xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 9125f19b)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111 
112 #define DEVICE_NAME "ipmi_si"
113 
114 static struct platform_driver ipmi_driver;
115 
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120 	/*
121 	 * Number of times the driver requested a timer while an operation
122 	 * was in progress.
123 	 */
124 	SI_STAT_short_timeouts = 0,
125 
126 	/*
127 	 * Number of times the driver requested a timer while nothing was in
128 	 * progress.
129 	 */
130 	SI_STAT_long_timeouts,
131 
132 	/* Number of times the interface was idle while being polled. */
133 	SI_STAT_idles,
134 
135 	/* Number of interrupts the driver handled. */
136 	SI_STAT_interrupts,
137 
138 	/* Number of time the driver got an ATTN from the hardware. */
139 	SI_STAT_attentions,
140 
141 	/* Number of times the driver requested flags from the hardware. */
142 	SI_STAT_flag_fetches,
143 
144 	/* Number of times the hardware didn't follow the state machine. */
145 	SI_STAT_hosed_count,
146 
147 	/* Number of completed messages. */
148 	SI_STAT_complete_transactions,
149 
150 	/* Number of IPMI events received from the hardware. */
151 	SI_STAT_events,
152 
153 	/* Number of watchdog pretimeouts. */
154 	SI_STAT_watchdog_pretimeouts,
155 
156 	/* Number of asynchronous messages received. */
157 	SI_STAT_incoming_messages,
158 
159 
160 	/* This *must* remain last, add new values above this. */
161 	SI_NUM_STATS
162 };
163 
164 struct smi_info {
165 	int                    intf_num;
166 	ipmi_smi_t             intf;
167 	struct si_sm_data      *si_sm;
168 	const struct si_sm_handlers *handlers;
169 	enum si_type           si_type;
170 	spinlock_t             si_lock;
171 	struct ipmi_smi_msg    *waiting_msg;
172 	struct ipmi_smi_msg    *curr_msg;
173 	enum si_intf_state     si_state;
174 
175 	/*
176 	 * Used to handle the various types of I/O that can occur with
177 	 * IPMI
178 	 */
179 	struct si_sm_io io;
180 	int (*io_setup)(struct smi_info *info);
181 	void (*io_cleanup)(struct smi_info *info);
182 	int (*irq_setup)(struct smi_info *info);
183 	void (*irq_cleanup)(struct smi_info *info);
184 	unsigned int io_size;
185 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 	void (*addr_source_cleanup)(struct smi_info *info);
187 	void *addr_source_data;
188 
189 	/*
190 	 * Per-OEM handler, called from handle_flags().  Returns 1
191 	 * when handle_flags() needs to be re-run or 0 indicating it
192 	 * set si_state itself.
193 	 */
194 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
195 
196 	/*
197 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 	 * is set to hold the flags until we are done handling everything
199 	 * from the flags.
200 	 */
201 #define RECEIVE_MSG_AVAIL	0x01
202 #define EVENT_MSG_BUFFER_FULL	0x02
203 #define WDT_PRE_TIMEOUT_INT	0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208 			     OEM1_DATA_AVAIL | \
209 			     OEM2_DATA_AVAIL)
210 	unsigned char       msg_flags;
211 
212 	/* Does the BMC have an event buffer? */
213 	bool		    has_event_buffer;
214 
215 	/*
216 	 * If set to true, this will request events the next time the
217 	 * state machine is idle.
218 	 */
219 	atomic_t            req_events;
220 
221 	/*
222 	 * If true, run the state machine to completion on every send
223 	 * call.  Generally used after a panic to make sure stuff goes
224 	 * out.
225 	 */
226 	bool                run_to_completion;
227 
228 	/* The I/O port of an SI interface. */
229 	int                 port;
230 
231 	/*
232 	 * The space between start addresses of the two ports.  For
233 	 * instance, if the first port is 0xca2 and the spacing is 4, then
234 	 * the second port is 0xca6.
235 	 */
236 	unsigned int        spacing;
237 
238 	/* zero if no irq; */
239 	int                 irq;
240 
241 	/* The timer for this si. */
242 	struct timer_list   si_timer;
243 
244 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 	bool		    timer_running;
246 
247 	/* The time (in jiffies) the last timeout occurred at. */
248 	unsigned long       last_timeout_jiffies;
249 
250 	/* Are we waiting for the events, pretimeouts, received msgs? */
251 	atomic_t            need_watch;
252 
253 	/*
254 	 * The driver will disable interrupts when it gets into a
255 	 * situation where it cannot handle messages due to lack of
256 	 * memory.  Once that situation clears up, it will re-enable
257 	 * interrupts.
258 	 */
259 	bool interrupt_disabled;
260 
261 	/*
262 	 * Does the BMC support events?
263 	 */
264 	bool supports_event_msg_buff;
265 
266 	/*
267 	 * Can we disable interrupts the global enables receive irq
268 	 * bit?  There are currently two forms of brokenness, some
269 	 * systems cannot disable the bit (which is technically within
270 	 * the spec but a bad idea) and some systems have the bit
271 	 * forced to zero even though interrupts work (which is
272 	 * clearly outside the spec).  The next bool tells which form
273 	 * of brokenness is present.
274 	 */
275 	bool cannot_disable_irq;
276 
277 	/*
278 	 * Some systems are broken and cannot set the irq enable
279 	 * bit, even if they support interrupts.
280 	 */
281 	bool irq_enable_broken;
282 
283 	/*
284 	 * Did we get an attention that we did not handle?
285 	 */
286 	bool got_attn;
287 
288 	/* From the get device id response... */
289 	struct ipmi_device_id device_id;
290 
291 	/* Driver model stuff. */
292 	struct device *dev;
293 	struct platform_device *pdev;
294 
295 	/*
296 	 * True if we allocated the device, false if it came from
297 	 * someplace else (like PCI).
298 	 */
299 	bool dev_registered;
300 
301 	/* Slave address, could be reported from DMI. */
302 	unsigned char slave_addr;
303 
304 	/* Counters and things for the proc filesystem. */
305 	atomic_t stats[SI_NUM_STATS];
306 
307 	struct task_struct *thread;
308 
309 	struct list_head link;
310 	union ipmi_smi_info_union addr_info;
311 };
312 
313 #define smi_inc_stat(smi, stat) \
314 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317 
318 #define SI_MAX_PARMS 4
319 
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328 
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331 
332 static bool unload_when_empty = true;
333 
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338 
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342 	struct timespec64 t;
343 
344 	getnstimeofday64(&t);
345 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350 
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356 
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 			     struct ipmi_smi_msg *msg)
359 {
360 	/* Deliver the message to the upper layer. */
361 	if (smi_info->intf)
362 		ipmi_smi_msg_received(smi_info->intf, msg);
363 	else
364 		ipmi_free_smi_msg(msg);
365 }
366 
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
370 
371 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 		cCode = IPMI_ERR_UNSPECIFIED;
373 	/* else use it as is */
374 
375 	/* Make it a response */
376 	msg->rsp[0] = msg->data[0] | 4;
377 	msg->rsp[1] = msg->data[1];
378 	msg->rsp[2] = cCode;
379 	msg->rsp_size = 3;
380 
381 	smi_info->curr_msg = NULL;
382 	deliver_recv_msg(smi_info, msg);
383 }
384 
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387 	int              rv;
388 
389 	if (!smi_info->waiting_msg) {
390 		smi_info->curr_msg = NULL;
391 		rv = SI_SM_IDLE;
392 	} else {
393 		int err;
394 
395 		smi_info->curr_msg = smi_info->waiting_msg;
396 		smi_info->waiting_msg = NULL;
397 		debug_timestamp("Start2");
398 		err = atomic_notifier_call_chain(&xaction_notifier_list,
399 				0, smi_info);
400 		if (err & NOTIFY_STOP_MASK) {
401 			rv = SI_SM_CALL_WITHOUT_DELAY;
402 			goto out;
403 		}
404 		err = smi_info->handlers->start_transaction(
405 			smi_info->si_sm,
406 			smi_info->curr_msg->data,
407 			smi_info->curr_msg->data_size);
408 		if (err)
409 			return_hosed_msg(smi_info, err);
410 
411 		rv = SI_SM_CALL_WITHOUT_DELAY;
412 	}
413  out:
414 	return rv;
415 }
416 
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419 	smi_info->last_timeout_jiffies = jiffies;
420 	mod_timer(&smi_info->si_timer, new_val);
421 	smi_info->timer_running = true;
422 }
423 
424 /*
425  * Start a new message and (re)start the timer and thread.
426  */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 			  unsigned int size)
429 {
430 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431 
432 	if (smi_info->thread)
433 		wake_up_process(smi_info->thread);
434 
435 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437 
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440 	unsigned char msg[2];
441 
442 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444 
445 	if (start_timer)
446 		start_new_msg(smi_info, msg, 2);
447 	else
448 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 	smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451 
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454 	unsigned char msg[3];
455 
456 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
457 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 	msg[2] = WDT_PRE_TIMEOUT_INT;
460 
461 	if (start_timer)
462 		start_new_msg(smi_info, msg, 3);
463 	else
464 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 	smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467 
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 	smi_info->curr_msg->data_size = 2;
473 
474 	start_new_msg(smi_info, smi_info->curr_msg->data,
475 		      smi_info->curr_msg->data_size);
476 	smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478 
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 	smi_info->curr_msg->data_size = 2;
484 
485 	start_new_msg(smi_info, smi_info->curr_msg->data,
486 		      smi_info->curr_msg->data_size);
487 	smi_info->si_state = SI_GETTING_EVENTS;
488 }
489 
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 		smi_info->interrupt_disabled = true;
503 		start_check_enables(smi_info, start_timer);
504 		return true;
505 	}
506 	return false;
507 }
508 
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 		smi_info->interrupt_disabled = false;
513 		start_check_enables(smi_info, true);
514 		return true;
515 	}
516 	return false;
517 }
518 
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 	struct ipmi_smi_msg *msg;
528 
529 	msg = ipmi_alloc_smi_msg();
530 	if (!msg) {
531 		if (!disable_si_irq(smi_info, true))
532 			smi_info->si_state = SI_NORMAL;
533 	} else if (enable_si_irq(smi_info)) {
534 		ipmi_free_smi_msg(msg);
535 		msg = NULL;
536 	}
537 	return msg;
538 }
539 
540 static void handle_flags(struct smi_info *smi_info)
541 {
542  retry:
543 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 		/* Watchdog pre-timeout */
545 		smi_inc_stat(smi_info, watchdog_pretimeouts);
546 
547 		start_clear_flags(smi_info, true);
548 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 		if (smi_info->intf)
550 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 		/* Messages available. */
553 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 		if (!smi_info->curr_msg)
555 			return;
556 
557 		start_getting_msg_queue(smi_info);
558 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 		/* Events available. */
560 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 		if (!smi_info->curr_msg)
562 			return;
563 
564 		start_getting_events(smi_info);
565 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 		   smi_info->oem_data_avail_handler) {
567 		if (smi_info->oem_data_avail_handler(smi_info))
568 			goto retry;
569 	} else
570 		smi_info->si_state = SI_NORMAL;
571 }
572 
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 			     IPMI_BMC_EVT_MSG_INTR)
578 
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 				 bool *irq_on)
581 {
582 	u8 enables = 0;
583 
584 	if (smi_info->supports_event_msg_buff)
585 		enables |= IPMI_BMC_EVT_MSG_BUFF;
586 
587 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 	     smi_info->cannot_disable_irq) &&
589 	    !smi_info->irq_enable_broken)
590 		enables |= IPMI_BMC_RCV_MSG_INTR;
591 
592 	if (smi_info->supports_event_msg_buff &&
593 	    smi_info->irq && !smi_info->interrupt_disabled &&
594 	    !smi_info->irq_enable_broken)
595 		enables |= IPMI_BMC_EVT_MSG_INTR;
596 
597 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598 
599 	return enables;
600 }
601 
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605 
606 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607 
608 	if ((bool)irqstate == irq_on)
609 		return;
610 
611 	if (irq_on)
612 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 	else
615 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617 
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 	struct ipmi_smi_msg *msg;
621 
622 	debug_timestamp("Done");
623 	switch (smi_info->si_state) {
624 	case SI_NORMAL:
625 		if (!smi_info->curr_msg)
626 			break;
627 
628 		smi_info->curr_msg->rsp_size
629 			= smi_info->handlers->get_result(
630 				smi_info->si_sm,
631 				smi_info->curr_msg->rsp,
632 				IPMI_MAX_MSG_LENGTH);
633 
634 		/*
635 		 * Do this here becase deliver_recv_msg() releases the
636 		 * lock, and a new message can be put in during the
637 		 * time the lock is released.
638 		 */
639 		msg = smi_info->curr_msg;
640 		smi_info->curr_msg = NULL;
641 		deliver_recv_msg(smi_info, msg);
642 		break;
643 
644 	case SI_GETTING_FLAGS:
645 	{
646 		unsigned char msg[4];
647 		unsigned int  len;
648 
649 		/* We got the flags from the SMI, now handle them. */
650 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 		if (msg[2] != 0) {
652 			/* Error fetching flags, just give up for now. */
653 			smi_info->si_state = SI_NORMAL;
654 		} else if (len < 4) {
655 			/*
656 			 * Hmm, no flags.  That's technically illegal, but
657 			 * don't use uninitialized data.
658 			 */
659 			smi_info->si_state = SI_NORMAL;
660 		} else {
661 			smi_info->msg_flags = msg[3];
662 			handle_flags(smi_info);
663 		}
664 		break;
665 	}
666 
667 	case SI_CLEARING_FLAGS:
668 	{
669 		unsigned char msg[3];
670 
671 		/* We cleared the flags. */
672 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 		if (msg[2] != 0) {
674 			/* Error clearing flags */
675 			dev_warn(smi_info->dev,
676 				 "Error clearing flags: %2.2x\n", msg[2]);
677 		}
678 		smi_info->si_state = SI_NORMAL;
679 		break;
680 	}
681 
682 	case SI_GETTING_EVENTS:
683 	{
684 		smi_info->curr_msg->rsp_size
685 			= smi_info->handlers->get_result(
686 				smi_info->si_sm,
687 				smi_info->curr_msg->rsp,
688 				IPMI_MAX_MSG_LENGTH);
689 
690 		/*
691 		 * Do this here becase deliver_recv_msg() releases the
692 		 * lock, and a new message can be put in during the
693 		 * time the lock is released.
