1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 #include <linux/of_device.h> 69 #include <linux/of_platform.h> 70 #include <linux/of_address.h> 71 #include <linux/of_irq.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_GETTING_MESSAGES, 96 SI_CHECKING_ENABLES, 97 SI_SETTING_ENABLES 98 /* FIXME - add watchdog stuff. */ 99 }; 100 101 /* Some BT-specific defines we need here. */ 102 #define IPMI_BT_INTMASK_REG 2 103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106 enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108 }; 109 static char *si_to_str[] = { "kcs", "smic", "bt" }; 110 111 #define DEVICE_NAME "ipmi_si" 112 113 static struct platform_driver ipmi_driver; 114 115 /* 116 * Indexes into stats[] in smi_info below. 117 */ 118 enum si_stat_indexes { 119 /* 120 * Number of times the driver requested a timer while an operation 121 * was in progress. 122 */ 123 SI_STAT_short_timeouts = 0, 124 125 /* 126 * Number of times the driver requested a timer while nothing was in 127 * progress. 128 */ 129 SI_STAT_long_timeouts, 130 131 /* Number of times the interface was idle while being polled. */ 132 SI_STAT_idles, 133 134 /* Number of interrupts the driver handled. */ 135 SI_STAT_interrupts, 136 137 /* Number of time the driver got an ATTN from the hardware. */ 138 SI_STAT_attentions, 139 140 /* Number of times the driver requested flags from the hardware. */ 141 SI_STAT_flag_fetches, 142 143 /* Number of times the hardware didn't follow the state machine. */ 144 SI_STAT_hosed_count, 145 146 /* Number of completed messages. */ 147 SI_STAT_complete_transactions, 148 149 /* Number of IPMI events received from the hardware. */ 150 SI_STAT_events, 151 152 /* Number of watchdog pretimeouts. */ 153 SI_STAT_watchdog_pretimeouts, 154 155 /* Number of asynchronous messages received. */ 156 SI_STAT_incoming_messages, 157 158 159 /* This *must* remain last, add new values above this. */ 160 SI_NUM_STATS 161 }; 162 163 struct smi_info { 164 int intf_num; 165 ipmi_smi_t intf; 166 struct si_sm_data *si_sm; 167 struct si_sm_handlers *handlers; 168 enum si_type si_type; 169 spinlock_t si_lock; 170 struct ipmi_smi_msg *waiting_msg; 171 struct ipmi_smi_msg *curr_msg; 172 enum si_intf_state si_state; 173 174 /* 175 * Used to handle the various types of I/O that can occur with 176 * IPMI 177 */ 178 struct si_sm_io io; 179 int (*io_setup)(struct smi_info *info); 180 void (*io_cleanup)(struct smi_info *info); 181 int (*irq_setup)(struct smi_info *info); 182 void (*irq_cleanup)(struct smi_info *info); 183 unsigned int io_size; 184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 185 void (*addr_source_cleanup)(struct smi_info *info); 186 void *addr_source_data; 187 188 /* 189 * Per-OEM handler, called from handle_flags(). Returns 1 190 * when handle_flags() needs to be re-run or 0 indicating it 191 * set si_state itself. 192 */ 193 int (*oem_data_avail_handler)(struct smi_info *smi_info); 194 195 /* 196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 197 * is set to hold the flags until we are done handling everything 198 * from the flags. 199 */ 200 #define RECEIVE_MSG_AVAIL 0x01 201 #define EVENT_MSG_BUFFER_FULL 0x02 202 #define WDT_PRE_TIMEOUT_INT 0x08 203 #define OEM0_DATA_AVAIL 0x20 204 #define OEM1_DATA_AVAIL 0x40 205 #define OEM2_DATA_AVAIL 0x80 206 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 207 OEM1_DATA_AVAIL | \ 208 OEM2_DATA_AVAIL) 209 unsigned char msg_flags; 210 211 /* Does the BMC have an event buffer? */ 212 bool has_event_buffer; 213 214 /* 215 * If set to true, this will request events the next time the 216 * state machine is idle. 217 */ 218 atomic_t req_events; 219 220 /* 221 * If true, run the state machine to completion on every send 222 * call. Generally used after a panic to make sure stuff goes 223 * out. 224 */ 225 bool run_to_completion; 226 227 /* The I/O port of an SI interface. */ 228 int port; 229 230 /* 231 * The space between start addresses of the two ports. For 232 * instance, if the first port is 0xca2 and the spacing is 4, then 233 * the second port is 0xca6. 234 */ 235 unsigned int spacing; 236 237 /* zero if no irq; */ 238 int irq; 239 240 /* The timer for this si. */ 241 struct timer_list si_timer; 242 243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 244 bool timer_running; 245 246 /* The time (in jiffies) the last timeout occurred at. */ 247 unsigned long last_timeout_jiffies; 248 249 /* Are we waiting for the events, pretimeouts, received msgs? */ 250 atomic_t need_watch; 251 252 /* 253 * The driver will disable interrupts when it gets into a 254 * situation where it cannot handle messages due to lack of 255 * memory. Once that situation clears up, it will re-enable 256 * interrupts. 257 */ 258 bool interrupt_disabled; 259 260 /* 261 * Does the BMC support events? 262 */ 263 bool supports_event_msg_buff; 264 265 /* 266 * Can we clear the global enables receive irq bit? 267 */ 268 bool cannot_clear_recv_irq_bit; 269 270 /* 271 * Did we get an attention that we did not handle? 272 */ 273 bool got_attn; 274 275 /* From the get device id response... */ 276 struct ipmi_device_id device_id; 277 278 /* Driver model stuff. */ 279 struct device *dev; 280 struct platform_device *pdev; 281 282 /* 283 * True if we allocated the device, false if it came from 284 * someplace else (like PCI). 285 */ 286 bool dev_registered; 287 288 /* Slave address, could be reported from DMI. */ 289 unsigned char slave_addr; 290 291 /* Counters and things for the proc filesystem. */ 292 atomic_t stats[SI_NUM_STATS]; 293 294 struct task_struct *thread; 295 296 struct list_head link; 297 union ipmi_smi_info_union addr_info; 298 }; 299 300 #define smi_inc_stat(smi, stat) \ 301 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 302 #define smi_get_stat(smi, stat) \ 303 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 304 305 #define SI_MAX_PARMS 4 306 307 static int force_kipmid[SI_MAX_PARMS]; 308 static int num_force_kipmid; 309 #ifdef CONFIG_PCI 310 static bool pci_registered; 311 #endif 312 #ifdef CONFIG_ACPI 313 static bool pnp_registered; 314 #endif 315 #ifdef CONFIG_PARISC 316 static bool parisc_registered; 317 #endif 318 319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 320 static int num_max_busy_us; 321 322 static bool unload_when_empty = true; 323 324 static int add_smi(struct smi_info *smi); 325 static int try_smi_init(struct smi_info *smi); 326 static void cleanup_one_si(struct smi_info *to_clean); 327 static void cleanup_ipmi_si(void); 328 329 #ifdef DEBUG_TIMING 330 void debug_timestamp(char *msg) 331 { 332 struct timespec64 t; 333 334 getnstimeofday64(&t); 335 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 336 } 337 #else 338 #define debug_timestamp(x) 339 #endif 340 341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 342 static int register_xaction_notifier(struct notifier_block *nb) 343 { 344 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 345 } 346 347 static void deliver_recv_msg(struct smi_info *smi_info, 348 struct ipmi_smi_msg *msg) 349 { 350 /* Deliver the message to the upper layer. */ 351 if (smi_info->intf) 352 ipmi_smi_msg_received(smi_info->intf, msg); 353 else 354 ipmi_free_smi_msg(msg); 355 } 356 357 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 358 { 359 struct ipmi_smi_msg *msg = smi_info->curr_msg; 360 361 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 362 cCode = IPMI_ERR_UNSPECIFIED; 363 /* else use it as is */ 364 365 /* Make it a response */ 366 msg->rsp[0] = msg->data[0] | 4; 367 msg->rsp[1] = msg->data[1]; 368 msg->rsp[2] = cCode; 369 msg->rsp_size = 3; 370 371 smi_info->curr_msg = NULL; 372 deliver_recv_msg(smi_info, msg); 373 } 374 375 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 376 { 377 int rv; 378 379 if (!smi_info->waiting_msg) { 380 smi_info->curr_msg = NULL; 381 rv = SI_SM_IDLE; 382 } else { 383 int err; 384 385 smi_info->curr_msg = smi_info->waiting_msg; 386 smi_info->waiting_msg = NULL; 387 debug_timestamp("Start2"); 388 err = atomic_notifier_call_chain(&xaction_notifier_list, 389 0, smi_info); 390 if (err & NOTIFY_STOP_MASK) { 391 rv = SI_SM_CALL_WITHOUT_DELAY; 392 goto out; 393 } 394 err = smi_info->handlers->start_transaction( 395 smi_info->si_sm, 396 smi_info->curr_msg->data, 397 smi_info->curr_msg->data_size); 398 if (err) 399 return_hosed_msg(smi_info, err); 400 401 rv = SI_SM_CALL_WITHOUT_DELAY; 402 } 403 out: 404 return rv; 405 } 406 407 static void start_check_enables(struct smi_info *smi_info) 408 { 409 unsigned char msg[2]; 410 411 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 412 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 413 414 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 415 smi_info->si_state = SI_CHECKING_ENABLES; 416 } 417 418 static void start_clear_flags(struct smi_info *smi_info) 419 { 420 unsigned char msg[3]; 421 422 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 423 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 424 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 425 msg[2] = WDT_PRE_TIMEOUT_INT; 426 427 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 428 smi_info->si_state = SI_CLEARING_FLAGS; 429 } 430 431 static void start_getting_msg_queue(struct smi_info *smi_info) 432 { 433 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 434 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 435 smi_info->curr_msg->data_size = 2; 436 437 smi_info->handlers->start_transaction( 438 smi_info->si_sm, 439 smi_info->curr_msg->data, 440 smi_info->curr_msg->data_size); 441 smi_info->si_state = SI_GETTING_MESSAGES; 442 } 443 444 static void start_getting_events(struct smi_info *smi_info) 445 { 446 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 447 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 448 smi_info->curr_msg->data_size = 2; 449 450 smi_info->handlers->start_transaction( 451 smi_info->si_sm, 452 smi_info->curr_msg->data, 453 smi_info->curr_msg->data_size); 454 smi_info->si_state = SI_GETTING_EVENTS; 455 } 456 457 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 458 { 459 smi_info->last_timeout_jiffies = jiffies; 460 mod_timer(&smi_info->si_timer, new_val); 461 smi_info->timer_running = true; 462 } 463 464 /* 465 * When we have a situtaion where we run out of memory and cannot 466 * allocate messages, we just leave them in the BMC and run the system 467 * polled until we can allocate some memory. Once we have some 468 * memory, we will re-enable the interrupt. 469 * 470 * Note that we cannot just use disable_irq(), since the interrupt may 471 * be shared. 472 */ 473 static inline bool disable_si_irq(struct smi_info *smi_info) 474 { 475 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 476 smi_info->interrupt_disabled = true; 477 start_check_enables(smi_info); 478 return true; 479 } 480 return false; 481 } 482 483 static inline bool enable_si_irq(struct smi_info *smi_info) 484 { 485 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 486 smi_info->interrupt_disabled = false; 487 start_check_enables(smi_info); 488 return true; 489 } 490 return false; 491 } 492 493 /* 494 * Allocate a message. If unable to allocate, start the interrupt 495 * disable process and return NULL. If able to allocate but 496 * interrupts are disabled, free the message and return NULL after 497 * starting the interrupt enable process. 498 */ 499 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 500 { 501 struct ipmi_smi_msg *msg; 502 503 msg = ipmi_alloc_smi_msg(); 504 if (!msg) { 505 if (!disable_si_irq(smi_info)) 506 smi_info->si_state = SI_NORMAL; 507 } else if (enable_si_irq(smi_info)) { 508 ipmi_free_smi_msg(msg); 509 msg = NULL; 510 } 511 return msg; 512 } 513 514 static void handle_flags(struct smi_info *smi_info) 515 { 516 retry: 517 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 518 /* Watchdog pre-timeout */ 519 smi_inc_stat(smi_info, watchdog_pretimeouts); 520 521 start_clear_flags(smi_info); 522 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 523 if (smi_info->intf) 524 ipmi_smi_watchdog_pretimeout(smi_info->intf); 525 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 526 /* Messages available. */ 527 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 528 if (!smi_info->curr_msg) 529 return; 530 531 start_getting_msg_queue(smi_info); 532 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 533 /* Events available. */ 534 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 535 if (!smi_info->curr_msg) 536 return; 537 538 start_getting_events(smi_info); 539 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 540 smi_info->oem_data_avail_handler) { 541 if (smi_info->oem_data_avail_handler(smi_info)) 542 goto retry; 543 } else 544 smi_info->si_state = SI_NORMAL; 545 } 546 547 /* 548 * Global enables we care about. 