xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 4e1a33b1)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71 #include <linux/acpi.h>
72 
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77 
78 #define PFX "ipmi_si: "
79 
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82 
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC	10000
85 #define SI_USEC_PER_JIFFY	(1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88 				      short timeout */
89 
90 enum si_intf_state {
91 	SI_NORMAL,
92 	SI_GETTING_FLAGS,
93 	SI_GETTING_EVENTS,
94 	SI_CLEARING_FLAGS,
95 	SI_GETTING_MESSAGES,
96 	SI_CHECKING_ENABLES,
97 	SI_SETTING_ENABLES
98 	/* FIXME - add watchdog stuff. */
99 };
100 
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG		2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
105 
106 enum si_type {
107 	SI_KCS, SI_SMIC, SI_BT
108 };
109 
110 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
111 
112 #define DEVICE_NAME "ipmi_si"
113 
114 static struct platform_driver ipmi_driver;
115 
116 /*
117  * Indexes into stats[] in smi_info below.
118  */
119 enum si_stat_indexes {
120 	/*
121 	 * Number of times the driver requested a timer while an operation
122 	 * was in progress.
123 	 */
124 	SI_STAT_short_timeouts = 0,
125 
126 	/*
127 	 * Number of times the driver requested a timer while nothing was in
128 	 * progress.
129 	 */
130 	SI_STAT_long_timeouts,
131 
132 	/* Number of times the interface was idle while being polled. */
133 	SI_STAT_idles,
134 
135 	/* Number of interrupts the driver handled. */
136 	SI_STAT_interrupts,
137 
138 	/* Number of time the driver got an ATTN from the hardware. */
139 	SI_STAT_attentions,
140 
141 	/* Number of times the driver requested flags from the hardware. */
142 	SI_STAT_flag_fetches,
143 
144 	/* Number of times the hardware didn't follow the state machine. */
145 	SI_STAT_hosed_count,
146 
147 	/* Number of completed messages. */
148 	SI_STAT_complete_transactions,
149 
150 	/* Number of IPMI events received from the hardware. */
151 	SI_STAT_events,
152 
153 	/* Number of watchdog pretimeouts. */
154 	SI_STAT_watchdog_pretimeouts,
155 
156 	/* Number of asynchronous messages received. */
157 	SI_STAT_incoming_messages,
158 
159 
160 	/* This *must* remain last, add new values above this. */
161 	SI_NUM_STATS
162 };
163 
164 struct smi_info {
165 	int                    intf_num;
166 	ipmi_smi_t             intf;
167 	struct si_sm_data      *si_sm;
168 	const struct si_sm_handlers *handlers;
169 	enum si_type           si_type;
170 	spinlock_t             si_lock;
171 	struct ipmi_smi_msg    *waiting_msg;
172 	struct ipmi_smi_msg    *curr_msg;
173 	enum si_intf_state     si_state;
174 
175 	/*
176 	 * Used to handle the various types of I/O that can occur with
177 	 * IPMI
178 	 */
179 	struct si_sm_io io;
180 	int (*io_setup)(struct smi_info *info);
181 	void (*io_cleanup)(struct smi_info *info);
182 	int (*irq_setup)(struct smi_info *info);
183 	void (*irq_cleanup)(struct smi_info *info);
184 	unsigned int io_size;
185 	enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
186 	void (*addr_source_cleanup)(struct smi_info *info);
187 	void *addr_source_data;
188 
189 	/*
190 	 * Per-OEM handler, called from handle_flags().  Returns 1
191 	 * when handle_flags() needs to be re-run or 0 indicating it
192 	 * set si_state itself.
193 	 */
194 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
195 
196 	/*
197 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
198 	 * is set to hold the flags until we are done handling everything
199 	 * from the flags.
200 	 */
201 #define RECEIVE_MSG_AVAIL	0x01
202 #define EVENT_MSG_BUFFER_FULL	0x02
203 #define WDT_PRE_TIMEOUT_INT	0x08
204 #define OEM0_DATA_AVAIL     0x20
205 #define OEM1_DATA_AVAIL     0x40
206 #define OEM2_DATA_AVAIL     0x80
207 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
208 			     OEM1_DATA_AVAIL | \
209 			     OEM2_DATA_AVAIL)
210 	unsigned char       msg_flags;
211 
212 	/* Does the BMC have an event buffer? */
213 	bool		    has_event_buffer;
214 
215 	/*
216 	 * If set to true, this will request events the next time the
217 	 * state machine is idle.
