xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 95b384f9)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107 	SI_KCS, SI_SMIC, SI_BT
108 };
109 
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111 
112 #define DEVICE_NAME "ipmi_si"
113 
114 static struct platform_driver ipmi_driver;
115 
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120 	/*
121 	 * Number of times the driver requested a timer while an operation
122 	 * was in progress.
123 	 */
124 	SI_STAT_short_timeouts = 0,
125 
126 	/*
127 	 * Number of times the driver requested a timer while nothing was in
128 	 * progress.
129 	 */
130 	SI_STAT_long_timeouts,
131 
132 	/* Number of times the interface was idle while being polled. */
133 	SI_STAT_idles,
134 
135 	/* Number of interrupts the driver handled. */
136 	SI_STAT_interrupts,
137 
138 	/* Number of time the driver got an ATTN from the hardware. */
139 	SI_STAT_attentions,
140 
141 	/* Number of times the driver requested flags from the hardware. */
142 	SI_STAT_flag_fetches,
143 
144 	/* Number of times the hardware didn't follow the state machine. */
145 	SI_STAT_hosed_count,
146 
147 	/* Number of completed messages. */
148 	SI_STAT_complete_transactions,
149 
150 	/* Number of IPMI events received from the hardware. */
151 	SI_STAT_events,
152 
153 	/* Number of watchdog pretimeouts. */
154 	SI_STAT_watchdog_pretimeouts,
155 
156 	/* Number of asynchronous messages received. */
157 	SI_STAT_incoming_messages,
158 
159 
160 	/* This *must* remain last, add new values above this. */
161 	SI_NUM_STATS
162 };
163 
164 struct smi_info {
165 	int                    intf_num;
166 	ipmi_smi_t             intf;
167 	struct si_sm_data      *si_sm;
168 	const struct si_sm_handlers *handlers;
169 	enum si_type           si_type;
170 	spinlock_t             si_lock;
171 	struct ipmi_smi_msg    *waiting_msg;
172 	struct ipmi_smi_msg    *curr_msg;
173 	enum si_intf_state     si_state;
174 
175 	/*
176 	 * Used to handle the various types of I/O that can occur with
177 	 * IPMI
178 	 */
179 	struct si_sm_io io;
180 	int (*io_setup)(struct smi_info *info);
181 	void (*io_cleanup)(struct smi_info *info);
182 	int (*irq_setup)(struct smi_info *info);
183 	void (*irq_cleanup)(struct smi_info *info);
184 	unsigned int io_size;
185 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 	void (*addr_source_cleanup)(struct smi_info *info);
187 	void *addr_source_data;
188 
189 	/*
190 	 * Per-OEM handler, called from handle_flags().  Returns 1
191 	 * when handle_flags() needs to be re-run or 0 indicating it
192 	 * set si_state itself.
193 	 */
194 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
195 
196 	/*
197 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 	 * is set to hold the flags until we are done handling everything
199 	 * from the flags.
200 	 */
201 #define RECEIVE_MSG_AVAIL	0x01
202 #define EVENT_MSG_BUFFER_FULL	0x02
203 #define WDT_PRE_TIMEOUT_INT	0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208 			     OEM1_DATA_AVAIL | \
209 			     OEM2_DATA_AVAIL)
210 	unsigned char       msg_flags;
211 
212 	/* Does the BMC have an event buffer? */
213 	bool		    has_event_buffer;
214 
215 	/*
216 	 * If set to true, this will request events the next time the
217 	 * state machine is idle.
218 	 */
219 	atomic_t            req_events;
220 
221 	/*
222 	 * If true, run the state machine to completion on every send
223 	 * call.  Generally used after a panic to make sure stuff goes
224 	 * out.
225 	 */
226 	bool                run_to_completion;
227 
228 	/* The I/O port of an SI interface. */
229 	int                 port;
230 
231 	/*
232 	 * The space between start addresses of the two ports.  For
233 	 * instance, if the first port is 0xca2 and the spacing is 4, then
234 	 * the second port is 0xca6.
235 	 */
236 	unsigned int        spacing;
237 
238 	/* zero if no irq; */
239 	int                 irq;
240 
241 	/* The timer for this si. */
242 	struct timer_list   si_timer;
243 
244 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 	bool		    timer_running;
246 
247 	/* The time (in jiffies) the last timeout occurred at. */
248 	unsigned long       last_timeout_jiffies;
249 
250 	/* Are we waiting for the events, pretimeouts, received msgs? */
251 	atomic_t            need_watch;
252 
253 	/*
254 	 * The driver will disable interrupts when it gets into a
255 	 * situation where it cannot handle messages due to lack of
256 	 * memory.  Once that situation clears up, it will re-enable
257 	 * interrupts.
258 	 */
259 	bool interrupt_disabled;
260 
261 	/*
262 	 * Does the BMC support events?
263 	 */
264 	bool supports_event_msg_buff;
265 
266 	/*
267 	 * Can we disable interrupts the global enables receive irq
268 	 * bit?  There are currently two forms of brokenness, some
269 	 * systems cannot disable the bit (which is technically within
270 	 * the spec but a bad idea) and some systems have the bit
271 	 * forced to zero even though interrupts work (which is
272 	 * clearly outside the spec).  The next bool tells which form
273 	 * of brokenness is present.
274 	 */
275 	bool cannot_disable_irq;
276 
277 	/*
278 	 * Some systems are broken and cannot set the irq enable
279 	 * bit, even if they support interrupts.
280 	 */
281 	bool irq_enable_broken;
282 
283 	/*
284 	 * Did we get an attention that we did not handle?
285 	 */
286 	bool got_attn;
287 
288 	/* From the get device id response... */
289 	struct ipmi_device_id device_id;
290 
291 	/* Driver model stuff. */
292 	struct device *dev;
293 	struct platform_device *pdev;
294 
295 	/*
296 	 * True if we allocated the device, false if it came from
297 	 * someplace else (like PCI).
298 	 */
299 	bool dev_registered;
300 
301 	/* Slave address, could be reported from DMI. */
302 	unsigned char slave_addr;
303 
304 	/* Counters and things for the proc filesystem. */
305 	atomic_t stats[SI_NUM_STATS];
306 
307 	struct task_struct *thread;
308 
309 	struct list_head link;
310 	union ipmi_smi_info_union addr_info;
311 };
312 
313 #define smi_inc_stat(smi, stat) \
314 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317 
318 #define SI_MAX_PARMS 4
319 
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328 
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331 
332 static bool unload_when_empty = true;
333 
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338 
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342 	struct timespec64 t;
343 
344 	getnstimeofday64(&t);
345 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350 
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356 
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 			     struct ipmi_smi_msg *msg)
359 {
360 	/* Deliver the message to the upper layer. */
361 	if (smi_info->intf)
362 		ipmi_smi_msg_received(smi_info->intf, msg);
363 	else
364 		ipmi_free_smi_msg(msg);
365 }
366 
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
370 
371 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 		cCode = IPMI_ERR_UNSPECIFIED;
373 	/* else use it as is */
374 
375 	/* Make it a response */
376 	msg->rsp[0] = msg->data[0] | 4;
377 	msg->rsp[1] = msg->data[1];
378 	msg->rsp[2] = cCode;
379 	msg->rsp_size = 3;
380 
381 	smi_info->curr_msg = NULL;
382 	deliver_recv_msg(smi_info, msg);
383 }
384 
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387 	int              rv;
388 
389 	if (!smi_info->waiting_msg) {
390 		smi_info->curr_msg = NULL;
391 		rv = SI_SM_IDLE;
392 	} else {
393 		int err;
394 
395 		smi_info->curr_msg = smi_info->waiting_msg;
396 		smi_info->waiting_msg = NULL;
397 		debug_timestamp("Start2");
398 		err = atomic_notifier_call_chain(&xaction_notifier_list,
399 				0, smi_info);
400 		if (err & NOTIFY_STOP_MASK) {
401 			rv = SI_SM_CALL_WITHOUT_DELAY;
402 			goto out;
403 		}
404 		err = smi_info->handlers->start_transaction(
405 			smi_info->si_sm,
406 			smi_info->curr_msg->data,
407 			smi_info->curr_msg->data_size);
408 		if (err)
409 			return_hosed_msg(smi_info, err);
410 
411 		rv = SI_SM_CALL_WITHOUT_DELAY;
412 	}
413 out:
414 	return rv;
415 }
416 
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419 	smi_info->last_timeout_jiffies = jiffies;
420 	mod_timer(&smi_info->si_timer, new_val);
421 	smi_info->timer_running = true;
422 }
423 
424 /*
425  * Start a new message and (re)start the timer and thread.
426  */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 			  unsigned int size)
429 {
430 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431 
432 	if (smi_info->thread)
433 		wake_up_process(smi_info->thread);
434 
435 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437 
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440 	unsigned char msg[2];
441 
442 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444 
445 	if (start_timer)
446 		start_new_msg(smi_info, msg, 2);
447 	else
448 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 	smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451 
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454 	unsigned char msg[3];
455 
456 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
457 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 	msg[2] = WDT_PRE_TIMEOUT_INT;
460 
461 	if (start_timer)
462 		start_new_msg(smi_info, msg, 3);
463 	else
464 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 	smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467 
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 	smi_info->curr_msg->data_size = 2;
473 
474 	start_new_msg(smi_info, smi_info->curr_msg->data,
475 		      smi_info->curr_msg->data_size);
476 	smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478 
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 	smi_info->curr_msg->data_size = 2;
484 
485 	start_new_msg(smi_info, smi_info->curr_msg->data,
486 		      smi_info->curr_msg->data_size);
487 	smi_info->si_state = SI_GETTING_EVENTS;
488 }
489 
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 		smi_info->interrupt_disabled = true;
503 		start_check_enables(smi_info, start_timer);
504 		return true;
505 	}
506 	return false;
507 }
508 
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 		smi_info->interrupt_disabled = false;
513 		start_check_enables(smi_info, true);
514 		return true;
515 	}
516 	return false;
517 }
518 
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 	struct ipmi_smi_msg *msg;
528 
529 	msg = ipmi_alloc_smi_msg();
530 	if (!msg) {
531 		if (!disable_si_irq(smi_info, true))
532 			smi_info->si_state = SI_NORMAL;
533 	} else if (enable_si_irq(smi_info)) {
534 		ipmi_free_smi_msg(msg);
535 		msg = NULL;
536 	}
537 	return msg;
538 }
539 
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 		/* Watchdog pre-timeout */
545 		smi_inc_stat(smi_info, watchdog_pretimeouts);
546 
547 		start_clear_flags(smi_info, true);
548 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 		if (smi_info->intf)
550 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 		/* Messages available. */
553 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 		if (!smi_info->curr_msg)
555 			return;
556 
557 		start_getting_msg_queue(smi_info);
558 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 		/* Events available. */
560 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 		if (!smi_info->curr_msg)
562 			return;
563 
564 		start_getting_events(smi_info);
565 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 		   smi_info->oem_data_avail_handler) {
567 		if (smi_info->oem_data_avail_handler(smi_info))
568 			goto retry;
569 	} else
570 		smi_info->si_state = SI_NORMAL;
571 }
572 
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 			     IPMI_BMC_EVT_MSG_INTR)
578 
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 				 bool *irq_on)
581 {
582 	u8 enables = 0;
583 
584 	if (smi_info->supports_event_msg_buff)
585 		enables |= IPMI_BMC_EVT_MSG_BUFF;
586 
587 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 	     smi_info->cannot_disable_irq) &&
589 	    !smi_info->irq_enable_broken)
590 		enables |= IPMI_BMC_RCV_MSG_INTR;
591 
592 	if (smi_info->supports_event_msg_buff &&
593 	    smi_info->irq && !smi_info->interrupt_disabled &&
594 	    !smi_info->irq_enable_broken)
595 		enables |= IPMI_BMC_EVT_MSG_INTR;
596 
597 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598 
599 	return enables;
600 }
601 
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605 
606 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607 
608 	if ((bool)irqstate == irq_on)
609 		return;
610 
611 	if (irq_on)
612 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 	else
615 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617 
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 	struct ipmi_smi_msg *msg;
621 
622 	debug_timestamp("Done");
623 	switch (smi_info->si_state) {
624 	case SI_NORMAL:
625 		if (!smi_info->curr_msg)
626 			break;
627 
628 		smi_info->curr_msg->rsp_size
629 			= smi_info->handlers->get_result(
630 				smi_info->si_sm,
631 				smi_info->curr_msg->rsp,
632 				IPMI_MAX_MSG_LENGTH);
633 
634 		/*
635 		 * Do this here becase deliver_recv_msg() releases the
636 		 * lock, and a new message can be put in during the
637 		 * time the lock is released.
638 		 */
639 		msg = smi_info->curr_msg;
640 		smi_info->curr_msg = NULL;
641 		deliver_recv_msg(smi_info, msg);
642 		break;
643 
644 	case SI_GETTING_FLAGS:
645 	{
646 		unsigned char msg[4];
647 		unsigned int  len;
648 
649 		/* We got the flags from the SMI, now handle them. */
650 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 		if (msg[2] != 0) {
652 			/* Error fetching flags, just give up for now. */
653 			smi_info->si_state = SI_NORMAL;
654 		} else if (len < 4) {
655 			/*
656 			 * Hmm, no flags.  That's technically illegal, but
657 			 * don't use uninitialized data.
658 			 */
659 			smi_info->si_state = SI_NORMAL;
660 		} else {
661 			smi_info->msg_flags = msg[3];
662 			handle_flags(smi_info);
663 		}
664 		break;
665 	}
666 
667 	case SI_CLEARING_FLAGS:
668 	{
669 		unsigned char msg[3];
670 
671 		/* We cleared the flags. */
672 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 		if (msg[2] != 0) {
674 			/* Error clearing flags */
675 			dev_warn(smi_info->dev,
676 				 "Error clearing flags: %2.2x\n", msg[2]);
677 		}
678 		smi_info->si_state = SI_NORMAL;
679 		break;
680 	}
681 
682 	case SI_GETTING_EVENTS:
683 	{
684 		smi_info->curr_msg->rsp_size
685 			= smi_info->handlers->get_result(
686 				smi_info->si_sm,
687 				smi_info->curr_msg->rsp,
688 				IPMI_MAX_MSG_LENGTH);
689 
690 		/*
691 		 * Do this here becase deliver_recv_msg() releases the
692 		 * lock, and a new message can be put in during the
693 		 * time the lock is released.
