xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 92a2c6b2)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 
111 #define DEVICE_NAME "ipmi_si"
112 
113 static struct platform_driver ipmi_driver;
114 
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119 	/*
120 	 * Number of times the driver requested a timer while an operation
121 	 * was in progress.
122 	 */
123 	SI_STAT_short_timeouts = 0,
124 
125 	/*
126 	 * Number of times the driver requested a timer while nothing was in
127 	 * progress.
128 	 */
129 	SI_STAT_long_timeouts,
130 
131 	/* Number of times the interface was idle while being polled. */
132 	SI_STAT_idles,
133 
134 	/* Number of interrupts the driver handled. */
135 	SI_STAT_interrupts,
136 
137 	/* Number of time the driver got an ATTN from the hardware. */
138 	SI_STAT_attentions,
139 
140 	/* Number of times the driver requested flags from the hardware. */
141 	SI_STAT_flag_fetches,
142 
143 	/* Number of times the hardware didn't follow the state machine. */
144 	SI_STAT_hosed_count,
145 
146 	/* Number of completed messages. */
147 	SI_STAT_complete_transactions,
148 
149 	/* Number of IPMI events received from the hardware. */
150 	SI_STAT_events,
151 
152 	/* Number of watchdog pretimeouts. */
153 	SI_STAT_watchdog_pretimeouts,
154 
155 	/* Number of asynchronous messages received. */
156 	SI_STAT_incoming_messages,
157 
158 
159 	/* This *must* remain last, add new values above this. */
160 	SI_NUM_STATS
161 };
162 
163 struct smi_info {
164 	int                    intf_num;
165 	ipmi_smi_t             intf;
166 	struct si_sm_data      *si_sm;
167 	struct si_sm_handlers  *handlers;
168 	enum si_type           si_type;
169 	spinlock_t             si_lock;
170 	struct ipmi_smi_msg    *waiting_msg;
171 	struct ipmi_smi_msg    *curr_msg;
172 	enum si_intf_state     si_state;
173 
174 	/*
175 	 * Used to handle the various types of I/O that can occur with
176 	 * IPMI
177 	 */
178 	struct si_sm_io io;
179 	int (*io_setup)(struct smi_info *info);
180 	void (*io_cleanup)(struct smi_info *info);
181 	int (*irq_setup)(struct smi_info *info);
182 	void (*irq_cleanup)(struct smi_info *info);
183 	unsigned int io_size;
184 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 	void (*addr_source_cleanup)(struct smi_info *info);
186 	void *addr_source_data;
187 
188 	/*
189 	 * Per-OEM handler, called from handle_flags().  Returns 1
190 	 * when handle_flags() needs to be re-run or 0 indicating it
191 	 * set si_state itself.
192 	 */
193 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
194 
195 	/*
196 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 	 * is set to hold the flags until we are done handling everything
198 	 * from the flags.
199 	 */
200 #define RECEIVE_MSG_AVAIL	0x01
201 #define EVENT_MSG_BUFFER_FULL	0x02
202 #define WDT_PRE_TIMEOUT_INT	0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207 			     OEM1_DATA_AVAIL | \
208 			     OEM2_DATA_AVAIL)
209 	unsigned char       msg_flags;
210 
211 	/* Does the BMC have an event buffer? */
212 	bool		    has_event_buffer;
213 
214 	/*
215 	 * If set to true, this will request events the next time the
216 	 * state machine is idle.
217 	 */
218 	atomic_t            req_events;
219 
220 	/*
221 	 * If true, run the state machine to completion on every send
222 	 * call.  Generally used after a panic to make sure stuff goes
223 	 * out.
224 	 */
225 	bool                run_to_completion;
226 
227 	/* The I/O port of an SI interface. */
228 	int                 port;
229 
230 	/*
231 	 * The space between start addresses of the two ports.  For
232 	 * instance, if the first port is 0xca2 and the spacing is 4, then
233 	 * the second port is 0xca6.
234 	 */
235 	unsigned int        spacing;
236 
237 	/* zero if no irq; */
238 	int                 irq;
239 
240 	/* The timer for this si. */
241 	struct timer_list   si_timer;
242 
243 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 	bool		    timer_running;
245 
246 	/* The time (in jiffies) the last timeout occurred at. */
247 	unsigned long       last_timeout_jiffies;
248 
249 	/* Are we waiting for the events, pretimeouts, received msgs? */
250 	atomic_t            need_watch;
251 
252 	/*
253 	 * The driver will disable interrupts when it gets into a
254 	 * situation where it cannot handle messages due to lack of
255 	 * memory.  Once that situation clears up, it will re-enable
256 	 * interrupts.
257 	 */
258 	bool interrupt_disabled;
259 
260 	/*
261 	 * Does the BMC support events?
262 	 */
263 	bool supports_event_msg_buff;
264 
265 	/*
266 	 * Did we get an attention that we did not handle?
267 	 */
268 	bool got_attn;
269 
270 	/* From the get device id response... */
271 	struct ipmi_device_id device_id;
272 
273 	/* Driver model stuff. */
274 	struct device *dev;
275 	struct platform_device *pdev;
276 
277 	/*
278 	 * True if we allocated the device, false if it came from
279 	 * someplace else (like PCI).
280 	 */
281 	bool dev_registered;
282 
283 	/* Slave address, could be reported from DMI. */
284 	unsigned char slave_addr;
285 
286 	/* Counters and things for the proc filesystem. */
287 	atomic_t stats[SI_NUM_STATS];
288 
289 	struct task_struct *thread;
290 
291 	struct list_head link;
292 	union ipmi_smi_info_union addr_info;
293 };
294 
295 #define smi_inc_stat(smi, stat) \
296 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
297 #define smi_get_stat(smi, stat) \
298 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
299 
300 #define SI_MAX_PARMS 4
301 
302 static int force_kipmid[SI_MAX_PARMS];
303 static int num_force_kipmid;
304 #ifdef CONFIG_PCI
305 static bool pci_registered;
306 #endif
307 #ifdef CONFIG_ACPI
308 static bool pnp_registered;
309 #endif
310 #ifdef CONFIG_PARISC
311 static bool parisc_registered;
312 #endif
313 
314 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
315 static int num_max_busy_us;
316 
317 static bool unload_when_empty = true;
318 
319 static int add_smi(struct smi_info *smi);
320 static int try_smi_init(struct smi_info *smi);
321 static void cleanup_one_si(struct smi_info *to_clean);
322 static void cleanup_ipmi_si(void);
323 
324 #ifdef DEBUG_TIMING
325 void debug_timestamp(char *msg)
326 {
327 	struct timespec64 t;
328 
329 	getnstimeofday64(&t);
330 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
331 }
332 #else
333 #define debug_timestamp(x)
334 #endif
335 
336 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
337 static int register_xaction_notifier(struct notifier_block *nb)
338 {
339 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
340 }
341 
342 static void deliver_recv_msg(struct smi_info *smi_info,
343 			     struct ipmi_smi_msg *msg)
344 {
345 	/* Deliver the message to the upper layer. */
346 	if (smi_info->intf)
347 		ipmi_smi_msg_received(smi_info->intf, msg);
348 	else
349 		ipmi_free_smi_msg(msg);
350 }
351 
352 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
353 {
354 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
355 
356 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
357 		cCode = IPMI_ERR_UNSPECIFIED;
358 	/* else use it as is */
359 
360 	/* Make it a response */
361 	msg->rsp[0] = msg->data[0] | 4;
362 	msg->rsp[1] = msg->data[1];
363 	msg->rsp[2] = cCode;
364 	msg->rsp_size = 3;
365 
366 	smi_info->curr_msg = NULL;
367 	deliver_recv_msg(smi_info, msg);
368 }
369 
370 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
371 {
372 	int              rv;
373 
374 	if (!smi_info->waiting_msg) {
375 		smi_info->curr_msg = NULL;
376 		rv = SI_SM_IDLE;
377 	} else {
378 		int err;
379 
380 		smi_info->curr_msg = smi_info->waiting_msg;
381 		smi_info->waiting_msg = NULL;
382 		debug_timestamp("Start2");
383 		err = atomic_notifier_call_chain(&xaction_notifier_list,
384 				0, smi_info);
385 		if (err & NOTIFY_STOP_MASK) {
386 			rv = SI_SM_CALL_WITHOUT_DELAY;
387 			goto out;
388 		}
389 		err = smi_info->handlers->start_transaction(
390 			smi_info->si_sm,
391 			smi_info->curr_msg->data,
392 			smi_info->curr_msg->data_size);
393 		if (err)
394 			return_hosed_msg(smi_info, err);
395 
396 		rv = SI_SM_CALL_WITHOUT_DELAY;
397 	}
398  out:
399 	return rv;
400 }
401 
402 static void start_check_enables(struct smi_info *smi_info)
403 {
404 	unsigned char msg[2];
405 
406 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408 
409 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410 	smi_info->si_state = SI_CHECKING_ENABLES;
411 }
412 
413 static void start_clear_flags(struct smi_info *smi_info)
414 {
415 	unsigned char msg[3];
416 
417 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
418 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
419 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
420 	msg[2] = WDT_PRE_TIMEOUT_INT;
421 
422 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
423 	smi_info->si_state = SI_CLEARING_FLAGS;
424 }
425 
426 static void start_getting_msg_queue(struct smi_info *smi_info)
427 {
428 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
429 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
430 	smi_info->curr_msg->data_size = 2;
431 
432 	smi_info->handlers->start_transaction(
433 		smi_info->si_sm,
434 		smi_info->curr_msg->data,
435 		smi_info->curr_msg->data_size);
436 	smi_info->si_state = SI_GETTING_MESSAGES;
437 }
438 
439 static void start_getting_events(struct smi_info *smi_info)
440 {
441 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
442 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
443 	smi_info->curr_msg->data_size = 2;
444 
445 	smi_info->handlers->start_transaction(
446 		smi_info->si_sm,
447 		smi_info->curr_msg->data,
448 		smi_info->curr_msg->data_size);
449 	smi_info->si_state = SI_GETTING_EVENTS;
450 }
451 
452 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
453 {
454 	smi_info->last_timeout_jiffies = jiffies;
455 	mod_timer(&smi_info->si_timer, new_val);
456 	smi_info->timer_running = true;
457 }
458 
459 /*
460  * When we have a situtaion where we run out of memory and cannot
461  * allocate messages, we just leave them in the BMC and run the system
462  * polled until we can allocate some memory.  Once we have some
463  * memory, we will re-enable the interrupt.
464  */
465 static inline bool disable_si_irq(struct smi_info *smi_info)
466 {
467 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
468 		smi_info->interrupt_disabled = true;
469 		start_check_enables(smi_info);
470 		return true;
471 	}
472 	return false;
473 }
474 
475 static inline bool enable_si_irq(struct smi_info *smi_info)
476 {
477 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
478 		smi_info->interrupt_disabled = false;
479 		start_check_enables(smi_info);
480 		return true;
481 	}
482 	return false;
483 }
484 
485 /*
486  * Allocate a message.  If unable to allocate, start the interrupt
487  * disable process and return NULL.  If able to allocate but
488  * interrupts are disabled, free the message and return NULL after
489  * starting the interrupt enable process.
490  */
491 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
492 {
493 	struct ipmi_smi_msg *msg;
494 
495 	msg = ipmi_alloc_smi_msg();
496 	if (!msg) {
497 		if (!disable_si_irq(smi_info))
498 			smi_info->si_state = SI_NORMAL;
499 	} else if (enable_si_irq(smi_info)) {
500 		ipmi_free_smi_msg(msg);
501 		msg = NULL;
502 	}
503 	return msg;
504 }
505 
506 static void handle_flags(struct smi_info *smi_info)
507 {
508  retry:
509 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
510 		/* Watchdog pre-timeout */
511 		smi_inc_stat(smi_info, watchdog_pretimeouts);
512 
513 		start_clear_flags(smi_info);
514 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
515 		if (smi_info->intf)
516 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
517 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
518 		/* Messages available. */
519 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
520 		if (!smi_info->curr_msg)
521 			return;
522 
523 		start_getting_msg_queue(smi_info);
524 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
525 		/* Events available. */
526 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
527 		if (!smi_info->curr_msg)
528 			return;
529 
530 		start_getting_events(smi_info);
531 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
532 		   smi_info->oem_data_avail_handler) {
533 		if (smi_info->oem_data_avail_handler(smi_info))
534 			goto retry;
535 	} else
536 		smi_info->si_state = SI_NORMAL;
537 }
538 
539 /*
540  * Global enables we care about.
541  */
542 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
543 			     IPMI_BMC_EVT_MSG_INTR)
544 
545 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
546 				 bool *irq_on)
547 {
548 	u8 enables = 0;
549 
550 	if (smi_info->supports_event_msg_buff)
551 		enables |= IPMI_BMC_EVT_MSG_BUFF;
552 	else
553 		enables &= ~IPMI_BMC_EVT_MSG_BUFF;
554 
555 	if (smi_info->irq && !smi_info->interrupt_disabled)
556 		enables |= IPMI_BMC_RCV_MSG_INTR;
557 	else
558 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
559 
560 	if (smi_info->supports_event_msg_buff &&
561 	    smi_info->irq && !smi_info->interrupt_disabled)
562 
563 		enables |= IPMI_BMC_EVT_MSG_INTR;
564 	else
565 		enables &= ~IPMI_BMC_EVT_MSG_INTR;
566 
567 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
568 
569 	return enables;
570 }
571 
572 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
573 {
574 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
575 
576 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
577 
578 	if ((bool)irqstate == irq_on)
579 		return;
580 
581 	if (irq_on)
582 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
583 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
584 	else
585 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
586 }
587 
588 static void handle_transaction_done(struct smi_info *smi_info)
589 {
590 	struct ipmi_smi_msg *msg;
591 
592 	debug_timestamp("Done");
593 	switch (smi_info->si_state) {
594 	case SI_NORMAL:
595 		if (!smi_info->curr_msg)
596 			break;
597 
598 		smi_info->curr_msg->rsp_size
599 			= smi_info->handlers->get_result(
600 				smi_info->si_sm,
601 				smi_info->curr_msg->rsp,
602 				IPMI_MAX_MSG_LENGTH);
603 
604 		/*
605 		 * Do this here becase deliver_recv_msg() releases the
606 		 * lock, and a new message can be put in during the
607 		 * time the lock is released.
