xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107     SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110 
111 #define DEVICE_NAME "ipmi_si"
112 
113 static struct platform_driver ipmi_driver;
114 
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119 	/*
120 	 * Number of times the driver requested a timer while an operation
121 	 * was in progress.
122 	 */
123 	SI_STAT_short_timeouts = 0,
124 
125 	/*
126 	 * Number of times the driver requested a timer while nothing was in
127 	 * progress.
128 	 */
129 	SI_STAT_long_timeouts,
130 
131 	/* Number of times the interface was idle while being polled. */
132 	SI_STAT_idles,
133 
134 	/* Number of interrupts the driver handled. */
135 	SI_STAT_interrupts,
136 
137 	/* Number of time the driver got an ATTN from the hardware. */
138 	SI_STAT_attentions,
139 
140 	/* Number of times the driver requested flags from the hardware. */
141 	SI_STAT_flag_fetches,
142 
143 	/* Number of times the hardware didn't follow the state machine. */
144 	SI_STAT_hosed_count,
145 
146 	/* Number of completed messages. */
147 	SI_STAT_complete_transactions,
148 
149 	/* Number of IPMI events received from the hardware. */
150 	SI_STAT_events,
151 
152 	/* Number of watchdog pretimeouts. */
153 	SI_STAT_watchdog_pretimeouts,
154 
155 	/* Number of asynchronous messages received. */
156 	SI_STAT_incoming_messages,
157 
158 
159 	/* This *must* remain last, add new values above this. */
160 	SI_NUM_STATS
161 };
162 
163 struct smi_info {
164 	int                    intf_num;
165 	ipmi_smi_t             intf;
166 	struct si_sm_data      *si_sm;
167 	struct si_sm_handlers  *handlers;
168 	enum si_type           si_type;
169 	spinlock_t             si_lock;
170 	struct ipmi_smi_msg    *waiting_msg;
171 	struct ipmi_smi_msg    *curr_msg;
172 	enum si_intf_state     si_state;
173 
174 	/*
175 	 * Used to handle the various types of I/O that can occur with
176 	 * IPMI
177 	 */
178 	struct si_sm_io io;
179 	int (*io_setup)(struct smi_info *info);
180 	void (*io_cleanup)(struct smi_info *info);
181 	int (*irq_setup)(struct smi_info *info);
182 	void (*irq_cleanup)(struct smi_info *info);
183 	unsigned int io_size;
184 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 	void (*addr_source_cleanup)(struct smi_info *info);
186 	void *addr_source_data;
187 
188 	/*
189 	 * Per-OEM handler, called from handle_flags().  Returns 1
190 	 * when handle_flags() needs to be re-run or 0 indicating it
191 	 * set si_state itself.
192 	 */
193 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
194 
195 	/*
196 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 	 * is set to hold the flags until we are done handling everything
198 	 * from the flags.
199 	 */
200 #define RECEIVE_MSG_AVAIL	0x01
201 #define EVENT_MSG_BUFFER_FULL	0x02
202 #define WDT_PRE_TIMEOUT_INT	0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207 			     OEM1_DATA_AVAIL | \
208 			     OEM2_DATA_AVAIL)
209 	unsigned char       msg_flags;
210 
211 	/* Does the BMC have an event buffer? */
212 	bool		    has_event_buffer;
213 
214 	/*
215 	 * If set to true, this will request events the next time the
216 	 * state machine is idle.
217 	 */
218 	atomic_t            req_events;
219 
220 	/*
221 	 * If true, run the state machine to completion on every send
222 	 * call.  Generally used after a panic to make sure stuff goes
223 	 * out.
224 	 */
225 	bool                run_to_completion;
226 
227 	/* The I/O port of an SI interface. */
228 	int                 port;
229 
230 	/*
231 	 * The space between start addresses of the two ports.  For
232 	 * instance, if the first port is 0xca2 and the spacing is 4, then
233 	 * the second port is 0xca6.
234 	 */
235 	unsigned int        spacing;
236 
237 	/* zero if no irq; */
238 	int                 irq;
239 
240 	/* The timer for this si. */
241 	struct timer_list   si_timer;
242 
243 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 	bool		    timer_running;
245 
246 	/* The time (in jiffies) the last timeout occurred at. */
247 	unsigned long       last_timeout_jiffies;
248 
249 	/* Are we waiting for the events, pretimeouts, received msgs? */
250 	atomic_t            need_watch;
251 
252 	/*
253 	 * The driver will disable interrupts when it gets into a
254 	 * situation where it cannot handle messages due to lack of
255 	 * memory.  Once that situation clears up, it will re-enable
256 	 * interrupts.
257 	 */
258 	bool interrupt_disabled;
259 
260 	/*
261 	 * Does the BMC support events?
262 	 */
263 	bool supports_event_msg_buff;
264 
265 	/*
266 	 * Can we clear the global enables receive irq bit?
267 	 */
268 	bool cannot_clear_recv_irq_bit;
269 
270 	/*
271 	 * Did we get an attention that we did not handle?
272 	 */
273 	bool got_attn;
274 
275 	/* From the get device id response... */
276 	struct ipmi_device_id device_id;
277 
278 	/* Driver model stuff. */
279 	struct device *dev;
280 	struct platform_device *pdev;
281 
282 	/*
283 	 * True if we allocated the device, false if it came from
284 	 * someplace else (like PCI).
285 	 */
286 	bool dev_registered;
287 
288 	/* Slave address, could be reported from DMI. */
289 	unsigned char slave_addr;
290 
291 	/* Counters and things for the proc filesystem. */
292 	atomic_t stats[SI_NUM_STATS];
293 
294 	struct task_struct *thread;
295 
296 	struct list_head link;
297 	union ipmi_smi_info_union addr_info;
298 };
299 
300 #define smi_inc_stat(smi, stat) \
301 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302 #define smi_get_stat(smi, stat) \
303 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304 
305 #define SI_MAX_PARMS 4
306 
307 static int force_kipmid[SI_MAX_PARMS];
308 static int num_force_kipmid;
309 #ifdef CONFIG_PCI
310 static bool pci_registered;
311 #endif
312 #ifdef CONFIG_ACPI
313 static bool pnp_registered;
314 #endif
315 #ifdef CONFIG_PARISC
316 static bool parisc_registered;
317 #endif
318 
319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320 static int num_max_busy_us;
321 
322 static bool unload_when_empty = true;
323 
324 static int add_smi(struct smi_info *smi);
325 static int try_smi_init(struct smi_info *smi);
326 static void cleanup_one_si(struct smi_info *to_clean);
327 static void cleanup_ipmi_si(void);
328 
329 #ifdef DEBUG_TIMING
330 void debug_timestamp(char *msg)
331 {
332 	struct timespec64 t;
333 
334 	getnstimeofday64(&t);
335 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
336 }
337 #else
338 #define debug_timestamp(x)
339 #endif
340 
341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
342 static int register_xaction_notifier(struct notifier_block *nb)
343 {
344 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
345 }
346 
347 static void deliver_recv_msg(struct smi_info *smi_info,
348 			     struct ipmi_smi_msg *msg)
349 {
350 	/* Deliver the message to the upper layer. */
351 	if (smi_info->intf)
352 		ipmi_smi_msg_received(smi_info->intf, msg);
353 	else
354 		ipmi_free_smi_msg(msg);
355 }
356 
357 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
358 {
359 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
360 
361 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362 		cCode = IPMI_ERR_UNSPECIFIED;
363 	/* else use it as is */
364 
365 	/* Make it a response */
366 	msg->rsp[0] = msg->data[0] | 4;
367 	msg->rsp[1] = msg->data[1];
368 	msg->rsp[2] = cCode;
369 	msg->rsp_size = 3;
370 
371 	smi_info->curr_msg = NULL;
372 	deliver_recv_msg(smi_info, msg);
373 }
374 
375 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376 {
377 	int              rv;
378 
379 	if (!smi_info->waiting_msg) {
380 		smi_info->curr_msg = NULL;
381 		rv = SI_SM_IDLE;
382 	} else {
383 		int err;
384 
385 		smi_info->curr_msg = smi_info->waiting_msg;
386 		smi_info->waiting_msg = NULL;
387 		debug_timestamp("Start2");
388 		err = atomic_notifier_call_chain(&xaction_notifier_list,
389 				0, smi_info);
390 		if (err & NOTIFY_STOP_MASK) {
391 			rv = SI_SM_CALL_WITHOUT_DELAY;
392 			goto out;
393 		}
394 		err = smi_info->handlers->start_transaction(
395 			smi_info->si_sm,
396 			smi_info->curr_msg->data,
397 			smi_info->curr_msg->data_size);
398 		if (err)
399 			return_hosed_msg(smi_info, err);
400 
401 		rv = SI_SM_CALL_WITHOUT_DELAY;
402 	}
403  out:
404 	return rv;
405 }
406 
407 static void start_check_enables(struct smi_info *smi_info)
408 {
409 	unsigned char msg[2];
410 
411 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
412 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
413 
414 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
415 	smi_info->si_state = SI_CHECKING_ENABLES;
416 }
417 
418 static void start_clear_flags(struct smi_info *smi_info)
419 {
420 	unsigned char msg[3];
421 
422 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
423 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
424 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
425 	msg[2] = WDT_PRE_TIMEOUT_INT;
426 
427 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
428 	smi_info->si_state = SI_CLEARING_FLAGS;
429 }
430 
431 static void start_getting_msg_queue(struct smi_info *smi_info)
432 {
433 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
434 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
435 	smi_info->curr_msg->data_size = 2;
436 
437 	smi_info->handlers->start_transaction(
438 		smi_info->si_sm,
439 		smi_info->curr_msg->data,
440 		smi_info->curr_msg->data_size);
441 	smi_info->si_state = SI_GETTING_MESSAGES;
442 }
443 
444 static void start_getting_events(struct smi_info *smi_info)
445 {
446 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
447 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
448 	smi_info->curr_msg->data_size = 2;
449 
450 	smi_info->handlers->start_transaction(
451 		smi_info->si_sm,
452 		smi_info->curr_msg->data,
453 		smi_info->curr_msg->data_size);
454 	smi_info->si_state = SI_GETTING_EVENTS;
455 }
456 
457 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
458 {
459 	smi_info->last_timeout_jiffies = jiffies;
460 	mod_timer(&smi_info->si_timer, new_val);
461 	smi_info->timer_running = true;
462 }
463 
464 /*
465  * When we have a situtaion where we run out of memory and cannot
466  * allocate messages, we just leave them in the BMC and run the system
467  * polled until we can allocate some memory.  Once we have some
468  * memory, we will re-enable the interrupt.
469  *
470  * Note that we cannot just use disable_irq(), since the interrupt may
471  * be shared.
472  */
473 static inline bool disable_si_irq(struct smi_info *smi_info)
474 {
475 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
476 		smi_info->interrupt_disabled = true;
477 		start_check_enables(smi_info);
478 		return true;
479 	}
480 	return false;
481 }
482 
483 static inline bool enable_si_irq(struct smi_info *smi_info)
484 {
485 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
486 		smi_info->interrupt_disabled = false;
487 		start_check_enables(smi_info);
488 		return true;
489 	}
490 	return false;
491 }
492 
493 /*
494  * Allocate a message.  If unable to allocate, start the interrupt
495  * disable process and return NULL.  If able to allocate but
496  * interrupts are disabled, free the message and return NULL after
497  * starting the interrupt enable process.
498  */
499 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
500 {
501 	struct ipmi_smi_msg *msg;
502 
503 	msg = ipmi_alloc_smi_msg();
504 	if (!msg) {
505 		if (!disable_si_irq(smi_info))
506 			smi_info->si_state = SI_NORMAL;
507 	} else if (enable_si_irq(smi_info)) {
508 		ipmi_free_smi_msg(msg);
509 		msg = NULL;
510 	}
511 	return msg;
512 }
513 
514 static void handle_flags(struct smi_info *smi_info)
515 {
516  retry:
517 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
518 		/* Watchdog pre-timeout */
519 		smi_inc_stat(smi_info, watchdog_pretimeouts);
520 
521 		start_clear_flags(smi_info);
522 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
523 		if (smi_info->intf)
524 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
525 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
526 		/* Messages available. */
527 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
528 		if (!smi_info->curr_msg)
529 			return;
530 
531 		start_getting_msg_queue(smi_info);
532 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
533 		/* Events available. */
534 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
535 		if (!smi_info->curr_msg)
536 			return;
537 
538 		start_getting_events(smi_info);
539 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
540 		   smi_info->oem_data_avail_handler) {
541 		if (smi_info->oem_data_avail_handler(smi_info))
542 			goto retry;
543 	} else
544 		smi_info->si_state = SI_NORMAL;
545 }
546 
547 /*
548  * Global enables we care about.
549  */
550 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
551 			     IPMI_BMC_EVT_MSG_INTR)
552 
553 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
554 				 bool *irq_on)
555 {
556 	u8 enables = 0;
557 
558 	if (smi_info->supports_event_msg_buff)
559 		enables |= IPMI_BMC_EVT_MSG_BUFF;
560 
561 	if ((smi_info->irq && !smi_info->interrupt_disabled) ||
562 	    smi_info->cannot_clear_recv_irq_bit)
563 		enables |= IPMI_BMC_RCV_MSG_INTR;
564 
565 	if (smi_info->supports_event_msg_buff &&
566 	    smi_info->irq && !smi_info->interrupt_disabled)
567 
568 		enables |= IPMI_BMC_EVT_MSG_INTR;
569 
570 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
571 
572 	return enables;
573 }
574 
575 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
576 {
577 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
578 
579 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
580 
581 	if ((bool)irqstate == irq_on)
582 		return;
583 
584 	if (irq_on)
585 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
586 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
587 	else
588 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
589 }
590 
591 static void handle_transaction_done(struct smi_info *smi_info)
592 {
593 	struct ipmi_smi_msg *msg;
594 
595 	debug_timestamp("Done");
596 	switch (smi_info->si_state) {
597 	case SI_NORMAL:
598 		if (!smi_info->curr_msg)
599 			break;
600 
601 		smi_info->curr_msg->rsp_size
602 			= smi_info->handlers->get_result(
603 				smi_info->si_sm,
604 				smi_info->curr_msg->rsp,
605 				IPMI_MAX_MSG_LENGTH);
606 
607 		/*
608 		 * Do this here becase deliver_recv_msg() releases the
609 		 * lock, and a new message can be put in during the
610 		 * time the lock is released.