694 		 */
695 		msg = smi_info->curr_msg;
696 		smi_info->curr_msg = NULL;
697 		if (msg->rsp[2] != 0) {
698 			/* Error getting event, probably done. */
699 			msg->done(msg);
700 
701 			/* Take off the event flag. */
702 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 			handle_flags(smi_info);
704 		} else {
705 			smi_inc_stat(smi_info, events);
706 
707 			/*
708 			 * Do this before we deliver the message
709 			 * because delivering the message releases the
710 			 * lock and something else can mess with the
711 			 * state.
712 			 */
713 			handle_flags(smi_info);
714 
715 			deliver_recv_msg(smi_info, msg);
716 		}
717 		break;
718 	}
719 
720 	case SI_GETTING_MESSAGES:
721 	{
722 		smi_info->curr_msg->rsp_size
723 			= smi_info->handlers->get_result(
724 				smi_info->si_sm,
725 				smi_info->curr_msg->rsp,
726 				IPMI_MAX_MSG_LENGTH);
727 
728 		/*
729 		 * Do this here becase deliver_recv_msg() releases the
730 		 * lock, and a new message can be put in during the
731 		 * time the lock is released.
732 		 */
733 		msg = smi_info->curr_msg;
734 		smi_info->curr_msg = NULL;
735 		if (msg->rsp[2] != 0) {
736 			/* Error getting event, probably done. */
737 			msg->done(msg);
738 
739 			/* Take off the msg flag. */
740 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 			handle_flags(smi_info);
742 		} else {
743 			smi_inc_stat(smi_info, incoming_messages);
744 
745 			/*
746 			 * Do this before we deliver the message
747 			 * because delivering the message releases the
748 			 * lock and something else can mess with the
749 			 * state.
750 			 */
751 			handle_flags(smi_info);
752 
753 			deliver_recv_msg(smi_info, msg);
754 		}
755 		break;
756 	}
757 
758 	case SI_CHECKING_ENABLES:
759 	{
760 		unsigned char msg[4];
761 		u8 enables;
762 		bool irq_on;
763 
764 		/* We got the flags from the SMI, now handle them. */
765 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 		if (msg[2] != 0) {
767 			dev_warn(smi_info->dev,
768 				 "Couldn't get irq info: %x.\n", msg[2]);
769 			dev_warn(smi_info->dev,
770 				 "Maybe ok, but ipmi might run very slowly.\n");
771 			smi_info->si_state = SI_NORMAL;
772 			break;
773 		}
774 		enables = current_global_enables(smi_info, 0, &irq_on);
775 		if (smi_info->si_type == SI_BT)
776 			/* BT has its own interrupt enable bit. */
777 			check_bt_irq(smi_info, irq_on);
778 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 			/* Enables are not correct, fix them. */
780 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 			smi_info->handlers->start_transaction(
784 				smi_info->si_sm, msg, 3);
785 			smi_info->si_state = SI_SETTING_ENABLES;
786 		} else if (smi_info->supports_event_msg_buff) {
787 			smi_info->curr_msg = ipmi_alloc_smi_msg();
788 			if (!smi_info->curr_msg) {
789 				smi_info->si_state = SI_NORMAL;
790 				break;
791 			}
792 			start_getting_msg_queue(smi_info);
793 		} else {
794 			smi_info->si_state = SI_NORMAL;
795 		}
796 		break;
797 	}
798 
799 	case SI_SETTING_ENABLES:
800 	{
801 		unsigned char msg[4];
802 
803 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 		if (msg[2] != 0)
805 			dev_warn(smi_info->dev,
806 				 "Could not set the global enables: 0x%x.\n",
807 				 msg[2]);
808 
809 		if (smi_info->supports_event_msg_buff) {
810 			smi_info->curr_msg = ipmi_alloc_smi_msg();
811 			if (!smi_info->curr_msg) {
812 				smi_info->si_state = SI_NORMAL;
813 				break;
814 			}
815 			start_getting_msg_queue(smi_info);
816 		} else {
817 			smi_info->si_state = SI_NORMAL;
818 		}
819 		break;
820 	}
821 	}
822 }
823 
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 					   int time)
831 {
832 	enum si_sm_result si_sm_result;
833 
834 restart:
835 	/*
836 	 * There used to be a loop here that waited a little while
837 	 * (around 25us) before giving up.  That turned out to be
838 	 * pointless, the minimum delays I was seeing were in the 300us
839 	 * range, which is far too long to wait in an interrupt.  So
840 	 * we just run until the state machine tells us something
841 	 * happened or it needs a delay.
842 	 */
843 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 	time = 0;
845 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847 
848 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 		smi_inc_stat(smi_info, complete_transactions);
850 
851 		handle_transaction_done(smi_info);
852 		goto restart;
853 	} else if (si_sm_result == SI_SM_HOSED) {
854 		smi_inc_stat(smi_info, hosed_count);
855 
856 		/*
857 		 * Do the before return_hosed_msg, because that
858 		 * releases the lock.
859 		 */
860 		smi_info->si_state = SI_NORMAL;
861 		if (smi_info->curr_msg != NULL) {
862 			/*
863 			 * If we were handling a user message, format
864 			 * a response to send to the upper layer to
865 			 * tell it about the error.
866 			 */
867 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 		}
869 		goto restart;
870 	}
871 
872 	/*
873 	 * We prefer handling attn over new messages.  But don't do
874 	 * this if there is not yet an upper layer to handle anything.
875 	 */
876 	if (likely(smi_info->intf) &&
877 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 		unsigned char msg[2];
879 
880 		if (smi_info->si_state != SI_NORMAL) {
881 			/*
882 			 * We got an ATTN, but we are doing something else.
883 			 * Handle the ATTN later.
884 			 */
885 			smi_info->got_attn = true;
886 		} else {
887 			smi_info->got_attn = false;
888 			smi_inc_stat(smi_info, attentions);
889 
890 			/*
891 			 * Got a attn, send down a get message flags to see
892 			 * what's causing it.  It would be better to handle
893 			 * this in the upper layer, but due to the way
894 			 * interrupts work with the SMI, that's not really
895 			 * possible.
896 			 */
897 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899 
900 			start_new_msg(smi_info, msg, 2);
901 			smi_info->si_state = SI_GETTING_FLAGS;
902 			goto restart;
903 		}
904 	}
905 
906 	/* If we are currently idle, try to start the next message. */
907 	if (si_sm_result == SI_SM_IDLE) {
908 		smi_inc_stat(smi_info, idles);
909 
910 		si_sm_result = start_next_msg(smi_info);
911 		if (si_sm_result != SI_SM_IDLE)
912 			goto restart;
913 	}
914 
915 	if ((si_sm_result == SI_SM_IDLE)
916 	    && (atomic_read(&smi_info->req_events))) {
917 		/*
918 		 * We are idle and the upper layer requested that I fetch
919 		 * events, so do so.
920 		 */
921 		atomic_set(&smi_info->req_events, 0);
922 
923 		/*
924 		 * Take this opportunity to check the interrupt and
925 		 * message enable state for the BMC.  The BMC can be
926 		 * asynchronously reset, and may thus get interrupts
927 		 * disable and messages disabled.
928 		 */
929 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 			start_check_enables(smi_info, true);
931 		} else {
932 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 			if (!smi_info->curr_msg)
934 				goto out;
935 
936 			start_getting_events(smi_info);
937 		}
938 		goto restart;
939 	}
940 
941 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 		/* Ok it if fails, the timer will just go off. */
943 		if (del_timer(&smi_info->si_timer))
944 			smi_info->timer_running = false;
945 	}
946 
947 out:
948 	return si_sm_result;
949 }
950 
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955 
956 		if (smi_info->thread)
957 			wake_up_process(smi_info->thread);
958 
959 		start_next_msg(smi_info);
960 		smi_event_handler(smi_info, 0);
961 	}
962 }
963 
964 static void flush_messages(void *send_info)
965 {
966 	struct smi_info *smi_info = send_info;
967 	enum si_sm_result result;
968 
969 	/*
970 	 * Currently, this function is called only in run-to-completion
971 	 * mode.  This means we are single-threaded, no need for locks.
972 	 */
973 	result = smi_event_handler(smi_info, 0);
974 	while (result != SI_SM_IDLE) {
975 		udelay(SI_SHORT_TIMEOUT_USEC);
976 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 	}
978 }
979 
980 static void sender(void                *send_info,
981 		   struct ipmi_smi_msg *msg)
982 {
983 	struct smi_info   *smi_info = send_info;
984 	unsigned long     flags;
985 
986 	debug_timestamp("Enqueue");
987 
988 	if (smi_info->run_to_completion) {
989 		/*
990 		 * If we are running to completion, start it.  Upper
991 		 * layer will call flush_messages to clear it out.
992 		 */
993 		smi_info->waiting_msg = msg;
994 		return;
995 	}
996 
997 	spin_lock_irqsave(&smi_info->si_lock, flags);
998 	/*
999 	 * The following two lines don't need to be under the lock for
1000 	 * the lock's sake, but they do need SMP memory barriers to
1001 	 * avoid getting things out of order.  We are already claiming
1002 	 * the lock, anyway, so just do it under the lock to avoid the
1003 	 * ordering problem.
1004 	 */
1005 	BUG_ON(smi_info->waiting_msg);
1006 	smi_info->waiting_msg = msg;
1007 	check_start_timer_thread(smi_info);
1008 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010 
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 	struct smi_info   *smi_info = send_info;
1014 
1015 	smi_info->run_to_completion = i_run_to_completion;
1016 	if (i_run_to_completion)
1017 		flush_messages(smi_info);
1018 }
1019 
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 	ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 	return ts->tv_nsec != -1;
1032 }
1033 
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 					const struct smi_info *smi_info,
1036 					struct timespec64 *busy_until)
1037 {
1038 	unsigned int max_busy_us = 0;
1039 
1040 	if (smi_info->intf_num < num_max_busy_us)
1041 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 		ipmi_si_set_not_busy(busy_until);
1044 	else if (!ipmi_si_is_busy(busy_until)) {
1045 		getnstimeofday64(busy_until);
1046 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 	} else {
1048 		struct timespec64 now;
1049 
1050 		getnstimeofday64(&now);
1051 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 			ipmi_si_set_not_busy(busy_until);
1053 			return 0;
1054 		}
1055 	}
1056 	return 1;
1057 }
1058 
1059 
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071 	struct smi_info *smi_info = data;
1072 	unsigned long flags;
1073 	enum si_sm_result smi_result;
1074 	struct timespec64 busy_until;
1075 
1076 	ipmi_si_set_not_busy(&busy_until);
1077 	set_user_nice(current, MAX_NICE);
1078 	while (!kthread_should_stop()) {
1079 		int busy_wait;
1080 
1081 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 		smi_result = smi_event_handler(smi_info, 0);
1083 
1084 		/*
1085 		 * If the driver is doing something, there is a possible
1086 		 * race with the timer.  If the timer handler see idle,
1087 		 * and the thread here sees something else, the timer
1088 		 * handler won't restart the timer even though it is
1089 		 * required.  So start it here if necessary.
1090 		 */
1091 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093 
1094 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 						  &busy_until);
1097 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 			; /* do nothing */
1099 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 			schedule();
1101 		else if (smi_result == SI_SM_IDLE) {
1102 			if (atomic_read(&smi_info->need_watch)) {
1103 				schedule_timeout_interruptible(100);
1104 			} else {
1105 				/* Wait to be woken up when we are needed. */
1106 				__set_current_state(TASK_INTERRUPTIBLE);
1107 				schedule();
1108 			}
1109 		} else
1110 			schedule_timeout_interruptible(1);
1111 	}
1112 	return 0;
1113 }
1114 
1115 
1116 static void poll(void *send_info)
1117 {
1118 	struct smi_info *smi_info = send_info;
1119 	unsigned long flags = 0;
1120 	bool run_to_completion = smi_info->run_to_completion;
1121 
1122 	/*
1123 	 * Make sure there is some delay in the poll loop so we can
1124 	 * drive time forward and timeout things.
1125 	 */
1126 	udelay(10);
1127 	if (!run_to_completion)
1128 		spin_lock_irqsave(&smi_info->si_lock, flags);
1129 	smi_event_handler(smi_info, 10);
1130 	if (!run_to_completion)
1131 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133 
1134 static void request_events(void *send_info)
1135 {
1136 	struct smi_info *smi_info = send_info;
1137 
1138 	if (!smi_info->has_event_buffer)
1139 		return;
1140 
1141 	atomic_set(&smi_info->req_events, 1);
1142 }
1143 
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146 	struct smi_info *smi_info = send_info;
1147 	unsigned long flags;
1148 
1149 	atomic_set(&smi_info->need_watch, enable);
1150 	spin_lock_irqsave(&smi_info->si_lock, flags);
1151 	check_start_timer_thread(smi_info);
1152 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154 
1155 static int initialized;
1156 
1157 static void smi_timeout(unsigned long data)
1158 {
1159 	struct smi_info   *smi_info = (struct smi_info *) data;
1160 	enum si_sm_result smi_result;
1161 	unsigned long     flags;
1162 	unsigned long     jiffies_now;
1163 	long              time_diff;
1164 	long		  timeout;
1165 
1166 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 	debug_timestamp("Timer");
1168 
1169 	jiffies_now = jiffies;
1170 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 		     * SI_USEC_PER_JIFFY);
1172 	smi_result = smi_event_handler(smi_info, time_diff);
1173 
1174 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 		/* Running with interrupts, only do long timeouts. */
1176 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 		smi_inc_stat(smi_info, long_timeouts);
1178 		goto do_mod_timer;
1179 	}
1180 
1181 	/*
1182 	 * If the state machine asks for a short delay, then shorten
1183 	 * the timer timeout.
