xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 78c99ba1)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 
68 #ifdef CONFIG_PPC_OF
69 #include <linux/of_device.h>
70 #include <linux/of_platform.h>
71 #endif
72 
73 #define PFX "ipmi_si: "
74 
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77 
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC	10000
80 #define SI_USEC_PER_JIFFY	(1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
83 				      short timeout */
84 
85 enum si_intf_state {
86 	SI_NORMAL,
87 	SI_GETTING_FLAGS,
88 	SI_GETTING_EVENTS,
89 	SI_CLEARING_FLAGS,
90 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
91 	SI_GETTING_MESSAGES,
92 	SI_ENABLE_INTERRUPTS1,
93 	SI_ENABLE_INTERRUPTS2,
94 	SI_DISABLE_INTERRUPTS1,
95 	SI_DISABLE_INTERRUPTS2
96 	/* FIXME - add watchdog stuff. */
97 };
98 
99 /* Some BT-specific defines we need here. */
100 #define IPMI_BT_INTMASK_REG		2
101 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
102 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
103 
104 enum si_type {
105     SI_KCS, SI_SMIC, SI_BT
106 };
107 static char *si_to_str[] = { "kcs", "smic", "bt" };
108 
109 #define DEVICE_NAME "ipmi_si"
110 
111 static struct platform_driver ipmi_driver = {
112 	.driver = {
113 		.name = DEVICE_NAME,
114 		.bus = &platform_bus_type
115 	}
116 };
117 
118 
119 /*
120  * Indexes into stats[] in smi_info below.
121  */
122 enum si_stat_indexes {
123 	/*
124 	 * Number of times the driver requested a timer while an operation
125 	 * was in progress.
126 	 */
127 	SI_STAT_short_timeouts = 0,
128 
129 	/*
130 	 * Number of times the driver requested a timer while nothing was in
131 	 * progress.
132 	 */
133 	SI_STAT_long_timeouts,
134 
135 	/* Number of times the interface was idle while being polled. */
136 	SI_STAT_idles,
137 
138 	/* Number of interrupts the driver handled. */
139 	SI_STAT_interrupts,
140 
141 	/* Number of time the driver got an ATTN from the hardware. */
142 	SI_STAT_attentions,
143 
144 	/* Number of times the driver requested flags from the hardware. */
145 	SI_STAT_flag_fetches,
146 
147 	/* Number of times the hardware didn't follow the state machine. */
148 	SI_STAT_hosed_count,
149 
150 	/* Number of completed messages. */
151 	SI_STAT_complete_transactions,
152 
153 	/* Number of IPMI events received from the hardware. */
154 	SI_STAT_events,
155 
156 	/* Number of watchdog pretimeouts. */
157 	SI_STAT_watchdog_pretimeouts,
158 
159 	/* Number of asyncronous messages received. */
160 	SI_STAT_incoming_messages,
161 
162 
163 	/* This *must* remain last, add new values above this. */
164 	SI_NUM_STATS
165 };
166 
167 struct smi_info {
168 	int                    intf_num;
169 	ipmi_smi_t             intf;
170 	struct si_sm_data      *si_sm;
171 	struct si_sm_handlers  *handlers;
172 	enum si_type           si_type;
173 	spinlock_t             si_lock;
174 	spinlock_t             msg_lock;
175 	struct list_head       xmit_msgs;
176 	struct list_head       hp_xmit_msgs;
177 	struct ipmi_smi_msg    *curr_msg;
178 	enum si_intf_state     si_state;
179 
180 	/*
181 	 * Used to handle the various types of I/O that can occur with
182 	 * IPMI
183 	 */
184 	struct si_sm_io io;
185 	int (*io_setup)(struct smi_info *info);
186 	void (*io_cleanup)(struct smi_info *info);
187 	int (*irq_setup)(struct smi_info *info);
188 	void (*irq_cleanup)(struct smi_info *info);
189 	unsigned int io_size;
190 	char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
191 	void (*addr_source_cleanup)(struct smi_info *info);
192 	void *addr_source_data;
193 
194 	/*
195 	 * Per-OEM handler, called from handle_flags().  Returns 1
196 	 * when handle_flags() needs to be re-run or 0 indicating it
197 	 * set si_state itself.
198 	 */
199 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
200 
201 	/*
202 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
203 	 * is set to hold the flags until we are done handling everything
204 	 * from the flags.
205 	 */
206 #define RECEIVE_MSG_AVAIL	0x01
207 #define EVENT_MSG_BUFFER_FULL	0x02
208 #define WDT_PRE_TIMEOUT_INT	0x08
209 #define OEM0_DATA_AVAIL     0x20
210 #define OEM1_DATA_AVAIL     0x40
211 #define OEM2_DATA_AVAIL     0x80
212 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
213 			     OEM1_DATA_AVAIL | \
214 			     OEM2_DATA_AVAIL)
215 	unsigned char       msg_flags;
216 
217 	/* Does the BMC have an event buffer? */
218 	char		    has_event_buffer;
219 
220 	/*
221 	 * If set to true, this will request events the next time the
222 	 * state machine is idle.
223 	 */
224 	atomic_t            req_events;
225 
226 	/*
227 	 * If true, run the state machine to completion on every send
228 	 * call.  Generally used after a panic to make sure stuff goes
229 	 * out.
230 	 */
231 	int                 run_to_completion;
232 
233 	/* The I/O port of an SI interface. */
234 	int                 port;
235 
236 	/*
237 	 * The space between start addresses of the two ports.  For
238 	 * instance, if the first port is 0xca2 and the spacing is 4, then
239 	 * the second port is 0xca6.
240 	 */
241 	unsigned int        spacing;
242 
243 	/* zero if no irq; */
244 	int                 irq;
245 
246 	/* The timer for this si. */
247 	struct timer_list   si_timer;
248 
249 	/* The time (in jiffies) the last timeout occurred at. */
250 	unsigned long       last_timeout_jiffies;
251 
252 	/* Used to gracefully stop the timer without race conditions. */
253 	atomic_t            stop_operation;
254 
255 	/*
256 	 * The driver will disable interrupts when it gets into a
257 	 * situation where it cannot handle messages due to lack of
258 	 * memory.  Once that situation clears up, it will re-enable
259 	 * interrupts.
260 	 */
261 	int interrupt_disabled;
262 
263 	/* From the get device id response... */
264 	struct ipmi_device_id device_id;
265 
266 	/* Driver model stuff. */
267 	struct device *dev;
268 	struct platform_device *pdev;
269 
270 	/*
271 	 * True if we allocated the device, false if it came from
272 	 * someplace else (like PCI).
273 	 */
274 	int dev_registered;
275 
276 	/* Slave address, could be reported from DMI. */
277 	unsigned char slave_addr;
278 
279 	/* Counters and things for the proc filesystem. */
280 	atomic_t stats[SI_NUM_STATS];
281 
282 	struct task_struct *thread;
283 
284 	struct list_head link;
285 };
286 
287 #define smi_inc_stat(smi, stat) \
288 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
289 #define smi_get_stat(smi, stat) \
290 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
291 
292 #define SI_MAX_PARMS 4
293 
294 static int force_kipmid[SI_MAX_PARMS];
295 static int num_force_kipmid;
296 
297 static int unload_when_empty = 1;
298 
299 static int try_smi_init(struct smi_info *smi);
300 static void cleanup_one_si(struct smi_info *to_clean);
301 
302 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
303 static int register_xaction_notifier(struct notifier_block *nb)
304 {
305 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
306 }
307 
308 static void deliver_recv_msg(struct smi_info *smi_info,
309 			     struct ipmi_smi_msg *msg)
310 {
311 	/* Deliver the message to the upper layer with the lock
312 	   released. */
313 	spin_unlock(&(smi_info->si_lock));
314 	ipmi_smi_msg_received(smi_info->intf, msg);
315 	spin_lock(&(smi_info->si_lock));
316 }
317 
318 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
319 {
320 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
321 
322 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
323 		cCode = IPMI_ERR_UNSPECIFIED;
324 	/* else use it as is */
325 
326 	/* Make it a reponse */
327 	msg->rsp[0] = msg->data[0] | 4;
328 	msg->rsp[1] = msg->data[1];
329 	msg->rsp[2] = cCode;
330 	msg->rsp_size = 3;
331 
332 	smi_info->curr_msg = NULL;
333 	deliver_recv_msg(smi_info, msg);
334 }
335 
336 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
337 {
338 	int              rv;
339 	struct list_head *entry = NULL;
340 #ifdef DEBUG_TIMING
341 	struct timeval t;
342 #endif
343 
344 	/*
345 	 * No need to save flags, we aleady have interrupts off and we
346 	 * already hold the SMI lock.
347 	 */
348 	if (!smi_info->run_to_completion)
349 		spin_lock(&(smi_info->msg_lock));
350 
351 	/* Pick the high priority queue first. */
352 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
353 		entry = smi_info->hp_xmit_msgs.next;
354 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
355 		entry = smi_info->xmit_msgs.next;
356 	}
357 
358 	if (!entry) {
359 		smi_info->curr_msg = NULL;
360 		rv = SI_SM_IDLE;
361 	} else {
362 		int err;
363 
364 		list_del(entry);
365 		smi_info->curr_msg = list_entry(entry,
366 						struct ipmi_smi_msg,
367 						link);
368 #ifdef DEBUG_TIMING
369 		do_gettimeofday(&t);
370 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
371 #endif
372 		err = atomic_notifier_call_chain(&xaction_notifier_list,
373 				0, smi_info);
374 		if (err & NOTIFY_STOP_MASK) {
375 			rv = SI_SM_CALL_WITHOUT_DELAY;
376 			goto out;
377 		}
378 		err = smi_info->handlers->start_transaction(
379 			smi_info->si_sm,
380 			smi_info->curr_msg->data,
381 			smi_info->curr_msg->data_size);
382 		if (err)
383 			return_hosed_msg(smi_info, err);
384 
385 		rv = SI_SM_CALL_WITHOUT_DELAY;
386 	}
387  out:
388 	if (!smi_info->run_to_completion)
389 		spin_unlock(&(smi_info->msg_lock));
390 
391 	return rv;
392 }
393 
394 static void start_enable_irq(struct smi_info *smi_info)
395 {
396 	unsigned char msg[2];
397 
398 	/*
399 	 * If we are enabling interrupts, we have to tell the
400 	 * BMC to use them.
401 	 */
402 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
404 
405 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
406 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
407 }
408 
409 static void start_disable_irq(struct smi_info *smi_info)
410 {
411 	unsigned char msg[2];
412 
413 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
415 
416 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
417 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
418 }
419 
420 static void start_clear_flags(struct smi_info *smi_info)
421 {
422 	unsigned char msg[3];
423 
424 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
425 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
427 	msg[2] = WDT_PRE_TIMEOUT_INT;
428 
429 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
430 	smi_info->si_state = SI_CLEARING_FLAGS;
431 }
432 
433 /*
434  * When we have a situtaion where we run out of memory and cannot
435  * allocate messages, we just leave them in the BMC and run the system
436  * polled until we can allocate some memory.  Once we have some
437  * memory, we will re-enable the interrupt.