549 */ 550 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 551 IPMI_BMC_EVT_MSG_INTR) 552 553 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 554 bool *irq_on) 555 { 556 u8 enables = 0; 557 558 if (smi_info->supports_event_msg_buff) 559 enables |= IPMI_BMC_EVT_MSG_BUFF; 560 561 if ((smi_info->irq && !smi_info->interrupt_disabled) || 562 smi_info->cannot_clear_recv_irq_bit) 563 enables |= IPMI_BMC_RCV_MSG_INTR; 564 565 if (smi_info->supports_event_msg_buff && 566 smi_info->irq && !smi_info->interrupt_disabled) 567 568 enables |= IPMI_BMC_EVT_MSG_INTR; 569 570 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 571 572 return enables; 573 } 574 575 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 576 { 577 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 578 579 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 580 581 if ((bool)irqstate == irq_on) 582 return; 583 584 if (irq_on) 585 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 586 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 587 else 588 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 589 } 590 591 static void handle_transaction_done(struct smi_info *smi_info) 592 { 593 struct ipmi_smi_msg *msg; 594 595 debug_timestamp("Done"); 596 switch (smi_info->si_state) { 597 case SI_NORMAL: 598 if (!smi_info->curr_msg) 599 break; 600 601 smi_info->curr_msg->rsp_size 602 = smi_info->handlers->get_result( 603 smi_info->si_sm, 604 smi_info->curr_msg->rsp, 605 IPMI_MAX_MSG_LENGTH); 606 607 /* 608 * Do this here becase deliver_recv_msg() releases the 609 * lock, and a new message can be put in during the 610 * time the lock is released. 611 */ 612 msg = smi_info->curr_msg; 613 smi_info->curr_msg = NULL; 614 deliver_recv_msg(smi_info, msg); 615 break; 616 617 case SI_GETTING_FLAGS: 618 { 619 unsigned char msg[4]; 620 unsigned int len; 621 622 /* We got the flags from the SMI, now handle them. */ 623 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 624 if (msg[2] != 0) { 625 /* Error fetching flags, just give up for now. */ 626 smi_info->si_state = SI_NORMAL; 627 } else if (len < 4) { 628 /* 629 * Hmm, no flags. That's technically illegal, but 630 * don't use uninitialized data. 631 */ 632 smi_info->si_state = SI_NORMAL; 633 } else { 634 smi_info->msg_flags = msg[3]; 635 handle_flags(smi_info); 636 } 637 break; 638 } 639 640 case SI_CLEARING_FLAGS: 641 { 642 unsigned char msg[3]; 643 644 /* We cleared the flags. */ 645 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 646 if (msg[2] != 0) { 647 /* Error clearing flags */ 648 dev_warn(smi_info->dev, 649 "Error clearing flags: %2.2x\n", msg[2]); 650 } 651 smi_info->si_state = SI_NORMAL; 652 break; 653 } 654 655 case SI_GETTING_EVENTS: 656 { 657 smi_info->curr_msg->rsp_size 658 = smi_info->handlers->get_result( 659 smi_info->si_sm, 660 smi_info->curr_msg->rsp, 661 IPMI_MAX_MSG_LENGTH); 662 663 /* 664 * Do this here becase deliver_recv_msg() releases the 665 * lock, and a new message can be put in during the 666 * time the lock is released. 667 */ 668 msg = smi_info->curr_msg; 669 smi_info->curr_msg = NULL; 670 if (msg->rsp[2] != 0) { 671 /* Error getting event, probably done. */ 672 msg->done(msg); 673 674 /* Take off the event flag. */ 675 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 676 handle_flags(smi_info); 677 } else { 678 smi_inc_stat(smi_info, events); 679 680 /* 681 * Do this before we deliver the message 682 * because delivering the message releases the 683 * lock and something else can mess with the 684 * state. 685 */ 686 handle_flags(smi_info); 687 688 deliver_recv_msg(smi_info, msg); 689 } 690 break; 691 } 692 693 case SI_GETTING_MESSAGES: 694 { 695 smi_info->curr_msg->rsp_size 696 = smi_info->handlers->get_result( 697 smi_info->si_sm, 698 smi_info->curr_msg->rsp, 699 IPMI_MAX_MSG_LENGTH); 700 701 /* 702 * Do this here becase deliver_recv_msg() releases the 703 * lock, and a new message can be put in during the 704 * time the lock is released. 705 */ 706 msg = smi_info->curr_msg; 707 smi_info->curr_msg = NULL; 708 if (msg->rsp[2] != 0) { 709 /* Error getting event, probably done. */ 710 msg->done(msg); 711 712 /* Take off the msg flag. */ 713 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 714 handle_flags(smi_info); 715 } else { 716 smi_inc_stat(smi_info, incoming_messages); 717 718 /* 719 * Do this before we deliver the message 720 * because delivering the message releases the 721 * lock and something else can mess with the 722 * state. 723 */ 724 handle_flags(smi_info); 725 726 deliver_recv_msg(smi_info, msg); 727 } 728 break; 729 } 730 731 case SI_CHECKING_ENABLES: 732 { 733 unsigned char msg[4]; 734 u8 enables; 735 bool irq_on; 736 737 /* We got the flags from the SMI, now handle them. */ 738 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 739 if (msg[2] != 0) { 740 dev_warn(smi_info->dev, 741 "Couldn't get irq info: %x.\n", msg[2]); 742 dev_warn(smi_info->dev, 743 "Maybe ok, but ipmi might run very slowly.\n"); 744 smi_info->si_state = SI_NORMAL; 745 break; 746 } 747 enables = current_global_enables(smi_info, 0, &irq_on); 748 if (smi_info->si_type == SI_BT) 749 /* BT has its own interrupt enable bit. */ 750 check_bt_irq(smi_info, irq_on); 751 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 752 /* Enables are not correct, fix them. */ 753 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 754 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 755 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 756 smi_info->handlers->start_transaction( 757 smi_info->si_sm, msg, 3); 758 smi_info->si_state = SI_SETTING_ENABLES; 759 } else if (smi_info->supports_event_msg_buff) { 760 smi_info->curr_msg = ipmi_alloc_smi_msg(); 761 if (!smi_info->curr_msg) { 762 smi_info->si_state = SI_NORMAL; 763 break; 764 } 765 start_getting_msg_queue(smi_info); 766 } else { 767 smi_info->si_state = SI_NORMAL; 768 } 769 break; 770 } 771 772 case SI_SETTING_ENABLES: 773 { 774 unsigned char msg[4]; 775 776 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 777 if (msg[2] != 0) 778 dev_warn(smi_info->dev, 779 "Could not set the global enables: 0x%x.\n", 780 msg[2]); 781 782 if (smi_info->supports_event_msg_buff) { 783 smi_info->curr_msg = ipmi_alloc_smi_msg(); 784 if (!smi_info->curr_msg) { 785 smi_info->si_state = SI_NORMAL; 786 break; 787 } 788 start_getting_msg_queue(smi_info); 789 } else { 790 smi_info->si_state = SI_NORMAL; 791 } 792 break; 793 } 794 } 795 } 796 797 /* 798 * Called on timeouts and events. Timeouts should pass the elapsed 799 * time, interrupts should pass in zero. Must be called with 800 * si_lock held and interrupts disabled. 801 */ 802 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 803 int time) 804 { 805 enum si_sm_result si_sm_result; 806 807 restart: 808 /* 809 * There used to be a loop here that waited a little while 810 * (around 25us) before giving up. That turned out to be 811 * pointless, the minimum delays I was seeing were in the 300us 812 * range, which is far too long to wait in an interrupt. So 813 * we just run until the state machine tells us something 814 * happened or it needs a delay. 815 */ 816 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 817 time = 0; 818 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 819 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 820 821 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 822 smi_inc_stat(smi_info, complete_transactions); 823 824 handle_transaction_done(smi_info); 825 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 826 } else if (si_sm_result == SI_SM_HOSED) { 827 smi_inc_stat(smi_info, hosed_count); 828 829 /* 830 * Do the before return_hosed_msg, because that 831 * releases the lock. 832 */ 833 smi_info->si_state = SI_NORMAL; 834 if (smi_info->curr_msg != NULL) { 835 /* 836 * If we were handling a user message, format 837 * a response to send to the upper layer to 838 * tell it about the error. 839 */ 840 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 841 } 842 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 843 } 844 845 /* 846 * We prefer handling attn over new messages. But don't do 847 * this if there is not yet an upper layer to handle anything. 848 */ 849 if (likely(smi_info->intf) && 850 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 851 unsigned char msg[2]; 852 853 if (smi_info->si_state != SI_NORMAL) { 854 /* 855 * We got an ATTN, but we are doing something else. 856 * Handle the ATTN later. 857 */ 858 smi_info->got_attn = true; 859 } else { 860 smi_info->got_attn = false; 861 smi_inc_stat(smi_info, attentions); 862 863 /* 864 * Got a attn, send down a get message flags to see 865 * what's causing it. It would be better to handle 866 * this in the upper layer, but due to the way 867 * interrupts work with the SMI, that's not really 868 * possible. 869 */ 870 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 871 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 872 873 smi_info->handlers->start_transaction( 874 smi_info->si_sm, msg, 2); 875 smi_info->si_state = SI_GETTING_FLAGS; 876 goto restart; 877 } 878 } 879 880 /* If we are currently idle, try to start the next message. */ 881 if (si_sm_result == SI_SM_IDLE) { 882 smi_inc_stat(smi_info, idles); 883 884 si_sm_result = start_next_msg(smi_info); 885 if (si_sm_result != SI_SM_IDLE) 886 goto restart; 887 } 888 889 if ((si_sm_result == SI_SM_IDLE) 890 && (atomic_read(&smi_info->req_events))) { 891 /* 892 * We are idle and the upper layer requested that I fetch 893 * events, so do so. 894 */ 895 atomic_set(&smi_info->req_events, 0); 896 897 /* 898 * Take this opportunity to check the interrupt and 899 * message enable state for the BMC. The BMC can be 900 * asynchronously reset, and may thus get interrupts 901 * disable and messages disabled. 902 */ 903 if (smi_info->supports_event_msg_buff || smi_info->irq) { 904 start_check_enables(smi_info); 905 } else { 906 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 907 if (!smi_info->curr_msg) 908 goto out; 909 910 start_getting_events(smi_info); 911 } 912 goto restart; 913 } 914 out: 915 return si_sm_result; 916 } 917 918 static void check_start_timer_thread(struct smi_info *smi_info) 919 { 920 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 921 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 922 923 if (smi_info->thread) 924 wake_up_process(smi_info->thread); 925 926 start_next_msg(smi_info); 927 smi_event_handler(smi_info, 0); 928 } 929 } 930 931 static void sender(void *send_info, 932 struct ipmi_smi_msg *msg) 933 { 934 struct smi_info *smi_info = send_info; 935 enum si_sm_result result; 936 unsigned long flags; 937 938 debug_timestamp("Enqueue"); 939 940 if (smi_info->run_to_completion) { 941 /* 942 * If we are running to completion, start it and run 943 * transactions until everything is clear. 944 */ 945 smi_info->curr_msg = msg; 946 smi_info->waiting_msg = NULL; 947 948 /* 949 * Run to completion means we are single-threaded, no 950 * need for locks. 951 */ 952 953 result = smi_event_handler(smi_info, 0); 954 while (result != SI_SM_IDLE) { 955 udelay(SI_SHORT_TIMEOUT_USEC); 956 result = smi_event_handler(smi_info, 957 SI_SHORT_TIMEOUT_USEC); 958 } 959 return; 960 } 961 962 spin_lock_irqsave(&smi_info->si_lock, flags); 963 /* 964 * The following two lines don't need to be under the lock for 965 * the lock's sake, but they do need SMP memory barriers to 966 * avoid getting things out of order. We are already claiming 967 * the lock, anyway, so just do it under the lock to avoid the 968 * ordering problem. 969 */ 970 BUG_ON(smi_info->waiting_msg); 971 smi_info->waiting_msg = msg; 972 check_start_timer_thread(smi_info); 973 spin_unlock_irqrestore(&smi_info->si_lock, flags); 974 } 975 976 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 977 { 978 struct smi_info *smi_info = send_info; 979 enum si_sm_result result; 980 981 smi_info->run_to_completion = i_run_to_completion; 982 if (i_run_to_completion) { 983 result = smi_event_handler(smi_info, 0); 984 while (result != SI_SM_IDLE) { 985 udelay(SI_SHORT_TIMEOUT_USEC); 986 result = smi_event_handler(smi_info, 987 SI_SHORT_TIMEOUT_USEC); 988 } 989 } 990 } 991 992 /* 993 * Use -1 in the nsec value of the busy waiting timespec to tell that 994 * we are spinning in kipmid looking for something and not delaying 995 * between checks 996 */ 997 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 998 { 999 ts->tv_nsec = -1; 1000 } 1001 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1002 { 1003 return ts->tv_nsec != -1; 1004 } 1005 1006 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1007 const struct smi_info *smi_info, 1008 struct timespec64 *busy_until) 1009 { 1010 unsigned int max_busy_us = 0; 1011 1012 if (smi_info->intf_num < num_max_busy_us) 1013 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1014 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1015 ipmi_si_set_not_busy(busy_until); 1016 else if (!ipmi_si_is_busy(busy_until)) { 1017 getnstimeofday64(busy_until); 1018 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1019 } else { 1020 struct timespec64 now; 1021 1022 getnstimeofday64(&now); 1023 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1024 ipmi_si_set_not_busy(busy_until); 1025 return 0; 1026 } 1027 } 1028 return 1; 1029 } 1030 1031 1032 /* 1033 * A busy-waiting loop for speeding up IPMI operation. 