608 		 */
609 		msg = smi_info->curr_msg;
610 		smi_info->curr_msg = NULL;
611 		deliver_recv_msg(smi_info, msg);
612 		break;
613 
614 	case SI_GETTING_FLAGS:
615 	{
616 		unsigned char msg[4];
617 		unsigned int  len;
618 
619 		/* We got the flags from the SMI, now handle them. */
620 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
621 		if (msg[2] != 0) {
622 			/* Error fetching flags, just give up for now. */
623 			smi_info->si_state = SI_NORMAL;
624 		} else if (len < 4) {
625 			/*
626 			 * Hmm, no flags.  That's technically illegal, but
627 			 * don't use uninitialized data.
628 			 */
629 			smi_info->si_state = SI_NORMAL;
630 		} else {
631 			smi_info->msg_flags = msg[3];
632 			handle_flags(smi_info);
633 		}
634 		break;
635 	}
636 
637 	case SI_CLEARING_FLAGS:
638 	{
639 		unsigned char msg[3];
640 
641 		/* We cleared the flags. */
642 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
643 		if (msg[2] != 0) {
644 			/* Error clearing flags */
645 			dev_warn(smi_info->dev,
646 				 "Error clearing flags: %2.2x\n", msg[2]);
647 		}
648 		smi_info->si_state = SI_NORMAL;
649 		break;
650 	}
651 
652 	case SI_GETTING_EVENTS:
653 	{
654 		smi_info->curr_msg->rsp_size
655 			= smi_info->handlers->get_result(
656 				smi_info->si_sm,
657 				smi_info->curr_msg->rsp,
658 				IPMI_MAX_MSG_LENGTH);
659 
660 		/*
661 		 * Do this here becase deliver_recv_msg() releases the
662 		 * lock, and a new message can be put in during the
663 		 * time the lock is released.
664 		 */
665 		msg = smi_info->curr_msg;
666 		smi_info->curr_msg = NULL;
667 		if (msg->rsp[2] != 0) {
668 			/* Error getting event, probably done. */
669 			msg->done(msg);
670 
671 			/* Take off the event flag. */
672 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
673 			handle_flags(smi_info);
674 		} else {
675 			smi_inc_stat(smi_info, events);
676 
677 			/*
678 			 * Do this before we deliver the message
679 			 * because delivering the message releases the
680 			 * lock and something else can mess with the
681 			 * state.
682 			 */
683 			handle_flags(smi_info);
684 
685 			deliver_recv_msg(smi_info, msg);
686 		}
687 		break;
688 	}
689 
690 	case SI_GETTING_MESSAGES:
691 	{
692 		smi_info->curr_msg->rsp_size
693 			= smi_info->handlers->get_result(
694 				smi_info->si_sm,
695 				smi_info->curr_msg->rsp,
696 				IPMI_MAX_MSG_LENGTH);
697 
698 		/*
699 		 * Do this here becase deliver_recv_msg() releases the
700 		 * lock, and a new message can be put in during the
701 		 * time the lock is released.
702 		 */
703 		msg = smi_info->curr_msg;
704 		smi_info->curr_msg = NULL;
705 		if (msg->rsp[2] != 0) {
706 			/* Error getting event, probably done. */
707 			msg->done(msg);
708 
709 			/* Take off the msg flag. */
710 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
711 			handle_flags(smi_info);
712 		} else {
713 			smi_inc_stat(smi_info, incoming_messages);
714 
715 			/*
716 			 * Do this before we deliver the message
717 			 * because delivering the message releases the
718 			 * lock and something else can mess with the
719 			 * state.
720 			 */
721 			handle_flags(smi_info);
722 
723 			deliver_recv_msg(smi_info, msg);
724 		}
725 		break;
726 	}
727 
728 	case SI_CHECKING_ENABLES:
729 	{
730 		unsigned char msg[4];
731 		u8 enables;
732 		bool irq_on;
733 
734 		/* We got the flags from the SMI, now handle them. */
735 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
736 		if (msg[2] != 0) {
737 			dev_warn(smi_info->dev,
738 				 "Couldn't get irq info: %x.\n", msg[2]);
739 			dev_warn(smi_info->dev,
740 				 "Maybe ok, but ipmi might run very slowly.\n");
741 			smi_info->si_state = SI_NORMAL;
742 			break;
743 		}
744 		enables = current_global_enables(smi_info, 0, &irq_on);
745 		if (smi_info->si_type == SI_BT)
746 			/* BT has its own interrupt enable bit. */
747 			check_bt_irq(smi_info, irq_on);
748 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
749 			/* Enables are not correct, fix them. */
750 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
751 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
752 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
753 			smi_info->handlers->start_transaction(
754 				smi_info->si_sm, msg, 3);
755 			smi_info->si_state = SI_SETTING_ENABLES;
756 		} else if (smi_info->supports_event_msg_buff) {
757 			smi_info->curr_msg = ipmi_alloc_smi_msg();
758 			if (!smi_info->curr_msg) {
759 				smi_info->si_state = SI_NORMAL;
760 				break;
761 			}
762 			start_getting_msg_queue(smi_info);
763 		} else {
764 			smi_info->si_state = SI_NORMAL;
765 		}
766 		break;
767 	}
768 
769 	case SI_SETTING_ENABLES:
770 	{
771 		unsigned char msg[4];
772 
773 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
774 		if (msg[2] != 0)
775 			dev_warn(smi_info->dev,
776 				 "Could not set the global enables: 0x%x.\n",
777 				 msg[2]);
778 
779 		if (smi_info->supports_event_msg_buff) {
780 			smi_info->curr_msg = ipmi_alloc_smi_msg();
781 			if (!smi_info->curr_msg) {
782 				smi_info->si_state = SI_NORMAL;
783 				break;
784 			}
785 			start_getting_msg_queue(smi_info);
786 		} else {
787 			smi_info->si_state = SI_NORMAL;
788 		}
789 		break;
790 	}
791 	}
792 }
793 
794 /*
795  * Called on timeouts and events.  Timeouts should pass the elapsed
796  * time, interrupts should pass in zero.  Must be called with
797  * si_lock held and interrupts disabled.
798  */
799 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
800 					   int time)
801 {
802 	enum si_sm_result si_sm_result;
803 
804  restart:
805 	/*
806 	 * There used to be a loop here that waited a little while
807 	 * (around 25us) before giving up.  That turned out to be
808 	 * pointless, the minimum delays I was seeing were in the 300us
809 	 * range, which is far too long to wait in an interrupt.  So
810 	 * we just run until the state machine tells us something
811 	 * happened or it needs a delay.
812 	 */
813 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
814 	time = 0;
815 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
816 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
817 
818 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
819 		smi_inc_stat(smi_info, complete_transactions);
820 
821 		handle_transaction_done(smi_info);
822 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
823 	} else if (si_sm_result == SI_SM_HOSED) {
824 		smi_inc_stat(smi_info, hosed_count);
825 
826 		/*
827 		 * Do the before return_hosed_msg, because that
828 		 * releases the lock.
829 		 */
830 		smi_info->si_state = SI_NORMAL;
831 		if (smi_info->curr_msg != NULL) {
832 			/*
833 			 * If we were handling a user message, format
834 			 * a response to send to the upper layer to
835 			 * tell it about the error.
836 			 */
837 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
838 		}
839 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
840 	}
841 
842 	/*
843 	 * We prefer handling attn over new messages.  But don't do
844 	 * this if there is not yet an upper layer to handle anything.
845 	 */
846 	if (likely(smi_info->intf) &&
847 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
848 		unsigned char msg[2];
849 
850 		if (smi_info->si_state != SI_NORMAL) {
851 			/*
852 			 * We got an ATTN, but we are doing something else.
853 			 * Handle the ATTN later.
854 			 */
855 			smi_info->got_attn = true;
856 		} else {
857 			smi_info->got_attn = false;
858 			smi_inc_stat(smi_info, attentions);
859 
860 			/*
861 			 * Got a attn, send down a get message flags to see
862 			 * what's causing it.  It would be better to handle
863 			 * this in the upper layer, but due to the way
864 			 * interrupts work with the SMI, that's not really
865 			 * possible.
866 			 */
867 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
868 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
869 
870 			smi_info->handlers->start_transaction(
871 				smi_info->si_sm, msg, 2);
872 			smi_info->si_state = SI_GETTING_FLAGS;
873 			goto restart;
874 		}
875 	}
876 
877 	/* If we are currently idle, try to start the next message. */
878 	if (si_sm_result == SI_SM_IDLE) {
879 		smi_inc_stat(smi_info, idles);
880 
881 		si_sm_result = start_next_msg(smi_info);
882 		if (si_sm_result != SI_SM_IDLE)
883 			goto restart;
884 	}
885 
886 	if ((si_sm_result == SI_SM_IDLE)
887 	    && (atomic_read(&smi_info->req_events))) {
888 		/*
889 		 * We are idle and the upper layer requested that I fetch
890 		 * events, so do so.
891 		 */
892 		atomic_set(&smi_info->req_events, 0);
893 
894 		/*
895 		 * Take this opportunity to check the interrupt and
896 		 * message enable state for the BMC.  The BMC can be
897 		 * asynchronously reset, and may thus get interrupts
898 		 * disable and messages disabled.
899 		 */
900 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
901 			start_check_enables(smi_info);
902 		} else {
903 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
904 			if (!smi_info->curr_msg)
905 				goto out;
906 
907 			start_getting_events(smi_info);
908 		}
909 		goto restart;
910 	}
911  out:
912 	return si_sm_result;
913 }
914 
915 static void check_start_timer_thread(struct smi_info *smi_info)
916 {
917 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
918 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
919 
920 		if (smi_info->thread)
921 			wake_up_process(smi_info->thread);
922 
923 		start_next_msg(smi_info);
924 		smi_event_handler(smi_info, 0);
925 	}
926 }
927 
928 static void sender(void                *send_info,
929 		   struct ipmi_smi_msg *msg)
930 {
931 	struct smi_info   *smi_info = send_info;
932 	enum si_sm_result result;
933 	unsigned long     flags;
934 
935 	debug_timestamp("Enqueue");
936 
937 	if (smi_info->run_to_completion) {
938 		/*
939 		 * If we are running to completion, start it and run
940 		 * transactions until everything is clear.
941 		 */
942 		smi_info->curr_msg = msg;
943 		smi_info->waiting_msg = NULL;
944 
945 		/*
946 		 * Run to completion means we are single-threaded, no
947 		 * need for locks.
948 		 */
949 
950 		result = smi_event_handler(smi_info, 0);
951 		while (result != SI_SM_IDLE) {
952 			udelay(SI_SHORT_TIMEOUT_USEC);
953 			result = smi_event_handler(smi_info,
954 						   SI_SHORT_TIMEOUT_USEC);
955 		}
956 		return;
957 	}
958 
959 	spin_lock_irqsave(&smi_info->si_lock, flags);
960 	/*
961 	 * The following two lines don't need to be under the lock for
962 	 * the lock's sake, but they do need SMP memory barriers to
963 	 * avoid getting things out of order.  We are already claiming
964 	 * the lock, anyway, so just do it under the lock to avoid the
965 	 * ordering problem.
966 	 */
967 	BUG_ON(smi_info->waiting_msg);
968 	smi_info->waiting_msg = msg;
969 	check_start_timer_thread(smi_info);
970 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
971 }
972 
973 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
974 {
975 	struct smi_info   *smi_info = send_info;
976 	enum si_sm_result result;
977 
978 	smi_info->run_to_completion = i_run_to_completion;
979 	if (i_run_to_completion) {
980 		result = smi_event_handler(smi_info, 0);
981 		while (result != SI_SM_IDLE) {
982 			udelay(SI_SHORT_TIMEOUT_USEC);
983 			result = smi_event_handler(smi_info,
984 						   SI_SHORT_TIMEOUT_USEC);
985 		}
986 	}
987 }
988 
989 /*
990  * Use -1 in the nsec value of the busy waiting timespec to tell that
991  * we are spinning in kipmid looking for something and not delaying
992  * between checks
993  */
994 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
995 {
996 	ts->tv_nsec = -1;
997 }
998 static inline int ipmi_si_is_busy(struct timespec64 *ts)
999 {
1000 	return ts->tv_nsec != -1;
1001 }
1002 
1003 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1004 					const struct smi_info *smi_info,
1005 					struct timespec64 *busy_until)
1006 {
1007 	unsigned int max_busy_us = 0;
1008 
1009 	if (smi_info->intf_num < num_max_busy_us)
1010 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1011 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1012 		ipmi_si_set_not_busy(busy_until);
1013 	else if (!ipmi_si_is_busy(busy_until)) {
1014 		getnstimeofday64(busy_until);
1015 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1016 	} else {
1017 		struct timespec64 now;
1018 
1019 		getnstimeofday64(&now);
1020 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1021 			ipmi_si_set_not_busy(busy_until);
1022 			return 0;
1023 		}
1024 	}
1025 	return 1;
1026 }
1027 
1028 
1029 /*
1030  * A busy-waiting loop for speeding up IPMI operation.
1031  *
1032  * Lousy hardware makes this hard.  This is only enabled for systems
1033  * that are not BT and do not have interrupts.  It starts spinning
1034  * when an operation is complete or until max_busy tells it to stop
1035  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1036  * Documentation/IPMI.txt for details.
1037  */
1038 static int ipmi_thread(void *data)
1039 {
1040 	struct smi_info *smi_info = data;
1041 	unsigned long flags;
1042 	enum si_sm_result smi_result;
1043 	struct timespec64 busy_until;
1044 
1045 	ipmi_si_set_not_busy(&busy_until);
1046 	set_user_nice(current, MAX_NICE);
1047 	while (!kthread_should_stop()) {
1048 		int busy_wait;
1049 
1050 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1051 		smi_result = smi_event_handler(smi_info, 0);
1052 
1053 		/*
1054 		 * If the driver is doing something, there is a possible
1055 		 * race with the timer.  If the timer handler see idle,
1056 		 * and the thread here sees something else, the timer
1057 		 * handler won't restart the timer even though it is
1058 		 * required.  So start it here if necessary.