438  */
439 static inline void disable_si_irq(struct smi_info *smi_info)
440 {
441 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
442 		start_disable_irq(smi_info);
443 		smi_info->interrupt_disabled = 1;
444 	}
445 }
446 
447 static inline void enable_si_irq(struct smi_info *smi_info)
448 {
449 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
450 		start_enable_irq(smi_info);
451 		smi_info->interrupt_disabled = 0;
452 	}
453 }
454 
455 static void handle_flags(struct smi_info *smi_info)
456 {
457  retry:
458 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
459 		/* Watchdog pre-timeout */
460 		smi_inc_stat(smi_info, watchdog_pretimeouts);
461 
462 		start_clear_flags(smi_info);
463 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
464 		spin_unlock(&(smi_info->si_lock));
465 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
466 		spin_lock(&(smi_info->si_lock));
467 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
468 		/* Messages available. */
469 		smi_info->curr_msg = ipmi_alloc_smi_msg();
470 		if (!smi_info->curr_msg) {
471 			disable_si_irq(smi_info);
472 			smi_info->si_state = SI_NORMAL;
473 			return;
474 		}
475 		enable_si_irq(smi_info);
476 
477 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
478 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
479 		smi_info->curr_msg->data_size = 2;
480 
481 		smi_info->handlers->start_transaction(
482 			smi_info->si_sm,
483 			smi_info->curr_msg->data,
484 			smi_info->curr_msg->data_size);
485 		smi_info->si_state = SI_GETTING_MESSAGES;
486 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
487 		/* Events available. */
488 		smi_info->curr_msg = ipmi_alloc_smi_msg();
489 		if (!smi_info->curr_msg) {
490 			disable_si_irq(smi_info);
491 			smi_info->si_state = SI_NORMAL;
492 			return;
493 		}
494 		enable_si_irq(smi_info);
495 
496 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
497 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
498 		smi_info->curr_msg->data_size = 2;
499 
500 		smi_info->handlers->start_transaction(
501 			smi_info->si_sm,
502 			smi_info->curr_msg->data,
503 			smi_info->curr_msg->data_size);
504 		smi_info->si_state = SI_GETTING_EVENTS;
505 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
506 		   smi_info->oem_data_avail_handler) {
507 		if (smi_info->oem_data_avail_handler(smi_info))
508 			goto retry;
509 	} else
510 		smi_info->si_state = SI_NORMAL;
511 }
512 
513 static void handle_transaction_done(struct smi_info *smi_info)
514 {
515 	struct ipmi_smi_msg *msg;
516 #ifdef DEBUG_TIMING
517 	struct timeval t;
518 
519 	do_gettimeofday(&t);
520 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
521 #endif
522 	switch (smi_info->si_state) {
523 	case SI_NORMAL:
524 		if (!smi_info->curr_msg)
525 			break;
526 
527 		smi_info->curr_msg->rsp_size
528 			= smi_info->handlers->get_result(
529 				smi_info->si_sm,
530 				smi_info->curr_msg->rsp,
531 				IPMI_MAX_MSG_LENGTH);
532 
533 		/*
534 		 * Do this here becase deliver_recv_msg() releases the
535 		 * lock, and a new message can be put in during the
536 		 * time the lock is released.
537 		 */
538 		msg = smi_info->curr_msg;
539 		smi_info->curr_msg = NULL;
540 		deliver_recv_msg(smi_info, msg);
541 		break;
542 
543 	case SI_GETTING_FLAGS:
544 	{
545 		unsigned char msg[4];
546 		unsigned int  len;
547 
548 		/* We got the flags from the SMI, now handle them. */
549 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
550 		if (msg[2] != 0) {
551 			/* Error fetching flags, just give up for now. */
552 			smi_info->si_state = SI_NORMAL;
553 		} else if (len < 4) {
554 			/*
555 			 * Hmm, no flags.  That's technically illegal, but
556 			 * don't use uninitialized data.
557 			 */
558 			smi_info->si_state = SI_NORMAL;
559 		} else {
560 			smi_info->msg_flags = msg[3];
561 			handle_flags(smi_info);
562 		}
563 		break;
564 	}
565 
566 	case SI_CLEARING_FLAGS:
567 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
568 	{
569 		unsigned char msg[3];
570 
571 		/* We cleared the flags. */
572 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
573 		if (msg[2] != 0) {
574 			/* Error clearing flags */
575 			printk(KERN_WARNING
576 			       "ipmi_si: Error clearing flags: %2.2x\n",
577 			       msg[2]);
578 		}
579 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
580 			start_enable_irq(smi_info);
581 		else
582 			smi_info->si_state = SI_NORMAL;
583 		break;
584 	}
585 
586 	case SI_GETTING_EVENTS:
587 	{
588 		smi_info->curr_msg->rsp_size
589 			= smi_info->handlers->get_result(
590 				smi_info->si_sm,
591 				smi_info->curr_msg->rsp,
592 				IPMI_MAX_MSG_LENGTH);
593 
594 		/*
595 		 * Do this here becase deliver_recv_msg() releases the
596 		 * lock, and a new message can be put in during the
597 		 * time the lock is released.
598 		 */
599 		msg = smi_info->curr_msg;
600 		smi_info->curr_msg = NULL;
601 		if (msg->rsp[2] != 0) {
602 			/* Error getting event, probably done. */
603 			msg->done(msg);
604 
605 			/* Take off the event flag. */
606 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
607 			handle_flags(smi_info);
608 		} else {
609 			smi_inc_stat(smi_info, events);
610 
611 			/*
612 			 * Do this before we deliver the message
613 			 * because delivering the message releases the
614 			 * lock and something else can mess with the
615 			 * state.
616 			 */
617 			handle_flags(smi_info);
618 
619 			deliver_recv_msg(smi_info, msg);
620 		}
621 		break;
622 	}
623 
624 	case SI_GETTING_MESSAGES:
625 	{
626 		smi_info->curr_msg->rsp_size
627 			= smi_info->handlers->get_result(
628 				smi_info->si_sm,
629 				smi_info->curr_msg->rsp,
630 				IPMI_MAX_MSG_LENGTH);
631 
632 		/*
633 		 * Do this here becase deliver_recv_msg() releases the
634 		 * lock, and a new message can be put in during the
635 		 * time the lock is released.
636 		 */
637 		msg = smi_info->curr_msg;
638 		smi_info->curr_msg = NULL;
639 		if (msg->rsp[2] != 0) {
640 			/* Error getting event, probably done. */
641 			msg->done(msg);
642 
643 			/* Take off the msg flag. */
644 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
645 			handle_flags(smi_info);
646 		} else {
647 			smi_inc_stat(smi_info, incoming_messages);
648 
649 			/*
650 			 * Do this before we deliver the message
651 			 * because delivering the message releases the
652 			 * lock and something else can mess with the
653 			 * state.
654 			 */
655 			handle_flags(smi_info);
656 
657 			deliver_recv_msg(smi_info, msg);
658 		}
659 		break;
660 	}
661 
662 	case SI_ENABLE_INTERRUPTS1:
663 	{
664 		unsigned char msg[4];
665 
666 		/* We got the flags from the SMI, now handle them. */
667 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
668 		if (msg[2] != 0) {
669 			printk(KERN_WARNING
670 			       "ipmi_si: Could not enable interrupts"
671 			       ", failed get, using polled mode.\n");
672 			smi_info->si_state = SI_NORMAL;
673 		} else {
674 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
675 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
676 			msg[2] = (msg[3] |
677 				  IPMI_BMC_RCV_MSG_INTR |
678 				  IPMI_BMC_EVT_MSG_INTR);
679 			smi_info->handlers->start_transaction(
680 				smi_info->si_sm, msg, 3);
681 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
682 		}
683 		break;
684 	}
685 
686 	case SI_ENABLE_INTERRUPTS2:
687 	{
688 		unsigned char msg[4];
689 
690 		/* We got the flags from the SMI, now handle them. */
691 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
692 		if (msg[2] != 0) {
693 			printk(KERN_WARNING
694 			       "ipmi_si: Could not enable interrupts"
695 			       ", failed set, using polled mode.\n");
696 		}
697 		smi_info->si_state = SI_NORMAL;
698 		break;
699 	}
700 
701 	case SI_DISABLE_INTERRUPTS1:
702 	{
703 		unsigned char msg[4];
704 
705 		/* We got the flags from the SMI, now handle them. */
706 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
707 		if (msg[2] != 0) {
708 			printk(KERN_WARNING
709 			       "ipmi_si: Could not disable interrupts"
710 			       ", failed get.\n");
711 			smi_info->si_state = SI_NORMAL;
712 		} else {
713 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
714 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
715 			msg[2] = (msg[3] &
716 				  ~(IPMI_BMC_RCV_MSG_INTR |
717 				    IPMI_BMC_EVT_MSG_INTR));
718 			smi_info->handlers->start_transaction(
719 				smi_info->si_sm, msg, 3);
720 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
721 		}
722 		break;
723 	}
724 
725 	case SI_DISABLE_INTERRUPTS2:
726 	{
727 		unsigned char msg[4];
728 
729 		/* We got the flags from the SMI, now handle them. */
730 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
731 		if (msg[2] != 0) {
732 			printk(KERN_WARNING
733 			       "ipmi_si: Could not disable interrupts"
734 			       ", failed set.\n");
735 		}
736 		smi_info->si_state = SI_NORMAL;
737 		break;
738 	}
739 	}
740 }
741 
742 /*
743  * Called on timeouts and events.  Timeouts should pass the elapsed
744  * time, interrupts should pass in zero.  Must be called with
745  * si_lock held and interrupts disabled.
746  */
747 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
748 					   int time)
749 {
750 	enum si_sm_result si_sm_result;
751 
752  restart:
753 	/*
754 	 * There used to be a loop here that waited a little while
755 	 * (around 25us) before giving up.  That turned out to be
756 	 * pointless, the minimum delays I was seeing were in the 300us
757 	 * range, which is far too long to wait in an interrupt.  So
758 	 * we just run until the state machine tells us something
759 	 * happened or it needs a delay.
760 	 */
761 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
762 	time = 0;
763 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
764 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
765 
766 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
767 		smi_inc_stat(smi_info, complete_transactions);
768 
769 		handle_transaction_done(smi_info);
770 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
771 	} else if (si_sm_result == SI_SM_HOSED) {
772 		smi_inc_stat(smi_info, hosed_count);
773 
774 		/*
775 		 * Do the before return_hosed_msg, because that
776 		 * releases the lock.
777 		 */
778 		smi_info->si_state = SI_NORMAL;
779 		if (smi_info->curr_msg != NULL) {
780 			/*
781 			 * If we were handling a user message, format
782 			 * a response to send to the upper layer to
783 			 * tell it about the error.
784 			 */
785 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
786 		}
787 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
788 	}
789 
790 	/*
791 	 * We prefer handling attn over new messages.  But don't do
792 	 * this if there is not yet an upper layer to handle anything.
793 	 */
794 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
795 		unsigned char msg[2];
796 
797 		smi_inc_stat(smi_info, attentions);
798 
799 		/*
800 		 * Got a attn, send down a get message flags to see
801 		 * what's causing it.  It would be better to handle
802 		 * this in the upper layer, but due to the way
803 		 * interrupts work with the SMI, that's not really
804 		 * possible.
805 		 */
806 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
807 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
808 
809 		smi_info->handlers->start_transaction(
810 			smi_info->si_sm, msg, 2);
811 		smi_info->si_state = SI_GETTING_FLAGS;
812 		goto restart;
813 	}
814 
815 	/* If we are currently idle, try to start the next message. */
816 	if (si_sm_result == SI_SM_IDLE) {
817 		smi_inc_stat(smi_info, idles);
818 
819 		si_sm_result = start_next_msg(smi_info);
820 		if (si_sm_result != SI_SM_IDLE)
821 			goto restart;
822 	}
823 
824 	if ((si_sm_result == SI_SM_IDLE)
825 	    && (atomic_read(&smi_info->req_events))) {
826 		/*
827 		 * We are idle and the upper layer requested that I fetch
828 		 * events, so do so.
829 		 */
830 		atomic_set(&smi_info->req_events, 0);
831 
832 		smi_info->curr_msg = ipmi_alloc_smi_msg();
833 		if (!smi_info->curr_msg)
834 			goto out;
835 
836 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
837 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
838 		smi_info->curr_msg->data_size = 2;
839 
840 		smi_info->handlers->start_transaction(
841 			smi_info->si_sm,
842 			smi_info->curr_msg->data,
843 			smi_info->curr_msg->data_size);
844 		smi_info->si_state = SI_GETTING_EVENTS;
845 		goto restart;
846 	}
847  out:
848 	return si_sm_result;
849 }
850 
851 static void sender(void                *send_info,
852 		   struct ipmi_smi_msg *msg,
853 		   int                 priority)
854 {
855 	struct smi_info   *smi_info = send_info;
856 	enum si_sm_result result;
857 	unsigned long     flags;
858 #ifdef DEBUG_TIMING
859 	struct timeval    t;
860 #endif
861 
862 	if (atomic_read(&smi_info->stop_operation)) {
863 		msg->rsp[0] = msg->data[0] | 4;
864 		msg->rsp[1] = msg->data[1];
865 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
866 		msg->rsp_size = 3;
867 		deliver_recv_msg(smi_info, msg);
868 		return;
869 	}
870 
871 #ifdef DEBUG_TIMING
872 	do_gettimeofday(&t);
873 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
874 #endif
875 
876 	if (smi_info->run_to_completion) {
877 		/*
878 		 * If we are running to completion, then throw it in
879 		 * the list and run transactions until everything is
880 		 * clear.  Priority doesn't matter here.
