xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 8e8e69d6)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15 
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21 
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include <linux/string.h>
44 #include <linux/ctype.h>
45 
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48 
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC	10000
51 #define SI_USEC_PER_JIFFY	(1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
54 				      short timeout */
55 
56 enum si_intf_state {
57 	SI_NORMAL,
58 	SI_GETTING_FLAGS,
59 	SI_GETTING_EVENTS,
60 	SI_CLEARING_FLAGS,
61 	SI_GETTING_MESSAGES,
62 	SI_CHECKING_ENABLES,
63 	SI_SETTING_ENABLES
64 	/* FIXME - add watchdog stuff. */
65 };
66 
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG		2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
71 
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73 
74 static int initialized;
75 
76 /*
77  * Indexes into stats[] in smi_info below.
78  */
79 enum si_stat_indexes {
80 	/*
81 	 * Number of times the driver requested a timer while an operation
82 	 * was in progress.
83 	 */
84 	SI_STAT_short_timeouts = 0,
85 
86 	/*
87 	 * Number of times the driver requested a timer while nothing was in
88 	 * progress.
89 	 */
90 	SI_STAT_long_timeouts,
91 
92 	/* Number of times the interface was idle while being polled. */
93 	SI_STAT_idles,
94 
95 	/* Number of interrupts the driver handled. */
96 	SI_STAT_interrupts,
97 
98 	/* Number of time the driver got an ATTN from the hardware. */
99 	SI_STAT_attentions,
100 
101 	/* Number of times the driver requested flags from the hardware. */
102 	SI_STAT_flag_fetches,
103 
104 	/* Number of times the hardware didn't follow the state machine. */
105 	SI_STAT_hosed_count,
106 
107 	/* Number of completed messages. */
108 	SI_STAT_complete_transactions,
109 
110 	/* Number of IPMI events received from the hardware. */
111 	SI_STAT_events,
112 
113 	/* Number of watchdog pretimeouts. */
114 	SI_STAT_watchdog_pretimeouts,
115 
116 	/* Number of asynchronous messages received. */
117 	SI_STAT_incoming_messages,
118 
119 
120 	/* This *must* remain last, add new values above this. */
121 	SI_NUM_STATS
122 };
123 
124 struct smi_info {
125 	int                    si_num;
126 	struct ipmi_smi        *intf;
127 	struct si_sm_data      *si_sm;
128 	const struct si_sm_handlers *handlers;
129 	spinlock_t             si_lock;
130 	struct ipmi_smi_msg    *waiting_msg;
131 	struct ipmi_smi_msg    *curr_msg;
132 	enum si_intf_state     si_state;
133 
134 	/*
135 	 * Used to handle the various types of I/O that can occur with
136 	 * IPMI
137 	 */
138 	struct si_sm_io io;
139 
140 	/*
141 	 * Per-OEM handler, called from handle_flags().  Returns 1
142 	 * when handle_flags() needs to be re-run or 0 indicating it
143 	 * set si_state itself.
144 	 */
145 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
146 
147 	/*
148 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 	 * is set to hold the flags until we are done handling everything
150 	 * from the flags.
151 	 */
152 #define RECEIVE_MSG_AVAIL	0x01
153 #define EVENT_MSG_BUFFER_FULL	0x02
154 #define WDT_PRE_TIMEOUT_INT	0x08
155 #define OEM0_DATA_AVAIL     0x20
156 #define OEM1_DATA_AVAIL     0x40
157 #define OEM2_DATA_AVAIL     0x80
158 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
159 			     OEM1_DATA_AVAIL | \
160 			     OEM2_DATA_AVAIL)
161 	unsigned char       msg_flags;
162 
163 	/* Does the BMC have an event buffer? */
164 	bool		    has_event_buffer;
165 
166 	/*
167 	 * If set to true, this will request events the next time the
168 	 * state machine is idle.
169 	 */
170 	atomic_t            req_events;
171 
172 	/*
173 	 * If true, run the state machine to completion on every send
174 	 * call.  Generally used after a panic to make sure stuff goes
175 	 * out.
176 	 */
177 	bool                run_to_completion;
178 
179 	/* The timer for this si. */
180 	struct timer_list   si_timer;
181 
182 	/* This flag is set, if the timer can be set */
183 	bool		    timer_can_start;
184 
185 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
186 	bool		    timer_running;
187 
188 	/* The time (in jiffies) the last timeout occurred at. */
189 	unsigned long       last_timeout_jiffies;
190 
191 	/* Are we waiting for the events, pretimeouts, received msgs? */
192 	atomic_t            need_watch;
193 
194 	/*
195 	 * The driver will disable interrupts when it gets into a
196 	 * situation where it cannot handle messages due to lack of
197 	 * memory.  Once that situation clears up, it will re-enable
198 	 * interrupts.
199 	 */
200 	bool interrupt_disabled;
201 
202 	/*
203 	 * Does the BMC support events?
204 	 */
205 	bool supports_event_msg_buff;
206 
207 	/*
208 	 * Can we disable interrupts the global enables receive irq
209 	 * bit?  There are currently two forms of brokenness, some
210 	 * systems cannot disable the bit (which is technically within
211 	 * the spec but a bad idea) and some systems have the bit
212 	 * forced to zero even though interrupts work (which is
213 	 * clearly outside the spec).  The next bool tells which form
214 	 * of brokenness is present.
215 	 */
216 	bool cannot_disable_irq;
217 
218 	/*
219 	 * Some systems are broken and cannot set the irq enable
220 	 * bit, even if they support interrupts.
221 	 */
222 	bool irq_enable_broken;
223 
224 	/*
225 	 * Did we get an attention that we did not handle?
226 	 */
227 	bool got_attn;
228 
229 	/* From the get device id response... */
230 	struct ipmi_device_id device_id;
231 
232 	/* Have we added the device group to the device? */
233 	bool dev_group_added;
234 
235 	/* Counters and things for the proc filesystem. */
236 	atomic_t stats[SI_NUM_STATS];
237 
238 	struct task_struct *thread;
239 
240 	struct list_head link;
241 };
242 
243 #define smi_inc_stat(smi, stat) \
244 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
245 #define smi_get_stat(smi, stat) \
246 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
247 
248 #define IPMI_MAX_INTFS 4
249 static int force_kipmid[IPMI_MAX_INTFS];
250 static int num_force_kipmid;
251 
252 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
253 static int num_max_busy_us;
254 
255 static bool unload_when_empty = true;
256 
257 static int try_smi_init(struct smi_info *smi);
258 static void cleanup_one_si(struct smi_info *smi_info);
259 static void cleanup_ipmi_si(void);
260 
261 #ifdef DEBUG_TIMING
262 void debug_timestamp(char *msg)
263 {
264 	struct timespec64 t;
265 
266 	ktime_get_ts64(&t);
267 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
268 }
269 #else
270 #define debug_timestamp(x)
271 #endif
272 
273 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
274 static int register_xaction_notifier(struct notifier_block *nb)
275 {
276 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
277 }
278 
279 static void deliver_recv_msg(struct smi_info *smi_info,
280 			     struct ipmi_smi_msg *msg)
281 {
282 	/* Deliver the message to the upper layer. */
283 	ipmi_smi_msg_received(smi_info->intf, msg);
284 }
285 
286 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
287 {
288 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
289 
290 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
291 		cCode = IPMI_ERR_UNSPECIFIED;
292 	/* else use it as is */
293 
294 	/* Make it a response */
295 	msg->rsp[0] = msg->data[0] | 4;
296 	msg->rsp[1] = msg->data[1];
297 	msg->rsp[2] = cCode;
298 	msg->rsp_size = 3;
299 
300 	smi_info->curr_msg = NULL;
301 	deliver_recv_msg(smi_info, msg);
302 }
303 
304 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
305 {
306 	int              rv;
307 
308 	if (!smi_info->waiting_msg) {
309 		smi_info->curr_msg = NULL;
310 		rv = SI_SM_IDLE;
311 	} else {
312 		int err;
313 
314 		smi_info->curr_msg = smi_info->waiting_msg;
315 		smi_info->waiting_msg = NULL;
316 		debug_timestamp("Start2");
317 		err = atomic_notifier_call_chain(&xaction_notifier_list,
318 				0, smi_info);
319 		if (err & NOTIFY_STOP_MASK) {
320 			rv = SI_SM_CALL_WITHOUT_DELAY;
321 			goto out;
322 		}
323 		err = smi_info->handlers->start_transaction(
324 			smi_info->si_sm,
325 			smi_info->curr_msg->data,
326 			smi_info->curr_msg->data_size);
327 		if (err)
328 			return_hosed_msg(smi_info, err);
329 
330 		rv = SI_SM_CALL_WITHOUT_DELAY;
331 	}
332 out:
333 	return rv;
334 }
335 
336 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
337 {
338 	if (!smi_info->timer_can_start)
339 		return;
340 	smi_info->last_timeout_jiffies = jiffies;
341 	mod_timer(&smi_info->si_timer, new_val);
342 	smi_info->timer_running = true;
343 }
344 
345 /*
346  * Start a new message and (re)start the timer and thread.
