmware Revision1 = 0x01 BMC version 1.40 2930 * Firmware Revision2 = 0x40 BCD encoded 2931 * IPMI Version = 0x51 IPMI 1.5 2932 * Manufacturer ID = A2 02 00 Dell IANA 2933 * 2934 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2935 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2936 * 2937 */ 2938 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2939 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2940 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2941 #define DELL_IANA_MFR_ID 0x0002a2 2942 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2943 { 2944 struct ipmi_device_id *id = &smi_info->device_id; 2945 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2946 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2947 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2948 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2949 smi_info->oem_data_avail_handler = 2950 oem_data_avail_to_receive_msg_avail; 2951 } else if (ipmi_version_major(id) < 1 || 2952 (ipmi_version_major(id) == 1 && 2953 ipmi_version_minor(id) < 5)) { 2954 smi_info->oem_data_avail_handler = 2955 oem_data_avail_to_receive_msg_avail; 2956 } 2957 } 2958 } 2959 2960 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2961 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2962 { 2963 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2964 2965 /* Make it a response */ 2966 msg->rsp[0] = msg->data[0] | 4; 2967 msg->rsp[1] = msg->data[1]; 2968 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2969 msg->rsp_size = 3; 2970 smi_info->curr_msg = NULL; 2971 deliver_recv_msg(smi_info, msg); 2972 } 2973 2974 /* 2975 * dell_poweredge_bt_xaction_handler 2976 * @info - smi_info.device_id must be populated 2977 * 2978 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2979 * not respond to a Get SDR command if the length of the data 2980 * requested is exactly 0x3A, which leads to command timeouts and no 2981 * data returned. This intercepts such commands, and causes userspace 2982 * callers to try again with a different-sized buffer, which succeeds. 2983 */ 2984 2985 #define STORAGE_NETFN 0x0A 2986 #define STORAGE_CMD_GET_SDR 0x23 2987 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2988 unsigned long unused, 2989 void *in) 2990 { 2991 struct smi_info *smi_info = in; 2992 unsigned char *data = smi_info->curr_msg->data; 2993 unsigned int size = smi_info->curr_msg->data_size; 2994 if (size >= 8 && 2995 (data[0]>>2) == STORAGE_NETFN && 2996 data[1] == STORAGE_CMD_GET_SDR && 2997 data[7] == 0x3A) { 2998 return_hosed_msg_badsize(smi_info); 2999 return NOTIFY_STOP; 3000 } 3001 return NOTIFY_DONE; 3002 } 3003 3004 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3005 .notifier_call = dell_poweredge_bt_xaction_handler, 3006 }; 3007 3008 /* 3009 * setup_dell_poweredge_bt_xaction_handler 3010 * @info - smi_info.device_id must be filled in already 3011 * 3012 * Fills in smi_info.device_id.start_transaction_pre_hook 3013 * when we know what function to use there. 3014 */ 3015 static void 3016 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3017 { 3018 struct ipmi_device_id *id = &smi_info->device_id; 3019 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3020 smi_info->si_type == SI_BT) 3021 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3022 } 3023 3024 /* 3025 * setup_oem_data_handler 3026 * @info - smi_info.device_id must be filled in already 3027 * 3028 * Fills in smi_info.device_id.oem_data_available_handler 3029 * when we know what function to use there. 