1034 * 1035 * Lousy hardware makes this hard. This is only enabled for systems 1036 * that are not BT and do not have interrupts. It starts spinning 1037 * when an operation is complete or until max_busy tells it to stop 1038 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1039 * Documentation/IPMI.txt for details. 1040 */ 1041 static int ipmi_thread(void *data) 1042 { 1043 struct smi_info *smi_info = data; 1044 unsigned long flags; 1045 enum si_sm_result smi_result; 1046 struct timespec64 busy_until; 1047 1048 ipmi_si_set_not_busy(&busy_until); 1049 set_user_nice(current, MAX_NICE); 1050 while (!kthread_should_stop()) { 1051 int busy_wait; 1052 1053 spin_lock_irqsave(&(smi_info->si_lock), flags); 1054 smi_result = smi_event_handler(smi_info, 0); 1055 1056 /* 1057 * If the driver is doing something, there is a possible 1058 * race with the timer. If the timer handler see idle, 1059 * and the thread here sees something else, the timer 1060 * handler won't restart the timer even though it is 1061 * required. So start it here if necessary. 1062 */ 1063 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1064 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1065 1066 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1067 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1068 &busy_until); 1069 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1070 ; /* do nothing */ 1071 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1072 schedule(); 1073 else if (smi_result == SI_SM_IDLE) { 1074 if (atomic_read(&smi_info->need_watch)) { 1075 schedule_timeout_interruptible(100); 1076 } else { 1077 /* Wait to be woken up when we are needed. */ 1078 __set_current_state(TASK_INTERRUPTIBLE); 1079 schedule(); 1080 } 1081 } else 1082 schedule_timeout_interruptible(1); 1083 } 1084 return 0; 1085 } 1086 1087 1088 static void poll(void *send_info) 1089 { 1090 struct smi_info *smi_info = send_info; 1091 unsigned long flags = 0; 1092 bool run_to_completion = smi_info->run_to_completion; 1093 1094 /* 1095 * Make sure there is some delay in the poll loop so we can 1096 * drive time forward and timeout things. 1097 */ 1098 udelay(10); 1099 if (!run_to_completion) 1100 spin_lock_irqsave(&smi_info->si_lock, flags); 1101 smi_event_handler(smi_info, 10); 1102 if (!run_to_completion) 1103 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1104 } 1105 1106 static void request_events(void *send_info) 1107 { 1108 struct smi_info *smi_info = send_info; 1109 1110 if (!smi_info->has_event_buffer) 1111 return; 1112 1113 atomic_set(&smi_info->req_events, 1); 1114 } 1115 1116 static void set_need_watch(void *send_info, bool enable) 1117 { 1118 struct smi_info *smi_info = send_info; 1119 unsigned long flags; 1120 1121 atomic_set(&smi_info->need_watch, enable); 1122 spin_lock_irqsave(&smi_info->si_lock, flags); 1123 check_start_timer_thread(smi_info); 1124 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1125 } 1126 1127 static int initialized; 1128 1129 static void smi_timeout(unsigned long data) 1130 { 1131 struct smi_info *smi_info = (struct smi_info *) data; 1132 enum si_sm_result smi_result; 1133 unsigned long flags; 1134 unsigned long jiffies_now; 1135 long time_diff; 1136 long timeout; 1137 1138 spin_lock_irqsave(&(smi_info->si_lock), flags); 1139 debug_timestamp("Timer"); 1140 1141 jiffies_now = jiffies; 1142 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1143 * SI_USEC_PER_JIFFY); 1144 smi_result = smi_event_handler(smi_info, time_diff); 1145 1146 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1147 /* Running with interrupts, only do long timeouts. */ 1148 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1149 smi_inc_stat(smi_info, long_timeouts); 1150 goto do_mod_timer; 1151 } 1152 1153 /* 1154 * If the state machine asks for a short delay, then shorten 1155 * the timer timeout. 1156 */ 1157 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1158 smi_inc_stat(smi_info, short_timeouts); 1159 timeout = jiffies + 1; 1160 } else { 1161 smi_inc_stat(smi_info, long_timeouts); 1162 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1163 } 1164 1165 do_mod_timer: 1166 if (smi_result != SI_SM_IDLE) 1167 smi_mod_timer(smi_info, timeout); 1168 else 1169 smi_info->timer_running = false; 1170 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1171 } 1172 1173 static irqreturn_t si_irq_handler(int irq, void *data) 1174 { 1175 struct smi_info *smi_info = data; 1176 unsigned long flags; 1177 1178 spin_lock_irqsave(&(smi_info->si_lock), flags); 1179 1180 smi_inc_stat(smi_info, interrupts); 1181 1182 debug_timestamp("Interrupt"); 1183 1184 smi_event_handler(smi_info, 0); 1185 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1186 return IRQ_HANDLED; 1187 } 1188 1189 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1190 { 1191 struct smi_info *smi_info = data; 1192 /* We need to clear the IRQ flag for the BT interface. */ 1193 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1194 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1195 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1196 return si_irq_handler(irq, data); 1197 } 1198 1199 static int smi_start_processing(void *send_info, 1200 ipmi_smi_t intf) 1201 { 1202 struct smi_info *new_smi = send_info; 1203 int enable = 0; 1204 1205 new_smi->intf = intf; 1206 1207 /* Try to claim any interrupts. */ 1208 if (new_smi->irq_setup) 1209 new_smi->irq_setup(new_smi); 1210 1211 /* Set up the timer that drives the interface. */ 1212 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1213 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1214 1215 /* 1216 * Check if the user forcefully enabled the daemon. 1217 */ 1218 if (new_smi->intf_num < num_force_kipmid) 1219 enable = force_kipmid[new_smi->intf_num]; 1220 /* 1221 * The BT interface is efficient enough to not need a thread, 1222 * and there is no need for a thread if we have interrupts. 1223 */ 1224 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1225 enable = 1; 1226 1227 if (enable) { 1228 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1229 "kipmi%d", new_smi->intf_num); 1230 if (IS_ERR(new_smi->thread)) { 1231 dev_notice(new_smi->dev, "Could not start" 1232 " kernel thread due to error %ld, only using" 1233 " timers to drive the interface\n", 1234 PTR_ERR(new_smi->thread)); 1235 new_smi->thread = NULL; 1236 } 1237 } 1238 1239 return 0; 1240 } 1241 1242 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1243 { 1244 struct smi_info *smi = send_info; 1245 1246 data->addr_src = smi->addr_source; 1247 data->dev = smi->dev; 1248 data->addr_info = smi->addr_info; 1249 get_device(smi->dev); 1250 1251 return 0; 1252 } 1253 1254 static void set_maintenance_mode(void *send_info, bool enable) 1255 { 1256 struct smi_info *smi_info = send_info; 1257 1258 if (!enable) 1259 atomic_set(&smi_info->req_events, 0); 1260 } 1261 1262 static struct ipmi_smi_handlers handlers = { 1263 .owner = THIS_MODULE, 1264 .start_processing = smi_start_processing, 1265 .get_smi_info = get_smi_info, 1266 .sender = sender, 1267 .request_events = request_events, 1268 .set_need_watch = set_need_watch, 1269 .set_maintenance_mode = set_maintenance_mode, 1270 .set_run_to_completion = set_run_to_completion, 1271 .poll = poll, 1272 }; 1273 1274 /* 1275 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1276 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1277 */ 1278 1279 static LIST_HEAD(smi_infos); 1280 static DEFINE_MUTEX(smi_infos_lock); 1281 static int smi_num; /* Used to sequence the SMIs */ 1282 1283 #define DEFAULT_REGSPACING 1 1284 #define DEFAULT_REGSIZE 1 1285 1286 #ifdef CONFIG_ACPI 1287 static bool si_tryacpi = 1; 1288 #endif 1289 #ifdef CONFIG_DMI 1290 static bool si_trydmi = 1; 1291 #endif 1292 static bool si_tryplatform = 1; 1293 #ifdef CONFIG_PCI 1294 static bool si_trypci = 1; 1295 #endif 1296 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS); 1297 static char *si_type[SI_MAX_PARMS]; 1298 #define MAX_SI_TYPE_STR 30 1299 static char si_type_str[MAX_SI_TYPE_STR]; 1300 static unsigned long addrs[SI_MAX_PARMS]; 1301 static unsigned int num_addrs; 1302 static unsigned int ports[SI_MAX_PARMS]; 1303 static unsigned int num_ports; 1304 static int irqs[SI_MAX_PARMS]; 1305 static unsigned int num_irqs; 1306 static int regspacings[SI_MAX_PARMS]; 1307 static unsigned int num_regspacings; 1308 static int regsizes[SI_MAX_PARMS]; 1309 static unsigned int num_regsizes; 1310 static int regshifts[SI_MAX_PARMS]; 1311 static unsigned int num_regshifts; 1312 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1313 static unsigned int num_slave_addrs; 1314 1315 #define IPMI_IO_ADDR_SPACE 0 1316 #define IPMI_MEM_ADDR_SPACE 1 1317 static char *addr_space_to_str[] = { "i/o", "mem" }; 1318 1319 static int hotmod_handler(const char *val, struct kernel_param *kp); 1320 1321 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1322 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1323 " Documentation/IPMI.txt in the kernel sources for the" 1324 " gory details."); 1325 1326 #ifdef CONFIG_ACPI 1327 module_param_named(tryacpi, si_tryacpi, bool, 0); 1328 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1329 " default scan of the interfaces identified via ACPI"); 1330 #endif 1331 #ifdef CONFIG_DMI 1332 module_param_named(trydmi, si_trydmi, bool, 0); 1333 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1334 " default scan of the interfaces identified via DMI"); 1335 #endif 1336 module_param_named(tryplatform, si_tryplatform, bool, 0); 1337 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1338 " default scan of the interfaces identified via platform" 1339 " interfaces like openfirmware"); 1340 #ifdef CONFIG_PCI 1341 module_param_named(trypci, si_trypci, bool, 0); 1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1343 " default scan of the interfaces identified via pci"); 1344 #endif 1345 module_param_named(trydefaults, si_trydefaults, bool, 0); 1346 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1347 " default scan of the KCS and SMIC interface at the standard" 1348 " address"); 1349 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1350 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1351 " interface separated by commas. The types are 'kcs'," 1352 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1353 " the first interface to kcs and the second to bt"); 1354 module_param_array(addrs, ulong, &num_addrs, 0); 1355 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1356 " addresses separated by commas. Only use if an interface" 1357 " is in memory. Otherwise, set it to zero or leave" 1358 " it blank."); 1359 module_param_array(ports, uint, &num_ports, 0); 1360 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1361 " addresses separated by commas. Only use if an interface" 1362 " is a port. Otherwise, set it to zero or leave" 1363 " it blank."); 1364 module_param_array(irqs, int, &num_irqs, 0); 1365 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1366 " addresses separated by commas. Only use if an interface" 1367 " has an interrupt. Otherwise, set it to zero or leave" 1368 " it blank."); 1369 module_param_array(regspacings, int, &num_regspacings, 0); 1370 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1371 " and each successive register used by the interface. For" 1372 " instance, if the start address is 0xca2 and the spacing" 1373 " is 2, then the second address is at 0xca4. Defaults" 1374 " to 1."); 1375 module_param_array(regsizes, int, &num_regsizes, 0); 1376 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1377 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1378 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1379 " the 8-bit IPMI register has to be read from a larger" 1380 " register."); 1381 module_param_array(regshifts, int, &num_regshifts, 0); 1382 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1383 " IPMI register, in bits. For instance, if the data" 1384 " is read from a 32-bit word and the IPMI data is in" 1385 " bit 8-15, then the shift would be 8"); 1386 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1387 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1388 " the controller. Normally this is 0x20, but can be" 1389 " overridden by this parm. This is an array indexed" 1390 " by interface number."); 1391 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1392 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1393 " disabled(0). Normally the IPMI driver auto-detects" 1394 " this, but the value may be overridden by this parm."); 1395 module_param(unload_when_empty, bool, 0); 1396 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1397 " specified or found, default is 1. Setting to 0" 1398 " is useful for hot add of devices using hotmod."); 1399 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1400 MODULE_PARM_DESC(kipmid_max_busy_us, 1401 "Max time (in microseconds) to busy-wait for IPMI data before" 1402 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1403 " if kipmid is using up a lot of CPU time."); 1404 1405 1406 static