1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_si.c 4 * 5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 6 * BT). 7 * 8 * Author: MontaVista Software, Inc. 9 * Corey Minyard <minyard@mvista.com> 10 * source@mvista.com 11 * 12 * Copyright 2002 MontaVista Software Inc. 13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 14 */ 15 16 /* 17 * This file holds the "policy" for the interface to the SMI state 18 * machine. It does the configuration, handles timers and interrupts, 19 * and drives the real SMI state machine. 20 */ 21 22 #define pr_fmt(fmt) "ipmi_si: " fmt 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/sched.h> 27 #include <linux/seq_file.h> 28 #include <linux/timer.h> 29 #include <linux/errno.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/delay.h> 33 #include <linux/list.h> 34 #include <linux/notifier.h> 35 #include <linux/mutex.h> 36 #include <linux/kthread.h> 37 #include <asm/irq.h> 38 #include <linux/interrupt.h> 39 #include <linux/rcupdate.h> 40 #include <linux/ipmi.h> 41 #include <linux/ipmi_smi.h> 42 #include "ipmi_si.h" 43 #include "ipmi_si_sm.h" 44 #include <linux/string.h> 45 #include <linux/ctype.h> 46 47 /* Measure times between events in the driver. */ 48 #undef DEBUG_TIMING 49 50 /* Call every 10 ms. */ 51 #define SI_TIMEOUT_TIME_USEC 10000 52 #define SI_USEC_PER_JIFFY (1000000/HZ) 53 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 54 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 55 short timeout */ 56 57 enum si_intf_state { 58 SI_NORMAL, 59 SI_GETTING_FLAGS, 60 SI_GETTING_EVENTS, 61 SI_CLEARING_FLAGS, 62 SI_GETTING_MESSAGES, 63 SI_CHECKING_ENABLES, 64 SI_SETTING_ENABLES 65 /* FIXME - add watchdog stuff. */ 66 }; 67 68 /* Some BT-specific defines we need here. */ 69 #define IPMI_BT_INTMASK_REG 2 70 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 71 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 72 73 /* 'invalid' to allow a firmware-specified interface to be disabled */ 74 const char *const si_to_str[] = { "invalid", "kcs", "smic", "bt", NULL }; 75 76 static bool initialized; 77 78 /* 79 * Indexes into stats[] in smi_info below. 80 */ 81 enum si_stat_indexes { 82 /* 83 * Number of times the driver requested a timer while an operation 84 * was in progress. 85 */ 86 SI_STAT_short_timeouts = 0, 87 88 /* 89 * Number of times the driver requested a timer while nothing was in 90 * progress. 91 */ 92 SI_STAT_long_timeouts, 93 94 /* Number of times the interface was idle while being polled. */ 95 SI_STAT_idles, 96 97 /* Number of interrupts the driver handled. */ 98 SI_STAT_interrupts, 99 100 /* Number of time the driver got an ATTN from the hardware. */ 101 SI_STAT_attentions, 102 103 /* Number of times the driver requested flags from the hardware. */ 104 SI_STAT_flag_fetches, 105 106 /* Number of times the hardware didn't follow the state machine. */ 107 SI_STAT_hosed_count, 108 109 /* Number of completed messages. */ 110 SI_STAT_complete_transactions, 111 112 /* Number of IPMI events received from the hardware. */ 113 SI_STAT_events, 114 115 /* Number of watchdog pretimeouts. */ 116 SI_STAT_watchdog_pretimeouts, 117 118 /* Number of asynchronous messages received. */ 119 SI_STAT_incoming_messages, 120 121 122 /* This *must* remain last, add new values above this. */ 123 SI_NUM_STATS 124 }; 125 126 struct smi_info { 127 int si_num; 128 struct ipmi_smi *intf; 129 struct si_sm_data *si_sm; 130 const struct si_sm_handlers *handlers; 131 spinlock_t si_lock; 132 struct ipmi_smi_msg *waiting_msg; 133 struct ipmi_smi_msg *curr_msg; 134 enum si_intf_state si_state; 135 136 /* 137 * Used to handle the various types of I/O that can occur with 138 * IPMI 139 */ 140 struct si_sm_io io; 141 142 /* 143 * Per-OEM handler, called from handle_flags(). Returns 1 144 * when handle_flags() needs to be re-run or 0 indicating it 145 * set si_state itself. 146 */ 147 int (*oem_data_avail_handler)(struct smi_info *smi_info); 148 149 /* 150 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 151 * is set to hold the flags until we are done handling everything 152 * from the flags. 153 */ 154 #define RECEIVE_MSG_AVAIL 0x01 155 #define EVENT_MSG_BUFFER_FULL 0x02 156 #define WDT_PRE_TIMEOUT_INT 0x08 157 #define OEM0_DATA_AVAIL 0x20 158 #define OEM1_DATA_AVAIL 0x40 159 #define OEM2_DATA_AVAIL 0x80 160 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 161 OEM1_DATA_AVAIL | \ 162 OEM2_DATA_AVAIL) 163 unsigned char msg_flags; 164 165 /* Does the BMC have an event buffer? */ 166 bool has_event_buffer; 167 168 /* 169 * If set to true, this will request events the next time the 170 * state machine is idle. 171 */ 172 atomic_t req_events; 173 174 /* 175 * If true, run the state machine to completion on every send 176 * call. Generally used after a panic to make sure stuff goes 177 * out. 178 */ 179 bool run_to_completion; 180 181 /* The timer for this si. */ 182 struct timer_list si_timer; 183 184 /* This flag is set, if the timer can be set */ 185 bool timer_can_start; 186 187 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 188 bool timer_running; 189 190 /* The time (in jiffies) the last timeout occurred at. */ 191 unsigned long last_timeout_jiffies; 192 193 /* Are we waiting for the events, pretimeouts, received msgs? */ 194 atomic_t need_watch; 195 196 /* 197 * The driver will disable interrupts when it gets into a 198 * situation where it cannot handle messages due to lack of 199 * memory. Once that situation clears up, it will re-enable 200 * interrupts. 201 */ 202 bool interrupt_disabled; 203 204 /* 205 * Does the BMC support events? 206 */ 207 bool supports_event_msg_buff; 208 209 /* 210 * Can we disable interrupts the global enables receive irq 211 * bit? There are currently two forms of brokenness, some 212 * systems cannot disable the bit (which is technically within 213 * the spec but a bad idea) and some systems have the bit 214 * forced to zero even though interrupts work (which is 215 * clearly outside the spec). The next bool tells which form 216 * of brokenness is present. 217 */ 218 bool cannot_disable_irq; 219 220 /* 221 * Some systems are broken and cannot set the irq enable 222 * bit, even if they support interrupts. 223 */ 224 bool irq_enable_broken; 225 226 /* Is the driver in maintenance mode? */ 227 bool in_maintenance_mode; 228 229 /* 230 * Did we get an attention that we did not handle? 231 */ 232 bool got_attn; 233 234 /* From the get device id response... */ 235 struct ipmi_device_id device_id; 236 237 /* Have we added the device group to the device? */ 238 bool dev_group_added; 239 240 /* Counters and things for the proc filesystem. */ 241 atomic_t stats[SI_NUM_STATS]; 242 243 struct task_struct *thread; 244 245 struct list_head link; 246 }; 247 248 #define smi_inc_stat(smi, stat) \ 249 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 250 #define smi_get_stat(smi, stat) \ 251 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 252 253 #define IPMI_MAX_INTFS 4 254 static int force_kipmid[IPMI_MAX_INTFS]; 255 static int num_force_kipmid; 256 257 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS]; 258 static int num_max_busy_us; 259 260 static bool unload_when_empty = true; 261 262 static int try_smi_init(struct smi_info *smi); 263 static void cleanup_one_si(struct smi_info *smi_info); 264 static void cleanup_ipmi_si(void); 265 266 #ifdef DEBUG_TIMING 267 void debug_timestamp(char *msg) 268 { 269 struct timespec64 t; 270 271 ktime_get_ts64(&t); 272 pr_debug("**%s: %lld.