347  */
348 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
349 			  unsigned int size)
350 {
351 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
352 
353 	if (smi_info->thread)
354 		wake_up_process(smi_info->thread);
355 
356 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
357 }
358 
359 static void start_check_enables(struct smi_info *smi_info)
360 {
361 	unsigned char msg[2];
362 
363 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
364 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
365 
366 	start_new_msg(smi_info, msg, 2);
367 	smi_info->si_state = SI_CHECKING_ENABLES;
368 }
369 
370 static void start_clear_flags(struct smi_info *smi_info)
371 {
372 	unsigned char msg[3];
373 
374 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
375 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
376 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
377 	msg[2] = WDT_PRE_TIMEOUT_INT;
378 
379 	start_new_msg(smi_info, msg, 3);
380 	smi_info->si_state = SI_CLEARING_FLAGS;
381 }
382 
383 static void start_getting_msg_queue(struct smi_info *smi_info)
384 {
385 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
386 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
387 	smi_info->curr_msg->data_size = 2;
388 
389 	start_new_msg(smi_info, smi_info->curr_msg->data,
390 		      smi_info->curr_msg->data_size);
391 	smi_info->si_state = SI_GETTING_MESSAGES;
392 }
393 
394 static void start_getting_events(struct smi_info *smi_info)
395 {
396 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
397 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
398 	smi_info->curr_msg->data_size = 2;
399 
400 	start_new_msg(smi_info, smi_info->curr_msg->data,
401 		      smi_info->curr_msg->data_size);
402 	smi_info->si_state = SI_GETTING_EVENTS;
403 }
404 
405 /*
406  * When we have a situtaion where we run out of memory and cannot
407  * allocate messages, we just leave them in the BMC and run the system
408  * polled until we can allocate some memory.  Once we have some
409  * memory, we will re-enable the interrupt.
410  *
411  * Note that we cannot just use disable_irq(), since the interrupt may
412  * be shared.
413  */
414 static inline bool disable_si_irq(struct smi_info *smi_info)
415 {
416 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
417 		smi_info->interrupt_disabled = true;
418 		start_check_enables(smi_info);
419 		return true;
420 	}
421 	return false;
422 }
423 
424 static inline bool enable_si_irq(struct smi_info *smi_info)
425 {
426 	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
427 		smi_info->interrupt_disabled = false;
428 		start_check_enables(smi_info);
429 		return true;
430 	}
431 	return false;
432 }
433 
434 /*
435  * Allocate a message.  If unable to allocate, start the interrupt
436  * disable process and return NULL.  If able to allocate but
437  * interrupts are disabled, free the message and return NULL after
438  * starting the interrupt enable process.
439  */
440 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
441 {
442 	struct ipmi_smi_msg *msg;
443 
444 	msg = ipmi_alloc_smi_msg();
445 	if (!msg) {
446 		if (!disable_si_irq(smi_info))
447 			smi_info->si_state = SI_NORMAL;
448 	} else if (enable_si_irq(smi_info)) {
449 		ipmi_free_smi_msg(msg);
450 		msg = NULL;
451 	}
452 	return msg;
453 }
454 
455 static void handle_flags(struct smi_info *smi_info)
456 {
457 retry:
458 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 		/* Watchdog pre-timeout */
460 		smi_inc_stat(smi_info, watchdog_pretimeouts);
461 
462 		start_clear_flags(smi_info);
463 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
465 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
466 		/* Messages available. */
467 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
468 		if (!smi_info->curr_msg)
469 			return;
470 
471 		start_getting_msg_queue(smi_info);
472 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
473 		/* Events available. */
474 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
475 		if (!smi_info->curr_msg)
476 			return;
477 
478 		start_getting_events(smi_info);
479 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
480 		   smi_info->oem_data_avail_handler) {
481 		if (smi_info->oem_data_avail_handler(smi_info))
482 			goto retry;
483 	} else
484 		smi_info->si_state = SI_NORMAL;
485 }
486 
487 /*
488  * Global enables we care about.
489  */
490 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
491 			     IPMI_BMC_EVT_MSG_INTR)
492 
493 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
494 				 bool *irq_on)
495 {
496 	u8 enables = 0;
497 
498 	if (smi_info->supports_event_msg_buff)
499 		enables |= IPMI_BMC_EVT_MSG_BUFF;
500 
501 	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
502 	     smi_info->cannot_disable_irq) &&
503 	    !smi_info->irq_enable_broken)
504 		enables |= IPMI_BMC_RCV_MSG_INTR;
505 
506 	if (smi_info->supports_event_msg_buff &&
507 	    smi_info->io.irq && !smi_info->interrupt_disabled &&
508 	    !smi_info->irq_enable_broken)
509 		enables |= IPMI_BMC_EVT_MSG_INTR;
510 
511 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
512 
513 	return enables;
514 }
515 
516 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
517 {
518 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
519 
520 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
521 
522 	if ((bool)irqstate == irq_on)
523 		return;
524 
525 	if (irq_on)
526 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
527 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
528 	else
529 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
530 }
531 
532 static void handle_transaction_done(struct smi_info *smi_info)
533 {
534 	struct ipmi_smi_msg *msg;
535 
536 	debug_timestamp("Done");
537 	switch (smi_info->si_state) {
538 	case SI_NORMAL:
539 		if (!smi_info->curr_msg)
540 			break;
541 
542 		smi_info->curr_msg->rsp_size
543 			= smi_info->handlers->get_result(
544 				smi_info->si_sm,
545 				smi_info->curr_msg->rsp,
546 				IPMI_MAX_MSG_LENGTH);
547 
548 		/*
549 		 * Do this here becase deliver_recv_msg() releases the
550 		 * lock, and a new message can be put in during the
551 		 * time the lock is released.
552 		 */
553 		msg = smi_info->curr_msg;
554 		smi_info->curr_msg = NULL;
555 		deliver_recv_msg(smi_info, msg);
556 		break;
557 
558 	case SI_GETTING_FLAGS:
559 	{
560 		unsigned char msg[4];
561 		unsigned int  len;
562 
563 		/* We got the flags from the SMI, now handle them. */
564 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
565 		if (msg[2] != 0) {
566 			/* Error fetching flags, just give up for now. */
567 			smi_info->si_state = SI_NORMAL;
568 		} else if (len < 4) {
569 			/*
570 			 * Hmm, no flags.  That's technically illegal, but
571 			 * don't use uninitialized data.
572 			 */
573 			smi_info->si_state = SI_NORMAL;
574 		} else {
575 			smi_info->msg_flags = msg[3];
576 			handle_flags(smi_info);
577 		}
578 		break;
579 	}
580 
581 	case SI_CLEARING_FLAGS:
582 	{
583 		unsigned char msg[3];
584 
585 		/* We cleared the flags. */
586 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
587 		if (msg[2] != 0) {
588 			/* Error clearing flags */
589 			dev_warn(smi_info->io.dev,
590 				 "Error clearing flags: %2.2x\n", msg[2]);
591 		}
592 		smi_info->si_state = SI_NORMAL;
593 		break;
594 	}
595 
596 	case SI_GETTING_EVENTS:
597 	{
598 		smi_info->curr_msg->rsp_size
599 			= smi_info->handlers->get_result(
600 				smi_info->si_sm,
601 				smi_info->curr_msg->rsp,
602 				IPMI_MAX_MSG_LENGTH);
603 
604 		/*
605 		 * Do this here becase deliver_recv_msg() releases the
606 		 * lock, and a new message can be put in during the
607 		 * time the lock is released.
608 		 */
609 		msg = smi_info->curr_msg;
610 		smi_info->curr_msg = NULL;
611 		if (msg->rsp[2] != 0) {
612 			/* Error getting event, probably done. */
613 			msg->done(msg);
614 
615 			/* Take off the event flag. */
616 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
617 			handle_flags(smi_info);
618 		} else {
619 			smi_inc_stat(smi_info, events);
620 
621 			/*
622 			 * Do this before we deliver the message
623 			 * because delivering the message releases the
624 			 * lock and something else can mess with the
625 			 * state.
626 			 */
627 			handle_flags(smi_info);
628 
629 			deliver_recv_msg(smi_info, msg);
630 		}
631 		break;
632 	}
633 
634 	case SI_GETTING_MESSAGES:
635 	{
636 		smi_info->curr_msg->rsp_size
637 			= smi_info->handlers->get_result(
638 				smi_info->si_sm,
639 				smi_info->curr_msg->rsp,
640 				IPMI_MAX_MSG_LENGTH);
641 
642 		/*
643 		 * Do this here becase deliver_recv_msg() releases the
644 		 * lock, and a new message can be put in during the
645 		 * time the lock is released.
