1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <asm/system.h> 45 #include <linux/sched.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi_smi.h> 61 #include <asm/io.h> 62 #include "ipmi_si_sm.h" 63 #include <linux/init.h> 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 68 #ifdef CONFIG_PPC_OF 69 #include <linux/of_device.h> 70 #include <linux/of_platform.h> 71 #endif 72 73 #define PFX "ipmi_si: " 74 75 /* Measure times between events in the driver. */ 76 #undef DEBUG_TIMING 77 78 /* Call every 10 ms. */ 79 #define SI_TIMEOUT_TIME_USEC 10000 80 #define SI_USEC_PER_JIFFY (1000000/HZ) 81 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 82 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 83 short timeout */ 84 85 enum si_intf_state { 86 SI_NORMAL, 87 SI_GETTING_FLAGS, 88 SI_GETTING_EVENTS, 89 SI_CLEARING_FLAGS, 90 SI_CLEARING_FLAGS_THEN_SET_IRQ, 91 SI_GETTING_MESSAGES, 92 SI_ENABLE_INTERRUPTS1, 93 SI_ENABLE_INTERRUPTS2, 94 SI_DISABLE_INTERRUPTS1, 95 SI_DISABLE_INTERRUPTS2 96 /* FIXME - add watchdog stuff. */ 97 }; 98 99 /* Some BT-specific defines we need here. */ 100 #define IPMI_BT_INTMASK_REG 2 101 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 102 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 103 104 enum si_type { 105 SI_KCS, SI_SMIC, SI_BT 106 }; 107 static char *si_to_str[] = { "kcs", "smic", "bt" }; 108 109 #define DEVICE_NAME "ipmi_si" 110 111 static struct platform_driver ipmi_driver = { 112 .driver = { 113 .name = DEVICE_NAME, 114 .bus = &platform_bus_type 115 } 116 }; 117 118 119 /* 120 * Indexes into stats[] in smi_info below. 121 */ 122 enum si_stat_indexes { 123 /* 124 * Number of times the driver requested a timer while an operation 125 * was in progress. 126 */ 127 SI_STAT_short_timeouts = 0, 128 129 /* 130 * Number of times the driver requested a timer while nothing was in 131 * progress. 132 */ 133 SI_STAT_long_timeouts, 134 135 /* Number of times the interface was idle while being polled. */ 136 SI_STAT_idles, 137 138 /* Number of interrupts the driver handled. */ 139 SI_STAT_interrupts, 140 141 /* Number of time the driver got an ATTN from the hardware. */ 142 SI_STAT_attentions, 143 144 /* Number of times the driver requested flags from the hardware. */ 145 SI_STAT_flag_fetches, 146 147 /* Number of times the hardware didn't follow the state machine. */ 148 SI_STAT_hosed_count, 149 150 /* Number of completed messages. */ 151 SI_STAT_complete_transactions, 152 153 /* Number of IPMI events received from the hardware. */ 154 SI_STAT_events, 155 156 /* Number of watchdog pretimeouts. */ 157 SI_STAT_watchdog_pretimeouts, 158 159 /* Number of asyncronous messages received. */ 160 SI_STAT_incoming_messages, 161 162 163 /* This *must* remain last, add new values above this. */ 164 SI_NUM_STATS 165 }; 166 167 struct smi_info { 168 int intf_num; 169 ipmi_smi_t intf; 170 struct si_sm_data *si_sm; 171 struct si_sm_handlers *handlers; 172 enum si_type si_type; 173 spinlock_t si_lock; 174 spinlock_t msg_lock; 175 struct list_head xmit_msgs; 176 struct list_head hp_xmit_msgs; 177 struct ipmi_smi_msg *curr_msg; 178 enum si_intf_state si_state; 179 180 /* 181 * Used to handle the various types of I/O that can occur with 182 * IPMI 183 */ 184 struct si_sm_io io; 185 int (*io_setup)(struct smi_info *info); 186 void (*io_cleanup)(struct smi_info *info); 187 int (*irq_setup)(struct smi_info *info); 188 void (*irq_cleanup)(struct smi_info *info); 189 unsigned int io_size; 190 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */ 191 void (*addr_source_cleanup)(struct smi_info *info); 192 void *addr_source_data; 193 194 /* 195 * Per-OEM handler, called from handle_flags(). Returns 1 196 * when handle_flags() needs to be re-run or 0 indicating it 197 * set si_state itself. 198 */ 199 int (*oem_data_avail_handler)(struct smi_info *smi_info); 200 201 /* 202 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 203 * is set to hold the flags until we are done handling everything 204 * from the flags. 205 */ 206 #define RECEIVE_MSG_AVAIL 0x01 207 #define EVENT_MSG_BUFFER_FULL 0x02 208 #define WDT_PRE_TIMEOUT_INT 0x08 209 #define OEM0_DATA_AVAIL 0x20 210 #define OEM1_DATA_AVAIL 0x40 211 #define OEM2_DATA_AVAIL 0x80 212 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 213 OEM1_DATA_AVAIL | \ 214 OEM2_DATA_AVAIL) 215 unsigned char msg_flags; 216 217 /* Does the BMC have an event buffer? */ 218 char has_event_buffer; 219 220 /* 221 * If set to true, this will request events the next time the 222 * state machine is idle. 223 */ 224 atomic_t req_events; 225 226 /* 227 * If true, run the state machine to completion on every send 228 * call. Generally used after a panic to make sure stuff goes 229 * out. 230 */ 231 int run_to_completion; 232 233 /* The I/O port of an SI interface. */ 234 int port; 235 236 /* 237 * The space between start addresses of the two ports. For 238 * instance, if the first port is 0xca2 and the spacing is 4, then 239 * the second port is 0xca6. 240 */ 241 unsigned int spacing; 242 243 /* zero if no irq; */ 244 int irq; 245 246 /* The timer for this si. */ 247 struct timer_list si_timer; 248 249 /* The time (in jiffies) the last timeout occurred at. */ 250 unsigned long last_timeout_jiffies; 251 252 /* Used to gracefully stop the timer without race conditions. */ 253 atomic_t stop_operation; 254 255 /* 256 * The driver will disable interrupts when it gets into a 257 * situation where it cannot handle messages due to lack of 258 * memory. Once that situation clears up, it will re-enable 259 * interrupts. 260 */ 261 int interrupt_disabled; 262 263 /* From the get device id response... */ 264 struct ipmi_device_id device_id; 265 266 /* Driver model stuff. */ 267 struct device *dev; 268 struct platform_device *pdev; 269 270 /* 271 * True if we allocated the device, false if it came from 272 * someplace else (like PCI). 273 */ 274 int dev_registered; 275 276 /* Slave address, could be reported from DMI. */ 277 unsigned char slave_addr; 278 279 /* Counters and things for the proc filesystem. */ 280 atomic_t stats[SI_NUM_STATS]; 281 282 struct task_struct *thread; 283 284 struct list_head link; 285 }; 286 287 #define smi_inc_stat(smi, stat) \ 288 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 289 #define smi_get_stat(smi, stat) \ 290 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 291 292 #define SI_MAX_PARMS 4 293 294 static int force_kipmid[SI_MAX_PARMS]; 295 static int num_force_kipmid; 296 297 static int unload_when_empty = 1; 298 299 static int try_smi_init(struct smi_info *smi); 300 static void cleanup_one_si(struct smi_info *to_clean); 301 302 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 303 static int register_xaction_notifier(struct notifier_block *nb) 304 { 305 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 306 } 307 308 static void deliver_recv_msg(struct smi_info *smi_info, 309 struct ipmi_smi_msg *msg) 310 { 311 /* Deliver the message to the upper layer with the lock 312 released. */ 313 spin_unlock(&(smi_info->si_lock)); 314 ipmi_smi_msg_received(smi_info->intf, msg); 315 spin_lock(&(smi_info->si_lock)); 316 } 317 318 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 319 { 320 struct ipmi_smi_msg *msg = smi_info->curr_msg; 321 322 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 323 cCode = IPMI_ERR_UNSPECIFIED; 324 /* else use it as is */ 325 326 /* Make it a reponse */ 327 msg->rsp[0] = msg->data[0] | 4; 328 msg->rsp[1] = msg->data[1]; 329 msg->rsp[2] = cCode; 330 msg->rsp_size = 3; 331 332 smi_info->curr_msg = NULL; 333 deliver_recv_msg(smi_info, msg); 334 } 335 336 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 337 { 338 int rv; 339 struct list_head *entry = NULL; 340 #ifdef DEBUG_TIMING 341 struct timeval t; 342 #endif 343 344 /* 345 * No need to save flags, we aleady have interrupts off and we 346 * already hold the SMI lock. 347 */ 348 if (!smi_info->run_to_completion) 349 spin_lock(&(smi_info->msg_lock)); 350 351 /* Pick the high priority queue first. */ 352 if (!list_empty(&(smi_info->hp_xmit_msgs))) { 353 entry = smi_info->hp_xmit_msgs.next; 354 } else if (!list_empty(&(smi_info->xmit_msgs))) { 355 entry = smi_info->xmit_msgs.next; 356 } 357 358 if (!entry) { 359 smi_info->curr_msg = NULL; 360 rv = SI_SM_IDLE; 361 } else { 362 int err; 363 364 list_del(entry); 365 smi_info->curr_msg = list_entry(entry, 366 struct ipmi_smi_msg, 367 link); 368 #ifdef DEBUG_TIMING 369 do_gettimeofday(&t); 370 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); 371 #endif 372 err = atomic_notifier_call_chain(&xaction_notifier_list, 373 0, smi_info); 374 if (err & NOTIFY_STOP_MASK) { 375 rv = SI_SM_CALL_WITHOUT_DELAY; 376 goto out; 377 } 378 err = smi_info->handlers->start_transaction( 379 smi_info->si_sm, 380 smi_info->curr_msg->data, 381 smi_info->curr_msg->data_size); 382 if (err) 383 return_hosed_msg(smi_info, err); 384 385 rv = SI_SM_CALL_WITHOUT_DELAY; 386 } 387 out: 388 if (!smi_info->run_to_completion) 389 spin_unlock(&(smi_info->msg_lock)); 390 391 return rv; 392 } 393 394 static void start_enable_irq(struct smi_info *smi_info) 395 { 396 unsigned char msg[2]; 397 398 /* 399 * If we are enabling interrupts, we have to tell the 400 * BMC to use them. 401 */ 402 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 403 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 404 405 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 406 smi_info->si_state = SI_ENABLE_INTERRUPTS1; 407 } 408 409 static void start_disable_irq(struct smi_info *smi_info) 410 { 411 unsigned char msg[2]; 412 413 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 414 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 415 416 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 417 smi_info->si_state = SI_DISABLE_INTERRUPTS1; 418 } 419 420 static void start_clear_flags(struct smi_info *smi_info) 421 { 422 unsigned char msg[3]; 423 424 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 425 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 426 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 427 msg[2] = WDT_PRE_TIMEOUT_INT; 428 429 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 430 smi_info->si_state = SI_CLEARING_FLAGS; 431 } 432 433 /* 434 * When we have a situtaion where we run out of memory and cannot 435 * allocate messages, we just leave them in the BMC and run the system 436 * polled until we can allocate some memory. Once we have some 437 * memory, we will re-enable the interrupt. 