%9.9ld\n", msg, t.tv_sec, t.tv_nsec); 273 } 274 #else 275 #define debug_timestamp(x) 276 #endif 277 278 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 279 static int register_xaction_notifier(struct notifier_block *nb) 280 { 281 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 282 } 283 284 static void deliver_recv_msg(struct smi_info *smi_info, 285 struct ipmi_smi_msg *msg) 286 { 287 /* Deliver the message to the upper layer. */ 288 ipmi_smi_msg_received(smi_info->intf, msg); 289 } 290 291 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 292 { 293 struct ipmi_smi_msg *msg = smi_info->curr_msg; 294 295 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 296 cCode = IPMI_ERR_UNSPECIFIED; 297 /* else use it as is */ 298 299 /* Make it a response */ 300 msg->rsp[0] = msg->data[0] | 4; 301 msg->rsp[1] = msg->data[1]; 302 msg->rsp[2] = cCode; 303 msg->rsp_size = 3; 304 305 smi_info->curr_msg = NULL; 306 deliver_recv_msg(smi_info, msg); 307 } 308 309 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 310 { 311 int rv; 312 313 if (!smi_info->waiting_msg) { 314 smi_info->curr_msg = NULL; 315 rv = SI_SM_IDLE; 316 } else { 317 int err; 318 319 smi_info->curr_msg = smi_info->waiting_msg; 320 smi_info->waiting_msg = NULL; 321 debug_timestamp("Start2"); 322 err = atomic_notifier_call_chain(&xaction_notifier_list, 323 0, smi_info); 324 if (err & NOTIFY_STOP_MASK) { 325 rv = SI_SM_CALL_WITHOUT_DELAY; 326 goto out; 327 } 328 err = smi_info->handlers->start_transaction( 329 smi_info->si_sm, 330 smi_info->curr_msg->data, 331 smi_info->curr_msg->data_size); 332 if (err) 333 return_hosed_msg(smi_info, err); 334 335 rv = SI_SM_CALL_WITHOUT_DELAY; 336 } 337 out: 338 return rv; 339 } 340 341 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 342 { 343 if (!smi_info->timer_can_start) 344 return; 345 smi_info->last_timeout_jiffies = jiffies; 346 mod_timer(&smi_info->si_timer, new_val); 347 smi_info->timer_running = true; 348 } 349 350 /* 351 * Start a new message and (re)start the timer and thread. 352 */ 353 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 354 unsigned int size) 355 { 356 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 357 358 if (smi_info->thread) 359 wake_up_process(smi_info->thread); 360 361 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 362 } 363 364 static void start_check_enables(struct smi_info *smi_info) 365 { 366 unsigned char msg[2]; 367 368 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 369 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 370 371 start_new_msg(smi_info, msg, 2); 372 smi_info->si_state = SI_CHECKING_ENABLES; 373 } 374 375 static void start_clear_flags(struct smi_info *smi_info) 376 { 377 unsigned char msg[3]; 378 379 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 380 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 381 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 382 msg[2] = WDT_PRE_TIMEOUT_INT; 383 384 start_new_msg(smi_info, msg, 3); 385 smi_info->si_state = SI_CLEARING_FLAGS; 386 } 387 388 static void start_getting_msg_queue(struct smi_info *smi_info) 389 { 390 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 391 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 392 smi_info->curr_msg->data_size = 2; 393 394 start_new_msg(smi_info, smi_info->curr_msg->data, 395 smi_info->curr_msg->data_size); 396 smi_info->si_state = SI_GETTING_MESSAGES; 397 } 398 399 static void start_getting_events(struct smi_info *smi_info) 400 { 401 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 402 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 403 smi_info->curr_msg->data_size = 2; 404 405 start_new_msg(smi_info, smi_info->curr_msg->data, 406 smi_info->curr_msg->data_size); 407 smi_info->si_state = SI_GETTING_EVENTS; 408 } 409 410 /* 411 * When we have a situtaion where we run out of memory and cannot 412 * allocate messages, we just leave them in the BMC and run the system 413 * polled until we can allocate some memory. Once we have some 414 * memory, we will re-enable the interrupt. 415 * 416 * Note that we cannot just use disable_irq(), since the interrupt may 417 * be shared. 418 */ 419 static inline bool disable_si_irq(struct smi_info *smi_info) 420 { 421 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 422 smi_info->interrupt_disabled = true; 423 start_check_enables(smi_info); 424 return true; 425 } 426 return false; 427 } 428 429 static inline bool enable_si_irq(struct smi_info *smi_info) 430 { 431 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) { 432 smi_info->interrupt_disabled = false; 433 start_check_enables(smi_info); 434 return true; 435 } 436 return false; 437 } 438 439 /* 440 * Allocate a message. If unable to allocate, start the interrupt 441 * disable process and return NULL. If able to allocate but 442 * interrupts are disabled, free the message and return NULL after 443 * starting the interrupt enable process. 444 */ 445 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 446 { 447 struct ipmi_smi_msg *msg; 448 449 msg = ipmi_alloc_smi_msg(); 450 if (!msg) { 451 if (!disable_si_irq(smi_info)) 452 smi_info->si_state = SI_NORMAL; 453 } else if (enable_si_irq(smi_info)) { 454 ipmi_free_smi_msg(msg); 455 msg = NULL; 456 } 457 return msg; 458 } 459 460 static void handle_flags(struct smi_info *smi_info) 461 { 462 retry: 463 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 464 /* Watchdog pre-timeout */ 465 smi_inc_stat(smi_info, watchdog_pretimeouts); 466 467 start_clear_flags(smi_info); 468 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 469 ipmi_smi_watchdog_pretimeout(smi_info->intf); 470 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 471 /* Messages available. */ 472 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 473 if (!smi_info->curr_msg) 474 return; 475 476 start_getting_msg_queue(smi_info); 477 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 478 /* Events available. */ 479 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 480 if (!smi_info->curr_msg) 481 return; 482 483 start_getting_events(smi_info); 484 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 485 smi_info->oem_data_avail_handler) { 486 if (smi_info->oem_data_avail_handler(smi_info)) 487 goto retry; 488 } else 489 smi_info->si_state = SI_NORMAL; 490 } 491 492 /* 493 * Global enables we care about. 494 */ 495 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 496 IPMI_BMC_EVT_MSG_INTR) 497 498 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 499 bool *irq_on) 500 { 501 u8 enables = 0; 502 503 if (smi_info->supports_event_msg_buff) 504 enables |= IPMI_BMC_EVT_MSG_BUFF; 505 506 if (((smi_info->io.irq && !smi_info->interrupt_disabled) || 507 smi_info->cannot_disable_irq) && 508 !smi_info->irq_enable_broken) 509 enables |= IPMI_BMC_RCV_MSG_INTR; 510 511 if (smi_info->supports_event_msg_buff && 512 smi_info->io.irq && !smi_info->interrupt_disabled && 513 !smi_info->irq_enable_broken) 514 enables |= IPMI_BMC_EVT_MSG_INTR; 515 516 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 517 518 return enables; 519 } 520 521 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 522 { 523 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 524 525 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 526 527 if ((bool)irqstate == irq_on) 528 return; 529 530 if (irq_on) 531 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 532 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 533 else 534 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 535 } 536 537 static void handle_transaction_done(struct smi_info *smi_info) 538 { 539 struct ipmi_smi_msg *msg; 540 541 debug_timestamp("Done"); 542 switch (smi_info->si_state) { 543 case SI_NORMAL: 544 if (!smi_info->curr_msg) 545 break; 546 547 smi_info->curr_msg->rsp_size 548 = smi_info->handlers->get_result( 549 smi_info->si_sm, 550 smi_info->curr_msg->rsp, 551 IPMI_MAX_MSG_LENGTH); 552 553 /* 554 * Do this here becase deliver_recv_msg() releases the 555 * lock, and a new message can be put in during the 556 * time the lock is released. 557 */ 558 msg = smi_info->curr_msg; 559 smi_info->curr_msg = NULL; 560 deliver_recv_msg(smi_info, msg); 561 break; 562 563 case SI_GETTING_FLAGS: 564 { 565 unsigned char msg[4]; 566 unsigned int len; 567 568 /* We got the flags from the SMI, now handle them. */ 569 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 570 if (msg[2] != 0) { 571 /* Error fetching flags, just give up for now. */ 572 smi_info->si_state = SI_NORMAL; 573 } else if (len < 4) { 574 /* 575 * Hmm, no flags. That's technically illegal, but 576 * don't use uninitialized data. 577 */ 578 smi_info->si_state = SI_NORMAL; 579 } else { 580 smi_info->msg_flags = msg[3]; 581 handle_flags(smi_info); 582 } 583 break; 584 } 585 586 case SI_CLEARING_FLAGS: 587 { 588 unsigned char msg[3]; 589 590 /* We cleared the flags. */ 591 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 592 if (msg[2] != 0) { 593 /* Error clearing flags */ 594 dev_warn_ratelimited(smi_info->io.dev, 595 "Error clearing flags: %2.2x\n", msg[2]); 596 } 597 smi_info->si_state = SI_NORMAL; 598 break; 599 } 600 601 case SI_GETTING_EVENTS: 602 { 603 smi_info->curr_msg->rsp_size 604 = smi_info->handlers->get_result( 605 smi_info->si_sm, 606 smi_info->curr_msg->rsp, 607 IPMI_MAX_MSG_LENGTH); 608 609 /* 610 * Do this here becase deliver_recv_msg() releases the 611 * lock, and a new message can be put in during the 612 * time the lock is released. 