646 		 */
647 		msg = smi_info->curr_msg;
648 		smi_info->curr_msg = NULL;
649 		if (msg->rsp[2] != 0) {
650 			/* Error getting event, probably done. */
651 			msg->done(msg);
652 
653 			/* Take off the msg flag. */
654 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
655 			handle_flags(smi_info);
656 		} else {
657 			smi_inc_stat(smi_info, incoming_messages);
658 
659 			/*
660 			 * Do this before we deliver the message
661 			 * because delivering the message releases the
662 			 * lock and something else can mess with the
663 			 * state.
664 			 */
665 			handle_flags(smi_info);
666 
667 			deliver_recv_msg(smi_info, msg);
668 		}
669 		break;
670 	}
671 
672 	case SI_CHECKING_ENABLES:
673 	{
674 		unsigned char msg[4];
675 		u8 enables;
676 		bool irq_on;
677 
678 		/* We got the flags from the SMI, now handle them. */
679 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
680 		if (msg[2] != 0) {
681 			dev_warn(smi_info->io.dev,
682 				 "Couldn't get irq info: %x.\n", msg[2]);
683 			dev_warn(smi_info->io.dev,
684 				 "Maybe ok, but ipmi might run very slowly.\n");
685 			smi_info->si_state = SI_NORMAL;
686 			break;
687 		}
688 		enables = current_global_enables(smi_info, 0, &irq_on);
689 		if (smi_info->io.si_type == SI_BT)
690 			/* BT has its own interrupt enable bit. */
691 			check_bt_irq(smi_info, irq_on);
692 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
693 			/* Enables are not correct, fix them. */
694 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
695 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
696 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
697 			smi_info->handlers->start_transaction(
698 				smi_info->si_sm, msg, 3);
699 			smi_info->si_state = SI_SETTING_ENABLES;
700 		} else if (smi_info->supports_event_msg_buff) {
701 			smi_info->curr_msg = ipmi_alloc_smi_msg();
702 			if (!smi_info->curr_msg) {
703 				smi_info->si_state = SI_NORMAL;
704 				break;
705 			}
706 			start_getting_events(smi_info);
707 		} else {
708 			smi_info->si_state = SI_NORMAL;
709 		}
710 		break;
711 	}
712 
713 	case SI_SETTING_ENABLES:
714 	{
715 		unsigned char msg[4];
716 
717 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
718 		if (msg[2] != 0)
719 			dev_warn(smi_info->io.dev,
720 				 "Could not set the global enables: 0x%x.\n",
721 				 msg[2]);
722 
723 		if (smi_info->supports_event_msg_buff) {
724 			smi_info->curr_msg = ipmi_alloc_smi_msg();
725 			if (!smi_info->curr_msg) {
726 				smi_info->si_state = SI_NORMAL;
727 				break;
728 			}
729 			start_getting_events(smi_info);
730 		} else {
731 			smi_info->si_state = SI_NORMAL;
732 		}
733 		break;
734 	}
735 	}
736 }
737 
738 /*
739  * Called on timeouts and events.  Timeouts should pass the elapsed
740  * time, interrupts should pass in zero.  Must be called with
741  * si_lock held and interrupts disabled.
742  */
743 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
744 					   int time)
745 {
746 	enum si_sm_result si_sm_result;
747 
748 restart:
749 	/*
750 	 * There used to be a loop here that waited a little while
751 	 * (around 25us) before giving up.  That turned out to be
752 	 * pointless, the minimum delays I was seeing were in the 300us
753 	 * range, which is far too long to wait in an interrupt.  So
754 	 * we just run until the state machine tells us something
755 	 * happened or it needs a delay.
756 	 */
757 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
758 	time = 0;
759 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
760 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
761 
762 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
763 		smi_inc_stat(smi_info, complete_transactions);
764 
765 		handle_transaction_done(smi_info);
766 		goto restart;
767 	} else if (si_sm_result == SI_SM_HOSED) {
768 		smi_inc_stat(smi_info, hosed_count);
769 
770 		/*
771 		 * Do the before return_hosed_msg, because that
772 		 * releases the lock.
773 		 */
774 		smi_info->si_state = SI_NORMAL;
775 		if (smi_info->curr_msg != NULL) {
776 			/*
777 			 * If we were handling a user message, format
778 			 * a response to send to the upper layer to
779 			 * tell it about the error.
780 			 */
781 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
782 		}
783 		goto restart;
784 	}
785 
786 	/*
787 	 * We prefer handling attn over new messages.  But don't do
788 	 * this if there is not yet an upper layer to handle anything.
789 	 */
790 	if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
791 		unsigned char msg[2];
792 
793 		if (smi_info->si_state != SI_NORMAL) {
794 			/*
795 			 * We got an ATTN, but we are doing something else.
796 			 * Handle the ATTN later.
797 			 */
798 			smi_info->got_attn = true;
799 		} else {
800 			smi_info->got_attn = false;
801 			smi_inc_stat(smi_info, attentions);
802 
803 			/*
804 			 * Got a attn, send down a get message flags to see
805 			 * what's causing it.  It would be better to handle
806 			 * this in the upper layer, but due to the way
807 			 * interrupts work with the SMI, that's not really
808 			 * possible.
809 			 */
810 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
811 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
812 
813 			start_new_msg(smi_info, msg, 2);
814 			smi_info->si_state = SI_GETTING_FLAGS;
815 			goto restart;
816 		}
817 	}
818 
819 	/* If we are currently idle, try to start the next message. */
820 	if (si_sm_result == SI_SM_IDLE) {
821 		smi_inc_stat(smi_info, idles);
822 
823 		si_sm_result = start_next_msg(smi_info);
824 		if (si_sm_result != SI_SM_IDLE)
825 			goto restart;
826 	}
827 
828 	if ((si_sm_result == SI_SM_IDLE)
829 	    && (atomic_read(&smi_info->req_events))) {
830 		/*
831 		 * We are idle and the upper layer requested that I fetch
832 		 * events, so do so.
833 		 */
834 		atomic_set(&smi_info->req_events, 0);
835 
836 		/*
837 		 * Take this opportunity to check the interrupt and
838 		 * message enable state for the BMC.  The BMC can be
839 		 * asynchronously reset, and may thus get interrupts
840 		 * disable and messages disabled.
841 		 */
842 		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
843 			start_check_enables(smi_info);
844 		} else {
845 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
846 			if (!smi_info->curr_msg)
847 				goto out;
848 
849 			start_getting_events(smi_info);
850 		}
851 		goto restart;
852 	}
853 
854 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
855 		/* Ok it if fails, the timer will just go off. */
856 		if (del_timer(&smi_info->si_timer))
857 			smi_info->timer_running = false;
858 	}
859 
860 out:
861 	return si_sm_result;
862 }
863 
864 static void check_start_timer_thread(struct smi_info *smi_info)
865 {
866 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
867 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
868 
869 		if (smi_info->thread)
870 			wake_up_process(smi_info->thread);
871 
872 		start_next_msg(smi_info);
873 		smi_event_handler(smi_info, 0);
874 	}
875 }
876 
877 static void flush_messages(void *send_info)
878 {
879 	struct smi_info *smi_info = send_info;
880 	enum si_sm_result result;
881 
882 	/*
883 	 * Currently, this function is called only in run-to-completion
884 	 * mode.  This means we are single-threaded, no need for locks.
885 	 */
886 	result = smi_event_handler(smi_info, 0);
887 	while (result != SI_SM_IDLE) {
888 		udelay(SI_SHORT_TIMEOUT_USEC);
889 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
890 	}
891 }
892 
893 static void sender(void                *send_info,
894 		   struct ipmi_smi_msg *msg)
895 {
896 	struct smi_info   *smi_info = send_info;
897 	unsigned long     flags;
898 
899 	debug_timestamp("Enqueue");
900 
901 	if (smi_info->run_to_completion) {
902 		/*
903 		 * If we are running to completion, start it.  Upper
904 		 * layer will call flush_messages to clear it out.
905 		 */
906 		smi_info->waiting_msg = msg;
907 		return;
908 	}
909 
910 	spin_lock_irqsave(&smi_info->si_lock, flags);
911 	/*
912 	 * The following two lines don't need to be under the lock for
913 	 * the lock's sake, but they do need SMP memory barriers to
914 	 * avoid getting things out of order.  We are already claiming
915 	 * the lock, anyway, so just do it under the lock to avoid the
916 	 * ordering problem.