611 		 */
612 		msg = smi_info->curr_msg;
613 		smi_info->curr_msg = NULL;
614 		deliver_recv_msg(smi_info, msg);
615 		break;
616 
617 	case SI_GETTING_FLAGS:
618 	{
619 		unsigned char msg[4];
620 		unsigned int  len;
621 
622 		/* We got the flags from the SMI, now handle them. */
623 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
624 		if (msg[2] != 0) {
625 			/* Error fetching flags, just give up for now. */
626 			smi_info->si_state = SI_NORMAL;
627 		} else if (len < 4) {
628 			/*
629 			 * Hmm, no flags.  That's technically illegal, but
630 			 * don't use uninitialized data.
631 			 */
632 			smi_info->si_state = SI_NORMAL;
633 		} else {
634 			smi_info->msg_flags = msg[3];
635 			handle_flags(smi_info);
636 		}
637 		break;
638 	}
639 
640 	case SI_CLEARING_FLAGS:
641 	{
642 		unsigned char msg[3];
643 
644 		/* We cleared the flags. */
645 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
646 		if (msg[2] != 0) {
647 			/* Error clearing flags */
648 			dev_warn(smi_info->dev,
649 				 "Error clearing flags: %2.2x\n", msg[2]);
650 		}
651 		smi_info->si_state = SI_NORMAL;
652 		break;
653 	}
654 
655 	case SI_GETTING_EVENTS:
656 	{
657 		smi_info->curr_msg->rsp_size
658 			= smi_info->handlers->get_result(
659 				smi_info->si_sm,
660 				smi_info->curr_msg->rsp,
661 				IPMI_MAX_MSG_LENGTH);
662 
663 		/*
664 		 * Do this here becase deliver_recv_msg() releases the
665 		 * lock, and a new message can be put in during the
666 		 * time the lock is released.
667 		 */
668 		msg = smi_info->curr_msg;
669 		smi_info->curr_msg = NULL;
670 		if (msg->rsp[2] != 0) {
671 			/* Error getting event, probably done. */
672 			msg->done(msg);
673 
674 			/* Take off the event flag. */
675 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
676 			handle_flags(smi_info);
677 		} else {
678 			smi_inc_stat(smi_info, events);
679 
680 			/*
681 			 * Do this before we deliver the message
682 			 * because delivering the message releases the
683 			 * lock and something else can mess with the
684 			 * state.
685 			 */
686 			handle_flags(smi_info);
687 
688 			deliver_recv_msg(smi_info, msg);
689 		}
690 		break;
691 	}
692 
693 	case SI_GETTING_MESSAGES:
694 	{
695 		smi_info->curr_msg->rsp_size
696 			= smi_info->handlers->get_result(
697 				smi_info->si_sm,
698 				smi_info->curr_msg->rsp,
699 				IPMI_MAX_MSG_LENGTH);
700 
701 		/*
702 		 * Do this here becase deliver_recv_msg() releases the
703 		 * lock, and a new message can be put in during the
704 		 * time the lock is released.
705 		 */
706 		msg = smi_info->curr_msg;
707 		smi_info->curr_msg = NULL;
708 		if (msg->rsp[2] != 0) {
709 			/* Error getting event, probably done. */
710 			msg->done(msg);
711 
712 			/* Take off the msg flag. */
713 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
714 			handle_flags(smi_info);
715 		} else {
716 			smi_inc_stat(smi_info, incoming_messages);
717 
718 			/*
719 			 * Do this before we deliver the message
720 			 * because delivering the message releases the
721 			 * lock and something else can mess with the
722 			 * state.
723 			 */
724 			handle_flags(smi_info);
725 
726 			deliver_recv_msg(smi_info, msg);
727 		}
728 		break;
729 	}
730 
731 	case SI_CHECKING_ENABLES:
732 	{
733 		unsigned char msg[4];
734 		u8 enables;
735 		bool irq_on;
736 
737 		/* We got the flags from the SMI, now handle them. */
738 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
739 		if (msg[2] != 0) {
740 			dev_warn(smi_info->dev,
741 				 "Couldn't get irq info: %x.\n", msg[2]);
742 			dev_warn(smi_info->dev,
743 				 "Maybe ok, but ipmi might run very slowly.\n");
744 			smi_info->si_state = SI_NORMAL;
745 			break;
746 		}
747 		enables = current_global_enables(smi_info, 0, &irq_on);
748 		if (smi_info->si_type == SI_BT)
749 			/* BT has its own interrupt enable bit. */
750 			check_bt_irq(smi_info, irq_on);
751 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
752 			/* Enables are not correct, fix them. */
753 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
754 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
755 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
756 			smi_info->handlers->start_transaction(
757 				smi_info->si_sm, msg, 3);
758 			smi_info->si_state = SI_SETTING_ENABLES;
759 		} else if (smi_info->supports_event_msg_buff) {
760 			smi_info->curr_msg = ipmi_alloc_smi_msg();
761 			if (!smi_info->curr_msg) {
762 				smi_info->si_state = SI_NORMAL;
763 				break;
764 			}
765 			start_getting_msg_queue(smi_info);
766 		} else {
767 			smi_info->si_state = SI_NORMAL;
768 		}
769 		break;
770 	}
771 
772 	case SI_SETTING_ENABLES:
773 	{
774 		unsigned char msg[4];
775 
776 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
777 		if (msg[2] != 0)
778 			dev_warn(smi_info->dev,
779 				 "Could not set the global enables: 0x%x.\n",
780 				 msg[2]);
781 
782 		if (smi_info->supports_event_msg_buff) {
783 			smi_info->curr_msg = ipmi_alloc_smi_msg();
784 			if (!smi_info->curr_msg) {
785 				smi_info->si_state = SI_NORMAL;
786 				break;
787 			}
788 			start_getting_msg_queue(smi_info);
789 		} else {
790 			smi_info->si_state = SI_NORMAL;
791 		}
792 		break;
793 	}
794 	}
795 }
796 
797 /*
798  * Called on timeouts and events.  Timeouts should pass the elapsed
799  * time, interrupts should pass in zero.  Must be called with
800  * si_lock held and interrupts disabled.
801  */
802 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
803 					   int time)
804 {
805 	enum si_sm_result si_sm_result;
806 
807  restart:
808 	/*
809 	 * There used to be a loop here that waited a little while
810 	 * (around 25us) before giving up.  That turned out to be
811 	 * pointless, the minimum delays I was seeing were in the 300us
812 	 * range, which is far too long to wait in an interrupt.  So
813 	 * we just run until the state machine tells us something
814 	 * happened or it needs a delay.
815 	 */
816 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
817 	time = 0;
818 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
819 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
820 
821 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
822 		smi_inc_stat(smi_info, complete_transactions);
823 
824 		handle_transaction_done(smi_info);
825 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
826 	} else if (si_sm_result == SI_SM_HOSED) {
827 		smi_inc_stat(smi_info, hosed_count);
828 
829 		/*
830 		 * Do the before return_hosed_msg, because that
831 		 * releases the lock.
832 		 */
833 		smi_info->si_state = SI_NORMAL;
834 		if (smi_info->curr_msg != NULL) {
835 			/*
836 			 * If we were handling a user message, format
837 			 * a response to send to the upper layer to
838 			 * tell it about the error.
839 			 */
840 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
841 		}
842 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
843 	}
844 
845 	/*
846 	 * We prefer handling attn over new messages.  But don't do
847 	 * this if there is not yet an upper layer to handle anything.
848 	 */
849 	if (likely(smi_info->intf) &&
850 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
851 		unsigned char msg[2];
852 
853 		if (smi_info->si_state != SI_NORMAL) {
854 			/*
855 			 * We got an ATTN, but we are doing something else.
856 			 * Handle the ATTN later.
857 			 */
858 			smi_info->got_attn = true;
859 		} else {
860 			smi_info->got_attn = false;
861 			smi_inc_stat(smi_info, attentions);
862 
863 			/*
864 			 * Got a attn, send down a get message flags to see
865 			 * what's causing it.  It would be better to handle
866 			 * this in the upper layer, but due to the way
867 			 * interrupts work with the SMI, that's not really
868 			 * possible.
869 			 */
870 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
871 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
872 
873 			smi_info->handlers->start_transaction(
874 				smi_info->si_sm, msg, 2);
875 			smi_info->si_state = SI_GETTING_FLAGS;
876 			goto restart;
877 		}
878 	}
879 
880 	/* If we are currently idle, try to start the next message. */
881 	if (si_sm_result == SI_SM_IDLE) {
882 		smi_inc_stat(smi_info, idles);
883 
884 		si_sm_result = start_next_msg(smi_info);
885 		if (si_sm_result != SI_SM_IDLE)
886 			goto restart;
887 	}
888 
889 	if ((si_sm_result == SI_SM_IDLE)
890 	    && (atomic_read(&smi_info->req_events))) {
891 		/*
892 		 * We are idle and the upper layer requested that I fetch
893 		 * events, so do so.
894 		 */
895 		atomic_set(&smi_info->req_events, 0);
896 
897 		/*
898 		 * Take this opportunity to check the interrupt and
899 		 * message enable state for the BMC.  The BMC can be
900 		 * asynchronously reset, and may thus get interrupts
901 		 * disable and messages disabled.
902 		 */
903 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
904 			start_check_enables(smi_info);
905 		} else {
906 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
907 			if (!smi_info->curr_msg)
908 				goto out;
909 
910 			start_getting_events(smi_info);
911 		}
912 		goto restart;
913 	}
914  out:
915 	return si_sm_result;
916 }
917 
918 static void check_start_timer_thread(struct smi_info *smi_info)
919 {
920 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
921 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
922 
923 		if (smi_info->thread)
924 			wake_up_process(smi_info->thread);
925 
926 		start_next_msg(smi_info);
927 		smi_event_handler(smi_info, 0);
928 	}
929 }
930 
931 static void sender(void                *send_info,
932 		   struct ipmi_smi_msg *msg)
933 {
934 	struct smi_info   *smi_info = send_info;
935 	enum si_sm_result result;
936 	unsigned long     flags;
937 
938 	debug_timestamp("Enqueue");
939 
940 	if (smi_info->run_to_completion) {
941 		/*
942 		 * If we are running to completion, start it and run
943 		 * transactions until everything is clear.
944 		 */
945 		smi_info->waiting_msg = msg;
946 
947 		/*
948 		 * Run to completion means we are single-threaded, no
949 		 * need for locks.
950 		 */
951 
952 		result = smi_event_handler(smi_info, 0);
953 		while (result != SI_SM_IDLE) {
954 			udelay(SI_SHORT_TIMEOUT_USEC);
955 			result = smi_event_handler(smi_info,
956 						   SI_SHORT_TIMEOUT_USEC);
957 		}
958 		return;
959 	}
960 
961 	spin_lock_irqsave(&smi_info->si_lock, flags);
962 	/*
963 	 * The following two lines don't need to be under the lock for
964 	 * the lock's sake, but they do need SMP memory barriers to
965 	 * avoid getting things out of order.  We are already claiming
966 	 * the lock, anyway, so just do it under the lock to avoid the
967 	 * ordering problem.
968 	 */
969 	BUG_ON(smi_info->waiting_msg);
970 	smi_info->waiting_msg = msg;
971 	check_start_timer_thread(smi_info);
972 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
973 }
974 
975 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
976 {
977 	struct smi_info   *smi_info = send_info;
978 	enum si_sm_result result;
979 
980 	smi_info->run_to_completion = i_run_to_completion;
981 	if (i_run_to_completion) {
982 		result = smi_event_handler(smi_info, 0);
983 		while (result != SI_SM_IDLE) {
984 			udelay(SI_SHORT_TIMEOUT_USEC);
985 			result = smi_event_handler(smi_info,
986 						   SI_SHORT_TIMEOUT_USEC);
987 		}
988 	}
989 }
990 
991 /*
992  * Use -1 in the nsec value of the busy waiting timespec to tell that
993  * we are spinning in kipmid looking for something and not delaying
994  * between checks
995  */
996 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
997 {
998 	ts->tv_nsec = -1;
999 }
1000 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1001 {
1002 	return ts->tv_nsec != -1;
1003 }
1004 
1005 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1006 					const struct smi_info *smi_info,
1007 					struct timespec64 *busy_until)
1008 {
1009 	unsigned int max_busy_us = 0;
1010 
1011 	if (smi_info->intf_num < num_max_busy_us)
1012 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1013 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1014 		ipmi_si_set_not_busy(busy_until);
1015 	else if (!ipmi_si_is_busy(busy_until)) {
1016 		getnstimeofday64(busy_until);
1017 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1018 	} else {
1019 		struct timespec64 now;
1020 
1021 		getnstimeofday64(&now);
1022 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1023 			ipmi_si_set_not_busy(busy_until);
1024 			return 0;
1025 		}
1026 	}
1027 	return 1;
1028 }
1029 
1030 
1031 /*
1032  * A busy-waiting loop for speeding up IPMI operation.
1033  *
1034  * Lousy hardware makes this hard.  This is only enabled for systems
1035  * that are not BT and do not have interrupts.  It starts spinning
1036  * when an operation is complete or until max_busy tells it to stop
1037  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1038  * Documentation/IPMI.txt for details.
1039  */
1040 static int ipmi_thread(void *data)
1041 {
1042 	struct smi_info *smi_info = data;
1043 	unsigned long flags;
1044 	enum si_sm_result smi_result;
1045 	struct timespec64 busy_until;
1046 
1047 	ipmi_si_set_not_busy(&busy_until);
1048 	set_user_nice(current, MAX_NICE);
1049 	while (!kthread_should_stop()) {
1050 		int busy_wait;
1051 
1052 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1053 		smi_result = smi_event_handler(smi_info, 0);
1054 
1055 		/*
1056 		 * If the driver is doing something, there is a possible
1057 		 * race with the timer.  If the timer handler see idle,
1058 		 * and the thread here sees something else, the timer
1059 		 * handler won't restart the timer even though it is
1060 		 * required.  So start it here if necessary.
1061 		 */
1062 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1063 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1064 
1065 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1066 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1067 						  &busy_until);
1068 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1069 			; /* do nothing */
1070 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1071 			schedule();
1072 		else if (smi_result == SI_SM_IDLE) {
1073 			if (atomic_read(&smi_info->need_watch)) {
1074 				schedule_timeout_interruptible(100);
1075 			} else {
1076 				/* Wait to be woken up when we are needed. */
1077 				__set_current_state(TASK_INTERRUPTIBLE);
1078 				schedule();
1079 			}
1080 		} else
1081 			schedule_timeout_interruptible(1);
1082 	}
1083 	return 0;
1084 }
1085 
1086 
1087 static void poll(void *send_info)
1088 {
1089 	struct smi_info *smi_info = send_info;
1090 	unsigned long flags = 0;
1091 	bool run_to_completion = smi_info->run_to_completion;
1092 
1093 	/*
1094 	 * Make sure there is some delay in the poll loop so we can
1095 	 * drive time forward and timeout things.