613 */ 614 msg = smi_info->curr_msg; 615 smi_info->curr_msg = NULL; 616 if (msg->rsp[2] != 0) { 617 /* Error getting event, probably done. */ 618 msg->done(msg); 619 620 /* Take off the event flag. */ 621 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 622 handle_flags(smi_info); 623 } else { 624 smi_inc_stat(smi_info, events); 625 626 /* 627 * Do this before we deliver the message 628 * because delivering the message releases the 629 * lock and something else can mess with the 630 * state. 631 */ 632 handle_flags(smi_info); 633 634 deliver_recv_msg(smi_info, msg); 635 } 636 break; 637 } 638 639 case SI_GETTING_MESSAGES: 640 { 641 smi_info->curr_msg->rsp_size 642 = smi_info->handlers->get_result( 643 smi_info->si_sm, 644 smi_info->curr_msg->rsp, 645 IPMI_MAX_MSG_LENGTH); 646 647 /* 648 * Do this here becase deliver_recv_msg() releases the 649 * lock, and a new message can be put in during the 650 * time the lock is released. 651 */ 652 msg = smi_info->curr_msg; 653 smi_info->curr_msg = NULL; 654 if (msg->rsp[2] != 0) { 655 /* Error getting event, probably done. */ 656 msg->done(msg); 657 658 /* Take off the msg flag. */ 659 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 660 handle_flags(smi_info); 661 } else { 662 smi_inc_stat(smi_info, incoming_messages); 663 664 /* 665 * Do this before we deliver the message 666 * because delivering the message releases the 667 * lock and something else can mess with the 668 * state. 669 */ 670 handle_flags(smi_info); 671 672 deliver_recv_msg(smi_info, msg); 673 } 674 break; 675 } 676 677 case SI_CHECKING_ENABLES: 678 { 679 unsigned char msg[4]; 680 u8 enables; 681 bool irq_on; 682 683 /* We got the flags from the SMI, now handle them. */ 684 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 685 if (msg[2] != 0) { 686 dev_warn_ratelimited(smi_info->io.dev, 687 "Couldn't get irq info: %x,\n" 688 "Maybe ok, but ipmi might run very slowly.\n", 689 msg[2]); 690 smi_info->si_state = SI_NORMAL; 691 break; 692 } 693 enables = current_global_enables(smi_info, 0, &irq_on); 694 if (smi_info->io.si_type == SI_BT) 695 /* BT has its own interrupt enable bit. */ 696 check_bt_irq(smi_info, irq_on); 697 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 698 /* Enables are not correct, fix them. */ 699 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 700 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 701 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 702 smi_info->handlers->start_transaction( 703 smi_info->si_sm, msg, 3); 704 smi_info->si_state = SI_SETTING_ENABLES; 705 } else if (smi_info->supports_event_msg_buff) { 706 smi_info->curr_msg = ipmi_alloc_smi_msg(); 707 if (!smi_info->curr_msg) { 708 smi_info->si_state = SI_NORMAL; 709 break; 710 } 711 start_getting_events(smi_info); 712 } else { 713 smi_info->si_state = SI_NORMAL; 714 } 715 break; 716 } 717 718 case SI_SETTING_ENABLES: 719 { 720 unsigned char msg[4]; 721 722 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 723 if (msg[2] != 0) 724 dev_warn_ratelimited(smi_info->io.dev, 725 "Could not set the global enables: 0x%x.\n", 726 msg[2]); 727 728 if (smi_info->supports_event_msg_buff) { 729 smi_info->curr_msg = ipmi_alloc_smi_msg(); 730 if (!smi_info->curr_msg) { 731 smi_info->si_state = SI_NORMAL; 732 break; 733 } 734 start_getting_events(smi_info); 735 } else { 736 smi_info->si_state = SI_NORMAL; 737 } 738 break; 739 } 740 } 741 } 742 743 /* 744 * Called on timeouts and events. Timeouts should pass the elapsed 745 * time, interrupts should pass in zero. Must be called with 746 * si_lock held and interrupts disabled. 747 */ 748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 749 int time) 750 { 751 enum si_sm_result si_sm_result; 752 753 restart: 754 /* 755 * There used to be a loop here that waited a little while 756 * (around 25us) before giving up. That turned out to be 757 * pointless, the minimum delays I was seeing were in the 300us 758 * range, which is far too long to wait in an interrupt. So 759 * we just run until the state machine tells us something 760 * happened or it needs a delay. 761 */ 762 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 763 time = 0; 764 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 765 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 766 767 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 768 smi_inc_stat(smi_info, complete_transactions); 769 770 handle_transaction_done(smi_info); 771 goto restart; 772 } else if (si_sm_result == SI_SM_HOSED) { 773 smi_inc_stat(smi_info, hosed_count); 774 775 /* 776 * Do the before return_hosed_msg, because that 777 * releases the lock. 778 */ 779 smi_info->si_state = SI_NORMAL; 780 if (smi_info->curr_msg != NULL) { 781 /* 782 * If we were handling a user message, format 783 * a response to send to the upper layer to 784 * tell it about the error. 785 */ 786 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 787 } 788 goto restart; 789 } 790 791 /* 792 * We prefer handling attn over new messages. But don't do 793 * this if there is not yet an upper layer to handle anything. 794 */ 795 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) { 796 unsigned char msg[2]; 797 798 if (smi_info->si_state != SI_NORMAL) { 799 /* 800 * We got an ATTN, but we are doing something else. 801 * Handle the ATTN later. 802 */ 803 smi_info->got_attn = true; 804 } else { 805 smi_info->got_attn = false; 806 smi_inc_stat(smi_info, attentions); 807 808 /* 809 * Got a attn, send down a get message flags to see 810 * what's causing it. It would be better to handle 811 * this in the upper layer, but due to the way 812 * interrupts work with the SMI, that's not really 813 * possible. 814 */ 815 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 816 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 817 818 start_new_msg(smi_info, msg, 2); 819 smi_info->si_state = SI_GETTING_FLAGS; 820 goto restart; 821 } 822 } 823 824 /* If we are currently idle, try to start the next message. */ 825 if (si_sm_result == SI_SM_IDLE) { 826 smi_inc_stat(smi_info, idles); 827 828 si_sm_result = start_next_msg(smi_info); 829 if (si_sm_result != SI_SM_IDLE) 830 goto restart; 831 } 832 833 if ((si_sm_result == SI_SM_IDLE) 834 && (atomic_read(&smi_info->req_events))) { 835 /* 836 * We are idle and the upper layer requested that I fetch 837 * events, so do so. 838 */ 839 atomic_set(&smi_info->req_events, 0); 840 841 /* 842 * Take this opportunity to check the interrupt and 843 * message enable state for the BMC. The BMC can be 844 * asynchronously reset, and may thus get interrupts 845 * disable and messages disabled. 846 */ 847 if (smi_info->supports_event_msg_buff || smi_info->io.irq) { 848 start_check_enables(smi_info); 849 } else { 850 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 851 if (!smi_info->curr_msg) 852 goto out; 853 854 start_getting_events(smi_info); 855 } 856 goto restart; 857 } 858 859 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 860 /* Ok it if fails, the timer will just go off. */ 861 if (del_timer(&smi_info->si_timer)) 862 smi_info->timer_running = false; 863 } 864 865 out: 866 return si_sm_result; 867 } 868 869 static void check_start_timer_thread(struct smi_info *smi_info) 870 { 871 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 872 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 873 874 if (smi_info->thread) 875 wake_up_process(smi_info->thread); 876 877 start_next_msg(smi_info); 878 smi_event_handler(smi_info, 0); 879 } 880 } 881 882 static void flush_messages(void *send_info) 883 { 884 struct smi_info *smi_info = send_info; 885 enum si_sm_result result; 886 887 /* 888 * Currently, this function is called only in run-to-completion 889 * mode. This means we are single-threaded, no need for locks. 