438 */ 439 static inline void disable_si_irq(struct smi_info *smi_info) 440 { 441 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 442 start_disable_irq(smi_info); 443 smi_info->interrupt_disabled = 1; 444 } 445 } 446 447 static inline void enable_si_irq(struct smi_info *smi_info) 448 { 449 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 450 start_enable_irq(smi_info); 451 smi_info->interrupt_disabled = 0; 452 } 453 } 454 455 static void handle_flags(struct smi_info *smi_info) 456 { 457 retry: 458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 459 /* Watchdog pre-timeout */ 460 smi_inc_stat(smi_info, watchdog_pretimeouts); 461 462 start_clear_flags(smi_info); 463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 464 spin_unlock(&(smi_info->si_lock)); 465 ipmi_smi_watchdog_pretimeout(smi_info->intf); 466 spin_lock(&(smi_info->si_lock)); 467 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 468 /* Messages available. */ 469 smi_info->curr_msg = ipmi_alloc_smi_msg(); 470 if (!smi_info->curr_msg) { 471 disable_si_irq(smi_info); 472 smi_info->si_state = SI_NORMAL; 473 return; 474 } 475 enable_si_irq(smi_info); 476 477 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 478 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 479 smi_info->curr_msg->data_size = 2; 480 481 smi_info->handlers->start_transaction( 482 smi_info->si_sm, 483 smi_info->curr_msg->data, 484 smi_info->curr_msg->data_size); 485 smi_info->si_state = SI_GETTING_MESSAGES; 486 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 487 /* Events available. */ 488 smi_info->curr_msg = ipmi_alloc_smi_msg(); 489 if (!smi_info->curr_msg) { 490 disable_si_irq(smi_info); 491 smi_info->si_state = SI_NORMAL; 492 return; 493 } 494 enable_si_irq(smi_info); 495 496 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 497 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 498 smi_info->curr_msg->data_size = 2; 499 500 smi_info->handlers->start_transaction( 501 smi_info->si_sm, 502 smi_info->curr_msg->data, 503 smi_info->curr_msg->data_size); 504 smi_info->si_state = SI_GETTING_EVENTS; 505 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 506 smi_info->oem_data_avail_handler) { 507 if (smi_info->oem_data_avail_handler(smi_info)) 508 goto retry; 509 } else 510 smi_info->si_state = SI_NORMAL; 511 } 512 513 static void handle_transaction_done(struct smi_info *smi_info) 514 { 515 struct ipmi_smi_msg *msg; 516 #ifdef DEBUG_TIMING 517 struct timeval t; 518 519 do_gettimeofday(&t); 520 printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); 521 #endif 522 switch (smi_info->si_state) { 523 case SI_NORMAL: 524 if (!smi_info->curr_msg) 525 break; 526 527 smi_info->curr_msg->rsp_size 528 = smi_info->handlers->get_result( 529 smi_info->si_sm, 530 smi_info->curr_msg->rsp, 531 IPMI_MAX_MSG_LENGTH); 532 533 /* 534 * Do this here becase deliver_recv_msg() releases the 535 * lock, and a new message can be put in during the 536 * time the lock is released. 537 */ 538 msg = smi_info->curr_msg; 539 smi_info->curr_msg = NULL; 540 deliver_recv_msg(smi_info, msg); 541 break; 542 543 case SI_GETTING_FLAGS: 544 { 545 unsigned char msg[4]; 546 unsigned int len; 547 548 /* We got the flags from the SMI, now handle them. */ 549 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 550 if (msg[2] != 0) { 551 /* Error fetching flags, just give up for now. */ 552 smi_info->si_state = SI_NORMAL; 553 } else if (len < 4) { 554 /* 555 * Hmm, no flags. That's technically illegal, but 556 * don't use uninitialized data. 557 */ 558 smi_info->si_state = SI_NORMAL; 559 } else { 560 smi_info->msg_flags = msg[3]; 561 handle_flags(smi_info); 562 } 563 break; 564 } 565 566 case SI_CLEARING_FLAGS: 567 case SI_CLEARING_FLAGS_THEN_SET_IRQ: 568 { 569 unsigned char msg[3]; 570 571 /* We cleared the flags. */ 572 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 573 if (msg[2] != 0) { 574 /* Error clearing flags */ 575 printk(KERN_WARNING 576 "ipmi_si: Error clearing flags: %2.2x\n", 577 msg[2]); 578 } 579 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ) 580 start_enable_irq(smi_info); 581 else 582 smi_info->si_state = SI_NORMAL; 583 break; 584 } 585 586 case SI_GETTING_EVENTS: 587 { 588 smi_info->curr_msg->rsp_size 589 = smi_info->handlers->get_result( 590 smi_info->si_sm, 591 smi_info->curr_msg->rsp, 592 IPMI_MAX_MSG_LENGTH); 593 594 /* 595 * Do this here becase deliver_recv_msg() releases the 596 * lock, and a new message can be put in during the 597 * time the lock is released. 598 */ 599 msg = smi_info->curr_msg; 600 smi_info->curr_msg = NULL; 601 if (msg->rsp[2] != 0) { 602 /* Error getting event, probably done. */ 603 msg->done(msg); 604 605 /* Take off the event flag. */ 606 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 607 handle_flags(smi_info); 608 } else { 609 smi_inc_stat(smi_info, events); 610 611 /* 612 * Do this before we deliver the message 613 * because delivering the message releases the 614 * lock and something else can mess with the 615 * state. 616 */ 617 handle_flags(smi_info); 618 619 deliver_recv_msg(smi_info, msg); 620 } 621 break; 622 } 623 624 case SI_GETTING_MESSAGES: 625 { 626 smi_info->curr_msg->rsp_size 627 = smi_info->handlers->get_result( 628 smi_info->si_sm, 629 smi_info->curr_msg->rsp, 630 IPMI_MAX_MSG_LENGTH); 631 632 /* 633 * Do this here becase deliver_recv_msg() releases the 634 * lock, and a new message can be put in during the 635 * time the lock is released. 636 */ 637 msg = smi_info->curr_msg; 638 smi_info->curr_msg = NULL; 639 if (msg->rsp[2] != 0) { 640 /* Error getting event, probably done. */ 641 msg->done(msg); 642 643 /* Take off the msg flag. */ 644 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 645 handle_flags(smi_info); 646 } else { 647 smi_inc_stat(smi_info, incoming_messages); 648 649 /* 650 * Do this before we deliver the message 651 * because delivering the message releases the 652 * lock and something else can mess with the 653 * state. 654 */ 655 handle_flags(smi_info); 656 657 deliver_recv_msg(smi_info, msg); 658 } 659 break; 660 } 661 662 case SI_ENABLE_INTERRUPTS1: 663 { 664 unsigned char msg[4]; 665 666 /* We got the flags from the SMI, now handle them. */ 667 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 668 if (msg[2] != 0) { 669 printk(KERN_WARNING 670 "ipmi_si: Could not enable interrupts" 671 ", failed get, using polled mode.\n"); 672 smi_info->si_state = SI_NORMAL; 673 } else { 674 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 675 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 676 msg[2] = (msg[3] | 677 IPMI_BMC_RCV_MSG_INTR | 678 IPMI_BMC_EVT_MSG_INTR); 679 smi_info->handlers->start_transaction( 680 smi_info->si_sm, msg, 3); 681 smi_info->si_state = SI_ENABLE_INTERRUPTS2; 682 } 683 break; 684 } 685 686 case SI_ENABLE_INTERRUPTS2: 687 { 688 unsigned char msg[4]; 689 690 /* We got the flags from the SMI, now handle them. */ 691 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 692 if (msg[2] != 0) { 693 printk(KERN_WARNING 694 "ipmi_si: Could not enable interrupts" 695 ", failed set, using polled mode.\n"); 696 } 697 smi_info->si_state = SI_NORMAL; 698 break; 699 } 700 701 case SI_DISABLE_INTERRUPTS1: 702 { 703 unsigned char msg[4]; 704 705 /* We got the flags from the SMI, now handle them. */ 706 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 707 if (msg[2] != 0) { 708 printk(KERN_WARNING 709 "ipmi_si: Could not disable interrupts" 710 ", failed get.\n"); 711 smi_info->si_state = SI_NORMAL; 712 } else { 713 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 714 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 715 msg[2] = (msg[3] & 716 ~(IPMI_BMC_RCV_MSG_INTR | 717 IPMI_BMC_EVT_MSG_INTR)); 718 smi_info->handlers->start_transaction( 719 smi_info->si_sm, msg, 3); 720 smi_info->si_state = SI_DISABLE_INTERRUPTS2; 721 } 722 break; 723 } 724 725 case SI_DISABLE_INTERRUPTS2: 726 { 727 unsigned char msg[4]; 728 729 /* We got the flags from the SMI, now handle them. */ 730 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 731 if (msg[2] != 0) { 732 printk(KERN_WARNING 733 "ipmi_si: Could not disable interrupts" 734 ", failed set.\n"); 735 } 736 smi_info->si_state = SI_NORMAL; 737 break; 738 } 739 } 740 } 741 742 /* 743 * Called on timeouts and events. Timeouts should pass the elapsed 744 * time, interrupts should pass in zero. Must be called with 745 * si_lock held and interrupts disabled. 746 */ 747 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 748 int time) 749 { 750 enum si_sm_result si_sm_result; 751 752 restart: 753 /* 754 * There used to be a loop here that waited a little while 755 * (around 25us) before giving up. That turned out to be 756 * pointless, the minimum delays I was seeing were in the 300us 757 * range, which is far too long to wait in an interrupt. So 758 * we just run until the state machine tells us something 759 * happened or it needs a delay. 760 */ 761 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 762 time = 0; 763 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 764 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 765 766 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 767 smi_inc_stat(smi_info, complete_transactions); 768 769 handle_transaction_done(smi_info); 770 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 771 } else if (si_sm_result == SI_SM_HOSED) { 772 smi_inc_stat(smi_info, hosed_count); 773 774 /* 775 * Do the before return_hosed_msg, because that 776 * releases the lock. 777 */ 778 smi_info->si_state = SI_NORMAL; 779 if (smi_info->curr_msg != NULL) { 780 /* 781 * If we were handling a user message, format 782 * a response to send to the upper layer to 783 * tell it about the error. 784 */ 785 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 786 } 787 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 788 } 789 790 /* 791 * We prefer handling attn over new messages. But don't do 792 * this if there is not yet an upper layer to handle anything. 793 */ 794 if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) { 795 unsigned char msg[2]; 796 797 smi_inc_stat(smi_info, attentions); 798 799 /* 800 * Got a attn, send down a get message flags to see 801 * what's causing it. It would be better to handle 802 * this in the upper layer, but due to the way 803 * interrupts work with the SMI, that's not really 804 * possible. 