1096 	 */
1097 	udelay(10);
1098 	if (!run_to_completion)
1099 		spin_lock_irqsave(&smi_info->si_lock, flags);
1100 	smi_event_handler(smi_info, 10);
1101 	if (!run_to_completion)
1102 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1103 }
1104 
1105 static void request_events(void *send_info)
1106 {
1107 	struct smi_info *smi_info = send_info;
1108 
1109 	if (!smi_info->has_event_buffer)
1110 		return;
1111 
1112 	atomic_set(&smi_info->req_events, 1);
1113 }
1114 
1115 static void set_need_watch(void *send_info, bool enable)
1116 {
1117 	struct smi_info *smi_info = send_info;
1118 	unsigned long flags;
1119 
1120 	atomic_set(&smi_info->need_watch, enable);
1121 	spin_lock_irqsave(&smi_info->si_lock, flags);
1122 	check_start_timer_thread(smi_info);
1123 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1124 }
1125 
1126 static int initialized;
1127 
1128 static void smi_timeout(unsigned long data)
1129 {
1130 	struct smi_info   *smi_info = (struct smi_info *) data;
1131 	enum si_sm_result smi_result;
1132 	unsigned long     flags;
1133 	unsigned long     jiffies_now;
1134 	long              time_diff;
1135 	long		  timeout;
1136 
1137 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1138 	debug_timestamp("Timer");
1139 
1140 	jiffies_now = jiffies;
1141 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1142 		     * SI_USEC_PER_JIFFY);
1143 	smi_result = smi_event_handler(smi_info, time_diff);
1144 
1145 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1146 		/* Running with interrupts, only do long timeouts. */
1147 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1148 		smi_inc_stat(smi_info, long_timeouts);
1149 		goto do_mod_timer;
1150 	}
1151 
1152 	/*
1153 	 * If the state machine asks for a short delay, then shorten
1154 	 * the timer timeout.
1155 	 */
1156 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1157 		smi_inc_stat(smi_info, short_timeouts);
1158 		timeout = jiffies + 1;
1159 	} else {
1160 		smi_inc_stat(smi_info, long_timeouts);
1161 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1162 	}
1163 
1164  do_mod_timer:
1165 	if (smi_result != SI_SM_IDLE)
1166 		smi_mod_timer(smi_info, timeout);
1167 	else
1168 		smi_info->timer_running = false;
1169 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1170 }
1171 
1172 static irqreturn_t si_irq_handler(int irq, void *data)
1173 {
1174 	struct smi_info *smi_info = data;
1175 	unsigned long   flags;
1176 
1177 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1178 
1179 	smi_inc_stat(smi_info, interrupts);
1180 
1181 	debug_timestamp("Interrupt");
1182 
1183 	smi_event_handler(smi_info, 0);
1184 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185 	return IRQ_HANDLED;
1186 }
1187 
1188 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1189 {
1190 	struct smi_info *smi_info = data;
1191 	/* We need to clear the IRQ flag for the BT interface. */
1192 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1193 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1194 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1195 	return si_irq_handler(irq, data);
1196 }
1197 
1198 static int smi_start_processing(void       *send_info,
1199 				ipmi_smi_t intf)
1200 {
1201 	struct smi_info *new_smi = send_info;
1202 	int             enable = 0;
1203 
1204 	new_smi->intf = intf;
1205 
1206 	/* Try to claim any interrupts. */
1207 	if (new_smi->irq_setup)
1208 		new_smi->irq_setup(new_smi);
1209 
1210 	/* Set up the timer that drives the interface. */
1211 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1212 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1213 
1214 	/*
1215 	 * Check if the user forcefully enabled the daemon.
1216 	 */
1217 	if (new_smi->intf_num < num_force_kipmid)
1218 		enable = force_kipmid[new_smi->intf_num];
1219 	/*
1220 	 * The BT interface is efficient enough to not need a thread,
1221 	 * and there is no need for a thread if we have interrupts.
1222 	 */
1223 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1224 		enable = 1;
1225 
1226 	if (enable) {
1227 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1228 					      "kipmi%d", new_smi->intf_num);
1229 		if (IS_ERR(new_smi->thread)) {
1230 			dev_notice(new_smi->dev, "Could not start"
1231 				   " kernel thread due to error %ld, only using"
1232 				   " timers to drive the interface\n",
1233 				   PTR_ERR(new_smi->thread));
1234 			new_smi->thread = NULL;
1235 		}
1236 	}
1237 
1238 	return 0;
1239 }
1240 
1241 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1242 {
1243 	struct smi_info *smi = send_info;
1244 
1245 	data->addr_src = smi->addr_source;
1246 	data->dev = smi->dev;
1247 	data->addr_info = smi->addr_info;
1248 	get_device(smi->dev);
1249 
1250 	return 0;
1251 }
1252 
1253 static void set_maintenance_mode(void *send_info, bool enable)
1254 {
1255 	struct smi_info   *smi_info = send_info;
1256 
1257 	if (!enable)
1258 		atomic_set(&smi_info->req_events, 0);
1259 }
1260 
1261 static struct ipmi_smi_handlers handlers = {
1262 	.owner                  = THIS_MODULE,
1263 	.start_processing       = smi_start_processing,
1264 	.get_smi_info		= get_smi_info,
1265 	.sender			= sender,
1266 	.request_events		= request_events,
1267 	.set_need_watch		= set_need_watch,
1268 	.set_maintenance_mode   = set_maintenance_mode,
1269 	.set_run_to_completion  = set_run_to_completion,
1270 	.poll			= poll,
1271 };
1272 
1273 /*
1274  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1275  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1276  */
1277 
1278 static LIST_HEAD(smi_infos);
1279 static DEFINE_MUTEX(smi_infos_lock);
1280 static int smi_num; /* Used to sequence the SMIs */
1281 
1282 #define DEFAULT_REGSPACING	1
1283 #define DEFAULT_REGSIZE		1
1284 
1285 #ifdef CONFIG_ACPI
1286 static bool          si_tryacpi = 1;
1287 #endif
1288 #ifdef CONFIG_DMI
1289 static bool          si_trydmi = 1;
1290 #endif
1291 static bool          si_tryplatform = 1;
1292 #ifdef CONFIG_PCI
1293 static bool          si_trypci = 1;
1294 #endif
1295 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1296 static char          *si_type[SI_MAX_PARMS];
1297 #define MAX_SI_TYPE_STR 30
1298 static char          si_type_str[MAX_SI_TYPE_STR];
1299 static unsigned long addrs[SI_MAX_PARMS];
1300 static unsigned int num_addrs;
1301 static unsigned int  ports[SI_MAX_PARMS];
1302 static unsigned int num_ports;
1303 static int           irqs[SI_MAX_PARMS];
1304 static unsigned int num_irqs;
1305 static int           regspacings[SI_MAX_PARMS];
1306 static unsigned int num_regspacings;
1307 static int           regsizes[SI_MAX_PARMS];
1308 static unsigned int num_regsizes;
1309 static int           regshifts[SI_MAX_PARMS];
1310 static unsigned int num_regshifts;
1311 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1312 static unsigned int num_slave_addrs;
1313 
1314 #define IPMI_IO_ADDR_SPACE  0
1315 #define IPMI_MEM_ADDR_SPACE 1
1316 static char *addr_space_to_str[] = { "i/o", "mem" };
1317 
1318 static int hotmod_handler(const char *val, struct kernel_param *kp);
1319 
1320 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1321 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1322 		 " Documentation/IPMI.txt in the kernel sources for the"
1323 		 " gory details.");
1324 
1325 #ifdef CONFIG_ACPI
1326 module_param_named(tryacpi, si_tryacpi, bool, 0);
1327 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1328 		 " default scan of the interfaces identified via ACPI");
1329 #endif
1330 #ifdef CONFIG_DMI
1331 module_param_named(trydmi, si_trydmi, bool, 0);
1332 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1333 		 " default scan of the interfaces identified via DMI");
1334 #endif
1335 module_param_named(tryplatform, si_tryplatform, bool, 0);
1336 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1337 		 " default scan of the interfaces identified via platform"
1338 		 " interfaces like openfirmware");
1339 #ifdef CONFIG_PCI
1340 module_param_named(trypci, si_trypci, bool, 0);
1341 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1342 		 " default scan of the interfaces identified via pci");
1343 #endif
1344 module_param_named(trydefaults, si_trydefaults, bool, 0);
1345 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1346 		 " default scan of the KCS and SMIC interface at the standard"
1347 		 " address");
1348 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1349 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1350 		 " interface separated by commas.  The types are 'kcs',"
1351 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1352 		 " the first interface to kcs and the second to bt");
1353 module_param_array(addrs, ulong, &num_addrs, 0);
1354 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1355 		 " addresses separated by commas.  Only use if an interface"
1356 		 " is in memory.  Otherwise, set it to zero or leave"
1357 		 " it blank.");
1358 module_param_array(ports, uint, &num_ports, 0);
1359 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1360 		 " addresses separated by commas.  Only use if an interface"
1361 		 " is a port.  Otherwise, set it to zero or leave"
1362 		 " it blank.");
1363 module_param_array(irqs, int, &num_irqs, 0);
1364 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1365 		 " addresses separated by commas.  Only use if an interface"
1366 		 " has an interrupt.  Otherwise, set it to zero or leave"
1367 		 " it blank.");
1368 module_param_array(regspacings, int, &num_regspacings, 0);
1369 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1370 		 " and each successive register used by the interface.  For"
1371 		 " instance, if the start address is 0xca2 and the spacing"
1372 		 " is 2, then the second address is at 0xca4.  Defaults"
1373 		 " to 1.");
1374 module_param_array(regsizes, int, &num_regsizes, 0);
1375 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1376 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1377 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1378 		 " the 8-bit IPMI register has to be read from a larger"
1379 		 " register.");
1380 module_param_array(regshifts, int, &num_regshifts, 0);
1381 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1382 		 " IPMI register, in bits.  For instance, if the data"
1383 		 " is read from a 32-bit word and the IPMI data is in"
1384 		 " bit 8-15, then the shift would be 8");
1385 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1386 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1387 		 " the controller.  Normally this is 0x20, but can be"
1388 		 " overridden by this parm.  This is an array indexed"
1389 		 " by interface number.");
1390 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1391 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1392 		 " disabled(0).  Normally the IPMI driver auto-detects"
1393 		 " this, but the value may be overridden by this parm.");
1394 module_param(unload_when_empty, bool, 0);
1395 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1396 		 " specified or found, default is 1.  Setting to 0"
1397 		 " is useful for hot add of devices using hotmod.");
1398 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1399 MODULE_PARM_DESC(kipmid_max_busy_us,
1400 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1401 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1402 		 " if kipmid is using up a lot of CPU time.");
1403 
1404 
1405 static void std_irq_cleanup(struct smi_info *info)
1406 {
1407 	if (info->si_type == SI_BT)
1408 		/* Disable the interrupt in the BT interface. */
1409 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1410 	free_irq(info->irq, info);
1411 }
1412 
1413 static int std_irq_setup(struct smi_info *info)
1414 {
1415 	int rv;
1416 
1417 	if (!info->irq)
1418 		return 0;
1419 
1420 	if (info->si_type == SI_BT) {
1421 		rv = request_irq(info->irq,
1422 				 si_bt_irq_handler,
1423 				 IRQF_SHARED,
1424 				 DEVICE_NAME,
1425 				 info);
1426 		if (!rv)
1427 			/* Enable the interrupt in the BT interface. */
1428 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1429 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1430 	} else
1431 		rv = request_irq(info->irq,
1432 				 si_irq_handler,
1433 				 IRQF_SHARED,
1434 				 DEVICE_NAME,
1435 				 info);
1436 	if (rv) {
1437 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1438 			 " running polled\n",
1439 			 DEVICE_NAME, info->irq);
1440 		info->irq = 0;
1441 	} else {
1442 		info->irq_cleanup = std_irq_cleanup;
1443 		dev_info(info->dev, "Using irq %d\n", info->irq);
1444 	}
1445 
1446 	return rv;
1447 }
1448 
1449 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1450 {
1451 	unsigned int addr = io->addr_data;
1452 
1453 	return inb(addr + (offset * io->regspacing));
1454 }
1455 
1456 static void port_outb(struct si_sm_io *io, unsigned int offset,
1457 		      unsigned char b)
1458 {
1459 	unsigned int addr = io->addr_data;
1460 
1461 	outb(b, addr + (offset * io->regspacing));
1462 }
1463 
1464 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1465 {
1466 	unsigned int addr = io->addr_data;
1467 
1468 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1469 }
1470 
1471 static void port_outw(struct si_sm_io *io, unsigned int offset,
1472 		      unsigned char b)
1473 {
1474 	unsigned int addr = io->addr_data;
1475 
1476 	outw(b << io->regshift, addr + (offset * io->regspacing));
1477 }
1478 
1479 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1480 {
1481 	unsigned int addr = io->addr_data;
1482 
1483 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1484 }
1485 
1486 static void port_outl(struct si_sm_io *io, unsigned int offset,
1487 		      unsigned char b)
1488 {
1489 	unsigned int addr = io->addr_data;
1490 
1491 	outl(b << io->regshift, addr+(offset * io->regspacing));
1492 }
1493 
1494 static void port_cleanup(struct smi_info *info)
1495 {
1496 	unsigned int addr = info->io.addr_data;
1497 	int          idx;
1498 
1499 	if (addr) {
1500 		for (idx = 0; idx < info->io_size; idx++)
1501 			release_region(addr + idx * info->io.regspacing,
1502 				       info->io.regsize);
1503 	}
1504 }
1505 
1506 static int port_setup(struct smi_info *info)
1507 {
1508 	unsigned int addr = info->io.addr_data;
1509 	int          idx;
1510 
1511 	if (!addr)
1512 		return -ENODEV;
1513 
1514 	info->io_cleanup = port_cleanup;
1515 
1516 	/*
1517 	 * Figure out the actual inb/inw/inl/etc routine to use based
1518 	 * upon the register size.