218 	 */
219 	atomic_t            req_events;
220 
221 	/*
222 	 * If true, run the state machine to completion on every send
223 	 * call.  Generally used after a panic to make sure stuff goes
224 	 * out.
225 	 */
226 	bool                run_to_completion;
227 
228 	/* The I/O port of an SI interface. */
229 	int                 port;
230 
231 	/*
232 	 * The space between start addresses of the two ports.  For
233 	 * instance, if the first port is 0xca2 and the spacing is 4, then
234 	 * the second port is 0xca6.
235 	 */
236 	unsigned int        spacing;
237 
238 	/* zero if no irq; */
239 	int                 irq;
240 
241 	/* The timer for this si. */
242 	struct timer_list   si_timer;
243 
244 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
245 	bool		    timer_running;
246 
247 	/* The time (in jiffies) the last timeout occurred at. */
248 	unsigned long       last_timeout_jiffies;
249 
250 	/* Are we waiting for the events, pretimeouts, received msgs? */
251 	atomic_t            need_watch;
252 
253 	/*
254 	 * The driver will disable interrupts when it gets into a
255 	 * situation where it cannot handle messages due to lack of
256 	 * memory.  Once that situation clears up, it will re-enable
257 	 * interrupts.
258 	 */
259 	bool interrupt_disabled;
260 
261 	/*
262 	 * Does the BMC support events?
263 	 */
264 	bool supports_event_msg_buff;
265 
266 	/*
267 	 * Can we disable interrupts the global enables receive irq
268 	 * bit?  There are currently two forms of brokenness, some
269 	 * systems cannot disable the bit (which is technically within
270 	 * the spec but a bad idea) and some systems have the bit
271 	 * forced to zero even though interrupts work (which is
272 	 * clearly outside the spec).  The next bool tells which form
273 	 * of brokenness is present.
274 	 */
275 	bool cannot_disable_irq;
276 
277 	/*
278 	 * Some systems are broken and cannot set the irq enable
279 	 * bit, even if they support interrupts.
280 	 */
281 	bool irq_enable_broken;
282 
283 	/*
284 	 * Did we get an attention that we did not handle?
285 	 */
286 	bool got_attn;
287 
288 	/* From the get device id response... */
289 	struct ipmi_device_id device_id;
290 
291 	/* Driver model stuff. */
292 	struct device *dev;
293 	struct platform_device *pdev;
294 
295 	/*
296 	 * True if we allocated the device, false if it came from
297 	 * someplace else (like PCI).
298 	 */
299 	bool dev_registered;
300 
301 	/* Slave address, could be reported from DMI. */
302 	unsigned char slave_addr;
303 
304 	/* Counters and things for the proc filesystem. */
305 	atomic_t stats[SI_NUM_STATS];
306 
307 	struct task_struct *thread;
308 
309 	struct list_head link;
310 	union ipmi_smi_info_union addr_info;
311 };
312 
313 #define smi_inc_stat(smi, stat) \
314 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
315 #define smi_get_stat(smi, stat) \
316 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
317 
318 #define SI_MAX_PARMS 4
319 
320 static int force_kipmid[SI_MAX_PARMS];
321 static int num_force_kipmid;
322 #ifdef CONFIG_PCI
323 static bool pci_registered;
324 #endif
325 #ifdef CONFIG_PARISC
326 static bool parisc_registered;
327 #endif
328 
329 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
330 static int num_max_busy_us;
331 
332 static bool unload_when_empty = true;
333 
334 static int add_smi(struct smi_info *smi);
335 static int try_smi_init(struct smi_info *smi);
336 static void cleanup_one_si(struct smi_info *to_clean);
337 static void cleanup_ipmi_si(void);
338 
339 #ifdef DEBUG_TIMING
340 void debug_timestamp(char *msg)
341 {
342 	struct timespec64 t;
343 
344 	getnstimeofday64(&t);
345 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
346 }
347 #else
348 #define debug_timestamp(x)
349 #endif
350 
351 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
352 static int register_xaction_notifier(struct notifier_block *nb)