694 		 */
695 		msg = smi_info->curr_msg;
696 		smi_info->curr_msg = NULL;
697 		if (msg->rsp[2] != 0) {
698 			/* Error getting event, probably done. */
699 			msg->done(msg);
700 
701 			/* Take off the event flag. */
702 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 			handle_flags(smi_info);
704 		} else {
705 			smi_inc_stat(smi_info, events);
706 
707 			/*
708 			 * Do this before we deliver the message
709 			 * because delivering the message releases the
710 			 * lock and something else can mess with the
711 			 * state.
712 			 */
713 			handle_flags(smi_info);
714 
715 			deliver_recv_msg(smi_info, msg);
716 		}
717 		break;
718 	}
719 
720 	case SI_GETTING_MESSAGES:
721 	{
722 		smi_info->curr_msg->rsp_size
723 			= smi_info->handlers->get_result(
724 				smi_info->si_sm,
725 				smi_info->curr_msg->rsp,
726 				IPMI_MAX_MSG_LENGTH);
727 
728 		/*
729 		 * Do this here becase deliver_recv_msg() releases the
730 		 * lock, and a new message can be put in during the
731 		 * time the lock is released.
732 		 */
733 		msg = smi_info->curr_msg;
734 		smi_info->curr_msg = NULL;
735 		if (msg->rsp[2] != 0) {
736 			/* Error getting event, probably done. */
737 			msg->done(msg);
738 
739 			/* Take off the msg flag. */
740 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 			handle_flags(smi_info);
742 		} else {
743 			smi_inc_stat(smi_info, incoming_messages);
744 
745 			/*
746 			 * Do this before we deliver the message
747 			 * because delivering the message releases the
748 			 * lock and something else can mess with the
749 			 * state.
750 			 */
751 			handle_flags(smi_info);
752 
753 			deliver_recv_msg(smi_info, msg);
754 		}
755 		break;
756 	}
757 
758 	case SI_CHECKING_ENABLES:
759 	{
760 		unsigned char msg[4];
761 		u8 enables;
762 		bool irq_on;
763 
764 		/* We got the flags from the SMI, now handle them. */
765 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 		if (msg[2] != 0) {
767 			dev_warn(smi_info->dev,
768 				 "Couldn't get irq info: %x.\n", msg[2]);
769 			dev_warn(smi_info->dev,
770 				 "Maybe ok, but ipmi might run very slowly.\n");
771 			smi_info->si_state = SI_NORMAL;
772 			break;
773 		}
774 		enables = current_global_enables(smi_info, 0, &irq_on);
775 		if (smi_info->si_type == SI_BT)
776 			/* BT has its own interrupt enable bit. */
777 			check_bt_irq(smi_info, irq_on);
778 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 			/* Enables are not correct, fix them. */
780 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 			smi_info->handlers->start_transaction(
784 				smi_info->si_sm, msg, 3);
785 			smi_info->si_state = SI_SETTING_ENABLES;
786 		} else if (smi_info->supports_event_msg_buff) {
787 			smi_info->curr_msg = ipmi_alloc_smi_msg();
788 			if (!smi_info->curr_msg) {
789 				smi_info->si_state = SI_NORMAL;
790 				break;
791 			}
792 			start_getting_msg_queue(smi_info);
793 		} else {
794 			smi_info->si_state = SI_NORMAL;
795 		}
796 		break;
797 	}
798 
799 	case SI_SETTING_ENABLES:
800 	{
801 		unsigned char msg[4];
802 
803 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 		if (msg[2] != 0)
805 			dev_warn(smi_info->dev,
806 				 "Could not set the global enables: 0x%x.\n",
807 				 msg[2]);
808 
809 		if (smi_info->supports_event_msg_buff) {
810 			smi_info->curr_msg = ipmi_alloc_smi_msg();
811 			if (!smi_info->curr_msg) {
812 				smi_info->si_state = SI_NORMAL;
813 				break;
814 			}
815 			start_getting_msg_queue(smi_info);
816 		} else {
817 			smi_info->si_state = SI_NORMAL;
818 		}
819 		break;
820 	}
821 	}
822 }
823 
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 					   int time)
831 {
832 	enum si_sm_result si_sm_result;
833 
834  restart:
835 	/*
836 	 * There used to be a loop here that waited a little while
837 	 * (around 25us) before giving up.  That turned out to be
838 	 * pointless, the minimum delays I was seeing were in the 300us
839 	 * range, which is far too long to wait in an interrupt.  So
840 	 * we just run until the state machine tells us something
841 	 * happened or it needs a delay.
842 	 */
843 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 	time = 0;
845 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847 
848 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 		smi_inc_stat(smi_info, complete_transactions);
850 
851 		handle_transaction_done(smi_info);
852 		goto restart;
853 	} else if (si_sm_result == SI_SM_HOSED) {
854 		smi_inc_stat(smi_info, hosed_count);
855 
856 		/*
857 		 * Do the before return_hosed_msg, because that
858 		 * releases the lock.
859 		 */
860 		smi_info->si_state = SI_NORMAL;
861 		if (smi_info->curr_msg != NULL) {
862 			/*
863 			 * If we were handling a user message, format
864 			 * a response to send to the upper layer to
865 			 * tell it about the error.
866 			 */
867 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 		}
869 		goto restart;
870 	}
871 
872 	/*
873 	 * We prefer handling attn over new messages.  But don't do
874 	 * this if there is not yet an upper layer to handle anything.
875 	 */
876 	if (likely(smi_info->intf) &&
877 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 		unsigned char msg[2];
879 
880 		if (smi_info->si_state != SI_NORMAL) {
881 			/*
882 			 * We got an ATTN, but we are doing something else.
883 			 * Handle the ATTN later.
884 			 */
885 			smi_info->got_attn = true;
886 		} else {
887 			smi_info->got_attn = false;
888 			smi_inc_stat(smi_info, attentions);
889 
890 			/*
891 			 * Got a attn, send down a get message flags to see
892 			 * what's causing it.  It would be better to handle
893 			 * this in the upper layer, but due to the way
894 			 * interrupts work with the SMI, that's not really
895 			 * possible.
896 			 */
897 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899 
900 			start_new_msg(smi_info, msg, 2);
901 			smi_info->si_state = SI_GETTING_FLAGS;
902 			goto restart;
903 		}
904 	}
905 
906 	/* If we are currently idle, try to start the next message. */
907 	if (si_sm_result == SI_SM_IDLE) {
908 		smi_inc_stat(smi_info, idles);
909 
910 		si_sm_result = start_next_msg(smi_info);
911 		if (si_sm_result != SI_SM_IDLE)
912 			goto restart;
913 	}
914 
915 	if ((si_sm_result == SI_SM_IDLE)
916 	    && (atomic_read(&smi_info->req_events))) {
917 		/*
918 		 * We are idle and the upper layer requested that I fetch
919 		 * events, so do so.
920 		 */
921 		atomic_set(&smi_info->req_events, 0);
922 
923 		/*
924 		 * Take this opportunity to check the interrupt and
925 		 * message enable state for the BMC.  The BMC can be
926 		 * asynchronously reset, and may thus get interrupts
927 		 * disable and messages disabled.
928 		 */
929 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 			start_check_enables(smi_info, true);
931 		} else {
932 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 			if (!smi_info->curr_msg)
934 				goto out;
935 
936 			start_getting_events(smi_info);
937 		}
938 		goto restart;
939 	}
940 
941 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 		/* Ok it if fails, the timer will just go off. */
943 		if (del_timer(&smi_info->si_timer))
944 			smi_info->timer_running = false;
945 	}
946 
947  out:
948 	return si_sm_result;
949 }
950 
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955 
956 		if (smi_info->thread)
957 			wake_up_process(smi_info->thread);
958 
959 		start_next_msg(smi_info);
960 		smi_event_handler(smi_info, 0);
961 	}
962 }
963 
964 static void flush_messages(void *send_info)
965 {
966 	struct smi_info *smi_info = send_info;
967 	enum si_sm_result result;
968 
969 	/*
970 	 * Currently, this function is called only in run-to-completion
971 	 * mode.  This means we are single-threaded, no need for locks.
972 	 */
973 	result = smi_event_handler(smi_info, 0);
974 	while (result != SI_SM_IDLE) {
975 		udelay(SI_SHORT_TIMEOUT_USEC);
976 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 	}
978 }
979 
980 static void sender(void                *send_info,
981 		   struct ipmi_smi_msg *msg)
982 {
983 	struct smi_info   *smi_info = send_info;
984 	unsigned long     flags;
985 
986 	debug_timestamp("Enqueue");
987 
988 	if (smi_info->run_to_completion) {
989 		/*
990 		 * If we are running to completion, start it.  Upper
991 		 * layer will call flush_messages to clear it out.
992 		 */
993 		smi_info->waiting_msg = msg;
994 		return;
995 	}
996 
997 	spin_lock_irqsave(&smi_info->si_lock, flags);
998 	/*
999 	 * The following two lines don't need to be under the lock for
1000 	 * the lock's sake, but they do need SMP memory barriers to
1001 	 * avoid getting things out of order.  We are already claiming
1002 	 * the lock, anyway, so just do it under the lock to avoid the
1003 	 * ordering problem.
1004 	 */
1005 	BUG_ON(smi_info->waiting_msg);
1006 	smi_info->waiting_msg = msg;
1007 	check_start_timer_thread(smi_info);
1008 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010 
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 	struct smi_info   *smi_info = send_info;
1014 
1015 	smi_info->run_to_completion = i_run_to_completion;
1016 	if (i_run_to_completion)
1017 		flush_messages(smi_info);
1018 }
1019 
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 	ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 	return ts->tv_nsec != -1;
1032 }
1033 
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 					const struct smi_info *smi_info,
1036 					struct timespec64 *busy_until)
1037 {
1038 	unsigned int max_busy_us = 0;
1039 
1040 	if (smi_info->intf_num < num_max_busy_us)
1041 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 		ipmi_si_set_not_busy(busy_until);
1044 	else if (!ipmi_si_is_busy(busy_until)) {
1045 		getnstimeofday64(busy_until);
1046 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 	} else {
1048 		struct timespec64 now;
1049 
1050 		getnstimeofday64(&now);
1051 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 			ipmi_si_set_not_busy(busy_until);
1053 			return 0;
1054 		}
1055 	}
1056 	return 1;
1057 }
1058 
1059 
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071 	struct smi_info *smi_info = data;
1072 	unsigned long flags;
1073 	enum si_sm_result smi_result;
1074 	struct timespec64 busy_until;
1075 
1076 	ipmi_si_set_not_busy(&busy_until);
1077 	set_user_nice(current, MAX_NICE);
1078 	while (!kthread_should_stop()) {
1079 		int busy_wait;
1080 
1081 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 		smi_result = smi_event_handler(smi_info, 0);
1083 
1084 		/*
1085 		 * If the driver is doing something, there is a possible
1086 		 * race with the timer.  If the timer handler see idle,
1087 		 * and the thread here sees something else, the timer
1088 		 * handler won't restart the timer even though it is
1089 		 * required.  So start it here if necessary.
1090 		 */
1091 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093 
1094 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 						  &busy_until);
1097 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 			; /* do nothing */
1099 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 			schedule();
1101 		else if (smi_result == SI_SM_IDLE) {
1102 			if (atomic_read(&smi_info->need_watch)) {
1103 				schedule_timeout_interruptible(100);
1104 			} else {
1105 				/* Wait to be woken up when we are needed. */
1106 				__set_current_state(TASK_INTERRUPTIBLE);
1107 				schedule();
1108 			}
1109 		} else
1110 			schedule_timeout_interruptible(1);
1111 	}
1112 	return 0;
1113 }
1114 
1115 
1116 static void poll(void *send_info)
1117 {
1118 	struct smi_info *smi_info = send_info;
1119 	unsigned long flags = 0;
1120 	bool run_to_completion = smi_info->run_to_completion;
1121 
1122 	/*
1123 	 * Make sure there is some delay in the poll loop so we can
1124 	 * drive time forward and timeout things.
1125 	 */
1126 	udelay(10);
1127 	if (!run_to_completion)
1128 		spin_lock_irqsave(&smi_info->si_lock, flags);
1129 	smi_event_handler(smi_info, 10);
1130 	if (!run_to_completion)
1131 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133 
1134 static void request_events(void *send_info)
1135 {
1136 	struct smi_info *smi_info = send_info;
1137 
1138 	if (!smi_info->has_event_buffer)
1139 		return;
1140 
1141 	atomic_set(&smi_info->req_events, 1);
1142 }
1143 
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146 	struct smi_info *smi_info = send_info;
1147 	unsigned long flags;
1148 
1149 	atomic_set(&smi_info->need_watch, enable);
1150 	spin_lock_irqsave(&smi_info->si_lock, flags);
1151 	check_start_timer_thread(smi_info);
1152 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154 
1155 static int initialized;
1156 
1157 static void smi_timeout(unsigned long data)
1158 {
1159 	struct smi_info   *smi_info = (struct smi_info *) data;
1160 	enum si_sm_result smi_result;
1161 	unsigned long     flags;
1162 	unsigned long     jiffies_now;
1163 	long              time_diff;
1164 	long		  timeout;
1165 
1166 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 	debug_timestamp("Timer");
1168 
1169 	jiffies_now = jiffies;
1170 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 		     * SI_USEC_PER_JIFFY);
1172 	smi_result = smi_event_handler(smi_info, time_diff);
1173 
1174 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 		/* Running with interrupts, only do long timeouts. */
1176 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 		smi_inc_stat(smi_info, long_timeouts);
1178 		goto do_mod_timer;
1179 	}
1180 
1181 	/*
1182 	 * If the state machine asks for a short delay, then shorten
1183 	 * the timer timeout.