1519 	 */
1520 	switch (info->io.regsize) {
1521 	case 1:
1522 		info->io.inputb = port_inb;
1523 		info->io.outputb = port_outb;
1524 		break;
1525 	case 2:
1526 		info->io.inputb = port_inw;
1527 		info->io.outputb = port_outw;
1528 		break;
1529 	case 4:
1530 		info->io.inputb = port_inl;
1531 		info->io.outputb = port_outl;
1532 		break;
1533 	default:
1534 		dev_warn(info->dev, "Invalid register size: %d\n",
1535 			 info->io.regsize);
1536 		return -EINVAL;
1537 	}
1538 
1539 	/*
1540 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1541 	 * tables.  This causes problems when trying to register the
1542 	 * entire I/O region.  Therefore we must register each I/O
1543 	 * port separately.
1544 	 */
1545 	for (idx = 0; idx < info->io_size; idx++) {
1546 		if (request_region(addr + idx * info->io.regspacing,
1547 				   info->io.regsize, DEVICE_NAME) == NULL) {
1548 			/* Undo allocations */
1549 			while (idx--) {
1550 				release_region(addr + idx * info->io.regspacing,
1551 					       info->io.regsize);
1552 			}
1553 			return -EIO;
1554 		}
1555 	}
1556 	return 0;
1557 }
1558 
1559 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1560 {
1561 	return readb((io->addr)+(offset * io->regspacing));
1562 }
1563 
1564 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1565 		     unsigned char b)
1566 {
1567 	writeb(b, (io->addr)+(offset * io->regspacing));
1568 }
1569 
1570 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1571 {
1572 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1573 		& 0xff;
1574 }
1575 
1576 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1577 		     unsigned char b)
1578 {
1579 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1580 }
1581 
1582 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1583 {
1584 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1585 		& 0xff;
1586 }
1587 
1588 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1589 		     unsigned char b)
1590 {
1591 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1592 }
1593 
1594 #ifdef readq
1595 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1596 {
1597 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1598 		& 0xff;
1599 }
1600 
1601 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1602 		     unsigned char b)
1603 {
1604 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1605 }
1606 #endif
1607 
1608 static void mem_cleanup(struct smi_info *info)
1609 {
1610 	unsigned long addr = info->io.addr_data;
1611 	int           mapsize;
1612 
1613 	if (info->io.addr) {
1614 		iounmap(info->io.addr);
1615 
1616 		mapsize = ((info->io_size * info->io.regspacing)
1617 			   - (info->io.regspacing - info->io.regsize));
1618 
1619 		release_mem_region(addr, mapsize);
1620 	}
1621 }
1622 
1623 static int mem_setup(struct smi_info *info)
1624 {
1625 	unsigned long addr = info->io.addr_data;
1626 	int           mapsize;
1627 
1628 	if (!addr)
1629 		return -ENODEV;
1630 
1631 	info->io_cleanup = mem_cleanup;
1632 
1633 	/*
1634 	 * Figure out the actual readb/readw/readl/etc routine to use based
1635 	 * upon the register size.
1636 	 */
1637 	switch (info->io.regsize) {
1638 	case 1:
1639 		info->io.inputb = intf_mem_inb;
1640 		info->io.outputb = intf_mem_outb;
1641 		break;
1642 	case 2:
1643 		info->io.inputb = intf_mem_inw;
1644 		info->io.outputb = intf_mem_outw;
1645 		break;
1646 	case 4:
1647 		info->io.inputb = intf_mem_inl;
1648 		info->io.outputb = intf_mem_outl;
1649 		break;
1650 #ifdef readq
1651 	case 8:
1652 		info->io.inputb = mem_inq;
1653 		info->io.outputb = mem_outq;
1654 		break;
1655 #endif
1656 	default:
1657 		dev_warn(info->dev, "Invalid register size: %d\n",
1658 			 info->io.regsize);
1659 		return -EINVAL;
1660 	}
1661 
1662 	/*
1663 	 * Calculate the total amount of memory to claim.  This is an
1664 	 * unusual looking calculation, but it avoids claiming any
1665 	 * more memory than it has to.  It will claim everything
1666 	 * between the first address to the end of the last full
1667 	 * register.
1668 	 */
1669 	mapsize = ((info->io_size * info->io.regspacing)
1670 		   - (info->io.regspacing - info->io.regsize));
1671 
1672 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1673 		return -EIO;
1674 
1675 	info->io.addr = ioremap(addr, mapsize);
1676 	if (info->io.addr == NULL) {
1677 		release_mem_region(addr, mapsize);
1678 		return -EIO;
1679 	}
1680 	return 0;
1681 }
1682 
1683 /*
1684  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1685  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1686  * Options are:
1687  *   rsp=<regspacing>
1688  *   rsi=<regsize>
1689  *   rsh=<regshift>
1690  *   irq=<irq>
1691  *   ipmb=<ipmb addr>
1692  */
1693 enum hotmod_op { HM_ADD, HM_REMOVE };
1694 struct hotmod_vals {
1695 	char *name;
1696 	int  val;
1697 };
1698 static struct hotmod_vals hotmod_ops[] = {
1699 	{ "add",	HM_ADD },
1700 	{ "remove",	HM_REMOVE },
1701 	{ NULL }
1702 };
1703 static struct hotmod_vals hotmod_si[] = {
1704 	{ "kcs",	SI_KCS },
1705 	{ "smic",	SI_SMIC },
1706 	{ "bt",		SI_BT },
1707 	{ NULL }
1708 };
1709 static struct hotmod_vals hotmod_as[] = {
1710 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1711 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1712 	{ NULL }
1713 };
1714 
1715 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1716 {
1717 	char *s;
1718 	int  i;
1719 
1720 	s = strchr(*curr, ',');
1721 	if (!s) {
1722 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1723 		return -EINVAL;
1724 	}
1725 	*s = '\0';
1726 	s++;
1727 	for (i = 0; v[i].name; i++) {
1728 		if (strcmp(*curr, v[i].name) == 0) {
1729 			*val = v[i].val;
1730 			*curr = s;
1731 			return 0;
1732 		}
1733 	}
1734 
1735 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1736 	return -EINVAL;
1737 }
1738 
1739 static int check_hotmod_int_op(const char *curr, const char *option,
1740 			       const char *name, int *val)
1741 {
1742 	char *n;
1743 
1744 	if (strcmp(curr, name) == 0) {
1745 		if (!option) {
1746 			printk(KERN_WARNING PFX
1747 			       "No option given for '%s'\n",
1748 			       curr);
1749 			return -EINVAL;
1750 		}
1751 		*val = simple_strtoul(option, &n, 0);
1752 		if ((*n != '\0') || (*option == '\0')) {
1753 			printk(KERN_WARNING PFX
1754 			       "Bad option given for '%s'\n",
1755 			       curr);
1756 			return -EINVAL;
1757 		}
1758 		return 1;
1759 	}
1760 	return 0;
1761 }
1762 
1763 static struct smi_info *smi_info_alloc(void)
1764 {
1765 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1766 
1767 	if (info)
1768 		spin_lock_init(&info->si_lock);
1769 	return info;
1770 }
1771 
1772 static int hotmod_handler(const char *val, struct kernel_param *kp)
1773 {
1774 	char *str = kstrdup(val, GFP_KERNEL);
1775 	int  rv;
1776 	char *next, *curr, *s, *n, *o;
1777 	enum hotmod_op op;
1778 	enum si_type si_type;
1779 	int  addr_space;
1780 	unsigned long addr;
1781 	int regspacing;
1782 	int regsize;
1783 	int regshift;
1784 	int irq;
1785 	int ipmb;
1786 	int ival;
1787 	int len;
1788 	struct smi_info *info;
1789 
1790 	if (!str)
1791 		return -ENOMEM;
1792 
1793 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1794 	len = strlen(str);
1795 	ival = len - 1;
1796 	while ((ival >= 0) && isspace(str[ival])) {
1797 		str[ival] = '\0';
1798 		ival--;
1799 	}
1800 
1801 	for (curr = str; curr; curr = next) {
1802 		regspacing = 1;
1803 		regsize = 1;
1804 		regshift = 0;
1805 		irq = 0;
1806 		ipmb = 0; /* Choose the default if not specified */
1807 
1808 		next = strchr(curr, ':');
1809 		if (next) {
1810 			*next = '\0';
1811 			next++;
1812 		}
1813 
1814 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1815 		if (rv)
1816 			break;
1817 		op = ival;
1818 
1819 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1820 		if (rv)
1821 			break;
1822 		si_type = ival;
1823 
1824 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1825 		if (rv)
1826 			break;
1827 
1828 		s = strchr(curr, ',');
1829 		if (s) {
1830 			*s = '\0';
1831 			s++;
1832 		}
1833 		addr = simple_strtoul(curr, &n, 0);
1834 		if ((*n != '\0') || (*curr == '\0')) {
1835 			printk(KERN_WARNING PFX "Invalid hotmod address"
1836 			       " '%s'\n", curr);
1837 			break;
1838 		}
1839 
1840 		while (s) {
1841 			curr = s;
1842 			s = strchr(curr, ',');
1843 			if (s) {
1844 				*s = '\0';
1845 				s++;
1846 			}
1847 			o = strchr(curr, '=');
1848 			if (o) {
1849 				*o = '\0';
1850 				o++;
1851 			}
1852 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1853 			if (rv < 0)
1854 				goto out;
1855 			else if (rv)
1856 				continue;
1857 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1858 			if (rv < 0)
1859 				goto out;
1860 			else if (rv)
1861 				continue;
1862 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1863 			if (rv < 0)
1864 				goto out;
1865 			else if (rv)
1866 				continue;
1867 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1868 			if (rv < 0)
1869 				goto out;
1870 			else if (rv)
1871 				continue;
1872 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1873 			if (rv < 0)
1874 				goto out;
1875 			else if (rv)
1876 				continue;
1877 
1878 			rv = -EINVAL;
1879 			printk(KERN_WARNING PFX
1880 			       "Invalid hotmod option '%s'\n",
1881 			       curr);
1882 			goto out;
1883 		}
1884 
1885 		if (op == HM_ADD) {
1886 			info = smi_info_alloc();
1887 			if (!info) {
1888 				rv = -ENOMEM;
1889 				goto out;
1890 			}
1891 
1892 			info->addr_source = SI_HOTMOD;
1893 			info->si_type = si_type;
1894 			info->io.addr_data = addr;
1895 			info->io.addr_type = addr_space;
1896 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1897 				info->io_setup = mem_setup;
1898 			else
1899 				info->io_setup = port_setup;
1900 
1901 			info->io.addr = NULL;
1902 			info->io.regspacing = regspacing;
1903 			if (!info->io.regspacing)
1904 				info->io.regspacing = DEFAULT_REGSPACING;
1905 			info->io.regsize = regsize;
1906 			if (!info->io.regsize)
1907 				info->io.regsize = DEFAULT_REGSPACING;
1908 			info->io.regshift = regshift;
1909 			info->irq = irq;
1910 			if (info->irq)
1911 				info->irq_setup = std_irq_setup;
1912 			info->slave_addr = ipmb;
1913 
1914 			rv = add_smi(info);
1915 			if (rv) {
1916 				kfree(info);
1917 				goto out;
1918 			}
1919 			rv = try_smi_init(info);
1920 			if (rv) {
1921 				cleanup_one_si(info);
1922 				goto out;
1923 			}
1924 		} else {
1925 			/* remove */
1926 			struct smi_info *e, *tmp_e;
1927 
1928 			mutex_lock(&smi_infos_lock);
1929 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1930 				if (e->io.addr_type != addr_space)
1931 					continue;
1932 				if (e->si_type != si_type)
1933 					continue;
1934 				if (e->io.addr_data == addr)
1935 					cleanup_one_si(e);
1936 			}
1937 			mutex_unlock(&smi_infos_lock);
1938 		}
1939 	}
1940 	rv = len;
1941  out:
1942 	kfree(str);
1943 	return rv;
1944 }
1945 
1946 static int hardcode_find_bmc(void)
1947 {
1948 	int ret = -ENODEV;
1949 	int             i;
1950 	struct smi_info *info;
1951 
1952 	for (i = 0; i < SI_MAX_PARMS; i++) {
1953 		if (!ports[i] && !addrs[i])
1954 			continue;
1955 
1956 		info = smi_info_alloc();
1957 		if (!info)
1958 			return -ENOMEM;
1959 
1960 		info->addr_source = SI_HARDCODED;
1961 		printk(KERN_INFO PFX "probing via hardcoded address\n");
1962 
1963 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1964 			info->si_type = SI_KCS;
1965 		} else if (strcmp(si_type[i], "smic") == 0) {
1966 			info->si_type = SI_SMIC;
1967 		} else if (strcmp(si_type[i], "bt") == 0) {
1968 			info->si_type = SI_BT;
1969 		} else {
1970 			printk(KERN_WARNING PFX "Interface type specified "
1971 			       "for interface %d, was invalid: %s\n",
1972 			       i, si_type[i]);
1973 			kfree(info);
1974 			continue;
1975 		}
1976 
1977 		if (ports[i]) {
1978 			/* An I/O port */
1979 			info->io_setup = port_setup;
1980 			info->io.addr_data = ports[i];
1981 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1982 		} else if (addrs[i]) {
1983 			/* A memory port */
1984 			info->io_setup = mem_setup;
1985 			info->io.addr_data = addrs[i];
1986 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1987 		} else {
1988 			printk(KERN_WARNING PFX "Interface type specified "
1989 			       "for interface %d, but port and address were "
1990 			       "not set or set to zero.\n", i);
1991 			kfree(info);
1992 			continue;
1993 		}
1994 
1995 		info->io.addr = NULL;
1996 		info->io.regspacing = regspacings[i];
1997 		if (!info->io.regspacing)
1998 			info->io.regspacing = DEFAULT_REGSPACING;
1999 		info->io.regsize = regsizes[i];
2000 		if (!info->io.regsize)
2001 			info->io.regsize = DEFAULT_REGSPACING;
2002 		info->io.regshift = regshifts[i];
2003 		info->irq = irqs[i];
2004 		if (info->irq)
2005 			info->irq_setup = std_irq_setup;
2006 		info->slave_addr = slave_addrs[i];
2007 
2008 		if (!add_smi(info)) {
2009 			if (try_smi_init(info))
2010 				cleanup_one_si(info);
2011 			ret = 0;
2012 		} else {
2013 			kfree(info);
2014 		}
2015 	}
2016 	return ret;
2017 }
2018 
2019 #ifdef CONFIG_ACPI
2020 
2021 #include <linux/acpi.h>
2022 
2023 /*
2024  * Once we get an ACPI failure, we don't try any more, because we go
2025  * through the tables sequentially.  Once we don't find a table, there
2026  * are no more.