3030 */ 3031 3032 static void setup_oem_data_handler(struct smi_info *smi_info) 3033 { 3034 setup_dell_poweredge_oem_data_handler(smi_info); 3035 } 3036 3037 static void setup_xaction_handlers(struct smi_info *smi_info) 3038 { 3039 setup_dell_poweredge_bt_xaction_handler(smi_info); 3040 } 3041 3042 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3043 { 3044 if (smi_info->intf) { 3045 /* 3046 * The timer and thread are only running if the 3047 * interface has been started up and registered. 3048 */ 3049 if (smi_info->thread != NULL) 3050 kthread_stop(smi_info->thread); 3051 del_timer_sync(&smi_info->si_timer); 3052 } 3053 } 3054 3055 static __devinitdata struct ipmi_default_vals 3056 { 3057 int type; 3058 int port; 3059 } ipmi_defaults[] = 3060 { 3061 { .type = SI_KCS, .port = 0xca2 }, 3062 { .type = SI_SMIC, .port = 0xca9 }, 3063 { .type = SI_BT, .port = 0xe4 }, 3064 { .port = 0 } 3065 }; 3066 3067 static void __devinit default_find_bmc(void) 3068 { 3069 struct smi_info *info; 3070 int i; 3071 3072 for (i = 0; ; i++) { 3073 if (!ipmi_defaults[i].port) 3074 break; 3075 #ifdef CONFIG_PPC 3076 if (check_legacy_ioport(ipmi_defaults[i].port)) 3077 continue; 3078 #endif 3079 info = smi_info_alloc(); 3080 if (!info) 3081 return; 3082 3083 info->addr_source = SI_DEFAULT; 3084 3085 info->si_type = ipmi_defaults[i].type; 3086 info->io_setup = port_setup; 3087 info->io.addr_data = ipmi_defaults[i].port; 3088 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3089 3090 info->io.addr = NULL; 3091 info->io.regspacing = DEFAULT_REGSPACING; 3092 info->io.regsize = DEFAULT_REGSPACING; 3093 info->io.regshift = 0; 3094 3095 if (add_smi(info) == 0) { 3096 if ((try_smi_init(info)) == 0) { 3097 /* Found one... */ 3098 printk(KERN_INFO PFX "Found default %s" 3099 " state machine at %s address 0x%lx\n", 3100 si_to_str[info->si_type], 3101 addr_space_to_str[info->io.addr_type], 3102 info->io.addr_data); 3103 } else 3104 cleanup_one_si(info); 3105 } else { 3106 kfree(info); 3107 } 3108 } 3109 } 3110 3111 static int is_new_interface(struct smi_info *info) 3112 { 3113 struct smi_info *e; 3114 3115 list_for_each_entry(e, &smi_infos, link) { 3116 if (e->io.addr_type != info->io.addr_type) 3117 continue; 3118 if (e->io.addr_data == info->io.addr_data) 3119 return 0; 3120 } 3121 3122 return 1; 3123 } 3124 3125 static int add_smi(struct smi_info *new_smi) 3126 { 3127 int rv = 0; 3128 3129 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3130 ipmi_addr_src_to_str[new_smi->addr_source], 3131 si_to_str[new_smi->si_type]); 3132 mutex_lock(&smi_infos_lock); 3133 if (!is_new_interface(new_smi)) { 3134 printk(KERN_CONT " duplicate interface\n"); 3135 rv = -EBUSY; 3136 goto out_err; 3137 } 3138 3139 printk(KERN_CONT "\n"); 3140 3141 /* So we know not to free it unless we have allocated one. */ 3142 new_smi->intf = NULL; 3143 new_smi->si_sm = NULL; 3144 new_smi->handlers = NULL; 3145 3146 list_add_tail(&new_smi->link, &smi_infos); 3147 3148 out_err: 3149 mutex_unlock(&smi_infos_lock); 3150 return rv; 3151 } 3152 3153 static int try_smi_init(struct smi_info *new_smi) 3154 { 3155 int rv = 0; 3156 int i; 3157 3158 printk(KERN_INFO PFX "Trying %s-specified %s state" 3159 " machine at %s address 0x%lx, slave address 0x%x," 3160 " irq %d\n", 3161 ipmi_addr_src_to_str[new_smi->addr_source], 3162 si_to_str[new_smi->si_type], 3163 addr_space_to_str[new_smi->io.addr_type], 3164 new_smi->io.addr_data, 3165 new_smi->slave_addr, new_smi->irq); 3166 3167 switch (new_smi->si_type) { 3168 case SI_KCS: 3169 new_smi->handlers = &kcs_smi_handlers; 3170 break; 3171 3172 case SI_SMIC: 3173 new_smi->handlers = &smic_smi_handlers; 3174 break; 3175 3176 case SI_BT: 3177 new_smi->handlers = &bt_smi_handlers; 