1184 	 */
1185 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 		smi_inc_stat(smi_info, short_timeouts);
1187 		timeout = jiffies + 1;
1188 	} else {
1189 		smi_inc_stat(smi_info, long_timeouts);
1190 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191 	}
1192 
1193  do_mod_timer:
1194 	if (smi_result != SI_SM_IDLE)
1195 		smi_mod_timer(smi_info, timeout);
1196 	else
1197 		smi_info->timer_running = false;
1198 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200 
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203 	struct smi_info *smi_info = data;
1204 	unsigned long   flags;
1205 
1206 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1207 
1208 	smi_inc_stat(smi_info, interrupts);
1209 
1210 	debug_timestamp("Interrupt");
1211 
1212 	smi_event_handler(smi_info, 0);
1213 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 	return IRQ_HANDLED;
1215 }
1216 
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219 	struct smi_info *smi_info = data;
1220 	/* We need to clear the IRQ flag for the BT interface. */
1221 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 	return si_irq_handler(irq, data);
1225 }
1226 
1227 static int smi_start_processing(void       *send_info,
1228 				ipmi_smi_t intf)
1229 {
1230 	struct smi_info *new_smi = send_info;
1231 	int             enable = 0;
1232 
1233 	new_smi->intf = intf;
1234 
1235 	/* Set up the timer that drives the interface. */
1236 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238 
1239 	/* Try to claim any interrupts. */
1240 	if (new_smi->irq_setup)
1241 		new_smi->irq_setup(new_smi);
1242 
1243 	/*
1244 	 * Check if the user forcefully enabled the daemon.
1245 	 */
1246 	if (new_smi->intf_num < num_force_kipmid)
1247 		enable = force_kipmid[new_smi->intf_num];
1248 	/*
1249 	 * The BT interface is efficient enough to not need a thread,
1250 	 * and there is no need for a thread if we have interrupts.
1251 	 */
1252 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 		enable = 1;
1254 
1255 	if (enable) {
1256 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 					      "kipmi%d", new_smi->intf_num);
1258 		if (IS_ERR(new_smi->thread)) {
1259 			dev_notice(new_smi->dev, "Could not start"
1260 				   " kernel thread due to error %ld, only using"
1261 				   " timers to drive the interface\n",
1262 				   PTR_ERR(new_smi->thread));
1263 			new_smi->thread = NULL;
1264 		}
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272 	struct smi_info *smi = send_info;
1273 
1274 	data->addr_src = smi->addr_source;
1275 	data->dev = smi->dev;
1276 	data->addr_info = smi->addr_info;
1277 	get_device(smi->dev);
1278 
1279 	return 0;
1280 }
1281 
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284 	struct smi_info   *smi_info = send_info;
1285 
1286 	if (!enable)
1287 		atomic_set(&smi_info->req_events, 0);
1288 }
1289 
1290 static const struct ipmi_smi_handlers handlers = {
1291 	.owner                  = THIS_MODULE,
1292 	.start_processing       = smi_start_processing,
1293 	.get_smi_info		= get_smi_info,
1294 	.sender			= sender,
1295 	.request_events		= request_events,
1296 	.set_need_watch		= set_need_watch,
1297 	.set_maintenance_mode   = set_maintenance_mode,
1298 	.set_run_to_completion  = set_run_to_completion,
1299 	.flush_messages		= flush_messages,
1300 	.poll			= poll,
1301 };
1302 
1303 /*
1304  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306  */
1307 
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311 
1312 #define DEFAULT_REGSPACING	1
1313 #define DEFAULT_REGSIZE		1
1314 
1315 #ifdef CONFIG_ACPI
1316 static bool          si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool          si_trydmi = true;
1320 #endif
1321 static bool          si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool          si_trypci = true;
1324 #endif
1325 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1326 static char          *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char          si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int  ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int           irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int           regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int           regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int           regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343 
1344 #define IPMI_IO_ADDR_SPACE  0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347 
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349 
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352 		 " Documentation/IPMI.txt in the kernel sources for the"
1353 		 " gory details.");
1354 
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358 		 " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363 		 " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367 		 " default scan of the interfaces identified via platform"
1368 		 " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372 		 " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_named(trydefaults, si_trydefaults, bool, 0);
1375 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1376 		 " default scan of the KCS and SMIC interface at the standard"
1377 		 " address");
1378 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1379 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1380 		 " interface separated by commas.  The types are 'kcs',"
1381 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1382 		 " the first interface to kcs and the second to bt");
1383 module_param_array(addrs, ulong, &num_addrs, 0);
1384 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1385 		 " addresses separated by commas.  Only use if an interface"
1386 		 " is in memory.  Otherwise, set it to zero or leave"
1387 		 " it blank.");
1388 module_param_array(ports, uint, &num_ports, 0);
1389 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1390 		 " addresses separated by commas.  Only use if an interface"
1391 		 " is a port.  Otherwise, set it to zero or leave"
1392 		 " it blank.");
1393 module_param_array(irqs, int, &num_irqs, 0);
1394 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1395 		 " addresses separated by commas.  Only use if an interface"
1396 		 " has an interrupt.  Otherwise, set it to zero or leave"
1397 		 " it blank.");
1398 module_param_array(regspacings, int, &num_regspacings, 0);
1399 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1400 		 " and each successive register used by the interface.  For"
1401 		 " instance, if the start address is 0xca2 and the spacing"
1402 		 " is 2, then the second address is at 0xca4.  Defaults"
1403 		 " to 1.");
1404 module_param_array(regsizes, int, &num_regsizes, 0);
1405 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1406 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1407 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1408 		 " the 8-bit IPMI register has to be read from a larger"
1409 		 " register.");
1410 module_param_array(regshifts, int, &num_regshifts, 0);
1411 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1412 		 " IPMI register, in bits.  For instance, if the data"
1413 		 " is read from a 32-bit word and the IPMI data is in"
1414 		 " bit 8-15, then the shift would be 8");
1415 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1416 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1417 		 " the controller.  Normally this is 0x20, but can be"
1418 		 " overridden by this parm.  This is an array indexed"
1419 		 " by interface number.");
1420 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1421 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1422 		 " disabled(0).  Normally the IPMI driver auto-detects"
1423 		 " this, but the value may be overridden by this parm.");
1424 module_param(unload_when_empty, bool, 0);
1425 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1426 		 " specified or found, default is 1.  Setting to 0"
1427 		 " is useful for hot add of devices using hotmod.");
1428 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1429 MODULE_PARM_DESC(kipmid_max_busy_us,
1430 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1431 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1432 		 " if kipmid is using up a lot of CPU time.");
1433 
1434 
1435 static void std_irq_cleanup(struct smi_info *info)
1436 {
1437 	if (info->si_type == SI_BT)
1438 		/* Disable the interrupt in the BT interface. */
1439 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1440 	free_irq(info->irq, info);
1441 }
1442 
1443 static int std_irq_setup(struct smi_info *info)
1444 {
1445 	int rv;
1446 
1447 	if (!info->irq)
1448 		return 0;
1449 
1450 	if (info->si_type == SI_BT) {
1451 		rv = request_irq(info->irq,
1452 				 si_bt_irq_handler,
1453 				 IRQF_SHARED,
1454 				 DEVICE_NAME,
1455 				 info);
1456 		if (!rv)
1457 			/* Enable the interrupt in the BT interface. */
1458 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1459 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1460 	} else
1461 		rv = request_irq(info->irq,
1462 				 si_irq_handler,
1463 				 IRQF_SHARED,
1464 				 DEVICE_NAME,
1465 				 info);
1466 	if (rv) {
1467 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1468 			 " running polled\n",
1469 			 DEVICE_NAME, info->irq);
1470 		info->irq = 0;
1471 	} else {
1472 		info->irq_cleanup = std_irq_cleanup;
1473 		dev_info(info->dev, "Using irq %d\n", info->irq);
1474 	}
1475 
1476 	return rv;
1477 }
1478 
1479 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1480 {
1481 	unsigned int addr = io->addr_data;
1482 
1483 	return inb(addr + (offset * io->regspacing));
1484 }
1485 
1486 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1487 		      unsigned char b)
1488 {
1489 	unsigned int addr = io->addr_data;
1490 
1491 	outb(b, addr + (offset * io->regspacing));
1492 }
1493 
1494 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1495 {
1496 	unsigned int addr = io->addr_data;
1497 
1498 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500 
1501 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1502 		      unsigned char b)
1503 {
1504 	unsigned int addr = io->addr_data;
1505 
1506 	outw(b << io->regshift, addr + (offset * io->regspacing));
1507 }
1508 
1509 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1510 {
1511 	unsigned int addr = io->addr_data;
1512 
1513 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1514 }
1515 
1516 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1517 		      unsigned char b)
1518 {
1519 	unsigned int addr = io->addr_data;
1520 
1521 	outl(b << io->regshift, addr+(offset * io->regspacing));
1522 }
1523 
1524 static void port_cleanup(struct smi_info *info)
1525 {
1526 	unsigned int addr = info->io.addr_data;
1527 	int          idx;
1528 
1529 	if (addr) {
1530 		for (idx = 0; idx < info->io_size; idx++)
1531 			release_region(addr + idx * info->io.regspacing,
1532 				       info->io.regsize);
1533 	}
1534 }
1535 
1536 static int port_setup(struct smi_info *info)
1537 {
1538 	unsigned int addr = info->io.addr_data;
1539 	int          idx;
1540 
1541 	if (!addr)
1542 		return -ENODEV;
1543 
1544 	info->io_cleanup = port_cleanup;
1545 
1546 	/*
1547 	 * Figure out the actual inb/inw/inl/etc routine to use based
1548 	 * upon the register size.
1549 	 */
1550 	switch (info->io.regsize) {
1551 	case 1:
1552 		info->io.inputb = port_inb;
1553 		info->io.outputb = port_outb;
1554 		break;
1555 	case 2:
1556 		info->io.inputb = port_inw;
1557 		info->io.outputb = port_outw;
1558 		break;
1559 	case 4:
1560 		info->io.inputb = port_inl;
1561 		info->io.outputb = port_outl;
1562 		break;
1563 	default:
1564 		dev_warn(info->dev, "Invalid register size: %d\n",
1565 			 info->io.regsize);
1566 		return -EINVAL;
1567 	}
1568 
1569 	/*
1570 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1571 	 * tables.  This causes problems when trying to register the
1572 	 * entire I/O region.  Therefore we must register each I/O
1573 	 * port separately.
1574 	 */
1575 	for (idx = 0; idx < info->io_size; idx++) {
1576 		if (request_region(addr + idx * info->io.regspacing,
1577 				   info->io.regsize, DEVICE_NAME) == NULL) {
1578 			/* Undo allocations */
1579 			while (idx--) {
1580 				release_region(addr + idx * info->io.regspacing,
1581 					       info->io.regsize);
1582 			}
1583 			return -EIO;
1584 		}
1585 	}
1586 	return 0;
1587 }
1588 
1589 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1590 				  unsigned int offset)
1591 {
1592 	return readb((io->addr)+(offset * io->regspacing));
1593 }
1594 
1595 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1596 			  unsigned char b)
1597 {
1598 	writeb(b, (io->addr)+(offset * io->regspacing));
1599 }
1600 
1601 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1602 				  unsigned int offset)
1603 {
1604 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1605 		& 0xff;
1606 }
1607 
1608 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1609 			  unsigned char b)
1610 {
1611 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1612 }
1613 
1614 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1615 				  unsigned int offset)
1616 {
1617 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1618 		& 0xff;
1619 }
1620 
1621 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1622 			  unsigned char b)
1623 {
1624 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1625 }
1626 
1627 #ifdef readq
1628 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1629 {
1630 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1631 		& 0xff;
1632 }
1633 
1634 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1635 		     unsigned char b)
1636 {
1637 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1638 }
1639 #endif
1640 
1641 static void mem_cleanup(struct smi_info *info)
1642 {
1643 	unsigned long addr = info->io.addr_data;
1644 	int           mapsize;
1645 
1646 	if (info->io.addr) {
1647 		iounmap(info->io.addr);
1648 
1649 		mapsize = ((info->io_size * info->io.regspacing)
1650 			   - (info->io.regspacing - info->io.regsize));
1651 
1652 		release_mem_region(addr, mapsize);
1653 	}
1654 }
1655 
1656 static int mem_setup(struct smi_info *info)
1657 {
1658 	unsigned long addr = info->io.addr_data;
1659 	int           mapsize;
1660 
1661 	if (!addr)
1662 		return -ENODEV;
1663 
1664 	info->io_cleanup = mem_cleanup;
1665 
1666 	/*
1667 	 * Figure out the actual readb/readw/readl/etc routine to use based
1668 	 * upon the register size.
1669 	 */
1670 	switch (info->io.regsize) {
1671 	case 1:
1672 		info->io.inputb = intf_mem_inb;
1673 		info->io.outputb = intf_mem_outb;
1674 		break;
1675 	case 2:
1676 		info->io.inputb = intf_mem_inw;
1677 		info->io.outputb = intf_mem_outw;
1678 		break;
1679 	case 4:
1680 		info->io.inputb = intf_mem_inl;
1681 		info->io.outputb = intf_mem_outl;
1682 		break;
1683 #ifdef readq
1684 	case 8:
1685 		info->io.inputb = mem_inq;
1686 		info->io.outputb = mem_outq;
1687 		break;
1688 #endif
1689 	default:
1690 		dev_warn(info->dev, "Invalid register size: %d\n",
1691 			 info->io.regsize);
1692 		return -EINVAL;
1693 	}
1694 
1695 	/*
1696 	 * Calculate the total amount of memory to claim.  This is an
1697 	 * unusual looking calculation, but it avoids claiming any
1698 	 * more memory than it has to.  It will claim everything
1699 	 * between the first address to the end of the last full
1700 	 * register.