2027  */
2028 static int acpi_failure;
2029 
2030 /* For GPE-type interrupts. */
2031 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2032 	u32 gpe_number, void *context)
2033 {
2034 	struct smi_info *smi_info = context;
2035 	unsigned long   flags;
2036 
2037 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2038 
2039 	smi_inc_stat(smi_info, interrupts);
2040 
2041 	debug_timestamp("ACPI_GPE");
2042 
2043 	smi_event_handler(smi_info, 0);
2044 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2045 
2046 	return ACPI_INTERRUPT_HANDLED;
2047 }
2048 
2049 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2050 {
2051 	if (!info->irq)
2052 		return;
2053 
2054 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2055 }
2056 
2057 static int acpi_gpe_irq_setup(struct smi_info *info)
2058 {
2059 	acpi_status status;
2060 
2061 	if (!info->irq)
2062 		return 0;
2063 
2064 	status = acpi_install_gpe_handler(NULL,
2065 					  info->irq,
2066 					  ACPI_GPE_LEVEL_TRIGGERED,
2067 					  &ipmi_acpi_gpe,
2068 					  info);
2069 	if (status != AE_OK) {
2070 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2071 			 " running polled\n", DEVICE_NAME, info->irq);
2072 		info->irq = 0;
2073 		return -EINVAL;
2074 	} else {
2075 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2076 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2077 		return 0;
2078 	}
2079 }
2080 
2081 /*
2082  * Defined at
2083  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2084  */
2085 struct SPMITable {
2086 	s8	Signature[4];
2087 	u32	Length;
2088 	u8	Revision;
2089 	u8	Checksum;
2090 	s8	OEMID[6];
2091 	s8	OEMTableID[8];
2092 	s8	OEMRevision[4];
2093 	s8	CreatorID[4];
2094 	s8	CreatorRevision[4];
2095 	u8	InterfaceType;
2096 	u8	IPMIlegacy;
2097 	s16	SpecificationRevision;
2098 
2099 	/*
2100 	 * Bit 0 - SCI interrupt supported
2101 	 * Bit 1 - I/O APIC/SAPIC
2102 	 */
2103 	u8	InterruptType;
2104 
2105 	/*
2106 	 * If bit 0 of InterruptType is set, then this is the SCI
2107 	 * interrupt in the GPEx_STS register.
2108 	 */
2109 	u8	GPE;
2110 
2111 	s16	Reserved;
2112 
2113 	/*
2114 	 * If bit 1 of InterruptType is set, then this is the I/O
2115 	 * APIC/SAPIC interrupt.
2116 	 */
2117 	u32	GlobalSystemInterrupt;
2118 
2119 	/* The actual register address. */
2120 	struct acpi_generic_address addr;
2121 
2122 	u8	UID[4];
2123 
2124 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2125 };
2126 
2127 static int try_init_spmi(struct SPMITable *spmi)
2128 {
2129 	struct smi_info  *info;
2130 	int rv;
2131 
2132 	if (spmi->IPMIlegacy != 1) {
2133 		printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2134 		return -ENODEV;
2135 	}
2136 
2137 	info = smi_info_alloc();
2138 	if (!info) {
2139 		printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2140 		return -ENOMEM;
2141 	}
2142 
2143 	info->addr_source = SI_SPMI;
2144 	printk(KERN_INFO PFX "probing via SPMI\n");
2145 
2146 	/* Figure out the interface type. */
2147 	switch (spmi->InterfaceType) {
2148 	case 1:	/* KCS */
2149 		info->si_type = SI_KCS;
2150 		break;
2151 	case 2:	/* SMIC */
2152 		info->si_type = SI_SMIC;
2153 		break;
2154 	case 3:	/* BT */
2155 		info->si_type = SI_BT;
2156 		break;
2157 	case 4: /* SSIF, just ignore */
2158 		kfree(info);
2159 		return -EIO;
2160 	default:
2161 		printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2162 		       spmi->InterfaceType);
2163 		kfree(info);
2164 		return -EIO;
2165 	}
2166 
2167 	if (spmi->InterruptType & 1) {
2168 		/* We've got a GPE interrupt. */
2169 		info->irq = spmi->GPE;
2170 		info->irq_setup = acpi_gpe_irq_setup;
2171 	} else if (spmi->InterruptType & 2) {
2172 		/* We've got an APIC/SAPIC interrupt. */
2173 		info->irq = spmi->GlobalSystemInterrupt;
2174 		info->irq_setup = std_irq_setup;
2175 	} else {
2176 		/* Use the default interrupt setting. */
2177 		info->irq = 0;
2178 		info->irq_setup = NULL;
2179 	}
2180 
2181 	if (spmi->addr.bit_width) {
2182 		/* A (hopefully) properly formed register bit width. */
2183 		info->io.regspacing = spmi->addr.bit_width / 8;
2184 	} else {
2185 		info->io.regspacing = DEFAULT_REGSPACING;
2186 	}
2187 	info->io.regsize = info->io.regspacing;
2188 	info->io.regshift = spmi->addr.bit_offset;
2189 
2190 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2191 		info->io_setup = mem_setup;
2192 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2193 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2194 		info->io_setup = port_setup;
2195 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2196 	} else {
2197 		kfree(info);
2198 		printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2199 		return -EIO;
2200 	}
2201 	info->io.addr_data = spmi->addr.address;
2202 
2203 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2204 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2205 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2206 		 info->irq);
2207 
2208 	rv = add_smi(info);
2209 	if (rv)
2210 		kfree(info);
2211 
2212 	return rv;
2213 }
2214 
2215 static void spmi_find_bmc(void)
2216 {
2217 	acpi_status      status;
2218 	struct SPMITable *spmi;
2219 	int              i;
2220 
2221 	if (acpi_disabled)
2222 		return;
2223 
2224 	if (acpi_failure)
2225 		return;
2226 
2227 	for (i = 0; ; i++) {
2228 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2229 					(struct acpi_table_header **)&spmi);
2230 		if (status != AE_OK)
2231 			return;
2232 
2233 		try_init_spmi(spmi);
2234 	}
2235 }
2236 
2237 static int ipmi_pnp_probe(struct pnp_dev *dev,
2238 				    const struct pnp_device_id *dev_id)
2239 {
2240 	struct acpi_device *acpi_dev;
2241 	struct smi_info *info;
2242 	struct resource *res, *res_second;
2243 	acpi_handle handle;
2244 	acpi_status status;
2245 	unsigned long long tmp;
2246 	int rv = -EINVAL;
2247 
2248 	acpi_dev = pnp_acpi_device(dev);
2249 	if (!acpi_dev)
2250 		return -ENODEV;
2251 
2252 	info = smi_info_alloc();
2253 	if (!info)
2254 		return -ENOMEM;
2255 
2256 	info->addr_source = SI_ACPI;
2257 	printk(KERN_INFO PFX "probing via ACPI\n");
2258 
2259 	handle = acpi_dev->handle;
2260 	info->addr_info.acpi_info.acpi_handle = handle;
2261 
2262 	/* _IFT tells us the interface type: KCS, BT, etc */
2263 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2264 	if (ACPI_FAILURE(status)) {
2265 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2266 		goto err_free;
2267 	}
2268 
2269 	switch (tmp) {
2270 	case 1:
2271 		info->si_type = SI_KCS;
2272 		break;
2273 	case 2:
2274 		info->si_type = SI_SMIC;
2275 		break;
2276 	case 3:
2277 		info->si_type = SI_BT;
2278 		break;
2279 	case 4: /* SSIF, just ignore */
2280 		rv = -ENODEV;
2281 		goto err_free;
2282 	default:
2283 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2284 		goto err_free;
2285 	}
2286 
2287 	res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2288 	if (res) {
2289 		info->io_setup = port_setup;
2290 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2291 	} else {
2292 		res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2293 		if (res) {
2294 			info->io_setup = mem_setup;
2295 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2296 		}
2297 	}
2298 	if (!res) {
2299 		dev_err(&dev->dev, "no I/O or memory address\n");
2300 		goto err_free;
2301 	}
2302 	info->io.addr_data = res->start;
2303 
2304 	info->io.regspacing = DEFAULT_REGSPACING;
2305 	res_second = pnp_get_resource(dev,
2306 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2307 					IORESOURCE_IO : IORESOURCE_MEM,
2308 			       1);
2309 	if (res_second) {
2310 		if (res_second->start > info->io.addr_data)
2311 			info->io.regspacing = res_second->start - info->io.addr_data;
2312 	}
2313 	info->io.regsize = DEFAULT_REGSPACING;
2314 	info->io.regshift = 0;
2315 
2316 	/* If _GPE exists, use it; otherwise use standard interrupts */
2317 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2318 	if (ACPI_SUCCESS(status)) {
2319 		info->irq = tmp;
2320 		info->irq_setup = acpi_gpe_irq_setup;
2321 	} else if (pnp_irq_valid(dev, 0)) {
2322 		info->irq = pnp_irq(dev, 0);
2323 		info->irq_setup = std_irq_setup;
2324 	}
2325 
2326 	info->dev = &dev->dev;
2327 	pnp_set_drvdata(dev, info);
2328 
2329 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2330 		 res, info->io.regsize, info->io.regspacing,
2331 		 info->irq);
2332 
2333 	rv = add_smi(info);
2334 	if (rv)
2335 		kfree(info);
2336 
2337 	return rv;
2338 
2339 err_free:
2340 	kfree(info);
2341 	return rv;
2342 }
2343 
2344 static void ipmi_pnp_remove(struct pnp_dev *dev)
2345 {
2346 	struct smi_info *info = pnp_get_drvdata(dev);
2347 
2348 	cleanup_one_si(info);
2349 }
2350 
2351 static const struct pnp_device_id pnp_dev_table[] = {
2352 	{"IPI0001", 0},
2353 	{"", 0},
2354 };
2355 
2356 static struct pnp_driver ipmi_pnp_driver = {
2357 	.name		= DEVICE_NAME,
2358 	.probe		= ipmi_pnp_probe,
2359 	.remove		= ipmi_pnp_remove,
2360 	.id_table	= pnp_dev_table,
2361 };
2362 
2363 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2364 #endif
2365 
2366 #ifdef CONFIG_DMI
2367 struct dmi_ipmi_data {
2368 	u8   		type;
2369 	u8   		addr_space;
2370 	unsigned long	base_addr;
2371 	u8   		irq;
2372 	u8              offset;
2373 	u8              slave_addr;
2374 };
2375 
2376 static int decode_dmi(const struct dmi_header *dm,
2377 				struct dmi_ipmi_data *dmi)
2378 {
2379 	const u8	*data = (const u8 *)dm;
2380 	unsigned long  	base_addr;
2381 	u8		reg_spacing;
2382 	u8              len = dm->length;
2383 
2384 	dmi->type = data[4];
2385 
2386 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2387 	if (len >= 0x11) {
2388 		if (base_addr & 1) {
2389 			/* I/O */
2390 			base_addr &= 0xFFFE;
2391 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2392 		} else
2393 			/* Memory */
2394 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2395 
2396 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2397 		   is odd. */
2398 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2399 
2400 		dmi->irq = data[0x11];
2401 
2402 		/* The top two bits of byte 0x10 hold the register spacing. */
2403 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2404 		switch (reg_spacing) {
2405 		case 0x00: /* Byte boundaries */
2406 		    dmi->offset = 1;
2407 		    break;
2408 		case 0x01: /* 32-bit boundaries */
2409 		    dmi->offset = 4;
2410 		    break;
2411 		case 0x02: /* 16-byte boundaries */
2412 		    dmi->offset = 16;
2413 		    break;
2414 		default:
2415 		    /* Some other interface, just ignore it. */
2416 		    return -EIO;
2417 		}
2418 	} else {
2419 		/* Old DMI spec. */
2420 		/*
2421 		 * Note that technically, the lower bit of the base
2422 		 * address should be 1 if the address is I/O and 0 if
2423 		 * the address is in memory.  So many systems get that
2424 		 * wrong (and all that I have seen are I/O) so we just
2425 		 * ignore that bit and assume I/O.  Systems that use
2426 		 * memory should use the newer spec, anyway.