void std_irq_cleanup(struct smi_info *info) 1407 { 1408 if (info->si_type == SI_BT) 1409 /* Disable the interrupt in the BT interface. */ 1410 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1411 free_irq(info->irq, info); 1412 } 1413 1414 static int std_irq_setup(struct smi_info *info) 1415 { 1416 int rv; 1417 1418 if (!info->irq) 1419 return 0; 1420 1421 if (info->si_type == SI_BT) { 1422 rv = request_irq(info->irq, 1423 si_bt_irq_handler, 1424 IRQF_SHARED, 1425 DEVICE_NAME, 1426 info); 1427 if (!rv) 1428 /* Enable the interrupt in the BT interface. */ 1429 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1430 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1431 } else 1432 rv = request_irq(info->irq, 1433 si_irq_handler, 1434 IRQF_SHARED, 1435 DEVICE_NAME, 1436 info); 1437 if (rv) { 1438 dev_warn(info->dev, "%s unable to claim interrupt %d," 1439 " running polled\n", 1440 DEVICE_NAME, info->irq); 1441 info->irq = 0; 1442 } else { 1443 info->irq_cleanup = std_irq_cleanup; 1444 dev_info(info->dev, "Using irq %d\n", info->irq); 1445 } 1446 1447 return rv; 1448 } 1449 1450 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1451 { 1452 unsigned int addr = io->addr_data; 1453 1454 return inb(addr + (offset * io->regspacing)); 1455 } 1456 1457 static void port_outb(struct si_sm_io *io, unsigned int offset, 1458 unsigned char b) 1459 { 1460 unsigned int addr = io->addr_data; 1461 1462 outb(b, addr + (offset * io->regspacing)); 1463 } 1464 1465 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1466 { 1467 unsigned int addr = io->addr_data; 1468 1469 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1470 } 1471 1472 static void port_outw(struct si_sm_io *io, unsigned int offset, 1473 unsigned char b) 1474 { 1475 unsigned int addr = io->addr_data; 1476 1477 outw(b << io->regshift, addr + (offset * io->regspacing)); 1478 } 1479 1480 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1481 { 1482 unsigned int addr = io->addr_data; 1483 1484 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1485 } 1486 1487 static void port_outl(struct si_sm_io *io, unsigned int offset, 1488 unsigned char b) 1489 { 1490 unsigned int addr = io->addr_data; 1491 1492 outl(b << io->regshift, addr+(offset * io->regspacing)); 1493 } 1494 1495 static void port_cleanup(struct smi_info *info) 1496 { 1497 unsigned int addr = info->io.addr_data; 1498 int idx; 1499 1500 if (addr) { 1501 for (idx = 0; idx < info->io_size; idx++) 1502 release_region(addr + idx * info->io.regspacing, 1503 info->io.regsize); 1504 } 1505 } 1506 1507 static int port_setup(struct smi_info *info) 1508 { 1509 unsigned int addr = info->io.addr_data; 1510 int idx; 1511 1512 if (!addr) 1513 return -ENODEV; 1514 1515 info->io_cleanup = port_cleanup; 1516 1517 /* 1518 * Figure out the actual inb/inw/inl/etc routine to use based 1519 * upon the register size. 1520 */ 1521 switch (info->io.regsize) { 1522 case 1: 1523 info->io.inputb = port_inb; 1524 info->io.outputb = port_outb; 1525 break; 1526 case 2: 1527 info->io.inputb = port_inw; 1528 info->io.outputb = port_outw; 1529 break; 1530 case 4: 1531 info->io.inputb = port_inl; 1532 info->io.outputb = port_outl; 1533 break; 1534 default: 1535 dev_warn(info->dev, "Invalid register size: %d\n", 1536 info->io.regsize); 1537 return -EINVAL; 1538 } 1539 1540 /* 1541 * Some BIOSes reserve disjoint I/O regions in their ACPI 1542 * tables. This causes problems when trying to register the 1543 * entire I/O region. Therefore we must register each I/O 1544 * port separately. 1545 */ 1546 for (idx = 0; idx < info->io_size; idx++) { 1547 if (request_region(addr + idx * info->io.regspacing, 1548 info->io.regsize, DEVICE_NAME) == NULL) { 1549 /* Undo allocations */ 1550 while (idx--) { 1551 release_region(addr + idx * info->io.regspacing, 1552 info->io.regsize); 1553 } 1554 return -EIO; 1555 } 1556 } 1557 return 0; 1558 } 1559 1560 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1561 { 1562 return readb((io->addr)+(offset * io->regspacing)); 1563 } 1564 1565 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1566 unsigned char b) 1567 { 1568 writeb(b, (io->addr)+(offset * io->regspacing)); 1569 } 1570 1571 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1572 { 1573 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1574 & 0xff; 1575 } 1576 1577 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1578 unsigned char b) 1579 { 1580 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1581 } 1582 1583 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1584 { 1585 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1586 & 0xff; 1587 } 1588 1589 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1590 unsigned char b) 1591 { 1592 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1593 } 1594 1595 #ifdef readq 1596 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1597 { 1598 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1599 & 0xff; 1600 } 1601 1602 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1603 unsigned char b) 1604 { 1605 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1606 } 1607 #endif 1608 1609 static void mem_cleanup(struct smi_info *info) 1610 { 1611 unsigned long addr = info->io.addr_data; 1612 int mapsize; 1613 1614 if (info->io.addr) { 1615 iounmap(info->io.addr); 1616 1617 mapsize = ((info->io_size * info->io.regspacing) 1618 - (info->io.regspacing - info->io.regsize)); 1619 1620 release_mem_region(addr, mapsize); 1621 } 1622 } 1623 1624 static int mem_setup(struct smi_info *info) 1625 { 1626 unsigned long addr = info->io.addr_data; 1627 int mapsize; 1628 1629 if (!addr) 1630 return -ENODEV; 1631 1632 info->io_cleanup = mem_cleanup; 1633 1634 /* 1635 * Figure out the actual readb/readw/readl/etc routine to use based 1636 * upon the register size. 1637 */ 1638 switch (info->io.regsize) { 1639 case 1: 1640 info->io.inputb = intf_mem_inb; 1641 info->io.outputb = intf_mem_outb; 1642 break; 1643 case 2: 1644 info->io.inputb = intf_mem_inw; 1645 info->io.outputb = intf_mem_outw; 1646 break; 1647 case 4: 1648 info->io.inputb = intf_mem_inl; 1649 info->io.outputb = intf_mem_outl; 1650 break; 1651 #ifdef readq 1652 case 8: 1653 info->io.inputb = mem_inq; 1654 info->io.outputb = mem_outq; 1655 break; 1656 #endif 1657 default: 1658 dev_warn(info->dev, "Invalid register size: %d\n", 1659 info->io.regsize); 1660 return -EINVAL; 1661 } 1662 1663 /* 1664 * Calculate the total amount of memory to claim. This is an 1665 * unusual looking calculation, but it avoids claiming any 1666 * more memory than it has to. It will claim everything 1667 * between the first address to the end of the last full 1668 * register. 1669 */ 1670 mapsize = ((info->io_size * info->io.regspacing) 1671 - (info->io.regspacing - info->io.regsize)); 1672 1673 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1674 return -EIO; 1675 1676 info->io.addr = ioremap(addr, mapsize); 1677 if (info->io.addr == NULL) { 1678 release_mem_region(addr, mapsize); 1679 return -EIO; 1680 } 1681 return 0; 1682 } 1683 1684 /* 1685 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1686 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1687 * Options are: 1688 * rsp=<regspacing> 1689 * rsi=<regsize> 1690 * rsh=<regshift> 1691 * irq=<irq> 1692 * ipmb=<ipmb addr> 1693 */ 1694 enum hotmod_op { HM_ADD, HM_REMOVE }; 1695 struct hotmod_vals { 1696 char *name; 1697 int val; 1698 }; 1699 static struct hotmod_vals hotmod_ops[] = { 1700 { "add", HM_ADD }, 1701 { "remove", HM_REMOVE }, 1702 { NULL } 1703 }; 1704 static struct hotmod_vals hotmod_si[] = { 1705 { "kcs", SI_KCS }, 1706 { "smic", SI_SMIC }, 1707 { "bt", SI_BT }, 1708 { NULL } 1709 }; 1710 static struct hotmod_vals hotmod_as[] = { 1711 { "mem", IPMI_MEM_ADDR_SPACE }, 1712 { "i/o", IPMI_IO_ADDR_SPACE }, 1713 { NULL } 1714 }; 1715 1716 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1717 { 1718 char *s; 1719 int i; 1720 1721 s = strchr(*curr, ','); 1722 if (!s) { 1723 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1724 return -EINVAL; 1725 } 1726 *s = '\0'; 1727 s++; 1728 for (i = 0; v[i].name; i++) { 1729 if (strcmp(*curr, v[i].name) == 0) { 1730 *val = v[i].val; 1731 *curr = s; 1732 return 0; 1733 } 1734 } 1735 1736 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1737 return -EINVAL; 1738 } 1739 1740 static int check_hotmod_int_op(const char *curr, const char *option, 1741 const char *name, int *val) 1742 { 1743 char *n; 1744 1745 if (strcmp(curr, name) == 0) { 1746 if (!option) { 1747 printk(KERN_WARNING PFX 1748 "No option given for '%s'\n", 1749 curr); 1750 return -EINVAL; 1751 } 1752 *val = simple_strtoul(option, &n, 0); 1753 if ((*n != '\0') || (*option == '\0')) { 1754 printk(KERN_WARNING PFX 1755 "Bad option given for '%s'\n", 1756 curr); 1757 return -EINVAL; 1758 } 1759 return 1; 1760 } 1761 return 0; 1762 } 1763 1764 static struct smi_info *smi_info_alloc(void) 1765 { 1766 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1767 1768 if (info) 1769 spin_lock_init(&info->si_lock); 1770 return info; 1771 } 1772 1773 static int hotmod_handler(const char *val, struct kernel_param *kp) 1774 { 1775 char *str = kstrdup(val, GFP_KERNEL); 1776 int rv; 1777 char *next, *curr, *s, *n, *o; 1778 enum hotmod_op op; 1779 enum si_type si_type; 1780 int addr_space; 1781 unsigned long addr; 1782 int regspacing; 1783 int regsize; 1784 int regshift; 1785 int irq; 1786 int ipmb; 1787 int ival; 1788 int len; 1789 struct smi_info *info; 1790 1791 if (!str) 1792 return -ENOMEM; 1793 1794 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1795 len = strlen(str); 1796 ival = len - 1; 1797 while ((ival >= 0) && isspace(str[ival])) { 1798 str[ival] = '\0'; 1799 ival--; 1800 } 1801 1802 for (curr = str; curr; curr = next) { 1803 regspacing = 1; 1804 regsize = 1; 1805 regshift = 0; 1806 irq = 0; 1807 ipmb = 0; /* Choose the default if not specified */ 1808 1809 next = strchr(curr, ':'); 1810 if (next) { 1811 *next = '\0'; 1812 next++; 1813 } 1814 1815 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1816 if (rv) 1817 break; 1818 op = ival; 1819 1820 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1821 if (rv) 1822 break; 1823 si_type = ival; 1824 1825 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1826 if (rv) 1827 break; 1828 1829 s = strchr(curr, ','); 1830 if (s) { 1831 *s = '\0'; 1832 s++; 1833 } 1834 addr = simple_strtoul(curr, &n, 0); 1835 if ((*n != '\0') || (*curr == '\0')) { 1836 printk(KERN_WARNING PFX "Invalid hotmod address" 1837 " '%s'\n", curr); 1838 break; 1839 } 1840 1841 while (s) { 1842 curr = s; 1843 s = strchr(curr, ','); 1844 if (s) { 1845 *s = '\0'; 1846 s++; 1847 } 1848 o = strchr(curr, '='); 1849 if (o) { 1850 *o = '\0'; 1851 o++; 1852 } 1853 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1854 if (rv < 0) 1855 goto out; 1856 else if (rv) 1857 continue; 1858 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1859 if (rv < 0) 1860 goto out; 1861 else if (rv) 1862 continue; 1863 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1864 if (rv < 0) 1865 goto out; 1866 else if (rv) 1867 continue; 1868 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1869 if (rv < 0) 1870 goto out; 1871 else if (rv) 1872 continue; 1873 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1874 if (rv < 0) 1875 goto out; 1876 else if (rv) 1877 continue; 1878 1879 rv = -EINVAL; 1880 printk(KERN_WARNING PFX 1881 "Invalid hotmod option '%s'\n", 1882 curr); 1883 goto out; 1884 } 1885 1886 if (op == HM_ADD) { 1887 info = smi_info_alloc(); 1888 if (!info) { 1889 rv = -ENOMEM; 1890 goto out; 1891 } 1892 1893 info->addr_source = SI_HOTMOD; 1894 info->si_type = si_type; 1895 info->io.addr_data = addr; 1896 info->io.addr_type = addr_space; 1897 if (addr_space == IPMI_MEM_ADDR_SPACE) 1898 info->io_setup = mem_setup; 1899 else 1900 info->io_setup = port_setup; 1901 1902 info->io.addr = NULL; 1903 info->io.regspacing = regspacing; 1904 if (!info->io.regspacing) 1905 info->io.regspacing = DEFAULT_REGSPACING; 1906 info->io.regsize = regsize; 1907 if (!info->io.regsize) 1908 info->io.regsize = DEFAULT_REGSPACING; 1909 info->io.regshift = regshift; 1910 info->irq = irq; 1911 if (info->irq) 1912 info->irq_setup = std_irq_setup; 1913 info->slave_addr = ipmb; 1914 1915 rv = add_smi(info); 1916 if (rv) { 1917 kfree(info); 1918 goto out; 1919 } 1920 rv = try_smi_init(info); 1921 if (rv) { 1922 cleanup_one_si(info); 1923 goto out; 1924 } 1925 } else { 1926 /* remove */ 1927 struct smi_info *e, *tmp_e; 1928 1929 mutex_lock(&smi_infos_lock); 1930 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1931 if (e->io.addr_type != addr_space) 1932 continue; 1933 if (e->si_type != si_type) 1934 continue; 1935 if (e->io.addr_data == addr) 1936 cleanup_one_si(e); 1937 } 1938 mutex_unlock(&smi_infos_lock); 1939 } 1940 } 1941 rv = len; 1942 out: 1943 kfree(str); 1944 return rv; 1945 } 1946 1947 static int hardcode_find_bmc(void) 1948 { 1949 int ret = -ENODEV; 1950 int i; 1951 struct smi_info *info; 1952 1953 for (i = 0; i < SI_MAX_PARMS; i++) { 1954 if (!ports[i] && !addrs[i]) 1955 continue; 1956 1957 info = smi_info_alloc(); 1958 if (!info) 1959 return -ENOMEM; 1960 1961 info->addr_source = SI_HARDCODED; 1962 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1963 1964 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1965 info->si_type = SI_KCS; 1966 } else if (strcmp(si_type[i], "smic") == 0) { 1967 info->si_type = SI_SMIC; 1968 } else if (strcmp(si_type[i], "bt") == 0) { 1969 info->si_type = SI_BT; 1970 } else { 1971 printk(KERN_WARNING PFX "Interface type specified " 1972 "for interface %d, was invalid: %s\n", 1973 i, si_type[i]); 1974 kfree(info); 1975 continue; 1976 } 1977 1978 if (ports[i]) { 1979 /* An I/O port */ 1980 info->io_setup = port_setup; 1981 info->io.addr_data = ports[i]; 1982 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1983 } else if (addrs[i]) { 1984 /* A memory port */ 1985 info->io_setup = mem_setup; 1986 info->io.addr_data = addrs[i]; 1987 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1988 } else { 1989 printk(KERN_WARNING PFX "Interface type specified " 1990 "for interface %d, but port and address were " 1991 "not set or set to zero.