1059 		 */
1060 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1061 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1062 
1063 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1064 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1065 						  &busy_until);
1066 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1067 			; /* do nothing */
1068 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1069 			schedule();
1070 		else if (smi_result == SI_SM_IDLE) {
1071 			if (atomic_read(&smi_info->need_watch)) {
1072 				schedule_timeout_interruptible(100);
1073 			} else {
1074 				/* Wait to be woken up when we are needed. */
1075 				__set_current_state(TASK_INTERRUPTIBLE);
1076 				schedule();
1077 			}
1078 		} else
1079 			schedule_timeout_interruptible(1);
1080 	}
1081 	return 0;
1082 }
1083 
1084 
1085 static void poll(void *send_info)
1086 {
1087 	struct smi_info *smi_info = send_info;
1088 	unsigned long flags = 0;
1089 	bool run_to_completion = smi_info->run_to_completion;
1090 
1091 	/*
1092 	 * Make sure there is some delay in the poll loop so we can
1093 	 * drive time forward and timeout things.
1094 	 */
1095 	udelay(10);
1096 	if (!run_to_completion)
1097 		spin_lock_irqsave(&smi_info->si_lock, flags);
1098 	smi_event_handler(smi_info, 10);
1099 	if (!run_to_completion)
1100 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1101 }
1102 
1103 static void request_events(void *send_info)
1104 {
1105 	struct smi_info *smi_info = send_info;
1106 
1107 	if (!smi_info->has_event_buffer)
1108 		return;
1109 
1110 	atomic_set(&smi_info->req_events, 1);
1111 }
1112 
1113 static void set_need_watch(void *send_info, bool enable)
1114 {
1115 	struct smi_info *smi_info = send_info;
1116 	unsigned long flags;
1117 
1118 	atomic_set(&smi_info->need_watch, enable);
1119 	spin_lock_irqsave(&smi_info->si_lock, flags);
1120 	check_start_timer_thread(smi_info);
1121 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1122 }
1123 
1124 static int initialized;
1125 
1126 static void smi_timeout(unsigned long data)
1127 {
1128 	struct smi_info   *smi_info = (struct smi_info *) data;
1129 	enum si_sm_result smi_result;
1130 	unsigned long     flags;
1131 	unsigned long     jiffies_now;
1132 	long              time_diff;
1133 	long		  timeout;
1134 
1135 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1136 	debug_timestamp("Timer");
1137 
1138 	jiffies_now = jiffies;
1139 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1140 		     * SI_USEC_PER_JIFFY);
1141 	smi_result = smi_event_handler(smi_info, time_diff);
1142 
1143 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1144 		/* Running with interrupts, only do long timeouts. */
1145 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1146 		smi_inc_stat(smi_info, long_timeouts);
1147 		goto do_mod_timer;
1148 	}
1149 
1150 	/*
1151 	 * If the state machine asks for a short delay, then shorten
1152 	 * the timer timeout.
1153 	 */
1154 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1155 		smi_inc_stat(smi_info, short_timeouts);
1156 		timeout = jiffies + 1;
1157 	} else {
1158 		smi_inc_stat(smi_info, long_timeouts);
1159 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1160 	}
1161 
1162  do_mod_timer:
1163 	if (smi_result != SI_SM_IDLE)
1164 		smi_mod_timer(smi_info, timeout);
1165 	else
1166 		smi_info->timer_running = false;
1167 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1168 }
1169 
1170 static irqreturn_t si_irq_handler(int irq, void *data)
1171 {
1172 	struct smi_info *smi_info = data;
1173 	unsigned long   flags;
1174 
1175 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1176 
1177 	smi_inc_stat(smi_info, interrupts);
1178 
1179 	debug_timestamp("Interrupt");
1180 
1181 	smi_event_handler(smi_info, 0);
1182 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1183 	return IRQ_HANDLED;
1184 }
1185 
1186 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1187 {
1188 	struct smi_info *smi_info = data;
1189 	/* We need to clear the IRQ flag for the BT interface. */
1190 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1191 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1192 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1193 	return si_irq_handler(irq, data);
1194 }
1195 
1196 static int smi_start_processing(void       *send_info,
1197 				ipmi_smi_t intf)
1198 {
1199 	struct smi_info *new_smi = send_info;
1200 	int             enable = 0;
1201 
1202 	new_smi->intf = intf;
1203 
1204 	/* Try to claim any interrupts. */
1205 	if (new_smi->irq_setup)
1206 		new_smi->irq_setup(new_smi);
1207 
1208 	/* Set up the timer that drives the interface. */
1209 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1210 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1211 
1212 	/*
1213 	 * Check if the user forcefully enabled the daemon.
1214 	 */
1215 	if (new_smi->intf_num < num_force_kipmid)
1216 		enable = force_kipmid[new_smi->intf_num];
1217 	/*
1218 	 * The BT interface is efficient enough to not need a thread,
1219 	 * and there is no need for a thread if we have interrupts.
1220 	 */
1221 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1222 		enable = 1;
1223 
1224 	if (enable) {
1225 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1226 					      "kipmi%d", new_smi->intf_num);
1227 		if (IS_ERR(new_smi->thread)) {
1228 			dev_notice(new_smi->dev, "Could not start"
1229 				   " kernel thread due to error %ld, only using"
1230 				   " timers to drive the interface\n",
1231 				   PTR_ERR(new_smi->thread));
1232 			new_smi->thread = NULL;
1233 		}
1234 	}
1235 
1236 	return 0;
1237 }
1238 
1239 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1240 {
1241 	struct smi_info *smi = send_info;
1242 
1243 	data->addr_src = smi->addr_source;
1244 	data->dev = smi->dev;
1245 	data->addr_info = smi->addr_info;
1246 	get_device(smi->dev);
1247 
1248 	return 0;
1249 }
1250 
1251 static void set_maintenance_mode(void *send_info, bool enable)
1252 {
1253 	struct smi_info   *smi_info = send_info;
1254 
1255 	if (!enable)
1256 		atomic_set(&smi_info->req_events, 0);
1257 }
1258 
1259 static struct ipmi_smi_handlers handlers = {
1260 	.owner                  = THIS_MODULE,
1261 	.start_processing       = smi_start_processing,
1262 	.get_smi_info		= get_smi_info,
1263 	.sender			= sender,
1264 	.request_events		= request_events,
1265 	.set_need_watch		= set_need_watch,
1266 	.set_maintenance_mode   = set_maintenance_mode,
1267 	.set_run_to_completion  = set_run_to_completion,
1268 	.poll			= poll,
1269 };
1270 
1271 /*
1272  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1273  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1274  */
1275 
1276 static LIST_HEAD(smi_infos);
1277 static DEFINE_MUTEX(smi_infos_lock);
1278 static int smi_num; /* Used to sequence the SMIs */
1279 
1280 #define DEFAULT_REGSPACING	1
1281 #define DEFAULT_REGSIZE		1
1282 
1283 #ifdef CONFIG_ACPI
1284 static bool          si_tryacpi = 1;
1285 #endif
1286 #ifdef CONFIG_DMI
1287 static bool          si_trydmi = 1;
1288 #endif
1289 static bool          si_tryplatform = 1;
1290 #ifdef CONFIG_PCI
1291 static bool          si_trypci = 1;
1292 #endif
1293 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1294 static char          *si_type[SI_MAX_PARMS];
1295 #define MAX_SI_TYPE_STR 30
1296 static char          si_type_str[MAX_SI_TYPE_STR];
1297 static unsigned long addrs[SI_MAX_PARMS];
1298 static unsigned int num_addrs;
1299 static unsigned int  ports[SI_MAX_PARMS];
1300 static unsigned int num_ports;
1301 static int           irqs[SI_MAX_PARMS];
1302 static unsigned int num_irqs;
1303 static int           regspacings[SI_MAX_PARMS];
1304 static unsigned int num_regspacings;
1305 static int           regsizes[SI_MAX_PARMS];
1306 static unsigned int num_regsizes;
1307 static int           regshifts[SI_MAX_PARMS];
1308 static unsigned int num_regshifts;
1309 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1310 static unsigned int num_slave_addrs;
1311 
1312 #define IPMI_IO_ADDR_SPACE  0
1313 #define IPMI_MEM_ADDR_SPACE 1
1314 static char *addr_space_to_str[] = { "i/o", "mem" };
1315 
1316 static int hotmod_handler(const char *val, struct kernel_param *kp);
1317 
1318 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1319 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1320 		 " Documentation/IPMI.txt in the kernel sources for the"
1321 		 " gory details.");
1322 
1323 #ifdef CONFIG_ACPI
1324 module_param_named(tryacpi, si_tryacpi, bool, 0);
1325 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1326 		 " default scan of the interfaces identified via ACPI");
1327 #endif
1328 #ifdef CONFIG_DMI
1329 module_param_named(trydmi, si_trydmi, bool, 0);
1330 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1331 		 " default scan of the interfaces identified via DMI");
1332 #endif
1333 module_param_named(tryplatform, si_tryplatform, bool, 0);
1334 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1335 		 " default scan of the interfaces identified via platform"
1336 		 " interfaces like openfirmware");
1337 #ifdef CONFIG_PCI
1338 module_param_named(trypci, si_trypci, bool, 0);
1339 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1340 		 " default scan of the interfaces identified via pci");
1341 #endif
1342 module_param_named(trydefaults, si_trydefaults, bool, 0);
1343 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1344 		 " default scan of the KCS and SMIC interface at the standard"
1345 		 " address");
1346 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1347 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1348 		 " interface separated by commas.  The types are 'kcs',"
1349 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1350 		 " the first interface to kcs and the second to bt");
1351 module_param_array(addrs, ulong, &num_addrs, 0);
1352 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1353 		 " addresses separated by commas.  Only use if an interface"
1354 		 " is in memory.  Otherwise, set it to zero or leave"
1355 		 " it blank.");
1356 module_param_array(ports, uint, &num_ports, 0);
1357 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1358 		 " addresses separated by commas.  Only use if an interface"
1359 		 " is a port.  Otherwise, set it to zero or leave"
1360 		 " it blank.");
1361 module_param_array(irqs, int, &num_irqs, 0);
1362 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1363 		 " addresses separated by commas.  Only use if an interface"
1364 		 " has an interrupt.  Otherwise, set it to zero or leave"
1365 		 " it blank.");
1366 module_param_array(regspacings, int, &num_regspacings, 0);
1367 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1368 		 " and each successive register used by the interface.  For"
1369 		 " instance, if the start address is 0xca2 and the spacing"
1370 		 " is 2, then the second address is at 0xca4.  Defaults"
1371 		 " to 1.");
1372 module_param_array(regsizes, int, &num_regsizes, 0);
1373 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1374 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1375 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1376 		 " the 8-bit IPMI register has to be read from a larger"
1377 		 " register.");
1378 module_param_array(regshifts, int, &num_regshifts, 0);
1379 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1380 		 " IPMI register, in bits.  For instance, if the data"
1381 		 " is read from a 32-bit word and the IPMI data is in"
1382 		 " bit 8-15, then the shift would be 8");
1383 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1384 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1385 		 " the controller.  Normally this is 0x20, but can be"
1386 		 " overridden by this parm.  This is an array indexed"
1387 		 " by interface number.");
1388 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1389 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1390 		 " disabled(0).  Normally the IPMI driver auto-detects"
1391 		 " this, but the value may be overridden by this parm.");
1392 module_param(unload_when_empty, bool, 0);
1393 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1394 		 " specified or found, default is 1.  Setting to 0"
1395 		 " is useful for hot add of devices using hotmod.");
1396 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1397 MODULE_PARM_DESC(kipmid_max_busy_us,
1398 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1399 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1400 		 " if kipmid is using up a lot of CPU time.");
1401 
1402 
1403 static void std_irq_cleanup(struct smi_info *info)
1404 {
1405 	if (info->si_type == SI_BT)
1406 		/* Disable the interrupt in the BT interface. */
1407 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1408 	free_irq(info->irq, info);
1409 }
1410 
1411 static int std_irq_setup(struct smi_info *info)
1412 {
1413 	int rv;
1414 
1415 	if (!info->irq)
1416 		return 0;
1417 
1418 	if (info->si_type == SI_BT) {
1419 		rv = request_irq(info->irq,
1420 				 si_bt_irq_handler,
1421 				 IRQF_SHARED,
1422 				 DEVICE_NAME,
1423 				 info);
1424 		if (!rv)
1425 			/* Enable the interrupt in the BT interface. */
1426 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1427 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1428 	} else
1429 		rv = request_irq(info->irq,
1430 				 si_irq_handler,
1431 				 IRQF_SHARED,
1432 				 DEVICE_NAME,
1433 				 info);
1434 	if (rv) {
1435 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1436 			 " running polled\n",
1437 			 DEVICE_NAME, info->irq);
1438 		info->irq = 0;
1439 	} else {
1440 		info->irq_cleanup = std_irq_cleanup;
1441 		dev_info(info->dev, "Using irq %d\n", info->irq);
1442 	}
1443 
1444 	return rv;
1445 }
1446 
1447 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1448 {
1449 	unsigned int addr = io->addr_data;
1450 
1451 	return inb(addr + (offset * io->regspacing));
1452 }
1453 
1454 static void port_outb(struct si_sm_io *io, unsigned int offset,
1455 		      unsigned char b)
1456 {
1457 	unsigned int addr = io->addr_data;
1458 
1459 	outb(b, addr + (offset * io->regspacing));
1460 }
1461 
1462 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1463 {
1464 	unsigned int addr = io->addr_data;
1465 
1466 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1467 }
1468 
1469 static void port_outw(struct si_sm_io *io, unsigned int offset,
1470 		      unsigned char b)
1471 {
1472 	unsigned int addr = io->addr_data;
1473 
1474 	outw(b << io->regshift, addr + (offset * io->regspacing));
1475 }
1476 
1477 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1478 {
1479 	unsigned int addr = io->addr_data;
1480 
1481 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1482 }
1483 
1484 static void port_outl(struct si_sm_io *io, unsigned int offset,
1485 		      unsigned char b)
1486 {
1487 	unsigned int addr = io->addr_data;
1488 
1489 	outl(b << io->regshift, addr+(offset * io->regspacing));
1490 }
1491 
1492 static void port_cleanup(struct smi_info *info)
1493 {
1494 	unsigned int addr = info->io.addr_data;
1495 	int          idx;
1496 
1497 	if (addr) {
1498 		for (idx = 0; idx < info->io_size; idx++)
1499 			release_region(addr + idx * info->io.regspacing,
1500 				       info->io.regsize);
1501 	}
1502 }
1503 
1504 static int port_setup(struct smi_info *info)
1505 {
1506 	unsigned int addr = info->io.addr_data;
1507 	int          idx;
1508 
1509 	if (!addr)
1510 		return -ENODEV;
1511 
1512 	info->io_cleanup = port_cleanup;
1513 
1514 	/*
1515 	 * Figure out the actual inb/inw/inl/etc routine to use based
1516 	 * upon the register size.