2427 		 */
2428 		dmi->base_addr = base_addr & 0xfffe;
2429 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2430 		dmi->offset = 1;
2431 	}
2432 
2433 	dmi->slave_addr = data[6];
2434 
2435 	return 0;
2436 }
2437 
2438 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2439 {
2440 	struct smi_info *info;
2441 
2442 	info = smi_info_alloc();
2443 	if (!info) {
2444 		printk(KERN_ERR PFX "Could not allocate SI data\n");
2445 		return;
2446 	}
2447 
2448 	info->addr_source = SI_SMBIOS;
2449 	printk(KERN_INFO PFX "probing via SMBIOS\n");
2450 
2451 	switch (ipmi_data->type) {
2452 	case 0x01: /* KCS */
2453 		info->si_type = SI_KCS;
2454 		break;
2455 	case 0x02: /* SMIC */
2456 		info->si_type = SI_SMIC;
2457 		break;
2458 	case 0x03: /* BT */
2459 		info->si_type = SI_BT;
2460 		break;
2461 	default:
2462 		kfree(info);
2463 		return;
2464 	}
2465 
2466 	switch (ipmi_data->addr_space) {
2467 	case IPMI_MEM_ADDR_SPACE:
2468 		info->io_setup = mem_setup;
2469 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2470 		break;
2471 
2472 	case IPMI_IO_ADDR_SPACE:
2473 		info->io_setup = port_setup;
2474 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2475 		break;
2476 
2477 	default:
2478 		kfree(info);
2479 		printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2480 		       ipmi_data->addr_space);
2481 		return;
2482 	}
2483 	info->io.addr_data = ipmi_data->base_addr;
2484 
2485 	info->io.regspacing = ipmi_data->offset;
2486 	if (!info->io.regspacing)
2487 		info->io.regspacing = DEFAULT_REGSPACING;
2488 	info->io.regsize = DEFAULT_REGSPACING;
2489 	info->io.regshift = 0;
2490 
2491 	info->slave_addr = ipmi_data->slave_addr;
2492 
2493 	info->irq = ipmi_data->irq;
2494 	if (info->irq)
2495 		info->irq_setup = std_irq_setup;
2496 
2497 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2498 		 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2499 		 info->io.addr_data, info->io.regsize, info->io.regspacing,
2500 		 info->irq);
2501 
2502 	if (add_smi(info))
2503 		kfree(info);
2504 }
2505 
2506 static void dmi_find_bmc(void)
2507 {
2508 	const struct dmi_device *dev = NULL;
2509 	struct dmi_ipmi_data data;
2510 	int                  rv;
2511 
2512 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2513 		memset(&data, 0, sizeof(data));
2514 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2515 				&data);
2516 		if (!rv)
2517 			try_init_dmi(&data);
2518 	}
2519 }
2520 #endif /* CONFIG_DMI */
2521 
2522 #ifdef CONFIG_PCI
2523 
2524 #define PCI_ERMC_CLASSCODE		0x0C0700
2525 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2526 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2527 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2528 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2529 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2530 
2531 #define PCI_HP_VENDOR_ID    0x103C
2532 #define PCI_MMC_DEVICE_ID   0x121A
2533 #define PCI_MMC_ADDR_CW     0x10
2534 
2535 static void ipmi_pci_cleanup(struct smi_info *info)
2536 {
2537 	struct pci_dev *pdev = info->addr_source_data;
2538 
2539 	pci_disable_device(pdev);
2540 }
2541 
2542 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2543 {
2544 	if (info->si_type == SI_KCS) {
2545 		unsigned char	status;
2546 		int		regspacing;
2547 
2548 		info->io.regsize = DEFAULT_REGSIZE;
2549 		info->io.regshift = 0;
2550 		info->io_size = 2;
2551 		info->handlers = &kcs_smi_handlers;
2552 
2553 		/* detect 1, 4, 16byte spacing */
2554 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2555 			info->io.regspacing = regspacing;
2556 			if (info->io_setup(info)) {
2557 				dev_err(info->dev,
2558 					"Could not setup I/O space\n");
2559 				return DEFAULT_REGSPACING;
2560 			}
2561 			/* write invalid cmd */
2562 			info->io.outputb(&info->io, 1, 0x10);
2563 			/* read status back */
2564 			status = info->io.inputb(&info->io, 1);
2565 			info->io_cleanup(info);
2566 			if (status)
2567 				return regspacing;
2568 			regspacing *= 4;
2569 		}
2570 	}
2571 	return DEFAULT_REGSPACING;
2572 }
2573 
2574 static int ipmi_pci_probe(struct pci_dev *pdev,
2575 				    const struct pci_device_id *ent)
2576 {
2577 	int rv;
2578 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2579 	struct smi_info *info;
2580 
2581 	info = smi_info_alloc();
2582 	if (!info)
2583 		return -ENOMEM;
2584 
2585 	info->addr_source = SI_PCI;
2586 	dev_info(&pdev->dev, "probing via PCI");
2587 
2588 	switch (class_type) {
2589 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2590 		info->si_type = SI_SMIC;
2591 		break;
2592 
2593 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2594 		info->si_type = SI_KCS;
2595 		break;
2596 
2597 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2598 		info->si_type = SI_BT;
2599 		break;
2600 
2601 	default:
2602 		kfree(info);
2603 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2604 		return -ENOMEM;
2605 	}
2606 
2607 	rv = pci_enable_device(pdev);
2608 	if (rv) {
2609 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2610 		kfree(info);
2611 		return rv;
2612 	}
2613 
2614 	info->addr_source_cleanup = ipmi_pci_cleanup;
2615 	info->addr_source_data = pdev;
2616 
2617 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2618 		info->io_setup = port_setup;
2619 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2620 	} else {
2621 		info->io_setup = mem_setup;
2622 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2623 	}
2624 	info->io.addr_data = pci_resource_start(pdev, 0);
2625 
2626 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2627 	info->io.regsize = DEFAULT_REGSIZE;
2628 	info->io.regshift = 0;
2629 
2630 	info->irq = pdev->irq;
2631 	if (info->irq)
2632 		info->irq_setup = std_irq_setup;
2633 
2634 	info->dev = &pdev->dev;
2635 	pci_set_drvdata(pdev, info);
2636 
2637 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2638 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2639 		info->irq);
2640 
2641 	rv = add_smi(info);
2642 	if (rv) {
2643 		kfree(info);
2644 		pci_disable_device(pdev);
2645 	}
2646 
2647 	return rv;
2648 }
2649 
2650 static void ipmi_pci_remove(struct pci_dev *pdev)
2651 {
2652 	struct smi_info *info = pci_get_drvdata(pdev);
2653 	cleanup_one_si(info);
2654 	pci_disable_device(pdev);
2655 }
2656 
2657 static struct pci_device_id ipmi_pci_devices[] = {
2658 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2659 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2660 	{ 0, }
2661 };
2662 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2663 
2664 static struct pci_driver ipmi_pci_driver = {
2665 	.name =         DEVICE_NAME,
2666 	.id_table =     ipmi_pci_devices,
2667 	.probe =        ipmi_pci_probe,
2668 	.remove =       ipmi_pci_remove,
2669 };
2670 #endif /* CONFIG_PCI */
2671 
2672 static const struct of_device_id ipmi_match[];
2673 static int ipmi_probe(struct platform_device *dev)
2674 {
2675 #ifdef CONFIG_OF
2676 	const struct of_device_id *match;
2677 	struct smi_info *info;
2678 	struct resource resource;
2679 	const __be32 *regsize, *regspacing, *regshift;
2680 	struct device_node *np = dev->dev.of_node;
2681 	int ret;
2682 	int proplen;
2683 
2684 	dev_info(&dev->dev, "probing via device tree\n");
2685 
2686 	match = of_match_device(ipmi_match, &dev->dev);
2687 	if (!match)
2688 		return -EINVAL;
2689 
2690 	if (!of_device_is_available(np))
2691 		return -EINVAL;
2692 
2693 	ret = of_address_to_resource(np, 0, &resource);
2694 	if (ret) {
2695 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2696 		return ret;
2697 	}
2698 
2699 	regsize = of_get_property(np, "reg-size", &proplen);
2700 	if (regsize && proplen != 4) {
2701 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2702 		return -EINVAL;
2703 	}
2704 
2705 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2706 	if (regspacing && proplen != 4) {
2707 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2708 		return -EINVAL;
2709 	}
2710 
2711 	regshift = of_get_property(np, "reg-shift", &proplen);
2712 	if (regshift && proplen != 4) {
2713 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2714 		return -EINVAL;
2715 	}
2716 
2717 	info = smi_info_alloc();
2718 
2719 	if (!info) {
2720 		dev_err(&dev->dev,
2721 			"could not allocate memory for OF probe\n");
2722 		return -ENOMEM;
2723 	}
2724 
2725 	info->si_type		= (enum si_type) match->data;
2726 	info->addr_source	= SI_DEVICETREE;
2727 	info->irq_setup		= std_irq_setup;
2728 
2729 	if (resource.flags & IORESOURCE_IO) {
2730 		info->io_setup		= port_setup;
2731 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2732 	} else {
2733 		info->io_setup		= mem_setup;
2734 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2735 	}
2736 
2737 	info->io.addr_data	= resource.start;
2738 
2739 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2740 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2741 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2742 
2743 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2744 	info->dev		= &dev->dev;
2745 
2746 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2747 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2748 		info->irq);
2749 
2750 	dev_set_drvdata(&dev->dev, info);
2751 
2752 	ret = add_smi(info);
2753 	if (ret) {
2754 		kfree(info);
2755 		return ret;
2756 	}
2757 #endif
2758 	return 0;
2759 }
2760 
2761 static int ipmi_remove(struct platform_device *dev)
2762 {
2763 #ifdef CONFIG_OF
2764 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2765 #endif
2766 	return 0;
2767 }
2768 
2769 static const struct of_device_id ipmi_match[] =
2770 {
2771 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2772 	  .data = (void *)(unsigned long) SI_KCS },
2773 	{ .type = "ipmi", .compatible = "ipmi-smic",
2774 	  .data = (void *)(unsigned long) SI_SMIC },
2775 	{ .type = "ipmi", .compatible = "ipmi-bt",
2776 	  .data = (void *)(unsigned long) SI_BT },
2777 	{},
2778 };
2779 
2780 static struct platform_driver ipmi_driver = {
2781 	.driver = {
2782 		.name = DEVICE_NAME,
2783 		.of_match_table = ipmi_match,
2784 	},
2785 	.probe		= ipmi_probe,
2786 	.remove		= ipmi_remove,
2787 };
2788 
2789 #ifdef CONFIG_PARISC
2790 static int ipmi_parisc_probe(struct parisc_device *dev)
2791 {
2792 	struct smi_info *info;
2793 	int rv;
2794 
2795 	info = smi_info_alloc();
2796 
2797 	if (!info) {
2798 		dev_err(&dev->dev,
2799 			"could not allocate memory for PARISC probe\n");
2800 		return -ENOMEM;
2801 	}
2802 
2803 	info->si_type		= SI_KCS;
2804 	info->addr_source	= SI_DEVICETREE;
2805 	info->io_setup		= mem_setup;
2806 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2807 	info->io.addr_data	= dev->hpa.start;
2808 	info->io.regsize	= 1;
2809 	info->io.regspacing	= 1;
2810 	info->io.regshift	= 0;
2811 	info->irq		= 0; /* no interrupt */
2812 	info->irq_setup		= NULL;
2813 	info->dev		= &dev->dev;
2814 
2815 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2816 
2817 	dev_set_drvdata(&dev->dev, info);
2818 
2819 	rv = add_smi(info);
2820 	if (rv) {
2821 		kfree(info);
2822 		return rv;
2823 	}
2824 
2825 	return 0;
2826 }
2827 
2828 static int ipmi_parisc_remove(struct parisc_device *dev)
2829 {
2830 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2831 	return 0;
2832 }
2833 
2834 static struct parisc_device_id ipmi_parisc_tbl[] = {
2835 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2836 	{ 0, }
2837 };
2838 
2839 static struct parisc_driver ipmi_parisc_driver = {
2840 	.name =		"ipmi",
2841 	.id_table =	ipmi_parisc_tbl,
2842 	.probe =	ipmi_parisc_probe,
2843 	.remove =	ipmi_parisc_remove,
2844 };
2845 #endif /* CONFIG_PARISC */
2846 
2847 static int wait_for_msg_done(struct smi_info *smi_info)
2848 {
2849 	enum si_sm_result     smi_result;
2850 
2851 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2852 	for (;;) {
2853 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2854 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2855 			schedule_timeout_uninterruptible(1);
2856 			smi_result = smi_info->handlers->event(
2857 				smi_info->si_sm, jiffies_to_usecs(1));
2858 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2859 			smi_result = smi_info->handlers->event(
2860 				smi_info->si_sm, 0);
2861 		} else
2862 			break;
2863 	}
2864 	if (smi_result == SI_SM_HOSED)
2865 		/*
2866 		 * We couldn't get the state machine to run, so whatever's at
2867 		 * the port is probably not an IPMI SMI interface.
2868 		 */
2869 		return -ENODEV;
2870 
2871 	return 0;
2872 }
2873 
2874 static int try_get_dev_id(struct smi_info *smi_info)
2875 {
2876 	unsigned char         msg[2];
2877 	unsigned char         *resp;
2878 	unsigned long         resp_len;
2879 	int                   rv = 0;
2880 
2881 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2882 	if (!resp)
2883 		return -ENOMEM;
2884 
2885 	/*
2886 	 * Do a Get Device ID command, since it comes back with some
2887 	 * useful info.
2888 	 */
2889 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2890 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2891 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2892 
2893 	rv = wait_for_msg_done(smi_info);
2894 	if (rv)
2895 		goto out;
2896 
2897 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2898 						  resp, IPMI_MAX_MSG_LENGTH);
2899 
2900 	/* Check and record info from the get device id, in case we need it. */
2901 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2902 
2903  out:
2904 	kfree(resp);
2905 	return rv;
2906 }
2907 
2908 /*
2909  * Some BMCs do not support clearing the receive irq bit in the global
2910  * enables (even if they don't support interrupts on the BMC).  Check
2911  * for this and handle it properly.
2912  */
2913 static void check_clr_rcv_irq(struct smi_info *smi_info)
2914 {
2915 	unsigned char         msg[3];
2916 	unsigned char         *resp;
2917 	unsigned long         resp_len;
2918 	int                   rv;
2919 
2920 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921 	if (!resp) {
2922 		printk(KERN_WARNING PFX "Out of memory allocating response for"
2923 		       " global enables command, cannot check recv irq bit"
2924 		       " handling.\n");
2925 		return;
2926 	}
2927 
2928 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2930 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931 
2932 	rv = wait_for_msg_done(smi_info);
2933 	if (rv) {
2934 		printk(KERN_WARNING PFX "Error getting response from get"
2935 		       " global enables command, cannot check recv irq bit"
2936 		       " handling.\n");
2937 		goto out;
2938 	}
2939 
2940 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2941 						  resp, IPMI_MAX_MSG_LENGTH);
2942 
2943 	if (resp_len < 4 ||
2944 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2945 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2946 			resp[2] != 0) {
2947 		printk(KERN_WARNING PFX "Invalid return from get global"
2948 		       " enables command, cannot check recv irq bit"
2949 		       " handling.\n");
2950 		rv = -EINVAL;
2951 		goto out;
2952 	}
2953 
2954 	if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2955 		/* Already clear, should work ok. */
2956 		goto out;
2957 
2958 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2960 	msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2961 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2962 
2963 	rv = wait_for_msg_done(smi_info);
2964 	if (rv) {
2965 		printk(KERN_WARNING PFX "Error getting response from set"
2966 		       " global enables command, cannot check recv irq bit"
2967 		       " handling.\n");
2968 		goto out;
2969 	}
2970 
2971 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2972 						  resp, IPMI_MAX_MSG_LENGTH);
2973 
2974 	if (resp_len < 3 ||
2975 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2976 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2977 		printk(KERN_WARNING PFX "Invalid return from get global"
2978 		       " enables command, cannot check recv irq bit"
2979 		       " handling.\n");
2980 		rv = -EINVAL;
2981 		goto out;
2982 	}
2983 
2984 	if (resp[2] != 0) {
2985 		/*
2986 		 * An error when setting the event buffer bit means
2987 		 * clearing the bit is not supported.