\n", i); 1992 kfree(info); 1993 continue; 1994 } 1995 1996 info->io.addr = NULL; 1997 info->io.regspacing = regspacings[i]; 1998 if (!info->io.regspacing) 1999 info->io.regspacing = DEFAULT_REGSPACING; 2000 info->io.regsize = regsizes[i]; 2001 if (!info->io.regsize) 2002 info->io.regsize = DEFAULT_REGSPACING; 2003 info->io.regshift = regshifts[i]; 2004 info->irq = irqs[i]; 2005 if (info->irq) 2006 info->irq_setup = std_irq_setup; 2007 info->slave_addr = slave_addrs[i]; 2008 2009 if (!add_smi(info)) { 2010 if (try_smi_init(info)) 2011 cleanup_one_si(info); 2012 ret = 0; 2013 } else { 2014 kfree(info); 2015 } 2016 } 2017 return ret; 2018 } 2019 2020 #ifdef CONFIG_ACPI 2021 2022 #include <linux/acpi.h> 2023 2024 /* 2025 * Once we get an ACPI failure, we don't try any more, because we go 2026 * through the tables sequentially. Once we don't find a table, there 2027 * are no more. 2028 */ 2029 static int acpi_failure; 2030 2031 /* For GPE-type interrupts. */ 2032 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2033 u32 gpe_number, void *context) 2034 { 2035 struct smi_info *smi_info = context; 2036 unsigned long flags; 2037 2038 spin_lock_irqsave(&(smi_info->si_lock), flags); 2039 2040 smi_inc_stat(smi_info, interrupts); 2041 2042 debug_timestamp("ACPI_GPE"); 2043 2044 smi_event_handler(smi_info, 0); 2045 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2046 2047 return ACPI_INTERRUPT_HANDLED; 2048 } 2049 2050 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2051 { 2052 if (!info->irq) 2053 return; 2054 2055 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2056 } 2057 2058 static int acpi_gpe_irq_setup(struct smi_info *info) 2059 { 2060 acpi_status status; 2061 2062 if (!info->irq) 2063 return 0; 2064 2065 status = acpi_install_gpe_handler(NULL, 2066 info->irq, 2067 ACPI_GPE_LEVEL_TRIGGERED, 2068 &ipmi_acpi_gpe, 2069 info); 2070 if (status != AE_OK) { 2071 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2072 " running polled\n", DEVICE_NAME, info->irq); 2073 info->irq = 0; 2074 return -EINVAL; 2075 } else { 2076 info->irq_cleanup = acpi_gpe_irq_cleanup; 2077 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2078 return 0; 2079 } 2080 } 2081 2082 /* 2083 * Defined at 2084 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2085 */ 2086 struct SPMITable { 2087 s8 Signature[4]; 2088 u32 Length; 2089 u8 Revision; 2090 u8 Checksum; 2091 s8 OEMID[6]; 2092 s8 OEMTableID[8]; 2093 s8 OEMRevision[4]; 2094 s8 CreatorID[4]; 2095 s8 CreatorRevision[4]; 2096 u8 InterfaceType; 2097 u8 IPMIlegacy; 2098 s16 SpecificationRevision; 2099 2100 /* 2101 * Bit 0 - SCI interrupt supported 2102 * Bit 1 - I/O APIC/SAPIC 2103 */ 2104 u8 InterruptType; 2105 2106 /* 2107 * If bit 0 of InterruptType is set, then this is the SCI 2108 * interrupt in the GPEx_STS register. 2109 */ 2110 u8 GPE; 2111 2112 s16 Reserved; 2113 2114 /* 2115 * If bit 1 of InterruptType is set, then this is the I/O 2116 * APIC/SAPIC interrupt. 2117 */ 2118 u32 GlobalSystemInterrupt; 2119 2120 /* The actual register address. */ 2121 struct acpi_generic_address addr; 2122 2123 u8 UID[4]; 2124 2125 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2126 }; 2127 2128 static int try_init_spmi(struct SPMITable *spmi) 2129 { 2130 struct smi_info *info; 2131 int rv; 2132 2133 if (spmi->IPMIlegacy != 1) { 2134 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2135 return -ENODEV; 2136 } 2137 2138 info = smi_info_alloc(); 2139 if (!info) { 2140 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2141 return -ENOMEM; 2142 } 2143 2144 info->addr_source = SI_SPMI; 2145 printk(KERN_INFO PFX "probing via SPMI\n"); 2146 2147 /* Figure out the interface type. */ 2148 switch (spmi->InterfaceType) { 2149 case 1: /* KCS */ 2150 info->si_type = SI_KCS; 2151 break; 2152 case 2: /* SMIC */ 2153 info->si_type = SI_SMIC; 2154 break; 2155 case 3: /* BT */ 2156 info->si_type = SI_BT; 2157 break; 2158 case 4: /* SSIF, just ignore */ 2159 kfree(info); 2160 return -EIO; 2161 default: 2162 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2163 spmi->InterfaceType); 2164 kfree(info); 2165 return -EIO; 2166 } 2167 2168 if (spmi->InterruptType & 1) { 2169 /* We've got a GPE interrupt. */ 2170 info->irq = spmi->GPE; 2171 info->irq_setup = acpi_gpe_irq_setup; 2172 } else if (spmi->InterruptType & 2) { 2173 /* We've got an APIC/SAPIC interrupt. */ 2174 info->irq = spmi->GlobalSystemInterrupt; 2175 info->irq_setup = std_irq_setup; 2176 } else { 2177 /* Use the default interrupt setting. */ 2178 info->irq = 0; 2179 info->irq_setup = NULL; 2180 } 2181 2182 if (spmi->addr.bit_width) { 2183 /* A (hopefully) properly formed register bit width. */ 2184 info->io.regspacing = spmi->addr.bit_width / 8; 2185 } else { 2186 info->io.regspacing = DEFAULT_REGSPACING; 2187 } 2188 info->io.regsize = info->io.regspacing; 2189 info->io.regshift = spmi->addr.bit_offset; 2190 2191 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2192 info->io_setup = mem_setup; 2193 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2194 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2195 info->io_setup = port_setup; 2196 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2197 } else { 2198 kfree(info); 2199 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2200 return -EIO; 2201 } 2202 info->io.addr_data = spmi->addr.address; 2203 2204 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2205 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2206 info->io.addr_data, info->io.regsize, info->io.regspacing, 2207 info->irq); 2208 2209 rv = add_smi(info); 2210 if (rv) 2211 kfree(info); 2212 2213 return rv; 2214 } 2215 2216 static void spmi_find_bmc(void) 2217 { 2218 acpi_status status; 2219 struct SPMITable *spmi; 2220 int i; 2221 2222 if (acpi_disabled) 2223 return; 2224 2225 if (acpi_failure) 2226 return; 2227 2228 for (i = 0; ; i++) { 2229 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2230 (struct acpi_table_header **)&spmi); 2231 if (status != AE_OK) 2232 return; 2233 2234 try_init_spmi(spmi); 2235 } 2236 } 2237 2238 static int ipmi_pnp_probe(struct pnp_dev *dev, 2239 const struct pnp_device_id *dev_id) 2240 { 2241 struct acpi_device *acpi_dev; 2242 struct smi_info *info; 2243 struct resource *res, *res_second; 2244 acpi_handle handle; 2245 acpi_status status; 2246 unsigned long long tmp; 2247 int rv; 2248 2249 acpi_dev = pnp_acpi_device(dev); 2250 if (!acpi_dev) 2251 return -ENODEV; 2252 2253 info = smi_info_alloc(); 2254 if (!info) 2255 return -ENOMEM; 2256 2257 info->addr_source = SI_ACPI; 2258 printk(KERN_INFO PFX "probing via ACPI\n"); 2259 2260 handle = acpi_dev->handle; 2261 info->addr_info.acpi_info.acpi_handle = handle; 2262 2263 /* _IFT tells us the interface type: KCS, BT, etc */ 2264 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2265 if (ACPI_FAILURE(status)) 2266 goto err_free; 2267 2268 switch (tmp) { 2269 case 1: 2270 info->si_type = SI_KCS; 2271 break; 2272 case 2: 2273 info->si_type = SI_SMIC; 2274 break; 2275 case 3: 2276 info->si_type = SI_BT; 2277 break; 2278 case 4: /* SSIF, just ignore */ 2279 goto err_free; 2280 default: 2281 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2282 goto err_free; 2283 } 2284 2285 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2286 if (res) { 2287 info->io_setup = port_setup; 2288 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2289 } else { 2290 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2291 if (res) { 2292 info->io_setup = mem_setup; 2293 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2294 } 2295 } 2296 if (!res) { 2297 dev_err(&dev->dev, "no I/O or memory address\n"); 2298 goto err_free; 2299 } 2300 info->io.addr_data = res->start; 2301 2302 info->io.regspacing = DEFAULT_REGSPACING; 2303 res_second = pnp_get_resource(dev, 2304 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2305 IORESOURCE_IO : IORESOURCE_MEM, 2306 1); 2307 if (res_second) { 2308 if (res_second->start > info->io.addr_data) 2309 info->io.regspacing = res_second->start - info->io.addr_data; 2310 } 2311 info->io.regsize = DEFAULT_REGSPACING; 2312 info->io.regshift = 0; 2313 2314 /* If _GPE exists, use it; otherwise use standard interrupts */ 2315 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2316 if (ACPI_SUCCESS(status)) { 2317 info->irq = tmp; 2318 info->irq_setup = acpi_gpe_irq_setup; 2319 } else if (pnp_irq_valid(dev, 0)) { 2320 info->irq = pnp_irq(dev, 0); 2321 info->irq_setup = std_irq_setup; 2322 } 2323 2324 info->dev = &dev->dev; 2325 pnp_set_drvdata(dev, info); 2326 2327 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2328 res, info->io.regsize, info->io.regspacing, 2329 info->irq); 2330 2331 rv = add_smi(info); 2332 if (rv) 2333 kfree(info); 2334 2335 return rv; 2336 2337 err_free: 2338 kfree(info); 2339 return -EINVAL; 2340 } 2341 2342 static void ipmi_pnp_remove(struct pnp_dev *dev) 2343 { 2344 struct smi_info *info = pnp_get_drvdata(dev); 2345 2346 cleanup_one_si(info); 2347 } 2348 2349 static const struct pnp_device_id pnp_dev_table[] = { 2350 {"IPI0001", 0}, 2351 {"", 0}, 2352 }; 2353 2354 static struct pnp_driver ipmi_pnp_driver = { 2355 .name = DEVICE_NAME, 2356 .probe = ipmi_pnp_probe, 2357 .remove = ipmi_pnp_remove, 2358 .id_table = pnp_dev_table, 2359 }; 2360 2361 MODULE_DEVICE_TABLE(pnp, pnp_dev_table); 2362 #endif 2363 2364 #ifdef CONFIG_DMI 2365 struct dmi_ipmi_data { 2366 u8 type; 2367 u8 addr_space; 2368 unsigned long base_addr; 2369 u8 irq; 2370 u8 offset; 2371 u8 slave_addr; 2372 }; 2373 2374 static int decode_dmi(const struct dmi_header *dm, 2375 struct dmi_ipmi_data *dmi) 2376 { 2377 const u8 *data = (const u8 *)dm; 2378 unsigned long base_addr; 2379 u8 reg_spacing; 2380 u8 len = dm->length; 2381 2382 dmi->type = data[4]; 2383 2384 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2385 if (len >= 0x11) { 2386 if (base_addr & 1) { 2387 /* I/O */ 2388 base_addr &= 0xFFFE; 2389 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2390 } else 2391 /* Memory */ 2392 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2393 2394 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2395 is odd. */ 2396 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2397 2398 dmi->irq = data[0x11]; 2399 2400 /* The top two bits of byte 0x10 hold the register spacing. */ 2401 reg_spacing = (data[0x10] & 0xC0) >> 6; 2402 switch (reg_spacing) { 2403 case 0x00: /* Byte boundaries */ 2404 dmi->offset = 1; 2405 break; 2406 case 0x01: /* 32-bit boundaries */ 2407 dmi->offset = 4; 2408 break; 2409 case 0x02: /* 16-byte boundaries */ 2410 dmi->offset = 16; 2411 break; 2412 default: 2413 /* Some other interface, just ignore it. */ 2414 return -EIO; 2415 } 2416 } else { 2417 /* Old DMI spec. */ 2418 /* 2419 * Note that technically, the lower bit of the base 2420 * address should be 1 if the address is I/O and 0 if 2421 * the address is in memory. So many systems get that 2422 * wrong (and all that I have seen are I/O) so we just 2423 * ignore that bit and assume I/O. Systems that use 2424 * memory should use the newer spec, anyway. 