1517 	 */
1518 	switch (info->io.regsize) {
1519 	case 1:
1520 		info->io.inputb = port_inb;
1521 		info->io.outputb = port_outb;
1522 		break;
1523 	case 2:
1524 		info->io.inputb = port_inw;
1525 		info->io.outputb = port_outw;
1526 		break;
1527 	case 4:
1528 		info->io.inputb = port_inl;
1529 		info->io.outputb = port_outl;
1530 		break;
1531 	default:
1532 		dev_warn(info->dev, "Invalid register size: %d\n",
1533 			 info->io.regsize);
1534 		return -EINVAL;
1535 	}
1536 
1537 	/*
1538 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1539 	 * tables.  This causes problems when trying to register the
1540 	 * entire I/O region.  Therefore we must register each I/O
1541 	 * port separately.
1542 	 */
1543 	for (idx = 0; idx < info->io_size; idx++) {
1544 		if (request_region(addr + idx * info->io.regspacing,
1545 				   info->io.regsize, DEVICE_NAME) == NULL) {
1546 			/* Undo allocations */
1547 			while (idx--) {
1548 				release_region(addr + idx * info->io.regspacing,
1549 					       info->io.regsize);
1550 			}
1551 			return -EIO;
1552 		}
1553 	}
1554 	return 0;
1555 }
1556 
1557 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1558 {
1559 	return readb((io->addr)+(offset * io->regspacing));
1560 }
1561 
1562 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1563 		     unsigned char b)
1564 {
1565 	writeb(b, (io->addr)+(offset * io->regspacing));
1566 }
1567 
1568 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1569 {
1570 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1571 		& 0xff;
1572 }
1573 
1574 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1575 		     unsigned char b)
1576 {
1577 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1578 }
1579 
1580 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1581 {
1582 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1583 		& 0xff;
1584 }
1585 
1586 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1587 		     unsigned char b)
1588 {
1589 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1590 }
1591 
1592 #ifdef readq
1593 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1594 {
1595 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1596 		& 0xff;
1597 }
1598 
1599 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1600 		     unsigned char b)
1601 {
1602 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1603 }
1604 #endif
1605 
1606 static void mem_cleanup(struct smi_info *info)
1607 {
1608 	unsigned long addr = info->io.addr_data;
1609 	int           mapsize;
1610 
1611 	if (info->io.addr) {
1612 		iounmap(info->io.addr);
1613 
1614 		mapsize = ((info->io_size * info->io.regspacing)
1615 			   - (info->io.regspacing - info->io.regsize));
1616 
1617 		release_mem_region(addr, mapsize);
1618 	}
1619 }
1620 
1621 static int mem_setup(struct smi_info *info)
1622 {
1623 	unsigned long addr = info->io.addr_data;
1624 	int           mapsize;
1625 
1626 	if (!addr)
1627 		return -ENODEV;
1628 
1629 	info->io_cleanup = mem_cleanup;
1630 
1631 	/*
1632 	 * Figure out the actual readb/readw/readl/etc routine to use based
1633 	 * upon the register size.
1634 	 */
1635 	switch (info->io.regsize) {
1636 	case 1:
1637 		info->io.inputb = intf_mem_inb;
1638 		info->io.outputb = intf_mem_outb;
1639 		break;
1640 	case 2:
1641 		info->io.inputb = intf_mem_inw;
1642 		info->io.outputb = intf_mem_outw;
1643 		break;
1644 	case 4:
1645 		info->io.inputb = intf_mem_inl;
1646 		info->io.outputb = intf_mem_outl;
1647 		break;
1648 #ifdef readq
1649 	case 8:
1650 		info->io.inputb = mem_inq;
1651 		info->io.outputb = mem_outq;
1652 		break;
1653 #endif
1654 	default:
1655 		dev_warn(info->dev, "Invalid register size: %d\n",
1656 			 info->io.regsize);
1657 		return -EINVAL;
1658 	}
1659 
1660 	/*
1661 	 * Calculate the total amount of memory to claim.  This is an
1662 	 * unusual looking calculation, but it avoids claiming any
1663 	 * more memory than it has to.  It will claim everything
1664 	 * between the first address to the end of the last full
1665 	 * register.
1666 	 */
1667 	mapsize = ((info->io_size * info->io.regspacing)
1668 		   - (info->io.regspacing - info->io.regsize));
1669 
1670 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1671 		return -EIO;
1672 
1673 	info->io.addr = ioremap(addr, mapsize);
1674 	if (info->io.addr == NULL) {
1675 		release_mem_region(addr, mapsize);
1676 		return -EIO;
1677 	}
1678 	return 0;
1679 }
1680 
1681 /*
1682  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1683  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1684  * Options are:
1685  *   rsp=<regspacing>
1686  *   rsi=<regsize>
1687  *   rsh=<regshift>
1688  *   irq=<irq>
1689  *   ipmb=<ipmb addr>
1690  */
1691 enum hotmod_op { HM_ADD, HM_REMOVE };
1692 struct hotmod_vals {
1693 	char *name;
1694 	int  val;
1695 };
1696 static struct hotmod_vals hotmod_ops[] = {
1697 	{ "add",	HM_ADD },
1698 	{ "remove",	HM_REMOVE },
1699 	{ NULL }
1700 };
1701 static struct hotmod_vals hotmod_si[] = {
1702 	{ "kcs",	SI_KCS },
1703 	{ "smic",	SI_SMIC },
1704 	{ "bt",		SI_BT },
1705 	{ NULL }
1706 };
1707 static struct hotmod_vals hotmod_as[] = {
1708 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1709 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1710 	{ NULL }
1711 };
1712 
1713 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1714 {
1715 	char *s;
1716 	int  i;
1717 
1718 	s = strchr(*curr, ',');
1719 	if (!s) {
1720 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1721 		return -EINVAL;
1722 	}
1723 	*s = '\0';
1724 	s++;
1725 	for (i = 0; v[i].name; i++) {
1726 		if (strcmp(*curr, v[i].name) == 0) {
1727 			*val = v[i].val;
1728 			*curr = s;
1729 			return 0;
1730 		}
1731 	}
1732 
1733 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1734 	return -EINVAL;
1735 }
1736 
1737 static int check_hotmod_int_op(const char *curr, const char *option,
1738 			       const char *name, int *val)
1739 {
1740 	char *n;
1741 
1742 	if (strcmp(curr, name) == 0) {
1743 		if (!option) {
1744 			printk(KERN_WARNING PFX
1745 			       "No option given for '%s'\n",
1746 			       curr);
1747 			return -EINVAL;
1748 		}
1749 		*val = simple_strtoul(option, &n, 0);
1750 		if ((*n != '\0') || (*option == '\0')) {
1751 			printk(KERN_WARNING PFX
1752 			       "Bad option given for '%s'\n",
1753 			       curr);
1754 			return -EINVAL;
1755 		}
1756 		return 1;
1757 	}
1758 	return 0;
1759 }
1760 
1761 static struct smi_info *smi_info_alloc(void)
1762 {
1763 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1764 
1765 	if (info)
1766 		spin_lock_init(&info->si_lock);
1767 	return info;
1768 }
1769 
1770 static int hotmod_handler(const char *val, struct kernel_param *kp)
1771 {
1772 	char *str = kstrdup(val, GFP_KERNEL);
1773 	int  rv;
1774 	char *next, *curr, *s, *n, *o;
1775 	enum hotmod_op op;
1776 	enum si_type si_type;
1777 	int  addr_space;
1778 	unsigned long addr;
1779 	int regspacing;
1780 	int regsize;
1781 	int regshift;
1782 	int irq;
1783 	int ipmb;
1784 	int ival;
1785 	int len;
1786 	struct smi_info *info;
1787 
1788 	if (!str)
1789 		return -ENOMEM;
1790 
1791 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1792 	len = strlen(str);
1793 	ival = len - 1;
1794 	while ((ival >= 0) && isspace(str[ival])) {
1795 		str[ival] = '\0';
1796 		ival--;
1797 	}
1798 
1799 	for (curr = str; curr; curr = next) {
1800 		regspacing = 1;
1801 		regsize = 1;
1802 		regshift = 0;
1803 		irq = 0;
1804 		ipmb = 0; /* Choose the default if not specified */
1805 
1806 		next = strchr(curr, ':');
1807 		if (next) {
1808 			*next = '\0';
1809 			next++;
1810 		}
1811 
1812 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1813 		if (rv)
1814 			break;
1815 		op = ival;
1816 
1817 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1818 		if (rv)
1819 			break;
1820 		si_type = ival;
1821 
1822 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1823 		if (rv)
1824 			break;
1825 
1826 		s = strchr(curr, ',');
1827 		if (s) {
1828 			*s = '\0';
1829 			s++;
1830 		}
1831 		addr = simple_strtoul(curr, &n, 0);
1832 		if ((*n != '\0') || (*curr == '\0')) {
1833 			printk(KERN_WARNING PFX "Invalid hotmod address"
1834 			       " '%s'\n", curr);
1835 			break;
1836 		}
1837 
1838 		while (s) {
1839 			curr = s;
1840 			s = strchr(curr, ',');
1841 			if (s) {
1842 				*s = '\0';
1843 				s++;
1844 			}
1845 			o = strchr(curr, '=');
1846 			if (o) {
1847 				*o = '\0';
1848 				o++;
1849 			}
1850 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1851 			if (rv < 0)
1852 				goto out;
1853 			else if (rv)
1854 				continue;
1855 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1856 			if (rv < 0)
1857 				goto out;
1858 			else if (rv)
1859 				continue;
1860 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1861 			if (rv < 0)
1862 				goto out;
1863 			else if (rv)
1864 				continue;
1865 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1866 			if (rv < 0)
1867 				goto out;
1868 			else if (rv)
1869 				continue;
1870 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1871 			if (rv < 0)
1872 				goto out;
1873 			else if (rv)
1874 				continue;
1875 
1876 			rv = -EINVAL;
1877 			printk(KERN_WARNING PFX
1878 			       "Invalid hotmod option '%s'\n",
1879 			       curr);
1880 			goto out;
1881 		}
1882 
1883 		if (op == HM_ADD) {
1884 			info = smi_info_alloc();
1885 			if (!info) {
1886 				rv = -ENOMEM;
1887 				goto out;
1888 			}
1889 
1890 			info->addr_source = SI_HOTMOD;
1891 			info->si_type = si_type;
1892 			info->io.addr_data = addr;
1893 			info->io.addr_type = addr_space;
1894 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1895 				info->io_setup = mem_setup;
1896 			else
1897 				info->io_setup = port_setup;
1898 
1899 			info->io.addr = NULL;
1900 			info->io.regspacing = regspacing;
1901 			if (!info->io.regspacing)
1902 				info->io.regspacing = DEFAULT_REGSPACING;
1903 			info->io.regsize = regsize;
1904 			if (!info->io.regsize)
1905 				info->io.regsize = DEFAULT_REGSPACING;
1906 			info->io.regshift = regshift;
1907 			info->irq = irq;
1908 			if (info->irq)
1909 				info->irq_setup = std_irq_setup;
1910 			info->slave_addr = ipmb;
1911 
1912 			rv = add_smi(info);
1913 			if (rv) {
1914 				kfree(info);
1915 				goto out;
1916 			}
1917 			rv = try_smi_init(info);
1918 			if (rv) {
1919 				cleanup_one_si(info);
1920 				goto out;
1921 			}
1922 		} else {
1923 			/* remove */
1924 			struct smi_info *e, *tmp_e;
1925 
1926 			mutex_lock(&smi_infos_lock);
1927 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1928 				if (e->io.addr_type != addr_space)
1929 					continue;
1930 				if (e->si_type != si_type)
1931 					continue;
1932 				if (e->io.addr_data == addr)
1933 					cleanup_one_si(e);
1934 			}
1935 			mutex_unlock(&smi_infos_lock);
1936 		}
1937 	}
1938 	rv = len;
1939  out:
1940 	kfree(str);
1941 	return rv;
1942 }
1943 
1944 static int hardcode_find_bmc(void)
1945 {
1946 	int ret = -ENODEV;
1947 	int             i;
1948 	struct smi_info *info;
1949 
1950 	for (i = 0; i < SI_MAX_PARMS; i++) {
1951 		if (!ports[i] && !addrs[i])
1952 			continue;
1953 
1954 		info = smi_info_alloc();
1955 		if (!info)
1956 			return -ENOMEM;
1957 
1958 		info->addr_source = SI_HARDCODED;
1959 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1960 
1961 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1962 			info->si_type = SI_KCS;
1963 		} else if (strcmp(si_type[i], "smic") == 0) {
1964 			info->si_type = SI_SMIC;
1965 		} else if (strcmp(si_type[i], "bt") == 0) {
1966 			info->si_type = SI_BT;
1967 		} else {
1968 			printk(KERN_WARNING PFX "Interface type specified "
1969 			       "for interface %d, was invalid: %s\n",
1970 			       i, si_type[i]);
1971 			kfree(info);
1972 			continue;
1973 		}
1974 
1975 		if (ports[i]) {
1976 			/* An I/O port */
1977 			info->io_setup = port_setup;
1978 			info->io.addr_data = ports[i];
1979 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1980 		} else if (addrs[i]) {
1981 			/* A memory port */
1982 			info->io_setup = mem_setup;
1983 			info->io.addr_data = addrs[i];
1984 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1985 		} else {
1986 			printk(KERN_WARNING PFX "Interface type specified "
1987 			       "for interface %d, but port and address were "
1988 			       "not set or set to zero.\n", i);
1989 			kfree(info);
1990 			continue;
1991 		}
1992 
1993 		info->io.addr = NULL;
1994 		info->io.regspacing = regspacings[i];
1995 		if (!info->io.regspacing)
1996 			info->io.regspacing = DEFAULT_REGSPACING;
1997 		info->io.regsize = regsizes[i];
1998 		if (!info->io.regsize)
1999 			info->io.regsize = DEFAULT_REGSPACING;
2000 		info->io.regshift = regshifts[i];
2001 		info->irq = irqs[i];
2002 		if (info->irq)
2003 			info->irq_setup = std_irq_setup;
2004 		info->slave_addr = slave_addrs[i];
2005 
2006 		if (!add_smi(info)) {
2007 			if (try_smi_init(info))
2008 				cleanup_one_si(info);
2009 			ret = 0;
2010 		} else {
2011 			kfree(info);
2012 		}
2013 	}
2014 	return ret;
2015 }
2016 
2017 #ifdef CONFIG_ACPI
2018 
2019 #include <linux/acpi.h>
2020 
2021 /*
2022  * Once we get an ACPI failure, we don't try any more, because we go
2023  * through the tables sequentially.  Once we don't find a table, there
2024  * are no more.