2988 		 */
2989 		printk(KERN_WARNING PFX "The BMC does not support clearing"
2990 		       " the recv irq bit, compensating, but the BMC needs to"
2991 		       " be fixed.\n");
2992 		smi_info->cannot_clear_recv_irq_bit = true;
2993 	}
2994  out:
2995 	kfree(resp);
2996 }
2997 
2998 static int try_enable_event_buffer(struct smi_info *smi_info)
2999 {
3000 	unsigned char         msg[3];
3001 	unsigned char         *resp;
3002 	unsigned long         resp_len;
3003 	int                   rv = 0;
3004 
3005 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3006 	if (!resp)
3007 		return -ENOMEM;
3008 
3009 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3010 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3011 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3012 
3013 	rv = wait_for_msg_done(smi_info);
3014 	if (rv) {
3015 		printk(KERN_WARNING PFX "Error getting response from get"
3016 		       " global enables command, the event buffer is not"
3017 		       " enabled.\n");
3018 		goto out;
3019 	}
3020 
3021 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3022 						  resp, IPMI_MAX_MSG_LENGTH);
3023 
3024 	if (resp_len < 4 ||
3025 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3026 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3027 			resp[2] != 0) {
3028 		printk(KERN_WARNING PFX "Invalid return from get global"
3029 		       " enables command, cannot enable the event buffer.\n");
3030 		rv = -EINVAL;
3031 		goto out;
3032 	}
3033 
3034 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3035 		/* buffer is already enabled, nothing to do. */
3036 		smi_info->supports_event_msg_buff = true;
3037 		goto out;
3038 	}
3039 
3040 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3041 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3042 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3043 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3044 
3045 	rv = wait_for_msg_done(smi_info);
3046 	if (rv) {
3047 		printk(KERN_WARNING PFX "Error getting response from set"
3048 		       " global, enables command, the event buffer is not"
3049 		       " enabled.\n");
3050 		goto out;
3051 	}
3052 
3053 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3054 						  resp, IPMI_MAX_MSG_LENGTH);
3055 
3056 	if (resp_len < 3 ||
3057 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3058 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3059 		printk(KERN_WARNING PFX "Invalid return from get global,"
3060 		       "enables command, not enable the event buffer.\n");
3061 		rv = -EINVAL;
3062 		goto out;
3063 	}
3064 
3065 	if (resp[2] != 0)
3066 		/*
3067 		 * An error when setting the event buffer bit means
3068 		 * that the event buffer is not supported.
3069 		 */
3070 		rv = -ENOENT;
3071 	else
3072 		smi_info->supports_event_msg_buff = true;
3073 
3074  out:
3075 	kfree(resp);
3076 	return rv;
3077 }
3078 
3079 static int smi_type_proc_show(struct seq_file *m, void *v)
3080 {
3081 	struct smi_info *smi = m->private;
3082 
3083 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3084 
3085 	return 0;
3086 }
3087 
3088 static int smi_type_proc_open(struct inode *inode, struct file *file)
3089 {
3090 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3091 }
3092 
3093 static const struct file_operations smi_type_proc_ops = {
3094 	.open		= smi_type_proc_open,
3095 	.read		= seq_read,
3096 	.llseek		= seq_lseek,
3097 	.release	= single_release,
3098 };
3099 
3100 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3101 {
3102 	struct smi_info *smi = m->private;
3103 
3104 	seq_printf(m, "interrupts_enabled:    %d\n",
3105 		       smi->irq && !smi->interrupt_disabled);
3106 	seq_printf(m, "short_timeouts:        %u\n",
3107 		       smi_get_stat(smi, short_timeouts));
3108 	seq_printf(m, "long_timeouts:         %u\n",
3109 		       smi_get_stat(smi, long_timeouts));
3110 	seq_printf(m, "idles:                 %u\n",
3111 		       smi_get_stat(smi, idles));
3112 	seq_printf(m, "interrupts:            %u\n",
3113 		       smi_get_stat(smi, interrupts));
3114 	seq_printf(m, "attentions:            %u\n",
3115 		       smi_get_stat(smi, attentions));
3116 	seq_printf(m, "flag_fetches:          %u\n",
3117 		       smi_get_stat(smi, flag_fetches));
3118 	seq_printf(m, "hosed_count:           %u\n",
3119 		       smi_get_stat(smi, hosed_count));
3120 	seq_printf(m, "complete_transactions: %u\n",
3121 		       smi_get_stat(smi, complete_transactions));
3122 	seq_printf(m, "events:                %u\n",
3123 		       smi_get_stat(smi, events));
3124 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3125 		       smi_get_stat(smi, watchdog_pretimeouts));
3126 	seq_printf(m, "incoming_messages:     %u\n",
3127 		       smi_get_stat(smi, incoming_messages));
3128 	return 0;
3129 }
3130 
3131 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3132 {
3133 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3134 }
3135 
3136 static const struct file_operations smi_si_stats_proc_ops = {
3137 	.open		= smi_si_stats_proc_open,
3138 	.read		= seq_read,
3139 	.llseek		= seq_lseek,
3140 	.release	= single_release,
3141 };
3142 
3143 static int smi_params_proc_show(struct seq_file *m, void *v)
3144 {
3145 	struct smi_info *smi = m->private;
3146 
3147 	seq_printf(m,
3148 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3149 		   si_to_str[smi->si_type],
3150 		   addr_space_to_str[smi->io.addr_type],
3151 		   smi->io.addr_data,
3152 		   smi->io.regspacing,
3153 		   smi->io.regsize,
3154 		   smi->io.regshift,
3155 		   smi->irq,
3156 		   smi->slave_addr);
3157 
3158 	return 0;
3159 }
3160 
3161 static int smi_params_proc_open(struct inode *inode, struct file *file)
3162 {
3163 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3164 }
3165 
3166 static const struct file_operations smi_params_proc_ops = {
3167 	.open		= smi_params_proc_open,
3168 	.read		= seq_read,
3169 	.llseek		= seq_lseek,
3170 	.release	= single_release,
3171 };
3172 
3173 /*
3174  * oem_data_avail_to_receive_msg_avail
3175  * @info - smi_info structure with msg_flags set
3176  *
3177  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3178  * Returns 1 indicating need to re-run handle_flags().
3179  */
3180 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3181 {
3182 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3183 			       RECEIVE_MSG_AVAIL);
3184 	return 1;
3185 }
3186 
3187 /*
3188  * setup_dell_poweredge_oem_data_handler
3189  * @info - smi_info.device_id must be populated
3190  *
3191  * Systems that match, but have firmware version < 1.40 may assert
3192  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3193  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3194  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3195  * as RECEIVE_MSG_AVAIL instead.
3196  *
3197  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3198  * assert the OEM[012] bits, and if it did, the driver would have to
3199  * change to handle that properly, we don't actually check for the
3200  * firmware version.
3201  * Device ID = 0x20                BMC on PowerEdge 8G servers
3202  * Device Revision = 0x80
3203  * Firmware Revision1 = 0x01       BMC version 1.40
3204  * Firmware Revision2 = 0x40       BCD encoded
3205  * IPMI Version = 0x51             IPMI 1.5
3206  * Manufacturer ID = A2 02 00      Dell IANA
3207  *
3208  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3209  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3210  *
3211  */
3212 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3213 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3214 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3215 #define DELL_IANA_MFR_ID 0x0002a2
3216 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3217 {
3218 	struct ipmi_device_id *id = &smi_info->device_id;
3219 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3220 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3221 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3222 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3223 			smi_info->oem_data_avail_handler =
3224 				oem_data_avail_to_receive_msg_avail;
3225 		} else if (ipmi_version_major(id) < 1 ||
3226 			   (ipmi_version_major(id) == 1 &&
3227 			    ipmi_version_minor(id) < 5)) {
3228 			smi_info->oem_data_avail_handler =
3229 				oem_data_avail_to_receive_msg_avail;
3230 		}
3231 	}
3232 }
3233 
3234 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3235 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3236 {
3237 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3238 
3239 	/* Make it a response */
3240 	msg->rsp[0] = msg->data[0] | 4;
3241 	msg->rsp[1] = msg->data[1];
3242 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3243 	msg->rsp_size = 3;
3244 	smi_info->curr_msg = NULL;
3245 	deliver_recv_msg(smi_info, msg);
3246 }
3247 
3248 /*
3249  * dell_poweredge_bt_xaction_handler
3250  * @info - smi_info.device_id must be populated
3251  *
3252  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3253  * not respond to a Get SDR command if the length of the data
3254  * requested is exactly 0x3A, which leads to command timeouts and no
3255  * data returned.  This intercepts such commands, and causes userspace
3256  * callers to try again with a different-sized buffer, which succeeds.
3257  */
3258 
3259 #define STORAGE_NETFN 0x0A
3260 #define STORAGE_CMD_GET_SDR 0x23
3261 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3262 					     unsigned long unused,
3263 					     void *in)
3264 {
3265 	struct smi_info *smi_info = in;
3266 	unsigned char *data = smi_info->curr_msg->data;
3267 	unsigned int size   = smi_info->curr_msg->data_size;
3268 	if (size >= 8 &&
3269 	    (data[0]>>2) == STORAGE_NETFN &&
3270 	    data[1] == STORAGE_CMD_GET_SDR &&
3271 	    data[7] == 0x3A) {
3272 		return_hosed_msg_badsize(smi_info);
3273 		return NOTIFY_STOP;
3274 	}
3275 	return NOTIFY_DONE;
3276 }
3277 
3278 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3279 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3280 };
3281 
3282 /*
3283  * setup_dell_poweredge_bt_xaction_handler
3284  * @info - smi_info.device_id must be filled in already
3285  *
3286  * Fills in smi_info.device_id.start_transaction_pre_hook
3287  * when we know what function to use there.
3288  */
3289 static void
3290 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3291 {
3292 	struct ipmi_device_id *id = &smi_info->device_id;
3293 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3294 	    smi_info->si_type == SI_BT)
3295 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3296 }
3297 
3298 /*
3299  * setup_oem_data_handler
3300  * @info - smi_info.device_id must be filled in already
3301  *
3302  * Fills in smi_info.device_id.oem_data_available_handler
3303  * when we know what function to use there.
3304  */
3305 
3306 static void setup_oem_data_handler(struct smi_info *smi_info)
3307 {
3308 	setup_dell_poweredge_oem_data_handler(smi_info);
3309 }
3310 
3311 static void setup_xaction_handlers(struct smi_info *smi_info)
3312 {
3313 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3314 }
3315 
3316 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3317 {
3318 	if (smi_info->thread != NULL)
3319 		kthread_stop(smi_info->thread);
3320 	if (smi_info->timer_running)
3321 		del_timer_sync(&smi_info->si_timer);
3322 }
3323 
3324 static struct ipmi_default_vals
3325 {
3326 	int type;
3327 	int port;
3328 } ipmi_defaults[] =
3329 {
3330 	{ .type = SI_KCS, .port = 0xca2 },
3331 	{ .type = SI_SMIC, .port = 0xca9 },
3332 	{ .type = SI_BT, .port = 0xe4 },
3333 	{ .port = 0 }
3334 };
3335 
3336 static void default_find_bmc(void)
3337 {
3338 	struct smi_info *info;
3339 	int             i;
3340 
3341 	for (i = 0; ; i++) {
3342 		if (!ipmi_defaults[i].port)
3343 			break;
3344 #ifdef CONFIG_PPC
3345 		if (check_legacy_ioport(ipmi_defaults[i].port))
3346 			continue;
3347 #endif
3348 		info = smi_info_alloc();
3349 		if (!info)
3350 			return;
3351 
3352 		info->addr_source = SI_DEFAULT;
3353 
3354 		info->si_type = ipmi_defaults[i].type;
3355 		info->io_setup = port_setup;
3356 		info->io.addr_data = ipmi_defaults[i].port;
3357 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
3358 
3359 		info->io.addr = NULL;
3360 		info->io.regspacing = DEFAULT_REGSPACING;
3361 		info->io.regsize = DEFAULT_REGSPACING;
3362 		info->io.regshift = 0;
3363 
3364 		if (add_smi(info) == 0) {
3365 			if ((try_smi_init(info)) == 0) {
3366 				/* Found one... */
3367 				printk(KERN_INFO PFX "Found default %s"
3368 				" state machine at %s address 0x%lx\n",
3369 				si_to_str[info->si_type],
3370 				addr_space_to_str[info->io.addr_type],
3371 				info->io.addr_data);
3372 			} else
3373 				cleanup_one_si(info);
3374 		} else {
3375 			kfree(info);
3376 		}
3377 	}
3378 }
3379 
3380 static int is_new_interface(struct smi_info *info)
3381 {
3382 	struct smi_info *e;
3383 
3384 	list_for_each_entry(e, &smi_infos, link) {
3385 		if (e->io.addr_type != info->io.addr_type)
3386 			continue;
3387 		if (e->io.addr_data == info->io.addr_data)
3388 			return 0;
3389 	}
3390 
3391 	return 1;
3392 }
3393 
3394 static int add_smi(struct smi_info *new_smi)
3395 {
3396 	int rv = 0;
3397 
3398 	printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3399 	       ipmi_addr_src_to_str(new_smi->addr_source),
3400 	       si_to_str[new_smi->si_type]);
3401 	mutex_lock(&smi_infos_lock);
3402 	if (!is_new_interface(new_smi)) {
3403 		printk(KERN_CONT " duplicate interface\n");
3404 		rv = -EBUSY;
3405 		goto out_err;
3406 	}
3407 
3408 	printk(KERN_CONT "\n");
3409 
3410 	/* So we know not to free it unless we have allocated one. */
3411 	new_smi->intf = NULL;
3412 	new_smi->si_sm = NULL;
3413 	new_smi->handlers = NULL;
3414 
3415 	list_add_tail(&new_smi->link, &smi_infos);
3416 
3417 out_err:
3418 	mutex_unlock(&smi_infos_lock);
3419 	return rv;
3420 }
3421 
3422 static int try_smi_init(struct smi_info *new_smi)
3423 {
3424 	int rv = 0;
3425 	int i;
3426 
3427 	printk(KERN_INFO PFX "Trying %s-specified %s state"
3428 	       " machine at %s address 0x%lx, slave address 0x%x,"
3429 	       " irq %d\n",
3430 	       ipmi_addr_src_to_str(new_smi->addr_source),
3431 	       si_to_str[new_smi->si_type],
3432 	       addr_space_to_str[new_smi->io.addr_type],
3433 	       new_smi->io.addr_data,
3434 	       new_smi->slave_addr, new_smi->irq);
3435 
3436 	switch (new_smi->si_type) {
3437 	case SI_KCS:
3438 		new_smi->handlers = &kcs_smi_handlers;
3439 		break;
3440 
3441 	case SI_SMIC:
3442 		new_smi->handlers = &smic_smi_handlers;
3443 		break;
3444 
3445 	case SI_BT:
3446 		new_smi->handlers = &bt_smi_handlers;
3447 		break;
3448 
3449 	default:
3450 		/* No support for anything else yet. */
3451 		rv = -EIO;
3452 		goto out_err;
3453 	}
3454 
3455 	/* Allocate the state machine's data and initialize it. */
3456 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3457 	if (!new_smi->si_sm) {
3458 		printk(KERN_ERR PFX
3459 		       "Could not allocate state machine memory\n");
3460 		rv = -ENOMEM;
3461 		goto out_err;
3462 	}
3463 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3464 							&new_smi->io);
3465 
3466 	/* Now that we know the I/O size, we can set up the I/O. */
3467 	rv = new_smi->io_setup(new_smi);
3468 	if (rv) {
3469 		printk(KERN_ERR PFX "Could not set up I/O space\n");
3470 		goto out_err;
3471 	}
3472 
3473 	/* Do low-level detection first. */
3474 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3475 		if (new_smi->addr_source)
3476 			printk(KERN_INFO PFX "Interface detection failed\n");
3477 		rv = -ENODEV;
3478 		goto out_err;
3479 	}
3480 
3481 	/*
3482 	 * Attempt a get device id command.  If it fails, we probably
3483 	 * don't have a BMC here.