1184 	 */
1185 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 		smi_inc_stat(smi_info, short_timeouts);
1187 		timeout = jiffies + 1;
1188 	} else {
1189 		smi_inc_stat(smi_info, long_timeouts);
1190 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191 	}
1192 
1193 do_mod_timer:
1194 	if (smi_result != SI_SM_IDLE)
1195 		smi_mod_timer(smi_info, timeout);
1196 	else
1197 		smi_info->timer_running = false;
1198 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200 
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203 	struct smi_info *smi_info = data;
1204 	unsigned long   flags;
1205 
1206 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1207 
1208 	smi_inc_stat(smi_info, interrupts);
1209 
1210 	debug_timestamp("Interrupt");
1211 
1212 	smi_event_handler(smi_info, 0);
1213 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 	return IRQ_HANDLED;
1215 }
1216 
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219 	struct smi_info *smi_info = data;
1220 	/* We need to clear the IRQ flag for the BT interface. */
1221 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 	return si_irq_handler(irq, data);
1225 }
1226 
1227 static int smi_start_processing(void       *send_info,
1228 				ipmi_smi_t intf)
1229 {
1230 	struct smi_info *new_smi = send_info;
1231 	int             enable = 0;
1232 
1233 	new_smi->intf = intf;
1234 
1235 	/* Set up the timer that drives the interface. */
1236 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238 
1239 	/* Try to claim any interrupts. */
1240 	if (new_smi->irq_setup)
1241 		new_smi->irq_setup(new_smi);
1242 
1243 	/*
1244 	 * Check if the user forcefully enabled the daemon.
1245 	 */
1246 	if (new_smi->intf_num < num_force_kipmid)
1247 		enable = force_kipmid[new_smi->intf_num];
1248 	/*
1249 	 * The BT interface is efficient enough to not need a thread,
1250 	 * and there is no need for a thread if we have interrupts.
1251 	 */
1252 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 		enable = 1;
1254 
1255 	if (enable) {
1256 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 					      "kipmi%d", new_smi->intf_num);
1258 		if (IS_ERR(new_smi->thread)) {
1259 			dev_notice(new_smi->dev, "Could not start"
1260 				   " kernel thread due to error %ld, only using"
1261 				   " timers to drive the interface\n",
1262 				   PTR_ERR(new_smi->thread));
1263 			new_smi->thread = NULL;
1264 		}
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272 	struct smi_info *smi = send_info;
1273 
1274 	data->addr_src = smi->addr_source;
1275 	data->dev = smi->dev;
1276 	data->addr_info = smi->addr_info;
1277 	get_device(smi->dev);
1278 
1279 	return 0;
1280 }
1281 
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284 	struct smi_info   *smi_info = send_info;
1285 
1286 	if (!enable)
1287 		atomic_set(&smi_info->req_events, 0);
1288 }
1289 
1290 static const struct ipmi_smi_handlers handlers = {
1291 	.owner                  = THIS_MODULE,
1292 	.start_processing       = smi_start_processing,
1293 	.get_smi_info		= get_smi_info,
1294 	.sender			= sender,
1295 	.request_events		= request_events,
1296 	.set_need_watch		= set_need_watch,
1297 	.set_maintenance_mode   = set_maintenance_mode,
1298 	.set_run_to_completion  = set_run_to_completion,
1299 	.flush_messages		= flush_messages,
1300 	.poll			= poll,
1301 };
1302 
1303 /*
1304  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306  */
1307 
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311 
1312 #define DEFAULT_REGSPACING	1
1313 #define DEFAULT_REGSIZE		1
1314 
1315 #ifdef CONFIG_ACPI
1316 static bool          si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool          si_trydmi = true;
1320 #endif
1321 static bool          si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool          si_trypci = true;
1324 #endif
1325 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1326 static char          *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char          si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int  ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int           irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int           regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int           regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int           regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343 
1344 #define IPMI_IO_ADDR_SPACE  0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347 
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349 
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352 		 " Documentation/IPMI.txt in the kernel sources for the"
1353 		 " gory details.");
1354 
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 		 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 		 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 		 " default scan of the interfaces identified via platform"
1368 		 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 		 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_named(trydefaults, si_trydefaults, bool, 0);
1375 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376 		 " default scan of the KCS and SMIC interface at the standard"
1377 		 " address");
1378 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380 		 " interface separated by commas.  The types are 'kcs',"
1381 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1382 		 " the first interface to kcs and the second to bt");
1383 module_param_array(addrs, ulong, &num_addrs, 0);
1384 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385 		 " addresses separated by commas.  Only use if an interface"
1386 		 " is in memory.  Otherwise, set it to zero or leave"
1387 		 " it blank.");
1388 module_param_array(ports, uint, &num_ports, 0);
1389 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390 		 " addresses separated by commas.  Only use if an interface"
1391 		 " is a port.  Otherwise, set it to zero or leave"
1392 		 " it blank.");
1393 module_param_array(irqs, int, &num_irqs, 0);
1394 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395 		 " addresses separated by commas.  Only use if an interface"
1396 		 " has an interrupt.  Otherwise, set it to zero or leave"
1397 		 " it blank.");
1398 module_param_array(regspacings, int, &num_regspacings, 0);
1399 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400 		 " and each successive register used by the interface.  For"
1401 		 " instance, if the start address is 0xca2 and the spacing"
1402 		 " is 2, then the second address is at 0xca4.  Defaults"
1403 		 " to 1.");
1404 module_param_array(regsizes, int, &num_regsizes, 0);
1405 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1408 		 " the 8-bit IPMI register has to be read from a larger"
1409 		 " register.");
1410 module_param_array(regshifts, int, &num_regshifts, 0);
1411 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412 		 " IPMI register, in bits.  For instance, if the data"
1413 		 " is read from a 32-bit word and the IPMI data is in"
1414 		 " bit 8-15, then the shift would be 8");
1415 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417 		 " the controller.  Normally this is 0x20, but can be"
1418 		 " overridden by this parm.  This is an array indexed"
1419 		 " by interface number.");
1420 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422 		 " disabled(0).  Normally the IPMI driver auto-detects"
1423 		 " this, but the value may be overridden by this parm.");
1424 module_param(unload_when_empty, bool, 0);
1425 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426 		 " specified or found, default is 1.  Setting to 0"
1427 		 " is useful for hot add of devices using hotmod.");
1428 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429 MODULE_PARM_DESC(kipmid_max_busy_us,
1430 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1431 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432 		 " if kipmid is using up a lot of CPU time.");
1433 
1434 
1435 static void std_irq_cleanup(struct smi_info *info)
1436 {
1437 	if (info->si_type == SI_BT)
1438 		/* Disable the interrupt in the BT interface. */
1439 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440 	free_irq(info->irq, info);
1441 }
1442 
1443 static int std_irq_setup(struct smi_info *info)
1444 {
1445 	int rv;
1446 
1447 	if (!info->irq)
1448 		return 0;
1449 
1450 	if (info->si_type == SI_BT) {
1451 		rv = request_irq(info->irq,
1452 				 si_bt_irq_handler,
1453 				 IRQF_SHARED,
1454 				 DEVICE_NAME,
1455 				 info);
1456 		if (!rv)
1457 			/* Enable the interrupt in the BT interface. */
1458 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460 	} else
1461 		rv = request_irq(info->irq,
1462 				 si_irq_handler,
1463 				 IRQF_SHARED,
1464 				 DEVICE_NAME,
1465 				 info);
1466 	if (rv) {
1467 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468 			 " running polled\n",
1469 			 DEVICE_NAME, info->irq);
1470 		info->irq = 0;
1471 	} else {
1472 		info->irq_cleanup = std_irq_cleanup;
1473 		dev_info(info->dev, "Using irq %d\n", info->irq);
1474 	}
1475 
1476 	return rv;
1477 }
1478 
1479 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1480 {
1481 	unsigned int addr = io->addr_data;
1482 
1483 	return inb(addr + (offset * io->regspacing));
1484 }
1485 
1486 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1487 		      unsigned char b)
1488 {
1489 	unsigned int addr = io->addr_data;
1490 
1491 	outb(b, addr + (offset * io->regspacing));
1492 }
1493 
1494 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1495 {
1496 	unsigned int addr = io->addr_data;
1497 
1498 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500 
1501 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1502 		      unsigned char b)
1503 {
1504 	unsigned int addr = io->addr_data;
1505 
1506 	outw(b << io->regshift, addr + (offset * io->regspacing));
1507 }
1508 
1509 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1510 {
1511 	unsigned int addr = io->addr_data;
1512 
1513 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1514 }
1515 
1516 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1517 		      unsigned char b)
1518 {
1519 	unsigned int addr = io->addr_data;
1520 
1521 	outl(b << io->regshift, addr+(offset * io->regspacing));
1522 }
1523 
1524 static void port_cleanup(struct smi_info *info)
1525 {
1526 	unsigned int addr = info->io.addr_data;
1527 	int          idx;
1528 
1529 	if (addr) {
1530 		for (idx = 0; idx < info->io_size; idx++)
1531 			release_region(addr + idx * info->io.regspacing,
1532 				       info->io.regsize);
1533 	}
1534 }
1535 
1536 static int port_setup(struct smi_info *info)
1537 {
1538 	unsigned int addr = info->io.addr_data;
1539 	int          idx;
1540 
1541 	if (!addr)
1542 		return -ENODEV;
1543 
1544 	info->io_cleanup = port_cleanup;
1545 
1546 	/*
1547 	 * Figure out the actual inb/inw/inl/etc routine to use based
1548 	 * upon the register size.
1549 	 */
1550 	switch (info->io.regsize) {
1551 	case 1:
1552 		info->io.inputb = port_inb;
1553 		info->io.outputb = port_outb;
1554 		break;
1555 	case 2:
1556 		info->io.inputb = port_inw;
1557 		info->io.outputb = port_outw;
1558 		break;
1559 	case 4:
1560 		info->io.inputb = port_inl;
1561 		info->io.outputb = port_outl;
1562 		break;
1563 	default:
1564 		dev_warn(info->dev, "Invalid register size: %d\n",
1565 			 info->io.regsize);
1566 		return -EINVAL;
1567 	}
1568 
1569 	/*
1570 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1571 	 * tables.  This causes problems when trying to register the
1572 	 * entire I/O region.  Therefore we must register each I/O
1573 	 * port separately.
1574 	 */
1575 	for (idx = 0; idx < info->io_size; idx++) {
1576 		if (request_region(addr + idx * info->io.regspacing,
1577 				   info->io.regsize, DEVICE_NAME) == NULL) {
1578 			/* Undo allocations */
1579 			while (idx--)
1580 				release_region(addr + idx * info->io.regspacing,
1581 					       info->io.regsize);
1582 			return -EIO;
1583 		}
1584 	}
1585 	return 0;
1586 }
1587 
1588 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1589 				  unsigned int offset)
1590 {
1591 	return readb((io->addr)+(offset * io->regspacing));
1592 }
1593 
1594 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1595 			  unsigned char b)
1596 {
1597 	writeb(b, (io->addr)+(offset * io->regspacing));
1598 }
1599 
1600 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1601 				  unsigned int offset)
1602 {
1603 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1604 		& 0xff;
1605 }
1606 
1607 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1608 			  unsigned char b)
1609 {
1610 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1611 }
1612 
1613 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1614 				  unsigned int offset)
1615 {
1616 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617 		& 0xff;
1618 }
1619 
1620 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1621 			  unsigned char b)
1622 {
1623 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625 
1626 #ifdef readq
1627 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1628 {
1629 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630 		& 0xff;
1631 }
1632 
1633 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1634 		     unsigned char b)
1635 {
1636 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638 #endif
1639 
1640 static void mem_region_cleanup(struct smi_info *info, int num)
1641 {
1642 	unsigned long addr = info->io.addr_data;
1643 	int idx;
1644 
1645 	for (idx = 0; idx < num; idx++)
1646 		release_mem_region(addr + idx * info->io.regspacing,
1647 				   info->io.regsize);
1648 }
1649 
1650 static void mem_cleanup(struct smi_info *info)
1651 {
1652 	if (info->io.addr) {
1653 		iounmap(info->io.addr);
1654 		mem_region_cleanup(info, info->io_size);
1655 	}
1656 }
1657 
1658 static int mem_setup(struct smi_info *info)
1659 {
1660 	unsigned long addr = info->io.addr_data;
1661 	int           mapsize, idx;
1662 
1663 	if (!addr)
1664 		return -ENODEV;
1665 
1666 	info->io_cleanup = mem_cleanup;
1667 
1668 	/*
1669 	 * Figure out the actual readb/readw/readl/etc routine to use based
1670 	 * upon the register size.
1671 	 */
1672 	switch (info->io.regsize) {
1673 	case 1:
1674 		info->io.inputb = intf_mem_inb;
1675 		info->io.outputb = intf_mem_outb;
1676 		break;
1677 	case 2:
1678 		info->io.inputb = intf_mem_inw;
1679 		info->io.outputb = intf_mem_outw;
1680 		break;
1681 	case 4:
1682 		info->io.inputb = intf_mem_inl;
1683 		info->io.outputb = intf_mem_outl;
1684 		break;
1685 #ifdef readq
1686 	case 8:
1687 		info->io.inputb = mem_inq;
1688 		info->io.outputb = mem_outq;
1689 		break;
1690 #endif
1691 	default:
1692 		dev_warn(info->dev, "Invalid register size: %d\n",
1693 			 info->io.regsize);
1694 		return -EINVAL;
1695 	}
1696 
1697 	/*
1698 	 * Some BIOSes reserve disjoint memory regions in their ACPI
1699 	 * tables.  This causes problems when trying to request the
1700 	 * entire region.  Therefore we must request each register
1701 	 * separately.