353 {
354 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
355 }
356 
357 static void deliver_recv_msg(struct smi_info *smi_info,
358 			     struct ipmi_smi_msg *msg)
359 {
360 	/* Deliver the message to the upper layer. */
361 	if (smi_info->intf)
362 		ipmi_smi_msg_received(smi_info->intf, msg);
363 	else
364 		ipmi_free_smi_msg(msg);
365 }
366 
367 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
368 {
369 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
370 
371 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
372 		cCode = IPMI_ERR_UNSPECIFIED;
373 	/* else use it as is */
374 
375 	/* Make it a response */
376 	msg->rsp[0] = msg->data[0] | 4;
377 	msg->rsp[1] = msg->data[1];
378 	msg->rsp[2] = cCode;
379 	msg->rsp_size = 3;
380 
381 	smi_info->curr_msg = NULL;
382 	deliver_recv_msg(smi_info, msg);
383 }
384 
385 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
386 {
387 	int              rv;
388 
389 	if (!smi_info->waiting_msg) {
390 		smi_info->curr_msg = NULL;
391 		rv = SI_SM_IDLE;
392 	} else {
393 		int err;
394 
395 		smi_info->curr_msg = smi_info->waiting_msg;
396 		smi_info->waiting_msg = NULL;
397 		debug_timestamp("Start2");
398 		err = atomic_notifier_call_chain(&xaction_notifier_list,
399 				0, smi_info);
400 		if (err & NOTIFY_STOP_MASK) {
401 			rv = SI_SM_CALL_WITHOUT_DELAY;
402 			goto out;
403 		}
404 		err = smi_info->handlers->start_transaction(
405 			smi_info->si_sm,
406 			smi_info->curr_msg->data,
407 			smi_info->curr_msg->data_size);
408 		if (err)
409 			return_hosed_msg(smi_info, err);
410 
411 		rv = SI_SM_CALL_WITHOUT_DELAY;
412 	}
413 out:
414 	return rv;
415 }
416 
417 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
418 {
419 	smi_info->last_timeout_jiffies = jiffies;
420 	mod_timer(&smi_info->si_timer, new_val);
421 	smi_info->timer_running = true;
422 }
423 
424 /*
425  * Start a new message and (re)start the timer and thread.
426  */
427 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
428 			  unsigned int size)
429 {
430 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
431 
432 	if (smi_info->thread)
433 		wake_up_process(smi_info->thread);
434 
435 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
436 }
437 
438 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
439 {
440 	unsigned char msg[2];
441 
442 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
443 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
444 
445 	if (start_timer)
446 		start_new_msg(smi_info, msg, 2);
447 	else
448 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
449 	smi_info->si_state = SI_CHECKING_ENABLES;
450 }
451 
452 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
453 {
454 	unsigned char msg[3];
455 
456 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
457 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
458 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
459 	msg[2] = WDT_PRE_TIMEOUT_INT;
460 
461 	if (start_timer)
462 		start_new_msg(smi_info, msg, 3);
463 	else
464 		smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
465 	smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467 
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472 	smi_info->curr_msg->data_size = 2;
473 
474 	start_new_msg(smi_info, smi_info->curr_msg->data,
475 		      smi_info->curr_msg->data_size);
476 	smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478 
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483 	smi_info->curr_msg->data_size = 2;
484 
485 	start_new_msg(smi_info, smi_info->curr_msg->data,
486 		      smi_info->curr_msg->data_size);
487 	smi_info->si_state = SI_GETTING_EVENTS;
488 }
489 
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
500 {
501 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502 		smi_info->interrupt_disabled = true;
503 		start_check_enables(smi_info, start_timer);