890 */ 891 result = smi_event_handler(smi_info, 0); 892 while (result != SI_SM_IDLE) { 893 udelay(SI_SHORT_TIMEOUT_USEC); 894 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 895 } 896 } 897 898 static void sender(void *send_info, 899 struct ipmi_smi_msg *msg) 900 { 901 struct smi_info *smi_info = send_info; 902 unsigned long flags; 903 904 debug_timestamp("Enqueue"); 905 906 if (smi_info->run_to_completion) { 907 /* 908 * If we are running to completion, start it. Upper 909 * layer will call flush_messages to clear it out. 910 */ 911 smi_info->waiting_msg = msg; 912 return; 913 } 914 915 spin_lock_irqsave(&smi_info->si_lock, flags); 916 /* 917 * The following two lines don't need to be under the lock for 918 * the lock's sake, but they do need SMP memory barriers to 919 * avoid getting things out of order. We are already claiming 920 * the lock, anyway, so just do it under the lock to avoid the 921 * ordering problem. 922 */ 923 BUG_ON(smi_info->waiting_msg); 924 smi_info->waiting_msg = msg; 925 check_start_timer_thread(smi_info); 926 spin_unlock_irqrestore(&smi_info->si_lock, flags); 927 } 928 929 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 930 { 931 struct smi_info *smi_info = send_info; 932 933 smi_info->run_to_completion = i_run_to_completion; 934 if (i_run_to_completion) 935 flush_messages(smi_info); 936 } 937 938 /* 939 * Use -1 as a special constant to tell that we are spinning in kipmid 940 * looking for something and not delaying between checks 941 */ 942 #define IPMI_TIME_NOT_BUSY ns_to_ktime(-1ull) 943 static inline bool ipmi_thread_busy_wait(enum si_sm_result smi_result, 944 const struct smi_info *smi_info, 945 ktime_t *busy_until) 946 { 947 unsigned int max_busy_us = 0; 948 949 if (smi_info->si_num < num_max_busy_us) 950 max_busy_us = kipmid_max_busy_us[smi_info->si_num]; 951 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 952 *busy_until = IPMI_TIME_NOT_BUSY; 953 else if (*busy_until == IPMI_TIME_NOT_BUSY) { 954 *busy_until = ktime_get() + max_busy_us * NSEC_PER_USEC; 955 } else { 956 if (unlikely(ktime_get() > *busy_until)) { 957 *busy_until = IPMI_TIME_NOT_BUSY; 958 return false; 959 } 960 } 961 return true; 962 } 963 964 965 /* 966 * A busy-waiting loop for speeding up IPMI operation. 967 * 968 * Lousy hardware makes this hard. This is only enabled for systems 969 * that are not BT and do not have interrupts. It starts spinning 970 * when an operation is complete or until max_busy tells it to stop 971 * (if that is enabled). See the paragraph on kimid_max_busy_us in 972 * Documentation/driver-api/ipmi.rst for details. 973 */ 974 static int ipmi_thread(void *data) 975 { 976 struct smi_info *smi_info = data; 977 unsigned long flags; 978 enum si_sm_result smi_result; 979 ktime_t busy_until = IPMI_TIME_NOT_BUSY; 980 981 set_user_nice(current, MAX_NICE); 982 while (!kthread_should_stop()) { 983 int busy_wait; 984 985 spin_lock_irqsave(&(smi_info->si_lock), flags); 986 smi_result = smi_event_handler(smi_info, 0); 987 988 /* 989 * If the driver is doing something, there is a possible 990 * race with the timer. If the timer handler see idle, 991 * and the thread here sees something else, the timer 992 * handler won't restart the timer even though it is 993 * required. So start it here if necessary. 994 */ 995 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 996 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 997 998 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 999 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1000 &busy_until); 1001 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 1002 ; /* do nothing */ 1003 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) { 1004 /* 1005 * In maintenance mode we run as fast as 1006 * possible to allow firmware updates to 1007 * complete as fast as possible, but normally 1008 * don't bang on the scheduler. 1009 */ 1010 if (smi_info->in_maintenance_mode) 1011 schedule(); 1012 else 1013 usleep_range(100, 200); 1014 } else if (smi_result == SI_SM_IDLE) { 1015 if (atomic_read(&smi_info->need_watch)) { 1016 schedule_timeout_interruptible(100); 1017 } else { 1018 /* Wait to be woken up when we are needed. */ 1019 __set_current_state(TASK_INTERRUPTIBLE); 1020 schedule(); 1021 } 1022 } else { 1023 schedule_timeout_interruptible(1); 1024 } 1025 } 1026 return 0; 1027 } 1028 1029 1030 static void poll(void *send_info) 1031 { 1032 struct smi_info *smi_info = send_info; 1033 unsigned long flags = 0; 1034 bool run_to_completion = smi_info->run_to_completion; 1035 1036 /* 1037 * Make sure there is some delay in the poll loop so we can 1038 * drive time forward and timeout things. 1039 */ 1040 udelay(10); 1041 if (!run_to_completion) 1042 spin_lock_irqsave(&smi_info->si_lock, flags); 1043 smi_event_handler(smi_info, 10); 1044 if (!run_to_completion) 1045 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1046 } 1047 1048 static void request_events(void *send_info) 1049 { 1050 struct smi_info *smi_info = send_info; 1051 1052 if (!smi_info->has_event_buffer) 1053 return; 1054 1055 atomic_set(&smi_info->req_events, 1); 1056 } 1057 1058 static void set_need_watch(void *send_info, unsigned int watch_mask) 1059 { 1060 struct smi_info *smi_info = send_info; 1061 unsigned long flags; 1062 int enable; 1063 1064 enable = !!watch_mask; 1065 1066 atomic_set(&smi_info->need_watch, enable); 1067 spin_lock_irqsave(&smi_info->si_lock, flags); 1068 check_start_timer_thread(smi_info); 1069 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1070 } 1071 1072 static void smi_timeout(struct timer_list *t) 1073 { 1074 struct smi_info *smi_info = from_timer(smi_info, t, si_timer); 1075 enum si_sm_result smi_result; 1076 unsigned long flags; 1077 unsigned long jiffies_now; 1078 long time_diff; 1079 long timeout; 1080 1081 spin_lock_irqsave(&(smi_info->si_lock), flags); 1082 debug_timestamp("Timer"); 1083 1084 jiffies_now = jiffies; 1085 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1086 * SI_USEC_PER_JIFFY); 1087 smi_result = smi_event_handler(smi_info, time_diff); 1088 1089 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 1090 /* Running with interrupts, only do long timeouts. */ 1091 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1092 smi_inc_stat(smi_info, long_timeouts); 1093 goto do_mod_timer; 1094 } 1095 1096 /* 1097 * If the state machine asks for a short delay, then shorten 1098 * the timer timeout. 1099 */ 1100 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1101 smi_inc_stat(smi_info, short_timeouts); 1102 timeout = jiffies + 1; 1103 } else { 1104 smi_inc_stat(smi_info, long_timeouts); 1105 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1106 } 1107 1108 do_mod_timer: 1109 if (smi_result != SI_SM_IDLE) 1110 smi_mod_timer(smi_info, timeout); 1111 else 1112 smi_info->timer_running = false; 1113 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1114 } 1115 1116 irqreturn_t ipmi_si_irq_handler(int irq, void *data) 1117 { 1118 struct smi_info *smi_info = data; 1119 unsigned long flags; 1120 1121 if (smi_info->io.si_type == SI_BT) 1122 /* We need to clear the IRQ flag for the BT interface. */ 1123 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1124 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1125 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1126 1127 spin_lock_irqsave(&(smi_info->si_lock), flags); 1128 1129 smi_inc_stat(smi_info, interrupts); 1130 1131 debug_timestamp("Interrupt"); 1132 1133 smi_event_handler(smi_info, 0); 1134 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1135 return IRQ_HANDLED; 1136 } 1137 1138 static int smi_start_processing(void *send_info, 1139 struct ipmi_smi *intf) 1140 { 1141 struct smi_info *new_smi = send_info; 1142 int enable = 0; 1143 1144 new_smi->intf = intf; 1145 1146 /* Set up the timer that drives the interface. */ 1147 timer_setup(&new_smi->si_timer, smi_timeout, 0); 1148 new_smi->timer_can_start = true; 1149 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1150 1151 /* Try to claim any interrupts. */ 1152 if (new_smi->io.irq_setup) { 1153 new_smi->io.irq_handler_data = new_smi; 1154 new_smi->io.irq_setup(&new_smi->io); 1155 } 1156 1157 /* 1158 * Check if the user forcefully enabled the daemon. 