1701 	 */
1702 	mapsize = ((info->io_size * info->io.regspacing)
1703 		   - (info->io.regspacing - info->io.regsize));
1704 
1705 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1706 		return -EIO;
1707 
1708 	info->io.addr = ioremap(addr, mapsize);
1709 	if (info->io.addr == NULL) {
1710 		release_mem_region(addr, mapsize);
1711 		return -EIO;
1712 	}
1713 	return 0;
1714 }
1715 
1716 /*
1717  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1718  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1719  * Options are:
1720  *   rsp=<regspacing>
1721  *   rsi=<regsize>
1722  *   rsh=<regshift>
1723  *   irq=<irq>
1724  *   ipmb=<ipmb addr>
1725  */
1726 enum hotmod_op { HM_ADD, HM_REMOVE };
1727 struct hotmod_vals {
1728 	const char *name;
1729 	const int  val;
1730 };
1731 
1732 static const struct hotmod_vals hotmod_ops[] = {
1733 	{ "add",	HM_ADD },
1734 	{ "remove",	HM_REMOVE },
1735 	{ NULL }
1736 };
1737 
1738 static const struct hotmod_vals hotmod_si[] = {
1739 	{ "kcs",	SI_KCS },
1740 	{ "smic",	SI_SMIC },
1741 	{ "bt",		SI_BT },
1742 	{ NULL }
1743 };
1744 
1745 static const struct hotmod_vals hotmod_as[] = {
1746 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1747 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1748 	{ NULL }
1749 };
1750 
1751 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1752 		     char **curr)
1753 {
1754 	char *s;
1755 	int  i;
1756 
1757 	s = strchr(*curr, ',');
1758 	if (!s) {
1759 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1760 		return -EINVAL;
1761 	}
1762 	*s = '\0';
1763 	s++;
1764 	for (i = 0; v[i].name; i++) {
1765 		if (strcmp(*curr, v[i].name) == 0) {
1766 			*val = v[i].val;
1767 			*curr = s;
1768 			return 0;
1769 		}
1770 	}
1771 
1772 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1773 	return -EINVAL;
1774 }
1775 
1776 static int check_hotmod_int_op(const char *curr, const char *option,
1777 			       const char *name, int *val)
1778 {
1779 	char *n;
1780 
1781 	if (strcmp(curr, name) == 0) {
1782 		if (!option) {
1783 			printk(KERN_WARNING PFX
1784 			       "No option given for '%s'\n",
1785 			       curr);
1786 			return -EINVAL;
1787 		}
1788 		*val = simple_strtoul(option, &n, 0);
1789 		if ((*n != '\0') || (*option == '\0')) {
1790 			printk(KERN_WARNING PFX
1791 			       "Bad option given for '%s'\n",
1792 			       curr);
1793 			return -EINVAL;
1794 		}
1795 		return 1;
1796 	}
1797 	return 0;
1798 }
1799 
1800 static struct smi_info *smi_info_alloc(void)
1801 {
1802 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1803 
1804 	if (info)
1805 		spin_lock_init(&info->si_lock);
1806 	return info;
1807 }
1808 
1809 static int hotmod_handler(const char *val, struct kernel_param *kp)
1810 {
1811 	char *str = kstrdup(val, GFP_KERNEL);
1812 	int  rv;
1813 	char *next, *curr, *s, *n, *o;
1814 	enum hotmod_op op;
1815 	enum si_type si_type;
1816 	int  addr_space;
1817 	unsigned long addr;
1818 	int regspacing;
1819 	int regsize;
1820 	int regshift;
1821 	int irq;
1822 	int ipmb;
1823 	int ival;
1824 	int len;
1825 	struct smi_info *info;
1826 
1827 	if (!str)
1828 		return -ENOMEM;
1829 
1830 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1831 	len = strlen(str);
1832 	ival = len - 1;
1833 	while ((ival >= 0) && isspace(str[ival])) {
1834 		str[ival] = '\0';
1835 		ival--;
1836 	}
1837 
1838 	for (curr = str; curr; curr = next) {
1839 		regspacing = 1;
1840 		regsize = 1;
1841 		regshift = 0;
1842 		irq = 0;
1843 		ipmb = 0; /* Choose the default if not specified */
1844 
1845 		next = strchr(curr, ':');
1846 		if (next) {
1847 			*next = '\0';
1848 			next++;
1849 		}
1850 
1851 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1852 		if (rv)
1853 			break;
1854 		op = ival;
1855 
1856 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1857 		if (rv)
1858 			break;
1859 		si_type = ival;
1860 
1861 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1862 		if (rv)
1863 			break;
1864 
1865 		s = strchr(curr, ',');
1866 		if (s) {
1867 			*s = '\0';
1868 			s++;
1869 		}
1870 		addr = simple_strtoul(curr, &n, 0);
1871 		if ((*n != '\0') || (*curr == '\0')) {
1872 			printk(KERN_WARNING PFX "Invalid hotmod address"
1873 			       " '%s'\n", curr);
1874 			break;
1875 		}
1876 
1877 		while (s) {
1878 			curr = s;
1879 			s = strchr(curr, ',');
1880 			if (s) {
1881 				*s = '\0';
1882 				s++;
1883 			}
1884 			o = strchr(curr, '=');
1885 			if (o) {
1886 				*o = '\0';
1887 				o++;
1888 			}
1889 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1890 			if (rv < 0)
1891 				goto out;
1892 			else if (rv)
1893 				continue;
1894 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1895 			if (rv < 0)
1896 				goto out;
1897 			else if (rv)
1898 				continue;
1899 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1900 			if (rv < 0)
1901 				goto out;
1902 			else if (rv)
1903 				continue;
1904 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1905 			if (rv < 0)
1906 				goto out;
1907 			else if (rv)
1908 				continue;
1909 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1910 			if (rv < 0)
1911 				goto out;
1912 			else if (rv)
1913 				continue;
1914 
1915 			rv = -EINVAL;
1916 			printk(KERN_WARNING PFX
1917 			       "Invalid hotmod option '%s'\n",
1918 			       curr);
1919 			goto out;
1920 		}
1921 
1922 		if (op == HM_ADD) {
1923 			info = smi_info_alloc();
1924 			if (!info) {
1925 				rv = -ENOMEM;
1926 				goto out;
1927 			}
1928 
1929 			info->addr_source = SI_HOTMOD;
1930 			info->si_type = si_type;
1931 			info->io.addr_data = addr;
1932 			info->io.addr_type = addr_space;
1933 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1934 				info->io_setup = mem_setup;
1935 			else
1936 				info->io_setup = port_setup;
1937 
1938 			info->io.addr = NULL;
1939 			info->io.regspacing = regspacing;
1940 			if (!info->io.regspacing)
1941 				info->io.regspacing = DEFAULT_REGSPACING;
1942 			info->io.regsize = regsize;
1943 			if (!info->io.regsize)
1944 				info->io.regsize = DEFAULT_REGSPACING;
1945 			info->io.regshift = regshift;
1946 			info->irq = irq;
1947 			if (info->irq)
1948 				info->irq_setup = std_irq_setup;
1949 			info->slave_addr = ipmb;
1950 
1951 			rv = add_smi(info);
1952 			if (rv) {
1953 				kfree(info);
1954 				goto out;
1955 			}
1956 			rv = try_smi_init(info);
1957 			if (rv) {
1958 				cleanup_one_si(info);
1959 				goto out;
1960 			}
1961 		} else {
1962 			/* remove */
1963 			struct smi_info *e, *tmp_e;
1964 
1965 			mutex_lock(&smi_infos_lock);
1966 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1967 				if (e->io.addr_type != addr_space)
1968 					continue;
1969 				if (e->si_type != si_type)
1970 					continue;
1971 				if (e->io.addr_data == addr)
1972 					cleanup_one_si(e);
1973 			}
1974 			mutex_unlock(&smi_infos_lock);
1975 		}
1976 	}
1977 	rv = len;
1978  out:
1979 	kfree(str);
1980 	return rv;
1981 }
1982 
1983 static int hardcode_find_bmc(void)
1984 {
1985 	int ret = -ENODEV;
1986 	int             i;
1987 	struct smi_info *info;
1988 
1989 	for (i = 0; i < SI_MAX_PARMS; i++) {
1990 		if (!ports[i] && !addrs[i])
1991 			continue;
1992 
1993 		info = smi_info_alloc();
1994 		if (!info)
1995 			return -ENOMEM;
1996 
1997 		info->addr_source = SI_HARDCODED;
1998 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1999 
2000 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2001 			info->si_type = SI_KCS;
2002 		} else if (strcmp(si_type[i], "smic") == 0) {
2003 			info->si_type = SI_SMIC;
2004 		} else if (strcmp(si_type[i], "bt") == 0) {
2005 			info->si_type = SI_BT;
2006 		} else {
2007 			printk(KERN_WARNING PFX "Interface type specified "
2008 			       "for interface %d, was invalid: %s\n",
2009 			       i, si_type[i]);
2010 			kfree(info);
2011 			continue;
2012 		}
2013 
2014 		if (ports[i]) {
2015 			/* An I/O port */
2016 			info->io_setup = port_setup;
2017 			info->io.addr_data = ports[i];
2018 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019 		} else if (addrs[i]) {
2020 			/* A memory port */
2021 			info->io_setup = mem_setup;
2022 			info->io.addr_data = addrs[i];
2023 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024 		} else {
2025 			printk(KERN_WARNING PFX "Interface type specified "
2026 			       "for interface %d, but port and address were "
2027 			       "not set or set to zero.\n", i);
2028 			kfree(info);
2029 			continue;
2030 		}
2031 
2032 		info->io.addr = NULL;
2033 		info->io.regspacing = regspacings[i];
2034 		if (!info->io.regspacing)
2035 			info->io.regspacing = DEFAULT_REGSPACING;
2036 		info->io.regsize = regsizes[i];
2037 		if (!info->io.regsize)
2038 			info->io.regsize = DEFAULT_REGSPACING;
2039 		info->io.regshift = regshifts[i];
2040 		info->irq = irqs[i];
2041 		if (info->irq)
2042 			info->irq_setup = std_irq_setup;
2043 		info->slave_addr = slave_addrs[i];
2044 
2045 		if (!add_smi(info)) {
2046 			if (try_smi_init(info))
2047 				cleanup_one_si(info);
2048 			ret = 0;
2049 		} else {
2050 			kfree(info);
2051 		}
2052 	}
2053 	return ret;
2054 }
2055 
2056 #ifdef CONFIG_ACPI
2057 
2058 /*
2059  * Once we get an ACPI failure, we don't try any more, because we go
2060  * through the tables sequentially.  Once we don't find a table, there
2061  * are no more.
2062  */
2063 static int acpi_failure;
2064 
2065 /* For GPE-type interrupts. */
2066 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2067 	u32 gpe_number, void *context)
2068 {
2069 	struct smi_info *smi_info = context;
2070 	unsigned long   flags;
2071 
2072 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2073 
2074 	smi_inc_stat(smi_info, interrupts);
2075 
2076 	debug_timestamp("ACPI_GPE");
2077 
2078 	smi_event_handler(smi_info, 0);
2079 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2080 
2081 	return ACPI_INTERRUPT_HANDLED;
2082 }
2083 
2084 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2085 {
2086 	if (!info->irq)
2087 		return;
2088 
2089 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2090 }
2091 
2092 static int acpi_gpe_irq_setup(struct smi_info *info)
2093 {
2094 	acpi_status status;
2095 
2096 	if (!info->irq)
2097 		return 0;
2098 
2099 	status = acpi_install_gpe_handler(NULL,
2100 					  info->irq,
2101 					  ACPI_GPE_LEVEL_TRIGGERED,
2102 					  &ipmi_acpi_gpe,
2103 					  info);
2104 	if (status != AE_OK) {
2105 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2106 			 " running polled\n", DEVICE_NAME, info->irq);
2107 		info->irq = 0;
2108 		return -EINVAL;
2109 	} else {
2110 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2111 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2112 		return 0;
2113 	}
2114 }
2115 
2116 /*
2117  * Defined at
2118  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2119  */
2120 struct SPMITable {
2121 	s8	Signature[4];
2122 	u32	Length;
2123 	u8	Revision;
2124 	u8	Checksum;
2125 	s8	OEMID[6];
2126 	s8	OEMTableID[8];
2127 	s8	OEMRevision[4];
2128 	s8	CreatorID[4];
2129 	s8	CreatorRevision[4];
2130 	u8	InterfaceType;
2131 	u8	IPMIlegacy;
2132 	s16	SpecificationRevision;
2133 
2134 	/*
2135 	 * Bit 0 - SCI interrupt supported
2136 	 * Bit 1 - I/O APIC/SAPIC
2137 	 */
2138 	u8	InterruptType;
2139 
2140 	/*
2141 	 * If bit 0 of InterruptType is set, then this is the SCI
2142 	 * interrupt in the GPEx_STS register.
2143 	 */
2144 	u8	GPE;
2145 
2146 	s16	Reserved;
2147 
2148 	/*
2149 	 * If bit 1 of InterruptType is set, then this is the I/O
2150 	 * APIC/SAPIC interrupt.