917 	 */
918 	BUG_ON(smi_info->waiting_msg);
919 	smi_info->waiting_msg = msg;
920 	check_start_timer_thread(smi_info);
921 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
922 }
923 
924 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
925 {
926 	struct smi_info   *smi_info = send_info;
927 
928 	smi_info->run_to_completion = i_run_to_completion;
929 	if (i_run_to_completion)
930 		flush_messages(smi_info);
931 }
932 
933 /*
934  * Use -1 in the nsec value of the busy waiting timespec to tell that
935  * we are spinning in kipmid looking for something and not delaying
936  * between checks
937  */
938 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
939 {
940 	ts->tv_nsec = -1;
941 }
942 static inline int ipmi_si_is_busy(struct timespec64 *ts)
943 {
944 	return ts->tv_nsec != -1;
945 }
946 
947 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
948 					const struct smi_info *smi_info,
949 					struct timespec64 *busy_until)
950 {
951 	unsigned int max_busy_us = 0;
952 
953 	if (smi_info->si_num < num_max_busy_us)
954 		max_busy_us = kipmid_max_busy_us[smi_info->si_num];
955 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
956 		ipmi_si_set_not_busy(busy_until);
957 	else if (!ipmi_si_is_busy(busy_until)) {
958 		ktime_get_ts64(busy_until);
959 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
960 	} else {
961 		struct timespec64 now;
962 
963 		ktime_get_ts64(&now);
964 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
965 			ipmi_si_set_not_busy(busy_until);
966 			return 0;
967 		}
968 	}
969 	return 1;
970 }
971 
972 
973 /*
974  * A busy-waiting loop for speeding up IPMI operation.
975  *
976  * Lousy hardware makes this hard.  This is only enabled for systems
977  * that are not BT and do not have interrupts.  It starts spinning
978  * when an operation is complete or until max_busy tells it to stop
979  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
980  * Documentation/IPMI.txt for details.
981  */
982 static int ipmi_thread(void *data)
983 {
984 	struct smi_info *smi_info = data;
985 	unsigned long flags;
986 	enum si_sm_result smi_result;
987 	struct timespec64 busy_until;
988 
989 	ipmi_si_set_not_busy(&busy_until);
990 	set_user_nice(current, MAX_NICE);
991 	while (!kthread_should_stop()) {
992 		int busy_wait;
993 
994 		spin_lock_irqsave(&(smi_info->si_lock), flags);
995 		smi_result = smi_event_handler(smi_info, 0);
996 
997 		/*
998 		 * If the driver is doing something, there is a possible
999 		 * race with the timer.  If the timer handler see idle,
1000 		 * and the thread here sees something else, the timer
1001 		 * handler won't restart the timer even though it is
1002 		 * required.  So start it here if necessary.
1003 		 */
1004 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1005 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1006 
1007 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1008 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1009 						  &busy_until);
1010 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1011 			; /* do nothing */
1012 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1013 			schedule();
1014 		else if (smi_result == SI_SM_IDLE) {
1015 			if (atomic_read(&smi_info->need_watch)) {
1016 				schedule_timeout_interruptible(100);
1017 			} else {
1018 				/* Wait to be woken up when we are needed. */
1019 				__set_current_state(TASK_INTERRUPTIBLE);
1020 				schedule();
1021 			}
1022 		} else
1023 			schedule_timeout_interruptible(1);
1024 	}
1025 	return 0;
1026 }
1027 
1028 
1029 static void poll(void *send_info)
1030 {
1031 	struct smi_info *smi_info = send_info;
1032 	unsigned long flags = 0;
1033 	bool run_to_completion = smi_info->run_to_completion;
1034 
1035 	/*
1036 	 * Make sure there is some delay in the poll loop so we can
1037 	 * drive time forward and timeout things.
1038 	 */
1039 	udelay(10);
1040 	if (!run_to_completion)
1041 		spin_lock_irqsave(&smi_info->si_lock, flags);
1042 	smi_event_handler(smi_info, 10);
1043 	if (!run_to_completion)
1044 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1045 }
1046 
1047 static void request_events(void *send_info)
1048 {
1049 	struct smi_info *smi_info = send_info;
1050 
1051 	if (!smi_info->has_event_buffer)
1052 		return;
1053 
1054 	atomic_set(&smi_info->req_events, 1);
1055 }
1056 
1057 static void set_need_watch(void *send_info, unsigned int watch_mask)
1058 {
1059 	struct smi_info *smi_info = send_info;
1060 	unsigned long flags;
1061 	int enable;
1062 
1063 	enable = !!watch_mask;
1064 
1065 	atomic_set(&smi_info->need_watch, enable);
1066 	spin_lock_irqsave(&smi_info->si_lock, flags);
1067 	check_start_timer_thread(smi_info);
1068 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1069 }
1070 
1071 static void smi_timeout(struct timer_list *t)
1072 {
1073 	struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1074 	enum si_sm_result smi_result;
1075 	unsigned long     flags;
1076 	unsigned long     jiffies_now;
1077 	long              time_diff;
1078 	long		  timeout;
1079 
1080 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1081 	debug_timestamp("Timer");
1082 
1083 	jiffies_now = jiffies;
1084 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1085 		     * SI_USEC_PER_JIFFY);
1086 	smi_result = smi_event_handler(smi_info, time_diff);
1087 
1088 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1089 		/* Running with interrupts, only do long timeouts. */
1090 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1091 		smi_inc_stat(smi_info, long_timeouts);
1092 		goto do_mod_timer;
1093 	}
1094 
1095 	/*
1096 	 * If the state machine asks for a short delay, then shorten
1097 	 * the timer timeout.
1098 	 */
1099 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1100 		smi_inc_stat(smi_info, short_timeouts);
1101 		timeout = jiffies + 1;
1102 	} else {
1103 		smi_inc_stat(smi_info, long_timeouts);
1104 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1105 	}
1106 
1107 do_mod_timer:
1108 	if (smi_result != SI_SM_IDLE)
1109 		smi_mod_timer(smi_info, timeout);
1110 	else
1111 		smi_info->timer_running = false;
1112 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1113 }
1114 
1115 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1116 {
1117 	struct smi_info *smi_info = data;
1118 	unsigned long   flags;
1119 
1120 	if (smi_info->io.si_type == SI_BT)
1121 		/* We need to clear the IRQ flag for the BT interface. */
1122 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1123 				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1124 				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1125 
1126 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1127 
1128 	smi_inc_stat(smi_info, interrupts);
1129 
1130 	debug_timestamp("Interrupt");
1131 
1132 	smi_event_handler(smi_info, 0);
1133 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1134 	return IRQ_HANDLED;
1135 }
1136 
1137 static int smi_start_processing(void            *send_info,
1138 				struct ipmi_smi *intf)
1139 {
1140 	struct smi_info *new_smi = send_info;
1141 	int             enable = 0;
1142 
1143 	new_smi->intf = intf;
1144 
1145 	/* Set up the timer that drives the interface. */
1146 	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1147 	new_smi->timer_can_start = true;
1148 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1149 
1150 	/* Try to claim any interrupts. */
1151 	if (new_smi->io.irq_setup) {
1152 		new_smi->io.irq_handler_data = new_smi;
1153 		new_smi->io.irq_setup(&new_smi->io);
1154 	}
1155 
1156 	/*
1157 	 * Check if the user forcefully enabled the daemon.
1158 	 */
1159 	if (new_smi->si_num < num_force_kipmid)
1160 		enable = force_kipmid[new_smi->si_num];
1161 	/*
1162 	 * The BT interface is efficient enough to not need a thread,
1163 	 * and there is no need for a thread if we have interrupts.