2425 */ 2426 dmi->base_addr = base_addr & 0xfffe; 2427 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2428 dmi->offset = 1; 2429 } 2430 2431 dmi->slave_addr = data[6]; 2432 2433 return 0; 2434 } 2435 2436 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2437 { 2438 struct smi_info *info; 2439 2440 info = smi_info_alloc(); 2441 if (!info) { 2442 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2443 return; 2444 } 2445 2446 info->addr_source = SI_SMBIOS; 2447 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2448 2449 switch (ipmi_data->type) { 2450 case 0x01: /* KCS */ 2451 info->si_type = SI_KCS; 2452 break; 2453 case 0x02: /* SMIC */ 2454 info->si_type = SI_SMIC; 2455 break; 2456 case 0x03: /* BT */ 2457 info->si_type = SI_BT; 2458 break; 2459 default: 2460 kfree(info); 2461 return; 2462 } 2463 2464 switch (ipmi_data->addr_space) { 2465 case IPMI_MEM_ADDR_SPACE: 2466 info->io_setup = mem_setup; 2467 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2468 break; 2469 2470 case IPMI_IO_ADDR_SPACE: 2471 info->io_setup = port_setup; 2472 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2473 break; 2474 2475 default: 2476 kfree(info); 2477 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2478 ipmi_data->addr_space); 2479 return; 2480 } 2481 info->io.addr_data = ipmi_data->base_addr; 2482 2483 info->io.regspacing = ipmi_data->offset; 2484 if (!info->io.regspacing) 2485 info->io.regspacing = DEFAULT_REGSPACING; 2486 info->io.regsize = DEFAULT_REGSPACING; 2487 info->io.regshift = 0; 2488 2489 info->slave_addr = ipmi_data->slave_addr; 2490 2491 info->irq = ipmi_data->irq; 2492 if (info->irq) 2493 info->irq_setup = std_irq_setup; 2494 2495 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2496 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2497 info->io.addr_data, info->io.regsize, info->io.regspacing, 2498 info->irq); 2499 2500 if (add_smi(info)) 2501 kfree(info); 2502 } 2503 2504 static void dmi_find_bmc(void) 2505 { 2506 const struct dmi_device *dev = NULL; 2507 struct dmi_ipmi_data data; 2508 int rv; 2509 2510 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2511 memset(&data, 0, sizeof(data)); 2512 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2513 &data); 2514 if (!rv) 2515 try_init_dmi(&data); 2516 } 2517 } 2518 #endif /* CONFIG_DMI */ 2519 2520 #ifdef CONFIG_PCI 2521 2522 #define PCI_ERMC_CLASSCODE 0x0C0700 2523 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2524 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2525 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2526 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2527 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2528 2529 #define PCI_HP_VENDOR_ID 0x103C 2530 #define PCI_MMC_DEVICE_ID 0x121A 2531 #define PCI_MMC_ADDR_CW 0x10 2532 2533 static void ipmi_pci_cleanup(struct smi_info *info) 2534 { 2535 struct pci_dev *pdev = info->addr_source_data; 2536 2537 pci_disable_device(pdev); 2538 } 2539 2540 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2541 { 2542 if (info->si_type == SI_KCS) { 2543 unsigned char status; 2544 int regspacing; 2545 2546 info->io.regsize = DEFAULT_REGSIZE; 2547 info->io.regshift = 0; 2548 info->io_size = 2; 2549 info->handlers = &kcs_smi_handlers; 2550 2551 /* detect 1, 4, 16byte spacing */ 2552 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2553 info->io.regspacing = regspacing; 2554 if (info->io_setup(info)) { 2555 dev_err(info->dev, 2556 "Could not setup I/O space\n"); 2557 return DEFAULT_REGSPACING; 2558 } 2559 /* write invalid cmd */ 2560 info->io.outputb(&info->io, 1, 0x10); 2561 /* read status back */ 2562 status = info->io.inputb(&info->io, 1); 2563 info->io_cleanup(info); 2564 if (status) 2565 return regspacing; 2566 regspacing *= 4; 2567 } 2568 } 2569 return DEFAULT_REGSPACING; 2570 } 2571 2572 static int ipmi_pci_probe(struct pci_dev *pdev, 2573 const struct pci_device_id *ent) 2574 { 2575 int rv; 2576 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2577 struct smi_info *info; 2578 2579 info = smi_info_alloc(); 2580 if (!info) 2581 return -ENOMEM; 2582 2583 info->addr_source = SI_PCI; 2584 dev_info(&pdev->dev, "probing via PCI"); 2585 2586 switch (class_type) { 2587 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2588 info->si_type = SI_SMIC; 2589 break; 2590 2591 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2592 info->si_type = SI_KCS; 2593 break; 2594 2595 case PCI_ERMC_CLASSCODE_TYPE_BT: 2596 info->si_type = SI_BT; 2597 break; 2598 2599 default: 2600 kfree(info); 2601 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2602 return -ENOMEM; 2603 } 2604 2605 rv = pci_enable_device(pdev); 2606 if (rv) { 2607 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2608 kfree(info); 2609 return rv; 2610 } 2611 2612 info->addr_source_cleanup = ipmi_pci_cleanup; 2613 info->addr_source_data = pdev; 2614 2615 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2616 info->io_setup = port_setup; 2617 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2618 } else { 2619 info->io_setup = mem_setup; 2620 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2621 } 2622 info->io.addr_data = pci_resource_start(pdev, 0); 2623 2624 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2625 info->io.regsize = DEFAULT_REGSIZE; 2626 info->io.regshift = 0; 2627 2628 info->irq = pdev->irq; 2629 if (info->irq) 2630 info->irq_setup = std_irq_setup; 2631 2632 info->dev = &pdev->dev; 2633 pci_set_drvdata(pdev, info); 2634 2635 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2636 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2637 info->irq); 2638 2639 rv = add_smi(info); 2640 if (rv) { 2641 kfree(info); 2642 pci_disable_device(pdev); 2643 } 2644 2645 return rv; 2646 } 2647 2648 static void ipmi_pci_remove(struct pci_dev *pdev) 2649 { 2650 struct smi_info *info = pci_get_drvdata(pdev); 2651 cleanup_one_si(info); 2652 pci_disable_device(pdev); 2653 } 2654 2655 static struct pci_device_id ipmi_pci_devices[] = { 2656 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2657 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2658 { 0, } 2659 }; 2660 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2661 2662 static struct pci_driver ipmi_pci_driver = { 2663 .name = DEVICE_NAME, 2664 .id_table = ipmi_pci_devices, 2665 .probe = ipmi_pci_probe, 2666 .remove = ipmi_pci_remove, 2667 }; 2668 #endif /* CONFIG_PCI */ 2669 2670 static const struct of_device_id ipmi_match[]; 2671 static int ipmi_probe(struct platform_device *dev) 2672 { 2673 #ifdef CONFIG_OF 2674 const struct of_device_id *match; 2675 struct smi_info *info; 2676 struct resource resource; 2677 const __be32 *regsize, *regspacing, *regshift; 2678 struct device_node *np = dev->dev.of_node; 2679 int ret; 2680 int proplen; 2681 2682 dev_info(&dev->dev, "probing via device tree\n"); 2683 2684 match = of_match_device(ipmi_match, &dev->dev); 2685 if (!match) 2686 return -EINVAL; 2687 2688 if (!of_device_is_available(np)) 2689 return -EINVAL; 2690 2691 ret = of_address_to_resource(np, 0, &resource); 2692 if (ret) { 2693 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2694 return ret; 2695 } 2696 2697 regsize = of_get_property(np, "reg-size", &proplen); 2698 if (regsize && proplen != 4) { 2699 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2700 return -EINVAL; 2701 } 2702 2703 regspacing = of_get_property(np, "reg-spacing", &proplen); 2704 if (regspacing && proplen != 4) { 2705 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2706 return -EINVAL; 2707 } 2708 2709 regshift = of_get_property(np, "reg-shift", &proplen); 2710 if (regshift && proplen != 4) { 2711 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2712 return -EINVAL; 2713 } 2714 2715 info = smi_info_alloc(); 2716 2717 if (!info) { 2718 dev_err(&dev->dev, 2719 "could not allocate memory for OF probe\n"); 2720 return -ENOMEM; 2721 } 2722 2723 info->si_type = (enum si_type) match->data; 2724 info->addr_source = SI_DEVICETREE; 2725 info->irq_setup = std_irq_setup; 2726 2727 if (resource.flags & IORESOURCE_IO) { 2728 info->io_setup = port_setup; 2729 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2730 } else { 2731 info->io_setup = mem_setup; 2732 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2733 } 2734 2735 info->io.addr_data = resource.start; 2736 2737 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2738 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2739 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2740 2741 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2742 info->dev = &dev->dev; 2743 2744 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2745 info->io.addr_data, info->io.regsize, info->io.regspacing, 2746 info->irq); 2747 2748 dev_set_drvdata(&dev->dev, info); 2749 2750 ret = add_smi(info); 2751 if (ret) { 2752 kfree(info); 2753 return ret; 2754 } 2755 #endif 2756 return 0; 2757 } 2758 2759 static int ipmi_remove(struct platform_device *dev) 2760 { 2761 #ifdef CONFIG_OF 2762 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2763 #endif 2764 return 0; 2765 } 2766 2767 static const struct of_device_id ipmi_match[] = 2768 { 2769 { .type = "ipmi", .compatible = "ipmi-kcs", 2770 .data = (void *)(unsigned long) SI_KCS }, 2771 { .type = "ipmi", .compatible = "ipmi-smic", 2772 .data = (void *)(unsigned long) SI_SMIC }, 2773 { .type = "ipmi", .compatible = "ipmi-bt", 2774 .data = (void *)(unsigned long) SI_BT }, 2775 {}, 2776 }; 2777 2778 static struct platform_driver ipmi_driver = { 2779 .driver = { 2780 .name = DEVICE_NAME, 2781 .of_match_table = ipmi_match, 2782 }, 2783 .probe = ipmi_probe, 2784 .remove = ipmi_remove, 2785 }; 2786 2787 #ifdef CONFIG_PARISC 2788 static int ipmi_parisc_probe(struct parisc_device *dev) 2789 { 2790 struct smi_info *info; 2791 int rv; 2792 2793 info = smi_info_alloc(); 2794 2795 if (!info) { 2796 dev_err(&dev->dev, 2797 "could not allocate memory for PARISC probe\n"); 2798 return -ENOMEM; 2799 } 2800 2801 info->si_type = SI_KCS; 2802 info->addr_source = SI_DEVICETREE; 2803 info->io_setup = mem_setup; 2804 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2805 info->io.addr_data = dev->hpa.start; 2806 info->io.regsize = 1; 2807 info->io.regspacing = 1; 2808 info->io.regshift = 0; 2809 info->irq = 0; /* no interrupt */ 2810 info->irq_setup = NULL; 2811 info->dev = &dev->dev; 2812 2813 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2814 2815 dev_set_drvdata(&dev->dev, info); 2816 2817 rv = add_smi(info); 2818 if (rv) { 2819 kfree(info); 2820 return rv; 2821 } 2822 2823 return 0; 2824 } 2825 2826 static int ipmi_parisc_remove(struct parisc_device *dev) 2827 { 2828 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2829 return 0; 2830 } 2831 2832 static struct parisc_device_id ipmi_parisc_tbl[] = { 2833 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2834 { 0, } 2835 }; 2836 2837 static struct parisc_driver ipmi_parisc_driver = { 2838 .name = "ipmi", 2839 .id_table = ipmi_parisc_tbl, 2840 .probe = ipmi_parisc_probe, 2841 .remove = ipmi_parisc_remove, 2842 }; 2843 #endif /* CONFIG_PARISC */ 2844 2845 static int wait_for_msg_done(struct smi_info *smi_info) 2846 { 2847 enum si_sm_result smi_result; 2848 2849 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2850 for (;;) { 2851 if (smi_result == SI_SM_CALL_WITH_DELAY || 2852 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2853 schedule_timeout_uninterruptible(1); 2854 smi_result = smi_info->handlers->event( 2855 smi_info->si_sm, jiffies_to_usecs(1)); 2856 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2857 smi_result = smi_info->handlers->event( 2858 smi_info->si_sm, 0); 2859 } else 2860 break; 2861 } 2862 if (smi_result == SI_SM_HOSED) 2863 /* 2864 * We couldn't get the state machine to run, so whatever's at 2865 * the port is probably not an IPMI SMI interface. 2866 */ 2867 return -ENODEV; 2868 2869 return 0; 2870 } 2871 2872 static int try_get_dev_id(struct smi_info *smi_info) 2873 { 2874 unsigned char msg[2]; 2875 unsigned char *resp; 2876 unsigned long resp_len; 2877 int rv = 0; 2878 2879 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2880 if (!resp) 2881 return -ENOMEM; 2882 2883 /* 2884 * Do a Get Device ID command, since it comes back with some 2885 * useful info. 2886 */ 2887 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2888 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2889 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2890 2891 rv = wait_for_msg_done(smi_info); 2892 if (rv) 2893 goto out; 2894 2895 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2896 resp, IPMI_MAX_MSG_LENGTH); 2897 2898 /* Check and record info from the get device id, in case we need it. */ 2899 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2900 2901 out: 2902 kfree(resp); 2903 return rv; 2904 } 2905 2906 /* 2907 * Some BMCs do not support clearing the receive irq bit in the global 2908 * enables (even if they don't support interrupts on the BMC). Check 2909 * for this and handle it properly. 2910 */ 2911 static void check_clr_rcv_irq(struct smi_info *smi_info) 2912 { 2913 unsigned char msg[3]; 2914 unsigned char *resp; 2915 unsigned long resp_len; 2916 int rv; 2917 2918 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2919 if (!resp) { 2920 printk(KERN_WARNING PFX "Out of memory allocating response for" 2921 " global enables command, cannot check recv irq bit" 2922 " handling.\n"); 2923 return; 2924 } 2925 2926 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2927 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2928 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2929 2930 rv = wait_for_msg_done(smi_info); 2931 if (rv) { 2932 printk(KERN_WARNING PFX "Error getting response from get" 2933 " global enables command, cannot check recv irq bit" 2934 " handling.\n"); 2935 goto out; 2936 } 2937 2938 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2939 resp, IPMI_MAX_MSG_LENGTH); 2940 2941 if (resp_len < 4 || 2942 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2943 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2944 resp[2] != 0) { 2945 printk(KERN_WARNING PFX "Invalid return from get global" 2946 " enables command, cannot check recv irq bit" 2947 " handling.