881 		 */
882 
883 		/*
884 		 * Run to completion means we are single-threaded, no
885 		 * need for locks.
886 		 */
887 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
888 
889 		result = smi_event_handler(smi_info, 0);
890 		while (result != SI_SM_IDLE) {
891 			udelay(SI_SHORT_TIMEOUT_USEC);
892 			result = smi_event_handler(smi_info,
893 						   SI_SHORT_TIMEOUT_USEC);
894 		}
895 		return;
896 	}
897 
898 	spin_lock_irqsave(&smi_info->msg_lock, flags);
899 	if (priority > 0)
900 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
901 	else
902 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
903 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
904 
905 	spin_lock_irqsave(&smi_info->si_lock, flags);
906 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
907 		start_next_msg(smi_info);
908 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
909 }
910 
911 static void set_run_to_completion(void *send_info, int i_run_to_completion)
912 {
913 	struct smi_info   *smi_info = send_info;
914 	enum si_sm_result result;
915 
916 	smi_info->run_to_completion = i_run_to_completion;
917 	if (i_run_to_completion) {
918 		result = smi_event_handler(smi_info, 0);
919 		while (result != SI_SM_IDLE) {
920 			udelay(SI_SHORT_TIMEOUT_USEC);
921 			result = smi_event_handler(smi_info,
922 						   SI_SHORT_TIMEOUT_USEC);
923 		}
924 	}
925 }
926 
927 static int ipmi_thread(void *data)
928 {
929 	struct smi_info *smi_info = data;
930 	unsigned long flags;
931 	enum si_sm_result smi_result;
932 
933 	set_user_nice(current, 19);
934 	while (!kthread_should_stop()) {
935 		spin_lock_irqsave(&(smi_info->si_lock), flags);
936 		smi_result = smi_event_handler(smi_info, 0);
937 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
938 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
939 			; /* do nothing */
940 		else if (smi_result == SI_SM_CALL_WITH_DELAY)
941 			schedule();
942 		else
943 			schedule_timeout_interruptible(1);
944 	}
945 	return 0;
946 }
947 
948 
949 static void poll(void *send_info)
950 {
951 	struct smi_info *smi_info = send_info;
952 	unsigned long flags;
953 
954 	/*
955 	 * Make sure there is some delay in the poll loop so we can
956 	 * drive time forward and timeout things.
957 	 */
958 	udelay(10);
959 	spin_lock_irqsave(&smi_info->si_lock, flags);
960 	smi_event_handler(smi_info, 10);
961 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
962 }
963 
964 static void request_events(void *send_info)
965 {
966 	struct smi_info *smi_info = send_info;
967 
968 	if (atomic_read(&smi_info->stop_operation) ||
969 				!smi_info->has_event_buffer)
970 		return;
971 
972 	atomic_set(&smi_info->req_events, 1);
973 }
974 
975 static int initialized;
976 
977 static void smi_timeout(unsigned long data)
978 {
979 	struct smi_info   *smi_info = (struct smi_info *) data;
980 	enum si_sm_result smi_result;
981 	unsigned long     flags;
982 	unsigned long     jiffies_now;
983 	long              time_diff;
984 #ifdef DEBUG_TIMING
985 	struct timeval    t;
986 #endif
987 
988 	spin_lock_irqsave(&(smi_info->si_lock), flags);
989 #ifdef DEBUG_TIMING
990 	do_gettimeofday(&t);
991 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992 #endif
993 	jiffies_now = jiffies;
994 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995 		     * SI_USEC_PER_JIFFY);
996 	smi_result = smi_event_handler(smi_info, time_diff);
997 
998 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999 
1000 	smi_info->last_timeout_jiffies = jiffies_now;
1001 
1002 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003 		/* Running with interrupts, only do long timeouts. */
1004 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005 		smi_inc_stat(smi_info, long_timeouts);
1006 		goto do_add_timer;
1007 	}
1008 
1009 	/*
1010 	 * If the state machine asks for a short delay, then shorten
1011 	 * the timer timeout.
1012 	 */
1013 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014 		smi_inc_stat(smi_info, short_timeouts);
1015 		smi_info->si_timer.expires = jiffies + 1;
1016 	} else {
1017 		smi_inc_stat(smi_info, long_timeouts);
1018 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019 	}
1020 
1021  do_add_timer:
1022 	add_timer(&(smi_info->si_timer));
1023 }
1024 
1025 static irqreturn_t si_irq_handler(int irq, void *data)
1026 {
1027 	struct smi_info *smi_info = data;
1028 	unsigned long   flags;
1029 #ifdef DEBUG_TIMING
1030 	struct timeval  t;
1031 #endif
1032 
1033 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1034 
1035 	smi_inc_stat(smi_info, interrupts);
1036 
1037 #ifdef DEBUG_TIMING
1038 	do_gettimeofday(&t);
1039 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040 #endif
1041 	smi_event_handler(smi_info, 0);
1042 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043 	return IRQ_HANDLED;
1044 }
1045 
1046 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047 {
1048 	struct smi_info *smi_info = data;
1049 	/* We need to clear the IRQ flag for the BT interface. */
1050 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053 	return si_irq_handler(irq, data);
1054 }
1055 
1056 static int smi_start_processing(void       *send_info,
1057 				ipmi_smi_t intf)
1058 {
1059 	struct smi_info *new_smi = send_info;
1060 	int             enable = 0;
1061 
1062 	new_smi->intf = intf;
1063 
1064 	/* Try to claim any interrupts. */
1065 	if (new_smi->irq_setup)
1066 		new_smi->irq_setup(new_smi);
1067 
1068 	/* Set up the timer that drives the interface. */
1069 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070 	new_smi->last_timeout_jiffies = jiffies;
1071 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072 
1073 	/*
1074 	 * Check if the user forcefully enabled the daemon.
1075 	 */
1076 	if (new_smi->intf_num < num_force_kipmid)
1077 		enable = force_kipmid[new_smi->intf_num];
1078 	/*
1079 	 * The BT interface is efficient enough to not need a thread,
1080 	 * and there is no need for a thread if we have interrupts.
1081 	 */
1082 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083 		enable = 1;
1084 
1085 	if (enable) {
1086 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087 					      "kipmi%d", new_smi->intf_num);
1088 		if (IS_ERR(new_smi->thread)) {
1089 			printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090 			       " kernel thread due to error %ld, only using"
1091 			       " timers to drive the interface\n",
1092 			       PTR_ERR(new_smi->thread));
1093 			new_smi->thread = NULL;
1094 		}
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 static void set_maintenance_mode(void *send_info, int enable)
1101 {
1102 	struct smi_info   *smi_info = send_info;
1103 
1104 	if (!enable)
1105 		atomic_set(&smi_info->req_events, 0);
1106 }
1107 
1108 static struct ipmi_smi_handlers handlers = {
1109 	.owner                  = THIS_MODULE,
1110 	.start_processing       = smi_start_processing,
1111 	.sender			= sender,
1112 	.request_events		= request_events,
1113 	.set_maintenance_mode   = set_maintenance_mode,
1114 	.set_run_to_completion  = set_run_to_completion,
1115 	.poll			= poll,
1116 };
1117 
1118 /*
1119  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1121  */
1122 
1123 static LIST_HEAD(smi_infos);
1124 static DEFINE_MUTEX(smi_infos_lock);
1125 static int smi_num; /* Used to sequence the SMIs */
1126 
1127 #define DEFAULT_REGSPACING	1
1128 #define DEFAULT_REGSIZE		1
1129 
1130 static int           si_trydefaults = 1;
1131 static char          *si_type[SI_MAX_PARMS];
1132 #define MAX_SI_TYPE_STR 30
1133 static char          si_type_str[MAX_SI_TYPE_STR];
1134 static unsigned long addrs[SI_MAX_PARMS];
1135 static unsigned int num_addrs;
1136 static unsigned int  ports[SI_MAX_PARMS];
1137 static unsigned int num_ports;
1138 static int           irqs[SI_MAX_PARMS];
1139 static unsigned int num_irqs;
1140 static int           regspacings[SI_MAX_PARMS];
1141 static unsigned int num_regspacings;
1142 static int           regsizes[SI_MAX_PARMS];
1143 static unsigned int num_regsizes;
1144 static int           regshifts[SI_MAX_PARMS];
1145 static unsigned int num_regshifts;
1146 static int slave_addrs[SI_MAX_PARMS];
1147 static unsigned int num_slave_addrs;
1148 
1149 #define IPMI_IO_ADDR_SPACE  0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str[] = { "i/o", "mem" };
1152 
1153 static int hotmod_handler(const char *val, struct kernel_param *kp);
1154 
1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1157 		 " Documentation/IPMI.txt in the kernel sources for the"
1158 		 " gory details.");
1159 
1160 module_param_named(trydefaults, si_trydefaults, bool, 0);
1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162 		 " default scan of the KCS and SMIC interface at the standard"
1163 		 " address");
1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166 		 " interface separated by commas.  The types are 'kcs',"
1167 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1168 		 " the first interface to kcs and the second to bt");
1169 module_param_array(addrs, ulong, &num_addrs, 0);
1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171 		 " addresses separated by commas.  Only use if an interface"
1172 		 " is in memory.  Otherwise, set it to zero or leave"
1173 		 " it blank.");
1174 module_param_array(ports, uint, &num_ports, 0);
1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176 		 " addresses separated by commas.  Only use if an interface"
1177 		 " is a port.  Otherwise, set it to zero or leave"
1178 		 " it blank.");
1179 module_param_array(irqs, int, &num_irqs, 0);
1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181 		 " addresses separated by commas.  Only use if an interface"
1182 		 " has an interrupt.  Otherwise, set it to zero or leave"
1183 		 " it blank.");
1184 module_param_array(regspacings, int, &num_regspacings, 0);
1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186 		 " and each successive register used by the interface.  For"
1187 		 " instance, if the start address is 0xca2 and the spacing"
1188 		 " is 2, then the second address is at 0xca4.  Defaults"
1189 		 " to 1.");
1190 module_param_array(regsizes, int, &num_regsizes, 0);
1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1194 		 " the 8-bit IPMI register has to be read from a larger"
1195 		 " register.");
1196 module_param_array(regshifts, int, &num_regshifts, 0);
1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198 		 " IPMI register, in bits.  For instance, if the data"
1199 		 " is read from a 32-bit word and the IPMI data is in"
1200 		 " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203 		 " the controller.  Normally this is 0x20, but can be"
1204 		 " overridden by this parm.  This is an array indexed"
1205 		 " by interface number.");
1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208 		 " disabled(0).  Normally the IPMI driver auto-detects"
1209 		 " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212 		 " specified or found, default is 1.  Setting to 0"
1213 		 " is useful for hot add of devices using hotmod.");
1214 
1215 
1216 static void std_irq_cleanup(struct smi_info *info)
1217 {
1218 	if (info->si_type == SI_BT)
1219 		/* Disable the interrupt in the BT interface. */
1220 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221 	free_irq(info->irq, info);
1222 }
1223 
1224 static int std_irq_setup(struct smi_info *info)
1225 {
1226 	int rv;
1227 
1228 	if (!info->irq)
1229 		return 0;
1230 
1231 	if (info->si_type == SI_BT) {
1232 		rv = request_irq(info->irq,
1233 				 si_bt_irq_handler,
1234 				 IRQF_SHARED | IRQF_DISABLED,
1235 				 DEVICE_NAME,
1236 				 info);
1237 		if (!rv)
1238 			/* Enable the interrupt in the BT interface. */
1239 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 	} else
1242 		rv = request_irq(info->irq,
1243 				 si_irq_handler,
1244 				 IRQF_SHARED | IRQF_DISABLED,
1245 				 DEVICE_NAME,
1246 				 info);
1247 	if (rv) {
1248 		printk(KERN_WARNING
1249 		       "ipmi_si: %s unable to claim interrupt %d,"
1250 		       " running polled\n",
1251 		       DEVICE_NAME, info->irq);
1252 		info->irq = 0;
1253 	} else {
1254 		info->irq_cleanup = std_irq_cleanup;
1255 		printk("  Using irq %d\n", info->irq);
1256 	}
1257 
1258 	return rv;
1259 }
1260 
1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262 {
1263 	unsigned int addr = io->addr_data;
1264 
1265 	return inb(addr + (offset * io->regspacing));
1266 }
1267 
1268 static void port_outb(struct si_sm_io *io, unsigned int offset,
1269 		      unsigned char b)
1270 {
1271 	unsigned int addr = io->addr_data;
1272 
1273 	outb(b, addr + (offset * io->regspacing));
1274 }
1275 
1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277 {
1278 	unsigned int addr = io->addr_data;
1279 
1280 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281 }
1282 
1283 static void port_outw(struct si_sm_io *io, unsigned int offset,
1284 		      unsigned char b)
1285 {
1286 	unsigned int addr = io->addr_data;
1287 
1288 	outw(b << io->regshift, addr + (offset * io->regspacing));
1289 }
1290 
1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292 {
1293 	unsigned int addr = io->addr_data;
1294 
1295 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296 }
1297 
1298 static void port_outl(struct si_sm_io *io, unsigned int offset,
1299 		      unsigned char b)
1300 {
1301 	unsigned int addr = io->addr_data;
1302 
1303 	outl(b << io->regshift, addr+(offset * io->regspacing));
1304 }
1305 
1306 static void port_cleanup(struct smi_info *info)
1307 {
1308 	unsigned int addr = info->io.addr_data;
1309 	int          idx;
1310 
1311 	if (addr) {
1312 		for (idx = 0; idx < info->io_size; idx++)
1313 			release_region(addr + idx * info->io.regspacing,
1314 				       info->io.regsize);
1315 	}
1316 }
1317 
1318 static int port_setup(struct smi_info *info)
1319 {
1320 	unsigned int addr = info->io.addr_data;
1321 	int          idx;
1322 
1323 	if (!addr)
1324 		return -ENODEV;
1325 
1326 	info->io_cleanup = port_cleanup;
1327 
1328 	/*
1329 	 * Figure out the actual inb/inw/inl/etc routine to use based
1330 	 * upon the register size.