3178 break; 3179 3180 default: 3181 /* No support for anything else yet. */ 3182 rv = -EIO; 3183 goto out_err; 3184 } 3185 3186 /* Allocate the state machine's data and initialize it. */ 3187 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3188 if (!new_smi->si_sm) { 3189 printk(KERN_ERR PFX 3190 "Could not allocate state machine memory\n"); 3191 rv = -ENOMEM; 3192 goto out_err; 3193 } 3194 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3195 &new_smi->io); 3196 3197 /* Now that we know the I/O size, we can set up the I/O. */ 3198 rv = new_smi->io_setup(new_smi); 3199 if (rv) { 3200 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3201 goto out_err; 3202 } 3203 3204 /* Do low-level detection first. */ 3205 if (new_smi->handlers->detect(new_smi->si_sm)) { 3206 if (new_smi->addr_source) 3207 printk(KERN_INFO PFX "Interface detection failed\n"); 3208 rv = -ENODEV; 3209 goto out_err; 3210 } 3211 3212 /* 3213 * Attempt a get device id command. If it fails, we probably 3214 * don't have a BMC here. 3215 */ 3216 rv = try_get_dev_id(new_smi); 3217 if (rv) { 3218 if (new_smi->addr_source) 3219 printk(KERN_INFO PFX "There appears to be no BMC" 3220 " at this location\n"); 3221 goto out_err; 3222 } 3223 3224 setup_oem_data_handler(new_smi); 3225 setup_xaction_handlers(new_smi); 3226 3227 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 3228 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 3229 new_smi->curr_msg = NULL; 3230 atomic_set(&new_smi->req_events, 0); 3231 new_smi->run_to_completion = 0; 3232 for (i = 0; i < SI_NUM_STATS; i++) 3233 atomic_set(&new_smi->stats[i], 0); 3234 3235 new_smi->interrupt_disabled = 1; 3236 atomic_set(&new_smi->stop_operation, 0); 3237 new_smi->intf_num = smi_num; 3238 smi_num++; 3239 3240 rv = try_enable_event_buffer(new_smi); 3241 if (rv == 0) 3242 new_smi->has_event_buffer = 1; 3243 3244 /* 3245 * Start clearing the flags before we enable interrupts or the 3246 * timer to avoid racing with the timer. 3247 */ 3248 start_clear_flags(new_smi); 3249 /* IRQ is defined to be set when non-zero. */ 3250 if (new_smi->irq) 3251 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 3252 3253 if (!new_smi->dev) { 3254 /* 3255 * If we don't already have a device from something 3256 * else (like PCI), then register a new one. 3257 */ 3258 new_smi->pdev = platform_device_alloc("ipmi_si", 3259 new_smi->intf_num); 3260 if (!new_smi->pdev) { 3261 printk(KERN_ERR PFX 3262 "Unable to allocate platform device\n"); 3263 goto out_err; 3264 } 3265 new_smi->dev = &new_smi->pdev->dev; 3266 new_smi->dev->driver = &ipmi_driver.driver; 3267 3268 rv = platform_device_add(new_smi->pdev); 3269 if (rv) { 3270 printk(KERN_ERR PFX 3271 "Unable to register system interface device:" 3272 " %d\n", 3273 rv); 3274 goto out_err; 3275 } 3276 new_smi->dev_registered = 1; 3277 } 3278 3279 rv = ipmi_register_smi(&handlers, 3280 new_smi, 3281 &new_smi->device_id, 3282 new_smi->dev, 3283 "bmc", 3284 new_smi->slave_addr); 3285 if (rv) { 3286 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3287 rv); 3288 goto out_err_stop_timer; 3289 } 3290 3291 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3292 &smi_type_proc_ops, 3293 new_smi); 3294 if (rv) { 3295 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3296 goto out_err_stop_timer; 3297 } 3298 3299 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3300 &smi_si_stats_proc_ops, 3301 new_smi); 3302 if (rv) { 3303 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3304 goto out_err_stop_timer; 3305 } 3306 3307 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3308 &smi_params_proc_ops, 