1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/of_device.h> 68 #include <linux/of_platform.h> 69 #include <linux/of_address.h> 70 #include <linux/of_irq.h> 71 #include <linux/acpi.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_GETTING_MESSAGES, 96 SI_CHECKING_ENABLES, 97 SI_SETTING_ENABLES 98 /* FIXME - add watchdog stuff. */ 99 }; 100 101 /* Some BT-specific defines we need here. */ 102 #define IPMI_BT_INTMASK_REG 2 103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106 enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108 }; 109 110 static const char * const si_to_str[] = { "kcs", "smic", "bt" }; 111 112 #define DEVICE_NAME "ipmi_si" 113 114 static struct platform_driver ipmi_driver; 115 116 /* 117 * Indexes into stats[] in smi_info below. 118 */ 119 enum si_stat_indexes { 120 /* 121 * Number of times the driver requested a timer while an operation 122 * was in progress. 123 */ 124 SI_STAT_short_timeouts = 0, 125 126 /* 127 * Number of times the driver requested a timer while nothing was in 128 * progress. 129 */ 130 SI_STAT_long_timeouts, 131 132 /* Number of times the interface was idle while being polled. */ 133 SI_STAT_idles, 134 135 /* Number of interrupts the driver handled. */ 136 SI_STAT_interrupts, 137 138 /* Number of time the driver got an ATTN from the hardware. */ 139 SI_STAT_attentions, 140 141 /* Number of times the driver requested flags from the hardware. */ 142 SI_STAT_flag_fetches, 143 144 /* Number of times the hardware didn't follow the state machine. */ 145 SI_STAT_hosed_count, 146 147 /* Number of completed messages. */ 148 SI_STAT_complete_transactions, 149 150 /* Number of IPMI events received from the hardware. */ 151 SI_STAT_events, 152 153 /* Number of watchdog pretimeouts. */ 154 SI_STAT_watchdog_pretimeouts, 155 156 /* Number of asynchronous messages received. */ 157 SI_STAT_incoming_messages, 158 159 160 /* This *must* remain last, add new values above this. */ 161 SI_NUM_STATS 162 }; 163 164 struct smi_info { 165 int intf_num; 166 ipmi_smi_t intf; 167 struct si_sm_data *si_sm; 168 const struct si_sm_handlers *handlers; 169 enum si_type si_type; 170 spinlock_t si_lock; 171 struct ipmi_smi_msg *waiting_msg; 172 struct ipmi_smi_msg *curr_msg; 173 enum si_intf_state si_state; 174 175 /* 176 * Used to handle the various types of I/O that can occur with 177 * IPMI 178 */ 179 struct si_sm_io io; 180 int (*io_setup)(struct smi_info *info); 181 void (*io_cleanup)(struct smi_info *info); 182 int (*irq_setup)(struct smi_info *info); 183 void (*irq_cleanup)(struct smi_info *info); 184 unsigned int io_size; 185 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 186 void (*addr_source_cleanup)(struct smi_info *info); 187 void *addr_source_data; 188 189 /* 190 * Per-OEM handler, called from handle_flags(). Returns 1 191 * when handle_flags() needs to be re-run or 0 indicating it 192 * set si_state itself. 193 */ 194 int (*oem_data_avail_handler)(struct smi_info *smi_info); 195 196 /* 197 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 198 * is set to hold the flags until we are done handling everything 199 * from the flags. 200 */ 201 #define RECEIVE_MSG_AVAIL 0x01 202 #define EVENT_MSG_BUFFER_FULL 0x02 203 #define WDT_PRE_TIMEOUT_INT 0x08 204 #define OEM0_DATA_AVAIL 0x20 205 #define OEM1_DATA_AVAIL 0x40 206 #define OEM2_DATA_AVAIL 0x80 207 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 208 OEM1_DATA_AVAIL | \ 209 OEM2_DATA_AVAIL) 210 unsigned char msg_flags; 211 212 /* Does the BMC have an event buffer? */ 213 bool has_event_buffer; 214 215 /* 216 * If set to true, this will request events the next time the 217 * state machine is idle. 218 */ 219 atomic_t req_events; 220 221 /* 222 * If true, run the state machine to completion on every send 223 * call. Generally used after a panic to make sure stuff goes 224 * out. 225 */ 226 bool run_to_completion; 227 228 /* The I/O port of an SI interface. */ 229 int port; 230 231 /* 232 * The space between start addresses of the two ports. For 233 * instance, if the first port is 0xca2 and the spacing is 4, then 234 * the second port is 0xca6. 235 */ 236 unsigned int spacing; 237 238 /* zero if no irq; */ 239 int irq; 240 241 /* The timer for this si. */ 242 struct timer_list si_timer; 243 244 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 245 bool timer_running; 246 247 /* The time (in jiffies) the last timeout occurred at. */ 248 unsigned long last_timeout_jiffies; 249 250 /* Are we waiting for the events, pretimeouts, received msgs? */ 251 atomic_t need_watch; 252 253 /* 254 * The driver will disable interrupts when it gets into a 255 * situation where it cannot handle messages due to lack of 256 * memory. Once that situation clears up, it will re-enable 257 * interrupts. 258 */ 259 bool interrupt_disabled; 260 261 /* 262 * Does the BMC support events? 263 */ 264 bool supports_event_msg_buff; 265 266 /* 267 * Can we disable interrupts the global enables receive irq 268 * bit? There are currently two forms of brokenness, some 269 * systems cannot disable the bit (which is technically within 270 * the spec but a bad idea) and some systems have the bit 271 * forced to zero even though interrupts work (which is 272 * clearly outside the spec). The next bool tells which form 273 * of brokenness is present. 274 */ 275 bool cannot_disable_irq; 276 277 /* 278 * Some systems are broken and cannot set the irq enable 279 * bit, even if they support interrupts. 280 */ 281 bool irq_enable_broken; 282 283 /* 284 * Did we get an attention that we did not handle? 285 */ 286 bool got_attn; 287 288 /* From the get device id response... */ 289 struct ipmi_device_id device_id; 290 291 /* Driver model stuff. */ 292 struct device *dev; 293 struct platform_device *pdev; 294 295 /* 296 * True if we allocated the device, false if it came from 297 * someplace else (like PCI). 298 */ 299 bool dev_registered; 300 301 /* Slave address, could be reported from DMI. */ 302 unsigned char slave_addr; 303 304 /* Counters and things for the proc filesystem. */ 305 atomic_t stats[SI_NUM_STATS]; 306 307 struct task_struct *thread; 308 309 struct list_head link; 310 union ipmi_smi_info_union addr_info; 311 }; 312 313 #define smi_inc_stat(smi, stat) \ 314 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 315 #define smi_get_stat(smi, stat) \ 316 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 317 318 #define SI_MAX_PARMS 4 319 320 static int force_kipmid[SI_MAX_PARMS]; 321 static int num_force_kipmid; 322 #ifdef CONFIG_PCI 323 static bool pci_registered; 324 #endif 325 #ifdef CONFIG_PARISC 326 static bool parisc_registered; 327 #endif 328 329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 330 static int num_max_busy_us; 331 332 static bool unload_when_empty = true; 333 334 static int add_smi(struct smi_info *smi); 335 static int try_smi_init(struct smi_info *smi); 336 static void cleanup_one_si(struct smi_info *to_clean); 337 static void cleanup_ipmi_si(void); 338 339 #ifdef DEBUG_TIMING 340 void debug_timestamp(char *msg) 341 { 342 struct timespec64 t; 343 344 getnstimeofday64(&t); 345 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 346 } 347 #else 348 #define debug_timestamp(x) 349 #endif 350 351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 352 static int register_xaction_notifier(struct notifier_block *nb) 353 { 354 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 355 } 356 357 static void deliver_recv_msg(struct smi_info *smi_info, 358 struct ipmi_smi_msg *msg) 359 { 360 /* Deliver the message to the upper layer. */ 361 if (smi_info->intf) 362 ipmi_smi_msg_received(smi_info->intf, msg); 363 else 364 ipmi_free_smi_msg(msg); 365 } 366 367 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 368 { 369 struct ipmi_smi_msg *msg = smi_info->curr_msg; 370 371 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 372 cCode = IPMI_ERR_UNSPECIFIED; 373 /* else use it as is */ 374 375 /* Make it a response */ 376 msg->rsp[0] = msg->data[0] | 4; 377 msg->rsp[1] = msg->data[1]; 378 msg->rsp[2] = cCode; 379 msg->rsp_size = 3; 380 381 smi_info->curr_msg = NULL; 382 deliver_recv_msg(smi_info, msg); 383 } 384 385 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 386 { 387 int rv; 388 389 if (!smi_info->waiting_msg) { 390 smi_info->curr_msg = NULL; 391 rv = SI_SM_IDLE; 392 } else { 393 int err; 394 395 smi_info->curr_msg = smi_info->waiting_msg; 396 smi_info->waiting_msg = NULL; 397 debug_timestamp("Start2"); 398 err = atomic_notifier_call_chain(&xaction_notifier_list, 399 0, smi_info); 400 if (err & NOTIFY_STOP_MASK) { 401 rv = SI_SM_CALL_WITHOUT_DELAY; 402 goto out; 403 } 404 err = smi_info->handlers->start_transaction( 405 smi_info->si_sm, 406 smi_info->curr_msg->data, 407 smi_info->curr_msg->data_size); 408 if (err) 409 return_hosed_msg(smi_info, err); 410 411 rv = SI_SM_CALL_WITHOUT_DELAY; 412 } 413 out: 414 return rv; 415 } 416 417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 418 { 419 smi_info->last_timeout_jiffies = jiffies; 420 mod_timer(&smi_info->si_timer, new_val); 421 smi_info->timer_running = true; 422 } 423 424 /* 425 * Start a new message and (re)start the timer and thread. 426 */ 427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 428 unsigned int size) 429 { 430 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 431 432 if (smi_info->thread) 433 wake_up_process(smi_info->thread); 434 435 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 436 } 437 438 static void start_check_enables(struct smi_info *smi_info, bool start_timer) 439 { 440 unsigned char msg[2]; 441 442 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 443 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 444 445 if (start_timer) 446 start_new_msg(smi_info, msg, 2); 447 else 448 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 449 smi_info->si_state = SI_CHECKING_ENABLES; 450 } 451 452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer) 453 { 454 unsigned char msg[3]; 455 456 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 457 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 458 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 459 msg[2] = WDT_PRE_TIMEOUT_INT; 460 461 if (start_timer) 462 start_new_msg(smi_info, msg, 3); 463 else 464 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 465 smi_info->si_state = SI_CLEARING_FLAGS; 466 } 467 468 static void start_getting_msg_queue(struct smi_info *smi_info) 469 { 470 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 471 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 472 smi_info->curr_msg->data_size = 2; 473 474 start_new_msg(smi_info, smi_info->curr_msg->data, 475 smi_info->curr_msg->data_size); 476 smi_info->si_state = SI_GETTING_MESSAGES; 477 } 478 479 static void start_getting_events(struct smi_info *smi_info) 480 { 481 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 482 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 483 smi_info->curr_msg->data_size = 2; 484 485 start_new_msg(smi_info, smi_info->curr_msg->data, 486 smi_info->curr_msg->data_size); 487 smi_info->si_state = SI_GETTING_EVENTS; 488 } 489 490 /* 491 * When we have a situtaion where we run out of memory and cannot 492 * allocate messages, we just leave them in the BMC and run the system 493 * polled until we can allocate some memory. Once we have some 494 * memory, we will re-enable the interrupt. 495 * 496 * Note that we cannot just use disable_irq(), since the interrupt may 497 * be shared. 498 */ 499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer) 500 { 501 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 502 smi_info->interrupt_disabled = true; 503 start_check_enables(smi_info, start_timer); 504 return true; 505 } 506 return false; 507 } 508 509 static inline bool enable_si_irq(struct smi_info *smi_info) 510 { 511 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 512 smi_info->interrupt_disabled = false; 513 start_check_enables(smi_info, true); 514 return true; 515 } 516 return false; 517 } 518 519 /* 520 * Allocate a message. If unable to allocate, start the interrupt 521 * disable process and return NULL. If able to allocate but 522 * interrupts are disabled, free the message and return NULL after 523 * starting the interrupt enable process. 524 */ 525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 526 { 527 struct ipmi_smi_msg *msg; 528 529 msg = ipmi_alloc_smi_msg(); 530 if (!msg) { 531 if (!disable_si_irq(smi_info, true)) 532 smi_info->si_state = SI_NORMAL; 533 } else if (enable_si_irq(smi_info)) { 534 ipmi_free_smi_msg(msg); 535 msg = NULL; 536 } 537 return msg; 538 } 539 540 static void handle_flags(struct smi_info *smi_info) 541 { 542 retry: 543 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 544 /* Watchdog pre-timeout */ 545 smi_inc_stat(smi_info, watchdog_pretimeouts); 546 547 start_clear_flags(smi_info, true); 548 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 549 if (smi_info->intf) 550 ipmi_smi_watchdog_pretimeout(smi_info->intf); 551 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 552 /* Messages available. */ 553 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 554 if (!smi_info->curr_msg) 555 return; 556 557 start_getting_msg_queue(smi_info); 558 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 559 /* Events available. */ 560 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 561 if (!smi_info->curr_msg) 562 return; 563 564 start_getting_events(smi_info); 565 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 566 smi_info->oem_data_avail_handler) { 567 if (smi_info->oem_data_avail_handler(smi_info)) 568 goto retry; 569 } else 570 smi_info->si_state = SI_NORMAL; 571 } 572 573 /* 574 * Global enables we care about. 