1702 	 */
1703 	for (idx = 0; idx < info->io_size; idx++) {
1704 		if (request_mem_region(addr + idx * info->io.regspacing,
1705 				       info->io.regsize, DEVICE_NAME) == NULL) {
1706 			/* Undo allocations */
1707 			mem_region_cleanup(info, idx);
1708 			return -EIO;
1709 		}
1710 	}
1711 
1712 	/*
1713 	 * Calculate the total amount of memory to claim.  This is an
1714 	 * unusual looking calculation, but it avoids claiming any
1715 	 * more memory than it has to.  It will claim everything
1716 	 * between the first address to the end of the last full
1717 	 * register.
1718 	 */
1719 	mapsize = ((info->io_size * info->io.regspacing)
1720 		   - (info->io.regspacing - info->io.regsize));
1721 	info->io.addr = ioremap(addr, mapsize);
1722 	if (info->io.addr == NULL) {
1723 		mem_region_cleanup(info, info->io_size);
1724 		return -EIO;
1725 	}
1726 	return 0;
1727 }
1728 
1729 /*
1730  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1731  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1732  * Options are:
1733  *   rsp=<regspacing>
1734  *   rsi=<regsize>
1735  *   rsh=<regshift>
1736  *   irq=<irq>
1737  *   ipmb=<ipmb addr>
1738  */
1739 enum hotmod_op { HM_ADD, HM_REMOVE };
1740 struct hotmod_vals {
1741 	const char *name;
1742 	const int  val;
1743 };
1744 
1745 static const struct hotmod_vals hotmod_ops[] = {
1746 	{ "add",	HM_ADD },
1747 	{ "remove",	HM_REMOVE },
1748 	{ NULL }
1749 };
1750 
1751 static const struct hotmod_vals hotmod_si[] = {
1752 	{ "kcs",	SI_KCS },
1753 	{ "smic",	SI_SMIC },
1754 	{ "bt",		SI_BT },
1755 	{ NULL }
1756 };
1757 
1758 static const struct hotmod_vals hotmod_as[] = {
1759 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1760 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1761 	{ NULL }
1762 };
1763 
1764 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1765 		     char **curr)
1766 {
1767 	char *s;
1768 	int  i;
1769 
1770 	s = strchr(*curr, ',');
1771 	if (!s) {
1772 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1773 		return -EINVAL;
1774 	}
1775 	*s = '\0';
1776 	s++;
1777 	for (i = 0; v[i].name; i++) {
1778 		if (strcmp(*curr, v[i].name) == 0) {
1779 			*val = v[i].val;
1780 			*curr = s;
1781 			return 0;
1782 		}
1783 	}
1784 
1785 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1786 	return -EINVAL;
1787 }
1788 
1789 static int check_hotmod_int_op(const char *curr, const char *option,
1790 			       const char *name, int *val)
1791 {
1792 	char *n;
1793 
1794 	if (strcmp(curr, name) == 0) {
1795 		if (!option) {
1796 			printk(KERN_WARNING PFX
1797 			       "No option given for '%s'\n",
1798 			       curr);
1799 			return -EINVAL;
1800 		}
1801 		*val = simple_strtoul(option, &n, 0);
1802 		if ((*n != '\0') || (*option == '\0')) {
1803 			printk(KERN_WARNING PFX
1804 			       "Bad option given for '%s'\n",
1805 			       curr);
1806 			return -EINVAL;
1807 		}
1808 		return 1;
1809 	}
1810 	return 0;
1811 }
1812 
1813 static struct smi_info *smi_info_alloc(void)
1814 {
1815 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1816 
1817 	if (info)
1818 		spin_lock_init(&info->si_lock);
1819 	return info;
1820 }
1821 
1822 static int hotmod_handler(const char *val, struct kernel_param *kp)
1823 {
1824 	char *str = kstrdup(val, GFP_KERNEL);
1825 	int  rv;
1826 	char *next, *curr, *s, *n, *o;
1827 	enum hotmod_op op;
1828 	enum si_type si_type;
1829 	int  addr_space;
1830 	unsigned long addr;
1831 	int regspacing;
1832 	int regsize;
1833 	int regshift;
1834 	int irq;
1835 	int ipmb;
1836 	int ival;
1837 	int len;
1838 	struct smi_info *info;
1839 
1840 	if (!str)
1841 		return -ENOMEM;
1842 
1843 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1844 	len = strlen(str);
1845 	ival = len - 1;
1846 	while ((ival >= 0) && isspace(str[ival])) {
1847 		str[ival] = '\0';
1848 		ival--;
1849 	}
1850 
1851 	for (curr = str; curr; curr = next) {
1852 		regspacing = 1;
1853 		regsize = 1;
1854 		regshift = 0;
1855 		irq = 0;
1856 		ipmb = 0; /* Choose the default if not specified */
1857 
1858 		next = strchr(curr, ':');
1859 		if (next) {
1860 			*next = '\0';
1861 			next++;
1862 		}
1863 
1864 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1865 		if (rv)
1866 			break;
1867 		op = ival;
1868 
1869 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1870 		if (rv)
1871 			break;
1872 		si_type = ival;
1873 
1874 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1875 		if (rv)
1876 			break;
1877 
1878 		s = strchr(curr, ',');
1879 		if (s) {
1880 			*s = '\0';
1881 			s++;
1882 		}
1883 		addr = simple_strtoul(curr, &n, 0);
1884 		if ((*n != '\0') || (*curr == '\0')) {
1885 			printk(KERN_WARNING PFX "Invalid hotmod address"
1886 			       " '%s'\n", curr);
1887 			break;
1888 		}
1889 
1890 		while (s) {
1891 			curr = s;
1892 			s = strchr(curr, ',');
1893 			if (s) {
1894 				*s = '\0';
1895 				s++;
1896 			}
1897 			o = strchr(curr, '=');
1898 			if (o) {
1899 				*o = '\0';
1900 				o++;
1901 			}
1902 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1903 			if (rv < 0)
1904 				goto out;
1905 			else if (rv)
1906 				continue;
1907 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1908 			if (rv < 0)
1909 				goto out;
1910 			else if (rv)
1911 				continue;
1912 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1913 			if (rv < 0)
1914 				goto out;
1915 			else if (rv)
1916 				continue;
1917 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1918 			if (rv < 0)
1919 				goto out;
1920 			else if (rv)
1921 				continue;
1922 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1923 			if (rv < 0)
1924 				goto out;
1925 			else if (rv)
1926 				continue;
1927 
1928 			rv = -EINVAL;
1929 			printk(KERN_WARNING PFX
1930 			       "Invalid hotmod option '%s'\n",
1931 			       curr);
1932 			goto out;
1933 		}
1934 
1935 		if (op == HM_ADD) {
1936 			info = smi_info_alloc();
1937 			if (!info) {
1938 				rv = -ENOMEM;
1939 				goto out;
1940 			}
1941 
1942 			info->addr_source = SI_HOTMOD;
1943 			info->si_type = si_type;
1944 			info->io.addr_data = addr;
1945 			info->io.addr_type = addr_space;
1946 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1947 				info->io_setup = mem_setup;
1948 			else
1949 				info->io_setup = port_setup;
1950 
1951 			info->io.addr = NULL;
1952 			info->io.regspacing = regspacing;
1953 			if (!info->io.regspacing)
1954 				info->io.regspacing = DEFAULT_REGSPACING;
1955 			info->io.regsize = regsize;
1956 			if (!info->io.regsize)
1957 				info->io.regsize = DEFAULT_REGSPACING;
1958 			info->io.regshift = regshift;
1959 			info->irq = irq;
1960 			if (info->irq)
1961 				info->irq_setup = std_irq_setup;
1962 			info->slave_addr = ipmb;
1963 
1964 			rv = add_smi(info);
1965 			if (rv) {
1966 				kfree(info);
1967 				goto out;
1968 			}
1969 			rv = try_smi_init(info);
1970 			if (rv) {
1971 				cleanup_one_si(info);
1972 				goto out;
1973 			}
1974 		} else {
1975 			/* remove */
1976 			struct smi_info *e, *tmp_e;
1977 
1978 			mutex_lock(&smi_infos_lock);
1979 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1980 				if (e->io.addr_type != addr_space)
1981 					continue;
1982 				if (e->si_type != si_type)
1983 					continue;
1984 				if (e->io.addr_data == addr)
1985 					cleanup_one_si(e);
1986 			}
1987 			mutex_unlock(&smi_infos_lock);
1988 		}
1989 	}
1990 	rv = len;
1991 out:
1992 	kfree(str);
1993 	return rv;
1994 }
1995 
1996 static int hardcode_find_bmc(void)
1997 {
1998 	int ret = -ENODEV;
1999 	int             i;
2000 	struct smi_info *info;
2001 
2002 	for (i = 0; i < SI_MAX_PARMS; i++) {
2003 		if (!ports[i] && !addrs[i])
2004 			continue;
2005 
2006 		info = smi_info_alloc();
2007 		if (!info)
2008 			return -ENOMEM;
2009 
2010 		info->addr_source = SI_HARDCODED;
2011 		printk(KERN_INFO PFX "probing via hardcoded address\n");
2012 
2013 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2014 			info->si_type = SI_KCS;
2015 		} else if (strcmp(si_type[i], "smic") == 0) {
2016 			info->si_type = SI_SMIC;
2017 		} else if (strcmp(si_type[i], "bt") == 0) {
2018 			info->si_type = SI_BT;
2019 		} else {
2020 			printk(KERN_WARNING PFX "Interface type specified "
2021 			       "for interface %d, was invalid: %s\n",
2022 			       i, si_type[i]);
2023 			kfree(info);
2024 			continue;
2025 		}
2026 
2027 		if (ports[i]) {
2028 			/* An I/O port */
2029 			info->io_setup = port_setup;
2030 			info->io.addr_data = ports[i];
2031 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2032 		} else if (addrs[i]) {
2033 			/* A memory port */
2034 			info->io_setup = mem_setup;
2035 			info->io.addr_data = addrs[i];
2036 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2037 		} else {
2038 			printk(KERN_WARNING PFX "Interface type specified "
2039 			       "for interface %d, but port and address were "
2040 			       "not set or set to zero.\n", i);
2041 			kfree(info);
2042 			continue;
2043 		}
2044 
2045 		info->io.addr = NULL;
2046 		info->io.regspacing = regspacings[i];
2047 		if (!info->io.regspacing)
2048 			info->io.regspacing = DEFAULT_REGSPACING;
2049 		info->io.regsize = regsizes[i];
2050 		if (!info->io.regsize)
2051 			info->io.regsize = DEFAULT_REGSPACING;
2052 		info->io.regshift = regshifts[i];
2053 		info->irq = irqs[i];
2054 		if (info->irq)
2055 			info->irq_setup = std_irq_setup;
2056 		info->slave_addr = slave_addrs[i];
2057 
2058 		if (!add_smi(info)) {
2059 			if (try_smi_init(info))
2060 				cleanup_one_si(info);
2061 			ret = 0;
2062 		} else {
2063 			kfree(info);
2064 		}
2065 	}
2066 	return ret;
2067 }
2068 
2069 #ifdef CONFIG_ACPI
2070 
2071 /*
2072  * Once we get an ACPI failure, we don't try any more, because we go
2073  * through the tables sequentially.  Once we don't find a table, there
2074  * are no more.
2075  */
2076 static int acpi_failure;
2077 
2078 /* For GPE-type interrupts. */
2079 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2080 	u32 gpe_number, void *context)
2081 {
2082 	struct smi_info *smi_info = context;
2083 	unsigned long   flags;
2084 
2085 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2086 
2087 	smi_inc_stat(smi_info, interrupts);
2088 
2089 	debug_timestamp("ACPI_GPE");
2090 
2091 	smi_event_handler(smi_info, 0);
2092 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2093 
2094 	return ACPI_INTERRUPT_HANDLED;
2095 }
2096 
2097 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2098 {
2099 	if (!info->irq)
2100 		return;
2101 
2102 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2103 }
2104 
2105 static int acpi_gpe_irq_setup(struct smi_info *info)
2106 {
2107 	acpi_status status;
2108 
2109 	if (!info->irq)
2110 		return 0;
2111 
2112 	status = acpi_install_gpe_handler(NULL,
2113 					  info->irq,
2114 					  ACPI_GPE_LEVEL_TRIGGERED,
2115 					  &ipmi_acpi_gpe,
2116 					  info);
2117 	if (status != AE_OK) {
2118 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2119 			 " running polled\n", DEVICE_NAME, info->irq);
2120 		info->irq = 0;
2121 		return -EINVAL;
2122 	} else {
2123 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2124 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2125 		return 0;
2126 	}
2127 }
2128 
2129 /*
2130  * Defined at
2131  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2132  */
2133 struct SPMITable {
2134 	s8	Signature[4];
2135 	u32	Length;
2136 	u8	Revision;
2137 	u8	Checksum;
2138 	s8	OEMID[6];
2139 	s8	OEMTableID[8];
2140 	s8	OEMRevision[4];
2141 	s8	CreatorID[4];
2142 	s8	CreatorRevision[4];
2143 	u8	InterfaceType;
2144 	u8	IPMIlegacy;
2145 	s16	SpecificationRevision;
2146 
2147 	/*
2148 	 * Bit 0 - SCI interrupt supported
2149 	 * Bit 1 - I/O APIC/SAPIC
2150 	 */
2151 	u8	InterruptType;
2152 
2153 	/*
2154 	 * If bit 0 of InterruptType is set, then this is the SCI
2155 	 * interrupt in the GPEx_STS register.
2156 	 */
2157 	u8	GPE;
2158 
2159 	s16	Reserved;
2160 
2161 	/*
2162 	 * If bit 1 of InterruptType is set, then this is the I/O
2163 	 * APIC/SAPIC interrupt.