1331 	 */
1332 	switch (info->io.regsize) {
1333 	case 1:
1334 		info->io.inputb = port_inb;
1335 		info->io.outputb = port_outb;
1336 		break;
1337 	case 2:
1338 		info->io.inputb = port_inw;
1339 		info->io.outputb = port_outw;
1340 		break;
1341 	case 4:
1342 		info->io.inputb = port_inl;
1343 		info->io.outputb = port_outl;
1344 		break;
1345 	default:
1346 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347 		       info->io.regsize);
1348 		return -EINVAL;
1349 	}
1350 
1351 	/*
1352 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1353 	 * tables.  This causes problems when trying to register the
1354 	 * entire I/O region.  Therefore we must register each I/O
1355 	 * port separately.
1356 	 */
1357 	for (idx = 0; idx < info->io_size; idx++) {
1358 		if (request_region(addr + idx * info->io.regspacing,
1359 				   info->io.regsize, DEVICE_NAME) == NULL) {
1360 			/* Undo allocations */
1361 			while (idx--) {
1362 				release_region(addr + idx * info->io.regspacing,
1363 					       info->io.regsize);
1364 			}
1365 			return -EIO;
1366 		}
1367 	}
1368 	return 0;
1369 }
1370 
1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372 {
1373 	return readb((io->addr)+(offset * io->regspacing));
1374 }
1375 
1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377 		     unsigned char b)
1378 {
1379 	writeb(b, (io->addr)+(offset * io->regspacing));
1380 }
1381 
1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385 		& 0xff;
1386 }
1387 
1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389 		     unsigned char b)
1390 {
1391 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392 }
1393 
1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397 		& 0xff;
1398 }
1399 
1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401 		     unsigned char b)
1402 {
1403 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404 }
1405 
1406 #ifdef readq
1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408 {
1409 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410 		& 0xff;
1411 }
1412 
1413 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414 		     unsigned char b)
1415 {
1416 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417 }
1418 #endif
1419 
1420 static void mem_cleanup(struct smi_info *info)
1421 {
1422 	unsigned long addr = info->io.addr_data;
1423 	int           mapsize;
1424 
1425 	if (info->io.addr) {
1426 		iounmap(info->io.addr);
1427 
1428 		mapsize = ((info->io_size * info->io.regspacing)
1429 			   - (info->io.regspacing - info->io.regsize));
1430 
1431 		release_mem_region(addr, mapsize);
1432 	}
1433 }
1434 
1435 static int mem_setup(struct smi_info *info)
1436 {
1437 	unsigned long addr = info->io.addr_data;
1438 	int           mapsize;
1439 
1440 	if (!addr)
1441 		return -ENODEV;
1442 
1443 	info->io_cleanup = mem_cleanup;
1444 
1445 	/*
1446 	 * Figure out the actual readb/readw/readl/etc routine to use based
1447 	 * upon the register size.
1448 	 */
1449 	switch (info->io.regsize) {
1450 	case 1:
1451 		info->io.inputb = intf_mem_inb;
1452 		info->io.outputb = intf_mem_outb;
1453 		break;
1454 	case 2:
1455 		info->io.inputb = intf_mem_inw;
1456 		info->io.outputb = intf_mem_outw;
1457 		break;
1458 	case 4:
1459 		info->io.inputb = intf_mem_inl;
1460 		info->io.outputb = intf_mem_outl;
1461 		break;
1462 #ifdef readq
1463 	case 8:
1464 		info->io.inputb = mem_inq;
1465 		info->io.outputb = mem_outq;
1466 		break;
1467 #endif
1468 	default:
1469 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470 		       info->io.regsize);
1471 		return -EINVAL;
1472 	}
1473 
1474 	/*
1475 	 * Calculate the total amount of memory to claim.  This is an
1476 	 * unusual looking calculation, but it avoids claiming any
1477 	 * more memory than it has to.  It will claim everything
1478 	 * between the first address to the end of the last full
1479 	 * register.
1480 	 */
1481 	mapsize = ((info->io_size * info->io.regspacing)
1482 		   - (info->io.regspacing - info->io.regsize));
1483 
1484 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485 		return -EIO;
1486 
1487 	info->io.addr = ioremap(addr, mapsize);
1488 	if (info->io.addr == NULL) {
1489 		release_mem_region(addr, mapsize);
1490 		return -EIO;
1491 	}
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1497  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498  * Options are:
1499  *   rsp=<regspacing>
1500  *   rsi=<regsize>
1501  *   rsh=<regshift>
1502  *   irq=<irq>
1503  *   ipmb=<ipmb addr>
1504  */
1505 enum hotmod_op { HM_ADD, HM_REMOVE };
1506 struct hotmod_vals {
1507 	char *name;
1508 	int  val;
1509 };
1510 static struct hotmod_vals hotmod_ops[] = {
1511 	{ "add",	HM_ADD },
1512 	{ "remove",	HM_REMOVE },
1513 	{ NULL }
1514 };
1515 static struct hotmod_vals hotmod_si[] = {
1516 	{ "kcs",	SI_KCS },
1517 	{ "smic",	SI_SMIC },
1518 	{ "bt",		SI_BT },
1519 	{ NULL }
1520 };
1521 static struct hotmod_vals hotmod_as[] = {
1522 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1523 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1524 	{ NULL }
1525 };
1526 
1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528 {
1529 	char *s;
1530 	int  i;
1531 
1532 	s = strchr(*curr, ',');
1533 	if (!s) {
1534 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535 		return -EINVAL;
1536 	}
1537 	*s = '\0';
1538 	s++;
1539 	for (i = 0; hotmod_ops[i].name; i++) {
1540 		if (strcmp(*curr, v[i].name) == 0) {
1541 			*val = v[i].val;
1542 			*curr = s;
1543 			return 0;
1544 		}
1545 	}
1546 
1547 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548 	return -EINVAL;
1549 }
1550 
1551 static int check_hotmod_int_op(const char *curr, const char *option,
1552 			       const char *name, int *val)
1553 {
1554 	char *n;
1555 
1556 	if (strcmp(curr, name) == 0) {
1557 		if (!option) {
1558 			printk(KERN_WARNING PFX
1559 			       "No option given for '%s'\n",
1560 			       curr);
1561 			return -EINVAL;
1562 		}
1563 		*val = simple_strtoul(option, &n, 0);
1564 		if ((*n != '\0') || (*option == '\0')) {
1565 			printk(KERN_WARNING PFX
1566 			       "Bad option given for '%s'\n",
1567 			       curr);
1568 			return -EINVAL;
1569 		}
1570 		return 1;
1571 	}
1572 	return 0;
1573 }
1574 
1575 static int hotmod_handler(const char *val, struct kernel_param *kp)
1576 {
1577 	char *str = kstrdup(val, GFP_KERNEL);
1578 	int  rv;
1579 	char *next, *curr, *s, *n, *o;
1580 	enum hotmod_op op;
1581 	enum si_type si_type;
1582 	int  addr_space;
1583 	unsigned long addr;
1584 	int regspacing;
1585 	int regsize;
1586 	int regshift;
1587 	int irq;
1588 	int ipmb;
1589 	int ival;
1590 	int len;
1591 	struct smi_info *info;
1592 
1593 	if (!str)
1594 		return -ENOMEM;
1595 
1596 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1597 	len = strlen(str);
1598 	ival = len - 1;
1599 	while ((ival >= 0) && isspace(str[ival])) {
1600 		str[ival] = '\0';
1601 		ival--;
1602 	}
1603 
1604 	for (curr = str; curr; curr = next) {
1605 		regspacing = 1;
1606 		regsize = 1;
1607 		regshift = 0;
1608 		irq = 0;
1609 		ipmb = 0x20;
1610 
1611 		next = strchr(curr, ':');
1612 		if (next) {
1613 			*next = '\0';
1614 			next++;
1615 		}
1616 
1617 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618 		if (rv)
1619 			break;
1620 		op = ival;
1621 
1622 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623 		if (rv)
1624 			break;
1625 		si_type = ival;
1626 
1627 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628 		if (rv)
1629 			break;
1630 
1631 		s = strchr(curr, ',');
1632 		if (s) {
1633 			*s = '\0';
1634 			s++;
1635 		}
1636 		addr = simple_strtoul(curr, &n, 0);
1637 		if ((*n != '\0') || (*curr == '\0')) {
1638 			printk(KERN_WARNING PFX "Invalid hotmod address"
1639 			       " '%s'\n", curr);
1640 			break;
1641 		}
1642 
1643 		while (s) {
1644 			curr = s;
1645 			s = strchr(curr, ',');
1646 			if (s) {
1647 				*s = '\0';
1648 				s++;
1649 			}
1650 			o = strchr(curr, '=');
1651 			if (o) {
1652 				*o = '\0';
1653 				o++;
1654 			}
1655 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656 			if (rv < 0)
1657 				goto out;
1658 			else if (rv)
1659 				continue;
1660 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661 			if (rv < 0)
1662 				goto out;
1663 			else if (rv)
1664 				continue;
1665 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666 			if (rv < 0)
1667 				goto out;
1668 			else if (rv)
1669 				continue;
1670 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671 			if (rv < 0)
1672 				goto out;
1673 			else if (rv)
1674 				continue;
1675 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676 			if (rv < 0)
1677 				goto out;
1678 			else if (rv)
1679 				continue;
1680 
1681 			rv = -EINVAL;
1682 			printk(KERN_WARNING PFX
1683 			       "Invalid hotmod option '%s'\n",
1684 			       curr);
1685 			goto out;
1686 		}
1687 
1688 		if (op == HM_ADD) {
1689 			info = kzalloc(sizeof(*info), GFP_KERNEL);
1690 			if (!info) {
1691 				rv = -ENOMEM;
1692 				goto out;
1693 			}
1694 
1695 			info->addr_source = "hotmod";
1696 			info->si_type = si_type;
1697 			info->io.addr_data = addr;
1698 			info->io.addr_type = addr_space;
1699 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1700 				info->io_setup = mem_setup;
1701 			else
1702 				info->io_setup = port_setup;
1703 
1704 			info->io.addr = NULL;
1705 			info->io.regspacing = regspacing;
1706 			if (!info->io.regspacing)
1707 				info->io.regspacing = DEFAULT_REGSPACING;
1708 			info->io.regsize = regsize;
1709 			if (!info->io.regsize)
1710 				info->io.regsize = DEFAULT_REGSPACING;
1711 			info->io.regshift = regshift;
1712 			info->irq = irq;
1713 			if (info->irq)
1714 				info->irq_setup = std_irq_setup;
1715 			info->slave_addr = ipmb;
1716 
1717 			try_smi_init(info);
1718 		} else {
1719 			/* remove */
1720 			struct smi_info *e, *tmp_e;
1721 
1722 			mutex_lock(&smi_infos_lock);
1723 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724 				if (e->io.addr_type != addr_space)