2025  */
2026 static int acpi_failure;
2027 
2028 /* For GPE-type interrupts. */
2029 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2030 	u32 gpe_number, void *context)
2031 {
2032 	struct smi_info *smi_info = context;
2033 	unsigned long   flags;
2034 
2035 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2036 
2037 	smi_inc_stat(smi_info, interrupts);
2038 
2039 	debug_timestamp("ACPI_GPE");
2040 
2041 	smi_event_handler(smi_info, 0);
2042 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2043 
2044 	return ACPI_INTERRUPT_HANDLED;
2045 }
2046 
2047 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2048 {
2049 	if (!info->irq)
2050 		return;
2051 
2052 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2053 }
2054 
2055 static int acpi_gpe_irq_setup(struct smi_info *info)
2056 {
2057 	acpi_status status;
2058 
2059 	if (!info->irq)
2060 		return 0;
2061 
2062 	status = acpi_install_gpe_handler(NULL,
2063 					  info->irq,
2064 					  ACPI_GPE_LEVEL_TRIGGERED,
2065 					  &ipmi_acpi_gpe,
2066 					  info);
2067 	if (status != AE_OK) {
2068 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2069 			 " running polled\n", DEVICE_NAME, info->irq);
2070 		info->irq = 0;
2071 		return -EINVAL;
2072 	} else {
2073 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2074 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2075 		return 0;
2076 	}
2077 }
2078 
2079 /*
2080  * Defined at
2081  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2082  */
2083 struct SPMITable {
2084 	s8	Signature[4];
2085 	u32	Length;
2086 	u8	Revision;
2087 	u8	Checksum;
2088 	s8	OEMID[6];
2089 	s8	OEMTableID[8];
2090 	s8	OEMRevision[4];
2091 	s8	CreatorID[4];
2092 	s8	CreatorRevision[4];
2093 	u8	InterfaceType;
2094 	u8	IPMIlegacy;
2095 	s16	SpecificationRevision;
2096 
2097 	/*
2098 	 * Bit 0 - SCI interrupt supported
2099 	 * Bit 1 - I/O APIC/SAPIC
2100 	 */
2101 	u8	InterruptType;
2102 
2103 	/*
2104 	 * If bit 0 of InterruptType is set, then this is the SCI
2105 	 * interrupt in the GPEx_STS register.
2106 	 */
2107 	u8	GPE;
2108 
2109 	s16	Reserved;
2110 
2111 	/*
2112 	 * If bit 1 of InterruptType is set, then this is the I/O
2113 	 * APIC/SAPIC interrupt.
2114 	 */
2115 	u32	GlobalSystemInterrupt;
2116 
2117 	/* The actual register address. */
2118 	struct acpi_generic_address addr;
2119 
2120 	u8	UID[4];
2121 
2122 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2123 };
2124 
2125 static int try_init_spmi(struct SPMITable *spmi)
2126 {
2127 	struct smi_info  *info;
2128 	int rv;
2129 
2130 	if (spmi->IPMIlegacy != 1) {
2131 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2132 		return -ENODEV;
2133 	}
2134 
2135 	info = smi_info_alloc();
2136 	if (!info) {
2137 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2138 		return -ENOMEM;
2139 	}
2140 
2141 	info->addr_source = SI_SPMI;
2142 	printk(KERN_INFO PFX "probing via SPMI\n");
2143 
2144 	/* Figure out the interface type. */
2145 	switch (spmi->InterfaceType) {
2146 	case 1:	/* KCS */
2147 		info->si_type = SI_KCS;
2148 		break;
2149 	case 2:	/* SMIC */
2150 		info->si_type = SI_SMIC;
2151 		break;
2152 	case 3:	/* BT */
2153 		info->si_type = SI_BT;
2154 		break;
2155 	case 4: /* SSIF, just ignore */
2156 		kfree(info);
2157 		return -EIO;
2158 	default:
2159 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2160 		       spmi->InterfaceType);
2161 		kfree(info);
2162 		return -EIO;
2163 	}
2164 
2165 	if (spmi->InterruptType & 1) {
2166 		/* We've got a GPE interrupt. */
2167 		info->irq = spmi->GPE;
2168 		info->irq_setup = acpi_gpe_irq_setup;
2169 	} else if (spmi->InterruptType & 2) {
2170 		/* We've got an APIC/SAPIC interrupt. */
2171 		info->irq = spmi->GlobalSystemInterrupt;
2172 		info->irq_setup = std_irq_setup;
2173 	} else {
2174 		/* Use the default interrupt setting. */
2175 		info->irq = 0;
2176 		info->irq_setup = NULL;
2177 	}
2178 
2179 	if (spmi->addr.bit_width) {
2180 		/* A (hopefully) properly formed register bit width. */
2181 		info->io.regspacing = spmi->addr.bit_width / 8;
2182 	} else {
2183 		info->io.regspacing = DEFAULT_REGSPACING;
2184 	}
2185 	info->io.regsize = info->io.regspacing;
2186 	info->io.regshift = spmi->addr.bit_offset;
2187 
2188 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2189 		info->io_setup = mem_setup;
2190 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2191 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2192 		info->io_setup = port_setup;
2193 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2194 	} else {
2195 		kfree(info);
2196 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2197 		return -EIO;
2198 	}
2199 	info->io.addr_data = spmi->addr.address;
2200 
2201 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2202 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2203 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2204 		 info->irq);
2205 
2206 	rv = add_smi(info);
2207 	if (rv)
2208 		kfree(info);
2209 
2210 	return rv;
2211 }
2212 
2213 static void spmi_find_bmc(void)
2214 {
2215 	acpi_status      status;
2216 	struct SPMITable *spmi;
2217 	int              i;
2218 
2219 	if (acpi_disabled)
2220 		return;
2221 
2222 	if (acpi_failure)
2223 		return;
2224 
2225 	for (i = 0; ; i++) {
2226 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2227 					(struct acpi_table_header **)&spmi);
2228 		if (status != AE_OK)
2229 			return;
2230 
2231 		try_init_spmi(spmi);
2232 	}
2233 }
2234 
2235 static int ipmi_pnp_probe(struct pnp_dev *dev,
2236 				    const struct pnp_device_id *dev_id)
2237 {
2238 	struct acpi_device *acpi_dev;
2239 	struct smi_info *info;
2240 	struct resource *res, *res_second;
2241 	acpi_handle handle;
2242 	acpi_status status;
2243 	unsigned long long tmp;
2244 	int rv;
2245 
2246 	acpi_dev = pnp_acpi_device(dev);
2247 	if (!acpi_dev)
2248 		return -ENODEV;
2249 
2250 	info = smi_info_alloc();
2251 	if (!info)
2252 		return -ENOMEM;
2253 
2254 	info->addr_source = SI_ACPI;
2255 	printk(KERN_INFO PFX "probing via ACPI\n");
2256 
2257 	handle = acpi_dev->handle;
2258 	info->addr_info.acpi_info.acpi_handle = handle;
2259 
2260 	/* _IFT tells us the interface type: KCS, BT, etc */
2261 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2262 	if (ACPI_FAILURE(status))
2263 		goto err_free;
2264 
2265 	switch (tmp) {
2266 	case 1:
2267 		info->si_type = SI_KCS;
2268 		break;
2269 	case 2:
2270 		info->si_type = SI_SMIC;
2271 		break;
2272 	case 3:
2273 		info->si_type = SI_BT;
2274 		break;
2275 	case 4: /* SSIF, just ignore */
2276 		goto err_free;
2277 	default:
2278 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2279 		goto err_free;
2280 	}
2281 
2282 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2283 	if (res) {
2284 		info->io_setup = port_setup;
2285 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2286 	} else {
2287 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2288 		if (res) {
2289 			info->io_setup = mem_setup;
2290 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2291 		}
2292 	}
2293 	if (!res) {
2294 		dev_err(&dev->dev, "no I/O or memory address\n");
2295 		goto err_free;
2296 	}
2297 	info->io.addr_data = res->start;
2298 
2299 	info->io.regspacing = DEFAULT_REGSPACING;
2300 	res_second = pnp_get_resource(dev,
2301 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2302 					IORESOURCE_IO : IORESOURCE_MEM,
2303 			       1);
2304 	if (res_second) {
2305 		if (res_second->start > info->io.addr_data)
2306 			info->io.regspacing = res_second->start - info->io.addr_data;
2307 	}
2308 	info->io.regsize = DEFAULT_REGSPACING;
2309 	info->io.regshift = 0;
2310 
2311 	/* If _GPE exists, use it; otherwise use standard interrupts */
2312 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2313 	if (ACPI_SUCCESS(status)) {
2314 		info->irq = tmp;
2315 		info->irq_setup = acpi_gpe_irq_setup;
2316 	} else if (pnp_irq_valid(dev, 0)) {
2317 		info->irq = pnp_irq(dev, 0);
2318 		info->irq_setup = std_irq_setup;
2319 	}
2320 
2321 	info->dev = &dev->dev;
2322 	pnp_set_drvdata(dev, info);
2323 
2324 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2325 		 res, info->io.regsize, info->io.regspacing,
2326 		 info->irq);
2327 
2328 	rv = add_smi(info);
2329 	if (rv)
2330 		kfree(info);
2331 
2332 	return rv;
2333 
2334 err_free:
2335 	kfree(info);
2336 	return -EINVAL;
2337 }
2338 
2339 static void ipmi_pnp_remove(struct pnp_dev *dev)
2340 {
2341 	struct smi_info *info = pnp_get_drvdata(dev);
2342 
2343 	cleanup_one_si(info);
2344 }
2345 
2346 static const struct pnp_device_id pnp_dev_table[] = {
2347 	{"IPI0001", 0},
2348 	{"", 0},
2349 };
2350 
2351 static struct pnp_driver ipmi_pnp_driver = {
2352 	.name		= DEVICE_NAME,
2353 	.probe		= ipmi_pnp_probe,
2354 	.remove		= ipmi_pnp_remove,
2355 	.id_table	= pnp_dev_table,
2356 };
2357 
2358 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2359 #endif
2360 
2361 #ifdef CONFIG_DMI
2362 struct dmi_ipmi_data {
2363 	u8   		type;
2364 	u8   		addr_space;
2365 	unsigned long	base_addr;
2366 	u8   		irq;
2367 	u8              offset;
2368 	u8              slave_addr;
2369 };
2370 
2371 static int decode_dmi(const struct dmi_header *dm,
2372 				struct dmi_ipmi_data *dmi)
2373 {
2374 	const u8	*data = (const u8 *)dm;
2375 	unsigned long  	base_addr;
2376 	u8		reg_spacing;
2377 	u8              len = dm->length;
2378 
2379 	dmi->type = data[4];
2380 
2381 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2382 	if (len >= 0x11) {
2383 		if (base_addr & 1) {
2384 			/* I/O */
2385 			base_addr &= 0xFFFE;
2386 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2387 		} else
2388 			/* Memory */
2389 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2390 
2391 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2392 		   is odd. */
2393 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2394 
2395 		dmi->irq = data[0x11];
2396 
2397 		/* The top two bits of byte 0x10 hold the register spacing. */
2398 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2399 		switch (reg_spacing) {
2400 		case 0x00: /* Byte boundaries */
2401 		    dmi->offset = 1;
2402 		    break;
2403 		case 0x01: /* 32-bit boundaries */
2404 		    dmi->offset = 4;
2405 		    break;
2406 		case 0x02: /* 16-byte boundaries */
2407 		    dmi->offset = 16;
2408 		    break;
2409 		default:
2410 		    /* Some other interface, just ignore it. */
2411 		    return -EIO;
2412 		}
2413 	} else {
2414 		/* Old DMI spec. */
2415 		/*
2416 		 * Note that technically, the lower bit of the base
2417 		 * address should be 1 if the address is I/O and 0 if
2418 		 * the address is in memory.  So many systems get that
2419 		 * wrong (and all that I have seen are I/O) so we just
2420 		 * ignore that bit and assume I/O.  Systems that use
2421 		 * memory should use the newer spec, anyway.