2164 	 */
2165 	u32	GlobalSystemInterrupt;
2166 
2167 	/* The actual register address. */
2168 	struct acpi_generic_address addr;
2169 
2170 	u8	UID[4];
2171 
2172 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2173 };
2174 
2175 static int try_init_spmi(struct SPMITable *spmi)
2176 {
2177 	struct smi_info  *info;
2178 	int rv;
2179 
2180 	if (spmi->IPMIlegacy != 1) {
2181 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2182 		return -ENODEV;
2183 	}
2184 
2185 	info = smi_info_alloc();
2186 	if (!info) {
2187 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2188 		return -ENOMEM;
2189 	}
2190 
2191 	info->addr_source = SI_SPMI;
2192 	printk(KERN_INFO PFX "probing via SPMI\n");
2193 
2194 	/* Figure out the interface type. */
2195 	switch (spmi->InterfaceType) {
2196 	case 1:	/* KCS */
2197 		info->si_type = SI_KCS;
2198 		break;
2199 	case 2:	/* SMIC */
2200 		info->si_type = SI_SMIC;
2201 		break;
2202 	case 3:	/* BT */
2203 		info->si_type = SI_BT;
2204 		break;
2205 	case 4: /* SSIF, just ignore */
2206 		kfree(info);
2207 		return -EIO;
2208 	default:
2209 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2210 		       spmi->InterfaceType);
2211 		kfree(info);
2212 		return -EIO;
2213 	}
2214 
2215 	if (spmi->InterruptType & 1) {
2216 		/* We've got a GPE interrupt. */
2217 		info->irq = spmi->GPE;
2218 		info->irq_setup = acpi_gpe_irq_setup;
2219 	} else if (spmi->InterruptType & 2) {
2220 		/* We've got an APIC/SAPIC interrupt. */
2221 		info->irq = spmi->GlobalSystemInterrupt;
2222 		info->irq_setup = std_irq_setup;
2223 	} else {
2224 		/* Use the default interrupt setting. */
2225 		info->irq = 0;
2226 		info->irq_setup = NULL;
2227 	}
2228 
2229 	if (spmi->addr.bit_width) {
2230 		/* A (hopefully) properly formed register bit width. */
2231 		info->io.regspacing = spmi->addr.bit_width / 8;
2232 	} else {
2233 		info->io.regspacing = DEFAULT_REGSPACING;
2234 	}
2235 	info->io.regsize = info->io.regspacing;
2236 	info->io.regshift = spmi->addr.bit_offset;
2237 
2238 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2239 		info->io_setup = mem_setup;
2240 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2241 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2242 		info->io_setup = port_setup;
2243 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2244 	} else {
2245 		kfree(info);
2246 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2247 		return -EIO;
2248 	}
2249 	info->io.addr_data = spmi->addr.address;
2250 
2251 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2252 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2253 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2254 		 info->irq);
2255 
2256 	rv = add_smi(info);
2257 	if (rv)
2258 		kfree(info);
2259 
2260 	return rv;
2261 }
2262 
2263 static void spmi_find_bmc(void)
2264 {
2265 	acpi_status      status;
2266 	struct SPMITable *spmi;
2267 	int              i;
2268 
2269 	if (acpi_disabled)
2270 		return;
2271 
2272 	if (acpi_failure)
2273 		return;
2274 
2275 	for (i = 0; ; i++) {
2276 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2277 					(struct acpi_table_header **)&spmi);
2278 		if (status != AE_OK)
2279 			return;
2280 
2281 		try_init_spmi(spmi);
2282 	}
2283 }
2284 #endif
2285 
2286 #ifdef CONFIG_DMI
2287 struct dmi_ipmi_data {
2288 	u8   		type;
2289 	u8   		addr_space;
2290 	unsigned long	base_addr;
2291 	u8   		irq;
2292 	u8              offset;
2293 	u8              slave_addr;
2294 };
2295 
2296 static int decode_dmi(const struct dmi_header *dm,
2297 				struct dmi_ipmi_data *dmi)
2298 {
2299 	const u8	*data = (const u8 *)dm;
2300 	unsigned long  	base_addr;
2301 	u8		reg_spacing;
2302 	u8              len = dm->length;
2303 
2304 	dmi->type = data[4];
2305 
2306 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2307 	if (len >= 0x11) {
2308 		if (base_addr & 1) {
2309 			/* I/O */
2310 			base_addr &= 0xFFFE;
2311 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2312 		} else
2313 			/* Memory */
2314 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2315 
2316 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2317 		   is odd. */
2318 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2319 
2320 		dmi->irq = data[0x11];
2321 
2322 		/* The top two bits of byte 0x10 hold the register spacing. */
2323 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2324 		switch (reg_spacing) {
2325 		case 0x00: /* Byte boundaries */
2326 		    dmi->offset = 1;
2327 		    break;
2328 		case 0x01: /* 32-bit boundaries */
2329 		    dmi->offset = 4;
2330 		    break;
2331 		case 0x02: /* 16-byte boundaries */
2332 		    dmi->offset = 16;
2333 		    break;
2334 		default:
2335 		    /* Some other interface, just ignore it. */
2336 		    return -EIO;
2337 		}
2338 	} else {
2339 		/* Old DMI spec. */
2340 		/*
2341 		 * Note that technically, the lower bit of the base
2342 		 * address should be 1 if the address is I/O and 0 if
2343 		 * the address is in memory.  So many systems get that
2344 		 * wrong (and all that I have seen are I/O) so we just
2345 		 * ignore that bit and assume I/O.  Systems that use
2346 		 * memory should use the newer spec, anyway.
2347 		 */
2348 		dmi->base_addr = base_addr & 0xfffe;
2349 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2350 		dmi->offset = 1;
2351 	}
2352 
2353 	dmi->slave_addr = data[6];
2354 
2355 	return 0;
2356 }
2357 
2358 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2359 {
2360 	struct smi_info *info;
2361 
2362 	info = smi_info_alloc();
2363 	if (!info) {
2364 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2365 		return;
2366 	}
2367 
2368 	info->addr_source = SI_SMBIOS;
2369 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2370 
2371 	switch (ipmi_data->type) {
2372 	case 0x01: /* KCS */
2373 		info->si_type = SI_KCS;
2374 		break;
2375 	case 0x02: /* SMIC */
2376 		info->si_type = SI_SMIC;
2377 		break;
2378 	case 0x03: /* BT */
2379 		info->si_type = SI_BT;
2380 		break;
2381 	default:
2382 		kfree(info);
2383 		return;
2384 	}
2385 
2386 	switch (ipmi_data->addr_space) {
2387 	case IPMI_MEM_ADDR_SPACE:
2388 		info->io_setup = mem_setup;
2389 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2390 		break;
2391 
2392 	case IPMI_IO_ADDR_SPACE:
2393 		info->io_setup = port_setup;
2394 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2395 		break;
2396 
2397 	default:
2398 		kfree(info);
2399 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2400 		       ipmi_data->addr_space);
2401 		return;
2402 	}
2403 	info->io.addr_data = ipmi_data->base_addr;
2404 
2405 	info->io.regspacing = ipmi_data->offset;
2406 	if (!info->io.regspacing)
2407 		info->io.regspacing = DEFAULT_REGSPACING;
2408 	info->io.regsize = DEFAULT_REGSPACING;
2409 	info->io.regshift = 0;
2410 
2411 	info->slave_addr = ipmi_data->slave_addr;
2412 
2413 	info->irq = ipmi_data->irq;
2414 	if (info->irq)
2415 		info->irq_setup = std_irq_setup;
2416 
2417 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2418 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2419 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2420 		 info->irq);
2421 
2422 	if (add_smi(info))
2423 		kfree(info);
2424 }
2425 
2426 static void dmi_find_bmc(void)
2427 {
2428 	const struct dmi_device *dev = NULL;
2429 	struct dmi_ipmi_data data;
2430 	int                  rv;
2431 
2432 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2433 		memset(&data, 0, sizeof(data));
2434 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2435 				&data);
2436 		if (!rv)
2437 			try_init_dmi(&data);
2438 	}
2439 }
2440 #endif /* CONFIG_DMI */
2441 
2442 #ifdef CONFIG_PCI
2443 
2444 #define PCI_ERMC_CLASSCODE		0x0C0700
2445 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2446 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2447 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2448 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2449 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2450 
2451 #define PCI_HP_VENDOR_ID    0x103C
2452 #define PCI_MMC_DEVICE_ID   0x121A
2453 #define PCI_MMC_ADDR_CW     0x10
2454 
2455 static void ipmi_pci_cleanup(struct smi_info *info)
2456 {
2457 	struct pci_dev *pdev = info->addr_source_data;
2458 
2459 	pci_disable_device(pdev);
2460 }
2461 
2462 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2463 {
2464 	if (info->si_type == SI_KCS) {
2465 		unsigned char	status;
2466 		int		regspacing;
2467 
2468 		info->io.regsize = DEFAULT_REGSIZE;
2469 		info->io.regshift = 0;
2470 		info->io_size = 2;
2471 		info->handlers = &kcs_smi_handlers;
2472 
2473 		/* detect 1, 4, 16byte spacing */
2474 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2475 			info->io.regspacing = regspacing;
2476 			if (info->io_setup(info)) {
2477 				dev_err(info->dev,
2478 					"Could not setup I/O space\n");
2479 				return DEFAULT_REGSPACING;
2480 			}
2481 			/* write invalid cmd */
2482 			info->io.outputb(&info->io, 1, 0x10);
2483 			/* read status back */
2484 			status = info->io.inputb(&info->io, 1);
2485 			info->io_cleanup(info);
2486 			if (status)
2487 				return regspacing;
2488 			regspacing *= 4;
2489 		}
2490 	}
2491 	return DEFAULT_REGSPACING;
2492 }
2493 
2494 static int ipmi_pci_probe(struct pci_dev *pdev,
2495 				    const struct pci_device_id *ent)
2496 {
2497 	int rv;
2498 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2499 	struct smi_info *info;
2500 
2501 	info = smi_info_alloc();
2502 	if (!info)
2503 		return -ENOMEM;
2504 
2505 	info->addr_source = SI_PCI;
2506 	dev_info(&pdev->dev, "probing via PCI");
2507 
2508 	switch (class_type) {
2509 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2510 		info->si_type = SI_SMIC;
2511 		break;
2512 
2513 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2514 		info->si_type = SI_KCS;
2515 		break;
2516 
2517 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2518 		info->si_type = SI_BT;
2519 		break;
2520 
2521 	default:
2522 		kfree(info);
2523 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2524 		return -ENOMEM;
2525 	}
2526 
2527 	rv = pci_enable_device(pdev);
2528 	if (rv) {
2529 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2530 		kfree(info);
2531 		return rv;
2532 	}
2533 
2534 	info->addr_source_cleanup = ipmi_pci_cleanup;
2535 	info->addr_source_data = pdev;
2536 
2537 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2538 		info->io_setup = port_setup;
2539 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2540 	} else {
2541 		info->io_setup = mem_setup;
2542 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2543 	}
2544 	info->io.addr_data = pci_resource_start(pdev, 0);
2545 
2546 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2547 	info->io.regsize = DEFAULT_REGSIZE;
2548 	info->io.regshift = 0;
2549 
2550 	info->irq = pdev->irq;
2551 	if (info->irq)
2552 		info->irq_setup = std_irq_setup;
2553 
2554 	info->dev = &pdev->dev;
2555 	pci_set_drvdata(pdev, info);
2556 
2557 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2558 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2559 		info->irq);
2560 
2561 	rv = add_smi(info);
2562 	if (rv) {
2563 		kfree(info);
2564 		pci_disable_device(pdev);
2565 	}
2566 
2567 	return rv;
2568 }
2569 
2570 static void ipmi_pci_remove(struct pci_dev *pdev)
2571 {
2572 	struct smi_info *info = pci_get_drvdata(pdev);
2573 	cleanup_one_si(info);
2574 }
2575 
2576 static const struct pci_device_id ipmi_pci_devices[] = {
2577 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2578 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2579 	{ 0, }
2580 };
2581 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2582 
2583 static struct pci_driver ipmi_pci_driver = {
2584 	.name =         DEVICE_NAME,
2585 	.id_table =     ipmi_pci_devices,
2586 	.probe =        ipmi_pci_probe,
2587 	.remove =       ipmi_pci_remove,
2588 };
2589 #endif /* CONFIG_PCI */
2590 
2591 #ifdef CONFIG_OF
2592 static const struct of_device_id of_ipmi_match[] = {
2593 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2594 	  .data = (void *)(unsigned long) SI_KCS },
2595 	{ .type = "ipmi", .compatible = "ipmi-smic",
2596 	  .data = (void *)(unsigned long) SI_SMIC },
2597 	{ .type = "ipmi", .compatible = "ipmi-bt",
2598 	  .data = (void *)(unsigned long) SI_BT },
2599 	{},
2600 };
2601 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2602 
2603 static int of_ipmi_probe(struct platform_device *dev)
2604 {
2605 	const struct of_device_id *match;
2606 	struct smi_info *info;
2607 	struct resource resource;
2608 	const __be32 *regsize, *regspacing, *regshift;
2609 	struct device_node *np = dev->dev.of_node;
2610 	int ret;
2611 	int proplen;
2612 
2613 	dev_info(&dev->dev, "probing via device tree\n");
2614 
2615 	match = of_match_device(of_ipmi_match, &dev->dev);
2616 	if (!match)
2617 		return -ENODEV;
2618 
2619 	if (!of_device_is_available(np))
2620 		return -EINVAL;
2621 
2622 	ret = of_address_to_resource(np, 0, &resource);
2623 	if (ret) {
2624 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2625 		return ret;
2626 	}
2627 
2628 	regsize = of_get_property(np, "reg-size", &proplen);
2629 	if (regsize && proplen != 4) {
2630 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2631 		return -EINVAL;
2632 	}
2633 
2634 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2635 	if (regspacing && proplen != 4) {