504 		return true;
505 	}
506 	return false;
507 }
508 
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512 		smi_info->interrupt_disabled = false;
513 		start_check_enables(smi_info, true);
514 		return true;
515 	}
516 	return false;
517 }
518 
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527 	struct ipmi_smi_msg *msg;
528 
529 	msg = ipmi_alloc_smi_msg();
530 	if (!msg) {
531 		if (!disable_si_irq(smi_info, true))
532 			smi_info->si_state = SI_NORMAL;
533 	} else if (enable_si_irq(smi_info)) {
534 		ipmi_free_smi_msg(msg);
535 		msg = NULL;
536 	}
537 	return msg;
538 }
539 
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544 		/* Watchdog pre-timeout */
545 		smi_inc_stat(smi_info, watchdog_pretimeouts);
546 
547 		start_clear_flags(smi_info, true);
548 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549 		if (smi_info->intf)
550 			ipmi_smi_watchdog_pretimeout(smi_info->intf);
551 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552 		/* Messages available. */
553 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554 		if (!smi_info->curr_msg)
555 			return;
556 
557 		start_getting_msg_queue(smi_info);
558 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559 		/* Events available. */
560 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561 		if (!smi_info->curr_msg)
562 			return;
563 
564 		start_getting_events(smi_info);
565 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566 		   smi_info->oem_data_avail_handler) {
567 		if (smi_info->oem_data_avail_handler(smi_info))
568 			goto retry;
569 	} else
570 		smi_info->si_state = SI_NORMAL;
571 }
572 
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577 			     IPMI_BMC_EVT_MSG_INTR)
578 
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580 				 bool *irq_on)
581 {
582 	u8 enables = 0;
583 
584 	if (smi_info->supports_event_msg_buff)
585 		enables |= IPMI_BMC_EVT_MSG_BUFF;
586 
587 	if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588 	     smi_info->cannot_disable_irq) &&
589 	    !smi_info->irq_enable_broken)
590 		enables |= IPMI_BMC_RCV_MSG_INTR;
591 
592 	if (smi_info->supports_event_msg_buff &&
593 	    smi_info->irq && !smi_info->interrupt_disabled &&
594 	    !smi_info->irq_enable_broken)
595 		enables |= IPMI_BMC_EVT_MSG_INTR;
596 
597 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598 
599 	return enables;
600 }
601 
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605 
606 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607 
608 	if ((bool)irqstate == irq_on)
609 		return;
610 
611 	if (irq_on)
612 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614 	else
615 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617 
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620 	struct ipmi_smi_msg *msg;
621 
622 	debug_timestamp("Done");
623 	switch (smi_info->si_state) {
624 	case SI_NORMAL:
625 		if (!smi_info->curr_msg)
626 			break;
627 
628 		smi_info->curr_msg->rsp_size
629 			= smi_info->handlers->get_result(
630 				smi_info->si_sm,
631 				smi_info->curr_msg->rsp,
632 				IPMI_MAX_MSG_LENGTH);
633 
634 		/*
635 		 * Do this here becase deliver_recv_msg() releases the
636 		 * lock, and a new message can be put in during the
637 		 * time the lock is released.
638 		 */
639 		msg = smi_info->curr_msg;
640 		smi_info->curr_msg = NULL;
641 		deliver_recv_msg(smi_info, msg);
642 		break;
643 
644 	case SI_GETTING_FLAGS:
645 	{
646 		unsigned char msg[4];
647 		unsigned int  len;
648 
649 		/* We got the flags from the SMI, now handle them. */
650 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651 		if (msg[2] != 0) {
652 			/* Error fetching flags, just give up for now. */
653 			smi_info->si_state = SI_NORMAL;
654 		} else if (len < 4) {
655 			/*
656 			 * Hmm, no flags.  That's technically illegal, but
657 			 * don't use uninitialized data.