2151 	 */
2152 	u32	GlobalSystemInterrupt;
2153 
2154 	/* The actual register address. */
2155 	struct acpi_generic_address addr;
2156 
2157 	u8	UID[4];
2158 
2159 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2160 };
2161 
2162 static int try_init_spmi(struct SPMITable *spmi)
2163 {
2164 	struct smi_info  *info;
2165 	int rv;
2166 
2167 	if (spmi->IPMIlegacy != 1) {
2168 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2169 		return -ENODEV;
2170 	}
2171 
2172 	info = smi_info_alloc();
2173 	if (!info) {
2174 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2175 		return -ENOMEM;
2176 	}
2177 
2178 	info->addr_source = SI_SPMI;
2179 	printk(KERN_INFO PFX "probing via SPMI\n");
2180 
2181 	/* Figure out the interface type. */
2182 	switch (spmi->InterfaceType) {
2183 	case 1:	/* KCS */
2184 		info->si_type = SI_KCS;
2185 		break;
2186 	case 2:	/* SMIC */
2187 		info->si_type = SI_SMIC;
2188 		break;
2189 	case 3:	/* BT */
2190 		info->si_type = SI_BT;
2191 		break;
2192 	case 4: /* SSIF, just ignore */
2193 		kfree(info);
2194 		return -EIO;
2195 	default:
2196 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2197 		       spmi->InterfaceType);
2198 		kfree(info);
2199 		return -EIO;
2200 	}
2201 
2202 	if (spmi->InterruptType & 1) {
2203 		/* We've got a GPE interrupt. */
2204 		info->irq = spmi->GPE;
2205 		info->irq_setup = acpi_gpe_irq_setup;
2206 	} else if (spmi->InterruptType & 2) {
2207 		/* We've got an APIC/SAPIC interrupt. */
2208 		info->irq = spmi->GlobalSystemInterrupt;
2209 		info->irq_setup = std_irq_setup;
2210 	} else {
2211 		/* Use the default interrupt setting. */
2212 		info->irq = 0;
2213 		info->irq_setup = NULL;
2214 	}
2215 
2216 	if (spmi->addr.bit_width) {
2217 		/* A (hopefully) properly formed register bit width. */
2218 		info->io.regspacing = spmi->addr.bit_width / 8;
2219 	} else {
2220 		info->io.regspacing = DEFAULT_REGSPACING;
2221 	}
2222 	info->io.regsize = info->io.regspacing;
2223 	info->io.regshift = spmi->addr.bit_offset;
2224 
2225 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2226 		info->io_setup = mem_setup;
2227 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2228 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2229 		info->io_setup = port_setup;
2230 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2231 	} else {
2232 		kfree(info);
2233 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2234 		return -EIO;
2235 	}
2236 	info->io.addr_data = spmi->addr.address;
2237 
2238 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2239 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2240 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2241 		 info->irq);
2242 
2243 	rv = add_smi(info);
2244 	if (rv)
2245 		kfree(info);
2246 
2247 	return rv;
2248 }
2249 
2250 static void spmi_find_bmc(void)
2251 {
2252 	acpi_status      status;
2253 	struct SPMITable *spmi;
2254 	int              i;
2255 
2256 	if (acpi_disabled)
2257 		return;
2258 
2259 	if (acpi_failure)
2260 		return;
2261 
2262 	for (i = 0; ; i++) {
2263 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2264 					(struct acpi_table_header **)&spmi);
2265 		if (status != AE_OK)
2266 			return;
2267 
2268 		try_init_spmi(spmi);
2269 	}
2270 }
2271 #endif
2272 
2273 #ifdef CONFIG_DMI
2274 struct dmi_ipmi_data {
2275 	u8   		type;
2276 	u8   		addr_space;
2277 	unsigned long	base_addr;
2278 	u8   		irq;
2279 	u8              offset;
2280 	u8              slave_addr;
2281 };
2282 
2283 static int decode_dmi(const struct dmi_header *dm,
2284 				struct dmi_ipmi_data *dmi)
2285 {
2286 	const u8	*data = (const u8 *)dm;
2287 	unsigned long  	base_addr;
2288 	u8		reg_spacing;
2289 	u8              len = dm->length;
2290 
2291 	dmi->type = data[4];
2292 
2293 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2294 	if (len >= 0x11) {
2295 		if (base_addr & 1) {
2296 			/* I/O */
2297 			base_addr &= 0xFFFE;
2298 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2299 		} else
2300 			/* Memory */
2301 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2302 
2303 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2304 		   is odd. */
2305 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2306 
2307 		dmi->irq = data[0x11];
2308 
2309 		/* The top two bits of byte 0x10 hold the register spacing. */
2310 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2311 		switch (reg_spacing) {
2312 		case 0x00: /* Byte boundaries */
2313 		    dmi->offset = 1;
2314 		    break;
2315 		case 0x01: /* 32-bit boundaries */
2316 		    dmi->offset = 4;
2317 		    break;
2318 		case 0x02: /* 16-byte boundaries */
2319 		    dmi->offset = 16;
2320 		    break;
2321 		default:
2322 		    /* Some other interface, just ignore it. */
2323 		    return -EIO;
2324 		}
2325 	} else {
2326 		/* Old DMI spec. */
2327 		/*
2328 		 * Note that technically, the lower bit of the base
2329 		 * address should be 1 if the address is I/O and 0 if
2330 		 * the address is in memory.  So many systems get that
2331 		 * wrong (and all that I have seen are I/O) so we just
2332 		 * ignore that bit and assume I/O.  Systems that use
2333 		 * memory should use the newer spec, anyway.
2334 		 */
2335 		dmi->base_addr = base_addr & 0xfffe;
2336 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2337 		dmi->offset = 1;
2338 	}
2339 
2340 	dmi->slave_addr = data[6];
2341 
2342 	return 0;
2343 }
2344 
2345 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2346 {
2347 	struct smi_info *info;
2348 
2349 	info = smi_info_alloc();
2350 	if (!info) {
2351 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2352 		return;
2353 	}
2354 
2355 	info->addr_source = SI_SMBIOS;
2356 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2357 
2358 	switch (ipmi_data->type) {
2359 	case 0x01: /* KCS */
2360 		info->si_type = SI_KCS;
2361 		break;
2362 	case 0x02: /* SMIC */
2363 		info->si_type = SI_SMIC;
2364 		break;
2365 	case 0x03: /* BT */
2366 		info->si_type = SI_BT;
2367 		break;
2368 	default:
2369 		kfree(info);
2370 		return;
2371 	}
2372 
2373 	switch (ipmi_data->addr_space) {
2374 	case IPMI_MEM_ADDR_SPACE:
2375 		info->io_setup = mem_setup;
2376 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2377 		break;
2378 
2379 	case IPMI_IO_ADDR_SPACE:
2380 		info->io_setup = port_setup;
2381 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2382 		break;
2383 
2384 	default:
2385 		kfree(info);
2386 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2387 		       ipmi_data->addr_space);
2388 		return;
2389 	}
2390 	info->io.addr_data = ipmi_data->base_addr;
2391 
2392 	info->io.regspacing = ipmi_data->offset;
2393 	if (!info->io.regspacing)
2394 		info->io.regspacing = DEFAULT_REGSPACING;
2395 	info->io.regsize = DEFAULT_REGSPACING;
2396 	info->io.regshift = 0;
2397 
2398 	info->slave_addr = ipmi_data->slave_addr;
2399 
2400 	info->irq = ipmi_data->irq;
2401 	if (info->irq)
2402 		info->irq_setup = std_irq_setup;
2403 
2404 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2405 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2406 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2407 		 info->irq);
2408 
2409 	if (add_smi(info))
2410 		kfree(info);
2411 }
2412 
2413 static void dmi_find_bmc(void)
2414 {
2415 	const struct dmi_device *dev = NULL;
2416 	struct dmi_ipmi_data data;
2417 	int                  rv;
2418 
2419 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2420 		memset(&data, 0, sizeof(data));
2421 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2422 				&data);
2423 		if (!rv)
2424 			try_init_dmi(&data);
2425 	}
2426 }
2427 #endif /* CONFIG_DMI */
2428 
2429 #ifdef CONFIG_PCI
2430 
2431 #define PCI_ERMC_CLASSCODE		0x0C0700
2432 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2433 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2434 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2435 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2436 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2437 
2438 #define PCI_HP_VENDOR_ID    0x103C
2439 #define PCI_MMC_DEVICE_ID   0x121A
2440 #define PCI_MMC_ADDR_CW     0x10
2441 
2442 static void ipmi_pci_cleanup(struct smi_info *info)
2443 {
2444 	struct pci_dev *pdev = info->addr_source_data;
2445 
2446 	pci_disable_device(pdev);
2447 }
2448 
2449 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2450 {
2451 	if (info->si_type == SI_KCS) {
2452 		unsigned char	status;
2453 		int		regspacing;
2454 
2455 		info->io.regsize = DEFAULT_REGSIZE;
2456 		info->io.regshift = 0;
2457 		info->io_size = 2;
2458 		info->handlers = &kcs_smi_handlers;
2459 
2460 		/* detect 1, 4, 16byte spacing */
2461 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2462 			info->io.regspacing = regspacing;
2463 			if (info->io_setup(info)) {
2464 				dev_err(info->dev,
2465 					"Could not setup I/O space\n");
2466 				return DEFAULT_REGSPACING;
2467 			}
2468 			/* write invalid cmd */
2469 			info->io.outputb(&info->io, 1, 0x10);
2470 			/* read status back */
2471 			status = info->io.inputb(&info->io, 1);
2472 			info->io_cleanup(info);
2473 			if (status)
2474 				return regspacing;
2475 			regspacing *= 4;
2476 		}
2477 	}
2478 	return DEFAULT_REGSPACING;
2479 }
2480 
2481 static int ipmi_pci_probe(struct pci_dev *pdev,
2482 				    const struct pci_device_id *ent)
2483 {
2484 	int rv;
2485 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2486 	struct smi_info *info;
2487 
2488 	info = smi_info_alloc();
2489 	if (!info)
2490 		return -ENOMEM;
2491 
2492 	info->addr_source = SI_PCI;
2493 	dev_info(&pdev->dev, "probing via PCI");
2494 
2495 	switch (class_type) {
2496 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2497 		info->si_type = SI_SMIC;
2498 		break;
2499 
2500 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2501 		info->si_type = SI_KCS;
2502 		break;
2503 
2504 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2505 		info->si_type = SI_BT;
2506 		break;
2507 
2508 	default:
2509 		kfree(info);
2510 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2511 		return -ENOMEM;
2512 	}
2513 
2514 	rv = pci_enable_device(pdev);
2515 	if (rv) {
2516 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2517 		kfree(info);
2518 		return rv;
2519 	}
2520 
2521 	info->addr_source_cleanup = ipmi_pci_cleanup;
2522 	info->addr_source_data = pdev;
2523 
2524 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2525 		info->io_setup = port_setup;
2526 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2527 	} else {
2528 		info->io_setup = mem_setup;
2529 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2530 	}
2531 	info->io.addr_data = pci_resource_start(pdev, 0);
2532 
2533 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2534 	info->io.regsize = DEFAULT_REGSIZE;
2535 	info->io.regshift = 0;
2536 
2537 	info->irq = pdev->irq;
2538 	if (info->irq)
2539 		info->irq_setup = std_irq_setup;
2540 
2541 	info->dev = &pdev->dev;
2542 	pci_set_drvdata(pdev, info);
2543 
2544 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2545 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2546 		info->irq);
2547 
2548 	rv = add_smi(info);
2549 	if (rv) {
2550 		kfree(info);
2551 		pci_disable_device(pdev);
2552 	}
2553 
2554 	return rv;
2555 }
2556 
2557 static void ipmi_pci_remove(struct pci_dev *pdev)
2558 {
2559 	struct smi_info *info = pci_get_drvdata(pdev);
2560 	cleanup_one_si(info);
2561 }
2562 
2563 static const struct pci_device_id ipmi_pci_devices[] = {
2564 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2565 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2566 	{ 0, }
2567 };
2568 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2569 
2570 static struct pci_driver ipmi_pci_driver = {
2571 	.name =         DEVICE_NAME,
2572 	.id_table =     ipmi_pci_devices,
2573 	.probe =        ipmi_pci_probe,
2574 	.remove =       ipmi_pci_remove,
2575 };
2576 #endif /* CONFIG_PCI */
2577 
2578 #ifdef CONFIG_OF
2579 static const struct of_device_id of_ipmi_match[] = {
2580 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2581 	  .data = (void *)(unsigned long) SI_KCS },
2582 	{ .type = "ipmi", .compatible = "ipmi-smic",
2583 	  .data = (void *)(unsigned long) SI_SMIC },
2584 	{ .type = "ipmi", .compatible = "ipmi-bt",
2585 	  .data = (void *)(unsigned long) SI_BT },
2586 	{},
2587 };
2588 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2589 
2590 static int of_ipmi_probe(struct platform_device *dev)
2591 {
2592 	const struct of_device_id *match;
2593 	struct smi_info *info;
2594 	struct resource resource;
2595 	const __be32 *regsize, *regspacing, *regshift;
2596 	struct device_node *np = dev->dev.of_node;
2597 	int ret;
2598 	int proplen;
2599 
2600 	dev_info(&dev->dev, "probing via device tree\n");
2601 
2602 	match = of_match_device(of_ipmi_match, &dev->dev);
2603 	if (!match)
2604 		return -ENODEV;
2605 
2606 	if (!of_device_is_available(np))
2607 		return -EINVAL;
2608 
2609 	ret = of_address_to_resource(np, 0, &resource);
2610 	if (ret) {
2611 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2612 		return ret;
2613 	}
2614 
2615 	regsize = of_get_property(np, "reg-size", &proplen);
2616 	if (regsize && proplen != 4) {
2617 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2618 		return -EINVAL;
2619 	}
2620 
2621 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2622 	if (regspacing && proplen != 4) {