2422 		 */
2423 		dmi->base_addr = base_addr & 0xfffe;
2424 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2425 		dmi->offset = 1;
2426 	}
2427 
2428 	dmi->slave_addr = data[6];
2429 
2430 	return 0;
2431 }
2432 
2433 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2434 {
2435 	struct smi_info *info;
2436 
2437 	info = smi_info_alloc();
2438 	if (!info) {
2439 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2440 		return;
2441 	}
2442 
2443 	info->addr_source = SI_SMBIOS;
2444 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2445 
2446 	switch (ipmi_data->type) {
2447 	case 0x01: /* KCS */
2448 		info->si_type = SI_KCS;
2449 		break;
2450 	case 0x02: /* SMIC */
2451 		info->si_type = SI_SMIC;
2452 		break;
2453 	case 0x03: /* BT */
2454 		info->si_type = SI_BT;
2455 		break;
2456 	default:
2457 		kfree(info);
2458 		return;
2459 	}
2460 
2461 	switch (ipmi_data->addr_space) {
2462 	case IPMI_MEM_ADDR_SPACE:
2463 		info->io_setup = mem_setup;
2464 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2465 		break;
2466 
2467 	case IPMI_IO_ADDR_SPACE:
2468 		info->io_setup = port_setup;
2469 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2470 		break;
2471 
2472 	default:
2473 		kfree(info);
2474 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2475 		       ipmi_data->addr_space);
2476 		return;
2477 	}
2478 	info->io.addr_data = ipmi_data->base_addr;
2479 
2480 	info->io.regspacing = ipmi_data->offset;
2481 	if (!info->io.regspacing)
2482 		info->io.regspacing = DEFAULT_REGSPACING;
2483 	info->io.regsize = DEFAULT_REGSPACING;
2484 	info->io.regshift = 0;
2485 
2486 	info->slave_addr = ipmi_data->slave_addr;
2487 
2488 	info->irq = ipmi_data->irq;
2489 	if (info->irq)
2490 		info->irq_setup = std_irq_setup;
2491 
2492 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2493 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2494 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2495 		 info->irq);
2496 
2497 	if (add_smi(info))
2498 		kfree(info);
2499 }
2500 
2501 static void dmi_find_bmc(void)
2502 {
2503 	const struct dmi_device *dev = NULL;
2504 	struct dmi_ipmi_data data;
2505 	int                  rv;
2506 
2507 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2508 		memset(&data, 0, sizeof(data));
2509 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2510 				&data);
2511 		if (!rv)
2512 			try_init_dmi(&data);
2513 	}
2514 }
2515 #endif /* CONFIG_DMI */
2516 
2517 #ifdef CONFIG_PCI
2518 
2519 #define PCI_ERMC_CLASSCODE		0x0C0700
2520 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2521 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2522 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2523 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2524 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2525 
2526 #define PCI_HP_VENDOR_ID    0x103C
2527 #define PCI_MMC_DEVICE_ID   0x121A
2528 #define PCI_MMC_ADDR_CW     0x10
2529 
2530 static void ipmi_pci_cleanup(struct smi_info *info)
2531 {
2532 	struct pci_dev *pdev = info->addr_source_data;
2533 
2534 	pci_disable_device(pdev);
2535 }
2536 
2537 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2538 {
2539 	if (info->si_type == SI_KCS) {
2540 		unsigned char	status;
2541 		int		regspacing;
2542 
2543 		info->io.regsize = DEFAULT_REGSIZE;
2544 		info->io.regshift = 0;
2545 		info->io_size = 2;
2546 		info->handlers = &kcs_smi_handlers;
2547 
2548 		/* detect 1, 4, 16byte spacing */
2549 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2550 			info->io.regspacing = regspacing;
2551 			if (info->io_setup(info)) {
2552 				dev_err(info->dev,
2553 					"Could not setup I/O space\n");
2554 				return DEFAULT_REGSPACING;
2555 			}
2556 			/* write invalid cmd */
2557 			info->io.outputb(&info->io, 1, 0x10);
2558 			/* read status back */
2559 			status = info->io.inputb(&info->io, 1);
2560 			info->io_cleanup(info);
2561 			if (status)
2562 				return regspacing;
2563 			regspacing *= 4;
2564 		}
2565 	}
2566 	return DEFAULT_REGSPACING;
2567 }
2568 
2569 static int ipmi_pci_probe(struct pci_dev *pdev,
2570 				    const struct pci_device_id *ent)
2571 {
2572 	int rv;
2573 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2574 	struct smi_info *info;
2575 
2576 	info = smi_info_alloc();
2577 	if (!info)
2578 		return -ENOMEM;
2579 
2580 	info->addr_source = SI_PCI;
2581 	dev_info(&pdev->dev, "probing via PCI");
2582 
2583 	switch (class_type) {
2584 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2585 		info->si_type = SI_SMIC;
2586 		break;
2587 
2588 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2589 		info->si_type = SI_KCS;
2590 		break;
2591 
2592 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2593 		info->si_type = SI_BT;
2594 		break;
2595 
2596 	default:
2597 		kfree(info);
2598 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2599 		return -ENOMEM;
2600 	}
2601 
2602 	rv = pci_enable_device(pdev);
2603 	if (rv) {
2604 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2605 		kfree(info);
2606 		return rv;
2607 	}
2608 
2609 	info->addr_source_cleanup = ipmi_pci_cleanup;
2610 	info->addr_source_data = pdev;
2611 
2612 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2613 		info->io_setup = port_setup;
2614 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2615 	} else {
2616 		info->io_setup = mem_setup;
2617 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2618 	}
2619 	info->io.addr_data = pci_resource_start(pdev, 0);
2620 
2621 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2622 	info->io.regsize = DEFAULT_REGSIZE;
2623 	info->io.regshift = 0;
2624 
2625 	info->irq = pdev->irq;
2626 	if (info->irq)
2627 		info->irq_setup = std_irq_setup;
2628 
2629 	info->dev = &pdev->dev;
2630 	pci_set_drvdata(pdev, info);
2631 
2632 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2633 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2634 		info->irq);
2635 
2636 	rv = add_smi(info);
2637 	if (rv) {
2638 		kfree(info);
2639 		pci_disable_device(pdev);
2640 	}
2641 
2642 	return rv;
2643 }
2644 
2645 static void ipmi_pci_remove(struct pci_dev *pdev)
2646 {
2647 	struct smi_info *info = pci_get_drvdata(pdev);
2648 	cleanup_one_si(info);
2649 	pci_disable_device(pdev);
2650 }
2651 
2652 static struct pci_device_id ipmi_pci_devices[] = {
2653 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2654 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2655 	{ 0, }
2656 };
2657 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2658 
2659 static struct pci_driver ipmi_pci_driver = {
2660 	.name =         DEVICE_NAME,
2661 	.id_table =     ipmi_pci_devices,
2662 	.probe =        ipmi_pci_probe,
2663 	.remove =       ipmi_pci_remove,
2664 };
2665 #endif /* CONFIG_PCI */
2666 
2667 static struct of_device_id ipmi_match[];
2668 static int ipmi_probe(struct platform_device *dev)
2669 {
2670 #ifdef CONFIG_OF
2671 	const struct of_device_id *match;
2672 	struct smi_info *info;
2673 	struct resource resource;
2674 	const __be32 *regsize, *regspacing, *regshift;
2675 	struct device_node *np = dev->dev.of_node;
2676 	int ret;
2677 	int proplen;
2678 
2679 	dev_info(&dev->dev, "probing via device tree\n");
2680 
2681 	match = of_match_device(ipmi_match, &dev->dev);
2682 	if (!match)
2683 		return -EINVAL;
2684 
2685 	if (!of_device_is_available(np))
2686 		return -EINVAL;
2687 
2688 	ret = of_address_to_resource(np, 0, &resource);
2689 	if (ret) {
2690 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2691 		return ret;
2692 	}
2693 
2694 	regsize = of_get_property(np, "reg-size", &proplen);
2695 	if (regsize && proplen != 4) {
2696 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2697 		return -EINVAL;
2698 	}
2699 
2700 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2701 	if (regspacing && proplen != 4) {
2702 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2703 		return -EINVAL;
2704 	}
2705 
2706 	regshift = of_get_property(np, "reg-shift", &proplen);
2707 	if (regshift && proplen != 4) {
2708 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2709 		return -EINVAL;
2710 	}
2711 
2712 	info = smi_info_alloc();
2713 
2714 	if (!info) {
2715 		dev_err(&dev->dev,
2716 			"could not allocate memory for OF probe\n");
2717 		return -ENOMEM;
2718 	}
2719 
2720 	info->si_type		= (enum si_type) match->data;
2721 	info->addr_source	= SI_DEVICETREE;
2722 	info->irq_setup		= std_irq_setup;
2723 
2724 	if (resource.flags & IORESOURCE_IO) {
2725 		info->io_setup		= port_setup;
2726 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2727 	} else {
2728 		info->io_setup		= mem_setup;
2729 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2730 	}
2731 
2732 	info->io.addr_data	= resource.start;
2733 
2734 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2735 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2736 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2737 
2738 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2739 	info->dev		= &dev->dev;
2740 
2741 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2742 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2743 		info->irq);
2744 
2745 	dev_set_drvdata(&dev->dev, info);
2746 
2747 	ret = add_smi(info);
2748 	if (ret) {
2749 		kfree(info);
2750 		return ret;
2751 	}
2752 #endif
2753 	return 0;
2754 }
2755 
2756 static int ipmi_remove(struct platform_device *dev)
2757 {
2758 #ifdef CONFIG_OF
2759 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2760 #endif
2761 	return 0;
2762 }
2763 
2764 static struct of_device_id ipmi_match[] =
2765 {
2766 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2767 	  .data = (void *)(unsigned long) SI_KCS },
2768 	{ .type = "ipmi", .compatible = "ipmi-smic",
2769 	  .data = (void *)(unsigned long) SI_SMIC },
2770 	{ .type = "ipmi", .compatible = "ipmi-bt",
2771 	  .data = (void *)(unsigned long) SI_BT },
2772 	{},
2773 };
2774 
2775 static struct platform_driver ipmi_driver = {
2776 	.driver = {
2777 		.name = DEVICE_NAME,
2778 		.of_match_table = ipmi_match,
2779 	},
2780 	.probe		= ipmi_probe,
2781 	.remove		= ipmi_remove,
2782 };
2783 
2784 #ifdef CONFIG_PARISC
2785 static int ipmi_parisc_probe(struct parisc_device *dev)
2786 {
2787 	struct smi_info *info;
2788 	int rv;
2789 
2790 	info = smi_info_alloc();
2791 
2792 	if (!info) {
2793 		dev_err(&dev->dev,
2794 			"could not allocate memory for PARISC probe\n");
2795 		return -ENOMEM;
2796 	}
2797 
2798 	info->si_type		= SI_KCS;
2799 	info->addr_source	= SI_DEVICETREE;
2800 	info->io_setup		= mem_setup;
2801 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2802 	info->io.addr_data	= dev->hpa.start;
2803 	info->io.regsize	= 1;
2804 	info->io.regspacing	= 1;
2805 	info->io.regshift	= 0;
2806 	info->irq		= 0; /* no interrupt */
2807 	info->irq_setup		= NULL;
2808 	info->dev		= &dev->dev;
2809 
2810 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2811 
2812 	dev_set_drvdata(&dev->dev, info);
2813 
2814 	rv = add_smi(info);
2815 	if (rv) {
2816 		kfree(info);
2817 		return rv;
2818 	}
2819 
2820 	return 0;
2821 }
2822 
2823 static int ipmi_parisc_remove(struct parisc_device *dev)
2824 {
2825 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2826 	return 0;
2827 }
2828 
2829 static struct parisc_device_id ipmi_parisc_tbl[] = {
2830 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2831 	{ 0, }
2832 };
2833 
2834 static struct parisc_driver ipmi_parisc_driver = {
2835 	.name =		"ipmi",
2836 	.id_table =	ipmi_parisc_tbl,
2837 	.probe =	ipmi_parisc_probe,
2838 	.remove =	ipmi_parisc_remove,
2839 };
2840 #endif /* CONFIG_PARISC */
2841 
2842 static int wait_for_msg_done(struct smi_info *smi_info)
2843 {
2844 	enum si_sm_result     smi_result;
2845 
2846 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2847 	for (;;) {
2848 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2849 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2850 			schedule_timeout_uninterruptible(1);
2851 			smi_result = smi_info->handlers->event(
2852 				smi_info->si_sm, jiffies_to_usecs(1));
2853 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2854 			smi_result = smi_info->handlers->event(
2855 				smi_info->si_sm, 0);
2856 		} else
2857 			break;
2858 	}
2859 	if (smi_result == SI_SM_HOSED)
2860 		/*
2861 		 * We couldn't get the state machine to run, so whatever's at
2862 		 * the port is probably not an IPMI SMI interface.
2863 		 */
2864 		return -ENODEV;
2865 
2866 	return 0;
2867 }
2868 
2869 static int try_get_dev_id(struct smi_info *smi_info)
2870 {
2871 	unsigned char         msg[2];
2872 	unsigned char         *resp;
2873 	unsigned long         resp_len;
2874 	int                   rv = 0;
2875 
2876 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2877 	if (!resp)
2878 		return -ENOMEM;
2879 
2880 	/*
2881 	 * Do a Get Device ID command, since it comes back with some
2882 	 * useful info.