575 */ 576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 577 IPMI_BMC_EVT_MSG_INTR) 578 579 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 580 bool *irq_on) 581 { 582 u8 enables = 0; 583 584 if (smi_info->supports_event_msg_buff) 585 enables |= IPMI_BMC_EVT_MSG_BUFF; 586 587 if (((smi_info->irq && !smi_info->interrupt_disabled) || 588 smi_info->cannot_disable_irq) && 589 !smi_info->irq_enable_broken) 590 enables |= IPMI_BMC_RCV_MSG_INTR; 591 592 if (smi_info->supports_event_msg_buff && 593 smi_info->irq && !smi_info->interrupt_disabled && 594 !smi_info->irq_enable_broken) 595 enables |= IPMI_BMC_EVT_MSG_INTR; 596 597 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 598 599 return enables; 600 } 601 602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 603 { 604 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 605 606 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 607 608 if ((bool)irqstate == irq_on) 609 return; 610 611 if (irq_on) 612 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 613 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 614 else 615 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 616 } 617 618 static void handle_transaction_done(struct smi_info *smi_info) 619 { 620 struct ipmi_smi_msg *msg; 621 622 debug_timestamp("Done"); 623 switch (smi_info->si_state) { 624 case SI_NORMAL: 625 if (!smi_info->curr_msg) 626 break; 627 628 smi_info->curr_msg->rsp_size 629 = smi_info->handlers->get_result( 630 smi_info->si_sm, 631 smi_info->curr_msg->rsp, 632 IPMI_MAX_MSG_LENGTH); 633 634 /* 635 * Do this here becase deliver_recv_msg() releases the 636 * lock, and a new message can be put in during the 637 * time the lock is released. 638 */ 639 msg = smi_info->curr_msg; 640 smi_info->curr_msg = NULL; 641 deliver_recv_msg(smi_info, msg); 642 break; 643 644 case SI_GETTING_FLAGS: 645 { 646 unsigned char msg[4]; 647 unsigned int len; 648 649 /* We got the flags from the SMI, now handle them. */ 650 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 651 if (msg[2] != 0) { 652 /* Error fetching flags, just give up for now. */ 653 smi_info->si_state = SI_NORMAL; 654 } else if (len < 4) { 655 /* 656 * Hmm, no flags. That's technically illegal, but 657 * don't use uninitialized data. 658 */ 659 smi_info->si_state = SI_NORMAL; 660 } else { 661 smi_info->msg_flags = msg[3]; 662 handle_flags(smi_info); 663 } 664 break; 665 } 666 667 case SI_CLEARING_FLAGS: 668 { 669 unsigned char msg[3]; 670 671 /* We cleared the flags. */ 672 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 673 if (msg[2] != 0) { 674 /* Error clearing flags */ 675 dev_warn(smi_info->dev, 676 "Error clearing flags: %2.2x\n", msg[2]); 677 } 678 smi_info->si_state = SI_NORMAL; 679 break; 680 } 681 682 case SI_GETTING_EVENTS: 683 { 684 smi_info->curr_msg->rsp_size 685 = smi_info->handlers->get_result( 686 smi_info->si_sm, 687 smi_info->curr_msg->rsp, 688 IPMI_MAX_MSG_LENGTH); 689 690 /* 691 * Do this here becase deliver_recv_msg() releases the 692 * lock, and a new message can be put in during the 693 * time the lock is released. 694 */ 695 msg = smi_info->curr_msg; 696 smi_info->curr_msg = NULL; 697 if (msg->rsp[2] != 0) { 698 /* Error getting event, probably done. */ 699 msg->done(msg); 700 701 /* Take off the event flag. */ 702 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 703 handle_flags(smi_info); 704 } else { 705 smi_inc_stat(smi_info, events); 706 707 /* 708 * Do this before we deliver the message 709 * because delivering the message releases the 710 * lock and something else can mess with the 711 * state. 712 */ 713 handle_flags(smi_info); 714 715 deliver_recv_msg(smi_info, msg); 716 } 717 break; 718 } 719 720 case SI_GETTING_MESSAGES: 721 { 722 smi_info->curr_msg->rsp_size 723 = smi_info->handlers->get_result( 724 smi_info->si_sm, 725 smi_info->curr_msg->rsp, 726 IPMI_MAX_MSG_LENGTH); 727 728 /* 729 * Do this here becase deliver_recv_msg() releases the 730 * lock, and a new message can be put in during the 731 * time the lock is released. 732 */ 733 msg = smi_info->curr_msg; 734 smi_info->curr_msg = NULL; 735 if (msg->rsp[2] != 0) { 736 /* Error getting event, probably done. */ 737 msg->done(msg); 738 739 /* Take off the msg flag. */ 740 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 741 handle_flags(smi_info); 742 } else { 743 smi_inc_stat(smi_info, incoming_messages); 744 745 /* 746 * Do this before we deliver the message 747 * because delivering the message releases the 748 * lock and something else can mess with the 749 * state. 750 */ 751 handle_flags(smi_info); 752 753 deliver_recv_msg(smi_info, msg); 754 } 755 break; 756 } 757 758 case SI_CHECKING_ENABLES: 759 { 760 unsigned char msg[4]; 761 u8 enables; 762 bool irq_on; 763 764 /* We got the flags from the SMI, now handle them. */ 765 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 766 if (msg[2] != 0) { 767 dev_warn(smi_info->dev, 768 "Couldn't get irq info: %x.\n", msg[2]); 769 dev_warn(smi_info->dev, 770 "Maybe ok, but ipmi might run very slowly.\n"); 771 smi_info->si_state = SI_NORMAL; 772 break; 773 } 774 enables = current_global_enables(smi_info, 0, &irq_on); 775 if (smi_info->si_type == SI_BT) 776 /* BT has its own interrupt enable bit. */ 777 check_bt_irq(smi_info, irq_on); 778 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 779 /* Enables are not correct, fix them. */ 780 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 781 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 782 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 783 smi_info->handlers->start_transaction( 784 smi_info->si_sm, msg, 3); 785 smi_info->si_state = SI_SETTING_ENABLES; 786 } else if (smi_info->supports_event_msg_buff) { 787 smi_info->curr_msg = ipmi_alloc_smi_msg(); 788 if (!smi_info->curr_msg) { 789 smi_info->si_state = SI_NORMAL; 790 break; 791 } 792 start_getting_events(smi_info); 793 } else { 794 smi_info->si_state = SI_NORMAL; 795 } 796 break; 797 } 798 799 case SI_SETTING_ENABLES: 800 { 801 unsigned char msg[4]; 802 803 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 804 if (msg[2] != 0) 805 dev_warn(smi_info->dev, 806 "Could not set the global enables: 0x%x.\n", 807 msg[2]); 808 809 if (smi_info->supports_event_msg_buff) { 810 smi_info->curr_msg = ipmi_alloc_smi_msg(); 811 if (!smi_info->curr_msg) { 812 smi_info->si_state = SI_NORMAL; 813 break; 814 } 815 start_getting_events(smi_info); 816 } else { 817 smi_info->si_state = SI_NORMAL; 818 } 819 break; 820 } 821 } 822 } 823 824 /* 825 * Called on timeouts and events. Timeouts should pass the elapsed 826 * time, interrupts should pass in zero. Must be called with 827 * si_lock held and interrupts disabled. 828 */ 829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 830 int time) 831 { 832 enum si_sm_result si_sm_result; 833 834 restart: 835 /* 836 * There used to be a loop here that waited a little while 837 * (around 25us) before giving up. That turned out to be 838 * pointless, the minimum delays I was seeing were in the 300us 839 * range, which is far too long to wait in an interrupt. So 840 * we just run until the state machine tells us something 841 * happened or it needs a delay. 842 */ 843 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 844 time = 0; 845 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 846 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 847 848 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 849 smi_inc_stat(smi_info, complete_transactions); 850 851 handle_transaction_done(smi_info); 852 goto restart; 853 } else if (si_sm_result == SI_SM_HOSED) { 854 smi_inc_stat(smi_info, hosed_count); 855 856 /* 857 * Do the before return_hosed_msg, because that 858 * releases the lock. 859 */ 860 smi_info->si_state = SI_NORMAL; 861 if (smi_info->curr_msg != NULL) { 862 /* 863 * If we were handling a user message, format 864 * a response to send to the upper layer to 865 * tell it about the error. 866 */ 867 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 868 } 869 goto restart; 870 } 871 872 /* 873 * We prefer handling attn over new messages. But don't do 874 * this if there is not yet an upper layer to handle anything. 875 */ 876 if (likely(smi_info->intf) && 877 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 878 unsigned char msg[2]; 879 880 if (smi_info->si_state != SI_NORMAL) { 881 /* 882 * We got an ATTN, but we are doing something else. 883 * Handle the ATTN later. 884 */ 885 smi_info->got_attn = true; 886 } else { 887 smi_info->got_attn = false; 888 smi_inc_stat(smi_info, attentions); 889 890 /* 891 * Got a attn, send down a get message flags to see 892 * what's causing it. It would be better to handle 893 * this in the upper layer, but due to the way 894 * interrupts work with the SMI, that's not really 895 * possible. 896 */ 897 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 898 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 899 900 start_new_msg(smi_info, msg, 2); 901 smi_info->si_state = SI_GETTING_FLAGS; 902 goto restart; 903 } 904 } 905 906 /* If we are currently idle, try to start the next message. */ 907 if (si_sm_result == SI_SM_IDLE) { 908 smi_inc_stat(smi_info, idles); 909 910 si_sm_result = start_next_msg(smi_info); 911 if (si_sm_result != SI_SM_IDLE) 912 goto restart; 913 } 914 915 if ((si_sm_result == SI_SM_IDLE) 916 && (atomic_read(&smi_info->req_events))) { 917 /* 918 * We are idle and the upper layer requested that I fetch 919 * events, so do so. 920 */ 921 atomic_set(&smi_info->req_events, 0); 922 923 /* 924 * Take this opportunity to check the interrupt and 925 * message enable state for the BMC. The BMC can be 926 * asynchronously reset, and may thus get interrupts 927 * disable and messages disabled. 928 */ 929 if (smi_info->supports_event_msg_buff || smi_info->irq) { 930 start_check_enables(smi_info, true); 931 } else { 932 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 933 if (!smi_info->curr_msg) 934 goto out; 935 936 start_getting_events(smi_info); 937 } 938 goto restart; 939 } 940 941 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 942 /* Ok it if fails, the timer will just go off. */ 943 if (del_timer(&smi_info->si_timer)) 944 smi_info->timer_running = false; 945 } 946 947 out: 948 return si_sm_result; 949 } 950 951 static void check_start_timer_thread(struct smi_info *smi_info) 952 { 953 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 954 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 955 956 if (smi_info->thread) 957 wake_up_process(smi_info->thread); 958 959 start_next_msg(smi_info); 960 smi_event_handler(smi_info, 0); 961 } 962 } 963 964 static void flush_messages(void *send_info) 965 { 966 struct smi_info *smi_info = send_info; 967 enum si_sm_result result; 968 969 /* 970 * Currently, this function is called only in run-to-completion 971 * mode. This means we are single-threaded, no need for locks. 972 */ 973 result = smi_event_handler(smi_info, 0); 974 while (result != SI_SM_IDLE) { 975 udelay(SI_SHORT_TIMEOUT_USEC); 976 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 977 } 978 } 979 980 static void sender(void *send_info, 981 struct ipmi_smi_msg *msg) 982 { 983 struct smi_info *smi_info = send_info; 984 unsigned long flags; 985 986 debug_timestamp("Enqueue"); 987 988 if (smi_info->run_to_completion) { 989 /* 990 * If we are running to completion, start it. Upper 991 * layer will call flush_messages to clear it out. 992 */ 993 smi_info->waiting_msg = msg; 994 return; 995 } 996 997 spin_lock_irqsave(&smi_info->si_lock, flags); 998 /* 999 * The following two lines don't need to be under the lock for 1000 * the lock's sake, but they do need SMP memory barriers to 1001 * avoid getting things out of order. We are already claiming 1002 * the lock, anyway, so just do it under the lock to avoid the 1003 * ordering problem. 1004 */ 1005 BUG_ON(smi_info->waiting_msg); 1006 smi_info->waiting_msg = msg; 1007 check_start_timer_thread(smi_info); 1008 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1009 } 1010 1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 1012 { 1013 struct smi_info *smi_info = send_info; 1014 1015 smi_info->run_to_completion = i_run_to_completion; 1016 if (i_run_to_completion) 1017 flush_messages(smi_info); 1018 } 1019 1020 /* 1021 * Use -1 in the nsec value of the busy waiting timespec to tell that 1022 * we are spinning in kipmid looking for something and not delaying 1023 * between checks 1024 */ 1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 1026 { 1027 ts->tv_nsec = -1; 1028 } 1029 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1030 { 1031 return ts->tv_nsec != -1; 1032 } 1033 1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1035 const struct smi_info *smi_info, 1036 struct timespec64 *busy_until) 1037 { 1038 unsigned int max_busy_us = 0; 1039 1040 if (smi_info->intf_num < num_max_busy_us) 1041 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1042 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1043 ipmi_si_set_not_busy(busy_until); 1044 else if (!ipmi_si_is_busy(busy_until)) { 1045 getnstimeofday64(busy_until); 1046 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1047 } else { 1048 struct timespec64 now; 1049 1050 getnstimeofday64(&now); 1051 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1052 ipmi_si_set_not_busy(busy_until); 1053 return 0; 1054 } 1055 } 1056 return 1; 1057 } 1058 1059 1060 /* 1061 * A busy-waiting loop for speeding up IPMI operation. 