2636 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2637 		return -EINVAL;
2638 	}
2639 
2640 	regshift = of_get_property(np, "reg-shift", &proplen);
2641 	if (regshift && proplen != 4) {
2642 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2643 		return -EINVAL;
2644 	}
2645 
2646 	info = smi_info_alloc();
2647 
2648 	if (!info) {
2649 		dev_err(&dev->dev,
2650 			"could not allocate memory for OF probe\n");
2651 		return -ENOMEM;
2652 	}
2653 
2654 	info->si_type		= (enum si_type) match->data;
2655 	info->addr_source	= SI_DEVICETREE;
2656 	info->irq_setup		= std_irq_setup;
2657 
2658 	if (resource.flags & IORESOURCE_IO) {
2659 		info->io_setup		= port_setup;
2660 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2661 	} else {
2662 		info->io_setup		= mem_setup;
2663 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2664 	}
2665 
2666 	info->io.addr_data	= resource.start;
2667 
2668 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2669 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2670 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2671 
2672 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2673 	info->dev		= &dev->dev;
2674 
2675 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2676 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2677 		info->irq);
2678 
2679 	dev_set_drvdata(&dev->dev, info);
2680 
2681 	ret = add_smi(info);
2682 	if (ret) {
2683 		kfree(info);
2684 		return ret;
2685 	}
2686 	return 0;
2687 }
2688 #else
2689 #define of_ipmi_match NULL
2690 static int of_ipmi_probe(struct platform_device *dev)
2691 {
2692 	return -ENODEV;
2693 }
2694 #endif
2695 
2696 #ifdef CONFIG_ACPI
2697 static int acpi_ipmi_probe(struct platform_device *dev)
2698 {
2699 	struct smi_info *info;
2700 	struct resource *res, *res_second;
2701 	acpi_handle handle;
2702 	acpi_status status;
2703 	unsigned long long tmp;
2704 	int rv = -EINVAL;
2705 
2706 	if (!si_tryacpi)
2707 	       return 0;
2708 
2709 	handle = ACPI_HANDLE(&dev->dev);
2710 	if (!handle)
2711 		return -ENODEV;
2712 
2713 	info = smi_info_alloc();
2714 	if (!info)
2715 		return -ENOMEM;
2716 
2717 	info->addr_source = SI_ACPI;
2718 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2719 
2720 	info->addr_info.acpi_info.acpi_handle = handle;
2721 
2722 	/* _IFT tells us the interface type: KCS, BT, etc */
2723 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2724 	if (ACPI_FAILURE(status)) {
2725 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2726 		goto err_free;
2727 	}
2728 
2729 	switch (tmp) {
2730 	case 1:
2731 		info->si_type = SI_KCS;
2732 		break;
2733 	case 2:
2734 		info->si_type = SI_SMIC;
2735 		break;
2736 	case 3:
2737 		info->si_type = SI_BT;
2738 		break;
2739 	case 4: /* SSIF, just ignore */
2740 		rv = -ENODEV;
2741 		goto err_free;
2742 	default:
2743 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2744 		goto err_free;
2745 	}
2746 
2747 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2748 	if (res) {
2749 		info->io_setup = port_setup;
2750 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2751 	} else {
2752 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2753 		if (res) {
2754 			info->io_setup = mem_setup;
2755 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2756 		}
2757 	}
2758 	if (!res) {
2759 		dev_err(&dev->dev, "no I/O or memory address\n");
2760 		goto err_free;
2761 	}
2762 	info->io.addr_data = res->start;
2763 
2764 	info->io.regspacing = DEFAULT_REGSPACING;
2765 	res_second = platform_get_resource(dev,
2766 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2767 					IORESOURCE_IO : IORESOURCE_MEM,
2768 			       1);
2769 	if (res_second) {
2770 		if (res_second->start > info->io.addr_data)
2771 			info->io.regspacing =
2772 				res_second->start - info->io.addr_data;
2773 	}
2774 	info->io.regsize = DEFAULT_REGSPACING;
2775 	info->io.regshift = 0;
2776 
2777 	/* If _GPE exists, use it; otherwise use standard interrupts */
2778 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2779 	if (ACPI_SUCCESS(status)) {
2780 		info->irq = tmp;
2781 		info->irq_setup = acpi_gpe_irq_setup;
2782 	} else {
2783 		int irq = platform_get_irq(dev, 0);
2784 
2785 		if (irq > 0) {
2786 			info->irq = irq;
2787 			info->irq_setup = std_irq_setup;
2788 		}
2789 	}
2790 
2791 	info->dev = &dev->dev;
2792 	platform_set_drvdata(dev, info);
2793 
2794 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2795 		 res, info->io.regsize, info->io.regspacing,
2796 		 info->irq);
2797 
2798 	rv = add_smi(info);
2799 	if (rv)
2800 		kfree(info);
2801 
2802 	return rv;
2803 
2804 err_free:
2805 	kfree(info);
2806 	return rv;
2807 }
2808 
2809 static const struct acpi_device_id acpi_ipmi_match[] = {
2810 	{ "IPI0001", 0 },
2811 	{ },
2812 };
2813 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2814 #else
2815 static int acpi_ipmi_probe(struct platform_device *dev)
2816 {
2817 	return -ENODEV;
2818 }
2819 #endif
2820 
2821 static int ipmi_probe(struct platform_device *dev)
2822 {
2823 	if (of_ipmi_probe(dev) == 0)
2824 		return 0;
2825 
2826 	return acpi_ipmi_probe(dev);
2827 }
2828 
2829 static int ipmi_remove(struct platform_device *dev)
2830 {
2831 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2832 
2833 	cleanup_one_si(info);
2834 	return 0;
2835 }
2836 
2837 static struct platform_driver ipmi_driver = {
2838 	.driver = {
2839 		.name = DEVICE_NAME,
2840 		.of_match_table = of_ipmi_match,
2841 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2842 	},
2843 	.probe		= ipmi_probe,
2844 	.remove		= ipmi_remove,
2845 };
2846 
2847 #ifdef CONFIG_PARISC
2848 static int ipmi_parisc_probe(struct parisc_device *dev)
2849 {
2850 	struct smi_info *info;
2851 	int rv;
2852 
2853 	info = smi_info_alloc();
2854 
2855 	if (!info) {
2856 		dev_err(&dev->dev,
2857 			"could not allocate memory for PARISC probe\n");
2858 		return -ENOMEM;
2859 	}
2860 
2861 	info->si_type		= SI_KCS;
2862 	info->addr_source	= SI_DEVICETREE;
2863 	info->io_setup		= mem_setup;
2864 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2865 	info->io.addr_data	= dev->hpa.start;
2866 	info->io.regsize	= 1;
2867 	info->io.regspacing	= 1;
2868 	info->io.regshift	= 0;
2869 	info->irq		= 0; /* no interrupt */
2870 	info->irq_setup		= NULL;
2871 	info->dev		= &dev->dev;
2872 
2873 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2874 
2875 	dev_set_drvdata(&dev->dev, info);
2876 
2877 	rv = add_smi(info);
2878 	if (rv) {
2879 		kfree(info);
2880 		return rv;
2881 	}
2882 
2883 	return 0;
2884 }
2885 
2886 static int ipmi_parisc_remove(struct parisc_device *dev)
2887 {
2888 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2889 	return 0;
2890 }
2891 
2892 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2893 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2894 	{ 0, }
2895 };
2896 
2897 static struct parisc_driver ipmi_parisc_driver = {
2898 	.name =		"ipmi",
2899 	.id_table =	ipmi_parisc_tbl,
2900 	.probe =	ipmi_parisc_probe,
2901 	.remove =	ipmi_parisc_remove,
2902 };
2903 #endif /* CONFIG_PARISC */
2904 
2905 static int wait_for_msg_done(struct smi_info *smi_info)
2906 {
2907 	enum si_sm_result     smi_result;
2908 
2909 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2910 	for (;;) {
2911 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2912 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2913 			schedule_timeout_uninterruptible(1);
2914 			smi_result = smi_info->handlers->event(
2915 				smi_info->si_sm, jiffies_to_usecs(1));
2916 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2917 			smi_result = smi_info->handlers->event(
2918 				smi_info->si_sm, 0);
2919 		} else
2920 			break;
2921 	}
2922 	if (smi_result == SI_SM_HOSED)
2923 		/*
2924 		 * We couldn't get the state machine to run, so whatever's at
2925 		 * the port is probably not an IPMI SMI interface.
2926 		 */
2927 		return -ENODEV;
2928 
2929 	return 0;
2930 }
2931 
2932 static int try_get_dev_id(struct smi_info *smi_info)
2933 {
2934 	unsigned char         msg[2];
2935 	unsigned char         *resp;
2936 	unsigned long         resp_len;
2937 	int                   rv = 0;
2938 
2939 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2940 	if (!resp)
2941 		return -ENOMEM;
2942 
2943 	/*
2944 	 * Do a Get Device ID command, since it comes back with some
2945 	 * useful info.
2946 	 */
2947 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2948 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2949 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2950 
2951 	rv = wait_for_msg_done(smi_info);
2952 	if (rv)
2953 		goto out;
2954 
2955 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2956 						  resp, IPMI_MAX_MSG_LENGTH);
2957 
2958 	/* Check and record info from the get device id, in case we need it. */
2959 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2960 
2961 out:
2962 	kfree(resp);
2963 	return rv;
2964 }
2965 
2966 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2967 {
2968 	unsigned char         msg[3];
2969 	unsigned char         *resp;
2970 	unsigned long         resp_len;
2971 	int                   rv;
2972 
2973 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2974 	if (!resp)
2975 		return -ENOMEM;
2976 
2977 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2978 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2979 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2980 
2981 	rv = wait_for_msg_done(smi_info);
2982 	if (rv) {
2983 		dev_warn(smi_info->dev,
2984 			 "Error getting response from get global enables command: %d\n",
2985 			 rv);
2986 		goto out;
2987 	}
2988 
2989 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2990 						  resp, IPMI_MAX_MSG_LENGTH);
2991 
2992 	if (resp_len < 4 ||
2993 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2994 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2995 			resp[2] != 0) {
2996 		dev_warn(smi_info->dev,
2997 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2998 			 resp_len, resp[0], resp[1], resp[2]);
2999 		rv = -EINVAL;
3000 		goto out;
3001 	} else {
3002 		*enables = resp[3];
3003 	}
3004 
3005 out:
3006 	kfree(resp);
3007 	return rv;
3008 }
3009 
3010 /*
3011  * Returns 1 if it gets an error from the command.
3012  */
3013 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3014 {
3015 	unsigned char         msg[3];
3016 	unsigned char         *resp;
3017 	unsigned long         resp_len;
3018 	int                   rv;
3019 
3020 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3021 	if (!resp)
3022 		return -ENOMEM;
3023 
3024 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3025 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3026 	msg[2] = enables;
3027 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3028 
3029 	rv = wait_for_msg_done(smi_info);
3030 	if (rv) {
3031 		dev_warn(smi_info->dev,
3032 			 "Error getting response from set global enables command: %d\n",
3033 			 rv);
3034 		goto out;
3035 	}
3036 
3037 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3038 						  resp, IPMI_MAX_MSG_LENGTH);
3039 
3040 	if (resp_len < 3 ||
3041 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3042 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3043 		dev_warn(smi_info->dev,
3044 			 "Invalid return from set global enables command: %ld %x %x\n",
3045 			 resp_len, resp[0], resp[1]);
3046 		rv = -EINVAL;
3047 		goto out;
3048 	}
3049 
3050 	if (resp[2] != 0)
3051 		rv = 1;
3052 
3053 out:
3054 	kfree(resp);
3055 	return rv;
3056 }
3057 
3058 /*
3059  * Some BMCs do not support clearing the receive irq bit in the global
3060  * enables (even if they don't support interrupts on the BMC).  Check
3061  * for this and handle it properly.
3062  */
3063 static void check_clr_rcv_irq(struct smi_info *smi_info)
3064 {
3065 	u8 enables = 0;
3066 	int rv;
3067 
3068 	rv = get_global_enables(smi_info, &enables);
3069 	if (!rv) {
3070 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3071 			/* Already clear, should work ok. */
3072 			return;
3073 
3074 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3075 		rv = set_global_enables(smi_info, enables);
3076 	}
3077 
3078 	if (rv < 0) {
3079 		dev_err(smi_info->dev,
3080 			"Cannot check clearing the rcv irq: %d\n", rv);
3081 		return;
3082 	}
3083 
3084 	if (rv) {
3085 		/*
3086 		 * An error when setting the event buffer bit means
3087 		 * clearing the bit is not supported.
3088 		 */
3089 		dev_warn(smi_info->dev,
3090 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3091 		smi_info->cannot_disable_irq = true;
3092 	}
3093 }
3094 
3095 /*
3096  * Some BMCs do not support setting the interrupt bits in the global
3097  * enables even if they support interrupts.  Clearly bad, but we can
3098  * compensate.
3099  */
3100 static void check_set_rcv_irq(struct smi_info *smi_info)
3101 {
3102 	u8 enables = 0;
3103 	int rv;
3104 
3105 	if (!smi_info->irq)
3106 		return;
3107 
3108 	rv = get_global_enables(smi_info, &enables);
3109 	if (!rv) {
3110 		enables |= IPMI_BMC_RCV_MSG_INTR;
3111 		rv = set_global_enables(smi_info, enables);
3112 	}
3113 
3114 	if (rv < 0) {
3115 		dev_err(smi_info->dev,
3116 			"Cannot check setting the rcv irq: %d\n", rv);
3117 		return;
3118 	}
3119 
3120 	if (rv) {
3121 		/*
3122 		 * An error when setting the event buffer bit means
3123 		 * setting the bit is not supported.