1725 					continue;
1726 				if (e->si_type != si_type)
1727 					continue;
1728 				if (e->io.addr_data == addr)
1729 					cleanup_one_si(e);
1730 			}
1731 			mutex_unlock(&smi_infos_lock);
1732 		}
1733 	}
1734 	rv = len;
1735  out:
1736 	kfree(str);
1737 	return rv;
1738 }
1739 
1740 static __devinit void hardcode_find_bmc(void)
1741 {
1742 	int             i;
1743 	struct smi_info *info;
1744 
1745 	for (i = 0; i < SI_MAX_PARMS; i++) {
1746 		if (!ports[i] && !addrs[i])
1747 			continue;
1748 
1749 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1750 		if (!info)
1751 			return;
1752 
1753 		info->addr_source = "hardcoded";
1754 
1755 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756 			info->si_type = SI_KCS;
1757 		} else if (strcmp(si_type[i], "smic") == 0) {
1758 			info->si_type = SI_SMIC;
1759 		} else if (strcmp(si_type[i], "bt") == 0) {
1760 			info->si_type = SI_BT;
1761 		} else {
1762 			printk(KERN_WARNING
1763 			       "ipmi_si: Interface type specified "
1764 			       "for interface %d, was invalid: %s\n",
1765 			       i, si_type[i]);
1766 			kfree(info);
1767 			continue;
1768 		}
1769 
1770 		if (ports[i]) {
1771 			/* An I/O port */
1772 			info->io_setup = port_setup;
1773 			info->io.addr_data = ports[i];
1774 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775 		} else if (addrs[i]) {
1776 			/* A memory port */
1777 			info->io_setup = mem_setup;
1778 			info->io.addr_data = addrs[i];
1779 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780 		} else {
1781 			printk(KERN_WARNING
1782 			       "ipmi_si: Interface type specified "
1783 			       "for interface %d, "
1784 			       "but port and address were not set or "
1785 			       "set to zero.\n", i);
1786 			kfree(info);
1787 			continue;
1788 		}
1789 
1790 		info->io.addr = NULL;
1791 		info->io.regspacing = regspacings[i];
1792 		if (!info->io.regspacing)
1793 			info->io.regspacing = DEFAULT_REGSPACING;
1794 		info->io.regsize = regsizes[i];
1795 		if (!info->io.regsize)
1796 			info->io.regsize = DEFAULT_REGSPACING;
1797 		info->io.regshift = regshifts[i];
1798 		info->irq = irqs[i];
1799 		if (info->irq)
1800 			info->irq_setup = std_irq_setup;
1801 
1802 		try_smi_init(info);
1803 	}
1804 }
1805 
1806 #ifdef CONFIG_ACPI
1807 
1808 #include <linux/acpi.h>
1809 
1810 /*
1811  * Once we get an ACPI failure, we don't try any more, because we go
1812  * through the tables sequentially.  Once we don't find a table, there
1813  * are no more.
1814  */
1815 static int acpi_failure;
1816 
1817 /* For GPE-type interrupts. */
1818 static u32 ipmi_acpi_gpe(void *context)
1819 {
1820 	struct smi_info *smi_info = context;
1821 	unsigned long   flags;
1822 #ifdef DEBUG_TIMING
1823 	struct timeval t;
1824 #endif
1825 
1826 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1827 
1828 	smi_inc_stat(smi_info, interrupts);
1829 
1830 #ifdef DEBUG_TIMING
1831 	do_gettimeofday(&t);
1832 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833 #endif
1834 	smi_event_handler(smi_info, 0);
1835 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836 
1837 	return ACPI_INTERRUPT_HANDLED;
1838 }
1839 
1840 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841 {
1842 	if (!info->irq)
1843 		return;
1844 
1845 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846 }
1847 
1848 static int acpi_gpe_irq_setup(struct smi_info *info)
1849 {
1850 	acpi_status status;
1851 
1852 	if (!info->irq)
1853 		return 0;
1854 
1855 	/* FIXME - is level triggered right? */
1856 	status = acpi_install_gpe_handler(NULL,
1857 					  info->irq,
1858 					  ACPI_GPE_LEVEL_TRIGGERED,
1859 					  &ipmi_acpi_gpe,
1860 					  info);
1861 	if (status != AE_OK) {
1862 		printk(KERN_WARNING
1863 		       "ipmi_si: %s unable to claim ACPI GPE %d,"
1864 		       " running polled\n",
1865 		       DEVICE_NAME, info->irq);
1866 		info->irq = 0;
1867 		return -EINVAL;
1868 	} else {
1869 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1870 		printk("  Using ACPI GPE %d\n", info->irq);
1871 		return 0;
1872 	}
1873 }
1874 
1875 /*
1876  * Defined at
1877  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878  * Docs/TechPapers/IA64/hpspmi.pdf
1879  */
1880 struct SPMITable {
1881 	s8	Signature[4];
1882 	u32	Length;
1883 	u8	Revision;
1884 	u8	Checksum;
1885 	s8	OEMID[6];
1886 	s8	OEMTableID[8];
1887 	s8	OEMRevision[4];
1888 	s8	CreatorID[4];
1889 	s8	CreatorRevision[4];
1890 	u8	InterfaceType;
1891 	u8	IPMIlegacy;
1892 	s16	SpecificationRevision;
1893 
1894 	/*
1895 	 * Bit 0 - SCI interrupt supported
1896 	 * Bit 1 - I/O APIC/SAPIC
1897 	 */
1898 	u8	InterruptType;
1899 
1900 	/*
1901 	 * If bit 0 of InterruptType is set, then this is the SCI
1902 	 * interrupt in the GPEx_STS register.
1903 	 */
1904 	u8	GPE;
1905 
1906 	s16	Reserved;
1907 
1908 	/*
1909 	 * If bit 1 of InterruptType is set, then this is the I/O
1910 	 * APIC/SAPIC interrupt.
1911 	 */
1912 	u32	GlobalSystemInterrupt;
1913 
1914 	/* The actual register address. */
1915 	struct acpi_generic_address addr;
1916 
1917 	u8	UID[4];
1918 
1919 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1920 };
1921 
1922 static __devinit int try_init_acpi(struct SPMITable *spmi)
1923 {
1924 	struct smi_info  *info;
1925 	u8 		 addr_space;
1926 
1927 	if (spmi->IPMIlegacy != 1) {
1928 	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929 	    return -ENODEV;
1930 	}
1931 
1932 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933 		addr_space = IPMI_MEM_ADDR_SPACE;
1934 	else
1935 		addr_space = IPMI_IO_ADDR_SPACE;
1936 
1937 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1938 	if (!info) {
1939 		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940 		return -ENOMEM;
1941 	}
1942 
1943 	info->addr_source = "ACPI";
1944 
1945 	/* Figure out the interface type. */
1946 	switch (spmi->InterfaceType) {
1947 	case 1:	/* KCS */
1948 		info->si_type = SI_KCS;
1949 		break;
1950 	case 2:	/* SMIC */
1951 		info->si_type = SI_SMIC;
1952 		break;
1953 	case 3:	/* BT */
1954 		info->si_type = SI_BT;
1955 		break;
1956 	default:
1957 		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958 			spmi->InterfaceType);
1959 		kfree(info);
1960 		return -EIO;
1961 	}
1962 
1963 	if (spmi->InterruptType & 1) {
1964 		/* We've got a GPE interrupt. */
1965 		info->irq = spmi->GPE;
1966 		info->irq_setup = acpi_gpe_irq_setup;
1967 	} else if (spmi->InterruptType & 2) {
1968 		/* We've got an APIC/SAPIC interrupt. */
1969 		info->irq = spmi->GlobalSystemInterrupt;
1970 		info->irq_setup = std_irq_setup;
1971 	} else {
1972 		/* Use the default interrupt setting. */
1973 		info->irq = 0;
1974 		info->irq_setup = NULL;
1975 	}
1976 
1977 	if (spmi->addr.bit_width) {
1978 		/* A (hopefully) properly formed register bit width. */
1979 		info->io.regspacing = spmi->addr.bit_width / 8;
1980 	} else {
1981 		info->io.regspacing = DEFAULT_REGSPACING;
1982 	}
1983 	info->io.regsize = info->io.regspacing;
1984 	info->io.regshift = spmi->addr.bit_offset;
1985 
1986 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987 		info->io_setup = mem_setup;
1988 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990 		info->io_setup = port_setup;
1991 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992 	} else {
1993 		kfree(info);
1994 		printk(KERN_WARNING
1995 		       "ipmi_si: Unknown ACPI I/O Address type\n");
1996 		return -EIO;
1997 	}
1998 	info->io.addr_data = spmi->addr.address;
1999 
2000 	try_smi_init(info);
2001 
2002 	return 0;
2003 }
2004 
2005 static __devinit void acpi_find_bmc(void)
2006 {
2007 	acpi_status      status;
2008 	struct SPMITable *spmi;
2009 	int              i;
2010 
2011 	if (acpi_disabled)
2012 		return;
2013 
2014 	if (acpi_failure)
2015 		return;
2016 
2017 	for (i = 0; ; i++) {
2018 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019 					(struct acpi_table_header **)&spmi);
2020 		if (status != AE_OK)
2021 			return;
2022 
2023 		try_init_acpi(spmi);
2024 	}
2025 }
2026 #endif
2027 
2028 #ifdef CONFIG_DMI
2029 struct dmi_ipmi_data {
2030 	u8   		type;
2031 	u8   		addr_space;
2032 	unsigned long	base_addr;
2033 	u8   		irq;
2034 	u8              offset;
2035 	u8              slave_addr;
2036 };
2037 
2038 static int __devinit decode_dmi(const struct dmi_header *dm,
2039 				struct dmi_ipmi_data *dmi)
2040 {
2041 	const u8	*data = (const u8 *)dm;
2042 	unsigned long  	base_addr;
2043 	u8		reg_spacing;
2044 	u8              len = dm->length;
2045 
2046 	dmi->type = data[4];
2047 
2048 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2049 	if (len >= 0x11) {
2050 		if (base_addr & 1) {
2051 			/* I/O */
2052 			base_addr &= 0xFFFE;
2053 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054 		} else
2055 			/* Memory */
2056 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057 
2058 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2059 		   is odd. */
2060 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061 
2062 		dmi->irq = data[0x11];
2063 
2064 		/* The top two bits of byte 0x10 hold the register spacing. */
2065 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2066 		switch (reg_spacing) {
2067 		case 0x00: /* Byte boundaries */
2068 		    dmi->offset = 1;
2069 		    break;
2070 		case 0x01: /* 32-bit boundaries */
2071 		    dmi->offset = 4;
2072 		    break;
2073 		case 0x02: /* 16-byte boundaries */
2074 		    dmi->offset = 16;
2075 		    break;
2076 		default:
2077 		    /* Some other interface, just ignore it. */
2078 		    return -EIO;
2079 		}
2080 	} else {
2081 		/* Old DMI spec. */
2082 		/*
2083 		 * Note that technically, the lower bit of the base
2084 		 * address should be 1 if the address is I/O and 0 if
2085 		 * the address is in memory.  So many systems get that
2086 		 * wrong (and all that I have seen are I/O) so we just
2087 		 * ignore that bit and assume I/O.  Systems that use
2088 		 * memory should use the newer spec, anyway.