2883 	 */
2884 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2885 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2886 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2887 
2888 	rv = wait_for_msg_done(smi_info);
2889 	if (rv)
2890 		goto out;
2891 
2892 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2893 						  resp, IPMI_MAX_MSG_LENGTH);
2894 
2895 	/* Check and record info from the get device id, in case we need it. */
2896 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2897 
2898  out:
2899 	kfree(resp);
2900 	return rv;
2901 }
2902 
2903 static int try_enable_event_buffer(struct smi_info *smi_info)
2904 {
2905 	unsigned char         msg[3];
2906 	unsigned char         *resp;
2907 	unsigned long         resp_len;
2908 	int                   rv = 0;
2909 
2910 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2911 	if (!resp)
2912 		return -ENOMEM;
2913 
2914 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2915 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2916 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2917 
2918 	rv = wait_for_msg_done(smi_info);
2919 	if (rv) {
2920 		printk(KERN_WARNING PFX "Error getting response from get"
2921 		       " global enables command, the event buffer is not"
2922 		       " enabled.\n");
2923 		goto out;
2924 	}
2925 
2926 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2927 						  resp, IPMI_MAX_MSG_LENGTH);
2928 
2929 	if (resp_len < 4 ||
2930 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2931 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2932 			resp[2] != 0) {
2933 		printk(KERN_WARNING PFX "Invalid return from get global"
2934 		       " enables command, cannot enable the event buffer.\n");
2935 		rv = -EINVAL;
2936 		goto out;
2937 	}
2938 
2939 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
2940 		/* buffer is already enabled, nothing to do. */
2941 		smi_info->supports_event_msg_buff = true;
2942 		goto out;
2943 	}
2944 
2945 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2946 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2947 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2948 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2949 
2950 	rv = wait_for_msg_done(smi_info);
2951 	if (rv) {
2952 		printk(KERN_WARNING PFX "Error getting response from set"
2953 		       " global, enables command, the event buffer is not"
2954 		       " enabled.\n");
2955 		goto out;
2956 	}
2957 
2958 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2959 						  resp, IPMI_MAX_MSG_LENGTH);
2960 
2961 	if (resp_len < 3 ||
2962 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2963 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2964 		printk(KERN_WARNING PFX "Invalid return from get global,"
2965 		       "enables command, not enable the event buffer.\n");
2966 		rv = -EINVAL;
2967 		goto out;
2968 	}
2969 
2970 	if (resp[2] != 0)
2971 		/*
2972 		 * An error when setting the event buffer bit means
2973 		 * that the event buffer is not supported.
2974 		 */
2975 		rv = -ENOENT;
2976 	else
2977 		smi_info->supports_event_msg_buff = true;
2978 
2979  out:
2980 	kfree(resp);
2981 	return rv;
2982 }
2983 
2984 static int smi_type_proc_show(struct seq_file *m, void *v)
2985 {
2986 	struct smi_info *smi = m->private;
2987 
2988 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2989 
2990 	return seq_has_overflowed(m);
2991 }
2992 
2993 static int smi_type_proc_open(struct inode *inode, struct file *file)
2994 {
2995 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2996 }
2997 
2998 static const struct file_operations smi_type_proc_ops = {
2999 	.open		= smi_type_proc_open,
3000 	.read		= seq_read,
3001 	.llseek		= seq_lseek,
3002 	.release	= single_release,
3003 };
3004 
3005 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3006 {
3007 	struct smi_info *smi = m->private;
3008 
3009 	seq_printf(m, "interrupts_enabled:    %d\n",
3010 		       smi->irq && !smi->interrupt_disabled);
3011 	seq_printf(m, "short_timeouts:        %u\n",
3012 		       smi_get_stat(smi, short_timeouts));
3013 	seq_printf(m, "long_timeouts:         %u\n",
3014 		       smi_get_stat(smi, long_timeouts));
3015 	seq_printf(m, "idles:                 %u\n",
3016 		       smi_get_stat(smi, idles));
3017 	seq_printf(m, "interrupts:            %u\n",
3018 		       smi_get_stat(smi, interrupts));
3019 	seq_printf(m, "attentions:            %u\n",
3020 		       smi_get_stat(smi, attentions));
3021 	seq_printf(m, "flag_fetches:          %u\n",
3022 		       smi_get_stat(smi, flag_fetches));
3023 	seq_printf(m, "hosed_count:           %u\n",
3024 		       smi_get_stat(smi, hosed_count));
3025 	seq_printf(m, "complete_transactions: %u\n",
3026 		       smi_get_stat(smi, complete_transactions));
3027 	seq_printf(m, "events:                %u\n",
3028 		       smi_get_stat(smi, events));
3029 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3030 		       smi_get_stat(smi, watchdog_pretimeouts));
3031 	seq_printf(m, "incoming_messages:     %u\n",
3032 		       smi_get_stat(smi, incoming_messages));
3033 	return 0;
3034 }
3035 
3036 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3037 {
3038 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3039 }
3040 
3041 static const struct file_operations smi_si_stats_proc_ops = {
3042 	.open		= smi_si_stats_proc_open,
3043 	.read		= seq_read,
3044 	.llseek		= seq_lseek,
3045 	.release	= single_release,
3046 };
3047 
3048 static int smi_params_proc_show(struct seq_file *m, void *v)
3049 {
3050 	struct smi_info *smi = m->private;
3051 
3052 	seq_printf(m,
3053 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3054 		   si_to_str[smi->si_type],
3055 		   addr_space_to_str[smi->io.addr_type],
3056 		   smi->io.addr_data,
3057 		   smi->io.regspacing,
3058 		   smi->io.regsize,
3059 		   smi->io.regshift,
3060 		   smi->irq,
3061 		   smi->slave_addr);
3062 
3063 	return seq_has_overflowed(m);
3064 }
3065 
3066 static int smi_params_proc_open(struct inode *inode, struct file *file)
3067 {
3068 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3069 }
3070 
3071 static const struct file_operations smi_params_proc_ops = {
3072 	.open		= smi_params_proc_open,
3073 	.read		= seq_read,
3074 	.llseek		= seq_lseek,
3075 	.release	= single_release,
3076 };
3077 
3078 /*
3079  * oem_data_avail_to_receive_msg_avail
3080  * @info - smi_info structure with msg_flags set
3081  *
3082  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3083  * Returns 1 indicating need to re-run handle_flags().
3084  */
3085 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3086 {
3087 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3088 			       RECEIVE_MSG_AVAIL);
3089 	return 1;
3090 }
3091 
3092 /*
3093  * setup_dell_poweredge_oem_data_handler
3094  * @info - smi_info.device_id must be populated
3095  *
3096  * Systems that match, but have firmware version < 1.40 may assert
3097  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3098  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3099  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3100  * as RECEIVE_MSG_AVAIL instead.
3101  *
3102  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3103  * assert the OEM[012] bits, and if it did, the driver would have to
3104  * change to handle that properly, we don't actually check for the
3105  * firmware version.
3106  * Device ID = 0x20                BMC on PowerEdge 8G servers
3107  * Device Revision = 0x80
3108  * Firmware Revision1 = 0x01       BMC version 1.40
3109  * Firmware Revision2 = 0x40       BCD encoded
3110  * IPMI Version = 0x51             IPMI 1.5
3111  * Manufacturer ID = A2 02 00      Dell IANA
3112  *
3113  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3114  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3115  *
3116  */
3117 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3118 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3119 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3120 #define DELL_IANA_MFR_ID 0x0002a2
3121 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3122 {
3123 	struct ipmi_device_id *id = &smi_info->device_id;
3124 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3125 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3126 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3127 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3128 			smi_info->oem_data_avail_handler =
3129 				oem_data_avail_to_receive_msg_avail;
3130 		} else if (ipmi_version_major(id) < 1 ||
3131 			   (ipmi_version_major(id) == 1 &&
3132 			    ipmi_version_minor(id) < 5)) {
3133 			smi_info->oem_data_avail_handler =
3134 				oem_data_avail_to_receive_msg_avail;
3135 		}
3136 	}
3137 }
3138 
3139 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3140 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3141 {
3142 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3143 
3144 	/* Make it a response */
3145 	msg->rsp[0] = msg->data[0] | 4;
3146 	msg->rsp[1] = msg->data[1];
3147 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3148 	msg->rsp_size = 3;
3149 	smi_info->curr_msg = NULL;
3150 	deliver_recv_msg(smi_info, msg);
3151 }
3152 
3153 /*
3154  * dell_poweredge_bt_xaction_handler
3155  * @info - smi_info.device_id must be populated
3156  *
3157  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3158  * not respond to a Get SDR command if the length of the data
3159  * requested is exactly 0x3A, which leads to command timeouts and no
3160  * data returned.  This intercepts such commands, and causes userspace
3161  * callers to try again with a different-sized buffer, which succeeds.
3162  */
3163 
3164 #define STORAGE_NETFN 0x0A
3165 #define STORAGE_CMD_GET_SDR 0x23
3166 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3167 					     unsigned long unused,
3168 					     void *in)
3169 {
3170 	struct smi_info *smi_info = in;
3171 	unsigned char *data = smi_info->curr_msg->data;
3172 	unsigned int size   = smi_info->curr_msg->data_size;
3173 	if (size >= 8 &&
3174 	    (data[0]>>2) == STORAGE_NETFN &&
3175 	    data[1] == STORAGE_CMD_GET_SDR &&
3176 	    data[7] == 0x3A) {
3177 		return_hosed_msg_badsize(smi_info);
3178 		return NOTIFY_STOP;
3179 	}
3180 	return NOTIFY_DONE;
3181 }
3182 
3183 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3184 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3185 };
3186 
3187 /*
3188  * setup_dell_poweredge_bt_xaction_handler
3189  * @info - smi_info.device_id must be filled in already
3190  *
3191  * Fills in smi_info.device_id.start_transaction_pre_hook
3192  * when we know what function to use there.
3193  */
3194 static void
3195 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3196 {
3197 	struct ipmi_device_id *id = &smi_info->device_id;
3198 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3199 	    smi_info->si_type == SI_BT)
3200 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3201 }
3202 
3203 /*
3204  * setup_oem_data_handler
3205  * @info - smi_info.device_id must be filled in already
3206  *
3207  * Fills in smi_info.device_id.oem_data_available_handler
3208  * when we know what function to use there.
3209  */
3210 
3211 static void setup_oem_data_handler(struct smi_info *smi_info)
3212 {
3213 	setup_dell_poweredge_oem_data_handler(smi_info);
3214 }
3215 
3216 static void setup_xaction_handlers(struct smi_info *smi_info)
3217 {
3218 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3219 }
3220 
3221 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3222 {
3223 	if (smi_info->thread != NULL)
3224 		kthread_stop(smi_info->thread);
3225 	if (smi_info->timer_running)
3226 		del_timer_sync(&smi_info->si_timer);
3227 }
3228 
3229 static struct ipmi_default_vals
3230 {
3231 	int type;
3232 	int port;
3233 } ipmi_defaults[] =
3234 {
3235 	{ .type = SI_KCS, .port = 0xca2 },
3236 	{ .type = SI_SMIC, .port = 0xca9 },
3237 	{ .type = SI_BT, .port = 0xe4 },
3238 	{ .port = 0 }
3239 };
3240 
3241 static void default_find_bmc(void)
3242 {
3243 	struct smi_info *info;
3244 	int             i;
3245 
3246 	for (i = 0; ; i++) {
3247 		if (!ipmi_defaults[i].port)
3248 			break;
3249 #ifdef CONFIG_PPC
3250 		if (check_legacy_ioport(ipmi_defaults[i].port))
3251 			continue;
3252 #endif
3253 		info = smi_info_alloc();
3254 		if (!info)
3255 			return;
3256 
3257 		info->addr_source = SI_DEFAULT;
3258 
3259 		info->si_type = ipmi_defaults[i].type;
3260 		info->io_setup = port_setup;
3261 		info->io.addr_data = ipmi_defaults[i].port;
3262 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3263 
3264 		info->io.addr = NULL;
3265 		info->io.regspacing = DEFAULT_REGSPACING;
3266 		info->io.regsize = DEFAULT_REGSPACING;
3267 		info->io.regshift = 0;
3268 
3269 		if (add_smi(info) == 0) {
3270 			if ((try_smi_init(info)) == 0) {
3271 				/* Found one... */
3272 				printk(KERN_INFO PFX "Found default %s"
3273 				" state machine at %s address 0x%lx\n",
3274 				si_to_str[info->si_type],
3275 				addr_space_to_str[info->io.addr_type],
3276 				info->io.addr_data);
3277 			} else
3278 				cleanup_one_si(info);
3279 		} else {
3280 			kfree(info);
3281 		}
3282 	}
3283 }
3284 
3285 static int is_new_interface(struct smi_info *info)
3286 {
3287 	struct smi_info *e;
3288 
3289 	list_for_each_entry(e, &smi_infos, link) {
3290 		if (e->io.addr_type != info->io.addr_type)
3291 			continue;
3292 		if (e->io.addr_data == info->io.addr_data)
3293 			return 0;
3294 	}
3295 
3296 	return 1;
3297 }
3298 
3299 static int add_smi(struct smi_info *new_smi)
3300 {
3301 	int rv = 0;
3302 
3303 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3304 	       ipmi_addr_src_to_str(new_smi->addr_source),
3305 	       si_to_str[new_smi->si_type]);
3306 	mutex_lock(&smi_infos_lock);
3307 	if (!is_new_interface(new_smi)) {
3308 		printk(KERN_CONT " duplicate interface\n");
3309 		rv = -EBUSY;
3310 		goto out_err;
3311 	}
3312 
3313 	printk(KERN_CONT "\n");
3314 
3315 	/* So we know not to free it unless we have allocated one. */
3316 	new_smi->intf = NULL;
3317 	new_smi->si_sm = NULL;
3318 	new_smi->handlers = NULL;
3319 
3320 	list_add_tail(&new_smi->link, &smi_infos);
3321 
3322 out_err:
3323 	mutex_unlock(&smi_infos_lock);
3324 	return rv;
3325 }
3326 
3327 static int try_smi_init(struct smi_info *new_smi)
3328 {
3329 	int rv = 0;
3330 	int i;
3331 
3332 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3333 	       " machine at %s address 0x%lx, slave address 0x%x,"
3334 	       " irq %d\n",
3335 	       ipmi_addr_src_to_str(new_smi->addr_source),
3336 	       si_to_str[new_smi->si_type],
3337 	       addr_space_to_str[new_smi->io.addr_type],
3338 	       new_smi->io.addr_data,
3339 	       new_smi->slave_addr, new_smi->irq);
3340 
3341 	switch (new_smi->si_type) {
3342 	case SI_KCS:
3343 		new_smi->handlers = &kcs_smi_handlers;
3344 		break;
3345 
3346 	case SI_SMIC:
3347 		new_smi->handlers = &smic_smi_handlers;
3348 		break;
3349 
3350 	case SI_BT:
3351 		new_smi->handlers = &bt_smi_handlers;
3352 		break;
3353 
3354 	default:
3355 		/* No support for anything else yet. */
3356 		rv = -EIO;
3357 		goto out_err;
3358 	}
3359 
3360 	/* Allocate the state machine's data and initialize it. */
3361 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3362 	if (!new_smi->si_sm) {
3363 		printk(KERN_ERR PFX
3364 		       "Could not allocate state machine memory\n");
3365 		rv = -ENOMEM;
3366 		goto out_err;
3367 	}
3368 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3369 							&new_smi->io);
3370 
3371 	/* Now that we know the I/O size, we can set up the I/O. */
3372 	rv = new_smi->io_setup(new_smi);
3373 	if (rv) {
3374 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3375 		goto out_err;
3376 	}
3377 
3378 	/* Do low-level detection first. */
3379 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3380 		if (new_smi->addr_source)
3381 			printk(KERN_INFO PFX "Interface detection failed\n");
3382 		rv = -ENODEV;
3383 		goto out_err;
3384 	}
3385 
3386 	/*
3387 	 * Attempt a get device id command.  If it fails, we probably
3388 	 * don't have a BMC here.