\n"); 2948 rv = -EINVAL; 2949 goto out; 2950 } 2951 2952 if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0) 2953 /* Already clear, should work ok. */ 2954 goto out; 2955 2956 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2957 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2958 msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR; 2959 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2960 2961 rv = wait_for_msg_done(smi_info); 2962 if (rv) { 2963 printk(KERN_WARNING PFX "Error getting response from set" 2964 " global enables command, cannot check recv irq bit" 2965 " handling.\n"); 2966 goto out; 2967 } 2968 2969 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2970 resp, IPMI_MAX_MSG_LENGTH); 2971 2972 if (resp_len < 3 || 2973 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2974 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2975 printk(KERN_WARNING PFX "Invalid return from get global" 2976 " enables command, cannot check recv irq bit" 2977 " handling.\n"); 2978 rv = -EINVAL; 2979 goto out; 2980 } 2981 2982 if (resp[2] != 0) { 2983 /* 2984 * An error when setting the event buffer bit means 2985 * clearing the bit is not supported. 2986 */ 2987 printk(KERN_WARNING PFX "The BMC does not support clearing" 2988 " the recv irq bit, compensating, but the BMC needs to" 2989 " be fixed.\n"); 2990 smi_info->cannot_clear_recv_irq_bit = true; 2991 } 2992 out: 2993 kfree(resp); 2994 } 2995 2996 static int try_enable_event_buffer(struct smi_info *smi_info) 2997 { 2998 unsigned char msg[3]; 2999 unsigned char *resp; 3000 unsigned long resp_len; 3001 int rv = 0; 3002 3003 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3004 if (!resp) 3005 return -ENOMEM; 3006 3007 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3008 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3009 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3010 3011 rv = wait_for_msg_done(smi_info); 3012 if (rv) { 3013 printk(KERN_WARNING PFX "Error getting response from get" 3014 " global enables command, the event buffer is not" 3015 " enabled.\n"); 3016 goto out; 3017 } 3018 3019 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3020 resp, IPMI_MAX_MSG_LENGTH); 3021 3022 if (resp_len < 4 || 3023 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3024 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3025 resp[2] != 0) { 3026 printk(KERN_WARNING PFX "Invalid return from get global" 3027 " enables command, cannot enable the event buffer.\n"); 3028 rv = -EINVAL; 3029 goto out; 3030 } 3031 3032 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3033 /* buffer is already enabled, nothing to do. */ 3034 smi_info->supports_event_msg_buff = true; 3035 goto out; 3036 } 3037 3038 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3039 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3040 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3041 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3042 3043 rv = wait_for_msg_done(smi_info); 3044 if (rv) { 3045 printk(KERN_WARNING PFX "Error getting response from set" 3046 " global, enables command, the event buffer is not" 3047 " enabled.\n"); 3048 goto out; 3049 } 3050 3051 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3052 resp, IPMI_MAX_MSG_LENGTH); 3053 3054 if (resp_len < 3 || 3055 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3056 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3057 printk(KERN_WARNING PFX "Invalid return from get global," 3058 "enables command, not enable the event buffer.\n"); 3059 rv = -EINVAL; 3060 goto out; 3061 } 3062 3063 if (resp[2] != 0) 3064 /* 3065 * An error when setting the event buffer bit means 3066 * that the event buffer is not supported. 3067 */ 3068 rv = -ENOENT; 3069 else 3070 smi_info->supports_event_msg_buff = true; 3071 3072 out: 3073 kfree(resp); 3074 return rv; 3075 } 3076 3077 static int smi_type_proc_show(struct seq_file *m, void *v) 3078 { 3079 struct smi_info *smi = m->private; 3080 3081 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3082 3083 return seq_has_overflowed(m); 3084 } 3085 3086 static int smi_type_proc_open(struct inode *inode, struct file *file) 3087 { 3088 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3089 } 3090 3091 static const struct file_operations smi_type_proc_ops = { 3092 .open = smi_type_proc_open, 3093 .read = seq_read, 3094 .llseek = seq_lseek, 3095 .release = single_release, 3096 }; 3097 3098 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3099 { 3100 struct smi_info *smi = m->private; 3101 3102 seq_printf(m, "interrupts_enabled: %d\n", 3103 smi->irq && !smi->interrupt_disabled); 3104 seq_printf(m, "short_timeouts: %u\n", 3105 smi_get_stat(smi, short_timeouts)); 3106 seq_printf(m, "long_timeouts: %u\n", 3107 smi_get_stat(smi, long_timeouts)); 3108 seq_printf(m, "idles: %u\n", 3109 smi_get_stat(smi, idles)); 3110 seq_printf(m, "interrupts: %u\n", 3111 smi_get_stat(smi, interrupts)); 3112 seq_printf(m, "attentions: %u\n", 3113 smi_get_stat(smi, attentions)); 3114 seq_printf(m, "flag_fetches: %u\n", 3115 smi_get_stat(smi, flag_fetches)); 3116 seq_printf(m, "hosed_count: %u\n", 3117 smi_get_stat(smi, hosed_count)); 3118 seq_printf(m, "complete_transactions: %u\n", 3119 smi_get_stat(smi, complete_transactions)); 3120 seq_printf(m, "events: %u\n", 3121 smi_get_stat(smi, events)); 3122 seq_printf(m, "watchdog_pretimeouts: %u\n", 3123 smi_get_stat(smi, watchdog_pretimeouts)); 3124 seq_printf(m, "incoming_messages: %u\n", 3125 smi_get_stat(smi, incoming_messages)); 3126 return 0; 3127 } 3128 3129 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3130 { 3131 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3132 } 3133 3134 static const struct file_operations smi_si_stats_proc_ops = { 3135 .open = smi_si_stats_proc_open, 3136 .read = seq_read, 3137 .llseek = seq_lseek, 3138 .release = single_release, 3139 }; 3140 3141 static int smi_params_proc_show(struct seq_file *m, void *v) 3142 { 3143 struct smi_info *smi = m->private; 3144 3145 seq_printf(m, 3146 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3147 si_to_str[smi->si_type], 3148 addr_space_to_str[smi->io.addr_type], 3149 smi->io.addr_data, 3150 smi->io.regspacing, 3151 smi->io.regsize, 3152 smi->io.regshift, 3153 smi->irq, 3154 smi->slave_addr); 3155 3156 return seq_has_overflowed(m); 3157 } 3158 3159 static int smi_params_proc_open(struct inode *inode, struct file *file) 3160 { 3161 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3162 } 3163 3164 static const struct file_operations smi_params_proc_ops = { 3165 .open = smi_params_proc_open, 3166 .read = seq_read, 3167 .llseek = seq_lseek, 3168 .release = single_release, 3169 }; 3170 3171 /* 3172 * oem_data_avail_to_receive_msg_avail 3173 * @info - smi_info structure with msg_flags set 3174 * 3175 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3176 * Returns 1 indicating need to re-run handle_flags(). 3177 */ 3178 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3179 { 3180 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3181 RECEIVE_MSG_AVAIL); 3182 return 1; 3183 } 3184 3185 /* 3186 * setup_dell_poweredge_oem_data_handler 3187 * @info - smi_info.device_id must be populated 3188 * 3189 * Systems that match, but have firmware version < 1.40 may assert 3190 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3191 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3192 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3193 * as RECEIVE_MSG_AVAIL instead. 3194 * 3195 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3196 * assert the OEM[012] bits, and if it did, the driver would have to 3197 * change to handle that properly, we don't actually check for the 3198 * firmware version. 3199 * Device ID = 0x20 BMC on PowerEdge 8G servers 3200 * Device Revision = 0x80 3201 * Firmware Revision1 = 0x01 BMC version 1.40 3202 * Firmware Revision2 = 0x40 BCD encoded 3203 * IPMI Version = 0x51 IPMI 1.5 3204 * Manufacturer ID = A2 02 00 Dell IANA 3205 * 3206 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3207 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3208 * 3209 */ 3210 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3211 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3212 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3213 #define DELL_IANA_MFR_ID 0x0002a2 3214 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3215 { 3216 struct ipmi_device_id *id = &smi_info->device_id; 3217 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3218 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3219 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3220 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3221 smi_info->oem_data_avail_handler = 3222 oem_data_avail_to_receive_msg_avail; 3223 } else if (ipmi_version_major(id) < 1 || 3224 (ipmi_version_major(id) == 1 && 3225 ipmi_version_minor(id) < 5)) { 3226 smi_info->oem_data_avail_handler = 3227 oem_data_avail_to_receive_msg_avail; 3228 } 3229 } 3230 } 3231 3232 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3233 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3234 { 3235 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3236 3237 /* Make it a response */ 3238 msg->rsp[0] = msg->data[0] | 4; 3239 msg->rsp[1] = msg->data[1]; 3240 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3241 msg->rsp_size = 3; 3242 smi_info->curr_msg = NULL; 3243 deliver_recv_msg(smi_info, msg); 3244 } 3245 3246 /* 3247 * dell_poweredge_bt_xaction_handler 3248 * @info - smi_info.device_id must be populated 3249 * 3250 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3251 * not respond to a Get SDR command if the length of the data 3252 * requested is exactly 0x3A, which leads to command timeouts and no 3253 * data returned. This intercepts such commands, and causes userspace 3254 * callers to try again with a different-sized buffer, which succeeds. 3255 */ 3256 3257 #define STORAGE_NETFN 0x0A 3258 #define STORAGE_CMD_GET_SDR 0x23 3259 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3260 unsigned long unused, 3261 void *in) 3262 { 3263 struct smi_info *smi_info = in; 3264 unsigned char *data = smi_info->curr_msg->data; 3265 unsigned int size = smi_info->curr_msg->data_size; 3266 if (size >= 8 && 3267 (data[0]>>2) == STORAGE_NETFN && 3268 data[1] == STORAGE_CMD_GET_SDR && 3269 data[7] == 0x3A) { 3270 return_hosed_msg_badsize(smi_info); 3271 return NOTIFY_STOP; 3272 } 3273 return NOTIFY_DONE; 3274 } 3275 3276 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3277 .notifier_call = dell_poweredge_bt_xaction_handler, 3278 }; 3279 3280 /* 3281 * setup_dell_poweredge_bt_xaction_handler 3282 * @info - smi_info.device_id must be filled in already 3283 * 3284 * Fills in smi_info.device_id.start_transaction_pre_hook 3285 * when we know what function to use there. 3286 */ 3287 static void 3288 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3289 { 3290 struct ipmi_device_id *id = &smi_info->device_id; 3291 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3292 smi_info->si_type == SI_BT) 3293 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3294 } 3295 3296 /* 3297 * setup_oem_data_handler 3298 * @info - smi_info.device_id must be filled in already 3299 * 3300 * Fills in smi_info.device_id.oem_data_available_handler 3301 * when we know what function to use there. 