3124 		 */
3125 		dev_warn(smi_info->dev,
3126 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3127 		smi_info->cannot_disable_irq = true;
3128 		smi_info->irq_enable_broken = true;
3129 	}
3130 }
3131 
3132 static int try_enable_event_buffer(struct smi_info *smi_info)
3133 {
3134 	unsigned char         msg[3];
3135 	unsigned char         *resp;
3136 	unsigned long         resp_len;
3137 	int                   rv = 0;
3138 
3139 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3140 	if (!resp)
3141 		return -ENOMEM;
3142 
3143 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3144 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3145 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3146 
3147 	rv = wait_for_msg_done(smi_info);
3148 	if (rv) {
3149 		printk(KERN_WARNING PFX "Error getting response from get"
3150 		       " global enables command, the event buffer is not"
3151 		       " enabled.\n");
3152 		goto out;
3153 	}
3154 
3155 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3156 						  resp, IPMI_MAX_MSG_LENGTH);
3157 
3158 	if (resp_len < 4 ||
3159 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3160 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3161 			resp[2] != 0) {
3162 		printk(KERN_WARNING PFX "Invalid return from get global"
3163 		       " enables command, cannot enable the event buffer.\n");
3164 		rv = -EINVAL;
3165 		goto out;
3166 	}
3167 
3168 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3169 		/* buffer is already enabled, nothing to do. */
3170 		smi_info->supports_event_msg_buff = true;
3171 		goto out;
3172 	}
3173 
3174 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3175 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3176 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3177 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3178 
3179 	rv = wait_for_msg_done(smi_info);
3180 	if (rv) {
3181 		printk(KERN_WARNING PFX "Error getting response from set"
3182 		       " global, enables command, the event buffer is not"
3183 		       " enabled.\n");
3184 		goto out;
3185 	}
3186 
3187 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3188 						  resp, IPMI_MAX_MSG_LENGTH);
3189 
3190 	if (resp_len < 3 ||
3191 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3192 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3193 		printk(KERN_WARNING PFX "Invalid return from get global,"
3194 		       "enables command, not enable the event buffer.\n");
3195 		rv = -EINVAL;
3196 		goto out;
3197 	}
3198 
3199 	if (resp[2] != 0)
3200 		/*
3201 		 * An error when setting the event buffer bit means
3202 		 * that the event buffer is not supported.
3203 		 */
3204 		rv = -ENOENT;
3205 	else
3206 		smi_info->supports_event_msg_buff = true;
3207 
3208 out:
3209 	kfree(resp);
3210 	return rv;
3211 }
3212 
3213 static int smi_type_proc_show(struct seq_file *m, void *v)
3214 {
3215 	struct smi_info *smi = m->private;
3216 
3217 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3218 
3219 	return 0;
3220 }
3221 
3222 static int smi_type_proc_open(struct inode *inode, struct file *file)
3223 {
3224 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3225 }
3226 
3227 static const struct file_operations smi_type_proc_ops = {
3228 	.open		= smi_type_proc_open,
3229 	.read		= seq_read,
3230 	.llseek		= seq_lseek,
3231 	.release	= single_release,
3232 };
3233 
3234 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3235 {
3236 	struct smi_info *smi = m->private;
3237 
3238 	seq_printf(m, "interrupts_enabled:    %d\n",
3239 		       smi->irq && !smi->interrupt_disabled);
3240 	seq_printf(m, "short_timeouts:        %u\n",
3241 		       smi_get_stat(smi, short_timeouts));
3242 	seq_printf(m, "long_timeouts:         %u\n",
3243 		       smi_get_stat(smi, long_timeouts));
3244 	seq_printf(m, "idles:                 %u\n",
3245 		       smi_get_stat(smi, idles));
3246 	seq_printf(m, "interrupts:            %u\n",
3247 		       smi_get_stat(smi, interrupts));
3248 	seq_printf(m, "attentions:            %u\n",
3249 		       smi_get_stat(smi, attentions));
3250 	seq_printf(m, "flag_fetches:          %u\n",
3251 		       smi_get_stat(smi, flag_fetches));
3252 	seq_printf(m, "hosed_count:           %u\n",
3253 		       smi_get_stat(smi, hosed_count));
3254 	seq_printf(m, "complete_transactions: %u\n",
3255 		       smi_get_stat(smi, complete_transactions));
3256 	seq_printf(m, "events:                %u\n",
3257 		       smi_get_stat(smi, events));
3258 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3259 		       smi_get_stat(smi, watchdog_pretimeouts));
3260 	seq_printf(m, "incoming_messages:     %u\n",
3261 		       smi_get_stat(smi, incoming_messages));
3262 	return 0;
3263 }
3264 
3265 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3266 {
3267 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3268 }
3269 
3270 static const struct file_operations smi_si_stats_proc_ops = {
3271 	.open		= smi_si_stats_proc_open,
3272 	.read		= seq_read,
3273 	.llseek		= seq_lseek,
3274 	.release	= single_release,
3275 };
3276 
3277 static int smi_params_proc_show(struct seq_file *m, void *v)
3278 {
3279 	struct smi_info *smi = m->private;
3280 
3281 	seq_printf(m,
3282 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3283 		   si_to_str[smi->si_type],
3284 		   addr_space_to_str[smi->io.addr_type],
3285 		   smi->io.addr_data,
3286 		   smi->io.regspacing,
3287 		   smi->io.regsize,
3288 		   smi->io.regshift,
3289 		   smi->irq,
3290 		   smi->slave_addr);
3291 
3292 	return 0;
3293 }
3294 
3295 static int smi_params_proc_open(struct inode *inode, struct file *file)
3296 {
3297 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3298 }
3299 
3300 static const struct file_operations smi_params_proc_ops = {
3301 	.open		= smi_params_proc_open,
3302 	.read		= seq_read,
3303 	.llseek		= seq_lseek,
3304 	.release	= single_release,
3305 };
3306 
3307 /*
3308  * oem_data_avail_to_receive_msg_avail
3309  * @info - smi_info structure with msg_flags set
3310  *
3311  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3312  * Returns 1 indicating need to re-run handle_flags().
3313  */
3314 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3315 {
3316 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3317 			       RECEIVE_MSG_AVAIL);
3318 	return 1;
3319 }
3320 
3321 /*
3322  * setup_dell_poweredge_oem_data_handler
3323  * @info - smi_info.device_id must be populated
3324  *
3325  * Systems that match, but have firmware version < 1.40 may assert
3326  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3327  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3328  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3329  * as RECEIVE_MSG_AVAIL instead.
3330  *
3331  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3332  * assert the OEM[012] bits, and if it did, the driver would have to
3333  * change to handle that properly, we don't actually check for the
3334  * firmware version.
3335  * Device ID = 0x20                BMC on PowerEdge 8G servers
3336  * Device Revision = 0x80
3337  * Firmware Revision1 = 0x01       BMC version 1.40
3338  * Firmware Revision2 = 0x40       BCD encoded
3339  * IPMI Version = 0x51             IPMI 1.5
3340  * Manufacturer ID = A2 02 00      Dell IANA
3341  *
3342  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3343  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3344  *
3345  */
3346 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3347 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3348 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3349 #define DELL_IANA_MFR_ID 0x0002a2
3350 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3351 {
3352 	struct ipmi_device_id *id = &smi_info->device_id;
3353 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3354 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3355 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3356 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3357 			smi_info->oem_data_avail_handler =
3358 				oem_data_avail_to_receive_msg_avail;
3359 		} else if (ipmi_version_major(id) < 1 ||
3360 			   (ipmi_version_major(id) == 1 &&
3361 			    ipmi_version_minor(id) < 5)) {
3362 			smi_info->oem_data_avail_handler =
3363 				oem_data_avail_to_receive_msg_avail;
3364 		}
3365 	}
3366 }
3367 
3368 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3369 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3370 {
3371 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3372 
3373 	/* Make it a response */
3374 	msg->rsp[0] = msg->data[0] | 4;
3375 	msg->rsp[1] = msg->data[1];
3376 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3377 	msg->rsp_size = 3;
3378 	smi_info->curr_msg = NULL;
3379 	deliver_recv_msg(smi_info, msg);
3380 }
3381 
3382 /*
3383  * dell_poweredge_bt_xaction_handler
3384  * @info - smi_info.device_id must be populated
3385  *
3386  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3387  * not respond to a Get SDR command if the length of the data
3388  * requested is exactly 0x3A, which leads to command timeouts and no
3389  * data returned.  This intercepts such commands, and causes userspace
3390  * callers to try again with a different-sized buffer, which succeeds.
3391  */
3392 
3393 #define STORAGE_NETFN 0x0A
3394 #define STORAGE_CMD_GET_SDR 0x23
3395 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3396 					     unsigned long unused,
3397 					     void *in)
3398 {
3399 	struct smi_info *smi_info = in;
3400 	unsigned char *data = smi_info->curr_msg->data;
3401 	unsigned int size   = smi_info->curr_msg->data_size;
3402 	if (size >= 8 &&
3403 	    (data[0]>>2) == STORAGE_NETFN &&
3404 	    data[1] == STORAGE_CMD_GET_SDR &&
3405 	    data[7] == 0x3A) {
3406 		return_hosed_msg_badsize(smi_info);
3407 		return NOTIFY_STOP;
3408 	}
3409 	return NOTIFY_DONE;
3410 }
3411 
3412 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3413 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3414 };
3415 
3416 /*
3417  * setup_dell_poweredge_bt_xaction_handler
3418  * @info - smi_info.device_id must be filled in already
3419  *
3420  * Fills in smi_info.device_id.start_transaction_pre_hook
3421  * when we know what function to use there.
3422  */
3423 static void
3424 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3425 {
3426 	struct ipmi_device_id *id = &smi_info->device_id;
3427 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3428 	    smi_info->si_type == SI_BT)
3429 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3430 }
3431 
3432 /*
3433  * setup_oem_data_handler
3434  * @info - smi_info.device_id must be filled in already
3435  *
3436  * Fills in smi_info.device_id.oem_data_available_handler
3437  * when we know what function to use there.
3438  */
3439 
3440 static void setup_oem_data_handler(struct smi_info *smi_info)
3441 {
3442 	setup_dell_poweredge_oem_data_handler(smi_info);
3443 }
3444 
3445 static void setup_xaction_handlers(struct smi_info *smi_info)
3446 {
3447 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3448 }
3449 
3450 static void check_for_broken_irqs(struct smi_info *smi_info)
3451 {
3452 	check_clr_rcv_irq(smi_info);
3453 	check_set_rcv_irq(smi_info);
3454 }
3455 
3456 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3457 {
3458 	if (smi_info->thread != NULL)
3459 		kthread_stop(smi_info->thread);
3460 	if (smi_info->timer_running)
3461 		del_timer_sync(&smi_info->si_timer);
3462 }
3463 
3464 static const struct ipmi_default_vals
3465 {
3466 	const int type;
3467 	const int port;
3468 } ipmi_defaults[] =
3469 {
3470 	{ .type = SI_KCS, .port = 0xca2 },
3471 	{ .type = SI_SMIC, .port = 0xca9 },
3472 	{ .type = SI_BT, .port = 0xe4 },
3473 	{ .port = 0 }
3474 };
3475 
3476 static void default_find_bmc(void)
3477 {
3478 	struct smi_info *info;
3479 	int             i;
3480 
3481 	for (i = 0; ; i++) {
3482 		if (!ipmi_defaults[i].port)
3483 			break;
3484 #ifdef CONFIG_PPC
3485 		if (check_legacy_ioport(ipmi_defaults[i].port))
3486 			continue;
3487 #endif
3488 		info = smi_info_alloc();
3489 		if (!info)
3490 			return;
3491 
3492 		info->addr_source = SI_DEFAULT;
3493 
3494 		info->si_type = ipmi_defaults[i].type;
3495 		info->io_setup = port_setup;
3496 		info->io.addr_data = ipmi_defaults[i].port;
3497 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3498 
3499 		info->io.addr = NULL;
3500 		info->io.regspacing = DEFAULT_REGSPACING;
3501 		info->io.regsize = DEFAULT_REGSPACING;
3502 		info->io.regshift = 0;
3503 
3504 		if (add_smi(info) == 0) {
3505 			if ((try_smi_init(info)) == 0) {
3506 				/* Found one... */
3507 				printk(KERN_INFO PFX "Found default %s"
3508 				" state machine at %s address 0x%lx\n",
3509 				si_to_str[info->si_type],
3510 				addr_space_to_str[info->io.addr_type],
3511 				info->io.addr_data);
3512 			} else
3513 				cleanup_one_si(info);
3514 		} else {
3515 			kfree(info);
3516 		}
3517 	}
3518 }
3519 
3520 static int is_new_interface(struct smi_info *info)
3521 {
3522 	struct smi_info *e;
3523 
3524 	list_for_each_entry(e, &smi_infos, link) {
3525 		if (e->io.addr_type != info->io.addr_type)
3526 			continue;
3527 		if (e->io.addr_data == info->io.addr_data)
3528 			return 0;
3529 	}
3530 
3531 	return 1;
3532 }
3533 
3534 static int add_smi(struct smi_info *new_smi)
3535 {
3536 	int rv = 0;
3537 
3538 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3539 	       ipmi_addr_src_to_str(new_smi->addr_source),
3540 	       si_to_str[new_smi->si_type]);
3541 	mutex_lock(&smi_infos_lock);
3542 	if (!is_new_interface(new_smi)) {
3543 		printk(KERN_CONT " duplicate interface\n");
3544 		rv = -EBUSY;
3545 		goto out_err;
3546 	}
3547 
3548 	printk(KERN_CONT "\n");
3549 
3550 	/* So we know not to free it unless we have allocated one. */
3551 	new_smi->intf = NULL;
3552 	new_smi->si_sm = NULL;
3553 	new_smi->handlers = NULL;
3554 
3555 	list_add_tail(&new_smi->link, &smi_infos);
3556 
3557 out_err:
3558 	mutex_unlock(&smi_infos_lock);
3559 	return rv;
3560 }
3561 
3562 static int try_smi_init(struct smi_info *new_smi)
3563 {
3564 	int rv = 0;
3565 	int i;
3566 
3567 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3568 	       " machine at %s address 0x%lx, slave address 0x%x,"
3569 	       " irq %d\n",
3570 	       ipmi_addr_src_to_str(new_smi->addr_source),
3571 	       si_to_str[new_smi->si_type],
3572 	       addr_space_to_str[new_smi->io.addr_type],
3573 	       new_smi->io.addr_data,
3574 	       new_smi->slave_addr, new_smi->irq);
3575 
3576 	switch (new_smi->si_type) {
3577 	case SI_KCS:
3578 		new_smi->handlers = &kcs_smi_handlers;
3579 		break;
3580 
3581 	case SI_SMIC:
3582 		new_smi->handlers = &smic_smi_handlers;
3583 		break;
3584 
3585 	case SI_BT:
3586 		new_smi->handlers = &bt_smi_handlers;
3587 		break;
3588 
3589 	default:
3590 		/* No support for anything else yet. */
3591 		rv = -EIO;
3592 		goto out_err;
3593 	}
3594 
3595 	/* Allocate the state machine's data and initialize it. */
3596 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3597 	if (!new_smi->si_sm) {
3598 		printk(KERN_ERR PFX
3599 		       "Could not allocate state machine memory\n");
3600 		rv = -ENOMEM;
3601 		goto out_err;
3602 	}
3603 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3604 							&new_smi->io);
3605 
3606 	/* Now that we know the I/O size, we can set up the I/O. */
3607 	rv = new_smi->io_setup(new_smi);
3608 	if (rv) {
3609 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3610 		goto out_err;
3611 	}
3612 
3613 	/* Do low-level detection first. */
3614 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3615 		if (new_smi->addr_source)
3616 			printk(KERN_INFO PFX "Interface detection failed\n");
3617 		rv = -ENODEV;
3618 		goto out_err;
3619 	}
3620 
3621 	/*
3622 	 * Attempt a get device id command.  If it fails, we probably
3623 	 * don't have a BMC here.