2623 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2624 		return -EINVAL;
2625 	}
2626 
2627 	regshift = of_get_property(np, "reg-shift", &proplen);
2628 	if (regshift && proplen != 4) {
2629 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2630 		return -EINVAL;
2631 	}
2632 
2633 	info = smi_info_alloc();
2634 
2635 	if (!info) {
2636 		dev_err(&dev->dev,
2637 			"could not allocate memory for OF probe\n");
2638 		return -ENOMEM;
2639 	}
2640 
2641 	info->si_type		= (enum si_type) match->data;
2642 	info->addr_source	= SI_DEVICETREE;
2643 	info->irq_setup		= std_irq_setup;
2644 
2645 	if (resource.flags & IORESOURCE_IO) {
2646 		info->io_setup		= port_setup;
2647 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2648 	} else {
2649 		info->io_setup		= mem_setup;
2650 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2651 	}
2652 
2653 	info->io.addr_data	= resource.start;
2654 
2655 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2656 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2657 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2658 
2659 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2660 	info->dev		= &dev->dev;
2661 
2662 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2663 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2664 		info->irq);
2665 
2666 	dev_set_drvdata(&dev->dev, info);
2667 
2668 	ret = add_smi(info);
2669 	if (ret) {
2670 		kfree(info);
2671 		return ret;
2672 	}
2673 	return 0;
2674 }
2675 #else
2676 #define of_ipmi_match NULL
2677 static int of_ipmi_probe(struct platform_device *dev)
2678 {
2679 	return -ENODEV;
2680 }
2681 #endif
2682 
2683 #ifdef CONFIG_ACPI
2684 static int acpi_ipmi_probe(struct platform_device *dev)
2685 {
2686 	struct smi_info *info;
2687 	struct resource *res, *res_second;
2688 	acpi_handle handle;
2689 	acpi_status status;
2690 	unsigned long long tmp;
2691 	int rv = -EINVAL;
2692 
2693 	if (!si_tryacpi)
2694 	       return 0;
2695 
2696 	handle = ACPI_HANDLE(&dev->dev);
2697 	if (!handle)
2698 		return -ENODEV;
2699 
2700 	info = smi_info_alloc();
2701 	if (!info)
2702 		return -ENOMEM;
2703 
2704 	info->addr_source = SI_ACPI;
2705 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2706 
2707 	info->addr_info.acpi_info.acpi_handle = handle;
2708 
2709 	/* _IFT tells us the interface type: KCS, BT, etc */
2710 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2711 	if (ACPI_FAILURE(status)) {
2712 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2713 		goto err_free;
2714 	}
2715 
2716 	switch (tmp) {
2717 	case 1:
2718 		info->si_type = SI_KCS;
2719 		break;
2720 	case 2:
2721 		info->si_type = SI_SMIC;
2722 		break;
2723 	case 3:
2724 		info->si_type = SI_BT;
2725 		break;
2726 	case 4: /* SSIF, just ignore */
2727 		rv = -ENODEV;
2728 		goto err_free;
2729 	default:
2730 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2731 		goto err_free;
2732 	}
2733 
2734 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2735 	if (res) {
2736 		info->io_setup = port_setup;
2737 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2738 	} else {
2739 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2740 		if (res) {
2741 			info->io_setup = mem_setup;
2742 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2743 		}
2744 	}
2745 	if (!res) {
2746 		dev_err(&dev->dev, "no I/O or memory address\n");
2747 		goto err_free;
2748 	}
2749 	info->io.addr_data = res->start;
2750 
2751 	info->io.regspacing = DEFAULT_REGSPACING;
2752 	res_second = platform_get_resource(dev,
2753 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2754 					IORESOURCE_IO : IORESOURCE_MEM,
2755 			       1);
2756 	if (res_second) {
2757 		if (res_second->start > info->io.addr_data)
2758 			info->io.regspacing =
2759 				res_second->start - info->io.addr_data;
2760 	}
2761 	info->io.regsize = DEFAULT_REGSPACING;
2762 	info->io.regshift = 0;
2763 
2764 	/* If _GPE exists, use it; otherwise use standard interrupts */
2765 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2766 	if (ACPI_SUCCESS(status)) {
2767 		info->irq = tmp;
2768 		info->irq_setup = acpi_gpe_irq_setup;
2769 	} else {
2770 		int irq = platform_get_irq(dev, 0);
2771 
2772 		if (irq > 0) {
2773 			info->irq = irq;
2774 			info->irq_setup = std_irq_setup;
2775 		}
2776 	}
2777 
2778 	info->dev = &dev->dev;
2779 	platform_set_drvdata(dev, info);
2780 
2781 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2782 		 res, info->io.regsize, info->io.regspacing,
2783 		 info->irq);
2784 
2785 	rv = add_smi(info);
2786 	if (rv)
2787 		kfree(info);
2788 
2789 	return rv;
2790 
2791 err_free:
2792 	kfree(info);
2793 	return rv;
2794 }
2795 
2796 static const struct acpi_device_id acpi_ipmi_match[] = {
2797 	{ "IPI0001", 0 },
2798 	{ },
2799 };
2800 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2801 #else
2802 static int acpi_ipmi_probe(struct platform_device *dev)
2803 {
2804 	return -ENODEV;
2805 }
2806 #endif
2807 
2808 static int ipmi_probe(struct platform_device *dev)
2809 {
2810 	if (of_ipmi_probe(dev) == 0)
2811 		return 0;
2812 
2813 	return acpi_ipmi_probe(dev);
2814 }
2815 
2816 static int ipmi_remove(struct platform_device *dev)
2817 {
2818 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2819 
2820 	cleanup_one_si(info);
2821 	return 0;
2822 }
2823 
2824 static struct platform_driver ipmi_driver = {
2825 	.driver = {
2826 		.name = DEVICE_NAME,
2827 		.of_match_table = of_ipmi_match,
2828 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2829 	},
2830 	.probe		= ipmi_probe,
2831 	.remove		= ipmi_remove,
2832 };
2833 
2834 #ifdef CONFIG_PARISC
2835 static int ipmi_parisc_probe(struct parisc_device *dev)
2836 {
2837 	struct smi_info *info;
2838 	int rv;
2839 
2840 	info = smi_info_alloc();
2841 
2842 	if (!info) {
2843 		dev_err(&dev->dev,
2844 			"could not allocate memory for PARISC probe\n");
2845 		return -ENOMEM;
2846 	}
2847 
2848 	info->si_type		= SI_KCS;
2849 	info->addr_source	= SI_DEVICETREE;
2850 	info->io_setup		= mem_setup;
2851 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2852 	info->io.addr_data	= dev->hpa.start;
2853 	info->io.regsize	= 1;
2854 	info->io.regspacing	= 1;
2855 	info->io.regshift	= 0;
2856 	info->irq		= 0; /* no interrupt */
2857 	info->irq_setup		= NULL;
2858 	info->dev		= &dev->dev;
2859 
2860 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2861 
2862 	dev_set_drvdata(&dev->dev, info);
2863 
2864 	rv = add_smi(info);
2865 	if (rv) {
2866 		kfree(info);
2867 		return rv;
2868 	}
2869 
2870 	return 0;
2871 }
2872 
2873 static int ipmi_parisc_remove(struct parisc_device *dev)
2874 {
2875 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2876 	return 0;
2877 }
2878 
2879 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2880 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2881 	{ 0, }
2882 };
2883 
2884 static struct parisc_driver ipmi_parisc_driver = {
2885 	.name =		"ipmi",
2886 	.id_table =	ipmi_parisc_tbl,
2887 	.probe =	ipmi_parisc_probe,
2888 	.remove =	ipmi_parisc_remove,
2889 };
2890 #endif /* CONFIG_PARISC */
2891 
2892 static int wait_for_msg_done(struct smi_info *smi_info)
2893 {
2894 	enum si_sm_result     smi_result;
2895 
2896 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2897 	for (;;) {
2898 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2899 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2900 			schedule_timeout_uninterruptible(1);
2901 			smi_result = smi_info->handlers->event(
2902 				smi_info->si_sm, jiffies_to_usecs(1));
2903 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2904 			smi_result = smi_info->handlers->event(
2905 				smi_info->si_sm, 0);
2906 		} else
2907 			break;
2908 	}
2909 	if (smi_result == SI_SM_HOSED)
2910 		/*
2911 		 * We couldn't get the state machine to run, so whatever's at
2912 		 * the port is probably not an IPMI SMI interface.
2913 		 */
2914 		return -ENODEV;
2915 
2916 	return 0;
2917 }
2918 
2919 static int try_get_dev_id(struct smi_info *smi_info)
2920 {
2921 	unsigned char         msg[2];
2922 	unsigned char         *resp;
2923 	unsigned long         resp_len;
2924 	int                   rv = 0;
2925 
2926 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2927 	if (!resp)
2928 		return -ENOMEM;
2929 
2930 	/*
2931 	 * Do a Get Device ID command, since it comes back with some
2932 	 * useful info.
2933 	 */
2934 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2935 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2936 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2937 
2938 	rv = wait_for_msg_done(smi_info);
2939 	if (rv)
2940 		goto out;
2941 
2942 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2943 						  resp, IPMI_MAX_MSG_LENGTH);
2944 
2945 	/* Check and record info from the get device id, in case we need it. */
2946 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2947 
2948  out:
2949 	kfree(resp);
2950 	return rv;
2951 }
2952 
2953 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2954 {
2955 	unsigned char         msg[3];
2956 	unsigned char         *resp;
2957 	unsigned long         resp_len;
2958 	int                   rv;
2959 
2960 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2961 	if (!resp)
2962 		return -ENOMEM;
2963 
2964 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2965 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2966 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2967 
2968 	rv = wait_for_msg_done(smi_info);
2969 	if (rv) {
2970 		dev_warn(smi_info->dev,
2971 			 "Error getting response from get global enables command: %d\n",
2972 			 rv);
2973 		goto out;
2974 	}
2975 
2976 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2977 						  resp, IPMI_MAX_MSG_LENGTH);
2978 
2979 	if (resp_len < 4 ||
2980 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2981 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2982 			resp[2] != 0) {
2983 		dev_warn(smi_info->dev,
2984 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2985 			 resp_len, resp[0], resp[1], resp[2]);
2986 		rv = -EINVAL;
2987 		goto out;
2988 	} else {
2989 		*enables = resp[3];
2990 	}
2991 
2992 out:
2993 	kfree(resp);
2994 	return rv;
2995 }
2996 
2997 /*
2998  * Returns 1 if it gets an error from the command.
2999  */
3000 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3001 {
3002 	unsigned char         msg[3];
3003 	unsigned char         *resp;
3004 	unsigned long         resp_len;
3005 	int                   rv;
3006 
3007 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3008 	if (!resp)
3009 		return -ENOMEM;
3010 
3011 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3012 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3013 	msg[2] = enables;
3014 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3015 
3016 	rv = wait_for_msg_done(smi_info);
3017 	if (rv) {
3018 		dev_warn(smi_info->dev,
3019 			 "Error getting response from set global enables command: %d\n",
3020 			 rv);
3021 		goto out;
3022 	}
3023 
3024 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3025 						  resp, IPMI_MAX_MSG_LENGTH);
3026 
3027 	if (resp_len < 3 ||
3028 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3029 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3030 		dev_warn(smi_info->dev,
3031 			 "Invalid return from set global enables command: %ld %x %x\n",
3032 			 resp_len, resp[0], resp[1]);
3033 		rv = -EINVAL;
3034 		goto out;
3035 	}
3036 
3037 	if (resp[2] != 0)
3038 		rv = 1;
3039 
3040 out:
3041 	kfree(resp);
3042 	return rv;
3043 }
3044 
3045 /*
3046  * Some BMCs do not support clearing the receive irq bit in the global
3047  * enables (even if they don't support interrupts on the BMC).  Check
3048  * for this and handle it properly.
3049  */
3050 static void check_clr_rcv_irq(struct smi_info *smi_info)
3051 {
3052 	u8 enables = 0;
3053 	int rv;
3054 
3055 	rv = get_global_enables(smi_info, &enables);
3056 	if (!rv) {
3057 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3058 			/* Already clear, should work ok. */
3059 			return;
3060 
3061 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3062 		rv = set_global_enables(smi_info, enables);
3063 	}
3064 
3065 	if (rv < 0) {
3066 		dev_err(smi_info->dev,
3067 			"Cannot check clearing the rcv irq: %d\n", rv);
3068 		return;
3069 	}
3070 
3071 	if (rv) {
3072 		/*
3073 		 * An error when setting the event buffer bit means
3074 		 * clearing the bit is not supported.
3075 		 */
3076 		dev_warn(smi_info->dev,
3077 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3078 		smi_info->cannot_disable_irq = true;
3079 	}
3080 }
3081 
3082 /*
3083  * Some BMCs do not support setting the interrupt bits in the global
3084  * enables even if they support interrupts.  Clearly bad, but we can
3085  * compensate.
3086  */
3087 static void check_set_rcv_irq(struct smi_info *smi_info)
3088 {
3089 	u8 enables = 0;
3090 	int rv;
3091 
3092 	if (!smi_info->irq)
3093 		return;
3094 
3095 	rv = get_global_enables(smi_info, &enables);
3096 	if (!rv) {
3097 		enables |= IPMI_BMC_RCV_MSG_INTR;
3098 		rv = set_global_enables(smi_info, enables);
3099 	}
3100 
3101 	if (rv < 0) {
3102 		dev_err(smi_info->dev,
3103 			"Cannot check setting the rcv irq: %d\n", rv);
3104 		return;
3105 	}
3106 
3107 	if (rv) {
3108 		/*
3109 		 * An error when setting the event buffer bit means
3110 		 * setting the bit is not supported.