3309 new_smi); 3310 if (rv) { 3311 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3312 goto out_err_stop_timer; 3313 } 3314 3315 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3316 si_to_str[new_smi->si_type]); 3317 3318 return 0; 3319 3320 out_err_stop_timer: 3321 atomic_inc(&new_smi->stop_operation); 3322 wait_for_timer_and_thread(new_smi); 3323 3324 out_err: 3325 new_smi->interrupt_disabled = 1; 3326 3327 if (new_smi->intf) { 3328 ipmi_unregister_smi(new_smi->intf); 3329 new_smi->intf = NULL; 3330 } 3331 3332 if (new_smi->irq_cleanup) { 3333 new_smi->irq_cleanup(new_smi); 3334 new_smi->irq_cleanup = NULL; 3335 } 3336 3337 /* 3338 * Wait until we know that we are out of any interrupt 3339 * handlers might have been running before we freed the 3340 * interrupt. 3341 */ 3342 synchronize_sched(); 3343 3344 if (new_smi->si_sm) { 3345 if (new_smi->handlers) 3346 new_smi->handlers->cleanup(new_smi->si_sm); 3347 kfree(new_smi->si_sm); 3348 new_smi->si_sm = NULL; 3349 } 3350 if (new_smi->addr_source_cleanup) { 3351 new_smi->addr_source_cleanup(new_smi); 3352 new_smi->addr_source_cleanup = NULL; 3353 } 3354 if (new_smi->io_cleanup) { 3355 new_smi->io_cleanup(new_smi); 3356 new_smi->io_cleanup = NULL; 3357 } 3358 3359 if (new_smi->dev_registered) { 3360 platform_device_unregister(new_smi->pdev); 3361 new_smi->dev_registered = 0; 3362 } 3363 3364 return rv; 3365 } 3366 3367 static int __devinit init_ipmi_si(void) 3368 { 3369 int i; 3370 char *str; 3371 int rv; 3372 struct smi_info *e; 3373 enum ipmi_addr_src type = SI_INVALID; 3374 3375 if (initialized) 3376 return 0; 3377 initialized = 1; 3378 3379 rv = platform_driver_register(&ipmi_driver); 3380 if (rv) { 3381 printk(KERN_ERR PFX "Unable to register driver: %d\n", rv); 3382 return rv; 3383 } 3384 3385 3386 /* Parse out the si_type string into its components. */ 3387 str = si_type_str; 3388 if (*str != '\0') { 3389 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3390 si_type[i] = str; 3391 str = strchr(str, ','); 3392 if (str) { 3393 *str = '\0'; 3394 str++; 3395 } else { 3396 break; 3397 } 3398 } 3399 } 3400 3401 printk(KERN_INFO "IPMI System Interface driver.\n"); 3402 3403 /* If the user gave us a device, they presumably want us to use it */ 3404 if (!hardcode_find_bmc()) 3405 return 0; 3406 3407 #ifdef CONFIG_PCI 3408 rv = pci_register_driver(&ipmi_pci_driver); 3409 if (rv) 3410 printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv); 3411 else 3412 pci_registered = 1; 3413 #endif 3414 3415 #ifdef CONFIG_ACPI 3416 pnp_register_driver(&ipmi_pnp_driver); 3417 pnp_registered = 1; 3418 #endif 3419 3420 #ifdef CONFIG_DMI 3421 dmi_find_bmc(); 3422 #endif 3423 3424 #ifdef CONFIG_ACPI 3425 spmi_find_bmc(); 3426 #endif 3427 3428 /* We prefer devices with interrupts, but in the case of a machine 3429 with multiple BMCs we assume that there will be several instances 3430 of a given type so if we succeed in registering a type then also 3431 try to register everything else of the same type */ 3432 3433 mutex_lock(&smi_infos_lock); 3434 list_for_each_entry(e, &smi_infos, link) { 3435 /* Try to register a device if it has an IRQ and we either 3436 haven't successfully registered a device yet or this 3437 device has the same type as one we successfully registered */ 3438 if (e->irq && (!type || e->addr_source == type)) { 3439 if (!try_smi_init(e)) { 3440 type = e->addr_source; 3441 } 3442 } 3443 } 3444 3445 /* type will only have been set if we successfully registered an si */ 3446 if (type) { 3447 mutex_unlock(&smi_infos_lock); 3448 return 0; 3449 } 3450 3451 /* Fall back to the preferred device */ 3452 