658 			 */
659 			smi_info->si_state = SI_NORMAL;
660 		} else {
661 			smi_info->msg_flags = msg[3];
662 			handle_flags(smi_info);
663 		}
664 		break;
665 	}
666 
667 	case SI_CLEARING_FLAGS:
668 	{
669 		unsigned char msg[3];
670 
671 		/* We cleared the flags. */
672 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673 		if (msg[2] != 0) {
674 			/* Error clearing flags */
675 			dev_warn(smi_info->dev,
676 				 "Error clearing flags: %2.2x\n", msg[2]);
677 		}
678 		smi_info->si_state = SI_NORMAL;
679 		break;
680 	}
681 
682 	case SI_GETTING_EVENTS:
683 	{
684 		smi_info->curr_msg->rsp_size
685 			= smi_info->handlers->get_result(
686 				smi_info->si_sm,
687 				smi_info->curr_msg->rsp,
688 				IPMI_MAX_MSG_LENGTH);
689 
690 		/*
691 		 * Do this here becase deliver_recv_msg() releases the
692 		 * lock, and a new message can be put in during the
693 		 * time the lock is released.
694 		 */
695 		msg = smi_info->curr_msg;
696 		smi_info->curr_msg = NULL;
697 		if (msg->rsp[2] != 0) {
698 			/* Error getting event, probably done. */
699 			msg->done(msg);
700 
701 			/* Take off the event flag. */
702 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703 			handle_flags(smi_info);
704 		} else {
705 			smi_inc_stat(smi_info, events);
706 
707 			/*
708 			 * Do this before we deliver the message
709 			 * because delivering the message releases the
710 			 * lock and something else can mess with the
711 			 * state.
712 			 */
713 			handle_flags(smi_info);
714 
715 			deliver_recv_msg(smi_info, msg);
716 		}
717 		break;
718 	}
719 
720 	case SI_GETTING_MESSAGES:
721 	{
722 		smi_info->curr_msg->rsp_size
723 			= smi_info->handlers->get_result(
724 				smi_info->si_sm,
725 				smi_info->curr_msg->rsp,
726 				IPMI_MAX_MSG_LENGTH);
727 
728 		/*
729 		 * Do this here becase deliver_recv_msg() releases the
730 		 * lock, and a new message can be put in during the
731 		 * time the lock is released.
732 		 */
733 		msg = smi_info->curr_msg;
734 		smi_info->curr_msg = NULL;
735 		if (msg->rsp[2] != 0) {
736 			/* Error getting event, probably done. */
737 			msg->done(msg);
738 
739 			/* Take off the msg flag. */
740 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741 			handle_flags(smi_info);
742 		} else {
743 			smi_inc_stat(smi_info, incoming_messages);
744 
745 			/*
746 			 * Do this before we deliver the message
747 			 * because delivering the message releases the
748 			 * lock and something else can mess with the
749 			 * state.
750 			 */
751 			handle_flags(smi_info);
752 
753 			deliver_recv_msg(smi_info, msg);
754 		}
755 		break;
756 	}
757 
758 	case SI_CHECKING_ENABLES:
759 	{
760 		unsigned char msg[4];
761 		u8 enables;
762 		bool irq_on;
763 
764 		/* We got the flags from the SMI, now handle them. */
765 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766 		if (msg[2] != 0) {
767 			dev_warn(smi_info->dev,
768 				 "Couldn't get irq info: %x.\n", msg[2]);
769 			dev_warn(smi_info->dev,
770 				 "Maybe ok, but ipmi might run very slowly.\n");
771 			smi_info->si_state = SI_NORMAL;
772 			break;
773 		}
774 		enables = current_global_enables(smi_info, 0, &irq_on);
775 		if (smi_info->si_type == SI_BT)
776 			/* BT has its own interrupt enable bit. */
777 			check_bt_irq(smi_info, irq_on);
778 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779 			/* Enables are not correct, fix them. */
780 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783 			smi_info->handlers->start_transaction(
784 				smi_info->si_sm, msg, 3);
785 			smi_info->si_state = SI_SETTING_ENABLES;
786 		} else if (smi_info->supports_event_msg_buff) {
787 			smi_info->curr_msg = ipmi_alloc_smi_msg();
788 			if (!smi_info->curr_msg) {
789 				smi_info->si_state = SI_NORMAL;
790 				break;
791 			}
792 			start_getting_events(smi_info);
793 		} else {
794 			smi_info->si_state = SI_NORMAL;
795 		}
796 		break;
797 	}
798 
799 	case SI_SETTING_ENABLES:
800 	{
801 		unsigned char msg[4];
802 
803 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804 		if (msg[2] != 0)
805 			dev_warn(smi_info->dev,
806 				 "Could not set the global enables: 0x%x.\n",
807 				 msg[2]);
808 
809 		if (smi_info->supports_event_msg_buff) {
810 			smi_info->curr_msg = ipmi_alloc_smi_msg();
811 			if (!smi_info->curr_msg) {
812 				smi_info->si_state = SI_NORMAL;
813 				break;
814 			}
815 			start_getting_events(smi_info);
816 		} else {
817 			smi_info->si_state = SI_NORMAL;
818 		}
819 		break;
820 	}
821 	}
822 }
823 
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830 					   int time)
831 {
832 	enum si_sm_result si_sm_result;
833 
834 restart:
835 	/*
836 	 * There used to be a loop here that waited a little while
837 	 * (around 25us) before giving up.  That turned out to be
838 	 * pointless, the minimum delays I was seeing were in the 300us
839 	 * range, which is far too long to wait in an interrupt.  So
840 	 * we just run until the state machine tells us something
841 	 * happened or it needs a delay.