3484 	 */
3485 	rv = try_get_dev_id(new_smi);
3486 	if (rv) {
3487 		if (new_smi->addr_source)
3488 			printk(KERN_INFO PFX "There appears to be no BMC"
3489 			       " at this location\n");
3490 		goto out_err;
3491 	}
3492 
3493 	check_clr_rcv_irq(new_smi);
3494 
3495 	setup_oem_data_handler(new_smi);
3496 	setup_xaction_handlers(new_smi);
3497 
3498 	new_smi->waiting_msg = NULL;
3499 	new_smi->curr_msg = NULL;
3500 	atomic_set(&new_smi->req_events, 0);
3501 	new_smi->run_to_completion = false;
3502 	for (i = 0; i < SI_NUM_STATS; i++)
3503 		atomic_set(&new_smi->stats[i], 0);
3504 
3505 	new_smi->interrupt_disabled = true;
3506 	atomic_set(&new_smi->need_watch, 0);
3507 	new_smi->intf_num = smi_num;
3508 	smi_num++;
3509 
3510 	rv = try_enable_event_buffer(new_smi);
3511 	if (rv == 0)
3512 		new_smi->has_event_buffer = true;
3513 
3514 	/*
3515 	 * Start clearing the flags before we enable interrupts or the
3516 	 * timer to avoid racing with the timer.
3517 	 */
3518 	start_clear_flags(new_smi);
3519 
3520 	/*
3521 	 * IRQ is defined to be set when non-zero.  req_events will
3522 	 * cause a global flags check that will enable interrupts.
3523 	 */
3524 	if (new_smi->irq) {
3525 		new_smi->interrupt_disabled = false;
3526 		atomic_set(&new_smi->req_events, 1);
3527 	}
3528 
3529 	if (!new_smi->dev) {
3530 		/*
3531 		 * If we don't already have a device from something
3532 		 * else (like PCI), then register a new one.
3533 		 */
3534 		new_smi->pdev = platform_device_alloc("ipmi_si",
3535 						      new_smi->intf_num);
3536 		if (!new_smi->pdev) {
3537 			printk(KERN_ERR PFX
3538 			       "Unable to allocate platform device\n");
3539 			goto out_err;
3540 		}
3541 		new_smi->dev = &new_smi->pdev->dev;
3542 		new_smi->dev->driver = &ipmi_driver.driver;
3543 
3544 		rv = platform_device_add(new_smi->pdev);
3545 		if (rv) {
3546 			printk(KERN_ERR PFX
3547 			       "Unable to register system interface device:"
3548 			       " %d\n",
3549 			       rv);
3550 			goto out_err;
3551 		}
3552 		new_smi->dev_registered = true;
3553 	}
3554 
3555 	rv = ipmi_register_smi(&handlers,
3556 			       new_smi,
3557 			       &new_smi->device_id,
3558 			       new_smi->dev,
3559 			       new_smi->slave_addr);
3560 	if (rv) {
3561 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3562 			rv);
3563 		goto out_err_stop_timer;
3564 	}
3565 
3566 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3567 				     &smi_type_proc_ops,
3568 				     new_smi);
3569 	if (rv) {
3570 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3571 		goto out_err_stop_timer;
3572 	}
3573 
3574 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3575 				     &smi_si_stats_proc_ops,
3576 				     new_smi);
3577 	if (rv) {
3578 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3579 		goto out_err_stop_timer;
3580 	}
3581 
3582 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3583 				     &smi_params_proc_ops,
3584 				     new_smi);
3585 	if (rv) {
3586 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3587 		goto out_err_stop_timer;
3588 	}
3589 
3590 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3591 		 si_to_str[new_smi->si_type]);
3592 
3593 	return 0;
3594 
3595  out_err_stop_timer:
3596 	wait_for_timer_and_thread(new_smi);
3597 
3598  out_err:
3599 	new_smi->interrupt_disabled = true;
3600 
3601 	if (new_smi->intf) {
3602 		ipmi_smi_t intf = new_smi->intf;
3603 		new_smi->intf = NULL;
3604 		ipmi_unregister_smi(intf);
3605 	}
3606 
3607 	if (new_smi->irq_cleanup) {
3608 		new_smi->irq_cleanup(new_smi);
3609 		new_smi->irq_cleanup = NULL;
3610 	}
3611 
3612 	/*
3613 	 * Wait until we know that we are out of any interrupt
3614 	 * handlers might have been running before we freed the
3615 	 * interrupt.
3616 	 */
3617 	synchronize_sched();
3618 
3619 	if (new_smi->si_sm) {
3620 		if (new_smi->handlers)
3621 			new_smi->handlers->cleanup(new_smi->si_sm);
3622 		kfree(new_smi->si_sm);
3623 		new_smi->si_sm = NULL;
3624 	}
3625 	if (new_smi->addr_source_cleanup) {
3626 		new_smi->addr_source_cleanup(new_smi);
3627 		new_smi->addr_source_cleanup = NULL;
3628 	}
3629 	if (new_smi->io_cleanup) {
3630 		new_smi->io_cleanup(new_smi);
3631 		new_smi->io_cleanup = NULL;
3632 	}
3633 
3634 	if (new_smi->dev_registered) {
3635 		platform_device_unregister(new_smi->pdev);
3636 		new_smi->dev_registered = false;
3637 	}
3638 
3639 	return rv;
3640 }
3641 
3642 static int init_ipmi_si(void)
3643 {
3644 	int  i;
3645 	char *str;
3646 	int  rv;
3647 	struct smi_info *e;
3648 	enum ipmi_addr_src type = SI_INVALID;
3649 
3650 	if (initialized)
3651 		return 0;
3652 	initialized = 1;
3653 
3654 	if (si_tryplatform) {
3655 		rv = platform_driver_register(&ipmi_driver);
3656 		if (rv) {
3657 			printk(KERN_ERR PFX "Unable to register "
3658 			       "driver: %d\n", rv);
3659 			return rv;
3660 		}
3661 	}
3662 
3663 	/* Parse out the si_type string into its components. */
3664 	str = si_type_str;
3665 	if (*str != '\0') {
3666 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3667 			si_type[i] = str;
3668 			str = strchr(str, ',');
3669 			if (str) {
3670 				*str = '\0';
3671 				str++;
3672 			} else {
3673 				break;
3674 			}
3675 		}
3676 	}
3677 
3678 	printk(KERN_INFO "IPMI System Interface driver.\n");
3679 
3680 	/* If the user gave us a device, they presumably want us to use it */
3681 	if (!hardcode_find_bmc())
3682 		return 0;
3683 
3684 #ifdef CONFIG_PCI
3685 	if (si_trypci) {
3686 		rv = pci_register_driver(&ipmi_pci_driver);
3687 		if (rv)
3688 			printk(KERN_ERR PFX "Unable to register "
3689 			       "PCI driver: %d\n", rv);
3690 		else
3691 			pci_registered = true;
3692 	}
3693 #endif
3694 
3695 #ifdef CONFIG_ACPI
3696 	if (si_tryacpi) {
3697 		pnp_register_driver(&ipmi_pnp_driver);
3698 		pnp_registered = true;
3699 	}
3700 #endif
3701 
3702 #ifdef CONFIG_DMI
3703 	if (si_trydmi)
3704 		dmi_find_bmc();
3705 #endif
3706 
3707 #ifdef CONFIG_ACPI
3708 	if (si_tryacpi)
3709 		spmi_find_bmc();
3710 #endif
3711 
3712 #ifdef CONFIG_PARISC
3713 	register_parisc_driver(&ipmi_parisc_driver);
3714 	parisc_registered = true;
3715 	/* poking PC IO addresses will crash machine, don't do it */
3716 	si_trydefaults = 0;
3717 #endif
3718 
3719 	/* We prefer devices with interrupts, but in the case of a machine
3720 	   with multiple BMCs we assume that there will be several instances
3721 	   of a given type so if we succeed in registering a type then also
3722 	   try to register everything else of the same type */
3723 
3724 	mutex_lock(&smi_infos_lock);
3725 	list_for_each_entry(e, &smi_infos, link) {
3726 		/* Try to register a device if it has an IRQ and we either
3727 		   haven't successfully registered a device yet or this
3728 		   device has the same type as one we successfully registered */
3729 		if (e->irq && (!type || e->addr_source == type)) {
3730 			if (!try_smi_init(e)) {
3731 				type = e->addr_source;
3732 			}
3733 		}
3734 	}
3735 
3736 	/* type will only have been set if we successfully registered an si */
3737 	if (type) {
3738 		mutex_unlock(&smi_infos_lock);
3739 		return 0;
3740 	}
3741 
3742 	/* Fall back to the preferred device */
3743 
3744 	list_for_each_entry(e, &smi_infos, link) {
3745 		if (!e->irq && (!type || e->addr_source == type)) {
3746 			if (!try_smi_init(e)) {
3747 				type = e->addr_source;
3748 			}
3749 		}
3750 	}
3751 	mutex_unlock(&smi_infos_lock);
3752 
3753 	if (type)
3754 		return 0;
3755 
3756 	if (si_trydefaults) {
3757 		mutex_lock(&smi_infos_lock);
3758 		if (list_empty(&smi_infos)) {
3759 			/* No BMC was found, try defaults. */
3760 			mutex_unlock(&smi_infos_lock);
3761 			default_find_bmc();
3762 		} else
3763 			mutex_unlock(&smi_infos_lock);
3764 	}
3765 
3766 	mutex_lock(&smi_infos_lock);
3767 	if (unload_when_empty && list_empty(&smi_infos)) {
3768 		mutex_unlock(&smi_infos_lock);
3769 		cleanup_ipmi_si();
3770 		printk(KERN_WARNING PFX
3771 		       "Unable to find any System Interface(s)\n");
3772 		return -ENODEV;
3773 	} else {
3774 		mutex_unlock(&smi_infos_lock);
3775 		return 0;
3776 	}
3777 }
3778 module_init(init_ipmi_si);
3779 
3780 static void cleanup_one_si(struct smi_info *to_clean)
3781 {
3782 	int           rv = 0;
3783 
3784 	if (!to_clean)
3785 		return;
3786 
3787 	if (to_clean->intf) {
3788 		ipmi_smi_t intf = to_clean->intf;
3789 
3790 		to_clean->intf = NULL;
3791 		rv = ipmi_unregister_smi(intf);
3792 		if (rv) {
3793 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3794 			       rv);
3795 		}
3796 	}
3797 
3798 	if (to_clean->dev)
3799 		dev_set_drvdata(to_clean->dev, NULL);
3800 
3801 	list_del(&to_clean->link);
3802 
3803 	/*
3804 	 * Make sure that interrupts, the timer and the thread are
3805 	 * stopped and will not run again.
3806 	 */
3807 	if (to_clean->irq_cleanup)
3808 		to_clean->irq_cleanup(to_clean);
3809 	wait_for_timer_and_thread(to_clean);
3810 
3811 	/*
3812 	 * Timeouts are stopped, now make sure the interrupts are off
3813 	 * in the BMC.  Note that timers and CPU interrupts are off,
3814 	 * so no need for locks.
3815 	 */
3816 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3817 		poll(to_clean);
3818 		schedule_timeout_uninterruptible(1);
3819 	}
3820 	disable_si_irq(to_clean);
3821 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3822 		poll(to_clean);
3823 		schedule_timeout_uninterruptible(1);
3824 	}
3825 
3826 	if (to_clean->handlers)
3827 		to_clean->handlers->cleanup(to_clean->si_sm);
3828 
3829 	kfree(to_clean->si_sm);
3830 
3831 	if (to_clean->addr_source_cleanup)
3832 		to_clean->addr_source_cleanup(to_clean);
3833 	if (to_clean->io_cleanup)
3834 		to_clean->io_cleanup(to_clean);
3835 
3836 	if (to_clean->dev_registered)
3837 		platform_device_unregister(to_clean->pdev);
3838 
3839 	kfree(to_clean);
3840 }
3841 
3842 static void cleanup_ipmi_si(void)
3843 {
3844 	struct smi_info *e, *tmp_e;
3845 
3846 	if (!initialized)
3847 		return;
3848 
3849 #ifdef CONFIG_PCI
3850 	if (pci_registered)
3851 		pci_unregister_driver(&ipmi_pci_driver);
3852 #endif
3853 #ifdef CONFIG_ACPI
3854 	if (pnp_registered)
3855 		pnp_unregister_driver(&ipmi_pnp_driver);
3856 #endif
3857 #ifdef CONFIG_PARISC
3858 	if (parisc_registered)
3859 		unregister_parisc_driver(&ipmi_parisc_driver);
3860 #endif
3861 
3862 	platform_driver_unregister(&ipmi_driver);
3863 
3864 	mutex_lock(&smi_infos_lock);
3865 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3866 		cleanup_one_si(e);
3867 	mutex_unlock(&smi_infos_lock);
3868 }
3869 module_exit(cleanup_ipmi_si);
3870 
3871 MODULE_LICENSE("GPL");
3872 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3873 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3874 		   " system interfaces.");
3875