2089 		 */
2090 		dmi->base_addr = base_addr & 0xfffe;
2091 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092 		dmi->offset = 1;
2093 	}
2094 
2095 	dmi->slave_addr = data[6];
2096 
2097 	return 0;
2098 }
2099 
2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101 {
2102 	struct smi_info *info;
2103 
2104 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 	if (!info) {
2106 		printk(KERN_ERR
2107 		       "ipmi_si: Could not allocate SI data\n");
2108 		return;
2109 	}
2110 
2111 	info->addr_source = "SMBIOS";
2112 
2113 	switch (ipmi_data->type) {
2114 	case 0x01: /* KCS */
2115 		info->si_type = SI_KCS;
2116 		break;
2117 	case 0x02: /* SMIC */
2118 		info->si_type = SI_SMIC;
2119 		break;
2120 	case 0x03: /* BT */
2121 		info->si_type = SI_BT;
2122 		break;
2123 	default:
2124 		kfree(info);
2125 		return;
2126 	}
2127 
2128 	switch (ipmi_data->addr_space) {
2129 	case IPMI_MEM_ADDR_SPACE:
2130 		info->io_setup = mem_setup;
2131 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132 		break;
2133 
2134 	case IPMI_IO_ADDR_SPACE:
2135 		info->io_setup = port_setup;
2136 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137 		break;
2138 
2139 	default:
2140 		kfree(info);
2141 		printk(KERN_WARNING
2142 		       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143 		       ipmi_data->addr_space);
2144 		return;
2145 	}
2146 	info->io.addr_data = ipmi_data->base_addr;
2147 
2148 	info->io.regspacing = ipmi_data->offset;
2149 	if (!info->io.regspacing)
2150 		info->io.regspacing = DEFAULT_REGSPACING;
2151 	info->io.regsize = DEFAULT_REGSPACING;
2152 	info->io.regshift = 0;
2153 
2154 	info->slave_addr = ipmi_data->slave_addr;
2155 
2156 	info->irq = ipmi_data->irq;
2157 	if (info->irq)
2158 		info->irq_setup = std_irq_setup;
2159 
2160 	try_smi_init(info);
2161 }
2162 
2163 static void __devinit dmi_find_bmc(void)
2164 {
2165 	const struct dmi_device *dev = NULL;
2166 	struct dmi_ipmi_data data;
2167 	int                  rv;
2168 
2169 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170 		memset(&data, 0, sizeof(data));
2171 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172 				&data);
2173 		if (!rv)
2174 			try_init_dmi(&data);
2175 	}
2176 }
2177 #endif /* CONFIG_DMI */
2178 
2179 #ifdef CONFIG_PCI
2180 
2181 #define PCI_ERMC_CLASSCODE		0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2187 
2188 #define PCI_HP_VENDOR_ID    0x103C
2189 #define PCI_MMC_DEVICE_ID   0x121A
2190 #define PCI_MMC_ADDR_CW     0x10
2191 
2192 static void ipmi_pci_cleanup(struct smi_info *info)
2193 {
2194 	struct pci_dev *pdev = info->addr_source_data;
2195 
2196 	pci_disable_device(pdev);
2197 }
2198 
2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200 				    const struct pci_device_id *ent)
2201 {
2202 	int rv;
2203 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204 	struct smi_info *info;
2205 	int first_reg_offset = 0;
2206 
2207 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2208 	if (!info)
2209 		return -ENOMEM;
2210 
2211 	info->addr_source = "PCI";
2212 
2213 	switch (class_type) {
2214 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215 		info->si_type = SI_SMIC;
2216 		break;
2217 
2218 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219 		info->si_type = SI_KCS;
2220 		break;
2221 
2222 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2223 		info->si_type = SI_BT;
2224 		break;
2225 
2226 	default:
2227 		kfree(info);
2228 		printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229 		       pci_name(pdev), class_type);
2230 		return -ENOMEM;
2231 	}
2232 
2233 	rv = pci_enable_device(pdev);
2234 	if (rv) {
2235 		printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236 		       pci_name(pdev));
2237 		kfree(info);
2238 		return rv;
2239 	}
2240 
2241 	info->addr_source_cleanup = ipmi_pci_cleanup;
2242 	info->addr_source_data = pdev;
2243 
2244 	if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245 		first_reg_offset = 1;
2246 
2247 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248 		info->io_setup = port_setup;
2249 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250 	} else {
2251 		info->io_setup = mem_setup;
2252 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253 	}
2254 	info->io.addr_data = pci_resource_start(pdev, 0);
2255 
2256 	info->io.regspacing = DEFAULT_REGSPACING;
2257 	info->io.regsize = DEFAULT_REGSPACING;
2258 	info->io.regshift = 0;
2259 
2260 	info->irq = pdev->irq;
2261 	if (info->irq)
2262 		info->irq_setup = std_irq_setup;
2263 
2264 	info->dev = &pdev->dev;
2265 	pci_set_drvdata(pdev, info);
2266 
2267 	return try_smi_init(info);
2268 }
2269 
2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271 {
2272 	struct smi_info *info = pci_get_drvdata(pdev);
2273 	cleanup_one_si(info);
2274 }
2275 
2276 #ifdef CONFIG_PM
2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278 {
2279 	return 0;
2280 }
2281 
2282 static int ipmi_pci_resume(struct pci_dev *pdev)
2283 {
2284 	return 0;
2285 }
2286 #endif
2287 
2288 static struct pci_device_id ipmi_pci_devices[] = {
2289 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291 	{ 0, }
2292 };
2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294 
2295 static struct pci_driver ipmi_pci_driver = {
2296 	.name =         DEVICE_NAME,
2297 	.id_table =     ipmi_pci_devices,
2298 	.probe =        ipmi_pci_probe,
2299 	.remove =       __devexit_p(ipmi_pci_remove),
2300 #ifdef CONFIG_PM
2301 	.suspend =      ipmi_pci_suspend,
2302 	.resume =       ipmi_pci_resume,
2303 #endif
2304 };
2305 #endif /* CONFIG_PCI */
2306 
2307 
2308 #ifdef CONFIG_PPC_OF
2309 static int __devinit ipmi_of_probe(struct of_device *dev,
2310 			 const struct of_device_id *match)
2311 {
2312 	struct smi_info *info;
2313 	struct resource resource;
2314 	const int *regsize, *regspacing, *regshift;
2315 	struct device_node *np = dev->node;
2316 	int ret;
2317 	int proplen;
2318 
2319 	dev_info(&dev->dev, PFX "probing via device tree\n");
2320 
2321 	ret = of_address_to_resource(np, 0, &resource);
2322 	if (ret) {
2323 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324 		return ret;
2325 	}
2326 
2327 	regsize = of_get_property(np, "reg-size", &proplen);
2328 	if (regsize && proplen != 4) {
2329 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2334 	if (regspacing && proplen != 4) {
2335 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336 		return -EINVAL;
2337 	}
2338 
2339 	regshift = of_get_property(np, "reg-shift", &proplen);
2340 	if (regshift && proplen != 4) {
2341 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342 		return -EINVAL;
2343 	}
2344 
2345 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2346 
2347 	if (!info) {
2348 		dev_err(&dev->dev,
2349 			PFX "could not allocate memory for OF probe\n");
2350 		return -ENOMEM;
2351 	}
2352 
2353 	info->si_type		= (enum si_type) match->data;
2354 	info->addr_source	= "device-tree";
2355 	info->irq_setup		= std_irq_setup;
2356 
2357 	if (resource.flags & IORESOURCE_IO) {
2358 		info->io_setup		= port_setup;
2359 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2360 	} else {
2361 		info->io_setup		= mem_setup;
2362 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2363 	}
2364 
2365 	info->io.addr_data	= resource.start;
2366 
2367 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2368 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2369 	info->io.regshift	= regshift ? *regshift : 0;
2370 
2371 	info->irq		= irq_of_parse_and_map(dev->node, 0);
2372 	info->dev		= &dev->dev;
2373 
2374 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2375 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2376 		info->irq);
2377 
2378 	dev->dev.driver_data = (void *) info;
2379 
2380 	return try_smi_init(info);
2381 }
2382 
2383 static int __devexit ipmi_of_remove(struct of_device *dev)
2384 {
2385 	cleanup_one_si(dev->dev.driver_data);
2386 	return 0;
2387 }
2388 
2389 static struct of_device_id ipmi_match[] =
2390 {
2391 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2392 	  .data = (void *)(unsigned long) SI_KCS },
2393 	{ .type = "ipmi", .compatible = "ipmi-smic",
2394 	  .data = (void *)(unsigned long) SI_SMIC },
2395 	{ .type = "ipmi", .compatible = "ipmi-bt",
2396 	  .data = (void *)(unsigned long) SI_BT },
2397 	{},
2398 };
2399 
2400 static struct of_platform_driver ipmi_of_platform_driver = {
2401 	.name		= "ipmi",
2402 	.match_table	= ipmi_match,
2403 	.probe		= ipmi_of_probe,
2404 	.remove		= __devexit_p(ipmi_of_remove),
2405 };
2406 #endif /* CONFIG_PPC_OF */
2407 
2408 static int wait_for_msg_done(struct smi_info *smi_info)
2409 {
2410 	enum si_sm_result     smi_result;
2411 
2412 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2413 	for (;;) {
2414 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2415 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2416 			schedule_timeout_uninterruptible(1);
2417 			smi_result = smi_info->handlers->event(
2418 				smi_info->si_sm, 100);
2419 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2420 			smi_result = smi_info->handlers->event(
2421 				smi_info->si_sm, 0);
2422 		} else
2423 			break;
2424 	}
2425 	if (smi_result == SI_SM_HOSED)
2426 		/*
2427 		 * We couldn't get the state machine to run, so whatever's at
2428 		 * the port is probably not an IPMI SMI interface.
2429 		 */
2430 		return -ENODEV;
2431 
2432 	return 0;
2433 }
2434 
2435 static int try_get_dev_id(struct smi_info *smi_info)
2436 {
2437 	unsigned char         msg[2];
2438 	unsigned char         *resp;
2439 	unsigned long         resp_len;
2440 	int                   rv = 0;
2441 
2442 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2443 	if (!resp)
2444 		return -ENOMEM;
2445 
2446 	/*
2447 	 * Do a Get Device ID command, since it comes back with some
2448 	 * useful info.
2449 	 */
2450 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2451 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2452 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2453 
2454 	rv = wait_for_msg_done(smi_info);
2455 	if (rv)
2456 		goto out;
2457 
2458 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2459 						  resp, IPMI_MAX_MSG_LENGTH);
2460 
2461 	/* Check and record info from the get device id, in case we need it. */
2462 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2463 
2464  out:
2465 	kfree(resp);
2466 	return rv;
2467 }
2468 
2469 static int try_enable_event_buffer(struct smi_info *smi_info)
2470 {
2471 	unsigned char         msg[3];
2472 	unsigned char         *resp;
2473 	unsigned long         resp_len;
2474 	int                   rv = 0;
2475 
2476 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2477 	if (!resp)
2478 		return -ENOMEM;
2479 
2480 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2481 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2482 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2483 
2484 	rv = wait_for_msg_done(smi_info);
2485 	if (rv) {
2486 		printk(KERN_WARNING
2487 		       "ipmi_si: Error getting response from get global,"
2488 		       " enables command, the event buffer is not"
2489 		       " enabled.\n");
2490 		goto out;
2491 	}
2492 
2493 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2494 						  resp, IPMI_MAX_MSG_LENGTH);
2495 
2496 	if (resp_len < 4 ||
2497 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2498 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2499 			resp[2] != 0) {
2500 		printk(KERN_WARNING
2501 		       "ipmi_si: Invalid return from get global"
2502 		       " enables command, cannot enable the event"
2503 		       " buffer.\n");
2504 		rv = -EINVAL;
2505 		goto out;
2506 	}
2507 
2508 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2509 		/* buffer is already enabled, nothing to do. */
2510 		goto out;
2511 
2512 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2513 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2514 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2515 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2516 
2517 	rv = wait_for_msg_done(smi_info);
2518 	if (rv) {
2519 		printk(KERN_WARNING
2520 		       "ipmi_si: Error getting response from set global,"
2521 		       " enables command, the event buffer is not"
2522 		       " enabled.\n");
2523 		goto out;
2524 	}
2525 
2526 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2527 						  resp, IPMI_MAX_MSG_LENGTH);
2528 
2529 	if (resp_len < 3 ||
2530 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2531 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2532 		printk(KERN_WARNING
2533 		       "ipmi_si: Invalid return from get global,"
2534 		       "enables command, not enable the event"
2535 		       " buffer.\n");
2536 		rv = -EINVAL;
2537 		goto out;
2538 	}
2539 
2540 	if (resp[2] != 0)
2541 		/*
2542 		 * An error when setting the event buffer bit means
2543 		 * that the event buffer is not supported.