1164 	 */
1165 	else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1166 		enable = 1;
1167 
1168 	if (enable) {
1169 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1170 					      "kipmi%d", new_smi->si_num);
1171 		if (IS_ERR(new_smi->thread)) {
1172 			dev_notice(new_smi->io.dev, "Could not start"
1173 				   " kernel thread due to error %ld, only using"
1174 				   " timers to drive the interface\n",
1175 				   PTR_ERR(new_smi->thread));
1176 			new_smi->thread = NULL;
1177 		}
1178 	}
1179 
1180 	return 0;
1181 }
1182 
1183 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1184 {
1185 	struct smi_info *smi = send_info;
1186 
1187 	data->addr_src = smi->io.addr_source;
1188 	data->dev = smi->io.dev;
1189 	data->addr_info = smi->io.addr_info;
1190 	get_device(smi->io.dev);
1191 
1192 	return 0;
1193 }
1194 
1195 static void set_maintenance_mode(void *send_info, bool enable)
1196 {
1197 	struct smi_info   *smi_info = send_info;
1198 
1199 	if (!enable)
1200 		atomic_set(&smi_info->req_events, 0);
1201 }
1202 
1203 static void shutdown_smi(void *send_info);
1204 static const struct ipmi_smi_handlers handlers = {
1205 	.owner                  = THIS_MODULE,
1206 	.start_processing       = smi_start_processing,
1207 	.shutdown               = shutdown_smi,
1208 	.get_smi_info		= get_smi_info,
1209 	.sender			= sender,
1210 	.request_events		= request_events,
1211 	.set_need_watch		= set_need_watch,
1212 	.set_maintenance_mode   = set_maintenance_mode,
1213 	.set_run_to_completion  = set_run_to_completion,
1214 	.flush_messages		= flush_messages,
1215 	.poll			= poll,
1216 };
1217 
1218 static LIST_HEAD(smi_infos);
1219 static DEFINE_MUTEX(smi_infos_lock);
1220 static int smi_num; /* Used to sequence the SMIs */
1221 
1222 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1223 
1224 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1225 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1226 		 " disabled(0).  Normally the IPMI driver auto-detects"
1227 		 " this, but the value may be overridden by this parm.");
1228 module_param(unload_when_empty, bool, 0);
1229 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1230 		 " specified or found, default is 1.  Setting to 0"
1231 		 " is useful for hot add of devices using hotmod.");
1232 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1233 MODULE_PARM_DESC(kipmid_max_busy_us,
1234 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1235 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1236 		 " if kipmid is using up a lot of CPU time.");
1237 
1238 void ipmi_irq_finish_setup(struct si_sm_io *io)
1239 {
1240 	if (io->si_type == SI_BT)
1241 		/* Enable the interrupt in the BT interface. */
1242 		io->outputb(io, IPMI_BT_INTMASK_REG,
1243 			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1244 }
1245 
1246 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1247 {
1248 	if (io->si_type == SI_BT)
1249 		/* Disable the interrupt in the BT interface. */
1250 		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1251 }
1252 
1253 static void std_irq_cleanup(struct si_sm_io *io)
1254 {
1255 	ipmi_irq_start_cleanup(io);
1256 	free_irq(io->irq, io->irq_handler_data);
1257 }
1258 
1259 int ipmi_std_irq_setup(struct si_sm_io *io)
1260 {
1261 	int rv;
1262 
1263 	if (!io->irq)
1264 		return 0;
1265 
1266 	rv = request_irq(io->irq,
1267 			 ipmi_si_irq_handler,
1268 			 IRQF_SHARED,
1269 			 DEVICE_NAME,
1270 			 io->irq_handler_data);
1271 	if (rv) {
1272 		dev_warn(io->dev, "%s unable to claim interrupt %d,"
1273 			 " running polled\n",
1274 			 DEVICE_NAME, io->irq);
1275 		io->irq = 0;
1276 	} else {
1277 		io->irq_cleanup = std_irq_cleanup;
1278 		ipmi_irq_finish_setup(io);
1279 		dev_info(io->dev, "Using irq %d\n", io->irq);
1280 	}
1281 
1282 	return rv;
1283 }
1284 
1285 static int wait_for_msg_done(struct smi_info *smi_info)
1286 {
1287 	enum si_sm_result     smi_result;
1288 
1289 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1290 	for (;;) {
1291 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1292 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1293 			schedule_timeout_uninterruptible(1);
1294 			smi_result = smi_info->handlers->event(
1295 				smi_info->si_sm, jiffies_to_usecs(1));
1296 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1297 			smi_result = smi_info->handlers->event(
1298 				smi_info->si_sm, 0);
1299 		} else
1300 			break;
1301 	}
1302 	if (smi_result == SI_SM_HOSED)
1303 		/*
1304 		 * We couldn't get the state machine to run, so whatever's at
1305 		 * the port is probably not an IPMI SMI interface.
1306 		 */
1307 		return -ENODEV;
1308 
1309 	return 0;
1310 }
1311 
1312 static int try_get_dev_id(struct smi_info *smi_info)
1313 {
1314 	unsigned char         msg[2];
1315 	unsigned char         *resp;
1316 	unsigned long         resp_len;
1317 	int                   rv = 0;
1318 
1319 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1320 	if (!resp)
1321 		return -ENOMEM;
1322 
1323 	/*
1324 	 * Do a Get Device ID command, since it comes back with some
1325 	 * useful info.
1326 	 */
1327 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1328 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1329 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1330 
1331 	rv = wait_for_msg_done(smi_info);
1332 	if (rv)
1333 		goto out;
1334 
1335 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1336 						  resp, IPMI_MAX_MSG_LENGTH);
1337 
1338 	/* Check and record info from the get device id, in case we need it. */
1339 	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1340 			resp + 2, resp_len - 2, &smi_info->device_id);
1341 
1342 out:
1343 	kfree(resp);
1344 	return rv;
1345 }
1346 
1347 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1348 {
1349 	unsigned char         msg[3];
1350 	unsigned char         *resp;
1351 	unsigned long         resp_len;
1352 	int                   rv;
1353 
1354 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1355 	if (!resp)
1356 		return -ENOMEM;
1357 
1358 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1359 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1360 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1361 
1362 	rv = wait_for_msg_done(smi_info);
1363 	if (rv) {
1364 		dev_warn(smi_info->io.dev,
1365 			 "Error getting response from get global enables command: %d\n",
1366 			 rv);
1367 		goto out;
1368 	}
1369 
1370 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1371 						  resp, IPMI_MAX_MSG_LENGTH);
1372 
1373 	if (resp_len < 4 ||
1374 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1375 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1376 			resp[2] != 0) {
1377 		dev_warn(smi_info->io.dev,
1378 			 "Invalid return from get global enables command: %ld %x %x %x\n",
1379 			 resp_len, resp[0], resp[1], resp[2]);
1380 		rv = -EINVAL;
1381 		goto out;
1382 	} else {
1383 		*enables = resp[3];
1384 	}
1385 
1386 out:
1387 	kfree(resp);
1388 	return rv;
1389 }
1390 
1391 /*
1392  * Returns 1 if it gets an error from the command.
1393  */
1394 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1395 {
1396 	unsigned char         msg[3];
1397 	unsigned char         *resp;
1398 	unsigned long         resp_len;
1399 	int                   rv;
1400 
1401 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1402 	if (!resp)
1403 		return -ENOMEM;
1404 
1405 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1406 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1407 	msg[2] = enables;
1408 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1409 
1410 	rv = wait_for_msg_done(smi_info);
1411 	if (rv) {
1412 		dev_warn(smi_info->io.dev,
1413 			 "Error getting response from set global enables command: %d\n",
1414 			 rv);
1415 		goto out;
1416 	}
1417 
1418 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1419 						  resp, IPMI_MAX_MSG_LENGTH);
1420 
1421 	if (resp_len < 3 ||
1422 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1423 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1424 		dev_warn(smi_info->io.dev,
1425 			 "Invalid return from set global enables command: %ld %x %x\n",
1426 			 resp_len, resp[0], resp[1]);
1427 		rv = -EINVAL;
1428 		goto out;
1429 	}
1430 
1431 	if (resp[2] != 0)
1432 		rv = 1;
1433 
1434 out:
1435 	kfree(resp);
1436 	return rv;
1437 }
1438 
1439 /*
1440  * Some BMCs do not support clearing the receive irq bit in the global
1441  * enables (even if they don't support interrupts on the BMC).  Check
1442  * for this and handle it properly.
1443  */
1444 static void check_clr_rcv_irq(struct smi_info *smi_info)
1445 {
1446 	u8 enables = 0;
1447 	int rv;
1448 
1449 	rv = get_global_enables(smi_info, &enables);
1450 	if (!rv) {
1451 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1452 			/* Already clear, should work ok. */
1453 			return;
1454 
1455 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1456 		rv = set_global_enables(smi_info, enables);
1457 	}
1458 
1459 	if (rv < 0) {
1460 		dev_err(smi_info->io.dev,
1461 			"Cannot check clearing the rcv irq: %d\n", rv);
1462 		return;
1463 	}
1464 
1465 	if (rv) {
1466 		/*
1467 		 * An error when setting the event buffer bit means
1468 		 * clearing the bit is not supported.
1469 		 */
1470 		dev_warn(smi_info->io.dev,
1471 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1472 		smi_info->cannot_disable_irq = true;
1473 	}
1474 }
1475 
1476 /*
1477  * Some BMCs do not support setting the interrupt bits in the global
1478  * enables even if they support interrupts.  Clearly bad, but we can
1479  * compensate.
1480  */
1481 static void check_set_rcv_irq(struct smi_info *smi_info)
1482 {
1483 	u8 enables = 0;
1484 	int rv;
1485 
1486 	if (!smi_info->io.irq)
1487 		return;
1488 
1489 	rv = get_global_enables(smi_info, &enables);
1490 	if (!rv) {
1491 		enables |= IPMI_BMC_RCV_MSG_INTR;
1492 		rv = set_global_enables(smi_info, enables);
1493 	}
1494 
1495 	if (rv < 0) {
1496 		dev_err(smi_info->io.dev,
1497 			"Cannot check setting the rcv irq: %d\n", rv);
1498 		return;
1499 	}
1500 
1501 	if (rv) {
1502 		/*
1503 		 * An error when setting the event buffer bit means
1504 		 * setting the bit is not supported.