3453 list_for_each_entry(e, &smi_infos, link) { 3454 if (!e->irq && (!type || e->addr_source == type)) { 3455 if (!try_smi_init(e)) { 3456 type = e->addr_source; 3457 } 3458 } 3459 } 3460 mutex_unlock(&smi_infos_lock); 3461 3462 if (type) 3463 return 0; 3464 3465 if (si_trydefaults) { 3466 mutex_lock(&smi_infos_lock); 3467 if (list_empty(&smi_infos)) { 3468 /* No BMC was found, try defaults. */ 3469 mutex_unlock(&smi_infos_lock); 3470 default_find_bmc(); 3471 } else 3472 mutex_unlock(&smi_infos_lock); 3473 } 3474 3475 mutex_lock(&smi_infos_lock); 3476 if (unload_when_empty && list_empty(&smi_infos)) { 3477 mutex_unlock(&smi_infos_lock); 3478 cleanup_ipmi_si(); 3479 printk(KERN_WARNING PFX 3480 "Unable to find any System Interface(s)\n"); 3481 return -ENODEV; 3482 } else { 3483 mutex_unlock(&smi_infos_lock); 3484 return 0; 3485 } 3486 } 3487 module_init(init_ipmi_si); 3488 3489 static void cleanup_one_si(struct smi_info *to_clean) 3490 { 3491 int rv = 0; 3492 unsigned long flags; 3493 3494 if (!to_clean) 3495 return; 3496 3497 list_del(&to_clean->link); 3498 3499 /* Tell the driver that we are shutting down. */ 3500 atomic_inc(&to_clean->stop_operation); 3501 3502 /* 3503 * Make sure the timer and thread are stopped and will not run 3504 * again. 3505 */ 3506 wait_for_timer_and_thread(to_clean); 3507 3508 /* 3509 * Timeouts are stopped, now make sure the interrupts are off 3510 * for the device. A little tricky with locks to make sure 3511 * there are no races. 3512 */ 3513 spin_lock_irqsave(&to_clean->si_lock, flags); 3514 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3515 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3516 poll(to_clean); 3517 schedule_timeout_uninterruptible(1); 3518 spin_lock_irqsave(&to_clean->si_lock, flags); 3519 } 3520 disable_si_irq(to_clean); 3521 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3522 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3523 poll(to_clean); 3524 schedule_timeout_uninterruptible(1); 3525 } 3526 3527 /* Clean up interrupts and make sure that everything is done. */ 3528 if (to_clean->irq_cleanup) 3529 to_clean->irq_cleanup(to_clean); 3530 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3531 poll(to_clean); 3532 schedule_timeout_uninterruptible(1); 3533 } 3534 3535 if (to_clean->intf) 3536 rv = ipmi_unregister_smi(to_clean->intf); 3537 3538 if (rv) { 3539 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n", 3540 rv); 3541 } 3542 3543 if (to_clean->handlers) 3544 to_clean->handlers->cleanup(to_clean->si_sm); 3545 3546 kfree(to_clean->si_sm); 3547 3548 if (to_clean->addr_source_cleanup) 3549 to_clean->addr_source_cleanup(to_clean); 3550 if (to_clean->io_cleanup) 3551 to_clean->io_cleanup(to_clean); 3552 3553 if (to_clean->dev_registered) 3554 platform_device_unregister(to_clean->pdev); 3555 3556 kfree(to_clean); 3557 } 3558 3559 static void cleanup_ipmi_si(void) 3560 { 3561 struct smi_info *e, *tmp_e; 3562 3563 if (!initialized) 3564 return; 3565 3566 #ifdef CONFIG_PCI 3567 if (pci_registered) 3568 pci_unregister_driver(&ipmi_pci_driver); 3569 #endif 3570 #ifdef CONFIG_ACPI 3571 if (pnp_registered) 3572 pnp_unregister_driver(&ipmi_pnp_driver); 3573 #endif 3574 3575 platform_driver_unregister(&ipmi_driver); 3576 3577 mutex_lock(&smi_infos_lock); 3578 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3579 cleanup_one_si(e); 3580 mutex_unlock(&smi_infos_lock); 3581 } 3582 module_exit(cleanup_ipmi_si); 3583 3584 MODULE_LICENSE("GPL"); 3585 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3586 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3587 " system interfaces."); 3588