3624 	 */
3625 	rv = try_get_dev_id(new_smi);
3626 	if (rv) {
3627 		if (new_smi->addr_source)
3628 			printk(KERN_INFO PFX "There appears to be no BMC"
3629 			       " at this location\n");
3630 		goto out_err;
3631 	}
3632 
3633 	setup_oem_data_handler(new_smi);
3634 	setup_xaction_handlers(new_smi);
3635 	check_for_broken_irqs(new_smi);
3636 
3637 	new_smi->waiting_msg = NULL;
3638 	new_smi->curr_msg = NULL;
3639 	atomic_set(&new_smi->req_events, 0);
3640 	new_smi->run_to_completion = false;
3641 	for (i = 0; i < SI_NUM_STATS; i++)
3642 		atomic_set(&new_smi->stats[i], 0);
3643 
3644 	new_smi->interrupt_disabled = true;
3645 	atomic_set(&new_smi->need_watch, 0);
3646 	new_smi->intf_num = smi_num;
3647 	smi_num++;
3648 
3649 	rv = try_enable_event_buffer(new_smi);
3650 	if (rv == 0)
3651 		new_smi->has_event_buffer = true;
3652 
3653 	/*
3654 	 * Start clearing the flags before we enable interrupts or the
3655 	 * timer to avoid racing with the timer.
3656 	 */
3657 	start_clear_flags(new_smi, false);
3658 
3659 	/*
3660 	 * IRQ is defined to be set when non-zero.  req_events will
3661 	 * cause a global flags check that will enable interrupts.
3662 	 */
3663 	if (new_smi->irq) {
3664 		new_smi->interrupt_disabled = false;
3665 		atomic_set(&new_smi->req_events, 1);
3666 	}
3667 
3668 	if (!new_smi->dev) {
3669 		/*
3670 		 * If we don't already have a device from something
3671 		 * else (like PCI), then register a new one.
3672 		 */
3673 		new_smi->pdev = platform_device_alloc("ipmi_si",
3674 						      new_smi->intf_num);
3675 		if (!new_smi->pdev) {
3676 			printk(KERN_ERR PFX
3677 			       "Unable to allocate platform device\n");
3678 			goto out_err;
3679 		}
3680 		new_smi->dev = &new_smi->pdev->dev;
3681 		new_smi->dev->driver = &ipmi_driver.driver;
3682 
3683 		rv = platform_device_add(new_smi->pdev);
3684 		if (rv) {
3685 			printk(KERN_ERR PFX
3686 			       "Unable to register system interface device:"
3687 			       " %d\n",
3688 			       rv);
3689 			goto out_err;
3690 		}
3691 		new_smi->dev_registered = true;
3692 	}
3693 
3694 	rv = ipmi_register_smi(&handlers,
3695 			       new_smi,
3696 			       &new_smi->device_id,
3697 			       new_smi->dev,
3698 			       new_smi->slave_addr);
3699 	if (rv) {
3700 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3701 			rv);
3702 		goto out_err_stop_timer;
3703 	}
3704 
3705 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3706 				     &smi_type_proc_ops,
3707 				     new_smi);
3708 	if (rv) {
3709 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3710 		goto out_err_stop_timer;
3711 	}
3712 
3713 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3714 				     &smi_si_stats_proc_ops,
3715 				     new_smi);
3716 	if (rv) {
3717 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3718 		goto out_err_stop_timer;
3719 	}
3720 
3721 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3722 				     &smi_params_proc_ops,
3723 				     new_smi);
3724 	if (rv) {
3725 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3726 		goto out_err_stop_timer;
3727 	}
3728 
3729 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3730 		 si_to_str[new_smi->si_type]);
3731 
3732 	return 0;
3733 
3734 out_err_stop_timer:
3735 	wait_for_timer_and_thread(new_smi);
3736 
3737 out_err:
3738 	new_smi->interrupt_disabled = true;
3739 
3740 	if (new_smi->intf) {
3741 		ipmi_smi_t intf = new_smi->intf;
3742 		new_smi->intf = NULL;
3743 		ipmi_unregister_smi(intf);
3744 	}
3745 
3746 	if (new_smi->irq_cleanup) {
3747 		new_smi->irq_cleanup(new_smi);
3748 		new_smi->irq_cleanup = NULL;
3749 	}
3750 
3751 	/*
3752 	 * Wait until we know that we are out of any interrupt
3753 	 * handlers might have been running before we freed the
3754 	 * interrupt.
3755 	 */
3756 	synchronize_sched();
3757 
3758 	if (new_smi->si_sm) {
3759 		if (new_smi->handlers)
3760 			new_smi->handlers->cleanup(new_smi->si_sm);
3761 		kfree(new_smi->si_sm);
3762 		new_smi->si_sm = NULL;
3763 	}
3764 	if (new_smi->addr_source_cleanup) {
3765 		new_smi->addr_source_cleanup(new_smi);
3766 		new_smi->addr_source_cleanup = NULL;
3767 	}
3768 	if (new_smi->io_cleanup) {
3769 		new_smi->io_cleanup(new_smi);
3770 		new_smi->io_cleanup = NULL;
3771 	}
3772 
3773 	if (new_smi->dev_registered) {
3774 		platform_device_unregister(new_smi->pdev);
3775 		new_smi->dev_registered = false;
3776 	}
3777 
3778 	return rv;
3779 }
3780 
3781 static int init_ipmi_si(void)
3782 {
3783 	int  i;
3784 	char *str;
3785 	int  rv;
3786 	struct smi_info *e;
3787 	enum ipmi_addr_src type = SI_INVALID;
3788 
3789 	if (initialized)
3790 		return 0;
3791 	initialized = 1;
3792 
3793 	if (si_tryplatform) {
3794 		rv = platform_driver_register(&ipmi_driver);
3795 		if (rv) {
3796 			printk(KERN_ERR PFX "Unable to register "
3797 			       "driver: %d\n", rv);
3798 			return rv;
3799 		}
3800 	}
3801 
3802 	/* Parse out the si_type string into its components. */
3803 	str = si_type_str;
3804 	if (*str != '\0') {
3805 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3806 			si_type[i] = str;
3807 			str = strchr(str, ',');
3808 			if (str) {
3809 				*str = '\0';
3810 				str++;
3811 			} else {
3812 				break;
3813 			}
3814 		}
3815 	}
3816 
3817 	printk(KERN_INFO "IPMI System Interface driver.\n");
3818 
3819 	/* If the user gave us a device, they presumably want us to use it */
3820 	if (!hardcode_find_bmc())
3821 		return 0;
3822 
3823 #ifdef CONFIG_PCI
3824 	if (si_trypci) {
3825 		rv = pci_register_driver(&ipmi_pci_driver);
3826 		if (rv)
3827 			printk(KERN_ERR PFX "Unable to register "
3828 			       "PCI driver: %d\n", rv);
3829 		else
3830 			pci_registered = true;
3831 	}
3832 #endif
3833 
3834 #ifdef CONFIG_DMI
3835 	if (si_trydmi)
3836 		dmi_find_bmc();
3837 #endif
3838 
3839 #ifdef CONFIG_ACPI
3840 	if (si_tryacpi)
3841 		spmi_find_bmc();
3842 #endif
3843 
3844 #ifdef CONFIG_PARISC
3845 	register_parisc_driver(&ipmi_parisc_driver);
3846 	parisc_registered = true;
3847 	/* poking PC IO addresses will crash machine, don't do it */
3848 	si_trydefaults = 0;
3849 #endif
3850 
3851 	/* We prefer devices with interrupts, but in the case of a machine
3852 	   with multiple BMCs we assume that there will be several instances
3853 	   of a given type so if we succeed in registering a type then also
3854 	   try to register everything else of the same type */
3855 
3856 	mutex_lock(&smi_infos_lock);
3857 	list_for_each_entry(e, &smi_infos, link) {
3858 		/* Try to register a device if it has an IRQ and we either
3859 		   haven't successfully registered a device yet or this
3860 		   device has the same type as one we successfully registered */
3861 		if (e->irq && (!type || e->addr_source == type)) {
3862 			if (!try_smi_init(e)) {
3863 				type = e->addr_source;
3864 			}
3865 		}
3866 	}
3867 
3868 	/* type will only have been set if we successfully registered an si */
3869 	if (type) {
3870 		mutex_unlock(&smi_infos_lock);
3871 		return 0;
3872 	}
3873 
3874 	/* Fall back to the preferred device */
3875 
3876 	list_for_each_entry(e, &smi_infos, link) {
3877 		if (!e->irq && (!type || e->addr_source == type)) {
3878 			if (!try_smi_init(e)) {
3879 				type = e->addr_source;
3880 			}
3881 		}
3882 	}
3883 	mutex_unlock(&smi_infos_lock);
3884 
3885 	if (type)
3886 		return 0;
3887 
3888 	if (si_trydefaults) {
3889 		mutex_lock(&smi_infos_lock);
3890 		if (list_empty(&smi_infos)) {
3891 			/* No BMC was found, try defaults. */
3892 			mutex_unlock(&smi_infos_lock);
3893 			default_find_bmc();
3894 		} else
3895 			mutex_unlock(&smi_infos_lock);
3896 	}
3897 
3898 	mutex_lock(&smi_infos_lock);
3899 	if (unload_when_empty && list_empty(&smi_infos)) {
3900 		mutex_unlock(&smi_infos_lock);
3901 		cleanup_ipmi_si();
3902 		printk(KERN_WARNING PFX
3903 		       "Unable to find any System Interface(s)\n");
3904 		return -ENODEV;
3905 	} else {
3906 		mutex_unlock(&smi_infos_lock);
3907 		return 0;
3908 	}
3909 }
3910 module_init(init_ipmi_si);
3911 
3912 static void cleanup_one_si(struct smi_info *to_clean)
3913 {
3914 	int           rv = 0;
3915 
3916 	if (!to_clean)
3917 		return;
3918 
3919 	if (to_clean->intf) {
3920 		ipmi_smi_t intf = to_clean->intf;
3921 
3922 		to_clean->intf = NULL;
3923 		rv = ipmi_unregister_smi(intf);
3924 		if (rv) {
3925 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3926 			       rv);
3927 		}
3928 	}
3929 
3930 	if (to_clean->dev)
3931 		dev_set_drvdata(to_clean->dev, NULL);
3932 
3933 	list_del(&to_clean->link);
3934 
3935 	/*
3936 	 * Make sure that interrupts, the timer and the thread are
3937 	 * stopped and will not run again.
3938 	 */
3939 	if (to_clean->irq_cleanup)
3940 		to_clean->irq_cleanup(to_clean);
3941 	wait_for_timer_and_thread(to_clean);
3942 
3943 	/*
3944 	 * Timeouts are stopped, now make sure the interrupts are off
3945 	 * in the BMC.  Note that timers and CPU interrupts are off,
3946 	 * so no need for locks.
3947 	 */
3948 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3949 		poll(to_clean);
3950 		schedule_timeout_uninterruptible(1);
3951 	}
3952 	disable_si_irq(to_clean, false);
3953 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3954 		poll(to_clean);
3955 		schedule_timeout_uninterruptible(1);
3956 	}
3957 
3958 	if (to_clean->handlers)
3959 		to_clean->handlers->cleanup(to_clean->si_sm);
3960 
3961 	kfree(to_clean->si_sm);
3962 
3963 	if (to_clean->addr_source_cleanup)
3964 		to_clean->addr_source_cleanup(to_clean);
3965 	if (to_clean->io_cleanup)
3966 		to_clean->io_cleanup(to_clean);
3967 
3968 	if (to_clean->dev_registered)
3969 		platform_device_unregister(to_clean->pdev);
3970 
3971 	kfree(to_clean);
3972 }
3973 
3974 static void cleanup_ipmi_si(void)
3975 {
3976 	struct smi_info *e, *tmp_e;
3977 
3978 	if (!initialized)
3979 		return;
3980 
3981 #ifdef CONFIG_PCI
3982 	if (pci_registered)
3983 		pci_unregister_driver(&ipmi_pci_driver);
3984 #endif
3985 #ifdef CONFIG_PARISC
3986 	if (parisc_registered)
3987 		unregister_parisc_driver(&ipmi_parisc_driver);
3988 #endif
3989 
3990 	platform_driver_unregister(&ipmi_driver);
3991 
3992 	mutex_lock(&smi_infos_lock);
3993 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3994 		cleanup_one_si(e);
3995 	mutex_unlock(&smi_infos_lock);
3996 }
3997 module_exit(cleanup_ipmi_si);
3998 
3999 MODULE_LICENSE("GPL");
4000 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4001 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
4002 		   " system interfaces.");
4003