805 */ 806 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 807 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 808 809 smi_info->handlers->start_transaction( 810 smi_info->si_sm, msg, 2); 811 smi_info->si_state = SI_GETTING_FLAGS; 812 goto restart; 813 } 814 815 /* If we are currently idle, try to start the next message. */ 816 if (si_sm_result == SI_SM_IDLE) { 817 smi_inc_stat(smi_info, idles); 818 819 si_sm_result = start_next_msg(smi_info); 820 if (si_sm_result != SI_SM_IDLE) 821 goto restart; 822 } 823 824 if ((si_sm_result == SI_SM_IDLE) 825 && (atomic_read(&smi_info->req_events))) { 826 /* 827 * We are idle and the upper layer requested that I fetch 828 * events, so do so. 829 */ 830 atomic_set(&smi_info->req_events, 0); 831 832 smi_info->curr_msg = ipmi_alloc_smi_msg(); 833 if (!smi_info->curr_msg) 834 goto out; 835 836 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 837 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 838 smi_info->curr_msg->data_size = 2; 839 840 smi_info->handlers->start_transaction( 841 smi_info->si_sm, 842 smi_info->curr_msg->data, 843 smi_info->curr_msg->data_size); 844 smi_info->si_state = SI_GETTING_EVENTS; 845 goto restart; 846 } 847 out: 848 return si_sm_result; 849 } 850 851 static void sender(void *send_info, 852 struct ipmi_smi_msg *msg, 853 int priority) 854 { 855 struct smi_info *smi_info = send_info; 856 enum si_sm_result result; 857 unsigned long flags; 858 #ifdef DEBUG_TIMING 859 struct timeval t; 860 #endif 861 862 if (atomic_read(&smi_info->stop_operation)) { 863 msg->rsp[0] = msg->data[0] | 4; 864 msg->rsp[1] = msg->data[1]; 865 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 866 msg->rsp_size = 3; 867 deliver_recv_msg(smi_info, msg); 868 return; 869 } 870 871 #ifdef DEBUG_TIMING 872 do_gettimeofday(&t); 873 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); 874 #endif 875 876 if (smi_info->run_to_completion) { 877 /* 878 * If we are running to completion, then throw it in 879 * the list and run transactions until everything is 880 * clear. Priority doesn't matter here. 881 */ 882 883 /* 884 * Run to completion means we are single-threaded, no 885 * need for locks. 886 */ 887 list_add_tail(&(msg->link), &(smi_info->xmit_msgs)); 888 889 result = smi_event_handler(smi_info, 0); 890 while (result != SI_SM_IDLE) { 891 udelay(SI_SHORT_TIMEOUT_USEC); 892 result = smi_event_handler(smi_info, 893 SI_SHORT_TIMEOUT_USEC); 894 } 895 return; 896 } 897 898 spin_lock_irqsave(&smi_info->msg_lock, flags); 899 if (priority > 0) 900 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs); 901 else 902 list_add_tail(&msg->link, &smi_info->xmit_msgs); 903 spin_unlock_irqrestore(&smi_info->msg_lock, flags); 904 905 spin_lock_irqsave(&smi_info->si_lock, flags); 906 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) 907 start_next_msg(smi_info); 908 spin_unlock_irqrestore(&smi_info->si_lock, flags); 909 } 910 911 static void set_run_to_completion(void *send_info, int i_run_to_completion) 912 { 913 struct smi_info *smi_info = send_info; 914 enum si_sm_result result; 915 916 smi_info->run_to_completion = i_run_to_completion; 917 if (i_run_to_completion) { 918 result = smi_event_handler(smi_info, 0); 919 while (result != SI_SM_IDLE) { 920 udelay(SI_SHORT_TIMEOUT_USEC); 921 result = smi_event_handler(smi_info, 922 SI_SHORT_TIMEOUT_USEC); 923 } 924 } 925 } 926 927 static int ipmi_thread(void *data) 928 { 929 struct smi_info *smi_info = data; 930 unsigned long flags; 931 enum si_sm_result smi_result; 932 933 set_user_nice(current, 19); 934 while (!kthread_should_stop()) { 935 spin_lock_irqsave(&(smi_info->si_lock), flags); 936 smi_result = smi_event_handler(smi_info, 0); 937 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 938 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 939 ; /* do nothing */ 940 else if (smi_result == SI_SM_CALL_WITH_DELAY) 941 schedule(); 942 else 943 schedule_timeout_interruptible(1); 944 } 945 return 0; 946 } 947 948 949 static void poll(void *send_info) 950 { 951 struct smi_info *smi_info = send_info; 952 unsigned long flags; 953 954 /* 955 * Make sure there is some delay in the poll loop so we can 956 * drive time forward and timeout things. 957 */ 958 udelay(10); 959 spin_lock_irqsave(&smi_info->si_lock, flags); 960 smi_event_handler(smi_info, 10); 961 spin_unlock_irqrestore(&smi_info->si_lock, flags); 962 } 963 964 static void request_events(void *send_info) 965 { 966 struct smi_info *smi_info = send_info; 967 968 if (atomic_read(&smi_info->stop_operation) || 969 !smi_info->has_event_buffer) 970 return; 971 972 atomic_set(&smi_info->req_events, 1); 973 } 974 975 static int initialized; 976 977 static void smi_timeout(unsigned long data) 978 { 979 struct smi_info *smi_info = (struct smi_info *) data; 980 enum si_sm_result smi_result; 981 unsigned long flags; 982 unsigned long jiffies_now; 983 long time_diff; 984 #ifdef DEBUG_TIMING 985 struct timeval t; 986 #endif 987 988 spin_lock_irqsave(&(smi_info->si_lock), flags); 989 #ifdef DEBUG_TIMING 990 do_gettimeofday(&t); 991 printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); 992 #endif 993 jiffies_now = jiffies; 994 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 995 * SI_USEC_PER_JIFFY); 996 smi_result = smi_event_handler(smi_info, time_diff); 997 998 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 999 1000 smi_info->last_timeout_jiffies = jiffies_now; 1001 1002 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1003 /* Running with interrupts, only do long timeouts. */ 1004 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 1005 smi_inc_stat(smi_info, long_timeouts); 1006 goto do_add_timer; 1007 } 1008 1009 /* 1010 * If the state machine asks for a short delay, then shorten 1011 * the timer timeout. 1012 */ 1013 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1014 smi_inc_stat(smi_info, short_timeouts); 1015 smi_info->si_timer.expires = jiffies + 1; 1016 } else { 1017 smi_inc_stat(smi_info, long_timeouts); 1018 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES; 1019 } 1020 1021 do_add_timer: 1022 add_timer(&(smi_info->si_timer)); 1023 } 1024 1025 static irqreturn_t si_irq_handler(int irq, void *data) 1026 { 1027 struct smi_info *smi_info = data; 1028 unsigned long flags; 1029 #ifdef DEBUG_TIMING 1030 struct timeval t; 1031 #endif 1032 1033 spin_lock_irqsave(&(smi_info->si_lock), flags); 1034 1035 smi_inc_stat(smi_info, interrupts); 1036 1037 #ifdef DEBUG_TIMING 1038 do_gettimeofday(&t); 1039 printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1040 #endif 1041 smi_event_handler(smi_info, 0); 1042 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1043 return IRQ_HANDLED; 1044 } 1045 1046 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1047 { 1048 struct smi_info *smi_info = data; 1049 /* We need to clear the IRQ flag for the BT interface. */ 1050 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1051 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1052 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1053 return si_irq_handler(irq, data); 1054 } 1055 1056 static int smi_start_processing(void *send_info, 1057 ipmi_smi_t intf) 1058 { 1059 struct smi_info *new_smi = send_info; 1060 int enable = 0; 1061 1062 new_smi->intf = intf; 1063 1064 /* Try to claim any interrupts. */ 1065 if (new_smi->irq_setup) 1066 new_smi->irq_setup(new_smi); 1067 1068 /* Set up the timer that drives the interface. */ 1069 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1070 new_smi->last_timeout_jiffies = jiffies; 1071 mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES); 1072 1073 /* 1074 * Check if the user forcefully enabled the daemon. 1075 */ 1076 if (new_smi->intf_num < num_force_kipmid) 1077 enable = force_kipmid[new_smi->intf_num]; 1078 /* 1079 * The BT interface is efficient enough to not need a thread, 1080 * and there is no need for a thread if we have interrupts. 1081 */ 1082 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1083 enable = 1; 1084 1085 if (enable) { 1086 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1087 "kipmi%d", new_smi->intf_num); 1088 if (IS_ERR(new_smi->thread)) { 1089 printk(KERN_NOTICE "ipmi_si_intf: Could not start" 1090 " kernel thread due to error %ld, only using" 1091 " timers to drive the interface\n", 1092 PTR_ERR(new_smi->thread)); 1093 new_smi->thread = NULL; 1094 } 1095 } 1096 1097 return 0; 1098 } 1099 1100 static void set_maintenance_mode(void *send_info, int enable) 1101 { 1102 struct smi_info *smi_info = send_info; 1103 1104 if (!enable) 1105 atomic_set(&smi_info->req_events, 0); 1106 } 1107 1108 static struct ipmi_smi_handlers handlers = { 1109 .owner = THIS_MODULE, 1110 .start_processing = smi_start_processing, 1111 .sender = sender, 1112 .request_events = request_events, 1113 .set_maintenance_mode = set_maintenance_mode, 1114 .set_run_to_completion = set_run_to_completion, 1115 .poll = poll, 1116 }; 1117 1118 /* 1119 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1120 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1121 */ 1122 1123 static LIST_HEAD(smi_infos); 1124 static DEFINE_MUTEX(smi_infos_lock); 1125 static int smi_num; /* Used to sequence the SMIs */ 1126 1127 #define DEFAULT_REGSPACING 1 1128 #define DEFAULT_REGSIZE 1 1129 1130 static int si_trydefaults = 1; 1131 static char *si_type[SI_MAX_PARMS]; 1132 #define MAX_SI_TYPE_STR 30 1133 static char si_type_str[MAX_SI_TYPE_STR]; 1134 static unsigned long addrs[SI_MAX_PARMS]; 1135 static unsigned int num_addrs; 1136 static unsigned int ports[SI_MAX_PARMS]; 1137 static unsigned int num_ports; 1138 static int irqs[SI_MAX_PARMS]; 1139 static unsigned int num_irqs; 1140 static int regspacings[SI_MAX_PARMS]; 1141 static unsigned int num_regspacings; 1142 static int regsizes[SI_MAX_PARMS]; 1143 static unsigned int num_regsizes; 1144 static int regshifts[SI_MAX_PARMS]; 1145 static unsigned int num_regshifts; 1146 static int slave_addrs[SI_MAX_PARMS]; 1147 static unsigned int num_slave_addrs; 1148 1149 #define IPMI_IO_ADDR_SPACE 0 1150 #define IPMI_MEM_ADDR_SPACE 1 1151 static char *addr_space_to_str[] = { "i/o", "mem" }; 1152 1153 static int hotmod_handler(const char *val, struct kernel_param *kp); 1154 1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1157 " Documentation/IPMI.txt in the kernel sources for the" 1158 " gory details."); 1159 1160 module_param_named(trydefaults, si_trydefaults, bool, 0); 1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1162 " default scan of the KCS and SMIC interface at the standard" 1163 " address"); 1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1166 " interface separated by commas. The types are 'kcs'," 1167 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1168 " the first interface to kcs and the second to bt"); 1169 module_param_array(addrs, ulong, &num_addrs, 0); 1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1171 " addresses separated by commas. Only use if an interface" 1172 " is in memory. Otherwise, set it to zero or leave" 1173 " it blank."); 1174 module_param_array(ports, uint, &num_ports, 0); 1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1176 " addresses separated by commas. Only use if an interface" 1177 " is a port. Otherwise, set it to zero or leave" 1178 " it blank."); 1179 module_param_array(irqs, int, &num_irqs, 0); 1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1181 " addresses separated by commas. Only use if an interface" 1182 " has an interrupt. Otherwise, set it to zero or leave" 1183 " it blank."); 1184 module_param_array(regspacings, int, &num_regspacings, 0); 1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1186 " and each successive register used by the interface. For" 1187 " instance, if the start address is 0xca2 and the spacing" 1188 " is 2, then the second address is at 0xca4. Defaults" 1189 " to 1."); 1190 module_param_array(regsizes, int, &num_regsizes, 0); 1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1192 