1159 */ 1160 if (new_smi->si_num < num_force_kipmid) 1161 enable = force_kipmid[new_smi->si_num]; 1162 /* 1163 * The BT interface is efficient enough to not need a thread, 1164 * and there is no need for a thread if we have interrupts. 1165 */ 1166 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq)) 1167 enable = 1; 1168 1169 if (enable) { 1170 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1171 "kipmi%d", new_smi->si_num); 1172 if (IS_ERR(new_smi->thread)) { 1173 dev_notice(new_smi->io.dev, 1174 "Could not start kernel thread due to error %ld, only using timers to drive the interface\n", 1175 PTR_ERR(new_smi->thread)); 1176 new_smi->thread = NULL; 1177 } 1178 } 1179 1180 return 0; 1181 } 1182 1183 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1184 { 1185 struct smi_info *smi = send_info; 1186 1187 data->addr_src = smi->io.addr_source; 1188 data->dev = smi->io.dev; 1189 data->addr_info = smi->io.addr_info; 1190 get_device(smi->io.dev); 1191 1192 return 0; 1193 } 1194 1195 static void set_maintenance_mode(void *send_info, bool enable) 1196 { 1197 struct smi_info *smi_info = send_info; 1198 1199 if (!enable) 1200 atomic_set(&smi_info->req_events, 0); 1201 smi_info->in_maintenance_mode = enable; 1202 } 1203 1204 static void shutdown_smi(void *send_info); 1205 static const struct ipmi_smi_handlers handlers = { 1206 .owner = THIS_MODULE, 1207 .start_processing = smi_start_processing, 1208 .shutdown = shutdown_smi, 1209 .get_smi_info = get_smi_info, 1210 .sender = sender, 1211 .request_events = request_events, 1212 .set_need_watch = set_need_watch, 1213 .set_maintenance_mode = set_maintenance_mode, 1214 .set_run_to_completion = set_run_to_completion, 1215 .flush_messages = flush_messages, 1216 .poll = poll, 1217 }; 1218 1219 static LIST_HEAD(smi_infos); 1220 static DEFINE_MUTEX(smi_infos_lock); 1221 static int smi_num; /* Used to sequence the SMIs */ 1222 1223 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1224 1225 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1226 MODULE_PARM_DESC(force_kipmid, 1227 "Force the kipmi daemon to be enabled (1) or disabled(0). Normally the IPMI driver auto-detects this, but the value may be overridden by this parm."); 1228 module_param(unload_when_empty, bool, 0); 1229 MODULE_PARM_DESC(unload_when_empty, 1230 "Unload the module if no interfaces are specified or found, default is 1. Setting to 0 is useful for hot add of devices using hotmod."); 1231 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1232 MODULE_PARM_DESC(kipmid_max_busy_us, 1233 "Max time (in microseconds) to busy-wait for IPMI data before sleeping. 0 (default) means to wait forever. Set to 100-500 if kipmid is using up a lot of CPU time."); 1234 1235 void ipmi_irq_finish_setup(struct si_sm_io *io) 1236 { 1237 if (io->si_type == SI_BT) 1238 /* Enable the interrupt in the BT interface. */ 1239 io->outputb(io, IPMI_BT_INTMASK_REG, 1240 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1241 } 1242 1243 void ipmi_irq_start_cleanup(struct si_sm_io *io) 1244 { 1245 if (io->si_type == SI_BT) 1246 /* Disable the interrupt in the BT interface. */ 1247 io->outputb(io, IPMI_BT_INTMASK_REG, 0); 1248 } 1249 1250 static void std_irq_cleanup(struct si_sm_io *io) 1251 { 1252 ipmi_irq_start_cleanup(io); 1253 free_irq(io->irq, io->irq_handler_data); 1254 } 1255 1256 int ipmi_std_irq_setup(struct si_sm_io *io) 1257 { 1258 int rv; 1259 1260 if (!io->irq) 1261 return 0; 1262 1263 rv = request_irq(io->irq, 1264 ipmi_si_irq_handler, 1265 IRQF_SHARED, 1266 SI_DEVICE_NAME, 1267 io->irq_handler_data); 1268 if (rv) { 1269 dev_warn(io->dev, "%s unable to claim interrupt %d, running polled\n", 1270 SI_DEVICE_NAME, io->irq); 1271 io->irq = 0; 1272 } else { 1273 io->irq_cleanup = std_irq_cleanup; 1274 ipmi_irq_finish_setup(io); 1275 dev_info(io->dev, "Using irq %d\n", io->irq); 1276 } 1277 1278 return rv; 1279 } 1280 1281 static int wait_for_msg_done(struct smi_info *smi_info) 1282 { 1283 enum si_sm_result smi_result; 1284 1285 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 1286 for (;;) { 1287 if (smi_result == SI_SM_CALL_WITH_DELAY || 1288 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 1289 schedule_timeout_uninterruptible(1); 1290 smi_result = smi_info->handlers->event( 1291 smi_info->si_sm, jiffies_to_usecs(1)); 1292 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 1293 smi_result = smi_info->handlers->event( 1294 smi_info->si_sm, 0); 1295 } else 1296 break; 1297 } 1298 if (smi_result == SI_SM_HOSED) 1299 /* 1300 * We couldn't get the state machine to run, so whatever's at 1301 * the port is probably not an IPMI SMI interface. 1302 */ 1303 return -ENODEV; 1304 1305 return 0; 1306 } 1307 1308 static int try_get_dev_id(struct smi_info *smi_info) 1309 { 1310 unsigned char msg[2]; 1311 unsigned char *resp; 1312 unsigned long resp_len; 1313 int rv = 0; 1314 unsigned int retry_count = 0; 1315 1316 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1317 if (!resp) 1318 return -ENOMEM; 1319 1320 /* 1321 * Do a Get Device ID command, since it comes back with some 1322 * useful info. 1323 */ 1324 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1325 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1326 1327 retry: 1328 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1329 1330 rv = wait_for_msg_done(smi_info); 1331 if (rv) 1332 goto out; 1333 1334 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1335 resp, IPMI_MAX_MSG_LENGTH); 1336 1337 /* Check and record info from the get device id, in case we need it. */ 1338 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], 1339 resp + 2, resp_len - 2, &smi_info->device_id); 1340 if (rv) { 1341 /* record completion code */ 1342 unsigned char cc = *(resp + 2); 1343 1344 if (cc != IPMI_CC_NO_ERROR && 1345 ++retry_count <= GET_DEVICE_ID_MAX_RETRY) { 1346 dev_warn_ratelimited(smi_info->io.dev, 1347 "BMC returned 0x%2.2x, retry get bmc device id\n", 1348 cc); 1349 goto retry; 1350 } 1351 } 1352 1353 out: 1354 kfree(resp); 1355 return rv; 1356 } 1357 1358 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 1359 { 1360 unsigned char msg[3]; 1361 unsigned char *resp; 1362 unsigned long resp_len; 1363 int rv; 1364 1365 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1366 if (!resp) 1367 return -ENOMEM; 1368 1369 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1370 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1371 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1372 1373 rv = wait_for_msg_done(smi_info); 1374 if (rv) { 1375 dev_warn(smi_info->io.dev, 1376 "Error getting response from get global enables command: %d\n", 1377 rv); 1378 goto out; 1379 } 1380 1381 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1382 resp, IPMI_MAX_MSG_LENGTH); 1383 1384 if (resp_len < 4 || 1385 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1386 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1387 resp[2] != 0) { 1388 dev_warn(smi_info->io.dev, 1389 "Invalid return from get global enables command: %ld %x %x %x\n", 1390 resp_len, resp[0], resp[1], resp[2]); 1391 rv = -EINVAL; 1392 goto out; 1393 } else { 1394 *enables = resp[3]; 1395 } 1396 1397 out: 1398 kfree(resp); 1399 return rv; 1400 } 1401 1402 /* 1403 * Returns 1 if it gets an error from the command. 1404 */ 1405 static int set_global_enables(struct smi_info *smi_info, u8 enables) 1406 { 1407 unsigned char msg[3]; 1408 unsigned char *resp; 1409 unsigned long resp_len; 1410 int rv; 1411 1412 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1413 if (!resp) 1414 return -ENOMEM; 1415 1416 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1417 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1418 msg[2] = enables; 1419 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1420 1421 rv = wait_for_msg_done(smi_info); 1422 if (rv) { 1423 dev_warn(smi_info->io.dev, 1424 "Error getting response from set global enables command: %d\n", 1425 rv); 1426 goto out; 1427 } 1428 1429 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1430 resp, IPMI_MAX_MSG_LENGTH); 1431 1432 if (resp_len < 3 || 1433 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1434 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1435 dev_warn(smi_info->io.dev, 1436 "Invalid return from set global enables command: %ld %x %x\n", 1437 resp_len, resp[0], resp[1]); 1438 rv = -EINVAL; 1439 goto out; 1440 } 1441 1442 if (resp[2] != 0) 1443 rv = 1; 1444 1445 out: 1446 kfree(resp); 1447 return rv; 1448 } 1449 1450 /* 1451 * Some BMCs do not support clearing the receive irq bit in the global 1452 * enables (even if they don't support interrupts on the BMC). Check 1453 * for this and handle it properly. 