3389 	 */
3390 	rv = try_get_dev_id(new_smi);
3391 	if (rv) {
3392 		if (new_smi->addr_source)
3393 			printk(KERN_INFO PFX "There appears to be no BMC"
3394 			       " at this location\n");
3395 		goto out_err;
3396 	}
3397 
3398 	setup_oem_data_handler(new_smi);
3399 	setup_xaction_handlers(new_smi);
3400 
3401 	new_smi->waiting_msg = NULL;
3402 	new_smi->curr_msg = NULL;
3403 	atomic_set(&new_smi->req_events, 0);
3404 	new_smi->run_to_completion = false;
3405 	for (i = 0; i < SI_NUM_STATS; i++)
3406 		atomic_set(&new_smi->stats[i], 0);
3407 
3408 	new_smi->interrupt_disabled = true;
3409 	atomic_set(&new_smi->need_watch, 0);
3410 	new_smi->intf_num = smi_num;
3411 	smi_num++;
3412 
3413 	rv = try_enable_event_buffer(new_smi);
3414 	if (rv == 0)
3415 		new_smi->has_event_buffer = true;
3416 
3417 	/*
3418 	 * Start clearing the flags before we enable interrupts or the
3419 	 * timer to avoid racing with the timer.
3420 	 */
3421 	start_clear_flags(new_smi);
3422 
3423 	/*
3424 	 * IRQ is defined to be set when non-zero.  req_events will
3425 	 * cause a global flags check that will enable interrupts.
3426 	 */
3427 	if (new_smi->irq) {
3428 		new_smi->interrupt_disabled = false;
3429 		atomic_set(&new_smi->req_events, 1);
3430 	}
3431 
3432 	if (!new_smi->dev) {
3433 		/*
3434 		 * If we don't already have a device from something
3435 		 * else (like PCI), then register a new one.
3436 		 */
3437 		new_smi->pdev = platform_device_alloc("ipmi_si",
3438 						      new_smi->intf_num);
3439 		if (!new_smi->pdev) {
3440 			printk(KERN_ERR PFX
3441 			       "Unable to allocate platform device\n");
3442 			goto out_err;
3443 		}
3444 		new_smi->dev = &new_smi->pdev->dev;
3445 		new_smi->dev->driver = &ipmi_driver.driver;
3446 
3447 		rv = platform_device_add(new_smi->pdev);
3448 		if (rv) {
3449 			printk(KERN_ERR PFX
3450 			       "Unable to register system interface device:"
3451 			       " %d\n",
3452 			       rv);
3453 			goto out_err;
3454 		}
3455 		new_smi->dev_registered = true;
3456 	}
3457 
3458 	rv = ipmi_register_smi(&handlers,
3459 			       new_smi,
3460 			       &new_smi->device_id,
3461 			       new_smi->dev,
3462 			       new_smi->slave_addr);
3463 	if (rv) {
3464 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3465 			rv);
3466 		goto out_err_stop_timer;
3467 	}
3468 
3469 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3470 				     &smi_type_proc_ops,
3471 				     new_smi);
3472 	if (rv) {
3473 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3474 		goto out_err_stop_timer;
3475 	}
3476 
3477 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3478 				     &smi_si_stats_proc_ops,
3479 				     new_smi);
3480 	if (rv) {
3481 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3482 		goto out_err_stop_timer;
3483 	}
3484 
3485 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3486 				     &smi_params_proc_ops,
3487 				     new_smi);
3488 	if (rv) {
3489 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3490 		goto out_err_stop_timer;
3491 	}
3492 
3493 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3494 		 si_to_str[new_smi->si_type]);
3495 
3496 	return 0;
3497 
3498  out_err_stop_timer:
3499 	wait_for_timer_and_thread(new_smi);
3500 
3501  out_err:
3502 	new_smi->interrupt_disabled = true;
3503 
3504 	if (new_smi->intf) {
3505 		ipmi_smi_t intf = new_smi->intf;
3506 		new_smi->intf = NULL;
3507 		ipmi_unregister_smi(intf);
3508 	}
3509 
3510 	if (new_smi->irq_cleanup) {
3511 		new_smi->irq_cleanup(new_smi);
3512 		new_smi->irq_cleanup = NULL;
3513 	}
3514 
3515 	/*
3516 	 * Wait until we know that we are out of any interrupt
3517 	 * handlers might have been running before we freed the
3518 	 * interrupt.
3519 	 */
3520 	synchronize_sched();
3521 
3522 	if (new_smi->si_sm) {
3523 		if (new_smi->handlers)
3524 			new_smi->handlers->cleanup(new_smi->si_sm);
3525 		kfree(new_smi->si_sm);
3526 		new_smi->si_sm = NULL;
3527 	}
3528 	if (new_smi->addr_source_cleanup) {
3529 		new_smi->addr_source_cleanup(new_smi);
3530 		new_smi->addr_source_cleanup = NULL;
3531 	}
3532 	if (new_smi->io_cleanup) {
3533 		new_smi->io_cleanup(new_smi);
3534 		new_smi->io_cleanup = NULL;
3535 	}
3536 
3537 	if (new_smi->dev_registered) {
3538 		platform_device_unregister(new_smi->pdev);
3539 		new_smi->dev_registered = false;
3540 	}
3541 
3542 	return rv;
3543 }
3544 
3545 static int init_ipmi_si(void)
3546 {
3547 	int  i;
3548 	char *str;
3549 	int  rv;
3550 	struct smi_info *e;
3551 	enum ipmi_addr_src type = SI_INVALID;
3552 
3553 	if (initialized)
3554 		return 0;
3555 	initialized = 1;
3556 
3557 	if (si_tryplatform) {
3558 		rv = platform_driver_register(&ipmi_driver);
3559 		if (rv) {
3560 			printk(KERN_ERR PFX "Unable to register "
3561 			       "driver: %d\n", rv);
3562 			return rv;
3563 		}
3564 	}
3565 
3566 	/* Parse out the si_type string into its components. */
3567 	str = si_type_str;
3568 	if (*str != '\0') {
3569 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3570 			si_type[i] = str;
3571 			str = strchr(str, ',');
3572 			if (str) {
3573 				*str = '\0';
3574 				str++;
3575 			} else {
3576 				break;
3577 			}
3578 		}
3579 	}
3580 
3581 	printk(KERN_INFO "IPMI System Interface driver.\n");
3582 
3583 	/* If the user gave us a device, they presumably want us to use it */
3584 	if (!hardcode_find_bmc())
3585 		return 0;
3586 
3587 #ifdef CONFIG_PCI
3588 	if (si_trypci) {
3589 		rv = pci_register_driver(&ipmi_pci_driver);
3590 		if (rv)
3591 			printk(KERN_ERR PFX "Unable to register "
3592 			       "PCI driver: %d\n", rv);
3593 		else
3594 			pci_registered = true;
3595 	}
3596 #endif
3597 
3598 #ifdef CONFIG_ACPI
3599 	if (si_tryacpi) {
3600 		pnp_register_driver(&ipmi_pnp_driver);
3601 		pnp_registered = true;
3602 	}
3603 #endif
3604 
3605 #ifdef CONFIG_DMI
3606 	if (si_trydmi)
3607 		dmi_find_bmc();
3608 #endif
3609 
3610 #ifdef CONFIG_ACPI
3611 	if (si_tryacpi)
3612 		spmi_find_bmc();
3613 #endif
3614 
3615 #ifdef CONFIG_PARISC
3616 	register_parisc_driver(&ipmi_parisc_driver);
3617 	parisc_registered = true;
3618 	/* poking PC IO addresses will crash machine, don't do it */
3619 	si_trydefaults = 0;
3620 #endif
3621 
3622 	/* We prefer devices with interrupts, but in the case of a machine
3623 	   with multiple BMCs we assume that there will be several instances
3624 	   of a given type so if we succeed in registering a type then also
3625 	   try to register everything else of the same type */
3626 
3627 	mutex_lock(&smi_infos_lock);
3628 	list_for_each_entry(e, &smi_infos, link) {
3629 		/* Try to register a device if it has an IRQ and we either
3630 		   haven't successfully registered a device yet or this
3631 		   device has the same type as one we successfully registered */
3632 		if (e->irq && (!type || e->addr_source == type)) {
3633 			if (!try_smi_init(e)) {
3634 				type = e->addr_source;
3635 			}
3636 		}
3637 	}
3638 
3639 	/* type will only have been set if we successfully registered an si */
3640 	if (type) {
3641 		mutex_unlock(&smi_infos_lock);
3642 		return 0;
3643 	}
3644 
3645 	/* Fall back to the preferred device */
3646 
3647 	list_for_each_entry(e, &smi_infos, link) {
3648 		if (!e->irq && (!type || e->addr_source == type)) {
3649 			if (!try_smi_init(e)) {
3650 				type = e->addr_source;
3651 			}
3652 		}
3653 	}
3654 	mutex_unlock(&smi_infos_lock);
3655 
3656 	if (type)
3657 		return 0;
3658 
3659 	if (si_trydefaults) {
3660 		mutex_lock(&smi_infos_lock);
3661 		if (list_empty(&smi_infos)) {
3662 			/* No BMC was found, try defaults. */
3663 			mutex_unlock(&smi_infos_lock);
3664 			default_find_bmc();
3665 		} else
3666 			mutex_unlock(&smi_infos_lock);
3667 	}
3668 
3669 	mutex_lock(&smi_infos_lock);
3670 	if (unload_when_empty && list_empty(&smi_infos)) {
3671 		mutex_unlock(&smi_infos_lock);
3672 		cleanup_ipmi_si();
3673 		printk(KERN_WARNING PFX
3674 		       "Unable to find any System Interface(s)\n");
3675 		return -ENODEV;
3676 	} else {
3677 		mutex_unlock(&smi_infos_lock);
3678 		return 0;
3679 	}
3680 }
3681 module_init(init_ipmi_si);
3682 
3683 static void cleanup_one_si(struct smi_info *to_clean)
3684 {
3685 	int           rv = 0;
3686 
3687 	if (!to_clean)
3688 		return;
3689 
3690 	if (to_clean->intf) {
3691 		ipmi_smi_t intf = to_clean->intf;
3692 
3693 		to_clean->intf = NULL;
3694 		rv = ipmi_unregister_smi(intf);
3695 		if (rv) {
3696 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3697 			       rv);
3698 		}
3699 	}
3700 
3701 	if (to_clean->dev)
3702 		dev_set_drvdata(to_clean->dev, NULL);
3703 
3704 	list_del(&to_clean->link);
3705 
3706 	/*
3707 	 * Make sure that interrupts, the timer and the thread are
3708 	 * stopped and will not run again.
3709 	 */
3710 	if (to_clean->irq_cleanup)
3711 		to_clean->irq_cleanup(to_clean);
3712 	wait_for_timer_and_thread(to_clean);
3713 
3714 	/*
3715 	 * Timeouts are stopped, now make sure the interrupts are off
3716 	 * in the BMC.  Note that timers and CPU interrupts are off,
3717 	 * so no need for locks.
3718 	 */
3719 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3720 		poll(to_clean);
3721 		schedule_timeout_uninterruptible(1);
3722 	}
3723 	disable_si_irq(to_clean);
3724 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3725 		poll(to_clean);
3726 		schedule_timeout_uninterruptible(1);
3727 	}
3728 
3729 	if (to_clean->handlers)
3730 		to_clean->handlers->cleanup(to_clean->si_sm);
3731 
3732 	kfree(to_clean->si_sm);
3733 
3734 	if (to_clean->addr_source_cleanup)
3735 		to_clean->addr_source_cleanup(to_clean);
3736 	if (to_clean->io_cleanup)
3737 		to_clean->io_cleanup(to_clean);
3738 
3739 	if (to_clean->dev_registered)
3740 		platform_device_unregister(to_clean->pdev);
3741 
3742 	kfree(to_clean);
3743 }
3744 
3745 static void cleanup_ipmi_si(void)
3746 {
3747 	struct smi_info *e, *tmp_e;
3748 
3749 	if (!initialized)
3750 		return;
3751 
3752 #ifdef CONFIG_PCI
3753 	if (pci_registered)
3754 		pci_unregister_driver(&ipmi_pci_driver);
3755 #endif
3756 #ifdef CONFIG_ACPI
3757 	if (pnp_registered)
3758 		pnp_unregister_driver(&ipmi_pnp_driver);
3759 #endif
3760 #ifdef CONFIG_PARISC
3761 	if (parisc_registered)
3762 		unregister_parisc_driver(&ipmi_parisc_driver);
3763 #endif
3764 
3765 	platform_driver_unregister(&ipmi_driver);
3766 
3767 	mutex_lock(&smi_infos_lock);
3768 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3769 		cleanup_one_si(e);
3770 	mutex_unlock(&smi_infos_lock);
3771 }
3772 module_exit(cleanup_ipmi_si);
3773 
3774 MODULE_LICENSE("GPL");
3775 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3776 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3777 		   " system interfaces.");
3778