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1193 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1194 " the 8-bit IPMI register has to be read from a larger" 1195 " register."); 1196 module_param_array(regshifts, int, &num_regshifts, 0); 1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1198 " IPMI register, in bits. For instance, if the data" 1199 " is read from a 32-bit word and the IPMI data is in" 1200 " bit 8-15, then the shift would be 8"); 1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1203 " the controller. Normally this is 0x20, but can be" 1204 " overridden by this parm. This is an array indexed" 1205 " by interface number."); 1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1208 " disabled(0). Normally the IPMI driver auto-detects" 1209 " this, but the value may be overridden by this parm."); 1210 module_param(unload_when_empty, int, 0); 1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1212 " specified or found, default is 1. Setting to 0" 1213 " is useful for hot add of devices using hotmod."); 1214 1215 1216 static void std_irq_cleanup(struct smi_info *info) 1217 { 1218 if (info->si_type == SI_BT) 1219 /* Disable the interrupt in the BT interface. */ 1220 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1221 free_irq(info->irq, info); 1222 } 1223 1224 static int std_irq_setup(struct smi_info *info) 1225 { 1226 int rv; 1227 1228 if (!info->irq) 1229 return 0; 1230 1231 if (info->si_type == SI_BT) { 1232 rv = request_irq(info->irq, 1233 si_bt_irq_handler, 1234 IRQF_SHARED | IRQF_DISABLED, 1235 DEVICE_NAME, 1236 info); 1237 if (!rv) 1238 /* Enable the interrupt in the BT interface. */ 1239 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1241 } else 1242 rv = request_irq(info->irq, 1243 si_irq_handler, 1244 IRQF_SHARED | IRQF_DISABLED, 1245 DEVICE_NAME, 1246 info); 1247 if (rv) { 1248 printk(KERN_WARNING 1249 "ipmi_si: %s unable to claim interrupt %d," 1250 " running polled\n", 1251 DEVICE_NAME, info->irq); 1252 info->irq = 0; 1253 } else { 1254 info->irq_cleanup = std_irq_cleanup; 1255 printk(" Using irq %d\n", info->irq); 1256 } 1257 1258 return rv; 1259 } 1260 1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1262 { 1263 unsigned int addr = io->addr_data; 1264 1265 return inb(addr + (offset * io->regspacing)); 1266 } 1267 1268 static void port_outb(struct si_sm_io *io, unsigned int offset, 1269 unsigned char b) 1270 { 1271 unsigned int addr = io->addr_data; 1272 1273 outb(b, addr + (offset * io->regspacing)); 1274 } 1275 1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1277 { 1278 unsigned int addr = io->addr_data; 1279 1280 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1281 } 1282 1283 static void port_outw(struct si_sm_io *io, unsigned int offset, 1284 unsigned char b) 1285 { 1286 unsigned int addr = io->addr_data; 1287 1288 outw(b << io->regshift, addr + (offset * io->regspacing)); 1289 } 1290 1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1292 { 1293 unsigned int addr = io->addr_data; 1294 1295 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1296 } 1297 1298 static void port_outl(struct si_sm_io *io, unsigned int offset, 1299 unsigned char b) 1300 { 1301 unsigned int addr = io->addr_data; 1302 1303 outl(b << io->regshift, addr+(offset * io->regspacing)); 1304 } 1305 1306 static void port_cleanup(struct smi_info *info) 1307 { 1308 unsigned int addr = info->io.addr_data; 1309 int idx; 1310 1311 if (addr) { 1312 for (idx = 0; idx < info->io_size; idx++) 1313 release_region(addr + idx * info->io.regspacing, 1314 info->io.regsize); 1315 } 1316 } 1317 1318 static int port_setup(struct smi_info *info) 1319 { 1320 unsigned int addr = info->io.addr_data; 1321 int idx; 1322 1323 if (!addr) 1324 return -ENODEV; 1325 1326 info->io_cleanup = port_cleanup; 1327 1328 /* 1329 * Figure out the actual inb/inw/inl/etc routine to use based 1330 * upon the register size. 1331 */ 1332 switch (info->io.regsize) { 1333 case 1: 1334 info->io.inputb = port_inb; 1335 info->io.outputb = port_outb; 1336 break; 1337 case 2: 1338 info->io.inputb = port_inw; 1339 info->io.outputb = port_outw; 1340 break; 1341 case 4: 1342 info->io.inputb = port_inl; 1343 info->io.outputb = port_outl; 1344 break; 1345 default: 1346 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n", 1347 info->io.regsize); 1348 return -EINVAL; 1349 } 1350 1351 /* 1352 * Some BIOSes reserve disjoint I/O regions in their ACPI 1353 * tables. This causes problems when trying to register the 1354 * entire I/O region. Therefore we must register each I/O 1355 * port separately. 1356 */ 1357 for (idx = 0; idx < info->io_size; idx++) { 1358 if (request_region(addr + idx * info->io.regspacing, 1359 info->io.regsize, DEVICE_NAME) == NULL) { 1360 /* Undo allocations */ 1361 while (idx--) { 1362 release_region(addr + idx * info->io.regspacing, 1363 info->io.regsize); 1364 } 1365 return -EIO; 1366 } 1367 } 1368 return 0; 1369 } 1370 1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1372 { 1373 return readb((io->addr)+(offset * io->regspacing)); 1374 } 1375 1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1377 unsigned char b) 1378 { 1379 writeb(b, (io->addr)+(offset * io->regspacing)); 1380 } 1381 1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1383 { 1384 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1385 & 0xff; 1386 } 1387 1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1389 unsigned char b) 1390 { 1391 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1392 } 1393 1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1395 { 1396 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1397 & 0xff; 1398 } 1399 1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1401 unsigned char b) 1402 { 1403 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1404 } 1405 1406 #ifdef readq 1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1408 { 1409 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1410 & 0xff; 1411 } 1412 1413 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1414 unsigned char b) 1415 { 1416 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1417 } 1418 #endif 1419 1420 static void mem_cleanup(struct smi_info *info) 1421 { 1422 unsigned long addr = info->io.addr_data; 1423 int mapsize; 1424 1425 if (info->io.addr) { 1426 iounmap(info->io.addr); 1427 1428 mapsize = ((info->io_size * info->io.regspacing) 1429 - (info->io.regspacing - info->io.regsize)); 1430 1431 release_mem_region(addr, mapsize); 1432 } 1433 } 1434 1435 static int mem_setup(struct smi_info *info) 1436 { 1437 unsigned long addr = info->io.addr_data; 1438 int mapsize; 1439 1440 if (!addr) 1441 return -ENODEV; 1442 1443 info->io_cleanup = mem_cleanup; 1444 1445 /* 1446 * Figure out the actual readb/readw/readl/etc routine to use based 1447 * upon the register size. 1448 */ 1449 switch (info->io.regsize) { 1450 case 1: 1451 info->io.inputb = intf_mem_inb; 1452 info->io.outputb = intf_mem_outb; 1453 break; 1454 case 2: 1455 info->io.inputb = intf_mem_inw; 1456 info->io.outputb = intf_mem_outw; 1457 break; 1458 case 4: 1459 info->io.inputb = intf_mem_inl; 1460 info->io.outputb = intf_mem_outl; 1461 break; 1462 #ifdef readq 1463 case 8: 1464 info->io.inputb = mem_inq; 1465 info->io.outputb = mem_outq; 1466 break; 1467 #endif 1468 default: 1469 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n", 1470 info->io.regsize); 1471 return -EINVAL; 1472 } 1473 1474 /* 1475 * Calculate the total amount of memory to claim. This is an 1476 * unusual looking calculation, but it avoids claiming any 1477 * more memory than it has to. It will claim everything 1478 * between the first address to the end of the last full 1479 * register. 1480 */ 1481 mapsize = ((info->io_size * info->io.regspacing) 1482 - (info->io.regspacing - info->io.regsize)); 1483 1484 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1485 return -EIO; 1486 1487 info->io.addr = ioremap(addr, mapsize); 1488 if (info->io.addr == NULL) { 1489 release_mem_region(addr, mapsize); 1490 return -EIO; 1491 } 1492 return 0; 1493 } 1494 1495 /* 1496 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1497 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1498 * Options are: 1499 * rsp=<regspacing> 1500 * rsi=<regsize> 1501 * rsh=<regshift> 1502 * irq=<irq> 1503 * ipmb=<ipmb addr> 1504 */ 1505 enum hotmod_op { HM_ADD, HM_REMOVE }; 1506 struct hotmod_vals { 1507 char *name; 1508 int val; 1509 }; 1510 static struct hotmod_vals hotmod_ops[] = { 1511 { "add", HM_ADD }, 1512 { "remove", HM_REMOVE }, 1513 { NULL } 1514 }; 1515 static struct hotmod_vals hotmod_si[] = { 1516 { "kcs", SI_KCS }, 1517 { "smic", SI_SMIC }, 1518 { "bt", SI_BT }, 1519 { NULL } 1520 }; 1521 static struct hotmod_vals hotmod_as[] = { 1522 { "mem", IPMI_MEM_ADDR_SPACE }, 1523 { "i/o", IPMI_IO_ADDR_SPACE }, 1524 { NULL } 1525 }; 1526 1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1528 { 1529 char *s; 1530 int i; 1531 1532 s = strchr(*curr, ','); 1533 if (!s) { 1534 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1535 return -EINVAL; 1536 } 1537 *s = '\0'; 1538 s++; 1539 for (i = 0; hotmod_ops[i].name; i++) { 1540 if (strcmp(*curr, v[i].name) == 0) { 1541 *val = v[i].val; 1542 *curr = s; 1543 return 0; 1544 } 1545 } 1546 1547 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1548 return -EINVAL; 1549 } 1550 1551 static int check_hotmod_int_op(const char *curr, const char *option, 1552 const char *name, int *val) 1553 { 1554 char *n; 1555 1556 if (strcmp(curr, name) == 0) { 1557 if (!option) { 1558 printk(KERN_WARNING PFX 1559 "No option given for '%s'\n", 1560 curr); 1561 return -EINVAL; 1562 } 1563 *val = simple_strtoul(option, &n, 0); 1564 if ((*n != '\0') || (*option == '\0')) { 1565 printk(KERN_WARNING PFX 1566 "Bad option given for '%s'\n", 1567 curr); 1568 return -EINVAL; 1569 } 1570 return 1; 1571 } 1572 return 0; 1573 } 1574 1575 static int hotmod_handler(const char *val, struct kernel_param *kp) 1576 { 1577 char *str = kstrdup(val, GFP_KERNEL); 1578 int rv; 1579 char *next, *curr, *s, *n, *o; 1580 enum hotmod_op op; 1581 enum si_type si_type; 1582 int addr_space; 1583 unsigned long addr; 1584 int regspacing; 1585 int regsize; 1586 int regshift; 1587 int irq; 1588 int ipmb; 1589 int ival; 1590 int len; 1591 struct smi_info *info; 1592 1593 if (!str) 1594 return -ENOMEM; 1595 1596 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1597 len = strlen(str); 1598 ival = len - 1; 1599 while ((ival >= 0) && isspace(str[ival])) { 1600 str[ival] = '\0'; 1601 ival--; 1602 } 1603 1604 for (curr = str; curr; curr = next) { 1605 regspacing = 1; 1606 regsize = 1; 1607 regshift = 0; 1608 irq = 0; 1609 ipmb = 0x20; 1610 1611 next = strchr(curr, ':'); 1612 if (next) { 1613 *next = '\0'; 1614 next++; 1615 } 1616 1617 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1618 if (rv) 1619 break; 1620 op = ival; 1621 1622 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1623 if (rv) 1624 break; 1625 si_type = ival; 1626 1627 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1628 if (rv) 1629 break; 1630 1631 s = strchr(curr, ','); 1632 if (s) { 1633 *s = '\0'; 1634 s++; 1635 } 1636 addr = simple_strtoul(curr, &n, 0); 1637 if ((*n != '\0') || (*curr == '\0')) { 1638 printk(KERN_WARNING PFX "Invalid hotmod address" 1639 " '%s'\n", curr); 1640 break; 1641 } 1642 1643 while (s) { 1644 curr = s; 1645 s = strchr(curr, ','); 1646 if (s) { 1647 *s = '\0'; 1648 s++; 1649 } 1650 o = strchr(curr, '='); 1651 if (o) { 1652 *o = '\0'; 1653 o++; 1654 } 1655 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1656 if (rv < 0) 1657 goto out; 1658 else if (rv) 1659 continue; 1660 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1661 if (rv < 0) 1662 goto out; 1663 else if (rv) 1664 continue; 1665 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1666 if (rv < 0) 1667 goto out; 1668 else if (rv) 1669 continue; 1670 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1671 if (rv < 0) 1672 goto out; 1673 else if (rv) 1674 continue; 1675 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1676 if (rv < 0) 1677 goto out; 1678 else if (rv) 1679 continue; 1680 1681 rv = -EINVAL; 1682 printk(KERN_WARNING PFX 1683 "Invalid hotmod option '%s'\n", 1684 curr); 1685 goto out; 1686 } 1687 1688 if (op == HM_ADD) { 1689 info = kzalloc(sizeof(*info), GFP_KERNEL); 1690 if (!info) { 1691 rv = -ENOMEM; 1692 goto out; 1693 } 1694 1695 info->addr_source = "hotmod"; 1696 info->si_type = si_type; 1697 info->io.addr_data = addr; 1698 info->io.addr_type = addr_space; 1699 if (addr_space == IPMI_MEM_ADDR_SPACE) 1700 info->io_setup = mem_setup; 1701 else 1702 info->io_setup = port_setup; 1703 1704 info->io.addr = NULL; 1705 info->io.regspacing = regspacing; 1706 if (!info->io.regspacing) 1707 info->io.regspacing = DEFAULT_REGSPACING; 1708 info->io.regsize = regsize; 1709 if (!info->io.regsize) 1710 info->io.regsize = DEFAULT_REGSPACING; 1711 info->io.regshift = regshift; 1712 info->irq = irq; 1713 if (info->irq) 1714 info->irq_setup = std_irq_setup; 1715 info->slave_addr = ipmb; 1716 1717 try_smi_init(info); 1718 } else { 1719 /* remove */ 1720 struct smi_info *e, *tmp_e; 1721 1722 mutex_lock(&smi_infos_lock); 1723 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1724 if (e->io.addr_type != addr_space) 1725 continue; 1726 if (e->si_type != si_type) 1727 continue; 1728 if (e->io.addr_data == addr) 1729 cleanup_one_si(e); 1730 } 1731 mutex_unlock(&smi_infos_lock); 1732 } 1733 } 1734 rv = len; 1735 out: 1736 kfree(str); 1737 return rv; 1738 } 1739 1740 static __devinit void hardcode_find_bmc(void) 1741 { 1742 int i; 1743 struct smi_info *info; 1744 1745 for (i = 0; i < SI_MAX_PARMS; i++) { 1746 if (!ports[i] && !addrs[i]) 1747 continue; 1748 1749 info = kzalloc(sizeof(*info), GFP_KERNEL); 1750 if (!info) 1751 return; 1752 1753 info->addr_source = "hardcoded"; 1754 1755 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1756 info->si_type = SI_KCS; 1757 } else if (strcmp(si_type[i], "smic") == 0) { 1758 info->si_type = SI_SMIC; 1759 } else if (strcmp(si_type[i], "bt") == 0) { 1760 info->si_type = SI_BT; 1761 } else { 1762 printk(KERN_WARNING 1763 "ipmi_si: Interface type specified " 1764 "for interface %d, was invalid: %s\n", 1765 i, si_type[i]); 1766 kfree(info); 1767 continue; 1768 } 1769 1770 if (ports[i]) { 1771 /* An I/O port */ 1772 info->io_setup = port_setup; 1773 info->io.addr_data = ports[i]; 1774 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1775 } else if (addrs[i]) { 1776 /* A memory port */ 1777 info->io_setup = mem_setup; 1778 info->io.addr_data = addrs[i]; 1779 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1780 } else { 1781 printk(KERN_WARNING 1782 "ipmi_si: Interface type specified " 1783 "for interface %d, " 1784 "but port and address were not set or " 1785 "set to zero.\n", i); 1786 kfree(info); 1787 continue; 1788 } 1789 1790 info->io.addr = NULL; 1791 info->io.regspacing = regspacings[i]; 1792 if (!info->io.regspacing) 1793 info->io.regspacing = DEFAULT_REGSPACING; 1794 info->io.regsize = regsizes[i]; 1795 if (!info->io.regsize) 1796 info->io.regsize = DEFAULT_REGSPACING; 1797 info->io.regshift = regshifts[i]; 1798 info->irq = irqs[i]; 1799 if (info->irq) 1800 info->irq_setup = std_irq_setup; 1801 1802 try_smi_init(info); 1803 } 1804 } 1805 1806 #ifdef CONFIG_ACPI 1807 1808 #include <linux/acpi.h> 1809 1810 /* 1811 * Once we get an ACPI failure, we don't try any more, because we go 1812 * through the tables sequentially. Once we don't find a table, there 1813 * are no more. 1814 */ 1815 static int acpi_failure; 1816 1817 /* For GPE-type interrupts. */ 1818 static u32 ipmi_acpi_gpe(void *context) 1819 { 1820 struct smi_info *smi_info = context; 1821 unsigned long flags; 1822 #ifdef DEBUG_TIMING 1823 struct timeval t; 1824 #endif 1825 1826 spin_lock_irqsave(&(smi_info->si_lock), flags); 1827 1828 smi_inc_stat(smi_info, interrupts); 1829 1830 #ifdef DEBUG_TIMING 1831 do_gettimeofday(&t); 1832 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec); 1833 #endif 1834 smi_event_handler(smi_info, 0); 1835 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1836 1837 return ACPI_INTERRUPT_HANDLED; 1838 } 1839 1840 static void acpi_gpe_irq_cleanup(struct smi_info *info) 1841 { 1842 if (!info->irq) 1843 return; 1844 1845 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 1846 } 1847 1848 static int acpi_gpe_irq_setup(struct smi_info *info) 1849 { 1850 acpi_status status; 1851 1852 if (!info->irq) 1853 return 0; 1854 1855 /* FIXME - is level triggered right? */ 1856 status = acpi_install_gpe_handler(NULL, 1857 info->irq, 1858 ACPI_GPE_LEVEL_TRIGGERED, 1859 &ipmi_acpi_gpe, 1860 info); 1861 if (status != AE_OK) { 1862 printk(KERN_WARNING 1863 "ipmi_si: %s unable to claim ACPI GPE %d," 1864 " running polled\n", 1865 DEVICE_NAME, info->irq); 1866 info->irq = 0; 1867 return -EINVAL; 1868 } else { 1869 info->irq_cleanup = acpi_gpe_irq_cleanup; 1870 printk(" Using ACPI GPE %d\n", info->irq); 1871 return 0; 1872 } 1873 } 1874 1875 /* 1876 * Defined at 1877 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/ 1878 * Docs/TechPapers/IA64/hpspmi.pdf 1879 */ 1880 struct SPMITable { 1881 s8 Signature[4]; 1882 u32 Length; 1883 u8 Revision; 1884 u8 Checksum; 1885 s8 OEMID[6]; 1886 s8 OEMTableID[8]; 1887 s8 OEMRevision[4]; 1888 s8 CreatorID[4]; 1889 s8 CreatorRevision[4]; 1890 u8 InterfaceType; 1891 u8 IPMIlegacy; 1892 s16 SpecificationRevision; 1893 1894 /* 1895 * Bit 0 - SCI interrupt supported 1896 * Bit 1 - I/O APIC/SAPIC 1897 */ 1898 u8 InterruptType; 1899 1900 /* 1901 * If bit 0 of InterruptType is set, then this is the SCI 1902 * interrupt in the GPEx_STS register. 1903 */ 1904 u8 GPE; 1905 1906 s16 Reserved; 1907 1908 /* 1909 * If bit 1 of InterruptType is set, then this is the I/O 1910 * APIC/SAPIC interrupt. 1911 */ 1912 u32 GlobalSystemInterrupt; 1913 1914 /* The actual register address. */ 1915 struct acpi_generic_address addr; 1916 1917 u8 UID[4]; 1918 1919 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 1920 }; 1921 1922 static __devinit int try_init_acpi(struct SPMITable *spmi) 1923 { 1924 struct smi_info *info; 1925 u8 addr_space; 1926 1927 if (spmi->IPMIlegacy != 1) { 1928 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy); 1929 return -ENODEV; 1930 } 1931 1932 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) 1933 addr_space = IPMI_MEM_ADDR_SPACE; 1934 else 1935 addr_space = IPMI_IO_ADDR_SPACE; 1936 1937 info = kzalloc(sizeof(*info), GFP_KERNEL); 1938 if (!info) { 1939 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n"); 1940 return -ENOMEM; 1941 } 1942 1943 info->addr_source = "ACPI"; 1944 1945 /* Figure out the interface type. */ 1946 switch (spmi->InterfaceType) { 1947 case 1: /* KCS */ 1948 info->si_type = SI_KCS; 1949 break; 1950 case 2: /* SMIC */ 1951 info->si_type = SI_SMIC; 1952 break; 1953 case 3: /* BT */ 1954 info->si_type = SI_BT; 1955 break; 1956 default: 1957 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n", 1958 spmi->InterfaceType); 1959 kfree(info); 1960 return -EIO; 1961 } 1962 1963 if (spmi->InterruptType & 1) { 1964 /* We've got a GPE interrupt. */ 1965 info->irq = spmi->GPE; 1966 info->irq_setup = acpi_gpe_irq_setup; 1967 } else if (spmi->InterruptType & 2) { 1968 /* We've got an APIC/SAPIC interrupt. */ 1969 info->irq = spmi->GlobalSystemInterrupt; 1970 info->irq_setup = std_irq_setup; 1971 } else { 1972 /* Use the default interrupt setting. */ 1973 info->irq = 0; 1974 info->irq_setup = NULL; 1975 } 1976 1977 if (spmi->addr.bit_width) { 1978 /* A (hopefully) properly formed register bit width. */ 1979 info->io.regspacing = spmi->addr.bit_width / 8; 1980 } else { 1981 info->io.regspacing = DEFAULT_REGSPACING; 1982 } 1983 info->io.regsize = info->io.regspacing; 1984 info->io.regshift = spmi->addr.bit_offset; 1985 1986 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 1987 info->io_setup = mem_setup; 1988 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1989 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 1990 info->io_setup = port_setup; 1991 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1992 } else { 1993 kfree(info); 1994 printk(KERN_WARNING 1995 "ipmi_si: Unknown ACPI I/O Address type\n"); 1996 return -EIO; 1997 } 1998 info->io.addr_data = spmi->addr.address; 1999 2000 try_smi_init(info); 2001 2002 return 0; 2003 } 2004 2005 static __devinit void acpi_find_bmc(void) 2006 { 2007 acpi_status status; 2008 struct SPMITable *spmi; 2009 int i; 2010 2011 if (acpi_disabled) 2012 return; 2013 2014 if (acpi_failure) 2015 return; 2016 2017 for (i = 0; ; i++) { 2018 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2019 (struct acpi_table_header **)&spmi); 2020 if (status != AE_OK) 2021 return; 2022 2023 try_init_acpi(spmi); 2024 } 2025 } 2026 #endif 2027 2028 #ifdef CONFIG_DMI 2029 struct dmi_ipmi_data { 2030 u8 type; 2031 u8 addr_space; 2032 unsigned long base_addr; 2033 u8 irq; 2034 u8 offset; 2035 u8 slave_addr; 2036 }; 2037 2038 static int __devinit decode_dmi(const struct dmi_header *dm, 2039 struct dmi_ipmi_data *dmi) 2040 { 2041 const u8 *data = (const u8 *)dm; 2042 unsigned long base_addr; 2043 u8 reg_spacing; 2044 u8 len = dm->length; 2045 2046 dmi->type = data[4]; 2047 2048 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2049 if (len >= 0x11) { 2050 if (base_addr & 1) { 2051 /* I/O */ 2052 base_addr &= 0xFFFE; 2053 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2054 } else 2055 /* Memory */ 2056 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2057 2058 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2059 is odd. */ 2060 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2061 2062 dmi->irq = data[0x11]; 2063 2064 /* The top two bits of byte 0x10 hold the register spacing. */ 2065 reg_spacing = (data[0x10] & 0xC0) >> 6; 2066 switch (reg_spacing) { 2067 case 0x00: /* Byte boundaries */ 2068 dmi->offset = 1; 2069 break; 2070 case 0x01: /* 32-bit boundaries */ 2071 dmi->offset = 4; 2072 break; 2073 case 0x02: /* 16-byte boundaries */ 2074 dmi->offset = 16; 2075 break; 2076 default: 2077 /* Some other interface, just ignore it. */ 2078 return -EIO; 2079 } 2080 } else { 2081 /* Old DMI spec. */ 2082 /* 2083 * Note that technically, the lower bit of the base 2084 * address should be 1 if the address is I/O and 0 if 2085 * the address is in memory. So many systems get that 2086 * wrong (and all that I have seen are I/O) so we just 2087 * ignore that bit and assume I/O. Systems that use 2088 * memory should use the newer spec, anyway. 