1454 */ 1455 static void check_clr_rcv_irq(struct smi_info *smi_info) 1456 { 1457 u8 enables = 0; 1458 int rv; 1459 1460 rv = get_global_enables(smi_info, &enables); 1461 if (!rv) { 1462 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 1463 /* Already clear, should work ok. */ 1464 return; 1465 1466 enables &= ~IPMI_BMC_RCV_MSG_INTR; 1467 rv = set_global_enables(smi_info, enables); 1468 } 1469 1470 if (rv < 0) { 1471 dev_err(smi_info->io.dev, 1472 "Cannot check clearing the rcv irq: %d\n", rv); 1473 return; 1474 } 1475 1476 if (rv) { 1477 /* 1478 * An error when setting the event buffer bit means 1479 * clearing the bit is not supported. 1480 */ 1481 dev_warn(smi_info->io.dev, 1482 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1483 smi_info->cannot_disable_irq = true; 1484 } 1485 } 1486 1487 /* 1488 * Some BMCs do not support setting the interrupt bits in the global 1489 * enables even if they support interrupts. Clearly bad, but we can 1490 * compensate. 1491 */ 1492 static void check_set_rcv_irq(struct smi_info *smi_info) 1493 { 1494 u8 enables = 0; 1495 int rv; 1496 1497 if (!smi_info->io.irq) 1498 return; 1499 1500 rv = get_global_enables(smi_info, &enables); 1501 if (!rv) { 1502 enables |= IPMI_BMC_RCV_MSG_INTR; 1503 rv = set_global_enables(smi_info, enables); 1504 } 1505 1506 if (rv < 0) { 1507 dev_err(smi_info->io.dev, 1508 "Cannot check setting the rcv irq: %d\n", rv); 1509 return; 1510 } 1511 1512 if (rv) { 1513 /* 1514 * An error when setting the event buffer bit means 1515 * setting the bit is not supported. 1516 */ 1517 dev_warn(smi_info->io.dev, 1518 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1519 smi_info->cannot_disable_irq = true; 1520 smi_info->irq_enable_broken = true; 1521 } 1522 } 1523 1524 static int try_enable_event_buffer(struct smi_info *smi_info) 1525 { 1526 unsigned char msg[3]; 1527 unsigned char *resp; 1528 unsigned long resp_len; 1529 int rv = 0; 1530 1531 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1532 if (!resp) 1533 return -ENOMEM; 1534 1535 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1536 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1537 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1538 1539 rv = wait_for_msg_done(smi_info); 1540 if (rv) { 1541 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n"); 1542 goto out; 1543 } 1544 1545 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1546 resp, IPMI_MAX_MSG_LENGTH); 1547 1548 if (resp_len < 4 || 1549 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1550 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1551 resp[2] != 0) { 1552 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n"); 1553 rv = -EINVAL; 1554 goto out; 1555 } 1556 1557 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1558 /* buffer is already enabled, nothing to do. */ 1559 smi_info->supports_event_msg_buff = true; 1560 goto out; 1561 } 1562 1563 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1564 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1565 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 1566 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1567 1568 rv = wait_for_msg_done(smi_info); 1569 if (rv) { 1570 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n"); 1571 goto out; 1572 } 1573 1574 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1575 resp, IPMI_MAX_MSG_LENGTH); 1576 1577 if (resp_len < 3 || 1578 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1579 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1580 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n"); 1581 rv = -EINVAL; 1582 goto out; 1583 } 1584 1585 if (resp[2] != 0) 1586 /* 1587 * An error when setting the event buffer bit means 1588 * that the event buffer is not supported. 1589 */ 1590 rv = -ENOENT; 1591 else 1592 smi_info->supports_event_msg_buff = true; 1593 1594 out: 1595 kfree(resp); 1596 return rv; 1597 } 1598 1599 #define IPMI_SI_ATTR(name) \ 1600 static ssize_t name##_show(struct device *dev, \ 1601 struct device_attribute *attr, \ 1602 char *buf) \ 1603 { \ 1604 struct smi_info *smi_info = dev_get_drvdata(dev); \ 1605 \ 1606 return sysfs_emit(buf, "%u\n", smi_get_stat(smi_info, name)); \ 1607 } \ 1608 static DEVICE_ATTR_RO(name) 1609 1610 static ssize_t type_show(struct device *dev, 1611 struct device_attribute *attr, 1612 char *buf) 1613 { 1614 struct smi_info *smi_info = dev_get_drvdata(dev); 1615 1616 return sysfs_emit(buf, "%s\n", si_to_str[smi_info->io.si_type]); 1617 } 1618 static DEVICE_ATTR_RO(type); 1619 1620 static ssize_t interrupts_enabled_show(struct device *dev, 1621 struct device_attribute *attr, 1622 char *buf) 1623 { 1624 struct smi_info *smi_info = dev_get_drvdata(dev); 1625 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled; 1626 1627 return sysfs_emit(buf, "%d\n", enabled); 1628 } 1629 static DEVICE_ATTR_RO(interrupts_enabled); 1630 1631 IPMI_SI_ATTR(short_timeouts); 1632 IPMI_SI_ATTR(long_timeouts); 1633 IPMI_SI_ATTR(idles); 1634 IPMI_SI_ATTR(interrupts); 1635 IPMI_SI_ATTR(attentions); 1636 IPMI_SI_ATTR(flag_fetches); 1637 IPMI_SI_ATTR(hosed_count); 1638 IPMI_SI_ATTR(complete_transactions); 1639 IPMI_SI_ATTR(events); 1640 IPMI_SI_ATTR(watchdog_pretimeouts); 1641 IPMI_SI_ATTR(incoming_messages); 1642 1643 static ssize_t params_show(struct device *dev, 1644 struct device_attribute *attr, 1645 char *buf) 1646 { 1647 struct smi_info *smi_info = dev_get_drvdata(dev); 1648 1649 return sysfs_emit(buf, 1650 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 1651 si_to_str[smi_info->io.si_type], 1652 addr_space_to_str[smi_info->io.addr_space], 1653 smi_info->io.addr_data, 1654 smi_info->io.regspacing, 1655 smi_info->io.regsize, 1656 smi_info->io.regshift, 1657 smi_info->io.irq, 1658 smi_info->io.slave_addr); 1659 } 1660 static DEVICE_ATTR_RO(params); 1661 1662 static struct attribute *ipmi_si_dev_attrs[] = { 1663 &dev_attr_type.attr, 1664 &dev_attr_interrupts_enabled.attr, 1665 &dev_attr_short_timeouts.attr, 1666 &dev_attr_long_timeouts.attr, 1667 &dev_attr_idles.attr, 1668 &dev_attr_interrupts.attr, 1669 &dev_attr_attentions.attr, 1670 &dev_attr_flag_fetches.attr, 1671 &dev_attr_hosed_count.attr, 1672 &dev_attr_complete_transactions.attr, 1673 &dev_attr_events.attr, 1674 &dev_attr_watchdog_pretimeouts.attr, 1675 &dev_attr_incoming_messages.attr, 1676 &dev_attr_params.attr, 1677 NULL 1678 }; 1679 1680 static const struct attribute_group ipmi_si_dev_attr_group = { 1681 .attrs = ipmi_si_dev_attrs, 1682 }; 1683 1684 /* 1685 * oem_data_avail_to_receive_msg_avail 1686 * @info - smi_info structure with msg_flags set 1687 * 1688 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 1689 * Returns 1 indicating need to re-run handle_flags(). 1690 */ 1691 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 1692 { 1693 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 1694 RECEIVE_MSG_AVAIL); 1695 return 1; 1696 } 1697 1698 /* 1699 * setup_dell_poweredge_oem_data_handler 1700 * @info - smi_info.device_id must be populated 1701 * 1702 * Systems that match, but have firmware version < 1.40 may assert 1703 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 1704 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 1705 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 1706 * as RECEIVE_MSG_AVAIL instead. 1707 * 1708 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 1709 * assert the OEM[012] bits, and if it did, the driver would have to 1710 * change to handle that properly, we don't actually check for the 1711 * firmware version. 