2544 		 */
2545 		rv = -ENOENT;
2546  out:
2547 	kfree(resp);
2548 	return rv;
2549 }
2550 
2551 static int type_file_read_proc(char *page, char **start, off_t off,
2552 			       int count, int *eof, void *data)
2553 {
2554 	struct smi_info *smi = data;
2555 
2556 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2557 }
2558 
2559 static int stat_file_read_proc(char *page, char **start, off_t off,
2560 			       int count, int *eof, void *data)
2561 {
2562 	char            *out = (char *) page;
2563 	struct smi_info *smi = data;
2564 
2565 	out += sprintf(out, "interrupts_enabled:    %d\n",
2566 		       smi->irq && !smi->interrupt_disabled);
2567 	out += sprintf(out, "short_timeouts:        %u\n",
2568 		       smi_get_stat(smi, short_timeouts));
2569 	out += sprintf(out, "long_timeouts:         %u\n",
2570 		       smi_get_stat(smi, long_timeouts));
2571 	out += sprintf(out, "idles:                 %u\n",
2572 		       smi_get_stat(smi, idles));
2573 	out += sprintf(out, "interrupts:            %u\n",
2574 		       smi_get_stat(smi, interrupts));
2575 	out += sprintf(out, "attentions:            %u\n",
2576 		       smi_get_stat(smi, attentions));
2577 	out += sprintf(out, "flag_fetches:          %u\n",
2578 		       smi_get_stat(smi, flag_fetches));
2579 	out += sprintf(out, "hosed_count:           %u\n",
2580 		       smi_get_stat(smi, hosed_count));
2581 	out += sprintf(out, "complete_transactions: %u\n",
2582 		       smi_get_stat(smi, complete_transactions));
2583 	out += sprintf(out, "events:                %u\n",
2584 		       smi_get_stat(smi, events));
2585 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2586 		       smi_get_stat(smi, watchdog_pretimeouts));
2587 	out += sprintf(out, "incoming_messages:     %u\n",
2588 		       smi_get_stat(smi, incoming_messages));
2589 
2590 	return out - page;
2591 }
2592 
2593 static int param_read_proc(char *page, char **start, off_t off,
2594 			   int count, int *eof, void *data)
2595 {
2596 	struct smi_info *smi = data;
2597 
2598 	return sprintf(page,
2599 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2600 		       si_to_str[smi->si_type],
2601 		       addr_space_to_str[smi->io.addr_type],
2602 		       smi->io.addr_data,
2603 		       smi->io.regspacing,
2604 		       smi->io.regsize,
2605 		       smi->io.regshift,
2606 		       smi->irq,
2607 		       smi->slave_addr);
2608 }
2609 
2610 /*
2611  * oem_data_avail_to_receive_msg_avail
2612  * @info - smi_info structure with msg_flags set
2613  *
2614  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2615  * Returns 1 indicating need to re-run handle_flags().
2616  */
2617 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2618 {
2619 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2620 			       RECEIVE_MSG_AVAIL);
2621 	return 1;
2622 }
2623 
2624 /*
2625  * setup_dell_poweredge_oem_data_handler
2626  * @info - smi_info.device_id must be populated
2627  *
2628  * Systems that match, but have firmware version < 1.40 may assert
2629  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2630  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2631  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2632  * as RECEIVE_MSG_AVAIL instead.
2633  *
2634  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2635  * assert the OEM[012] bits, and if it did, the driver would have to
2636  * change to handle that properly, we don't actually check for the
2637  * firmware version.
2638  * Device ID = 0x20                BMC on PowerEdge 8G servers
2639  * Device Revision = 0x80
2640  * Firmware Revision1 = 0x01       BMC version 1.40
2641  * Firmware Revision2 = 0x40       BCD encoded
2642  * IPMI Version = 0x51             IPMI 1.5
2643  * Manufacturer ID = A2 02 00      Dell IANA
2644  *
2645  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2646  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2647  *
2648  */
2649 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2650 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2651 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2652 #define DELL_IANA_MFR_ID 0x0002a2
2653 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2654 {
2655 	struct ipmi_device_id *id = &smi_info->device_id;
2656 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2657 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2658 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2659 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2660 			smi_info->oem_data_avail_handler =
2661 				oem_data_avail_to_receive_msg_avail;
2662 		} else if (ipmi_version_major(id) < 1 ||
2663 			   (ipmi_version_major(id) == 1 &&
2664 			    ipmi_version_minor(id) < 5)) {
2665 			smi_info->oem_data_avail_handler =
2666 				oem_data_avail_to_receive_msg_avail;
2667 		}
2668 	}
2669 }
2670 
2671 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2672 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2673 {
2674 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2675 
2676 	/* Make it a reponse */
2677 	msg->rsp[0] = msg->data[0] | 4;
2678 	msg->rsp[1] = msg->data[1];
2679 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2680 	msg->rsp_size = 3;
2681 	smi_info->curr_msg = NULL;
2682 	deliver_recv_msg(smi_info, msg);
2683 }
2684 
2685 /*
2686  * dell_poweredge_bt_xaction_handler
2687  * @info - smi_info.device_id must be populated
2688  *
2689  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2690  * not respond to a Get SDR command if the length of the data
2691  * requested is exactly 0x3A, which leads to command timeouts and no
2692  * data returned.  This intercepts such commands, and causes userspace
2693  * callers to try again with a different-sized buffer, which succeeds.
2694  */
2695 
2696 #define STORAGE_NETFN 0x0A
2697 #define STORAGE_CMD_GET_SDR 0x23
2698 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2699 					     unsigned long unused,
2700 					     void *in)
2701 {
2702 	struct smi_info *smi_info = in;
2703 	unsigned char *data = smi_info->curr_msg->data;
2704 	unsigned int size   = smi_info->curr_msg->data_size;
2705 	if (size >= 8 &&
2706 	    (data[0]>>2) == STORAGE_NETFN &&
2707 	    data[1] == STORAGE_CMD_GET_SDR &&
2708 	    data[7] == 0x3A) {
2709 		return_hosed_msg_badsize(smi_info);
2710 		return NOTIFY_STOP;
2711 	}
2712 	return NOTIFY_DONE;
2713 }
2714 
2715 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2716 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2717 };
2718 
2719 /*
2720  * setup_dell_poweredge_bt_xaction_handler
2721  * @info - smi_info.device_id must be filled in already
2722  *
2723  * Fills in smi_info.device_id.start_transaction_pre_hook
2724  * when we know what function to use there.
2725  */
2726 static void
2727 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2728 {
2729 	struct ipmi_device_id *id = &smi_info->device_id;
2730 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2731 	    smi_info->si_type == SI_BT)
2732 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2733 }
2734 
2735 /*
2736  * setup_oem_data_handler
2737  * @info - smi_info.device_id must be filled in already
2738  *
2739  * Fills in smi_info.device_id.oem_data_available_handler
2740  * when we know what function to use there.
2741  */
2742 
2743 static void setup_oem_data_handler(struct smi_info *smi_info)
2744 {
2745 	setup_dell_poweredge_oem_data_handler(smi_info);
2746 }
2747 
2748 static void setup_xaction_handlers(struct smi_info *smi_info)
2749 {
2750 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2751 }
2752 
2753 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2754 {
2755 	if (smi_info->intf) {
2756 		/*
2757 		 * The timer and thread are only running if the
2758 		 * interface has been started up and registered.
2759 		 */
2760 		if (smi_info->thread != NULL)
2761 			kthread_stop(smi_info->thread);
2762 		del_timer_sync(&smi_info->si_timer);
2763 	}
2764 }
2765 
2766 static __devinitdata struct ipmi_default_vals
2767 {
2768 	int type;
2769 	int port;
2770 } ipmi_defaults[] =
2771 {
2772 	{ .type = SI_KCS, .port = 0xca2 },
2773 	{ .type = SI_SMIC, .port = 0xca9 },
2774 	{ .type = SI_BT, .port = 0xe4 },
2775 	{ .port = 0 }
2776 };
2777 
2778 static __devinit void default_find_bmc(void)
2779 {
2780 	struct smi_info *info;
2781 	int             i;
2782 
2783 	for (i = 0; ; i++) {
2784 		if (!ipmi_defaults[i].port)
2785 			break;
2786 #ifdef CONFIG_PPC
2787 		if (check_legacy_ioport(ipmi_defaults[i].port))
2788 			continue;
2789 #endif
2790 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2791 		if (!info)
2792 			return;
2793 
2794 		info->addr_source = NULL;
2795 
2796 		info->si_type = ipmi_defaults[i].type;
2797 		info->io_setup = port_setup;
2798 		info->io.addr_data = ipmi_defaults[i].port;
2799 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2800 
2801 		info->io.addr = NULL;
2802 		info->io.regspacing = DEFAULT_REGSPACING;
2803 		info->io.regsize = DEFAULT_REGSPACING;
2804 		info->io.regshift = 0;
2805 
2806 		if (try_smi_init(info) == 0) {
2807 			/* Found one... */
2808 			printk(KERN_INFO "ipmi_si: Found default %s state"
2809 			       " machine at %s address 0x%lx\n",
2810 			       si_to_str[info->si_type],
2811 			       addr_space_to_str[info->io.addr_type],
2812 			       info->io.addr_data);
2813 			return;
2814 		}
2815 	}
2816 }
2817 
2818 static int is_new_interface(struct smi_info *info)
2819 {
2820 	struct smi_info *e;
2821 
2822 	list_for_each_entry(e, &smi_infos, link) {
2823 		if (e->io.addr_type != info->io.addr_type)
2824 			continue;
2825 		if (e->io.addr_data == info->io.addr_data)
2826 			return 0;
2827 	}
2828 
2829 	return 1;
2830 }
2831 
2832 static int try_smi_init(struct smi_info *new_smi)
2833 {
2834 	int rv;
2835 	int i;
2836 
2837 	if (new_smi->addr_source) {
2838 		printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2839 		       " machine at %s address 0x%lx, slave address 0x%x,"
2840 		       " irq %d\n",
2841 		       new_smi->addr_source,
2842 		       si_to_str[new_smi->si_type],
2843 		       addr_space_to_str[new_smi->io.addr_type],
2844 		       new_smi->io.addr_data,
2845 		       new_smi->slave_addr, new_smi->irq);
2846 	}
2847 
2848 	mutex_lock(&smi_infos_lock);
2849 	if (!is_new_interface(new_smi)) {
2850 		printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2851 		rv = -EBUSY;
2852 		goto out_err;
2853 	}
2854 
2855 	/* So we know not to free it unless we have allocated one. */
2856 	new_smi->intf = NULL;
2857 	new_smi->si_sm = NULL;
2858 	new_smi->handlers = NULL;
2859 
2860 	switch (new_smi->si_type) {
2861 	case SI_KCS:
2862 		new_smi->handlers = &kcs_smi_handlers;
2863 		break;
2864 
2865 	case SI_SMIC:
2866 		new_smi->handlers = &smic_smi_handlers;
2867 		break;
2868 
2869 	case SI_BT:
2870 		new_smi->handlers = &bt_smi_handlers;
2871 		break;
2872 
2873 	default:
2874 		/* No support for anything else yet. */
2875 		rv = -EIO;
2876 		goto out_err;
2877 	}
2878 
2879 	/* Allocate the state machine's data and initialize it. */
2880 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2881 	if (!new_smi->si_sm) {
2882 		printk(KERN_ERR "Could not allocate state machine memory\n");
2883 		rv = -ENOMEM;
2884 		goto out_err;
2885 	}
2886 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2887 							&new_smi->io);
2888 
2889 	/* Now that we know the I/O size, we can set up the I/O. */
2890 	rv = new_smi->io_setup(new_smi);
2891 	if (rv) {
2892 		printk(KERN_ERR "Could not set up I/O space\n");
2893 		goto out_err;
2894 	}
2895 
2896 	spin_lock_init(&(new_smi->si_lock));
2897 	spin_lock_init(&(new_smi->msg_lock));
2898 
2899 	/* Do low-level detection first. */
2900 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2901 		if (new_smi->addr_source)
2902 			printk(KERN_INFO "ipmi_si: Interface detection"
2903 			       " failed\n");
2904 		rv = -ENODEV;
2905 		goto out_err;
2906 	}
2907 
2908 	/*
2909 	 * Attempt a get device id command.  If it fails, we probably
2910 	 * don't have a BMC here.