1505 		 */
1506 		dev_warn(smi_info->io.dev,
1507 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1508 		smi_info->cannot_disable_irq = true;
1509 		smi_info->irq_enable_broken = true;
1510 	}
1511 }
1512 
1513 static int try_enable_event_buffer(struct smi_info *smi_info)
1514 {
1515 	unsigned char         msg[3];
1516 	unsigned char         *resp;
1517 	unsigned long         resp_len;
1518 	int                   rv = 0;
1519 
1520 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1521 	if (!resp)
1522 		return -ENOMEM;
1523 
1524 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1525 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1526 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1527 
1528 	rv = wait_for_msg_done(smi_info);
1529 	if (rv) {
1530 		pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1531 		goto out;
1532 	}
1533 
1534 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1535 						  resp, IPMI_MAX_MSG_LENGTH);
1536 
1537 	if (resp_len < 4 ||
1538 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1539 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1540 			resp[2] != 0) {
1541 		pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1542 		rv = -EINVAL;
1543 		goto out;
1544 	}
1545 
1546 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1547 		/* buffer is already enabled, nothing to do. */
1548 		smi_info->supports_event_msg_buff = true;
1549 		goto out;
1550 	}
1551 
1552 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1553 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1554 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1555 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1556 
1557 	rv = wait_for_msg_done(smi_info);
1558 	if (rv) {
1559 		pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1560 		goto out;
1561 	}
1562 
1563 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1564 						  resp, IPMI_MAX_MSG_LENGTH);
1565 
1566 	if (resp_len < 3 ||
1567 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1568 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1569 		pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1570 		rv = -EINVAL;
1571 		goto out;
1572 	}
1573 
1574 	if (resp[2] != 0)
1575 		/*
1576 		 * An error when setting the event buffer bit means
1577 		 * that the event buffer is not supported.
1578 		 */
1579 		rv = -ENOENT;
1580 	else
1581 		smi_info->supports_event_msg_buff = true;
1582 
1583 out:
1584 	kfree(resp);
1585 	return rv;
1586 }
1587 
1588 #define IPMI_SI_ATTR(name) \
1589 static ssize_t ipmi_##name##_show(struct device *dev,			\
1590 				  struct device_attribute *attr,	\
1591 				  char *buf)				\
1592 {									\
1593 	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1594 									\
1595 	return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name));	\
1596 }									\
1597 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1598 
1599 static ssize_t ipmi_type_show(struct device *dev,
1600 			      struct device_attribute *attr,
1601 			      char *buf)
1602 {
1603 	struct smi_info *smi_info = dev_get_drvdata(dev);
1604 
1605 	return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1606 }
1607 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1608 
1609 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1610 					    struct device_attribute *attr,
1611 					    char *buf)
1612 {
1613 	struct smi_info *smi_info = dev_get_drvdata(dev);
1614 	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1615 
1616 	return snprintf(buf, 10, "%d\n", enabled);
1617 }
1618 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1619 		   ipmi_interrupts_enabled_show, NULL);
1620 
1621 IPMI_SI_ATTR(short_timeouts);
1622 IPMI_SI_ATTR(long_timeouts);
1623 IPMI_SI_ATTR(idles);
1624 IPMI_SI_ATTR(interrupts);
1625 IPMI_SI_ATTR(attentions);
1626 IPMI_SI_ATTR(flag_fetches);
1627 IPMI_SI_ATTR(hosed_count);
1628 IPMI_SI_ATTR(complete_transactions);
1629 IPMI_SI_ATTR(events);
1630 IPMI_SI_ATTR(watchdog_pretimeouts);
1631 IPMI_SI_ATTR(incoming_messages);
1632 
1633 static ssize_t ipmi_params_show(struct device *dev,
1634 				struct device_attribute *attr,
1635 				char *buf)
1636 {
1637 	struct smi_info *smi_info = dev_get_drvdata(dev);
1638 
1639 	return snprintf(buf, 200,
1640 			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1641 			si_to_str[smi_info->io.si_type],
1642 			addr_space_to_str[smi_info->io.addr_space],
1643 			smi_info->io.addr_data,
1644 			smi_info->io.regspacing,
1645 			smi_info->io.regsize,
1646 			smi_info->io.regshift,
1647 			smi_info->io.irq,
1648 			smi_info->io.slave_addr);
1649 }
1650 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1651 
1652 static struct attribute *ipmi_si_dev_attrs[] = {
1653 	&dev_attr_type.attr,
1654 	&dev_attr_interrupts_enabled.attr,
1655 	&dev_attr_short_timeouts.attr,
1656 	&dev_attr_long_timeouts.attr,
1657 	&dev_attr_idles.attr,
1658 	&dev_attr_interrupts.attr,
1659 	&dev_attr_attentions.attr,
1660 	&dev_attr_flag_fetches.attr,
1661 	&dev_attr_hosed_count.attr,
1662 	&dev_attr_complete_transactions.attr,
1663 	&dev_attr_events.attr,
1664 	&dev_attr_watchdog_pretimeouts.attr,
1665 	&dev_attr_incoming_messages.attr,
1666 	&dev_attr_params.attr,
1667 	NULL
1668 };
1669 
1670 static const struct attribute_group ipmi_si_dev_attr_group = {
1671 	.attrs		= ipmi_si_dev_attrs,
1672 };
1673 
1674 /*
1675  * oem_data_avail_to_receive_msg_avail
1676  * @info - smi_info structure with msg_flags set
1677  *
1678  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1679  * Returns 1 indicating need to re-run handle_flags().
1680  */
1681 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1682 {
1683 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1684 			       RECEIVE_MSG_AVAIL);
1685 	return 1;
1686 }
1687 
1688 /*
1689  * setup_dell_poweredge_oem_data_handler
1690  * @info - smi_info.device_id must be populated
1691  *
1692  * Systems that match, but have firmware version < 1.40 may assert
1693  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1694  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1695  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1696  * as RECEIVE_MSG_AVAIL instead.
1697  *
1698  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1699  * assert the OEM[012] bits, and if it did, the driver would have to
1700  * change to handle that properly, we don't actually check for the
1701  * firmware version.
1702  * Device ID = 0x20                BMC on PowerEdge 8G servers
1703  * Device Revision = 0x80
1704  * Firmware Revision1 = 0x01       BMC version 1.40
1705  * Firmware Revision2 = 0x40       BCD encoded
1706  * IPMI Version = 0x51             IPMI 1.5
1707  * Manufacturer ID = A2 02 00      Dell IANA
1708  *
1709  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1710  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1711  *
1712  */
1713 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1714 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1715 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1716 #define DELL_IANA_MFR_ID 0x0002a2
1717 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1718 {
1719 	struct ipmi_device_id *id = &smi_info->device_id;
1720 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1721 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1722 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1723 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1724 			smi_info->oem_data_avail_handler =
1725 				oem_data_avail_to_receive_msg_avail;
1726 		} else if (ipmi_version_major(id) < 1 ||
1727 			   (ipmi_version_major(id) == 1 &&
1728 			    ipmi_version_minor(id) < 5)) {
1729 			smi_info->oem_data_avail_handler =
1730 				oem_data_avail_to_receive_msg_avail;
1731 		}
1732 	}
1733 }
1734 
1735 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1736 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1737 {
1738 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1739 
1740 	/* Make it a response */
1741 	msg->rsp[0] = msg->data[0] | 4;
1742 	msg->rsp[1] = msg->data[1];
1743 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1744 	msg->rsp_size = 3;
1745 	smi_info->curr_msg = NULL;
1746 	deliver_recv_msg(smi_info, msg);
1747 }
1748 
1749 /*
1750  * dell_poweredge_bt_xaction_handler
1751  * @info - smi_info.device_id must be populated
1752  *
1753  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1754  * not respond to a Get SDR command if the length of the data
1755  * requested is exactly 0x3A, which leads to command timeouts and no
1756  * data returned.  This intercepts such commands, and causes userspace
1757  * callers to try again with a different-sized buffer, which succeeds.
1758  */
1759 
1760 #define STORAGE_NETFN 0x0A
1761 #define STORAGE_CMD_GET_SDR 0x23
1762 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1763 					     unsigned long unused,
1764 					     void *in)
1765 {
1766 	struct smi_info *smi_info = in;
1767 	unsigned char *data = smi_info->curr_msg->data;
1768 	unsigned int size   = smi_info->curr_msg->data_size;
1769 	if (size >= 8 &&
1770 	    (data[0]>>2) == STORAGE_NETFN &&
1771 	    data[1] == STORAGE_CMD_GET_SDR &&
1772 	    data[7] == 0x3A) {
1773 		return_hosed_msg_badsize(smi_info);
1774 		return NOTIFY_STOP;
1775 	}
1776 	return NOTIFY_DONE;
1777 }
1778 
1779 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1780 	.notifier_call	= dell_poweredge_bt_xaction_handler,
1781 };
1782 
1783 /*
1784  * setup_dell_poweredge_bt_xaction_handler
1785  * @info - smi_info.device_id must be filled in already
1786  *
1787  * Fills in smi_info.device_id.start_transaction_pre_hook
1788  * when we know what function to use there.