3111 		 */
3112 		dev_warn(smi_info->dev,
3113 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3114 		smi_info->cannot_disable_irq = true;
3115 		smi_info->irq_enable_broken = true;
3116 	}
3117 }
3118 
3119 static int try_enable_event_buffer(struct smi_info *smi_info)
3120 {
3121 	unsigned char         msg[3];
3122 	unsigned char         *resp;
3123 	unsigned long         resp_len;
3124 	int                   rv = 0;
3125 
3126 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3127 	if (!resp)
3128 		return -ENOMEM;
3129 
3130 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3131 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3132 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3133 
3134 	rv = wait_for_msg_done(smi_info);
3135 	if (rv) {
3136 		printk(KERN_WARNING PFX "Error getting response from get"
3137 		       " global enables command, the event buffer is not"
3138 		       " enabled.\n");
3139 		goto out;
3140 	}
3141 
3142 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3143 						  resp, IPMI_MAX_MSG_LENGTH);
3144 
3145 	if (resp_len < 4 ||
3146 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3147 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3148 			resp[2] != 0) {
3149 		printk(KERN_WARNING PFX "Invalid return from get global"
3150 		       " enables command, cannot enable the event buffer.\n");
3151 		rv = -EINVAL;
3152 		goto out;
3153 	}
3154 
3155 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3156 		/* buffer is already enabled, nothing to do. */
3157 		smi_info->supports_event_msg_buff = true;
3158 		goto out;
3159 	}
3160 
3161 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3162 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3163 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3164 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3165 
3166 	rv = wait_for_msg_done(smi_info);
3167 	if (rv) {
3168 		printk(KERN_WARNING PFX "Error getting response from set"
3169 		       " global, enables command, the event buffer is not"
3170 		       " enabled.\n");
3171 		goto out;
3172 	}
3173 
3174 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3175 						  resp, IPMI_MAX_MSG_LENGTH);
3176 
3177 	if (resp_len < 3 ||
3178 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3179 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3180 		printk(KERN_WARNING PFX "Invalid return from get global,"
3181 		       "enables command, not enable the event buffer.\n");
3182 		rv = -EINVAL;
3183 		goto out;
3184 	}
3185 
3186 	if (resp[2] != 0)
3187 		/*
3188 		 * An error when setting the event buffer bit means
3189 		 * that the event buffer is not supported.
3190 		 */
3191 		rv = -ENOENT;
3192 	else
3193 		smi_info->supports_event_msg_buff = true;
3194 
3195  out:
3196 	kfree(resp);
3197 	return rv;
3198 }
3199 
3200 static int smi_type_proc_show(struct seq_file *m, void *v)
3201 {
3202 	struct smi_info *smi = m->private;
3203 
3204 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3205 
3206 	return 0;
3207 }
3208 
3209 static int smi_type_proc_open(struct inode *inode, struct file *file)
3210 {
3211 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3212 }
3213 
3214 static const struct file_operations smi_type_proc_ops = {
3215 	.open		= smi_type_proc_open,
3216 	.read		= seq_read,
3217 	.llseek		= seq_lseek,
3218 	.release	= single_release,
3219 };
3220 
3221 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3222 {
3223 	struct smi_info *smi = m->private;
3224 
3225 	seq_printf(m, "interrupts_enabled:    %d\n",
3226 		       smi->irq && !smi->interrupt_disabled);
3227 	seq_printf(m, "short_timeouts:        %u\n",
3228 		       smi_get_stat(smi, short_timeouts));
3229 	seq_printf(m, "long_timeouts:         %u\n",
3230 		       smi_get_stat(smi, long_timeouts));
3231 	seq_printf(m, "idles:                 %u\n",
3232 		       smi_get_stat(smi, idles));
3233 	seq_printf(m, "interrupts:            %u\n",
3234 		       smi_get_stat(smi, interrupts));
3235 	seq_printf(m, "attentions:            %u\n",
3236 		       smi_get_stat(smi, attentions));
3237 	seq_printf(m, "flag_fetches:          %u\n",
3238 		       smi_get_stat(smi, flag_fetches));
3239 	seq_printf(m, "hosed_count:           %u\n",
3240 		       smi_get_stat(smi, hosed_count));
3241 	seq_printf(m, "complete_transactions: %u\n",
3242 		       smi_get_stat(smi, complete_transactions));
3243 	seq_printf(m, "events:                %u\n",
3244 		       smi_get_stat(smi, events));
3245 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3246 		       smi_get_stat(smi, watchdog_pretimeouts));
3247 	seq_printf(m, "incoming_messages:     %u\n",
3248 		       smi_get_stat(smi, incoming_messages));
3249 	return 0;
3250 }
3251 
3252 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3253 {
3254 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3255 }
3256 
3257 static const struct file_operations smi_si_stats_proc_ops = {
3258 	.open		= smi_si_stats_proc_open,
3259 	.read		= seq_read,
3260 	.llseek		= seq_lseek,
3261 	.release	= single_release,
3262 };
3263 
3264 static int smi_params_proc_show(struct seq_file *m, void *v)
3265 {
3266 	struct smi_info *smi = m->private;
3267 
3268 	seq_printf(m,
3269 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3270 		   si_to_str[smi->si_type],
3271 		   addr_space_to_str[smi->io.addr_type],
3272 		   smi->io.addr_data,
3273 		   smi->io.regspacing,
3274 		   smi->io.regsize,
3275 		   smi->io.regshift,
3276 		   smi->irq,
3277 		   smi->slave_addr);
3278 
3279 	return 0;
3280 }
3281 
3282 static int smi_params_proc_open(struct inode *inode, struct file *file)
3283 {
3284 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3285 }
3286 
3287 static const struct file_operations smi_params_proc_ops = {
3288 	.open		= smi_params_proc_open,
3289 	.read		= seq_read,
3290 	.llseek		= seq_lseek,
3291 	.release	= single_release,
3292 };
3293 
3294 /*
3295  * oem_data_avail_to_receive_msg_avail
3296  * @info - smi_info structure with msg_flags set
3297  *
3298  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3299  * Returns 1 indicating need to re-run handle_flags().
3300  */
3301 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3302 {
3303 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3304 			       RECEIVE_MSG_AVAIL);
3305 	return 1;
3306 }
3307 
3308 /*
3309  * setup_dell_poweredge_oem_data_handler
3310  * @info - smi_info.device_id must be populated
3311  *
3312  * Systems that match, but have firmware version < 1.40 may assert
3313  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3314  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3315  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3316  * as RECEIVE_MSG_AVAIL instead.
3317  *
3318  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3319  * assert the OEM[012] bits, and if it did, the driver would have to
3320  * change to handle that properly, we don't actually check for the
3321  * firmware version.
3322  * Device ID = 0x20                BMC on PowerEdge 8G servers
3323  * Device Revision = 0x80
3324  * Firmware Revision1 = 0x01       BMC version 1.40
3325  * Firmware Revision2 = 0x40       BCD encoded
3326  * IPMI Version = 0x51             IPMI 1.5
3327  * Manufacturer ID = A2 02 00      Dell IANA
3328  *
3329  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3330  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3331  *
3332  */
3333 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3334 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3335 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3336 #define DELL_IANA_MFR_ID 0x0002a2
3337 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3338 {
3339 	struct ipmi_device_id *id = &smi_info->device_id;
3340 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3341 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3342 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3343 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3344 			smi_info->oem_data_avail_handler =
3345 				oem_data_avail_to_receive_msg_avail;
3346 		} else if (ipmi_version_major(id) < 1 ||
3347 			   (ipmi_version_major(id) == 1 &&
3348 			    ipmi_version_minor(id) < 5)) {
3349 			smi_info->oem_data_avail_handler =
3350 				oem_data_avail_to_receive_msg_avail;
3351 		}
3352 	}
3353 }
3354 
3355 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3356 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3357 {
3358 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3359 
3360 	/* Make it a response */
3361 	msg->rsp[0] = msg->data[0] | 4;
3362 	msg->rsp[1] = msg->data[1];
3363 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3364 	msg->rsp_size = 3;
3365 	smi_info->curr_msg = NULL;
3366 	deliver_recv_msg(smi_info, msg);
3367 }
3368 
3369 /*
3370  * dell_poweredge_bt_xaction_handler
3371  * @info - smi_info.device_id must be populated
3372  *
3373  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3374  * not respond to a Get SDR command if the length of the data
3375  * requested is exactly 0x3A, which leads to command timeouts and no
3376  * data returned.  This intercepts such commands, and causes userspace
3377  * callers to try again with a different-sized buffer, which succeeds.
3378  */
3379 
3380 #define STORAGE_NETFN 0x0A
3381 #define STORAGE_CMD_GET_SDR 0x23
3382 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3383 					     unsigned long unused,
3384 					     void *in)
3385 {
3386 	struct smi_info *smi_info = in;
3387 	unsigned char *data = smi_info->curr_msg->data;
3388 	unsigned int size   = smi_info->curr_msg->data_size;
3389 	if (size >= 8 &&
3390 	    (data[0]>>2) == STORAGE_NETFN &&
3391 	    data[1] == STORAGE_CMD_GET_SDR &&
3392 	    data[7] == 0x3A) {
3393 		return_hosed_msg_badsize(smi_info);
3394 		return NOTIFY_STOP;
3395 	}
3396 	return NOTIFY_DONE;
3397 }
3398 
3399 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3400 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3401 };
3402 
3403 /*
3404  * setup_dell_poweredge_bt_xaction_handler
3405  * @info - smi_info.device_id must be filled in already
3406  *
3407  * Fills in smi_info.device_id.start_transaction_pre_hook
3408  * when we know what function to use there.
3409  */
3410 static void
3411 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3412 {
3413 	struct ipmi_device_id *id = &smi_info->device_id;
3414 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3415 	    smi_info->si_type == SI_BT)
3416 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3417 }
3418 
3419 /*
3420  * setup_oem_data_handler
3421  * @info - smi_info.device_id must be filled in already
3422  *
3423  * Fills in smi_info.device_id.oem_data_available_handler
3424  * when we know what function to use there.
3425  */
3426 
3427 static void setup_oem_data_handler(struct smi_info *smi_info)
3428 {
3429 	setup_dell_poweredge_oem_data_handler(smi_info);
3430 }
3431 
3432 static void setup_xaction_handlers(struct smi_info *smi_info)
3433 {
3434 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3435 }
3436 
3437 static void check_for_broken_irqs(struct smi_info *smi_info)
3438 {
3439 	check_clr_rcv_irq(smi_info);
3440 	check_set_rcv_irq(smi_info);
3441 }
3442 
3443 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3444 {
3445 	if (smi_info->thread != NULL)
3446 		kthread_stop(smi_info->thread);
3447 	if (smi_info->timer_running)
3448 		del_timer_sync(&smi_info->si_timer);
3449 }
3450 
3451 static const struct ipmi_default_vals
3452 {
3453 	const int type;
3454 	const int port;
3455 } ipmi_defaults[] =
3456 {
3457 	{ .type = SI_KCS, .port = 0xca2 },
3458 	{ .type = SI_SMIC, .port = 0xca9 },
3459 	{ .type = SI_BT, .port = 0xe4 },
3460 	{ .port = 0 }
3461 };
3462 
3463 static void default_find_bmc(void)
3464 {
3465 	struct smi_info *info;
3466 	int             i;
3467 
3468 	for (i = 0; ; i++) {
3469 		if (!ipmi_defaults[i].port)
3470 			break;
3471 #ifdef CONFIG_PPC
3472 		if (check_legacy_ioport(ipmi_defaults[i].port))
3473 			continue;
3474 #endif
3475 		info = smi_info_alloc();
3476 		if (!info)
3477 			return;
3478 
3479 		info->addr_source = SI_DEFAULT;
3480 
3481 		info->si_type = ipmi_defaults[i].type;
3482 		info->io_setup = port_setup;
3483 		info->io.addr_data = ipmi_defaults[i].port;
3484 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3485 
3486 		info->io.addr = NULL;
3487 		info->io.regspacing = DEFAULT_REGSPACING;
3488 		info->io.regsize = DEFAULT_REGSPACING;
3489 		info->io.regshift = 0;
3490 
3491 		if (add_smi(info) == 0) {
3492 			if ((try_smi_init(info)) == 0) {
3493 				/* Found one... */
3494 				printk(KERN_INFO PFX "Found default %s"
3495 				" state machine at %s address 0x%lx\n",
3496 				si_to_str[info->si_type],
3497 				addr_space_to_str[info->io.addr_type],
3498 				info->io.addr_data);
3499 			} else
3500 				cleanup_one_si(info);
3501 		} else {
3502 			kfree(info);
3503 		}
3504 	}
3505 }
3506 
3507 static int is_new_interface(struct smi_info *info)
3508 {
3509 	struct smi_info *e;
3510 
3511 	list_for_each_entry(e, &smi_infos, link) {
3512 		if (e->io.addr_type != info->io.addr_type)
3513 			continue;
3514 		if (e->io.addr_data == info->io.addr_data)
3515 			return 0;
3516 	}
3517 
3518 	return 1;
3519 }
3520 
3521 static int add_smi(struct smi_info *new_smi)
3522 {
3523 	int rv = 0;
3524 
3525 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3526 	       ipmi_addr_src_to_str(new_smi->addr_source),
3527 	       si_to_str[new_smi->si_type]);
3528 	mutex_lock(&smi_infos_lock);
3529 	if (!is_new_interface(new_smi)) {
3530 		printk(KERN_CONT " duplicate interface\n");
3531 		rv = -EBUSY;
3532 		goto out_err;
3533 	}
3534 
3535 	printk(KERN_CONT "\n");
3536 
3537 	/* So we know not to free it unless we have allocated one. */
3538 	new_smi->intf = NULL;
3539 	new_smi->si_sm = NULL;
3540 	new_smi->handlers = NULL;
3541 
3542 	list_add_tail(&new_smi->link, &smi_infos);
3543 
3544 out_err:
3545 	mutex_unlock(&smi_infos_lock);
3546 	return rv;
3547 }
3548 
3549 static int try_smi_init(struct smi_info *new_smi)
3550 {
3551 	int rv = 0;
3552 	int i;
3553 
3554 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3555 	       " machine at %s address 0x%lx, slave address 0x%x,"
3556 	       " irq %d\n",
3557 	       ipmi_addr_src_to_str(new_smi->addr_source),
3558 	       si_to_str[new_smi->si_type],
3559 	       addr_space_to_str[new_smi->io.addr_type],
3560 	       new_smi->io.addr_data,
3561 	       new_smi->slave_addr, new_smi->irq);
3562 
3563 	switch (new_smi->si_type) {
3564 	case SI_KCS:
3565 		new_smi->handlers = &kcs_smi_handlers;
3566 		break;
3567 
3568 	case SI_SMIC:
3569 		new_smi->handlers = &smic_smi_handlers;
3570 		break;
3571 
3572 	case SI_BT:
3573 		new_smi->handlers = &bt_smi_handlers;
3574 		break;
3575 
3576 	default:
3577 		/* No support for anything else yet. */
3578 		rv = -EIO;
3579 		goto out_err;
3580 	}
3581 
3582 	/* Allocate the state machine's data and initialize it. */
3583 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3584 	if (!new_smi->si_sm) {
3585 		printk(KERN_ERR PFX
3586 		       "Could not allocate state machine memory\n");
3587 		rv = -ENOMEM;
3588 		goto out_err;
3589 	}
3590 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3591 							&new_smi->io);
3592 
3593 	/* Now that we know the I/O size, we can set up the I/O. */
3594 	rv = new_smi->io_setup(new_smi);
3595 	if (rv) {
3596 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3597 		goto out_err;
3598 	}
3599 
3600 	/* Do low-level detection first. */
3601 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3602 		if (new_smi->addr_source)
3603 			printk(KERN_INFO PFX "Interface detection failed\n");
3604 		rv = -ENODEV;
3605 		goto out_err;
3606 	}
3607 
3608 	/*
3609 	 * Attempt a get device id command.  If it fails, we probably
3610 	 * don't have a BMC here.