2089 */ 2090 dmi->base_addr = base_addr & 0xfffe; 2091 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2092 dmi->offset = 1; 2093 } 2094 2095 dmi->slave_addr = data[6]; 2096 2097 return 0; 2098 } 2099 2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2101 { 2102 struct smi_info *info; 2103 2104 info = kzalloc(sizeof(*info), GFP_KERNEL); 2105 if (!info) { 2106 printk(KERN_ERR 2107 "ipmi_si: Could not allocate SI data\n"); 2108 return; 2109 } 2110 2111 info->addr_source = "SMBIOS"; 2112 2113 switch (ipmi_data->type) { 2114 case 0x01: /* KCS */ 2115 info->si_type = SI_KCS; 2116 break; 2117 case 0x02: /* SMIC */ 2118 info->si_type = SI_SMIC; 2119 break; 2120 case 0x03: /* BT */ 2121 info->si_type = SI_BT; 2122 break; 2123 default: 2124 kfree(info); 2125 return; 2126 } 2127 2128 switch (ipmi_data->addr_space) { 2129 case IPMI_MEM_ADDR_SPACE: 2130 info->io_setup = mem_setup; 2131 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2132 break; 2133 2134 case IPMI_IO_ADDR_SPACE: 2135 info->io_setup = port_setup; 2136 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2137 break; 2138 2139 default: 2140 kfree(info); 2141 printk(KERN_WARNING 2142 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n", 2143 ipmi_data->addr_space); 2144 return; 2145 } 2146 info->io.addr_data = ipmi_data->base_addr; 2147 2148 info->io.regspacing = ipmi_data->offset; 2149 if (!info->io.regspacing) 2150 info->io.regspacing = DEFAULT_REGSPACING; 2151 info->io.regsize = DEFAULT_REGSPACING; 2152 info->io.regshift = 0; 2153 2154 info->slave_addr = ipmi_data->slave_addr; 2155 2156 info->irq = ipmi_data->irq; 2157 if (info->irq) 2158 info->irq_setup = std_irq_setup; 2159 2160 try_smi_init(info); 2161 } 2162 2163 static void __devinit dmi_find_bmc(void) 2164 { 2165 const struct dmi_device *dev = NULL; 2166 struct dmi_ipmi_data data; 2167 int rv; 2168 2169 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2170 memset(&data, 0, sizeof(data)); 2171 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2172 &data); 2173 if (!rv) 2174 try_init_dmi(&data); 2175 } 2176 } 2177 #endif /* CONFIG_DMI */ 2178 2179 #ifdef CONFIG_PCI 2180 2181 #define PCI_ERMC_CLASSCODE 0x0C0700 2182 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2186 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2187 2188 #define PCI_HP_VENDOR_ID 0x103C 2189 #define PCI_MMC_DEVICE_ID 0x121A 2190 #define PCI_MMC_ADDR_CW 0x10 2191 2192 static void ipmi_pci_cleanup(struct smi_info *info) 2193 { 2194 struct pci_dev *pdev = info->addr_source_data; 2195 2196 pci_disable_device(pdev); 2197 } 2198 2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev, 2200 const struct pci_device_id *ent) 2201 { 2202 int rv; 2203 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2204 struct smi_info *info; 2205 int first_reg_offset = 0; 2206 2207 info = kzalloc(sizeof(*info), GFP_KERNEL); 2208 if (!info) 2209 return -ENOMEM; 2210 2211 info->addr_source = "PCI"; 2212 2213 switch (class_type) { 2214 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2215 info->si_type = SI_SMIC; 2216 break; 2217 2218 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2219 info->si_type = SI_KCS; 2220 break; 2221 2222 case PCI_ERMC_CLASSCODE_TYPE_BT: 2223 info->si_type = SI_BT; 2224 break; 2225 2226 default: 2227 kfree(info); 2228 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n", 2229 pci_name(pdev), class_type); 2230 return -ENOMEM; 2231 } 2232 2233 rv = pci_enable_device(pdev); 2234 if (rv) { 2235 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n", 2236 pci_name(pdev)); 2237 kfree(info); 2238 return rv; 2239 } 2240 2241 info->addr_source_cleanup = ipmi_pci_cleanup; 2242 info->addr_source_data = pdev; 2243 2244 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID) 2245 first_reg_offset = 1; 2246 2247 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2248 info->io_setup = port_setup; 2249 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2250 } else { 2251 info->io_setup = mem_setup; 2252 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2253 } 2254 info->io.addr_data = pci_resource_start(pdev, 0); 2255 2256 info->io.regspacing = DEFAULT_REGSPACING; 2257 info->io.regsize = DEFAULT_REGSPACING; 2258 info->io.regshift = 0; 2259 2260 info->irq = pdev->irq; 2261 if (info->irq) 2262 info->irq_setup = std_irq_setup; 2263 2264 info->dev = &pdev->dev; 2265 pci_set_drvdata(pdev, info); 2266 2267 return try_smi_init(info); 2268 } 2269 2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev) 2271 { 2272 struct smi_info *info = pci_get_drvdata(pdev); 2273 cleanup_one_si(info); 2274 } 2275 2276 #ifdef CONFIG_PM 2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state) 2278 { 2279 return 0; 2280 } 2281 2282 static int ipmi_pci_resume(struct pci_dev *pdev) 2283 { 2284 return 0; 2285 } 2286 #endif 2287 2288 static struct pci_device_id ipmi_pci_devices[] = { 2289 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2290 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2291 { 0, } 2292 }; 2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2294 2295 static struct pci_driver ipmi_pci_driver = { 2296 .name = DEVICE_NAME, 2297 .id_table = ipmi_pci_devices, 2298 .probe = ipmi_pci_probe, 2299 .remove = __devexit_p(ipmi_pci_remove), 2300 #ifdef CONFIG_PM 2301 .suspend = ipmi_pci_suspend, 2302 .resume = ipmi_pci_resume, 2303 #endif 2304 }; 2305 #endif /* CONFIG_PCI */ 2306 2307 2308 #ifdef CONFIG_PPC_OF 2309 static int __devinit ipmi_of_probe(struct of_device *dev, 2310 const struct of_device_id *match) 2311 { 2312 struct smi_info *info; 2313 struct resource resource; 2314 const int *regsize, *regspacing, *regshift; 2315 struct device_node *np = dev->node; 2316 int ret; 2317 int proplen; 2318 2319 dev_info(&dev->dev, PFX "probing via device tree\n"); 2320 2321 ret = of_address_to_resource(np, 0, &resource); 2322 if (ret) { 2323 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2324 return ret; 2325 } 2326 2327 regsize = of_get_property(np, "reg-size", &proplen); 2328 if (regsize && proplen != 4) { 2329 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2330 return -EINVAL; 2331 } 2332 2333 regspacing = of_get_property(np, "reg-spacing", &proplen); 2334 if (regspacing && proplen != 4) { 2335 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2336 return -EINVAL; 2337 } 2338 2339 regshift = of_get_property(np, "reg-shift", &proplen); 2340 if (regshift && proplen != 4) { 2341 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2342 return -EINVAL; 2343 } 2344 2345 info = kzalloc(sizeof(*info), GFP_KERNEL); 2346 2347 if (!info) { 2348 dev_err(&dev->dev, 2349 PFX "could not allocate memory for OF probe\n"); 2350 return -ENOMEM; 2351 } 2352 2353 info->si_type = (enum si_type) match->data; 2354 info->addr_source = "device-tree"; 2355 info->irq_setup = std_irq_setup; 2356 2357 if (resource.flags & IORESOURCE_IO) { 2358 info->io_setup = port_setup; 2359 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2360 } else { 2361 info->io_setup = mem_setup; 2362 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2363 } 2364 2365 info->io.addr_data = resource.start; 2366 2367 info->io.regsize = regsize ? *regsize : DEFAULT_REGSIZE; 2368 info->io.regspacing = regspacing ? *regspacing : DEFAULT_REGSPACING; 2369 info->io.regshift = regshift ? *regshift : 0; 2370 2371 info->irq = irq_of_parse_and_map(dev->node, 0); 2372 info->dev = &dev->dev; 2373 2374 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n", 2375 info->io.addr_data, info->io.regsize, info->io.regspacing, 2376 info->irq); 2377 2378 dev->dev.driver_data = (void *) info; 2379 2380 return try_smi_init(info); 2381 } 2382 2383 static int __devexit ipmi_of_remove(struct of_device *dev) 2384 { 2385 cleanup_one_si(dev->dev.driver_data); 2386 return 0; 2387 } 2388 2389 static struct of_device_id ipmi_match[] = 2390 { 2391 { .type = "ipmi", .compatible = "ipmi-kcs", 2392 .data = (void *)(unsigned long) SI_KCS }, 2393 { .type = "ipmi", .compatible = "ipmi-smic", 2394 .data = (void *)(unsigned long) SI_SMIC }, 2395 { .type = "ipmi", .compatible = "ipmi-bt", 2396 .data = (void *)(unsigned long) SI_BT }, 2397 {}, 2398 }; 2399 2400 static struct of_platform_driver ipmi_of_platform_driver = { 2401 .name = "ipmi", 2402 .match_table = ipmi_match, 2403 .probe = ipmi_of_probe, 2404 .remove = __devexit_p(ipmi_of_remove), 2405 }; 2406 #endif /* CONFIG_PPC_OF */ 2407 2408 static int wait_for_msg_done(struct smi_info *smi_info) 2409 { 2410 enum si_sm_result smi_result; 2411 2412 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2413 for (;;) { 2414 if (smi_result == SI_SM_CALL_WITH_DELAY || 2415 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2416 schedule_timeout_uninterruptible(1); 2417 smi_result = smi_info->handlers->event( 2418 smi_info->si_sm, 100); 2419 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2420 smi_result = smi_info->handlers->event( 2421 smi_info->si_sm, 0); 2422 } else 2423 break; 2424 } 2425 if (smi_result == SI_SM_HOSED) 2426 /* 2427 * We couldn't get the state machine to run, so whatever's at 2428 * the port is probably not an IPMI SMI interface. 2429 */ 2430 return -ENODEV; 2431 2432 return 0; 2433 } 2434 2435 static int try_get_dev_id(struct smi_info *smi_info) 2436 { 2437 unsigned char msg[2]; 2438 unsigned char *resp; 2439 unsigned long resp_len; 2440 int rv = 0; 2441 2442 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2443 if (!resp) 2444 return -ENOMEM; 2445 2446 /* 2447 * Do a Get Device ID command, since it comes back with some 2448 * useful info. 2449 */ 2450 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2451 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2452 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2453 2454 rv = wait_for_msg_done(smi_info); 2455 if (rv) 2456 goto out; 2457 2458 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2459 resp, IPMI_MAX_MSG_LENGTH); 2460 2461 /* Check and record info from the get device id, in case we need it. */ 2462 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2463 2464 out: 2465 kfree(resp); 2466 return rv; 2467 } 2468 2469 static int try_enable_event_buffer(struct smi_info *smi_info) 2470 { 2471 unsigned char msg[3]; 2472 unsigned char *resp; 2473 unsigned long resp_len; 2474 int rv = 0; 2475 2476 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2477 if (!resp) 2478 return -ENOMEM; 2479 2480 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2481 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2482 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2483 2484 rv = wait_for_msg_done(smi_info); 2485 if (rv) { 2486 printk(KERN_WARNING 2487 "ipmi_si: Error getting response from get global," 2488 " enables command, the event buffer is not" 2489 " enabled.