1789  */
1790 static void
1791 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1792 {
1793 	struct ipmi_device_id *id = &smi_info->device_id;
1794 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1795 	    smi_info->io.si_type == SI_BT)
1796 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1797 }
1798 
1799 /*
1800  * setup_oem_data_handler
1801  * @info - smi_info.device_id must be filled in already
1802  *
1803  * Fills in smi_info.device_id.oem_data_available_handler
1804  * when we know what function to use there.
1805  */
1806 
1807 static void setup_oem_data_handler(struct smi_info *smi_info)
1808 {
1809 	setup_dell_poweredge_oem_data_handler(smi_info);
1810 }
1811 
1812 static void setup_xaction_handlers(struct smi_info *smi_info)
1813 {
1814 	setup_dell_poweredge_bt_xaction_handler(smi_info);
1815 }
1816 
1817 static void check_for_broken_irqs(struct smi_info *smi_info)
1818 {
1819 	check_clr_rcv_irq(smi_info);
1820 	check_set_rcv_irq(smi_info);
1821 }
1822 
1823 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1824 {
1825 	if (smi_info->thread != NULL) {
1826 		kthread_stop(smi_info->thread);
1827 		smi_info->thread = NULL;
1828 	}
1829 
1830 	smi_info->timer_can_start = false;
1831 	if (smi_info->timer_running)
1832 		del_timer_sync(&smi_info->si_timer);
1833 }
1834 
1835 static struct smi_info *find_dup_si(struct smi_info *info)
1836 {
1837 	struct smi_info *e;
1838 
1839 	list_for_each_entry(e, &smi_infos, link) {
1840 		if (e->io.addr_space != info->io.addr_space)
1841 			continue;
1842 		if (e->io.addr_data == info->io.addr_data) {
1843 			/*
1844 			 * This is a cheap hack, ACPI doesn't have a defined
1845 			 * slave address but SMBIOS does.  Pick it up from
1846 			 * any source that has it available.
1847 			 */
1848 			if (info->io.slave_addr && !e->io.slave_addr)
1849 				e->io.slave_addr = info->io.slave_addr;
1850 			return e;
1851 		}
1852 	}
1853 
1854 	return NULL;
1855 }
1856 
1857 int ipmi_si_add_smi(struct si_sm_io *io)
1858 {
1859 	int rv = 0;
1860 	struct smi_info *new_smi, *dup;
1861 
1862 	/*
1863 	 * If the user gave us a hard-coded device at the same
1864 	 * address, they presumably want us to use it and not what is
1865 	 * in the firmware.
1866 	 */
1867 	if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD &&
1868 	    ipmi_si_hardcode_match(io->addr_space, io->addr_data)) {
1869 		dev_info(io->dev,
1870 			 "Hard-coded device at this address already exists");
1871 		return -ENODEV;
1872 	}
1873 
1874 	if (!io->io_setup) {
1875 		if (io->addr_space == IPMI_IO_ADDR_SPACE) {
1876 			io->io_setup = ipmi_si_port_setup;
1877 		} else if (io->addr_space == IPMI_MEM_ADDR_SPACE) {
1878 			io->io_setup = ipmi_si_mem_setup;
1879 		} else {
1880 			return -EINVAL;
1881 		}
1882 	}
1883 
1884 	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1885 	if (!new_smi)
1886 		return -ENOMEM;
1887 	spin_lock_init(&new_smi->si_lock);
1888 
1889 	new_smi->io = *io;
1890 
1891 	mutex_lock(&smi_infos_lock);
1892 	dup = find_dup_si(new_smi);
1893 	if (dup) {
1894 		if (new_smi->io.addr_source == SI_ACPI &&
1895 		    dup->io.addr_source == SI_SMBIOS) {
1896 			/* We prefer ACPI over SMBIOS. */
1897 			dev_info(dup->io.dev,
1898 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1899 				 si_to_str[new_smi->io.si_type]);
1900 			cleanup_one_si(dup);
1901 		} else {
1902 			dev_info(new_smi->io.dev,
1903 				 "%s-specified %s state machine: duplicate\n",
1904 				 ipmi_addr_src_to_str(new_smi->io.addr_source),
1905 				 si_to_str[new_smi->io.si_type]);
1906 			rv = -EBUSY;
1907 			kfree(new_smi);
1908 			goto out_err;
1909 		}
1910 	}
1911 
1912 	pr_info("Adding %s-specified %s state machine\n",
1913 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1914 		si_to_str[new_smi->io.si_type]);
1915 
1916 	list_add_tail(&new_smi->link, &smi_infos);
1917 
1918 	if (initialized)
1919 		rv = try_smi_init(new_smi);
1920 out_err:
1921 	mutex_unlock(&smi_infos_lock);
1922 	return rv;
1923 }
1924 
1925 /*
1926  * Try to start up an interface.  Must be called with smi_infos_lock
1927  * held, primarily to keep smi_num consistent, we only one to do these
1928  * one at a time.
1929  */
1930 static int try_smi_init(struct smi_info *new_smi)
1931 {
1932 	int rv = 0;
1933 	int i;
1934 
1935 	pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1936 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1937 		si_to_str[new_smi->io.si_type],
1938 		addr_space_to_str[new_smi->io.addr_space],
1939 		new_smi->io.addr_data,
1940 		new_smi->io.slave_addr, new_smi->io.irq);
1941 
1942 	switch (new_smi->io.si_type) {
1943 	case SI_KCS:
1944 		new_smi->handlers = &kcs_smi_handlers;
1945 		break;
1946 
1947 	case SI_SMIC:
1948 		new_smi->handlers = &smic_smi_handlers;
1949 		break;
1950 
1951 	case SI_BT:
1952 		new_smi->handlers = &bt_smi_handlers;
1953 		break;
1954 
1955 	default:
1956 		/* No support for anything else yet. */
1957 		rv = -EIO;
1958 		goto out_err;
1959 	}
1960 
1961 	new_smi->si_num = smi_num;
1962 
1963 	/* Do this early so it's available for logs. */
1964 	if (!new_smi->io.dev) {
1965 		pr_err("IPMI interface added with no device\n");
1966 		rv = EIO;
1967 		goto out_err;
1968 	}
1969 
1970 	/* Allocate the state machine's data and initialize it. */
1971 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1972 	if (!new_smi->si_sm) {
1973 		rv = -ENOMEM;
1974 		goto out_err;
1975 	}
1976 	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1977 							   &new_smi->io);
1978 
1979 	/* Now that we know the I/O size, we can set up the I/O. */
1980 	rv = new_smi->io.io_setup(&new_smi->io);
1981 	if (rv) {
1982 		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1983 		goto out_err;
1984 	}
1985 
1986 	/* Do low-level detection first. */
1987 	if (new_smi->handlers->detect(new_smi->si_sm)) {
1988 		if (new_smi->io.addr_source)
1989 			dev_err(new_smi->io.dev,
1990 				"Interface detection failed\n");
1991 		rv = -ENODEV;
1992 		goto out_err;
1993 	}
1994 
1995 	/*
1996 	 * Attempt a get device id command.  If it fails, we probably
1997 	 * don't have a BMC here.
1998 	 */
1999 	rv = try_get_dev_id(new_smi);
2000 	if (rv) {
2001 		if (new_smi->io.addr_source)
2002 			dev_err(new_smi->io.dev,
2003 			       "There appears to be no BMC at this location\n");
2004 		goto out_err;
2005 	}
2006 
2007 	setup_oem_data_handler(new_smi);
2008 	setup_xaction_handlers(new_smi);
2009 	check_for_broken_irqs(new_smi);
2010 
2011 	new_smi->waiting_msg = NULL;
2012 	new_smi->curr_msg = NULL;
2013 	atomic_set(&new_smi->req_events, 0);
2014 	new_smi->run_to_completion = false;
2015 	for (i = 0; i < SI_NUM_STATS; i++)
2016 		atomic_set(&new_smi->stats[i], 0);
2017 
2018 	new_smi->interrupt_disabled = true;
2019 	atomic_set(&new_smi->need_watch, 0);
2020 
2021 	rv = try_enable_event_buffer(new_smi);
2022 	if (rv == 0)
2023 		new_smi->has_event_buffer = true;
2024 
2025 	/*
2026 	 * Start clearing the flags before we enable interrupts or the
2027 	 * timer to avoid racing with the timer.