3611 	 */
3612 	rv = try_get_dev_id(new_smi);
3613 	if (rv) {
3614 		if (new_smi->addr_source)
3615 			printk(KERN_INFO PFX "There appears to be no BMC"
3616 			       " at this location\n");
3617 		goto out_err;
3618 	}
3619 
3620 	setup_oem_data_handler(new_smi);
3621 	setup_xaction_handlers(new_smi);
3622 	check_for_broken_irqs(new_smi);
3623 
3624 	new_smi->waiting_msg = NULL;
3625 	new_smi->curr_msg = NULL;
3626 	atomic_set(&new_smi->req_events, 0);
3627 	new_smi->run_to_completion = false;
3628 	for (i = 0; i < SI_NUM_STATS; i++)
3629 		atomic_set(&new_smi->stats[i], 0);
3630 
3631 	new_smi->interrupt_disabled = true;
3632 	atomic_set(&new_smi->need_watch, 0);
3633 	new_smi->intf_num = smi_num;
3634 	smi_num++;
3635 
3636 	rv = try_enable_event_buffer(new_smi);
3637 	if (rv == 0)
3638 		new_smi->has_event_buffer = true;
3639 
3640 	/*
3641 	 * Start clearing the flags before we enable interrupts or the
3642 	 * timer to avoid racing with the timer.
3643 	 */
3644 	start_clear_flags(new_smi, false);
3645 
3646 	/*
3647 	 * IRQ is defined to be set when non-zero.  req_events will
3648 	 * cause a global flags check that will enable interrupts.
3649 	 */
3650 	if (new_smi->irq) {
3651 		new_smi->interrupt_disabled = false;
3652 		atomic_set(&new_smi->req_events, 1);
3653 	}
3654 
3655 	if (!new_smi->dev) {
3656 		/*
3657 		 * If we don't already have a device from something
3658 		 * else (like PCI), then register a new one.
3659 		 */
3660 		new_smi->pdev = platform_device_alloc("ipmi_si",
3661 						      new_smi->intf_num);
3662 		if (!new_smi->pdev) {
3663 			printk(KERN_ERR PFX
3664 			       "Unable to allocate platform device\n");
3665 			goto out_err;
3666 		}
3667 		new_smi->dev = &new_smi->pdev->dev;
3668 		new_smi->dev->driver = &ipmi_driver.driver;
3669 
3670 		rv = platform_device_add(new_smi->pdev);
3671 		if (rv) {
3672 			printk(KERN_ERR PFX
3673 			       "Unable to register system interface device:"
3674 			       " %d\n",
3675 			       rv);
3676 			goto out_err;
3677 		}
3678 		new_smi->dev_registered = true;
3679 	}
3680 
3681 	rv = ipmi_register_smi(&handlers,
3682 			       new_smi,
3683 			       &new_smi->device_id,
3684 			       new_smi->dev,
3685 			       new_smi->slave_addr);
3686 	if (rv) {
3687 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3688 			rv);
3689 		goto out_err_stop_timer;
3690 	}
3691 
3692 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3693 				     &smi_type_proc_ops,
3694 				     new_smi);
3695 	if (rv) {
3696 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3697 		goto out_err_stop_timer;
3698 	}
3699 
3700 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3701 				     &smi_si_stats_proc_ops,
3702 				     new_smi);
3703 	if (rv) {
3704 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3705 		goto out_err_stop_timer;
3706 	}
3707 
3708 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3709 				     &smi_params_proc_ops,
3710 				     new_smi);
3711 	if (rv) {
3712 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3713 		goto out_err_stop_timer;
3714 	}
3715 
3716 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3717 		 si_to_str[new_smi->si_type]);
3718 
3719 	return 0;
3720 
3721  out_err_stop_timer:
3722 	wait_for_timer_and_thread(new_smi);
3723 
3724  out_err:
3725 	new_smi->interrupt_disabled = true;
3726 
3727 	if (new_smi->intf) {
3728 		ipmi_smi_t intf = new_smi->intf;
3729 		new_smi->intf = NULL;
3730 		ipmi_unregister_smi(intf);
3731 	}
3732 
3733 	if (new_smi->irq_cleanup) {
3734 		new_smi->irq_cleanup(new_smi);
3735 		new_smi->irq_cleanup = NULL;
3736 	}
3737 
3738 	/*
3739 	 * Wait until we know that we are out of any interrupt
3740 	 * handlers might have been running before we freed the
3741 	 * interrupt.
3742 	 */
3743 	synchronize_sched();
3744 
3745 	if (new_smi->si_sm) {
3746 		if (new_smi->handlers)
3747 			new_smi->handlers->cleanup(new_smi->si_sm);
3748 		kfree(new_smi->si_sm);
3749 		new_smi->si_sm = NULL;
3750 	}
3751 	if (new_smi->addr_source_cleanup) {
3752 		new_smi->addr_source_cleanup(new_smi);
3753 		new_smi->addr_source_cleanup = NULL;
3754 	}
3755 	if (new_smi->io_cleanup) {
3756 		new_smi->io_cleanup(new_smi);
3757 		new_smi->io_cleanup = NULL;
3758 	}
3759 
3760 	if (new_smi->dev_registered) {
3761 		platform_device_unregister(new_smi->pdev);
3762 		new_smi->dev_registered = false;
3763 	}
3764 
3765 	return rv;
3766 }
3767 
3768 static int init_ipmi_si(void)
3769 {
3770 	int  i;
3771 	char *str;
3772 	int  rv;
3773 	struct smi_info *e;
3774 	enum ipmi_addr_src type = SI_INVALID;
3775 
3776 	if (initialized)
3777 		return 0;
3778 	initialized = 1;
3779 
3780 	if (si_tryplatform) {
3781 		rv = platform_driver_register(&ipmi_driver);
3782 		if (rv) {
3783 			printk(KERN_ERR PFX "Unable to register "
3784 			       "driver: %d\n", rv);
3785 			return rv;
3786 		}
3787 	}
3788 
3789 	/* Parse out the si_type string into its components. */
3790 	str = si_type_str;
3791 	if (*str != '\0') {
3792 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3793 			si_type[i] = str;
3794 			str = strchr(str, ',');
3795 			if (str) {
3796 				*str = '\0';
3797 				str++;
3798 			} else {
3799 				break;
3800 			}
3801 		}
3802 	}
3803 
3804 	printk(KERN_INFO "IPMI System Interface driver.\n");
3805 
3806 	/* If the user gave us a device, they presumably want us to use it */
3807 	if (!hardcode_find_bmc())
3808 		return 0;
3809 
3810 #ifdef CONFIG_PCI
3811 	if (si_trypci) {
3812 		rv = pci_register_driver(&ipmi_pci_driver);
3813 		if (rv)
3814 			printk(KERN_ERR PFX "Unable to register "
3815 			       "PCI driver: %d\n", rv);
3816 		else
3817 			pci_registered = true;
3818 	}
3819 #endif
3820 
3821 #ifdef CONFIG_DMI
3822 	if (si_trydmi)
3823 		dmi_find_bmc();
3824 #endif
3825 
3826 #ifdef CONFIG_ACPI
3827 	if (si_tryacpi)
3828 		spmi_find_bmc();
3829 #endif
3830 
3831 #ifdef CONFIG_PARISC
3832 	register_parisc_driver(&ipmi_parisc_driver);
3833 	parisc_registered = true;
3834 	/* poking PC IO addresses will crash machine, don't do it */
3835 	si_trydefaults = 0;
3836 #endif
3837 
3838 	/* We prefer devices with interrupts, but in the case of a machine
3839 	   with multiple BMCs we assume that there will be several instances
3840 	   of a given type so if we succeed in registering a type then also
3841 	   try to register everything else of the same type */
3842 
3843 	mutex_lock(&smi_infos_lock);
3844 	list_for_each_entry(e, &smi_infos, link) {
3845 		/* Try to register a device if it has an IRQ and we either
3846 		   haven't successfully registered a device yet or this
3847 		   device has the same type as one we successfully registered */
3848 		if (e->irq && (!type || e->addr_source == type)) {
3849 			if (!try_smi_init(e)) {
3850 				type = e->addr_source;
3851 			}
3852 		}
3853 	}
3854 
3855 	/* type will only have been set if we successfully registered an si */
3856 	if (type) {
3857 		mutex_unlock(&smi_infos_lock);
3858 		return 0;
3859 	}
3860 
3861 	/* Fall back to the preferred device */
3862 
3863 	list_for_each_entry(e, &smi_infos, link) {
3864 		if (!e->irq && (!type || e->addr_source == type)) {
3865 			if (!try_smi_init(e)) {
3866 				type = e->addr_source;
3867 			}
3868 		}
3869 	}
3870 	mutex_unlock(&smi_infos_lock);
3871 
3872 	if (type)
3873 		return 0;
3874 
3875 	if (si_trydefaults) {
3876 		mutex_lock(&smi_infos_lock);
3877 		if (list_empty(&smi_infos)) {
3878 			/* No BMC was found, try defaults. */
3879 			mutex_unlock(&smi_infos_lock);
3880 			default_find_bmc();
3881 		} else
3882 			mutex_unlock(&smi_infos_lock);
3883 	}
3884 
3885 	mutex_lock(&smi_infos_lock);
3886 	if (unload_when_empty && list_empty(&smi_infos)) {
3887 		mutex_unlock(&smi_infos_lock);
3888 		cleanup_ipmi_si();
3889 		printk(KERN_WARNING PFX
3890 		       "Unable to find any System Interface(s)\n");
3891 		return -ENODEV;
3892 	} else {
3893 		mutex_unlock(&smi_infos_lock);
3894 		return 0;
3895 	}
3896 }
3897 module_init(init_ipmi_si);
3898 
3899 static void cleanup_one_si(struct smi_info *to_clean)
3900 {
3901 	int           rv = 0;
3902 
3903 	if (!to_clean)
3904 		return;
3905 
3906 	if (to_clean->intf) {
3907 		ipmi_smi_t intf = to_clean->intf;
3908 
3909 		to_clean->intf = NULL;
3910 		rv = ipmi_unregister_smi(intf);
3911 		if (rv) {
3912 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3913 			       rv);
3914 		}
3915 	}
3916 
3917 	if (to_clean->dev)
3918 		dev_set_drvdata(to_clean->dev, NULL);
3919 
3920 	list_del(&to_clean->link);
3921 
3922 	/*
3923 	 * Make sure that interrupts, the timer and the thread are
3924 	 * stopped and will not run again.
3925 	 */
3926 	if (to_clean->irq_cleanup)
3927 		to_clean->irq_cleanup(to_clean);
3928 	wait_for_timer_and_thread(to_clean);
3929 
3930 	/*
3931 	 * Timeouts are stopped, now make sure the interrupts are off
3932 	 * in the BMC.  Note that timers and CPU interrupts are off,
3933 	 * so no need for locks.
3934 	 */
3935 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3936 		poll(to_clean);
3937 		schedule_timeout_uninterruptible(1);
3938 	}
3939 	disable_si_irq(to_clean, false);
3940 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3941 		poll(to_clean);
3942 		schedule_timeout_uninterruptible(1);
3943 	}
3944 
3945 	if (to_clean->handlers)
3946 		to_clean->handlers->cleanup(to_clean->si_sm);
3947 
3948 	kfree(to_clean->si_sm);
3949 
3950 	if (to_clean->addr_source_cleanup)
3951 		to_clean->addr_source_cleanup(to_clean);
3952 	if (to_clean->io_cleanup)
3953 		to_clean->io_cleanup(to_clean);
3954 
3955 	if (to_clean->dev_registered)
3956 		platform_device_unregister(to_clean->pdev);
3957 
3958 	kfree(to_clean);
3959 }
3960 
3961 static void cleanup_ipmi_si(void)
3962 {
3963 	struct smi_info *e, *tmp_e;
3964 
3965 	if (!initialized)
3966 		return;
3967 
3968 #ifdef CONFIG_PCI
3969 	if (pci_registered)
3970 		pci_unregister_driver(&ipmi_pci_driver);
3971 #endif
3972 #ifdef CONFIG_PARISC
3973 	if (parisc_registered)
3974 		unregister_parisc_driver(&ipmi_parisc_driver);
3975 #endif
3976 
3977 	platform_driver_unregister(&ipmi_driver);
3978 
3979 	mutex_lock(&smi_infos_lock);
3980 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3981 		cleanup_one_si(e);
3982 	mutex_unlock(&smi_infos_lock);
3983 }
3984 module_exit(cleanup_ipmi_si);
3985 
3986 MODULE_LICENSE("GPL");
3987 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3988 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3989 		   " system interfaces.");
3990