3302 */ 3303 3304 static void setup_oem_data_handler(struct smi_info *smi_info) 3305 { 3306 setup_dell_poweredge_oem_data_handler(smi_info); 3307 } 3308 3309 static void setup_xaction_handlers(struct smi_info *smi_info) 3310 { 3311 setup_dell_poweredge_bt_xaction_handler(smi_info); 3312 } 3313 3314 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3315 { 3316 if (smi_info->thread != NULL) 3317 kthread_stop(smi_info->thread); 3318 if (smi_info->timer_running) 3319 del_timer_sync(&smi_info->si_timer); 3320 } 3321 3322 static struct ipmi_default_vals 3323 { 3324 int type; 3325 int port; 3326 } ipmi_defaults[] = 3327 { 3328 { .type = SI_KCS, .port = 0xca2 }, 3329 { .type = SI_SMIC, .port = 0xca9 }, 3330 { .type = SI_BT, .port = 0xe4 }, 3331 { .port = 0 } 3332 }; 3333 3334 static void default_find_bmc(void) 3335 { 3336 struct smi_info *info; 3337 int i; 3338 3339 for (i = 0; ; i++) { 3340 if (!ipmi_defaults[i].port) 3341 break; 3342 #ifdef CONFIG_PPC 3343 if (check_legacy_ioport(ipmi_defaults[i].port)) 3344 continue; 3345 #endif 3346 info = smi_info_alloc(); 3347 if (!info) 3348 return; 3349 3350 info->addr_source = SI_DEFAULT; 3351 3352 info->si_type = ipmi_defaults[i].type; 3353 info->io_setup = port_setup; 3354 info->io.addr_data = ipmi_defaults[i].port; 3355 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3356 3357 info->io.addr = NULL; 3358 info->io.regspacing = DEFAULT_REGSPACING; 3359 info->io.regsize = DEFAULT_REGSPACING; 3360 info->io.regshift = 0; 3361 3362 if (add_smi(info) == 0) { 3363 if ((try_smi_init(info)) == 0) { 3364 /* Found one... */ 3365 printk(KERN_INFO PFX "Found default %s" 3366 " state machine at %s address 0x%lx\n", 3367 si_to_str[info->si_type], 3368 addr_space_to_str[info->io.addr_type], 3369 info->io.addr_data); 3370 } else 3371 cleanup_one_si(info); 3372 } else { 3373 kfree(info); 3374 } 3375 } 3376 } 3377 3378 static int is_new_interface(struct smi_info *info) 3379 { 3380 struct smi_info *e; 3381 3382 list_for_each_entry(e, &smi_infos, link) { 3383 if (e->io.addr_type != info->io.addr_type) 3384 continue; 3385 if (e->io.addr_data == info->io.addr_data) 3386 return 0; 3387 } 3388 3389 return 1; 3390 } 3391 3392 static int add_smi(struct smi_info *new_smi) 3393 { 3394 int rv = 0; 3395 3396 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3397 ipmi_addr_src_to_str(new_smi->addr_source), 3398 si_to_str[new_smi->si_type]); 3399 mutex_lock(&smi_infos_lock); 3400 if (!is_new_interface(new_smi)) { 3401 printk(KERN_CONT " duplicate interface\n"); 3402 rv = -EBUSY; 3403 goto out_err; 3404 } 3405 3406 printk(KERN_CONT "\n"); 3407 3408 /* So we know not to free it unless we have allocated one. */ 3409 new_smi->intf = NULL; 3410 new_smi->si_sm = NULL; 3411 new_smi->handlers = NULL; 3412 3413 list_add_tail(&new_smi->link, &smi_infos); 3414 3415 out_err: 3416 mutex_unlock(&smi_infos_lock); 3417 return rv; 3418 } 3419 3420 static int try_smi_init(struct smi_info *new_smi) 3421 { 3422 int rv = 0; 3423 int i; 3424 3425 printk(KERN_INFO PFX "Trying %s-specified %s state" 3426 " machine at %s address 0x%lx, slave address 0x%x," 3427 " irq %d\n", 3428 ipmi_addr_src_to_str(new_smi->addr_source), 3429 si_to_str[new_smi->si_type], 3430 addr_space_to_str[new_smi->io.addr_type], 3431 new_smi->io.addr_data, 3432 new_smi->slave_addr, new_smi->irq); 3433 3434 switch (new_smi->si_type) { 3435 case SI_KCS: 3436 new_smi->handlers = &kcs_smi_handlers; 3437 break; 3438 3439 case SI_SMIC: 3440 new_smi->handlers = &smic_smi_handlers; 3441 break; 3442 3443 case SI_BT: 3444 new_smi->handlers = &bt_smi_handlers; 3445 break; 3446 3447 default: 3448 /* No support for anything else yet. */ 3449 rv = -EIO; 3450 goto out_err; 3451 } 3452 3453 /* Allocate the state machine's data and initialize it. */ 3454 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3455 if (!new_smi->si_sm) { 3456 printk(KERN_ERR PFX 3457 "Could not allocate state machine memory\n"); 3458 rv = -ENOMEM; 3459 goto out_err; 3460 } 3461 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3462 &new_smi->io); 3463 3464 /* Now that we know the I/O size, we can set up the I/O. */ 3465 rv = new_smi->io_setup(new_smi); 3466 if (rv) { 3467 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3468 goto out_err; 3469 } 3470 3471 /* Do low-level detection first. */ 3472 if (new_smi->handlers->detect(new_smi->si_sm)) { 3473 if (new_smi->addr_source) 3474 printk(KERN_INFO PFX "Interface detection failed\n"); 3475 rv = -ENODEV; 3476 goto out_err; 3477 } 3478 3479 /* 3480 * Attempt a get device id command. If it fails, we probably 3481 * don't have a BMC here. 3482 */ 3483 rv = try_get_dev_id(new_smi); 3484 if (rv) { 3485 if (new_smi->addr_source) 3486 printk(KERN_INFO PFX "There appears to be no BMC" 3487 " at this location\n"); 3488 goto out_err; 3489 } 3490 3491 check_clr_rcv_irq(new_smi); 3492 3493 setup_oem_data_handler(new_smi); 3494 setup_xaction_handlers(new_smi); 3495 3496 new_smi->waiting_msg = NULL; 3497 new_smi->curr_msg = NULL; 3498 atomic_set(&new_smi->req_events, 0); 3499 new_smi->run_to_completion = false; 3500 for (i = 0; i < SI_NUM_STATS; i++) 3501 atomic_set(&new_smi->stats[i], 0); 3502 3503 new_smi->interrupt_disabled = true; 3504 atomic_set(&new_smi->need_watch, 0); 3505 new_smi->intf_num = smi_num; 3506 smi_num++; 3507 3508 rv = try_enable_event_buffer(new_smi); 3509 if (rv == 0) 3510 new_smi->has_event_buffer = true; 3511 3512 /* 3513 * Start clearing the flags before we enable interrupts or the 3514 * timer to avoid racing with the timer. 3515 */ 3516 start_clear_flags(new_smi); 3517 3518 /* 3519 * IRQ is defined to be set when non-zero. req_events will 3520 * cause a global flags check that will enable interrupts. 3521 */ 3522 if (new_smi->irq) { 3523 new_smi->interrupt_disabled = false; 3524 atomic_set(&new_smi->req_events, 1); 3525 } 3526 3527 if (!new_smi->dev) { 3528 /* 3529 * If we don't already have a device from something 3530 * else (like PCI), then register a new one. 3531 */ 3532 new_smi->pdev = platform_device_alloc("ipmi_si", 3533 new_smi->intf_num); 3534 if (!new_smi->pdev) { 3535 printk(KERN_ERR PFX 3536 "Unable to allocate platform device\n"); 3537 goto out_err; 3538 } 3539 new_smi->dev = &new_smi->pdev->dev; 3540 new_smi->dev->driver = &ipmi_driver.driver; 3541 3542 rv = platform_device_add(new_smi->pdev); 3543 if (rv) { 3544 printk(KERN_ERR PFX 3545 "Unable to register system interface device:" 3546 " %d\n", 3547 rv); 3548 goto out_err; 3549 } 3550 new_smi->dev_registered = true; 3551 } 3552 3553 rv = ipmi_register_smi(&handlers, 3554 new_smi, 3555 &new_smi->device_id, 3556 new_smi->dev, 3557 new_smi->slave_addr); 3558 if (rv) { 3559 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3560 rv); 3561 goto out_err_stop_timer; 3562 } 3563 3564 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3565 &smi_type_proc_ops, 3566 new_smi); 3567 if (rv) { 3568 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3569 goto out_err_stop_timer; 3570 } 3571 3572 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3573 &smi_si_stats_proc_ops, 3574 new_smi); 3575 if (rv) { 3576 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3577 goto out_err_stop_timer; 3578 } 3579 3580 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3581 &smi_params_proc_ops, 3582 new_smi); 3583 if (rv) { 3584 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3585 goto out_err_stop_timer; 3586 } 3587 3588 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3589 si_to_str[new_smi->si_type]); 3590 3591 return 0; 3592 3593 out_err_stop_timer: 3594 wait_for_timer_and_thread(new_smi); 3595 3596 out_err: 3597 new_smi->interrupt_disabled = true; 3598 3599 if (new_smi->intf) { 3600 ipmi_smi_t intf = new_smi->intf; 3601 new_smi->intf = NULL; 3602 ipmi_unregister_smi(intf); 3603 } 3604 3605 if (new_smi->irq_cleanup) { 3606 new_smi->irq_cleanup(new_smi); 3607 new_smi->irq_cleanup = NULL; 3608 } 3609 3610 /* 3611 * Wait until we know that we are out of any interrupt 3612 * handlers might have been running before we freed the 3613 * interrupt. 3614 */ 3615 synchronize_sched(); 3616 3617 if (new_smi->si_sm) { 3618 if (new_smi->handlers) 3619 new_smi->handlers->cleanup(new_smi->si_sm); 3620 kfree(new_smi->si_sm); 3621 new_smi->si_sm = NULL; 3622 } 3623 if (new_smi->addr_source_cleanup) { 3624 new_smi->addr_source_cleanup(new_smi); 3625 new_smi->addr_source_cleanup = NULL; 3626 } 3627 if (new_smi->io_cleanup) { 3628 new_smi->io_cleanup(new_smi); 3629 new_smi->io_cleanup = NULL; 3630 } 3631 3632 if (new_smi->dev_registered) { 3633 platform_device_unregister(new_smi->pdev); 3634 new_smi->dev_registered = false; 3635 } 3636 3637 return rv; 3638 } 3639 3640 static int init_ipmi_si(void) 3641 { 3642 int i; 3643 char *str; 3644 int rv; 3645 struct smi_info *e; 3646 enum ipmi_addr_src type = SI_INVALID; 3647 3648 if (initialized) 3649 return 0; 3650 initialized = 1; 3651 3652 if (si_tryplatform) { 3653 rv = platform_driver_register(&ipmi_driver); 3654 if (rv) { 3655 printk(KERN_ERR PFX "Unable to register " 3656 "driver: %d\n", rv); 3657 return rv; 3658 } 3659 } 3660 3661 /* Parse out the si_type string into its components. */ 3662 str = si_type_str; 3663 if (*str != '\0') { 3664 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3665 si_type[i] = str; 3666 str = strchr(str, ','); 3667 if (str) { 3668 *str = '\0'; 3669 str++; 3670 } else { 3671 break; 3672 } 3673 } 3674 } 3675 3676 printk(KERN_INFO "IPMI System Interface driver.\n"); 3677 3678 /* If the user gave us a device, they presumably want us to use it */ 3679 if (!hardcode_find_bmc()) 3680 return 0; 3681 3682 #ifdef CONFIG_PCI 3683 if (si_trypci) { 3684 rv = pci_register_driver(&ipmi_pci_driver); 3685 if (rv) 3686 printk(KERN_ERR PFX "Unable to register " 3687 "PCI driver: %d\n", rv); 3688 else 3689 pci_registered = true; 3690 } 3691 #endif 3692 3693 #ifdef CONFIG_ACPI 3694 if (si_tryacpi) { 3695 pnp_register_driver(&ipmi_pnp_driver); 3696 pnp_registered = true; 3697 } 3698 #endif 3699 3700 #ifdef CONFIG_DMI 3701 if (si_trydmi) 3702 dmi_find_bmc(); 3703 #endif 3704 3705 #ifdef CONFIG_ACPI 3706 if (si_tryacpi) 3707 spmi_find_bmc(); 3708 #endif 3709 3710 #ifdef CONFIG_PARISC 3711 register_parisc_driver(&ipmi_parisc_driver); 3712 parisc_registered = true; 3713 /* poking PC IO addresses will crash machine, don't do it */ 3714 si_trydefaults = 0; 3715 #endif 3716 3717 /* We prefer devices with interrupts, but in the case of a machine 3718 with multiple BMCs we assume that there will be several instances 3719 of a given type so if we succeed in registering a type then also 3720 try to register everything else of the same type */ 3721 3722 mutex_lock(&smi_infos_lock); 3723 list_for_each_entry(e, &smi_infos, link) { 3724 /* Try to register a device if it has an IRQ and we either 3725 haven't successfully registered a device yet or this 3726 device has the same type as one we successfully registered */ 3727 if (e->irq && (!type || e->addr_source == type)) { 3728 if (!try_smi_init(e)) { 3729 type = e->addr_source; 3730 } 3731 } 3732 } 3733 3734 /* type will only have been set if we successfully registered an si */ 3735 if (type) { 3736 mutex_unlock(&smi_infos_lock); 3737 return 0; 3738 } 3739 3740 /* Fall back to the preferred device */ 3741 3742 list_for_each_entry(e, &smi_infos, link) { 3743 if (!e->irq && (!type || e->addr_source == type)) { 3744 if (!try_smi_init(e)) { 3745 type = e->addr_source; 3746 } 3747 } 3748 } 3749 mutex_unlock(&smi_infos_lock); 3750 3751 if (type) 3752 return 0; 3753 3754 if (si_trydefaults) { 3755 mutex_lock(&smi_infos_lock); 3756 if (list_empty(&smi_infos)) { 3757 /* No BMC was found, try defaults. */ 3758 mutex_unlock(&smi_infos_lock); 3759 default_find_bmc(); 3760 } else 3761 mutex_unlock(&smi_infos_lock); 3762 } 3763 3764 mutex_lock(&smi_infos_lock); 3765 if (unload_when_empty && list_empty(&smi_infos)) { 3766 mutex_unlock(&smi_infos_lock); 3767 cleanup_ipmi_si(); 3768 printk(KERN_WARNING PFX 3769 "Unable to find any System Interface(s)\n"); 3770 return -ENODEV; 3771 } else { 3772 mutex_unlock(&smi_infos_lock); 3773 return 0; 3774 } 3775 } 3776 module_init(init_ipmi_si); 3777 3778 static void cleanup_one_si(struct smi_info *to_clean) 3779 { 3780 int rv = 0; 3781 3782 if (!to_clean) 3783 return; 3784 3785 if (to_clean->intf) { 3786 ipmi_smi_t intf = to_clean->intf; 3787 3788 to_clean->intf = NULL; 3789 rv = ipmi_unregister_smi(intf); 3790 if (rv) { 3791 pr_err(PFX "Unable to unregister device: errno=%d\n", 3792 rv); 3793 } 3794 } 3795 3796 if (to_clean->dev) 3797 dev_set_drvdata(to_clean->dev, NULL); 3798 3799 list_del(&to_clean->link); 3800 3801 /* 3802 * Make sure that interrupts, the timer and the thread are 3803 * stopped and will not run again. 3804 */ 3805 if (to_clean->irq_cleanup) 3806 to_clean->irq_cleanup(to_clean); 3807 wait_for_timer_and_thread(to_clean); 3808 3809 /* 3810 * Timeouts are stopped, now make sure the interrupts are off 3811 * in the BMC. Note that timers and CPU interrupts are off, 3812 * so no need for locks. 3813 */ 3814 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3815 poll(to_clean); 3816 schedule_timeout_uninterruptible(1); 3817 } 3818 disable_si_irq(to_clean); 3819 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3820 poll(to_clean); 3821 schedule_timeout_uninterruptible(1); 3822 } 3823 3824 if (to_clean->handlers) 3825 to_clean->handlers->cleanup(to_clean->si_sm); 3826 3827 kfree(to_clean->si_sm); 3828 3829 if (to_clean->addr_source_cleanup) 3830 to_clean->addr_source_cleanup(to_clean); 3831 if (to_clean->io_cleanup) 3832 to_clean->io_cleanup(to_clean); 3833 3834 if (to_clean->dev_registered) 3835 platform_device_unregister(to_clean->pdev); 3836 3837 kfree(to_clean); 3838 } 3839 3840 static void cleanup_ipmi_si(void) 3841 { 3842 struct smi_info *e, *tmp_e; 3843 3844 if (!initialized) 3845 return; 3846 3847 #ifdef CONFIG_PCI 3848 if (pci_registered) 3849 pci_unregister_driver(&ipmi_pci_driver); 3850 #endif 3851 #ifdef CONFIG_ACPI 3852 if (pnp_registered) 3853 pnp_unregister_driver(&ipmi_pnp_driver); 3854 #endif 3855 #ifdef CONFIG_PARISC 3856 if (parisc_registered) 3857 unregister_parisc_driver(&ipmi_parisc_driver); 3858 #endif 3859 3860 platform_driver_unregister(&ipmi_driver); 3861 3862 mutex_lock(&smi_infos_lock); 3863 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3864 cleanup_one_si(e); 3865 mutex_unlock(&smi_infos_lock); 3866 } 3867 module_exit(cleanup_ipmi_si); 3868 3869 MODULE_LICENSE("GPL"); 3870 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3871 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3872 " system interfaces."); 3873