1062 * 1063 * Lousy hardware makes this hard. This is only enabled for systems 1064 * that are not BT and do not have interrupts. It starts spinning 1065 * when an operation is complete or until max_busy tells it to stop 1066 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1067 * Documentation/IPMI.txt for details. 1068 */ 1069 static int ipmi_thread(void *data) 1070 { 1071 struct smi_info *smi_info = data; 1072 unsigned long flags; 1073 enum si_sm_result smi_result; 1074 struct timespec64 busy_until; 1075 1076 ipmi_si_set_not_busy(&busy_until); 1077 set_user_nice(current, MAX_NICE); 1078 while (!kthread_should_stop()) { 1079 int busy_wait; 1080 1081 spin_lock_irqsave(&(smi_info->si_lock), flags); 1082 smi_result = smi_event_handler(smi_info, 0); 1083 1084 /* 1085 * If the driver is doing something, there is a possible 1086 * race with the timer. If the timer handler see idle, 1087 * and the thread here sees something else, the timer 1088 * handler won't restart the timer even though it is 1089 * required. So start it here if necessary. 1090 */ 1091 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1092 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1093 1094 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1095 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1096 &busy_until); 1097 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1098 ; /* do nothing */ 1099 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1100 schedule(); 1101 else if (smi_result == SI_SM_IDLE) { 1102 if (atomic_read(&smi_info->need_watch)) { 1103 schedule_timeout_interruptible(100); 1104 } else { 1105 /* Wait to be woken up when we are needed. */ 1106 __set_current_state(TASK_INTERRUPTIBLE); 1107 schedule(); 1108 } 1109 } else 1110 schedule_timeout_interruptible(1); 1111 } 1112 return 0; 1113 } 1114 1115 1116 static void poll(void *send_info) 1117 { 1118 struct smi_info *smi_info = send_info; 1119 unsigned long flags = 0; 1120 bool run_to_completion = smi_info->run_to_completion; 1121 1122 /* 1123 * Make sure there is some delay in the poll loop so we can 1124 * drive time forward and timeout things. 1125 */ 1126 udelay(10); 1127 if (!run_to_completion) 1128 spin_lock_irqsave(&smi_info->si_lock, flags); 1129 smi_event_handler(smi_info, 10); 1130 if (!run_to_completion) 1131 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1132 } 1133 1134 static void request_events(void *send_info) 1135 { 1136 struct smi_info *smi_info = send_info; 1137 1138 if (!smi_info->has_event_buffer) 1139 return; 1140 1141 atomic_set(&smi_info->req_events, 1); 1142 } 1143 1144 static void set_need_watch(void *send_info, bool enable) 1145 { 1146 struct smi_info *smi_info = send_info; 1147 unsigned long flags; 1148 1149 atomic_set(&smi_info->need_watch, enable); 1150 spin_lock_irqsave(&smi_info->si_lock, flags); 1151 check_start_timer_thread(smi_info); 1152 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1153 } 1154 1155 static int initialized; 1156 1157 static void smi_timeout(unsigned long data) 1158 { 1159 struct smi_info *smi_info = (struct smi_info *) data; 1160 enum si_sm_result smi_result; 1161 unsigned long flags; 1162 unsigned long jiffies_now; 1163 long time_diff; 1164 long timeout; 1165 1166 spin_lock_irqsave(&(smi_info->si_lock), flags); 1167 debug_timestamp("Timer"); 1168 1169 jiffies_now = jiffies; 1170 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1171 * SI_USEC_PER_JIFFY); 1172 smi_result = smi_event_handler(smi_info, time_diff); 1173 1174 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1175 /* Running with interrupts, only do long timeouts. */ 1176 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1177 smi_inc_stat(smi_info, long_timeouts); 1178 goto do_mod_timer; 1179 } 1180 1181 /* 1182 * If the state machine asks for a short delay, then shorten 1183 * the timer timeout. 1184 */ 1185 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1186 smi_inc_stat(smi_info, short_timeouts); 1187 timeout = jiffies + 1; 1188 } else { 1189 smi_inc_stat(smi_info, long_timeouts); 1190 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1191 } 1192 1193 do_mod_timer: 1194 if (smi_result != SI_SM_IDLE) 1195 smi_mod_timer(smi_info, timeout); 1196 else 1197 smi_info->timer_running = false; 1198 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1199 } 1200 1201 static irqreturn_t si_irq_handler(int irq, void *data) 1202 { 1203 struct smi_info *smi_info = data; 1204 unsigned long flags; 1205 1206 spin_lock_irqsave(&(smi_info->si_lock), flags); 1207 1208 smi_inc_stat(smi_info, interrupts); 1209 1210 debug_timestamp("Interrupt"); 1211 1212 smi_event_handler(smi_info, 0); 1213 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1214 return IRQ_HANDLED; 1215 } 1216 1217 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1218 { 1219 struct smi_info *smi_info = data; 1220 /* We need to clear the IRQ flag for the BT interface. */ 1221 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1222 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1223 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1224 return si_irq_handler(irq, data); 1225 } 1226 1227 static int smi_start_processing(void *send_info, 1228 ipmi_smi_t intf) 1229 { 1230 struct smi_info *new_smi = send_info; 1231 int enable = 0; 1232 1233 new_smi->intf = intf; 1234 1235 /* Set up the timer that drives the interface. */ 1236 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1237 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1238 1239 /* Try to claim any interrupts. */ 1240 if (new_smi->irq_setup) 1241 new_smi->irq_setup(new_smi); 1242 1243 /* 1244 * Check if the user forcefully enabled the daemon. 1245 */ 1246 if (new_smi->intf_num < num_force_kipmid) 1247 enable = force_kipmid[new_smi->intf_num]; 1248 /* 1249 * The BT interface is efficient enough to not need a thread, 1250 * and there is no need for a thread if we have interrupts. 1251 */ 1252 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1253 enable = 1; 1254 1255 if (enable) { 1256 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1257 "kipmi%d", new_smi->intf_num); 1258 if (IS_ERR(new_smi->thread)) { 1259 dev_notice(new_smi->dev, "Could not start" 1260 " kernel thread due to error %ld, only using" 1261 " timers to drive the interface\n", 1262 PTR_ERR(new_smi->thread)); 1263 new_smi->thread = NULL; 1264 } 1265 } 1266 1267 return 0; 1268 } 1269 1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1271 { 1272 struct smi_info *smi = send_info; 1273 1274 data->addr_src = smi->addr_source; 1275 data->dev = smi->dev; 1276 data->addr_info = smi->addr_info; 1277 get_device(smi->dev); 1278 1279 return 0; 1280 } 1281 1282 static void set_maintenance_mode(void *send_info, bool enable) 1283 { 1284 struct smi_info *smi_info = send_info; 1285 1286 if (!enable) 1287 atomic_set(&smi_info->req_events, 0); 1288 } 1289 1290 static const struct ipmi_smi_handlers handlers = { 1291 .owner = THIS_MODULE, 1292 .start_processing = smi_start_processing, 1293 .get_smi_info = get_smi_info, 1294 .sender = sender, 1295 .request_events = request_events, 1296 .set_need_watch = set_need_watch, 1297 .set_maintenance_mode = set_maintenance_mode, 1298 .set_run_to_completion = set_run_to_completion, 1299 .flush_messages = flush_messages, 1300 .poll = poll, 1301 }; 1302 1303 /* 1304 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1305 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1306 */ 1307 1308 static LIST_HEAD(smi_infos); 1309 static DEFINE_MUTEX(smi_infos_lock); 1310 static int smi_num; /* Used to sequence the SMIs */ 1311 1312 #define DEFAULT_REGSPACING 1 1313 #define DEFAULT_REGSIZE 1 1314 1315 #ifdef CONFIG_ACPI 1316 static bool si_tryacpi = true; 1317 #endif 1318 #ifdef CONFIG_DMI 1319 static bool si_trydmi = true; 1320 #endif 1321 static bool si_tryplatform = true; 1322 #ifdef CONFIG_PCI 1323 static bool si_trypci = true; 1324 #endif 1325 static char *si_type[SI_MAX_PARMS]; 1326 #define MAX_SI_TYPE_STR 30 1327 static char si_type_str[MAX_SI_TYPE_STR]; 1328 static unsigned long addrs[SI_MAX_PARMS]; 1329 static unsigned int num_addrs; 1330 static unsigned int ports[SI_MAX_PARMS]; 1331 static unsigned int num_ports; 1332 static int irqs[SI_MAX_PARMS]; 1333 static unsigned int num_irqs; 1334 static int regspacings[SI_MAX_PARMS]; 1335 static unsigned int num_regspacings; 1336 static int regsizes[SI_MAX_PARMS]; 1337 static unsigned int num_regsizes; 1338 static int regshifts[SI_MAX_PARMS]; 1339 static unsigned int num_regshifts; 1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1341 static unsigned int num_slave_addrs; 1342 1343 #define IPMI_IO_ADDR_SPACE 0 1344 #define IPMI_MEM_ADDR_SPACE 1 1345 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1346 1347 static int hotmod_handler(const char *val, struct kernel_param *kp); 1348 1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1351 " Documentation/IPMI.txt in the kernel sources for the" 1352 " gory details."); 1353 1354 #ifdef CONFIG_ACPI 1355 module_param_named(tryacpi, si_tryacpi, bool, 0); 1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1357 " default scan of the interfaces identified via ACPI"); 1358 #endif 1359 #ifdef CONFIG_DMI 1360 module_param_named(trydmi, si_trydmi, bool, 0); 1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1362 " default scan of the interfaces identified via DMI"); 1363 #endif 1364 module_param_named(tryplatform, si_tryplatform, bool, 0); 1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the" 1366 " default scan of the interfaces identified via platform" 1367 " interfaces like openfirmware"); 1368 #ifdef CONFIG_PCI 1369 module_param_named(trypci, si_trypci, bool, 0); 1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the" 1371 " default scan of the interfaces identified via pci"); 1372 #endif 1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1375 " interface separated by commas. The types are 'kcs'," 1376 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1377 " the first interface to kcs and the second to bt"); 1378 module_param_array(addrs, ulong, &num_addrs, 0); 1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1380 " addresses separated by commas. Only use if an interface" 1381 " is in memory. Otherwise, set it to zero or leave" 1382 " it blank."); 1383 module_param_array(ports, uint, &num_ports, 0); 1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1385 " addresses separated by commas. Only use if an interface" 1386 " is a port. Otherwise, set it to zero or leave" 1387 " it blank."); 1388 module_param_array(irqs, int, &num_irqs, 0); 1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1390 " addresses separated by commas. Only use if an interface" 1391 " has an interrupt. Otherwise, set it to zero or leave" 1392 " it blank."); 1393 module_param_array(regspacings, int, &num_regspacings, 0); 1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1395 " and each successive register used by the interface. For" 1396 " instance, if the start address is 0xca2 and the spacing" 1397 " is 2, then the second address is at 0xca4. Defaults" 1398 " to 1."); 1399 module_param_array(regsizes, int, &num_regsizes, 0); 1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1401 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1402 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1403 " the 8-bit IPMI register has to be read from a larger" 1404 " register."); 1405 module_param_array(regshifts, int, &num_regshifts, 0); 1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1407 " IPMI register, in bits. For instance, if the data" 1408 " is read from a 32-bit word and the IPMI data is in" 1409 " bit 8-15, then the shift would be 8"); 1410 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1412 " the controller. Normally this is 0x20, but can be" 1413 " overridden by this parm. This is an array indexed" 1414 " by interface number."); 1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1417 " disabled(0). Normally the IPMI driver auto-detects" 1418 " this, but the value may be overridden by this parm."); 1419 module_param(unload_when_empty, bool, 0); 1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1421 " specified or found, default is 1. Setting to 0" 1422 " is useful for hot add of devices using hotmod."); 1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1424 MODULE_PARM_DESC(kipmid_max_busy_us, 1425 "Max time (in microseconds) to busy-wait for IPMI data