1712 * Device ID = 0x20 BMC on PowerEdge 8G servers 1713 * Device Revision = 0x80 1714 * Firmware Revision1 = 0x01 BMC version 1.40 1715 * Firmware Revision2 = 0x40 BCD encoded 1716 * IPMI Version = 0x51 IPMI 1.5 1717 * Manufacturer ID = A2 02 00 Dell IANA 1718 * 1719 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 1720 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 1721 * 1722 */ 1723 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 1724 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 1725 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 1726 #define DELL_IANA_MFR_ID 0x0002a2 1727 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 1728 { 1729 struct ipmi_device_id *id = &smi_info->device_id; 1730 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 1731 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 1732 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 1733 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 1734 smi_info->oem_data_avail_handler = 1735 oem_data_avail_to_receive_msg_avail; 1736 } else if (ipmi_version_major(id) < 1 || 1737 (ipmi_version_major(id) == 1 && 1738 ipmi_version_minor(id) < 5)) { 1739 smi_info->oem_data_avail_handler = 1740 oem_data_avail_to_receive_msg_avail; 1741 } 1742 } 1743 } 1744 1745 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 1746 static void return_hosed_msg_badsize(struct smi_info *smi_info) 1747 { 1748 struct ipmi_smi_msg *msg = smi_info->curr_msg; 1749 1750 /* Make it a response */ 1751 msg->rsp[0] = msg->data[0] | 4; 1752 msg->rsp[1] = msg->data[1]; 1753 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 1754 msg->rsp_size = 3; 1755 smi_info->curr_msg = NULL; 1756 deliver_recv_msg(smi_info, msg); 1757 } 1758 1759 /* 1760 * dell_poweredge_bt_xaction_handler 1761 * @info - smi_info.device_id must be populated 1762 * 1763 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 1764 * not respond to a Get SDR command if the length of the data 1765 * requested is exactly 0x3A, which leads to command timeouts and no 1766 * data returned. This intercepts such commands, and causes userspace 1767 * callers to try again with a different-sized buffer, which succeeds. 1768 */ 1769 1770 #define STORAGE_NETFN 0x0A 1771 #define STORAGE_CMD_GET_SDR 0x23 1772 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 1773 unsigned long unused, 1774 void *in) 1775 { 1776 struct smi_info *smi_info = in; 1777 unsigned char *data = smi_info->curr_msg->data; 1778 unsigned int size = smi_info->curr_msg->data_size; 1779 if (size >= 8 && 1780 (data[0]>>2) == STORAGE_NETFN && 1781 data[1] == STORAGE_CMD_GET_SDR && 1782 data[7] == 0x3A) { 1783 return_hosed_msg_badsize(smi_info); 1784 return NOTIFY_STOP; 1785 } 1786 return NOTIFY_DONE; 1787 } 1788 1789 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 1790 .notifier_call = dell_poweredge_bt_xaction_handler, 1791 }; 1792 1793 /* 1794 * setup_dell_poweredge_bt_xaction_handler 1795 * @info - smi_info.device_id must be filled in already 1796 * 1797 * Fills in smi_info.device_id.start_transaction_pre_hook 1798 * when we know what function to use there. 1799 */ 1800 static void 1801 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 1802 { 1803 struct ipmi_device_id *id = &smi_info->device_id; 1804 if (id->manufacturer_id == DELL_IANA_MFR_ID && 1805 smi_info->io.si_type == SI_BT) 1806 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 1807 } 1808 1809 /* 1810 * setup_oem_data_handler 1811 * @info - smi_info.device_id must be filled in already 1812 * 1813 * Fills in smi_info.device_id.oem_data_available_handler 1814 * when we know what function to use there. 1815 */ 1816 1817 static void setup_oem_data_handler(struct smi_info *smi_info) 1818 { 1819 setup_dell_poweredge_oem_data_handler(smi_info); 1820 } 1821 1822 static void setup_xaction_handlers(struct smi_info *smi_info) 1823 { 1824 setup_dell_poweredge_bt_xaction_handler(smi_info); 1825 } 1826 1827 static void check_for_broken_irqs(struct smi_info *smi_info) 1828 { 1829 check_clr_rcv_irq(smi_info); 1830 check_set_rcv_irq(smi_info); 1831 } 1832 1833 static inline void stop_timer_and_thread(struct smi_info *smi_info) 1834 { 1835 if (smi_info->thread != NULL) { 1836 kthread_stop(smi_info->thread); 1837 smi_info->thread = NULL; 1838 } 1839 1840 smi_info->timer_can_start = false; 1841 del_timer_sync(&smi_info->si_timer); 1842 } 1843 1844 static struct smi_info *find_dup_si(struct smi_info *info) 1845 { 1846 struct smi_info *e; 1847 1848 list_for_each_entry(e, &smi_infos, link) { 1849 if (e->io.addr_space != info->io.addr_space) 1850 continue; 1851 if (e->io.addr_data == info->io.addr_data) { 1852 /* 1853 * This is a cheap hack, ACPI doesn't have a defined 1854 * slave address but SMBIOS does. Pick it up from 1855 * any source that has it available. 1856 */ 1857 if (info->io.slave_addr && !e->io.slave_addr) 1858 e->io.slave_addr = info->io.slave_addr; 1859 return e; 1860 } 1861 } 1862 1863 return NULL; 1864 } 1865 1866 int ipmi_si_add_smi(struct si_sm_io *io) 1867 { 1868 int rv = 0; 1869 struct smi_info *new_smi, *dup; 1870 1871 /* 1872 * If the user gave us a hard-coded device at the same 1873 * address, they presumably want us to use it and not what is 1874 * in the firmware. 1875 */ 1876 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD && 1877 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) { 1878 dev_info(io->dev, 1879 "Hard-coded device at this address already exists"); 1880 return -ENODEV; 1881 } 1882 1883 if (!io->io_setup) { 1884 if (io->addr_space == IPMI_IO_ADDR_SPACE) { 1885 io->io_setup = ipmi_si_port_setup; 1886 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) { 1887 io->io_setup = ipmi_si_mem_setup; 1888 } else { 1889 return -EINVAL; 1890 } 1891 } 1892 1893 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL); 1894 if (!new_smi) 1895 return -ENOMEM; 1896 spin_lock_init(&new_smi->si_lock); 1897 1898 new_smi->io = *io; 1899 1900 mutex_lock(&smi_infos_lock); 1901 dup = find_dup_si(new_smi); 1902 if (dup) { 1903 if (new_smi->io.addr_source == SI_ACPI && 1904 dup->io.addr_source == SI_SMBIOS) { 1905 /* We prefer ACPI over SMBIOS. */ 1906 dev_info(dup->io.dev, 1907 "Removing SMBIOS-specified %s state machine in favor of ACPI\n", 1908 si_to_str[new_smi->io.si_type]); 1909 cleanup_one_si(dup); 1910 } else { 1911 dev_info(new_smi->io.dev, 1912 "%s-specified %s state machine: duplicate\n", 1913 ipmi_addr_src_to_str(new_smi->io.addr_source), 1914 si_to_str[new_smi->io.si_type]); 1915 rv = -EBUSY; 1916 kfree(new_smi); 1917 goto out_err; 1918 } 1919 } 1920 1921 pr_info("Adding %s-specified %s state machine\n", 1922 ipmi_addr_src_to_str(new_smi->io.addr_source), 1923 si_to_str[new_smi->io.si_type]); 1924 1925 list_add_tail(&new_smi->link, &smi_infos); 1926 1927 if (initialized) 1928 rv = try_smi_init(new_smi); 1929 out_err: 1930 mutex_unlock(&smi_infos_lock); 1931 return rv; 1932 } 1933 1934 /* 1935 * Try to start up an interface. Must be called with smi_infos_lock 1936 * held, primarily to keep smi_num consistent, we only one to do these 1937 * one at a time. 1938 */ 1939 static int try_smi_init(struct smi_info *new_smi) 1940 { 1941 int rv = 0; 1942 int i; 1943 1944 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", 1945 ipmi_addr_src_to_str(new_smi->io.addr_source), 1946 si_to_str[new_smi->io.si_type], 1947 addr_space_to_str[new_smi->io.addr_space], 1948 new_smi->io.addr_data, 1949 new_smi->io.slave_addr, new_smi->io.irq); 1950 1951 switch (new_smi->io.si_type) { 1952 case SI_KCS: 1953 new_smi->handlers = &kcs_smi_handlers; 1954 break; 1955 1956 case SI_SMIC: 1957 new_smi->handlers = &smic_smi_handlers; 1958 break; 1959 1960 case SI_BT: 1961 new_smi->handlers = &bt_smi_handlers; 1962 break; 1963 1964 default: 1965 /* No support for anything else yet. */ 1966 rv = -EIO; 1967 goto out_err; 1968 } 1969 1970 new_smi->si_num = smi_num; 1971 1972 /* Do this early so it's available for logs. */ 1973 if (!new_smi->io.dev) { 1974 pr_err("IPMI interface added with no device\n"); 1975 rv = -EIO; 1976 goto out_err; 1977 } 1978 1979 /* Allocate the state machine's data and initialize it. */ 1980 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 1981 if (!new_smi->si_sm) { 1982 rv = -ENOMEM; 1983 goto out_err; 1984 } 1985 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm, 1986 &new_smi->io); 1987 1988 /* Now that we know the I/O size, we can set up the I/O. */ 1989 rv = new_smi->io.io_setup(&new_smi->io); 1990 if (rv) { 1991 dev_err(new_smi->io.dev, "Could not set up I/O space\n"); 1992 goto out_err; 1993 } 1994 1995 /* Do low-level detection first. */ 1996 if (new_smi->handlers->detect(new_smi->si_sm)) { 1997 if (new_smi->io.addr_source) 1998 dev_err(new_smi->io.dev, 1999 "Interface detection failed\n"); 2000 rv = -ENODEV; 2001 goto out_err; 2002 } 2003 2004 /* 2005 * Attempt a get device id command. If it fails, we probably 2006 * don't have a BMC here. 2007 */ 2008 rv = try_get_dev_id(new_smi); 2009 if (rv) { 2010 if (new_smi->io.addr_source) 2011 dev_err(new_smi->io.dev, 2012 "There appears to be no BMC at this location\n"); 2013 goto out_err; 2014 } 2015 2016 setup_oem_data_handler(new_smi); 2017 setup_xaction_handlers(new_smi); 2018 check_for_broken_irqs(new_smi); 2019 2020 new_smi->waiting_msg = NULL; 2021 new_smi->curr_msg = NULL; 2022 atomic_set(&new_smi->req_events, 0); 2023 new_smi->run_to_completion = false; 2024 for (i = 0; i < SI_NUM_STATS; i++) 2025 atomic_set(&new_smi->stats[i], 0); 2026 2027 new_smi->interrupt_disabled = true; 2028 atomic_set(&new_smi->need_watch, 0); 2029 2030 rv = try_enable_event_buffer(new_smi); 2031 if (rv == 0) 2032 new_smi->has_event_buffer = true; 2033 2034 /* 2035 * Start clearing the flags before we enable interrupts or the 2036 * timer to avoid racing with the timer. 2037 */ 2038 start_clear_flags(new_smi); 2039 2040 /* 2041 * IRQ is defined to be set when non-zero. req_events will 2042 * cause a global flags check that will enable interrupts. 2043 */ 2044 if (new_smi->io.irq) { 2045 new_smi->interrupt_disabled = false; 2046 atomic_set(&new_smi->req_events, 1); 2047 } 2048 2049 dev_set_drvdata(new_smi->io.dev, new_smi); 2050 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group); 2051 if (rv) { 2052 dev_err(new_smi->io.dev, 2053 "Unable to add device attributes: error %d\n", 2054 rv); 2055 goto out_err; 2056 } 2057 new_smi->dev_group_added = true; 2058 2059 rv = ipmi_register_smi(&handlers, 2060 new_smi, 2061 new_smi->io.dev, 2062 new_smi->io.slave_addr); 2063 if (rv) { 2064 dev_err(new_smi->io.dev, 2065 "Unable to register device: error %d\n", 2066 rv); 2067 goto out_err; 2068 } 2069 2070 /* Don't increment till we know we have succeeded. */ 2071 smi_num++; 2072 2073 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n", 2074 si_to_str[new_smi->io.si_type]); 2075 2076 WARN_ON(new_smi->io.dev->init_name != NULL); 2077 2078 out_err: 2079 if (rv && new_smi->io.io_cleanup) { 2080 new_smi->io.io_cleanup(&new_smi->io); 2081 new_smi->io.io_cleanup = NULL; 2082 } 2083 2084 return rv; 2085 } 2086 2087 static int __init init_ipmi_si(void) 2088 { 2089 struct smi_info *e; 2090 enum ipmi_addr_src type = SI_INVALID; 2091 2092 if (initialized) 2093 return 0; 2094 2095 ipmi_hardcode_init(); 2096 2097 pr_info("IPMI System Interface driver\n"); 2098 2099 ipmi_si_platform_init(); 2100 2101 ipmi_si_pci_init(); 2102 2103 ipmi_si_parisc_init(); 2104 2105 /* We prefer devices with interrupts, but in the case of a machine 2106 with multiple BMCs we assume that there will be several instances 2107 of a given type so if we succeed in registering a type then also 2108 try to register everything else of the same type */ 2109 mutex_lock(&smi_infos_lock); 2110 list_for_each_entry(e, &smi_infos, link) { 2111 /* Try to register a device if it has an IRQ and we either 2112 haven't successfully registered a device yet or this 2113 device has the same type as one we successfully registered */ 2114 if (e->io.irq && (!type || e->io.addr_source == type)) { 2115 if (!try_smi_init(e)) { 2116 type = e->io.addr_source; 2117 } 2118 } 2119 } 2120 2121 /* type will only have been set if we successfully registered an si */ 2122 if (type) 2123 goto skip_fallback_noirq; 2124 2125 /* Fall back to the preferred device */ 2126 2127 list_for_each_entry(e, &smi_infos, link) { 2128 if (!e->io.irq && (!type || e->io.addr_source == type)) { 2129 if (!try_smi_init(e)) { 2130 type = e->io.addr_source; 2131 } 2132 } 2133 } 2134 2135 skip_fallback_noirq: 2136 initialized = true; 2137 mutex_unlock(&smi_infos_lock); 2138 2139 if (type) 2140 return 0; 2141 2142 mutex_lock(&smi_infos_lock); 2143 if (unload_when_empty && list_empty(&smi_infos)) { 2144 mutex_unlock(&smi_infos_lock); 2145 cleanup_ipmi_si(); 2146 pr_warn("Unable to find any System Interface(s)\n"); 2147 return -ENODEV; 2148 } else { 2149 mutex_unlock(&smi_infos_lock); 2150 return 0; 2151 } 2152 } 2153 module_init(init_ipmi_si); 2154 2155 static void shutdown_smi(void *send_info) 2156 { 2157 struct smi_info *smi_info = send_info; 2158 2159 if (smi_info->dev_group_added) { 2160 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group); 2161 smi_info->dev_group_added = false; 2162 } 2163 if (smi_info->io.dev) 2164 dev_set_drvdata(smi_info->io.dev, NULL); 2165 2166 /* 2167 * Make sure that interrupts, the timer and the thread are 2168 * stopped and will not run again. 2169 */ 2170 smi_info->interrupt_disabled = true; 2171 if (smi_info->io.irq_cleanup) { 2172 smi_info->io.irq_cleanup(&smi_info->io); 2173 smi_info->io.irq_cleanup = NULL; 2174 } 2175 stop_timer_and_thread(smi_info); 2176 2177 /* 2178 * Wait until we know that we are out of any interrupt 2179 * handlers might have been running before we freed the 2180 * interrupt. 2181 */ 2182 synchronize_rcu(); 2183 2184 /* 2185 * Timeouts are stopped, now make sure the interrupts are off 2186 * in the BMC. Note that timers and CPU interrupts are off, 2187 * so no need for locks. 2188 */ 2189 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { 2190 poll(smi_info); 2191 schedule_timeout_uninterruptible(1); 2192 } 2193 if (smi_info->handlers) 2194 disable_si_irq(smi_info); 2195 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { 2196 poll(smi_info); 2197 schedule_timeout_uninterruptible(1); 2198 } 2199 if (smi_info->handlers) 2200 smi_info->handlers->cleanup(smi_info->si_sm); 2201 2202 if (smi_info->io.io_cleanup) { 2203 smi_info->io.io_cleanup(&smi_info->io); 2204 smi_info->io.io_cleanup = NULL; 2205 } 2206 2207 kfree(smi_info->si_sm); 2208 smi_info->si_sm = NULL; 2209 2210 smi_info->intf = NULL; 2211 } 2212 2213 /* 2214 * Must be called with smi_infos_lock held, to serialize the 2215 * smi_info->intf check. 2216 */ 2217 static void cleanup_one_si(struct smi_info *smi_info) 2218 { 2219 if (!smi_info) 2220 return; 2221 2222 list_del(&smi_info->link); 2223 ipmi_unregister_smi(smi_info->intf); 2224 kfree(smi_info); 2225 } 2226 2227 void ipmi_si_remove_by_dev(struct device *dev) 2228 { 2229 struct smi_info *e; 2230 2231 mutex_lock(&smi_infos_lock); 2232 list_for_each_entry(e, &smi_infos, link) { 2233 if (e->io.dev == dev) { 2234 cleanup_one_si(e); 2235 break; 2236 } 2237 } 2238 mutex_unlock(&smi_infos_lock); 2239 } 2240 2241 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type, 2242 unsigned long addr) 2243 { 2244 /* remove */ 2245 struct smi_info *e, *tmp_e; 2246 struct device *dev = NULL; 2247 2248 mutex_lock(&smi_infos_lock); 2249 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 2250 if (e->io.addr_space != addr_space) 2251 continue; 2252 if (e->io.si_type != si_type) 2253 continue; 2254 if (e->io.addr_data == addr) { 2255 dev = get_device(e->io.dev); 2256 cleanup_one_si(e); 2257 } 2258 } 2259 mutex_unlock(&smi_infos_lock); 2260 2261 return dev; 2262 } 2263 2264 static void cleanup_ipmi_si(void) 2265 { 2266 struct smi_info *e, *tmp_e; 2267 2268 if (!initialized) 2269 return; 2270 2271 ipmi_si_pci_shutdown(); 2272 2273 ipmi_si_parisc_shutdown(); 2274 2275 ipmi_si_platform_shutdown(); 2276 2277 mutex_lock(&smi_infos_lock); 2278 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2279 cleanup_one_si(e); 2280 mutex_unlock(&smi_infos_lock); 2281 2282 ipmi_si_hardcode_exit(); 2283 ipmi_si_hotmod_exit(); 2284 } 2285 module_exit(cleanup_ipmi_si); 2286 2287 MODULE_ALIAS("platform:dmi-ipmi-si"); 2288 MODULE_LICENSE("GPL"); 2289 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2290 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces."); 2291