2911 	 */
2912 	rv = try_get_dev_id(new_smi);
2913 	if (rv) {
2914 		if (new_smi->addr_source)
2915 			printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2916 			       " at this location\n");
2917 		goto out_err;
2918 	}
2919 
2920 	setup_oem_data_handler(new_smi);
2921 	setup_xaction_handlers(new_smi);
2922 
2923 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2924 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2925 	new_smi->curr_msg = NULL;
2926 	atomic_set(&new_smi->req_events, 0);
2927 	new_smi->run_to_completion = 0;
2928 	for (i = 0; i < SI_NUM_STATS; i++)
2929 		atomic_set(&new_smi->stats[i], 0);
2930 
2931 	new_smi->interrupt_disabled = 0;
2932 	atomic_set(&new_smi->stop_operation, 0);
2933 	new_smi->intf_num = smi_num;
2934 	smi_num++;
2935 
2936 	rv = try_enable_event_buffer(new_smi);
2937 	if (rv == 0)
2938 		new_smi->has_event_buffer = 1;
2939 
2940 	/*
2941 	 * Start clearing the flags before we enable interrupts or the
2942 	 * timer to avoid racing with the timer.
2943 	 */
2944 	start_clear_flags(new_smi);
2945 	/* IRQ is defined to be set when non-zero. */
2946 	if (new_smi->irq)
2947 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2948 
2949 	if (!new_smi->dev) {
2950 		/*
2951 		 * If we don't already have a device from something
2952 		 * else (like PCI), then register a new one.
2953 		 */
2954 		new_smi->pdev = platform_device_alloc("ipmi_si",
2955 						      new_smi->intf_num);
2956 		if (!new_smi->pdev) {
2957 			printk(KERN_ERR
2958 			       "ipmi_si_intf:"
2959 			       " Unable to allocate platform device\n");
2960 			goto out_err;
2961 		}
2962 		new_smi->dev = &new_smi->pdev->dev;
2963 		new_smi->dev->driver = &ipmi_driver.driver;
2964 
2965 		rv = platform_device_add(new_smi->pdev);
2966 		if (rv) {
2967 			printk(KERN_ERR
2968 			       "ipmi_si_intf:"
2969 			       " Unable to register system interface device:"
2970 			       " %d\n",
2971 			       rv);
2972 			goto out_err;
2973 		}
2974 		new_smi->dev_registered = 1;
2975 	}
2976 
2977 	rv = ipmi_register_smi(&handlers,
2978 			       new_smi,
2979 			       &new_smi->device_id,
2980 			       new_smi->dev,
2981 			       "bmc",
2982 			       new_smi->slave_addr);
2983 	if (rv) {
2984 		printk(KERN_ERR
2985 		       "ipmi_si: Unable to register device: error %d\n",
2986 		       rv);
2987 		goto out_err_stop_timer;
2988 	}
2989 
2990 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2991 				     type_file_read_proc,
2992 				     new_smi);
2993 	if (rv) {
2994 		printk(KERN_ERR
2995 		       "ipmi_si: Unable to create proc entry: %d\n",
2996 		       rv);
2997 		goto out_err_stop_timer;
2998 	}
2999 
3000 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3001 				     stat_file_read_proc,
3002 				     new_smi);
3003 	if (rv) {
3004 		printk(KERN_ERR
3005 		       "ipmi_si: Unable to create proc entry: %d\n",
3006 		       rv);
3007 		goto out_err_stop_timer;
3008 	}
3009 
3010 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3011 				     param_read_proc,
3012 				     new_smi);
3013 	if (rv) {
3014 		printk(KERN_ERR
3015 		       "ipmi_si: Unable to create proc entry: %d\n",
3016 		       rv);
3017 		goto out_err_stop_timer;
3018 	}
3019 
3020 	list_add_tail(&new_smi->link, &smi_infos);
3021 
3022 	mutex_unlock(&smi_infos_lock);
3023 
3024 	printk(KERN_INFO "IPMI %s interface initialized\n",
3025 	       si_to_str[new_smi->si_type]);
3026 
3027 	return 0;
3028 
3029  out_err_stop_timer:
3030 	atomic_inc(&new_smi->stop_operation);
3031 	wait_for_timer_and_thread(new_smi);
3032 
3033  out_err:
3034 	if (new_smi->intf)
3035 		ipmi_unregister_smi(new_smi->intf);
3036 
3037 	if (new_smi->irq_cleanup)
3038 		new_smi->irq_cleanup(new_smi);
3039 
3040 	/*
3041 	 * Wait until we know that we are out of any interrupt
3042 	 * handlers might have been running before we freed the
3043 	 * interrupt.
3044 	 */
3045 	synchronize_sched();
3046 
3047 	if (new_smi->si_sm) {
3048 		if (new_smi->handlers)
3049 			new_smi->handlers->cleanup(new_smi->si_sm);
3050 		kfree(new_smi->si_sm);
3051 	}
3052 	if (new_smi->addr_source_cleanup)
3053 		new_smi->addr_source_cleanup(new_smi);
3054 	if (new_smi->io_cleanup)
3055 		new_smi->io_cleanup(new_smi);
3056 
3057 	if (new_smi->dev_registered)
3058 		platform_device_unregister(new_smi->pdev);
3059 
3060 	kfree(new_smi);
3061 
3062 	mutex_unlock(&smi_infos_lock);
3063 
3064 	return rv;
3065 }
3066 
3067 static __devinit int init_ipmi_si(void)
3068 {
3069 	int  i;
3070 	char *str;
3071 	int  rv;
3072 
3073 	if (initialized)
3074 		return 0;
3075 	initialized = 1;
3076 
3077 	/* Register the device drivers. */
3078 	rv = driver_register(&ipmi_driver.driver);
3079 	if (rv) {
3080 		printk(KERN_ERR
3081 		       "init_ipmi_si: Unable to register driver: %d\n",
3082 		       rv);
3083 		return rv;
3084 	}
3085 
3086 
3087 	/* Parse out the si_type string into its components. */
3088 	str = si_type_str;
3089 	if (*str != '\0') {
3090 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3091 			si_type[i] = str;
3092 			str = strchr(str, ',');
3093 			if (str) {
3094 				*str = '\0';
3095 				str++;
3096 			} else {
3097 				break;
3098 			}
3099 		}
3100 	}
3101 
3102 	printk(KERN_INFO "IPMI System Interface driver.\n");
3103 
3104 	hardcode_find_bmc();
3105 
3106 #ifdef CONFIG_DMI
3107 	dmi_find_bmc();
3108 #endif
3109 
3110 #ifdef CONFIG_ACPI
3111 	acpi_find_bmc();
3112 #endif
3113 
3114 #ifdef CONFIG_PCI
3115 	rv = pci_register_driver(&ipmi_pci_driver);
3116 	if (rv)
3117 		printk(KERN_ERR
3118 		       "init_ipmi_si: Unable to register PCI driver: %d\n",
3119 		       rv);
3120 #endif
3121 
3122 #ifdef CONFIG_PPC_OF
3123 	of_register_platform_driver(&ipmi_of_platform_driver);
3124 #endif
3125 
3126 	if (si_trydefaults) {
3127 		mutex_lock(&smi_infos_lock);
3128 		if (list_empty(&smi_infos)) {
3129 			/* No BMC was found, try defaults. */
3130 			mutex_unlock(&smi_infos_lock);
3131 			default_find_bmc();
3132 		} else {
3133 			mutex_unlock(&smi_infos_lock);
3134 		}
3135 	}
3136 
3137 	mutex_lock(&smi_infos_lock);
3138 	if (unload_when_empty && list_empty(&smi_infos)) {
3139 		mutex_unlock(&smi_infos_lock);
3140 #ifdef CONFIG_PCI
3141 		pci_unregister_driver(&ipmi_pci_driver);
3142 #endif
3143 
3144 #ifdef CONFIG_PPC_OF
3145 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3146 #endif
3147 		driver_unregister(&ipmi_driver.driver);
3148 		printk(KERN_WARNING
3149 		       "ipmi_si: Unable to find any System Interface(s)\n");
3150 		return -ENODEV;
3151 	} else {
3152 		mutex_unlock(&smi_infos_lock);
3153 		return 0;
3154 	}
3155 }
3156 module_init(init_ipmi_si);
3157 
3158 static void cleanup_one_si(struct smi_info *to_clean)
3159 {
3160 	int           rv;
3161 	unsigned long flags;
3162 
3163 	if (!to_clean)
3164 		return;
3165 
3166 	list_del(&to_clean->link);
3167 
3168 	/* Tell the driver that we are shutting down. */
3169 	atomic_inc(&to_clean->stop_operation);
3170 
3171 	/*
3172 	 * Make sure the timer and thread are stopped and will not run
3173 	 * again.
3174 	 */
3175 	wait_for_timer_and_thread(to_clean);
3176 
3177 	/*
3178 	 * Timeouts are stopped, now make sure the interrupts are off
3179 	 * for the device.  A little tricky with locks to make sure
3180 	 * there are no races.
3181 	 */
3182 	spin_lock_irqsave(&to_clean->si_lock, flags);
3183 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3184 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3185 		poll(to_clean);
3186 		schedule_timeout_uninterruptible(1);
3187 		spin_lock_irqsave(&to_clean->si_lock, flags);
3188 	}
3189 	disable_si_irq(to_clean);
3190 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3191 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3192 		poll(to_clean);
3193 		schedule_timeout_uninterruptible(1);
3194 	}
3195 
3196 	/* Clean up interrupts and make sure that everything is done. */
3197 	if (to_clean->irq_cleanup)
3198 		to_clean->irq_cleanup(to_clean);
3199 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3200 		poll(to_clean);
3201 		schedule_timeout_uninterruptible(1);
3202 	}
3203 
3204 	rv = ipmi_unregister_smi(to_clean->intf);
3205 	if (rv) {
3206 		printk(KERN_ERR
3207 		       "ipmi_si: Unable to unregister device: errno=%d\n",
3208 		       rv);
3209 	}
3210 
3211 	to_clean->handlers->cleanup(to_clean->si_sm);
3212 
3213 	kfree(to_clean->si_sm);
3214 
3215 	if (to_clean->addr_source_cleanup)
3216 		to_clean->addr_source_cleanup(to_clean);
3217 	if (to_clean->io_cleanup)
3218 		to_clean->io_cleanup(to_clean);
3219 
3220 	if (to_clean->dev_registered)
3221 		platform_device_unregister(to_clean->pdev);
3222 
3223 	kfree(to_clean);
3224 }
3225 
3226 static __exit void cleanup_ipmi_si(void)
3227 {
3228 	struct smi_info *e, *tmp_e;
3229 
3230 	if (!initialized)
3231 		return;
3232 
3233 #ifdef CONFIG_PCI
3234 	pci_unregister_driver(&ipmi_pci_driver);
3235 #endif
3236 
3237 #ifdef CONFIG_PPC_OF
3238 	of_unregister_platform_driver(&ipmi_of_platform_driver);
3239 #endif
3240 
3241 	mutex_lock(&smi_infos_lock);
3242 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3243 		cleanup_one_si(e);
3244 	mutex_unlock(&smi_infos_lock);
3245 
3246 	driver_unregister(&ipmi_driver.driver);
3247 }
3248 module_exit(cleanup_ipmi_si);
3249 
3250 MODULE_LICENSE("GPL");
3251 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3252 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3253 		   " system interfaces.");
3254