before" 1426 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1427 " if kipmid is using up a lot of CPU time."); 1428 1429 1430 static void std_irq_cleanup(struct smi_info *info) 1431 { 1432 if (info->si_type == SI_BT) 1433 /* Disable the interrupt in the BT interface. */ 1434 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1435 free_irq(info->irq, info); 1436 } 1437 1438 static int std_irq_setup(struct smi_info *info) 1439 { 1440 int rv; 1441 1442 if (!info->irq) 1443 return 0; 1444 1445 if (info->si_type == SI_BT) { 1446 rv = request_irq(info->irq, 1447 si_bt_irq_handler, 1448 IRQF_SHARED, 1449 DEVICE_NAME, 1450 info); 1451 if (!rv) 1452 /* Enable the interrupt in the BT interface. */ 1453 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1454 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1455 } else 1456 rv = request_irq(info->irq, 1457 si_irq_handler, 1458 IRQF_SHARED, 1459 DEVICE_NAME, 1460 info); 1461 if (rv) { 1462 dev_warn(info->dev, "%s unable to claim interrupt %d," 1463 " running polled\n", 1464 DEVICE_NAME, info->irq); 1465 info->irq = 0; 1466 } else { 1467 info->irq_cleanup = std_irq_cleanup; 1468 dev_info(info->dev, "Using irq %d\n", info->irq); 1469 } 1470 1471 return rv; 1472 } 1473 1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset) 1475 { 1476 unsigned int addr = io->addr_data; 1477 1478 return inb(addr + (offset * io->regspacing)); 1479 } 1480 1481 static void port_outb(const struct si_sm_io *io, unsigned int offset, 1482 unsigned char b) 1483 { 1484 unsigned int addr = io->addr_data; 1485 1486 outb(b, addr + (offset * io->regspacing)); 1487 } 1488 1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset) 1490 { 1491 unsigned int addr = io->addr_data; 1492 1493 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1494 } 1495 1496 static void port_outw(const struct si_sm_io *io, unsigned int offset, 1497 unsigned char b) 1498 { 1499 unsigned int addr = io->addr_data; 1500 1501 outw(b << io->regshift, addr + (offset * io->regspacing)); 1502 } 1503 1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset) 1505 { 1506 unsigned int addr = io->addr_data; 1507 1508 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1509 } 1510 1511 static void port_outl(const struct si_sm_io *io, unsigned int offset, 1512 unsigned char b) 1513 { 1514 unsigned int addr = io->addr_data; 1515 1516 outl(b << io->regshift, addr+(offset * io->regspacing)); 1517 } 1518 1519 static void port_cleanup(struct smi_info *info) 1520 { 1521 unsigned int addr = info->io.addr_data; 1522 int idx; 1523 1524 if (addr) { 1525 for (idx = 0; idx < info->io_size; idx++) 1526 release_region(addr + idx * info->io.regspacing, 1527 info->io.regsize); 1528 } 1529 } 1530 1531 static int port_setup(struct smi_info *info) 1532 { 1533 unsigned int addr = info->io.addr_data; 1534 int idx; 1535 1536 if (!addr) 1537 return -ENODEV; 1538 1539 info->io_cleanup = port_cleanup; 1540 1541 /* 1542 * Figure out the actual inb/inw/inl/etc routine to use based 1543 * upon the register size. 1544 */ 1545 switch (info->io.regsize) { 1546 case 1: 1547 info->io.inputb = port_inb; 1548 info->io.outputb = port_outb; 1549 break; 1550 case 2: 1551 info->io.inputb = port_inw; 1552 info->io.outputb = port_outw; 1553 break; 1554 case 4: 1555 info->io.inputb = port_inl; 1556 info->io.outputb = port_outl; 1557 break; 1558 default: 1559 dev_warn(info->dev, "Invalid register size: %d\n", 1560 info->io.regsize); 1561 return -EINVAL; 1562 } 1563 1564 /* 1565 * Some BIOSes reserve disjoint I/O regions in their ACPI 1566 * tables. This causes problems when trying to register the 1567 * entire I/O region. Therefore we must register each I/O 1568 * port separately. 1569 */ 1570 for (idx = 0; idx < info->io_size; idx++) { 1571 if (request_region(addr + idx * info->io.regspacing, 1572 info->io.regsize, DEVICE_NAME) == NULL) { 1573 /* Undo allocations */ 1574 while (idx--) 1575 release_region(addr + idx * info->io.regspacing, 1576 info->io.regsize); 1577 return -EIO; 1578 } 1579 } 1580 return 0; 1581 } 1582 1583 static unsigned char intf_mem_inb(const struct si_sm_io *io, 1584 unsigned int offset) 1585 { 1586 return readb((io->addr)+(offset * io->regspacing)); 1587 } 1588 1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset, 1590 unsigned char b) 1591 { 1592 writeb(b, (io->addr)+(offset * io->regspacing)); 1593 } 1594 1595 static unsigned char intf_mem_inw(const struct si_sm_io *io, 1596 unsigned int offset) 1597 { 1598 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1599 & 0xff; 1600 } 1601 1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset, 1603 unsigned char b) 1604 { 1605 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1606 } 1607 1608 static unsigned char intf_mem_inl(const struct si_sm_io *io, 1609 unsigned int offset) 1610 { 1611 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1612 & 0xff; 1613 } 1614 1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset, 1616 unsigned char b) 1617 { 1618 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1619 } 1620 1621 #ifdef readq 1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset) 1623 { 1624 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1625 & 0xff; 1626 } 1627 1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset, 1629 unsigned char b) 1630 { 1631 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1632 } 1633 #endif 1634 1635 static void mem_region_cleanup(struct smi_info *info, int num) 1636 { 1637 unsigned long addr = info->io.addr_data; 1638 int idx; 1639 1640 for (idx = 0; idx < num; idx++) 1641 release_mem_region(addr + idx * info->io.regspacing, 1642 info->io.regsize); 1643 } 1644 1645 static void mem_cleanup(struct smi_info *info) 1646 { 1647 if (info->io.addr) { 1648 iounmap(info->io.addr); 1649 mem_region_cleanup(info, info->io_size); 1650 } 1651 } 1652 1653 static int mem_setup(struct smi_info *info) 1654 { 1655 unsigned long addr = info->io.addr_data; 1656 int mapsize, idx; 1657 1658 if (!addr) 1659 return -ENODEV; 1660 1661 info->io_cleanup = mem_cleanup; 1662 1663 /* 1664 * Figure out the actual readb/readw/readl/etc routine to use based 1665 * upon the register size. 1666 */ 1667 switch (info->io.regsize) { 1668 case 1: 1669 info->io.inputb = intf_mem_inb; 1670 info->io.outputb = intf_mem_outb; 1671 break; 1672 case 2: 1673 info->io.inputb = intf_mem_inw; 1674 info->io.outputb = intf_mem_outw; 1675 break; 1676 case 4: 1677 info->io.inputb = intf_mem_inl; 1678 info->io.outputb = intf_mem_outl; 1679 break; 1680 #ifdef readq 1681 case 8: 1682 info->io.inputb = mem_inq; 1683 info->io.outputb = mem_outq; 1684 break; 1685 #endif 1686 default: 1687 dev_warn(info->dev, "Invalid register size: %d\n", 1688 info->io.regsize); 1689 return -EINVAL; 1690 } 1691 1692 /* 1693 * Some BIOSes reserve disjoint memory regions in their ACPI 1694 * tables. This causes problems when trying to request the 1695 * entire region. Therefore we must request each register 1696 * separately. 1697 */ 1698 for (idx = 0; idx < info->io_size; idx++) { 1699 if (request_mem_region(addr + idx * info->io.regspacing, 1700 info->io.regsize, DEVICE_NAME) == NULL) { 1701 /* Undo allocations */ 1702 mem_region_cleanup(info, idx); 1703 return -EIO; 1704 } 1705 } 1706 1707 /* 1708 * Calculate the total amount of memory to claim. This is an 1709 * unusual looking calculation, but it avoids claiming any 1710 * more memory than it has to. It will claim everything 1711 * between the first address to the end of the last full 1712 * register. 1713 */ 1714 mapsize = ((info->io_size * info->io.regspacing) 1715 - (info->io.regspacing - info->io.regsize)); 1716 info->io.addr = ioremap(addr, mapsize); 1717 if (info->io.addr == NULL) { 1718 mem_region_cleanup(info, info->io_size); 1719 return -EIO; 1720 } 1721 return 0; 1722 } 1723 1724 /* 1725 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1726 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1727 * Options are: 1728 * rsp=<regspacing> 1729 * rsi=<regsize> 1730 * rsh=<regshift> 1731 * irq=<irq> 1732 * ipmb=<ipmb addr> 1733 */ 1734 enum hotmod_op { HM_ADD, HM_REMOVE }; 1735 struct hotmod_vals { 1736 const char *name; 1737 const int val; 1738 }; 1739 1740 static const struct hotmod_vals hotmod_ops[] = { 1741 { "add", HM_ADD }, 1742 { "remove", HM_REMOVE }, 1743 { NULL } 1744 }; 1745 1746 static const struct hotmod_vals hotmod_si[] = { 1747 { "kcs", SI_KCS }, 1748 { "smic", SI_SMIC }, 1749 { "bt", SI_BT }, 1750 { NULL } 1751 }; 1752 1753 static const struct hotmod_vals hotmod_as[] = { 1754 { "mem", IPMI_MEM_ADDR_SPACE }, 1755 { "i/o", IPMI_IO_ADDR_SPACE }, 1756 { NULL } 1757 }; 1758 1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name, 1760 char **curr) 1761 { 1762 char *s; 1763 int i; 1764 1765 s = strchr(*curr, ','); 1766 if (!s) { 1767 pr_warn(PFX "No hotmod %s given.\n", name); 1768 return -EINVAL; 1769 } 1770 *s = '\0'; 1771 s++; 1772 for (i = 0; v[i].name; i++) { 1773 if (strcmp(*curr, v[i].name) == 0) { 1774 *val = v[i].val; 1775 *curr = s; 1776 return 0; 1777 } 1778 } 1779 1780 pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr); 1781 return -EINVAL; 1782 } 1783 1784 static int check_hotmod_int_op(const char *curr, const char *option, 1785 const char *name, int *val) 1786 { 1787 char *n; 1788 1789 if (strcmp(curr, name) == 0) { 1790 if (!option) { 1791 pr_warn(PFX "No option given for '%s'\n", curr); 1792 return -EINVAL; 1793 } 1794 *val = simple_strtoul(option, &n, 0); 1795 if ((*n != '\0') || (*option == '\0')) { 1796 pr_warn(PFX "Bad option given for '%s'\n", curr); 1797 return -EINVAL; 1798 } 1799 return 1; 1800 } 1801 return 0; 1802 } 1803 1804 static struct smi_info *smi_info_alloc(void) 1805 { 1806 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1807 1808 if (info) 1809 spin_lock_init(&info->si_lock); 1810 return info; 1811 } 1812 1813 static int hotmod_handler(const char *val, struct kernel_param *kp) 1814 { 1815 char *str = kstrdup(val, GFP_KERNEL); 1816 int rv; 1817 char *next, *curr, *s, *n, *o; 1818 enum hotmod_op op; 1819 enum si_type si_type; 1820 int addr_space; 1821 unsigned long addr; 1822 int regspacing; 1823 int regsize; 1824 int regshift; 1825 int irq; 1826 int ipmb; 1827 int ival; 1828 int len; 1829 struct smi_info *info; 1830 1831 if (!str) 1832 return -ENOMEM; 1833 1834 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1835 len = strlen(str); 1836 ival = len - 1; 1837 while ((ival >= 0) && isspace(str[ival])) { 1838 str[ival] = '\0'; 1839 ival--; 1840 } 1841 1842 for (curr = str; curr; curr = next) { 1843 regspacing = 1; 1844 regsize = 1; 1845 regshift = 0; 1846 irq = 0; 1847 ipmb = 0; /* Choose the default if not specified */ 1848 1849 next = strchr(curr, ':'); 1850 if (next) { 1851 *next = '\0'; 1852 next++; 1853 } 1854 1855 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1856 if (rv) 1857 break; 1858 op = ival; 1859 1860 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1861 if (rv) 1862 break; 1863 si_type = ival; 1864 1865 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1866 if (rv) 1867 break; 1868 1869 s = strchr(curr, ','); 1870 if (s) { 1871 *s = '\0'; 1872 s++; 1873 } 1874 addr = simple_strtoul(curr, &n, 0); 1875 if ((*n != '\0') || (*curr == '\0')) { 1876 pr_warn(PFX "Invalid hotmod address '%s'\n", curr); 1877 break; 1878 } 1879 1880 while (s) { 1881 curr = s; 1882 s = strchr(curr, ','); 1883 if (s) { 1884 *s = '\0'; 1885 s++; 1886 } 1887 o = strchr(curr, '='); 1888 if (o) { 1889 *o = '\0'; 1890 o++; 1891 } 1892 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1893 if (rv < 0) 1894 goto out; 1895 else if (rv) 1896 continue; 1897 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1898 if (rv < 0) 1899 goto out; 1900 else if (rv) 1901 continue; 1902 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1903 if (rv < 0) 1904 goto out; 1905 else if (rv) 1906 continue; 1907 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1908 if (rv < 0) 1909 goto out; 1910 else if (rv) 1911 continue; 1912 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1913 if (rv < 0) 1914 goto out; 1915 else if (rv) 1916 continue; 1917 1918 rv = -EINVAL; 1919 pr_warn(PFX "Invalid hotmod option '%s'\n", curr); 1920 goto out; 1921 } 1922 1923 if (op == HM_ADD) { 1924 info = smi_info_alloc(); 1925 if (!info) { 1926 rv = -ENOMEM; 1927 goto out; 1928 } 1929 1930 info->addr_source = SI_HOTMOD; 1931 info->si_type = si_type; 1932 info->io.addr_data = addr; 1933 info->io.addr_type = addr_space; 1934 if (addr_space == IPMI_MEM_ADDR_SPACE) 1935 info->io_setup = mem_setup; 1936 else 1937 info->io_setup = port_setup; 1938 1939 info->io.addr = NULL; 1940 info->io.regspacing = regspacing; 1941 if (!info->io.regspacing) 1942 info->io.regspacing = DEFAULT_REGSPACING; 1943 info->io.regsize = regsize; 1944 if (!info->io.regsize) 1945 info->io.regsize = DEFAULT_REGSPACING; 1946 info->io.regshift = regshift; 1947 info->irq = irq; 1948 if (info->irq) 1949 info->irq_setup = std_irq_setup; 1950 info->slave_addr = ipmb; 1951 1952 rv = add_smi(info); 1953 if (rv) { 1954 kfree(info); 1955 goto out; 1956 } 1957 rv = try_smi_init(info); 1958 if (rv) { 1959 cleanup_one_si(info); 1960 goto out; 1961 } 1962 } else { 1963 /* remove */ 1964 struct smi_info *e, *tmp_e; 1965 1966 mutex_lock(&smi_infos_lock); 1967 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1968 if (e->io.addr_type != addr_space) 1969 continue; 1970 if (e->si_type != si_type) 1971 continue; 1972 if (e->io.addr_data == addr) 1973 cleanup_one_si(e); 1974 } 1975 mutex_unlock(&smi_infos_lock); 1976 } 1977 } 1978 rv = len; 1979 out: 1980 kfree(str); 1981 return rv; 1982 } 1983 1984 static int hardcode_find_bmc(void) 1985 { 1986 int ret = -ENODEV; 1987 int i; 1988 struct smi_info *info; 1989 1990 for (i = 0; i < SI_MAX_PARMS; i++) { 1991 if (!ports[i] && !addrs[i]) 1992 continue; 1993 1994 info = smi_info_alloc(); 1995 if (!info) 1996 return -ENOMEM; 1997 1998 info->addr_source = SI_HARDCODED; 1999 pr_info(PFX "probing via hardcoded address\n"); 2000 2001 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 2002 info->si_type = SI_KCS; 2003 } else if (strcmp(si_type[i], "smic") == 0) { 2004 info->si_type = SI_SMIC; 2005 } else if (strcmp(si_type[i], "bt") == 0) { 2006 info->si_type = SI_BT; 2007 } else { 2008 pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n", 2009 i, si_type[i]); 2010 kfree(info); 2011 continue; 2012 } 2013 2014 if (ports[i]) { 2015 /* An I/O port */ 2016 info->io_setup = port_setup; 2017 info->io.addr_data = ports[i]; 2018 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2019 } else if (addrs[i]) { 2020 /* A memory port */ 2021 info->io_setup = mem_setup; 2022 info->io.addr_data = addrs[i]; 2023 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2024 } else { 2025 pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n", 2026 i); 2027 kfree(info); 2028 continue; 2029 } 2030 2031 info->io.addr = NULL; 2032 info->io.regspacing = regspacings[i]; 2033 if (!info->io.regspacing) 2034 info->io.regspacing = DEFAULT_REGSPACING; 2035 info->io.regsize = regsizes[i]; 2036 if (!info->io.regsize) 2037 info->io.regsize = DEFAULT_REGSPACING; 2038 info->io.regshift = regshifts[i]; 2039 info->irq = irqs[i]; 2040 if (info->irq) 2041 info->irq_setup = std_irq_setup; 2042 info->slave_addr = slave_addrs[i]; 2043 2044 if (!add_smi(info)) { 2045 if (try_smi_init(info)) 2046 cleanup_one_si(info); 2047 ret = 0; 2048 } else { 2049 kfree(info); 2050 } 2051 } 2052 return ret; 2053 } 2054 2055 #ifdef CONFIG_ACPI 2056 2057 /* 2058 * Once we get an ACPI failure, we don't try any more, because we go 2059 * through the tables sequentially. Once we don't find a table, there 2060 * are no more. 2061 */ 2062 static int acpi_failure; 2063 2064 /* For GPE-type interrupts. */ 2065 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2066 u32 gpe_number, void *context) 2067 { 2068 struct smi_info *smi_info = context; 2069 unsigned long flags; 2070 2071 spin_lock_irqsave(&(smi_info->si_lock), flags); 2072 2073 smi_inc_stat(smi_info, interrupts); 2074 2075 debug_timestamp("ACPI_GPE"); 2076 2077 smi_event_handler(smi_info, 0); 2078 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2079 2080 return ACPI_INTERRUPT_HANDLED; 2081 } 2082 2083 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2084 { 2085 if (!info->irq) 2086 return; 2087 2088 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2089 } 2090 2091 static int acpi_gpe_irq_setup(struct smi_info *info) 2092 { 2093 acpi_status status; 2094 2095 if (!info->irq) 2096 return 0; 2097 2098 status = acpi_install_gpe_handler(NULL, 2099 info->irq, 2100 ACPI_GPE_LEVEL_TRIGGERED, 2101 &ipmi_acpi_gpe, 2102 info); 2103 if (status != AE_OK) { 2104 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2105 " running polled\n", DEVICE_NAME, info->irq); 2106 info->irq = 0; 2107 return -EINVAL; 2108 } else { 2109 info->irq_cleanup = acpi_gpe_irq_cleanup; 2110 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2111 return 0; 2112 } 2113 } 2114 2115 /* 2116 * Defined at 2117 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2118 */ 2119 struct SPMITable { 2120 s8 Signature[4]; 2121 u32 Length; 2122 u8 Revision; 2123 u8 Checksum; 2124 s8 OEMID[6]; 2125 s8 OEMTableID[8]; 2126 s8 OEMRevision[4]; 2127 s8 CreatorID[4]; 2128 s8 CreatorRevision[4]; 2129 u8 InterfaceType; 2130 u8 IPMIlegacy; 2131 s16 SpecificationRevision; 2132 2133 /* 2134 * Bit 0 - SCI interrupt supported 2135 * Bit 1 - I/O APIC/SAPIC 2136 */ 2137 u8 InterruptType; 2138 2139 /* 2140 * If bit 0 of InterruptType is set, then this is the SCI 2141 * interrupt in the GPEx_STS register. 2142 */ 2143 u8 GPE; 2144 2145 s16 Reserved; 2146 2147 /* 2148 * If bit 1 of InterruptType is set, then this is the I/O 2149 * APIC/SAPIC interrupt. 2150 */ 2151 u32 GlobalSystemInterrupt; 2152 2153 /* The actual register address. */ 2154 struct acpi_generic_address addr; 2155 2156 u8 UID[4]; 2157 2158 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2159 }; 2160 2161 static int try_init_spmi(struct SPMITable *spmi) 2162 { 2163 struct smi_info *info; 2164 int rv; 2165 2166 if (spmi->IPMIlegacy != 1) { 2167 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2168 return -ENODEV; 2169 } 2170 2171 info = smi_info_alloc(); 2172 if (!info) { 2173 pr_err(PFX "Could not allocate SI data (3)\n"); 2174 return -ENOMEM; 2175 } 2176 2177 info->addr_source = SI_SPMI; 2178 pr_info(PFX "probing via SPMI\n"); 2179 2180 /* Figure out the interface type. */ 2181 switch (spmi->InterfaceType) { 2182 case 1: /* KCS */ 2183 info->si_type = SI_KCS; 2184 break; 2185 case 2: /* SMIC */ 2186 info->si_type = SI_SMIC; 2187 break; 2188 case 3: /* BT */ 2189 info->si_type = SI_BT; 2190 break; 2191 case 4: /* SSIF, just ignore */ 2192 kfree(info); 2193 return -EIO; 2194 default: 2195 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n", 2196 spmi->InterfaceType); 2197 kfree(info); 2198 return -EIO; 2199 } 2200 2201 if (spmi->InterruptType & 1) { 2202 /* We've got a GPE interrupt. */ 2203 info->irq = spmi->GPE; 2204 info->irq_setup = acpi_gpe_irq_setup; 2205 } else if (spmi->InterruptType & 2) { 2206 /* We've got an APIC/SAPIC interrupt. */ 2207 info->irq = spmi->GlobalSystemInterrupt; 2208 info->irq_setup = std_irq_setup; 2209 } else { 2210 /* Use the default interrupt setting. */ 2211 info->irq = 0; 2212 info->irq_setup = NULL; 2213 } 2214 2215 if (spmi->addr.bit_width) { 2216 /* A (hopefully) properly formed register bit width. */ 2217 info->io.regspacing = spmi->addr.bit_width / 8; 2218 } else { 2219 info->io.regspacing = DEFAULT_REGSPACING; 2220 } 2221 info->io.regsize = info->io.regspacing; 2222 info->io.regshift = spmi->addr.bit_offset; 2223 2224 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2225 info->io_setup = mem_setup; 2226 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2227 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2228 info->io_setup = port_setup; 2229 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2230 } else { 2231 kfree(info); 2232 pr_warn(PFX "Unknown ACPI I/O Address type\n"); 2233 return -EIO; 2234 } 2235 info->io.addr_data = spmi->addr.address; 2236 2237 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2238 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2239 info->io.addr_data, info->io.regsize, info->io.regspacing, 2240 info->irq); 2241 2242 rv = add_smi(info); 2243 if (rv) 2244 kfree(info); 2245 2246 return rv; 2247 } 2248 2249 static void spmi_find_bmc(void) 2250 { 2251 acpi_status status; 2252 struct SPMITable *spmi; 2253 int i; 2254 2255 if (acpi_disabled) 2256 return; 2257 2258 if (acpi_failure) 2259 return; 2260 2261 for (i = 0; ; i++) { 2262 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2263 (struct acpi_table_header **)&spmi); 2264 if (status != AE_OK) 2265 return; 2266 2267 try_init_spmi(spmi); 2268 } 2269 } 2270 #endif 2271 2272 #ifdef CONFIG_DMI 2273 struct dmi_ipmi_data { 2274 u8 type; 2275 u8 addr_space; 2276 unsigned long base_addr; 2277 u8 irq; 2278 u8 offset; 2279 u8 slave_addr; 2280 }; 2281 2282 static int decode_dmi(const struct dmi_header *dm, 2283 struct dmi_ipmi_data *dmi) 2284 { 2285 const u8 *data = (const u8 *)dm; 2286 unsigned long base_addr; 2287 u8 reg_spacing; 2288 u8 len = dm->length; 2289 2290 dmi->type = data[4]; 2291 2292 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2293 if (len >= 0x11) { 2294 if (base_addr & 1) { 2295 /* I/O */ 2296 base_addr &= 0xFFFE; 2297 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2298 } else 2299 /* Memory */ 2300 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2301 2302 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2303 is odd. */ 2304 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2305 2306 dmi->irq = data[0x11]; 2307 2308 /* The top two bits of byte 0x10 hold the register spacing. */ 2309 reg_spacing = (data[0x10] & 0xC0) >> 6; 2310 switch (reg_spacing) { 2311 case 0x00: /* Byte boundaries */ 2312 dmi->offset = 1; 2313 break; 2314 case 0x01: /* 32-bit boundaries */ 2315 dmi->offset = 4; 2316 break; 2317 case 0x02: /* 16-byte boundaries */ 2318 dmi->offset = 16; 2319 break; 2320 default: 2321 /* Some other interface, just ignore it. */ 2322 return -EIO; 2323 } 2324 } else { 2325 /* Old DMI spec. */ 2326 /* 2327 * Note that technically, the lower bit of the base 2328 * address should be 1 if the address is I/O and 0 if 2329 * the address is in memory. So many systems get that 2330 * wrong (and all that I have seen are I/O) so we just 2331 * ignore that bit and assume I/O. Systems that use 2332 * memory should use the newer spec, anyway. 2333 */ 2334 dmi->base_addr = base_addr & 0xfffe; 2335 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2336 dmi->offset = 1; 2337 } 2338 2339 dmi->slave_addr = data[6]; 2340 2341 return 0; 2342 } 2343 2344 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2345 { 2346 struct smi_info *info; 2347 2348 info = smi_info_alloc(); 2349 if (!info) { 2350 pr_err(PFX "Could not allocate SI data\n"); 2351 return; 2352 } 2353 2354 info->addr_source = SI_SMBIOS; 2355 pr_info(PFX "probing via SMBIOS\n"); 2356 2357 switch (ipmi_data->type) { 2358 case 0x01: /* KCS */ 2359 info->si_type = SI_KCS; 2360 break; 2361 case 0x02: /* SMIC */ 2362 info->si_type = SI_SMIC; 2363 break; 2364 case 0x03: /* BT */ 2365 info->si_type = SI_BT; 2366 break; 2367 default: 2368 kfree(info); 2369 return; 2370 } 2371 2372 switch (ipmi_data->addr_space) { 2373 case IPMI_MEM_ADDR_SPACE: 2374 info->io_setup = mem_setup; 2375 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2376 break; 2377 2378 case IPMI_IO_ADDR_SPACE: 2379 info->io_setup = port_setup; 2380 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2381 break; 2382 2383 default: 2384 kfree(info); 2385 pr_warn(PFX "Unknown SMBIOS I/O Address type: %d\n", 2386 ipmi_data->addr_space); 2387 return; 2388 } 2389 info->io.addr_data = ipmi_data->base_addr; 2390 2391 info->io.regspacing = ipmi_data->offset; 2392 if (!info->io.regspacing) 2393 info->io.regspacing = DEFAULT_REGSPACING; 2394 info->io.regsize = DEFAULT_REGSPACING; 2395 info->io.regshift = 0; 2396 2397 info->slave_addr = ipmi_data->slave_addr; 2398 2399 info->irq = ipmi_data->irq; 2400 if (info->irq) 2401 info->irq_setup = std_irq_setup; 2402 2403 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2404 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2405 info->io.addr_data, info->io.regsize, info->io.regspacing, 2406 info->irq); 2407 2408 if (add_smi(info)) 2409 kfree(info); 2410 } 2411 2412 static void dmi_find_bmc(void) 2413 { 2414 const struct dmi_device *dev = NULL; 2415 struct dmi_ipmi_data data; 2416 int rv; 2417 2418 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2419 memset(&data, 0, sizeof(data)); 2420 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2421 &data); 2422 if (!rv) 2423 try_init_dmi(&data); 2424 } 2425 } 2426 #endif /* CONFIG_DMI */ 2427 2428 #ifdef CONFIG_PCI 2429 2430 #define PCI_ERMC_CLASSCODE 0x0C0700 2431 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2435 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2436 2437 #define PCI_HP_VENDOR_ID 0x103C 2438 #define PCI_MMC_DEVICE_ID 0x121A 2439 #define PCI_MMC_ADDR_CW 0x10 2440 2441 static void ipmi_pci_cleanup(struct smi_info *info) 2442 { 2443 struct pci_dev *pdev = info->addr_source_data; 2444 2445 pci_disable_device(pdev); 2446 } 2447 2448 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2449 { 2450 if (info->si_type == SI_KCS) { 2451 unsigned char status; 2452 int regspacing; 2453 2454 info->io.regsize = DEFAULT_REGSIZE; 2455 info->io.regshift = 0; 2456 info->io_size = 2; 2457 info->handlers = &kcs_smi_handlers; 2458 2459 /* detect 1, 4, 16byte spacing */ 2460 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2461 info->io.regspacing = regspacing; 2462 if (info->io_setup(info)) { 2463 dev_err(info->dev, 2464 "Could not setup I/O space\n"); 2465 return DEFAULT_REGSPACING; 2466 } 2467 /* write invalid cmd */ 2468 info->io.outputb(&info->io, 1, 0x10); 2469 /* read status back */ 2470 status = info->io.inputb(&info->io, 1); 2471 info->io_cleanup(info); 2472 if (status) 2473 return regspacing; 2474 regspacing *= 4; 2475 } 2476 } 2477 return DEFAULT_REGSPACING; 2478 } 2479 2480 static int ipmi_pci_probe(struct pci_dev *pdev, 2481 const struct pci_device_id *ent) 2482 { 2483 int rv; 2484 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2485 struct smi_info *info; 2486 2487 info = smi_info_alloc(); 2488 if (!info) 2489 return -ENOMEM; 2490 2491 info->addr_source = SI_PCI; 2492 dev_info(&pdev->dev, "probing via PCI"); 2493 2494 switch (class_type) { 2495 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2496 info->si_type = SI_SMIC; 2497 break; 2498 2499 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2500 info->si_type = SI_KCS; 2501 break; 2502 2503 case PCI_ERMC_CLASSCODE_TYPE_BT: 2504 info->si_type = SI_BT; 2505 break; 2506 2507 default: 2508 kfree(info); 2509 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2510 return -ENOMEM; 2511 } 2512 2513 rv = pci_enable_device(pdev); 2514 if (rv) { 2515 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2516 kfree(info); 2517 return rv; 2518 } 2519 2520 info->addr_source_cleanup = ipmi_pci_cleanup; 2521 info->addr_source_data = pdev; 2522 2523 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2524 info->io_setup = port_setup; 2525 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2526 } else { 2527 info->io_setup = mem_setup; 2528 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2529 } 2530 info->io.addr_data = pci_resource_start(pdev, 0); 2531 2532 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2533 info->io.regsize = DEFAULT_REGSIZE; 2534 info->io.regshift = 0; 2535 2536 info->irq = pdev->irq; 2537 if (info->irq) 2538 info->irq_setup = std_irq_setup; 2539 2540 info->dev = &pdev->dev; 2541 pci_set_drvdata(pdev, info); 2542 2543 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2544 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2545 info->irq); 2546 2547 rv = add_smi(info); 2548 if (rv) { 2549 kfree(info); 2550 pci_disable_device(pdev); 2551 } 2552 2553 return rv; 2554 } 2555 2556 static void ipmi_pci_remove(struct pci_dev *pdev) 2557 { 2558 struct smi_info *info = pci_get_drvdata(pdev); 2559 cleanup_one_si(info); 2560 } 2561 2562 static const struct pci_device_id ipmi_pci_devices[] = { 2563 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2564 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2565 { 0, } 2566 }; 2567 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2568 2569 static struct pci_driver ipmi_pci_driver = { 2570 .name = DEVICE_NAME, 2571 .id_table = ipmi_pci_devices, 2572 .probe = ipmi_pci_probe, 2573 .remove = ipmi_pci_remove, 2574 }; 2575 #endif /* CONFIG_PCI */ 2576 2577 #ifdef CONFIG_OF 2578 static const struct of_device_id of_ipmi_match[] = { 2579 { .type = "ipmi", .compatible = "ipmi-kcs", 2580 .data = (void *)(unsigned long) SI_KCS }, 2581 { .type = "ipmi", .compatible = "ipmi-smic", 2582 .data = (void *)(unsigned long) SI_SMIC }, 2583 { .type = "ipmi", .compatible = "ipmi-bt", 2584 .data = (void *)(unsigned long) SI_BT }, 2585 {}, 2586 }; 2587 MODULE_DEVICE_TABLE(of, of_ipmi_match); 2588 2589 static int of_ipmi_probe(struct platform_device *dev) 2590 { 2591 const struct of_device_id *match; 2592 struct smi_info *info; 2593 struct resource resource; 2594 const __be32 *regsize, *regspacing, *regshift; 2595 struct device_node *np = dev->dev.of_node; 2596 int ret; 2597 int proplen; 2598 2599 dev_info(&dev->dev, "probing via device tree\n"); 2600 2601 match = of_match_device(of_ipmi_match, &dev->dev); 2602 if (!match) 2603 return -ENODEV; 2604 2605 if (!of_device_is_available(np)) 2606 return -EINVAL; 2607 2608 ret = of_address_to_resource(np, 0, &resource); 2609 if (ret) { 2610 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2611 return ret; 2612 } 2613 2614 regsize = of_get_property(np, "reg-size", &proplen); 2615 if (regsize && proplen != 4) { 2616 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2617 return -EINVAL; 2618 } 2619 2620 regspacing = of_get_property(np, "reg-spacing", &proplen); 2621 if (regspacing && proplen != 4) { 2622 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2623 return -EINVAL; 2624 } 2625 2626 regshift = of_get_property(np, "reg-shift", &proplen); 2627 if (regshift && proplen != 4) { 2628 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2629 return -EINVAL; 2630 } 2631 2632 info = smi_info_alloc(); 2633 2634 if (!info) { 2635 dev_err(&dev->dev, 2636 "could not allocate memory for OF probe\n"); 2637 return -ENOMEM; 2638 } 2639 2640 info->si_type = (enum si_type) match->data; 2641 info->addr_source = SI_DEVICETREE; 2642 info->irq_setup = std_irq_setup; 2643 2644 if (resource.flags & IORESOURCE_IO) { 2645 info->io_setup = port_setup; 2646 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2647 } else { 2648 info->io_setup = mem_setup; 2649 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2650 } 2651 2652 info->io.addr_data = resource.start; 2653 2654 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2655 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2656 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2657 2658 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2659 info->dev = &dev->dev; 2660 2661 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2662 info->io.addr_data, info->io.regsize, info->io.regspacing, 2663 info->irq); 2664 2665 dev_set_drvdata(&dev->dev, info); 2666 2667 ret = add_smi(info); 2668 if (ret) { 2669 kfree(info); 2670 return ret; 2671 } 2672 return 0; 2673 } 2674 #else 2675 #define of_ipmi_match NULL 2676 static int of_ipmi_probe(struct platform_device *dev) 2677 { 2678 return -ENODEV; 2679 } 2680 #endif 2681 2682 #ifdef CONFIG_ACPI 2683 static int acpi_ipmi_probe(struct platform_device *dev) 2684 { 2685 struct smi_info *info; 2686 struct resource *res, *res_second; 2687 acpi_handle handle; 2688 acpi_status status; 2689 unsigned long long tmp; 2690 int rv = -EINVAL; 2691 2692 if (!si_tryacpi) 2693 return 0; 2694 2695 handle = ACPI_HANDLE(&dev->dev); 2696 if (!handle) 2697 return -ENODEV; 2698 2699 info = smi_info_alloc(); 2700 if (!info) 2701 return -ENOMEM; 2702 2703 info->addr_source = SI_ACPI; 2704 dev_info(&dev->dev, PFX "probing via ACPI\n"); 2705 2706 info->addr_info.acpi_info.acpi_handle = handle; 2707 2708 /* _IFT tells us the interface type: KCS, BT, etc */ 2709 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2710 if (ACPI_FAILURE(status)) { 2711 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); 2712 goto err_free; 2713 } 2714 2715 switch (tmp) { 2716 case 1: 2717 info->si_type = SI_KCS; 2718 break; 2719 case 2: 2720 info->si_type = SI_SMIC; 2721 break; 2722 case 3: 2723 info->si_type = SI_BT; 2724 break; 2725 case 4: /* SSIF, just ignore */ 2726 rv = -ENODEV; 2727 goto err_free; 2728 default: 2729 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2730 goto err_free; 2731 } 2732 2733 res = platform_get_resource(dev, IORESOURCE_IO, 0); 2734 if (res) { 2735 info->io_setup = port_setup; 2736 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2737 } else { 2738 res = platform_get_resource(dev, IORESOURCE_MEM, 0); 2739 if (res) { 2740 info->io_setup = mem_setup; 2741 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2742 } 2743 } 2744 if (!res) { 2745 dev_err(&dev->dev, "no I/O or memory address\n"); 2746 goto err_free; 2747 } 2748 info->io.addr_data = res->start; 2749 2750 info->io.regspacing = DEFAULT_REGSPACING; 2751 res_second = platform_get_resource(dev, 2752 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2753 IORESOURCE_IO : IORESOURCE_MEM, 2754 1); 2755 if (res_second) { 2756 if (res_second->start > info->io.addr_data) 2757 info->io.regspacing = 2758 res_second->start - info->io.addr_data; 2759 } 2760 info->io.regsize = DEFAULT_REGSPACING; 2761 info->io.regshift = 0; 2762 2763 /* If _GPE exists, use it; otherwise use standard interrupts */ 2764 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2765 if (ACPI_SUCCESS(status)) { 2766 info->irq = tmp; 2767 info->irq_setup = acpi_gpe_irq_setup; 2768 } else { 2769 int irq = platform_get_irq(dev, 0); 2770 2771 if (irq > 0) { 2772 info->irq = irq; 2773 info->irq_setup = std_irq_setup; 2774 } 2775 } 2776 2777 info->dev = &dev->dev; 2778 platform_set_drvdata(dev, info); 2779 2780 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2781 res, info->io.regsize, info->io.regspacing, 2782 info->irq); 2783 2784 rv = add_smi(info); 2785 if (rv) 2786 kfree(info); 2787 2788 return rv; 2789 2790 err_free: 2791 kfree(info); 2792 return rv; 2793 } 2794 2795 static const struct acpi_device_id acpi_ipmi_match[] = { 2796 { "IPI0001", 0 }, 2797 { }, 2798 }; 2799 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match); 2800 #else 2801 static int acpi_ipmi_probe(struct platform_device *dev) 2802 { 2803 return -ENODEV; 2804 } 2805 #endif 2806 2807 static int ipmi_probe(struct platform_device *dev) 2808 { 2809 if (of_ipmi_probe(dev) == 0) 2810 return 0; 2811 2812 return acpi_ipmi_probe(dev); 2813 } 2814 2815 static int ipmi_remove(struct platform_device *dev) 2816 { 2817 struct smi_info *info = dev_get_drvdata(&dev->dev); 2818 2819 cleanup_one_si(info); 2820 return 0; 2821 } 2822 2823 static struct platform_driver ipmi_driver = { 2824 .driver = { 2825 .name = DEVICE_NAME, 2826 .of_match_table = of_ipmi_match, 2827 .acpi_match_table = ACPI_PTR(acpi_ipmi_match), 2828 }, 2829 .probe = ipmi_probe, 2830 .remove = ipmi_remove, 2831 }; 2832 2833 #ifdef CONFIG_PARISC 2834 static int ipmi_parisc_probe(struct parisc_device *dev) 2835 { 2836 struct smi_info *info; 2837 int rv; 2838 2839 info = smi_info_alloc(); 2840 2841 if (!info) { 2842 dev_err(&dev->dev, 2843 "could not allocate memory for PARISC probe\n"); 2844 return -ENOMEM; 2845 } 2846 2847 info->si_type = SI_KCS; 2848 info->addr_source = SI_DEVICETREE; 2849 info->io_setup = mem_setup; 2850 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2851 info->io.addr_data = dev->hpa.start; 2852 info->io.regsize = 1; 2853 info->io.regspacing = 1; 2854 info->io.regshift = 0; 2855 info->irq = 0; /* no interrupt */ 2856 info->irq_setup = NULL; 2857 info->dev = &dev->dev; 2858 2859 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2860 2861 dev_set_drvdata(&dev->dev, info); 2862 2863 rv = add_smi(info); 2864 if (rv) { 2865 kfree(info); 2866 return rv; 2867 } 2868 2869 return 0; 2870 } 2871 2872 static int ipmi_parisc_remove(struct parisc_device *dev) 2873 { 2874 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2875 return 0; 2876 } 2877 2878 static const struct parisc_device_id ipmi_parisc_tbl[] = { 2879 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2880 { 0, } 2881 }; 2882 2883 static struct parisc_driver ipmi_parisc_driver = { 2884 .name = "ipmi", 2885 .id_table = ipmi_parisc_tbl, 2886 .probe = ipmi_parisc_probe, 2887 .remove = ipmi_parisc_remove, 2888 }; 2889 #endif /* CONFIG_PARISC */ 2890 2891 static int wait_for_msg_done(struct smi_info *smi_info) 2892 { 2893 enum si_sm_result smi_result; 2894 2895 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2896 for (;;) { 2897 if (smi_result == SI_SM_CALL_WITH_DELAY || 2898 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2899 schedule_timeout_uninterruptible(1); 2900 smi_result = smi_info->handlers->event( 2901 smi_info->si_sm, jiffies_to_usecs(1)); 2902 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2903 smi_result = smi_info->handlers->event( 2904 smi_info->si_sm, 0); 2905 } else 2906 break; 2907 } 2908 if (smi_result == SI_SM_HOSED) 2909 /* 2910 * We couldn't get the state machine to run, so whatever's at 2911 * the port is probably not an IPMI SMI interface. 2912 */ 2913 return -ENODEV; 2914 2915 return 0; 2916 } 2917 2918 static int try_get_dev_id(struct smi_info *smi_info) 2919 { 2920 unsigned char msg[2]; 2921 unsigned char *resp; 2922 unsigned long resp_len; 2923 int rv = 0; 2924 2925 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2926 if (!resp) 2927 return -ENOMEM; 2928 2929 /* 2930 * Do a Get Device ID command, since it comes back with some 2931 * useful info. 2932 */ 2933 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2934 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2935 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2936 2937 rv = wait_for_msg_done(smi_info); 2938 if (rv) 2939 goto out; 2940 2941 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2942 resp, IPMI_MAX_MSG_LENGTH); 2943 2944 /* Check and record info from the get device id, in case we need it. */ 2945 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2946 2947 out: 2948 kfree(resp); 2949 return rv; 2950 } 2951 2952 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 2953 { 2954 unsigned char msg[3]; 2955 unsigned char *resp; 2956 unsigned long resp_len; 2957 int rv; 2958 2959 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2960 if (!resp) 2961 return -ENOMEM; 2962 2963 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2964 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2965 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2966 2967 rv = wait_for_msg_done(smi_info); 2968 if (rv) { 2969 dev_warn(smi_info->dev, 2970 "Error getting response from get global enables command: %d\n", 2971 rv); 2972 goto out; 2973 } 2974 2975 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2976 resp, IPMI_MAX_MSG_LENGTH); 2977 2978 if (resp_len < 4 || 2979 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2980 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2981 resp[2] != 0) { 2982 dev_warn(smi_info->dev, 2983 "Invalid return from get global enables command: %ld %x %x %x\n", 2984 resp_len, resp[0], resp[1], resp[2]); 2985 rv = -EINVAL; 2986 goto out; 2987 } else { 2988 *enables = resp[3]; 2989 } 2990 2991 out: 2992 kfree(resp); 2993 return rv; 2994 } 2995 2996 /* 2997 * Returns 1 if it gets an error from the command. 