2028 	 */
2029 	start_clear_flags(new_smi);
2030 
2031 	/*
2032 	 * IRQ is defined to be set when non-zero.  req_events will
2033 	 * cause a global flags check that will enable interrupts.
2034 	 */
2035 	if (new_smi->io.irq) {
2036 		new_smi->interrupt_disabled = false;
2037 		atomic_set(&new_smi->req_events, 1);
2038 	}
2039 
2040 	dev_set_drvdata(new_smi->io.dev, new_smi);
2041 	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2042 	if (rv) {
2043 		dev_err(new_smi->io.dev,
2044 			"Unable to add device attributes: error %d\n",
2045 			rv);
2046 		goto out_err;
2047 	}
2048 	new_smi->dev_group_added = true;
2049 
2050 	rv = ipmi_register_smi(&handlers,
2051 			       new_smi,
2052 			       new_smi->io.dev,
2053 			       new_smi->io.slave_addr);
2054 	if (rv) {
2055 		dev_err(new_smi->io.dev,
2056 			"Unable to register device: error %d\n",
2057 			rv);
2058 		goto out_err;
2059 	}
2060 
2061 	/* Don't increment till we know we have succeeded. */
2062 	smi_num++;
2063 
2064 	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2065 		 si_to_str[new_smi->io.si_type]);
2066 
2067 	WARN_ON(new_smi->io.dev->init_name != NULL);
2068 
2069  out_err:
2070 	if (rv && new_smi->io.io_cleanup) {
2071 		new_smi->io.io_cleanup(&new_smi->io);
2072 		new_smi->io.io_cleanup = NULL;
2073 	}
2074 
2075 	return rv;
2076 }
2077 
2078 static int __init init_ipmi_si(void)
2079 {
2080 	struct smi_info *e;
2081 	enum ipmi_addr_src type = SI_INVALID;
2082 
2083 	if (initialized)
2084 		return 0;
2085 
2086 	ipmi_hardcode_init();
2087 
2088 	pr_info("IPMI System Interface driver\n");
2089 
2090 	ipmi_si_platform_init();
2091 
2092 	ipmi_si_pci_init();
2093 
2094 	ipmi_si_parisc_init();
2095 
2096 	/* We prefer devices with interrupts, but in the case of a machine
2097 	   with multiple BMCs we assume that there will be several instances
2098 	   of a given type so if we succeed in registering a type then also
2099 	   try to register everything else of the same type */
2100 	mutex_lock(&smi_infos_lock);
2101 	list_for_each_entry(e, &smi_infos, link) {
2102 		/* Try to register a device if it has an IRQ and we either
2103 		   haven't successfully registered a device yet or this
2104 		   device has the same type as one we successfully registered */
2105 		if (e->io.irq && (!type || e->io.addr_source == type)) {
2106 			if (!try_smi_init(e)) {
2107 				type = e->io.addr_source;
2108 			}
2109 		}
2110 	}
2111 
2112 	/* type will only have been set if we successfully registered an si */
2113 	if (type)
2114 		goto skip_fallback_noirq;
2115 
2116 	/* Fall back to the preferred device */
2117 
2118 	list_for_each_entry(e, &smi_infos, link) {
2119 		if (!e->io.irq && (!type || e->io.addr_source == type)) {
2120 			if (!try_smi_init(e)) {
2121 				type = e->io.addr_source;
2122 			}
2123 		}
2124 	}
2125 
2126 skip_fallback_noirq:
2127 	initialized = 1;
2128 	mutex_unlock(&smi_infos_lock);
2129 
2130 	if (type)
2131 		return 0;
2132 
2133 	mutex_lock(&smi_infos_lock);
2134 	if (unload_when_empty && list_empty(&smi_infos)) {
2135 		mutex_unlock(&smi_infos_lock);
2136 		cleanup_ipmi_si();
2137 		pr_warn("Unable to find any System Interface(s)\n");
2138 		return -ENODEV;
2139 	} else {
2140 		mutex_unlock(&smi_infos_lock);
2141 		return 0;
2142 	}
2143 }
2144 module_init(init_ipmi_si);
2145 
2146 static void shutdown_smi(void *send_info)
2147 {
2148 	struct smi_info *smi_info = send_info;
2149 
2150 	if (smi_info->dev_group_added) {
2151 		device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2152 		smi_info->dev_group_added = false;
2153 	}
2154 	if (smi_info->io.dev)
2155 		dev_set_drvdata(smi_info->io.dev, NULL);
2156 
2157 	/*
2158 	 * Make sure that interrupts, the timer and the thread are
2159 	 * stopped and will not run again.
2160 	 */
2161 	smi_info->interrupt_disabled = true;
2162 	if (smi_info->io.irq_cleanup) {
2163 		smi_info->io.irq_cleanup(&smi_info->io);
2164 		smi_info->io.irq_cleanup = NULL;
2165 	}
2166 	stop_timer_and_thread(smi_info);
2167 
2168 	/*
2169 	 * Wait until we know that we are out of any interrupt
2170 	 * handlers might have been running before we freed the
2171 	 * interrupt.
2172 	 */
2173 	synchronize_rcu();
2174 
2175 	/*
2176 	 * Timeouts are stopped, now make sure the interrupts are off
2177 	 * in the BMC.  Note that timers and CPU interrupts are off,
2178 	 * so no need for locks.
2179 	 */
2180 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2181 		poll(smi_info);
2182 		schedule_timeout_uninterruptible(1);
2183 	}
2184 	if (smi_info->handlers)
2185 		disable_si_irq(smi_info);
2186 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2187 		poll(smi_info);
2188 		schedule_timeout_uninterruptible(1);
2189 	}
2190 	if (smi_info->handlers)
2191 		smi_info->handlers->cleanup(smi_info->si_sm);
2192 
2193 	if (smi_info->io.addr_source_cleanup) {
2194 		smi_info->io.addr_source_cleanup(&smi_info->io);
2195 		smi_info->io.addr_source_cleanup = NULL;
2196 	}
2197 	if (smi_info->io.io_cleanup) {
2198 		smi_info->io.io_cleanup(&smi_info->io);
2199 		smi_info->io.io_cleanup = NULL;
2200 	}
2201 
2202 	kfree(smi_info->si_sm);
2203 	smi_info->si_sm = NULL;
2204 
2205 	smi_info->intf = NULL;
2206 }
2207 
2208 /*
2209  * Must be called with smi_infos_lock held, to serialize the
2210  * smi_info->intf check.
2211  */
2212 static void cleanup_one_si(struct smi_info *smi_info)
2213 {
2214 	if (!smi_info)
2215 		return;
2216 
2217 	list_del(&smi_info->link);
2218 
2219 	if (smi_info->intf)
2220 		ipmi_unregister_smi(smi_info->intf);
2221 
2222 	kfree(smi_info);
2223 }
2224 
2225 int ipmi_si_remove_by_dev(struct device *dev)
2226 {
2227 	struct smi_info *e;
2228 	int rv = -ENOENT;
2229 
2230 	mutex_lock(&smi_infos_lock);
2231 	list_for_each_entry(e, &smi_infos, link) {
2232 		if (e->io.dev == dev) {
2233 			cleanup_one_si(e);
2234 			rv = 0;
2235 			break;
2236 		}
2237 	}
2238 	mutex_unlock(&smi_infos_lock);
2239 
2240 	return rv;
2241 }
2242 
2243 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2244 				      unsigned long addr)
2245 {
2246 	/* remove */
2247 	struct smi_info *e, *tmp_e;
2248 	struct device *dev = NULL;
2249 
2250 	mutex_lock(&smi_infos_lock);
2251 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2252 		if (e->io.addr_space != addr_space)
2253 			continue;
2254 		if (e->io.si_type != si_type)
2255 			continue;
2256 		if (e->io.addr_data == addr) {
2257 			dev = get_device(e->io.dev);
2258 			cleanup_one_si(e);
2259 		}
2260 	}
2261 	mutex_unlock(&smi_infos_lock);
2262 
2263 	return dev;
2264 }
2265 
2266 static void cleanup_ipmi_si(void)
2267 {
2268 	struct smi_info *e, *tmp_e;
2269 
2270 	if (!initialized)
2271 		return;
2272 
2273 	ipmi_si_pci_shutdown();
2274 
2275 	ipmi_si_parisc_shutdown();
2276 
2277 	ipmi_si_platform_shutdown();
2278 
2279 	mutex_lock(&smi_infos_lock);
2280 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2281 		cleanup_one_si(e);
2282 	mutex_unlock(&smi_infos_lock);
2283 
2284 	ipmi_si_hardcode_exit();
2285 	ipmi_si_hotmod_exit();
2286 }
2287 module_exit(cleanup_ipmi_si);
2288 
2289 MODULE_ALIAS("platform:dmi-ipmi-si");
2290 MODULE_LICENSE("GPL");
2291 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2292 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2293 		   " system interfaces.");
2294