\n"); 2490 goto out; 2491 } 2492 2493 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2494 resp, IPMI_MAX_MSG_LENGTH); 2495 2496 if (resp_len < 4 || 2497 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2498 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2499 resp[2] != 0) { 2500 printk(KERN_WARNING 2501 "ipmi_si: Invalid return from get global" 2502 " enables command, cannot enable the event" 2503 " buffer.\n"); 2504 rv = -EINVAL; 2505 goto out; 2506 } 2507 2508 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) 2509 /* buffer is already enabled, nothing to do. */ 2510 goto out; 2511 2512 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2513 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2514 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 2515 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2516 2517 rv = wait_for_msg_done(smi_info); 2518 if (rv) { 2519 printk(KERN_WARNING 2520 "ipmi_si: Error getting response from set global," 2521 " enables command, the event buffer is not" 2522 " enabled.\n"); 2523 goto out; 2524 } 2525 2526 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2527 resp, IPMI_MAX_MSG_LENGTH); 2528 2529 if (resp_len < 3 || 2530 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2531 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2532 printk(KERN_WARNING 2533 "ipmi_si: Invalid return from get global," 2534 "enables command, not enable the event" 2535 " buffer.\n"); 2536 rv = -EINVAL; 2537 goto out; 2538 } 2539 2540 if (resp[2] != 0) 2541 /* 2542 * An error when setting the event buffer bit means 2543 * that the event buffer is not supported. 2544 */ 2545 rv = -ENOENT; 2546 out: 2547 kfree(resp); 2548 return rv; 2549 } 2550 2551 static int type_file_read_proc(char *page, char **start, off_t off, 2552 int count, int *eof, void *data) 2553 { 2554 struct smi_info *smi = data; 2555 2556 return sprintf(page, "%s\n", si_to_str[smi->si_type]); 2557 } 2558 2559 static int stat_file_read_proc(char *page, char **start, off_t off, 2560 int count, int *eof, void *data) 2561 { 2562 char *out = (char *) page; 2563 struct smi_info *smi = data; 2564 2565 out += sprintf(out, "interrupts_enabled: %d\n", 2566 smi->irq && !smi->interrupt_disabled); 2567 out += sprintf(out, "short_timeouts: %u\n", 2568 smi_get_stat(smi, short_timeouts)); 2569 out += sprintf(out, "long_timeouts: %u\n", 2570 smi_get_stat(smi, long_timeouts)); 2571 out += sprintf(out, "idles: %u\n", 2572 smi_get_stat(smi, idles)); 2573 out += sprintf(out, "interrupts: %u\n", 2574 smi_get_stat(smi, interrupts)); 2575 out += sprintf(out, "attentions: %u\n", 2576 smi_get_stat(smi, attentions)); 2577 out += sprintf(out, "flag_fetches: %u\n", 2578 smi_get_stat(smi, flag_fetches)); 2579 out += sprintf(out, "hosed_count: %u\n", 2580 smi_get_stat(smi, hosed_count)); 2581 out += sprintf(out, "complete_transactions: %u\n", 2582 smi_get_stat(smi, complete_transactions)); 2583 out += sprintf(out, "events: %u\n", 2584 smi_get_stat(smi, events)); 2585 out += sprintf(out, "watchdog_pretimeouts: %u\n", 2586 smi_get_stat(smi, watchdog_pretimeouts)); 2587 out += sprintf(out, "incoming_messages: %u\n", 2588 smi_get_stat(smi, incoming_messages)); 2589 2590 return out - page; 2591 } 2592 2593 static int param_read_proc(char *page, char **start, off_t off, 2594 int count, int *eof, void *data) 2595 { 2596 struct smi_info *smi = data; 2597 2598 return sprintf(page, 2599 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 2600 si_to_str[smi->si_type], 2601 addr_space_to_str[smi->io.addr_type], 2602 smi->io.addr_data, 2603 smi->io.regspacing, 2604 smi->io.regsize, 2605 smi->io.regshift, 2606 smi->irq, 2607 smi->slave_addr); 2608 } 2609 2610 /* 2611 * oem_data_avail_to_receive_msg_avail 2612 * @info - smi_info structure with msg_flags set 2613 * 2614 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 2615 * Returns 1 indicating need to re-run handle_flags(). 2616 */ 2617 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 2618 { 2619 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 2620 RECEIVE_MSG_AVAIL); 2621 return 1; 2622 } 2623 2624 /* 2625 * setup_dell_poweredge_oem_data_handler 2626 * @info - smi_info.device_id must be populated 2627 * 2628 * Systems that match, but have firmware version < 1.40 may assert 2629 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 2630 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 2631 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 2632 * as RECEIVE_MSG_AVAIL instead. 2633 * 2634 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 2635 * assert the OEM[012] bits, and if it did, the driver would have to 2636 * change to handle that properly, we don't actually check for the 2637 * firmware version. 2638 * Device ID = 0x20 BMC on PowerEdge 8G servers 2639 * Device Revision = 0x80 2640 * Firmware Revision1 = 0x01 BMC version 1.40 2641 * Firmware Revision2 = 0x40 BCD encoded 2642 * IPMI Version = 0x51 IPMI 1.5 2643 * Manufacturer ID = A2 02 00 Dell IANA 2644 * 2645 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 2646 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 2647 * 2648 */ 2649 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 2650 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 2651 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 2652 #define DELL_IANA_MFR_ID 0x0002a2 2653 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 2654 { 2655 struct ipmi_device_id *id = &smi_info->device_id; 2656 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 2657 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 2658 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 2659 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 2660 smi_info->oem_data_avail_handler = 2661 oem_data_avail_to_receive_msg_avail; 2662 } else if (ipmi_version_major(id) < 1 || 2663 (ipmi_version_major(id) == 1 && 2664 ipmi_version_minor(id) < 5)) { 2665 smi_info->oem_data_avail_handler = 2666 oem_data_avail_to_receive_msg_avail; 2667 } 2668 } 2669 } 2670 2671 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 2672 static void return_hosed_msg_badsize(struct smi_info *smi_info) 2673 { 2674 struct ipmi_smi_msg *msg = smi_info->curr_msg; 2675 2676 /* Make it a reponse */ 2677 msg->rsp[0] = msg->data[0] | 4; 2678 msg->rsp[1] = msg->data[1]; 2679 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 2680 msg->rsp_size = 3; 2681 smi_info->curr_msg = NULL; 2682 deliver_recv_msg(smi_info, msg); 2683 } 2684 2685 /* 2686 * dell_poweredge_bt_xaction_handler 2687 * @info - smi_info.device_id must be populated 2688 * 2689 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 2690 * not respond to a Get SDR command if the length of the data 2691 * requested is exactly 0x3A, which leads to command timeouts and no 2692 * data returned. This intercepts such commands, and causes userspace 2693 * callers to try again with a different-sized buffer, which succeeds. 2694 */ 2695 2696 #define STORAGE_NETFN 0x0A 2697 #define STORAGE_CMD_GET_SDR 0x23 2698 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 2699 unsigned long unused, 2700 void *in) 2701 { 2702 struct smi_info *smi_info = in; 2703 unsigned char *data = smi_info->curr_msg->data; 2704 unsigned int size = smi_info->curr_msg->data_size; 2705 if (size >= 8 && 2706 (data[0]>>2) == STORAGE_NETFN && 2707 data[1] == STORAGE_CMD_GET_SDR && 2708 data[7] == 0x3A) { 2709 return_hosed_msg_badsize(smi_info); 2710 return NOTIFY_STOP; 2711 } 2712 return NOTIFY_DONE; 2713 } 2714 2715 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 2716 .notifier_call = dell_poweredge_bt_xaction_handler, 2717 }; 2718 2719 /* 2720 * setup_dell_poweredge_bt_xaction_handler 2721 * @info - smi_info.device_id must be filled in already 2722 * 2723 * Fills in smi_info.device_id.start_transaction_pre_hook 2724 * when we know what function to use there. 2725 */ 2726 static void 2727 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 2728 { 2729 struct ipmi_device_id *id = &smi_info->device_id; 2730 if (id->manufacturer_id == DELL_IANA_MFR_ID && 2731 smi_info->si_type == SI_BT) 2732 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 2733 } 2734 2735 /* 2736 * setup_oem_data_handler 2737 * @info - smi_info.device_id must be filled in already 2738 * 2739 * Fills in smi_info.device_id.oem_data_available_handler 2740 * when we know what function to use there. 2741 */ 2742 2743 static void setup_oem_data_handler(struct smi_info *smi_info) 2744 { 2745 setup_dell_poweredge_oem_data_handler(smi_info); 2746 } 2747 2748 static void setup_xaction_handlers(struct smi_info *smi_info) 2749 { 2750 setup_dell_poweredge_bt_xaction_handler(smi_info); 2751 } 2752 2753 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 2754 { 2755 if (smi_info->intf) { 2756 /* 2757 * The timer and thread are only running if the 2758 * interface has been started up and registered. 2759 */ 2760 if (smi_info->thread != NULL) 2761 kthread_stop(smi_info->thread); 2762 del_timer_sync(&smi_info->si_timer); 2763 } 2764 } 2765 2766 static __devinitdata struct ipmi_default_vals 2767 { 2768 int type; 2769 int port; 2770 } ipmi_defaults[] = 2771 { 2772 { .type = SI_KCS, .port = 0xca2 }, 2773 { .type = SI_SMIC, .port = 0xca9 }, 2774 { .type = SI_BT, .port = 0xe4 }, 2775 { .port = 0 } 2776 }; 2777 2778 static __devinit void default_find_bmc(void) 2779 { 2780 struct smi_info *info; 2781 int i; 2782 2783 for (i = 0; ; i++) { 2784 if (!ipmi_defaults[i].port) 2785 break; 2786 #ifdef CONFIG_PPC 2787 if (check_legacy_ioport(ipmi_defaults[i].port)) 2788 continue; 2789 #endif 2790 info = kzalloc(sizeof(*info), GFP_KERNEL); 2791 if (!info) 2792 return; 2793 2794 info->addr_source = NULL; 2795 2796 info->si_type = ipmi_defaults[i].type; 2797 info->io_setup = port_setup; 2798 info->io.addr_data = ipmi_defaults[i].port; 2799 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2800 2801 info->io.addr = NULL; 2802 info->io.regspacing = DEFAULT_REGSPACING; 2803 info->io.regsize = DEFAULT_REGSPACING; 2804 info->io.regshift = 0; 2805 2806 if (try_smi_init(info) == 0) { 2807 /* Found one... */ 2808 printk(KERN_INFO "ipmi_si: Found default %s state" 2809 " machine at %s address 0x%lx\n", 2810 si_to_str[info->si_type], 2811 addr_space_to_str[info->io.addr_type], 2812 info->io.addr_data); 2813 return; 2814 } 2815 } 2816 } 2817 2818 static int is_new_interface(struct smi_info *info) 2819 { 2820 struct smi_info *e; 2821 2822 list_for_each_entry(e, &smi_infos, link) { 2823 if (e->io.addr_type != info->io.addr_type) 2824 continue; 2825 if (e->io.addr_data == info->io.addr_data) 2826 return 0; 2827 } 2828 2829 return 1; 2830 } 2831 2832 static int try_smi_init(struct smi_info *new_smi) 2833 { 2834 int rv; 2835 int i; 2836 2837 if (new_smi->addr_source) { 2838 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state" 2839 " machine at %s address 0x%lx, slave address 0x%x," 2840 " irq %d\n", 2841 new_smi->addr_source, 2842 si_to_str[new_smi->si_type], 2843 addr_space_to_str[new_smi->io.addr_type], 2844 new_smi->io.addr_data, 2845 new_smi->slave_addr, new_smi->irq); 2846 } 2847 2848 mutex_lock(&smi_infos_lock); 2849 if (!is_new_interface(new_smi)) { 2850 printk(KERN_WARNING "ipmi_si: duplicate interface\n"); 2851 rv = -EBUSY; 2852 goto out_err; 2853 } 2854 2855 /* So we know not to free it unless we have allocated one. */ 2856 new_smi->intf = NULL; 2857 new_smi->si_sm = NULL; 2858 new_smi->handlers = NULL; 2859 2860 switch (new_smi->si_type) { 2861 case SI_KCS: 2862 new_smi->handlers = &kcs_smi_handlers; 2863 break; 2864 2865 case SI_SMIC: 2866 new_smi->handlers = &smic_smi_handlers; 2867 break; 2868 2869 case SI_BT: 2870 new_smi->handlers = &bt_smi_handlers; 2871 break; 2872 2873 default: 2874 /* No support for anything else yet. */ 2875 rv = -EIO; 2876 goto out_err; 2877 } 2878 2879 /* Allocate the state machine's data and initialize it. */ 2880 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 2881 if (!new_smi->si_sm) { 2882 printk(KERN_ERR "Could not allocate state machine memory\n"); 2883 rv = -ENOMEM; 2884 goto out_err; 2885 } 2886 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 2887 &new_smi->io); 2888 2889 /* Now that we know the I/O size, we can set up the I/O. */ 2890 rv = new_smi->io_setup(new_smi); 2891 if (rv) { 2892 printk(KERN_ERR "Could not set up I/O space\n"); 2893 goto out_err; 2894 } 2895 2896 spin_lock_init(&(new_smi->si_lock)); 2897 spin_lock_init(&(new_smi->msg_lock)); 2898 2899 /* Do low-level detection first. */ 2900 if (new_smi->handlers->detect(new_smi->si_sm)) { 2901 if (new_smi->addr_source) 2902 printk(KERN_INFO "ipmi_si: Interface detection" 2903 " failed\n"); 2904 rv = -ENODEV; 2905 goto out_err; 2906 } 2907 2908 /* 2909 * Attempt a get device id command. If it fails, we probably 2910 * don't have a BMC here. 2911 */ 2912 rv = try_get_dev_id(new_smi); 2913 if (rv) { 2914 if (new_smi->addr_source) 2915 printk(KERN_INFO "ipmi_si: There appears to be no BMC" 2916 " at this location\n"); 2917 goto out_err; 2918 } 2919 2920 setup_oem_data_handler(new_smi); 2921 setup_xaction_handlers(new_smi); 2922 2923 INIT_LIST_HEAD(&(new_smi->xmit_msgs)); 2924 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs)); 2925 new_smi->curr_msg = NULL; 2926 atomic_set(&new_smi->req_events, 0); 2927 new_smi->run_to_completion = 0; 2928 for (i = 0; i < SI_NUM_STATS; i++) 2929 atomic_set(&new_smi->stats[i], 0); 2930 2931 new_smi->interrupt_disabled = 0; 2932 atomic_set(&new_smi->stop_operation, 0); 2933 new_smi->intf_num = smi_num; 2934 smi_num++; 2935 2936 rv = try_enable_event_buffer(new_smi); 2937 if (rv == 0) 2938 new_smi->has_event_buffer = 1; 2939 2940 /* 2941 * Start clearing the flags before we enable interrupts or the 2942 * timer to avoid racing with the timer. 2943 */ 2944 start_clear_flags(new_smi); 2945 /* IRQ is defined to be set when non-zero. */ 2946 if (new_smi->irq) 2947 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ; 2948 2949 if (!new_smi->dev) { 2950 /* 2951 * If we don't already have a device from something 2952 * else (like PCI), then register a new one. 2953 */ 2954 new_smi->pdev = platform_device_alloc("ipmi_si", 2955 new_smi->intf_num); 2956 if (!new_smi->pdev) { 2957 printk(KERN_ERR 2958 "ipmi_si_intf:" 2959 " Unable to allocate platform device\n"); 2960 goto out_err; 2961 } 2962 new_smi->dev = &new_smi->pdev->dev; 2963 new_smi->dev->driver = &ipmi_driver.driver; 2964 2965 rv = platform_device_add(new_smi->pdev); 2966 if (rv) { 2967 printk(KERN_ERR 2968 "ipmi_si_intf:" 2969 " Unable to register system interface device:" 2970 " %d\n", 2971 rv); 2972 goto out_err; 2973 } 2974 new_smi->dev_registered = 1; 2975 } 2976 2977 rv = ipmi_register_smi(&handlers, 2978 new_smi, 2979 &new_smi->device_id, 2980 new_smi->dev, 2981 "bmc", 2982 new_smi->slave_addr); 2983 if (rv) { 2984 printk(KERN_ERR 2985 "ipmi_si: Unable to register device: error %d\n", 2986 rv); 2987 goto out_err_stop_timer; 2988 } 2989 2990 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 2991 type_file_read_proc, 2992 new_smi); 2993 if (rv) { 2994 printk(KERN_ERR 2995 "ipmi_si: Unable to create proc entry: %d\n", 2996 rv); 2997 goto out_err_stop_timer; 2998 } 2999 3000 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3001 stat_file_read_proc, 3002 new_smi); 3003 if (rv) { 3004 printk(KERN_ERR 3005 "ipmi_si: Unable to create proc entry: %d\n", 3006 rv); 3007 goto out_err_stop_timer; 3008 } 3009 3010 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3011 param_read_proc, 3012 new_smi); 3013 if (rv) { 3014 printk(KERN_ERR 3015 "ipmi_si: Unable to create proc entry: %d\n", 3016 rv); 3017 goto out_err_stop_timer; 3018 } 3019 3020 list_add_tail(&new_smi->link, &smi_infos); 3021 3022 mutex_unlock(&smi_infos_lock); 3023 3024 printk(KERN_INFO "IPMI %s interface initialized\n", 3025 si_to_str[new_smi->si_type]); 3026 3027 return 0; 3028 3029 out_err_stop_timer: 3030 atomic_inc(&new_smi->stop_operation); 3031 wait_for_timer_and_thread(new_smi); 3032 3033 out_err: 3034 if (new_smi->intf) 3035 ipmi_unregister_smi(new_smi->intf); 3036 3037 if (new_smi->irq_cleanup) 3038 new_smi->irq_cleanup(new_smi); 3039 3040 /* 3041 * Wait until we know that we are out of any interrupt 3042 * handlers might have been running before we freed the 3043 * interrupt. 3044 */ 3045 synchronize_sched(); 3046 3047 if (new_smi->si_sm) { 3048 if (new_smi->handlers) 3049 new_smi->handlers->cleanup(new_smi->si_sm); 3050 kfree(new_smi->si_sm); 3051 } 3052 if (new_smi->addr_source_cleanup) 3053 new_smi->addr_source_cleanup(new_smi); 3054 if (new_smi->io_cleanup) 3055 new_smi->io_cleanup(new_smi); 3056 3057 if (new_smi->dev_registered) 3058 platform_device_unregister(new_smi->pdev); 3059 3060 kfree(new_smi); 3061 3062 mutex_unlock(&smi_infos_lock); 3063 3064 return rv; 3065 } 3066 3067 static __devinit int init_ipmi_si(void) 3068 { 3069 int i; 3070 char *str; 3071 int rv; 3072 3073 if (initialized) 3074 return 0; 3075 initialized = 1; 3076 3077 /* Register the device drivers. */ 3078 rv = driver_register(&ipmi_driver.driver); 3079 if (rv) { 3080 printk(KERN_ERR 3081 "init_ipmi_si: Unable to register driver: %d\n", 3082 rv); 3083 return rv; 3084 } 3085 3086 3087 /* Parse out the si_type string into its components. */ 3088 str = si_type_str; 3089 if (*str != '\0') { 3090 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3091 si_type[i] = str; 3092 str = strchr(str, ','); 3093 if (str) { 3094 *str = '\0'; 3095 str++; 3096 } else { 3097 break; 3098 } 3099 } 3100 } 3101 3102 printk(KERN_INFO "IPMI System Interface driver.\n"); 3103 3104 hardcode_find_bmc(); 3105 3106 #ifdef CONFIG_DMI 3107 dmi_find_bmc(); 3108 #endif 3109 3110 #ifdef CONFIG_ACPI 3111 acpi_find_bmc(); 3112 #endif 3113 3114 #ifdef CONFIG_PCI 3115 rv = pci_register_driver(&ipmi_pci_driver); 3116 if (rv) 3117 printk(KERN_ERR 3118 "init_ipmi_si: Unable to register PCI driver: %d\n", 3119 rv); 3120 #endif 3121 3122 #ifdef CONFIG_PPC_OF 3123 of_register_platform_driver(&ipmi_of_platform_driver); 3124 #endif 3125 3126 if (si_trydefaults) { 3127 mutex_lock(&smi_infos_lock); 3128 if (list_empty(&smi_infos)) { 3129 /* No BMC was found, try defaults. */ 3130 mutex_unlock(&smi_infos_lock); 3131 default_find_bmc(); 3132 } else { 3133 mutex_unlock(&smi_infos_lock); 3134 } 3135 } 3136 3137 mutex_lock(&smi_infos_lock); 3138 if (unload_when_empty && list_empty(&smi_infos)) { 3139 mutex_unlock(&smi_infos_lock); 3140 #ifdef CONFIG_PCI 3141 pci_unregister_driver(&ipmi_pci_driver); 3142 #endif 3143 3144 #ifdef CONFIG_PPC_OF 3145 of_unregister_platform_driver(&ipmi_of_platform_driver); 3146 #endif 3147 driver_unregister(&ipmi_driver.driver); 3148 printk(KERN_WARNING 3149 "ipmi_si: Unable to find any System Interface(s)\n"); 3150 return -ENODEV; 3151 } else { 3152 mutex_unlock(&smi_infos_lock); 3153 return 0; 3154 } 3155 } 3156 module_init(init_ipmi_si); 3157 3158 static void cleanup_one_si(struct smi_info *to_clean) 3159 { 3160 int rv; 3161 unsigned long flags; 3162 3163 if (!to_clean) 3164 return; 3165 3166 list_del(&to_clean->link); 3167 3168 /* Tell the driver that we are shutting down. */ 3169 atomic_inc(&to_clean->stop_operation); 3170 3171 /* 3172 * Make sure the timer and thread are stopped and will not run 3173 * again. 3174 */ 3175 wait_for_timer_and_thread(to_clean); 3176 3177 /* 3178 * Timeouts are stopped, now make sure the interrupts are off 3179 * for the device. A little tricky with locks to make sure 3180 * there are no races. 3181 */ 3182 spin_lock_irqsave(&to_clean->si_lock, flags); 3183 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3184 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3185 poll(to_clean); 3186 schedule_timeout_uninterruptible(1); 3187 spin_lock_irqsave(&to_clean->si_lock, flags); 3188 } 3189 disable_si_irq(to_clean); 3190 spin_unlock_irqrestore(&to_clean->si_lock, flags); 3191 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3192 poll(to_clean); 3193 schedule_timeout_uninterruptible(1); 3194 } 3195 3196 /* Clean up interrupts and make sure that everything is done. */ 3197 if (to_clean->irq_cleanup) 3198 to_clean->irq_cleanup(to_clean); 3199 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3200 poll(to_clean); 3201 schedule_timeout_uninterruptible(1); 3202 } 3203 3204 rv = ipmi_unregister_smi(to_clean->intf); 3205 if (rv) { 3206 printk(KERN_ERR 3207 "ipmi_si: Unable to unregister device: errno=%d\n", 3208 rv); 3209 } 3210 3211 to_clean->handlers->cleanup(to_clean->si_sm); 3212 3213 kfree(to_clean->si_sm); 3214 3215 if (to_clean->addr_source_cleanup) 3216 to_clean->addr_source_cleanup(to_clean); 3217 if (to_clean->io_cleanup) 3218 to_clean->io_cleanup(to_clean); 3219 3220 if (to_clean->dev_registered) 3221 platform_device_unregister(to_clean->pdev); 3222 3223 kfree(to_clean); 3224 } 3225 3226 static __exit void cleanup_ipmi_si(void) 3227 { 3228 struct smi_info *e, *tmp_e; 3229 3230 if (!initialized) 3231 return; 3232 3233 #ifdef CONFIG_PCI 3234 pci_unregister_driver(&ipmi_pci_driver); 3235 #endif 3236 3237 #ifdef CONFIG_PPC_OF 3238 of_unregister_platform_driver(&ipmi_of_platform_driver); 3239 #endif 3240 3241 mutex_lock(&smi_infos_lock); 3242 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3243 cleanup_one_si(e); 3244 mutex_unlock(&smi_infos_lock); 3245 3246 driver_unregister(&ipmi_driver.driver); 3247 } 3248 module_exit(cleanup_ipmi_si); 3249 3250 MODULE_LICENSE("GPL"); 3251 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3252 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3253 " system interfaces."); 3254