2998 */ 2999 static int set_global_enables(struct smi_info *smi_info, u8 enables) 3000 { 3001 unsigned char msg[3]; 3002 unsigned char *resp; 3003 unsigned long resp_len; 3004 int rv; 3005 3006 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3007 if (!resp) 3008 return -ENOMEM; 3009 3010 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3011 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3012 msg[2] = enables; 3013 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3014 3015 rv = wait_for_msg_done(smi_info); 3016 if (rv) { 3017 dev_warn(smi_info->dev, 3018 "Error getting response from set global enables command: %d\n", 3019 rv); 3020 goto out; 3021 } 3022 3023 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3024 resp, IPMI_MAX_MSG_LENGTH); 3025 3026 if (resp_len < 3 || 3027 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3028 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3029 dev_warn(smi_info->dev, 3030 "Invalid return from set global enables command: %ld %x %x\n", 3031 resp_len, resp[0], resp[1]); 3032 rv = -EINVAL; 3033 goto out; 3034 } 3035 3036 if (resp[2] != 0) 3037 rv = 1; 3038 3039 out: 3040 kfree(resp); 3041 return rv; 3042 } 3043 3044 /* 3045 * Some BMCs do not support clearing the receive irq bit in the global 3046 * enables (even if they don't support interrupts on the BMC). Check 3047 * for this and handle it properly. 3048 */ 3049 static void check_clr_rcv_irq(struct smi_info *smi_info) 3050 { 3051 u8 enables = 0; 3052 int rv; 3053 3054 rv = get_global_enables(smi_info, &enables); 3055 if (!rv) { 3056 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 3057 /* Already clear, should work ok. */ 3058 return; 3059 3060 enables &= ~IPMI_BMC_RCV_MSG_INTR; 3061 rv = set_global_enables(smi_info, enables); 3062 } 3063 3064 if (rv < 0) { 3065 dev_err(smi_info->dev, 3066 "Cannot check clearing the rcv irq: %d\n", rv); 3067 return; 3068 } 3069 3070 if (rv) { 3071 /* 3072 * An error when setting the event buffer bit means 3073 * clearing the bit is not supported. 3074 */ 3075 dev_warn(smi_info->dev, 3076 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3077 smi_info->cannot_disable_irq = true; 3078 } 3079 } 3080 3081 /* 3082 * Some BMCs do not support setting the interrupt bits in the global 3083 * enables even if they support interrupts. Clearly bad, but we can 3084 * compensate. 3085 */ 3086 static void check_set_rcv_irq(struct smi_info *smi_info) 3087 { 3088 u8 enables = 0; 3089 int rv; 3090 3091 if (!smi_info->irq) 3092 return; 3093 3094 rv = get_global_enables(smi_info, &enables); 3095 if (!rv) { 3096 enables |= IPMI_BMC_RCV_MSG_INTR; 3097 rv = set_global_enables(smi_info, enables); 3098 } 3099 3100 if (rv < 0) { 3101 dev_err(smi_info->dev, 3102 "Cannot check setting the rcv irq: %d\n", rv); 3103 return; 3104 } 3105 3106 if (rv) { 3107 /* 3108 * An error when setting the event buffer bit means 3109 * setting the bit is not supported. 3110 */ 3111 dev_warn(smi_info->dev, 3112 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 3113 smi_info->cannot_disable_irq = true; 3114 smi_info->irq_enable_broken = true; 3115 } 3116 } 3117 3118 static int try_enable_event_buffer(struct smi_info *smi_info) 3119 { 3120 unsigned char msg[3]; 3121 unsigned char *resp; 3122 unsigned long resp_len; 3123 int rv = 0; 3124 3125 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3126 if (!resp) 3127 return -ENOMEM; 3128 3129 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3130 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3131 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3132 3133 rv = wait_for_msg_done(smi_info); 3134 if (rv) { 3135 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n"); 3136 goto out; 3137 } 3138 3139 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3140 resp, IPMI_MAX_MSG_LENGTH); 3141 3142 if (resp_len < 4 || 3143 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3144 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3145 resp[2] != 0) { 3146 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n"); 3147 rv = -EINVAL; 3148 goto out; 3149 } 3150 3151 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3152 /* buffer is already enabled, nothing to do. */ 3153 smi_info->supports_event_msg_buff = true; 3154 goto out; 3155 } 3156 3157 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3158 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3159 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3160 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3161 3162 rv = wait_for_msg_done(smi_info); 3163 if (rv) { 3164 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n"); 3165 goto out; 3166 } 3167 3168 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3169 resp, IPMI_MAX_MSG_LENGTH); 3170 3171 if (resp_len < 3 || 3172 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3173 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3174 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n"); 3175 rv = -EINVAL; 3176 goto out; 3177 } 3178 3179 if (resp[2] != 0) 3180 /* 3181 * An error when setting the event buffer bit means 3182 * that the event buffer is not supported. 3183 */ 3184 rv = -ENOENT; 3185 else 3186 smi_info->supports_event_msg_buff = true; 3187 3188 out: 3189 kfree(resp); 3190 return rv; 3191 } 3192 3193 static int smi_type_proc_show(struct seq_file *m, void *v) 3194 { 3195 struct smi_info *smi = m->private; 3196 3197 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3198 3199 return 0; 3200 } 3201 3202 static int smi_type_proc_open(struct inode *inode, struct file *file) 3203 { 3204 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3205 } 3206 3207 static const struct file_operations smi_type_proc_ops = { 3208 .open = smi_type_proc_open, 3209 .read = seq_read, 3210 .llseek = seq_lseek, 3211 .release = single_release, 3212 }; 3213 3214 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3215 { 3216 struct smi_info *smi = m->private; 3217 3218 seq_printf(m, "interrupts_enabled: %d\n", 3219 smi->irq && !smi->interrupt_disabled); 3220 seq_printf(m, "short_timeouts: %u\n", 3221 smi_get_stat(smi, short_timeouts)); 3222 seq_printf(m, "long_timeouts: %u\n", 3223 smi_get_stat(smi, long_timeouts)); 3224 seq_printf(m, "idles: %u\n", 3225 smi_get_stat(smi, idles)); 3226 seq_printf(m, "interrupts: %u\n", 3227 smi_get_stat(smi, interrupts)); 3228 seq_printf(m, "attentions: %u\n", 3229 smi_get_stat(smi, attentions)); 3230 seq_printf(m, "flag_fetches: %u\n", 3231 smi_get_stat(smi, flag_fetches)); 3232 seq_printf(m, "hosed_count: %u\n", 3233 smi_get_stat(smi, hosed_count)); 3234 seq_printf(m, "complete_transactions: %u\n", 3235 smi_get_stat(smi, complete_transactions)); 3236 seq_printf(m, "events: %u\n", 3237 smi_get_stat(smi, events)); 3238 seq_printf(m, "watchdog_pretimeouts: %u\n", 3239 smi_get_stat(smi, watchdog_pretimeouts)); 3240 seq_printf(m, "incoming_messages: %u\n", 3241 smi_get_stat(smi, incoming_messages)); 3242 return 0; 3243 } 3244 3245 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3246 { 3247 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3248 } 3249 3250 static const struct file_operations smi_si_stats_proc_ops = { 3251 .open = smi_si_stats_proc_open, 3252 .read = seq_read, 3253 .llseek = seq_lseek, 3254 .release = single_release, 3255 }; 3256 3257 static int smi_params_proc_show(struct seq_file *m, void *v) 3258 { 3259 struct smi_info *smi = m->private; 3260 3261 seq_printf(m, 3262 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3263 si_to_str[smi->si_type], 3264 addr_space_to_str[smi->io.addr_type], 3265 smi->io.addr_data, 3266 smi->io.regspacing, 3267 smi->io.regsize, 3268 smi->io.regshift, 3269 smi->irq, 3270 smi->slave_addr); 3271 3272 return 0; 3273 } 3274 3275 static int smi_params_proc_open(struct inode *inode, struct file *file) 3276 { 3277 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3278 } 3279 3280 static const struct file_operations smi_params_proc_ops = { 3281 .open = smi_params_proc_open, 3282 .read = seq_read, 3283 .llseek = seq_lseek, 3284 .release = single_release, 3285 }; 3286 3287 /* 3288 * oem_data_avail_to_receive_msg_avail 3289 * @info - smi_info structure with msg_flags set 3290 * 3291 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3292 * Returns 1 indicating need to re-run handle_flags(). 3293 */ 3294 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3295 { 3296 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3297 RECEIVE_MSG_AVAIL); 3298 return 1; 3299 } 3300 3301 /* 3302 * setup_dell_poweredge_oem_data_handler 3303 * @info - smi_info.device_id must be populated 3304 * 3305 * Systems that match, but have firmware version < 1.40 may assert 3306 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3307 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3308 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3309 * as RECEIVE_MSG_AVAIL instead. 3310 * 3311 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3312 * assert the OEM[012] bits, and if it did, the driver would have to 3313 * change to handle that properly, we don't actually check for the 3314 * firmware version. 3315 * Device ID = 0x20 BMC on PowerEdge 8G servers 3316 * Device Revision = 0x80 3317 * Firmware Revision1 = 0x01 BMC version 1.40 3318 * Firmware Revision2 = 0x40 BCD encoded 3319 * IPMI Version = 0x51 IPMI 1.5 3320 * Manufacturer ID = A2 02 00 Dell IANA 3321 * 3322 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3323 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3324 * 3325 */ 3326 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3328 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3329 #define DELL_IANA_MFR_ID 0x0002a2 3330 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3331 { 3332 struct ipmi_device_id *id = &smi_info->device_id; 3333 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3334 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3335 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3336 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3337 smi_info->oem_data_avail_handler = 3338 oem_data_avail_to_receive_msg_avail; 3339 } else if (ipmi_version_major(id) < 1 || 3340 (ipmi_version_major(id) == 1 && 3341 ipmi_version_minor(id) < 5)) { 3342 smi_info->oem_data_avail_handler = 3343 oem_data_avail_to_receive_msg_avail; 3344 } 3345 } 3346 } 3347 3348 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3349 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3350 { 3351 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3352 3353 /* Make it a response */ 3354 msg->rsp[0] = msg->data[0] | 4; 3355 msg->rsp[1] = msg->data[1]; 3356 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3357 msg->rsp_size = 3; 3358 smi_info->curr_msg = NULL; 3359 deliver_recv_msg(smi_info, msg); 3360 } 3361 3362 /* 3363 * dell_poweredge_bt_xaction_handler 3364 * @info - smi_info.device_id must be populated 3365 * 3366 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3367 * not respond to a Get SDR command if the length of the data 3368 * requested is exactly 0x3A, which leads to command timeouts and no 3369 * data returned. This intercepts such commands, and causes userspace 3370 * callers to try again with a different-sized buffer, which succeeds. 3371 */ 3372 3373 #define STORAGE_NETFN 0x0A 3374 #define STORAGE_CMD_GET_SDR 0x23 3375 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3376 unsigned long unused, 3377 void *in) 3378 { 3379 struct smi_info *smi_info = in; 3380 unsigned char *data = smi_info->curr_msg->data; 3381 unsigned int size = smi_info->curr_msg->data_size; 3382 if (size >= 8 && 3383 (data[0]>>2) == STORAGE_NETFN && 3384 data[1] == STORAGE_CMD_GET_SDR && 3385 data[7] == 0x3A) { 3386 return_hosed_msg_badsize(smi_info); 3387 return NOTIFY_STOP; 3388 } 3389 return NOTIFY_DONE; 3390 } 3391 3392 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3393 .notifier_call = dell_poweredge_bt_xaction_handler, 3394 }; 3395 3396 /* 3397 * setup_dell_poweredge_bt_xaction_handler 3398 * @info - smi_info.device_id must be filled in already 3399 * 3400 * Fills in smi_info.device_id.start_transaction_pre_hook 3401 * when we know what function to use there. 3402 */ 3403 static void 3404 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3405 { 3406 struct ipmi_device_id *id = &smi_info->device_id; 3407 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3408 smi_info->si_type == SI_BT) 3409 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3410 } 3411 3412 /* 3413 * setup_oem_data_handler 3414 * @info - smi_info.device_id must be filled in already 3415 * 3416 * Fills in smi_info.device_id.oem_data_available_handler 3417 * when we know what function to use there. 3418 */ 3419 3420 static void setup_oem_data_handler(struct smi_info *smi_info) 3421 { 3422 setup_dell_poweredge_oem_data_handler(smi_info); 3423 } 3424 3425 static void setup_xaction_handlers(struct smi_info *smi_info) 3426 { 3427 setup_dell_poweredge_bt_xaction_handler(smi_info); 3428 } 3429 3430 static void check_for_broken_irqs(struct smi_info *smi_info) 3431 { 3432 check_clr_rcv_irq(smi_info); 3433 check_set_rcv_irq(smi_info); 3434 } 3435 3436 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3437 { 3438 if (smi_info->thread != NULL) 3439 kthread_stop(smi_info->thread); 3440 if (smi_info->timer_running) 3441 del_timer_sync(&smi_info->si_timer); 3442 } 3443 3444 static int is_new_interface(struct smi_info *info) 3445 { 3446 struct smi_info *e; 3447 3448 list_for_each_entry(e, &smi_infos, link) { 3449 if (e->io.addr_type != info->io.addr_type) 3450 continue; 3451 if (e->io.addr_data == info->io.addr_data) { 3452 /* 3453 * This is a cheap hack, ACPI doesn't have a defined 3454 * slave address but SMBIOS does. Pick it up from 3455 * any source that has it available. 3456 */ 3457 if (info->slave_addr && !e->slave_addr) 3458 e->slave_addr = info->slave_addr; 3459 return 0; 3460 } 3461 } 3462 3463 return 1; 3464 } 3465 3466 static int add_smi(struct smi_info *new_smi) 3467 { 3468 int rv = 0; 3469 3470 mutex_lock(&smi_infos_lock); 3471 if (!is_new_interface(new_smi)) { 3472 pr_info(PFX "%s-specified %s state machine: duplicate\n", 3473 ipmi_addr_src_to_str(new_smi->addr_source), 3474 si_to_str[new_smi->si_type]); 3475 rv = -EBUSY; 3476 goto out_err; 3477 } 3478 3479 pr_info(PFX "Adding %s-specified %s state machine\n", 3480 ipmi_addr_src_to_str(new_smi->addr_source), 3481 si_to_str[new_smi->si_type]); 3482 3483 /* So we know not to free it unless we have allocated one. */ 3484 new_smi->intf = NULL; 3485 new_smi->si_sm = NULL; 3486 new_smi->handlers = NULL; 3487 3488 list_add_tail(&new_smi->link, &smi_infos); 3489 3490 out_err: 3491 mutex_unlock(&smi_infos_lock); 3492 return rv; 3493 } 3494 3495 static int try_smi_init(struct smi_info *new_smi) 3496 { 3497 int rv = 0; 3498 int i; 3499 char *init_name = NULL; 3500 3501 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", 3502 ipmi_addr_src_to_str(new_smi->addr_source), 3503 si_to_str[new_smi->si_type], 3504 addr_space_to_str[new_smi->io.addr_type], 3505 new_smi->io.addr_data, 3506 new_smi->slave_addr, new_smi->irq); 3507 3508 switch (new_smi->si_type) { 3509 case SI_KCS: 3510 new_smi->handlers = &kcs_smi_handlers; 3511 break; 3512 3513 case SI_SMIC: 3514 new_smi->handlers = &smic_smi_handlers; 3515 break; 3516 3517 case SI_BT: 3518 new_smi->handlers = &bt_smi_handlers; 3519 break; 3520 3521 default: 3522 /* No support for anything else yet. */ 3523 rv = -EIO; 3524 goto out_err; 3525 } 3526 3527 /* Do this early so it's available for logs. */ 3528 if (!new_smi->dev) { 3529 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 0); 3530 3531 /* 3532 * If we don't already have a device from something 3533 * else (like PCI), then register a new one. 3534 */ 3535 new_smi->pdev = platform_device_alloc("ipmi_si", 3536 new_smi->intf_num); 3537 if (!new_smi->pdev) { 3538 pr_err(PFX "Unable to allocate platform device\n"); 3539 goto out_err; 3540 } 3541 new_smi->dev = &new_smi->pdev->dev; 3542 new_smi->dev->driver = &ipmi_driver.driver; 3543 /* Nulled by device_add() */ 3544 new_smi->dev->init_name = init_name; 3545 } 3546 3547 /* Allocate the state machine's data and initialize it. */ 3548 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3549 if (!new_smi->si_sm) { 3550 pr_err(PFX "Could not allocate state machine memory\n"); 3551 rv = -ENOMEM; 3552 goto out_err; 3553 } 3554 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3555 &new_smi->io); 3556 3557 /* Now that we know the I/O size, we can set up the I/O. */ 3558 rv = new_smi->io_setup(new_smi); 3559 if (rv) { 3560 dev_err(new_smi->dev, "Could not set up I/O space\n"); 3561 goto out_err; 3562 } 3563 3564 /* Do low-level detection first. */ 3565 if (new_smi->handlers->detect(new_smi->si_sm)) { 3566 if (new_smi->addr_source) 3567 dev_err(new_smi->dev, "Interface detection failed\n"); 3568 rv = -ENODEV; 3569 goto out_err; 3570 } 3571 3572 /* 3573 * Attempt a get device id command. If it fails, we probably 3574 * don't have a BMC here. 3575 */ 3576 rv = try_get_dev_id(new_smi); 3577 if (rv) { 3578 if (new_smi->addr_source) 3579 dev_err(new_smi->dev, "There appears to be no BMC at this location\n"); 3580 goto out_err; 3581 } 3582 3583 setup_oem_data_handler(new_smi); 3584 setup_xaction_handlers(new_smi); 3585 check_for_broken_irqs(new_smi); 3586 3587 new_smi->waiting_msg = NULL; 3588 new_smi->curr_msg = NULL; 3589 atomic_set(&new_smi->req_events, 0); 3590 new_smi->run_to_completion = false; 3591 for (i = 0; i < SI_NUM_STATS; i++) 3592 atomic_set(&new_smi->stats[i], 0); 3593 3594 new_smi->interrupt_disabled = true; 3595 atomic_set(&new_smi->need_watch, 0); 3596 new_smi->intf_num = smi_num; 3597 smi_num++; 3598 3599 rv = try_enable_event_buffer(new_smi); 3600 if (rv == 0) 3601 new_smi->has_event_buffer = true; 3602 3603 /* 3604 * Start clearing the flags before we enable interrupts or the 3605 * timer to avoid racing with the timer. 3606 */ 3607 start_clear_flags(new_smi, false); 3608 3609 /* 3610 * IRQ is defined to be set when non-zero. req_events will 3611 * cause a global flags check that will enable interrupts. 3612 */ 3613 if (new_smi->irq) { 3614 new_smi->interrupt_disabled = false; 3615 atomic_set(&new_smi->req_events, 1); 3616 } 3617 3618 if (new_smi->pdev) { 3619 rv = platform_device_add(new_smi->pdev); 3620 if (rv) { 3621 dev_err(new_smi->dev, 3622 "Unable to register system interface device: %d\n", 3623 rv); 3624 goto out_err; 3625 } 3626 new_smi->dev_registered = true; 3627 } 3628 3629 rv = ipmi_register_smi(&handlers, 3630 new_smi, 3631 &new_smi->device_id, 3632 new_smi->dev, 3633 new_smi->slave_addr); 3634 if (rv) { 3635 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3636 rv); 3637 goto out_err_stop_timer; 3638 } 3639 3640 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3641 &smi_type_proc_ops, 3642 new_smi); 3643 if (rv) { 3644 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3645 goto out_err_stop_timer; 3646 } 3647 3648 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3649 &smi_si_stats_proc_ops, 3650 new_smi); 3651 if (rv) { 3652 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3653 goto out_err_stop_timer; 3654 } 3655 3656 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3657 &smi_params_proc_ops, 3658 new_smi); 3659 if (rv) { 3660 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3661 goto out_err_stop_timer; 3662 } 3663 3664 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3665 si_to_str[new_smi->si_type]); 3666 3667 WARN_ON(new_smi->dev->init_name != NULL); 3668 kfree(init_name); 3669 3670 return 0; 3671 3672 out_err_stop_timer: 3673 wait_for_timer_and_thread(new_smi); 3674 3675 out_err: 3676 new_smi->interrupt_disabled = true; 3677 3678 if (new_smi->intf) { 3679 ipmi_smi_t intf = new_smi->intf; 3680 new_smi->intf = NULL; 3681 ipmi_unregister_smi(intf); 3682 } 3683 3684 if (new_smi->irq_cleanup) { 3685 new_smi->irq_cleanup(new_smi); 3686 new_smi->irq_cleanup = NULL; 3687 } 3688 3689 /* 3690 * Wait until we know that we are out of any interrupt 3691 * handlers might have been running before we freed the 3692 * interrupt. 3693 */ 3694 synchronize_sched(); 3695 3696 if (new_smi->si_sm) { 3697 if (new_smi->handlers) 3698 new_smi->handlers->cleanup(new_smi->si_sm); 3699 kfree(new_smi->si_sm); 3700 new_smi->si_sm = NULL; 3701 } 3702 if (new_smi->addr_source_cleanup) { 3703 new_smi->addr_source_cleanup(new_smi); 3704 new_smi->addr_source_cleanup = NULL; 3705 } 3706 if (new_smi->io_cleanup) { 3707 new_smi->io_cleanup(new_smi); 3708 new_smi->io_cleanup = NULL; 3709 } 3710 3711 if (new_smi->dev_registered) { 3712 platform_device_unregister(new_smi->pdev); 3713 new_smi->dev_registered = false; 3714 new_smi->pdev = NULL; 3715 } else if (new_smi->pdev) { 3716 platform_device_put(new_smi->pdev); 3717 new_smi->pdev = NULL; 3718 } 3719 3720 kfree(init_name); 3721 3722 return rv; 3723 } 3724 3725 static int init_ipmi_si(void) 3726 { 3727 int i; 3728 char *str; 3729 int rv; 3730 struct smi_info *e; 3731 enum ipmi_addr_src type = SI_INVALID; 3732 3733 if (initialized) 3734 return 0; 3735 initialized = 1; 3736 3737 if (si_tryplatform) { 3738 rv = platform_driver_register(&ipmi_driver); 3739 if (rv) { 3740 pr_err(PFX "Unable to register driver: %d\n", rv); 3741 return rv; 3742 } 3743 } 3744 3745 /* Parse out the si_type string into its components. */ 3746 str = si_type_str; 3747 if (*str != '\0') { 3748 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3749 si_type[i] = str; 3750 str = strchr(str, ','); 3751 if (str) { 3752 *str = '\0'; 3753 str++; 3754 } else { 3755 break; 3756 } 3757 } 3758 } 3759 3760 pr_info("IPMI System Interface driver.\n"); 3761 3762 /* If the user gave us a device, they presumably want us to use it */ 3763 if (!hardcode_find_bmc()) 3764 return 0; 3765 3766 #ifdef CONFIG_PCI 3767 if (si_trypci) { 3768 rv = pci_register_driver(&ipmi_pci_driver); 3769 if (rv) 3770 pr_err(PFX "Unable to register PCI driver: %d\n", rv); 3771 else 3772 pci_registered = true; 3773 } 3774 #endif 3775 3776 #ifdef CONFIG_DMI 3777 if (si_trydmi) 3778 dmi_find_bmc(); 3779 #endif 3780 3781 #ifdef CONFIG_ACPI 3782 if (si_tryacpi) 3783 spmi_find_bmc(); 3784 #endif 3785 3786 #ifdef CONFIG_PARISC 3787 register_parisc_driver(&ipmi_parisc_driver); 3788 parisc_registered = true; 3789 #endif 3790 3791 /* We prefer devices with interrupts, but in the case of a machine 3792 with multiple BMCs we assume that there will be several instances 3793 of a given type so if we succeed in registering a type then also 3794 try to register everything else of the same type */ 3795 3796 mutex_lock(&smi_infos_lock); 3797 list_for_each_entry(e, &smi_infos, link) { 3798 /* Try to register a device if it has an IRQ and we either 3799 haven't successfully registered a device yet or this 3800 device has the same type as one we successfully registered */ 3801 if (e->irq && (!type || e->addr_source == type)) { 3802 if (!try_smi_init(e)) { 3803 type = e->addr_source; 3804 } 3805 } 3806 } 3807 3808 /* type will only have been set if we successfully registered an si */ 3809 if (type) { 3810 mutex_unlock(&smi_infos_lock); 3811 return 0; 3812 } 3813 3814 /* Fall back to the preferred device */ 3815 3816 list_for_each_entry(e, &smi_infos, link) { 3817 if (!e->irq && (!type || e->addr_source == type)) { 3818 if (!try_smi_init(e)) { 3819 type = e->addr_source; 3820 } 3821 } 3822 } 3823 mutex_unlock(&smi_infos_lock); 3824 3825 if (type) 3826 return 0; 3827 3828 mutex_lock(&smi_infos_lock); 3829 if (unload_when_empty && list_empty(&smi_infos)) { 3830 mutex_unlock(&smi_infos_lock); 3831 cleanup_ipmi_si(); 3832 pr_warn(PFX "Unable to find any System Interface(s)\n"); 3833 return -ENODEV; 3834 } else { 3835 mutex_unlock(&smi_infos_lock); 3836 return 0; 3837 } 3838 } 3839 module_init(init_ipmi_si); 3840 3841 static void cleanup_one_si(struct smi_info *to_clean) 3842 { 3843 int rv = 0; 3844 3845 if (!to_clean) 3846 return; 3847 3848 if (to_clean->intf) { 3849 ipmi_smi_t intf = to_clean->intf; 3850 3851 to_clean->intf = NULL; 3852 rv = ipmi_unregister_smi(intf); 3853 if (rv) { 3854 pr_err(PFX "Unable to unregister device: errno=%d\n", 3855 rv); 3856 } 3857 } 3858 3859 if (to_clean->dev) 3860 dev_set_drvdata(to_clean->dev, NULL); 3861 3862 list_del(&to_clean->link); 3863 3864 /* 3865 * Make sure that interrupts, the timer and the thread are 3866 * stopped and will not run again. 3867 */ 3868 if (to_clean->irq_cleanup) 3869 to_clean->irq_cleanup(to_clean); 3870 wait_for_timer_and_thread(to_clean); 3871 3872 /* 3873 * Timeouts are stopped, now make sure the interrupts are off 3874 * in the BMC. Note that timers and CPU interrupts are off, 3875 * so no need for locks. 3876 */ 3877 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3878 poll(to_clean); 3879 schedule_timeout_uninterruptible(1); 3880 } 3881 disable_si_irq(to_clean, false); 3882 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3883 poll(to_clean); 3884 schedule_timeout_uninterruptible(1); 3885 } 3886 3887 if (to_clean->handlers) 3888 to_clean->handlers->cleanup(to_clean->si_sm); 3889 3890 kfree(to_clean->si_sm); 3891 3892 if (to_clean->addr_source_cleanup) 3893 to_clean->addr_source_cleanup(to_clean); 3894 if (to_clean->io_cleanup) 3895 to_clean->io_cleanup(to_clean); 3896 3897 if (to_clean->dev_registered) 3898 platform_device_unregister(to_clean->pdev); 3899 3900 kfree(to_clean); 3901 } 3902 3903 static void cleanup_ipmi_si(void) 3904 { 3905 struct smi_info *e, *tmp_e; 3906 3907 if (!initialized) 3908 return; 3909 3910 #ifdef CONFIG_PCI 3911 if (pci_registered) 3912 pci_unregister_driver(&ipmi_pci_driver); 3913 #endif 3914 #ifdef CONFIG_PARISC 3915 if (parisc_registered) 3916 unregister_parisc_driver(&ipmi_parisc_driver); 3917 #endif 3918 3919 platform_driver_unregister(&ipmi_driver); 3920 3921 mutex_lock(&smi_infos_lock); 3922 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3923 cleanup_one_si(e); 3924 mutex_unlock(&smi_infos_lock); 3925 } 3926 module_exit(cleanup_ipmi_si); 3927 3928 MODULE_LICENSE("GPL"); 3929 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3930 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3931 " system interfaces."); 3932