842 	 */
843 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844 	time = 0;
845 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847 
848 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849 		smi_inc_stat(smi_info, complete_transactions);
850 
851 		handle_transaction_done(smi_info);
852 		goto restart;
853 	} else if (si_sm_result == SI_SM_HOSED) {
854 		smi_inc_stat(smi_info, hosed_count);
855 
856 		/*
857 		 * Do the before return_hosed_msg, because that
858 		 * releases the lock.
859 		 */
860 		smi_info->si_state = SI_NORMAL;
861 		if (smi_info->curr_msg != NULL) {
862 			/*
863 			 * If we were handling a user message, format
864 			 * a response to send to the upper layer to
865 			 * tell it about the error.
866 			 */
867 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868 		}
869 		goto restart;
870 	}
871 
872 	/*
873 	 * We prefer handling attn over new messages.  But don't do
874 	 * this if there is not yet an upper layer to handle anything.
875 	 */
876 	if (likely(smi_info->intf) &&
877 	    (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878 		unsigned char msg[2];
879 
880 		if (smi_info->si_state != SI_NORMAL) {
881 			/*
882 			 * We got an ATTN, but we are doing something else.
883 			 * Handle the ATTN later.
884 			 */
885 			smi_info->got_attn = true;
886 		} else {
887 			smi_info->got_attn = false;
888 			smi_inc_stat(smi_info, attentions);
889 
890 			/*
891 			 * Got a attn, send down a get message flags to see
892 			 * what's causing it.  It would be better to handle
893 			 * this in the upper layer, but due to the way
894 			 * interrupts work with the SMI, that's not really
895 			 * possible.
896 			 */
897 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899 
900 			start_new_msg(smi_info, msg, 2);
901 			smi_info->si_state = SI_GETTING_FLAGS;
902 			goto restart;
903 		}
904 	}
905 
906 	/* If we are currently idle, try to start the next message. */
907 	if (si_sm_result == SI_SM_IDLE) {
908 		smi_inc_stat(smi_info, idles);
909 
910 		si_sm_result = start_next_msg(smi_info);
911 		if (si_sm_result != SI_SM_IDLE)
912 			goto restart;
913 	}
914 
915 	if ((si_sm_result == SI_SM_IDLE)
916 	    && (atomic_read(&smi_info->req_events))) {
917 		/*
918 		 * We are idle and the upper layer requested that I fetch
919 		 * events, so do so.
920 		 */
921 		atomic_set(&smi_info->req_events, 0);
922 
923 		/*
924 		 * Take this opportunity to check the interrupt and
925 		 * message enable state for the BMC.  The BMC can be
926 		 * asynchronously reset, and may thus get interrupts
927 		 * disable and messages disabled.
928 		 */
929 		if (smi_info->supports_event_msg_buff || smi_info->irq) {
930 			start_check_enables(smi_info, true);
931 		} else {
932 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933 			if (!smi_info->curr_msg)
934 				goto out;
935 
936 			start_getting_events(smi_info);
937 		}
938 		goto restart;
939 	}
940 
941 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942 		/* Ok it if fails, the timer will just go off. */
943 		if (del_timer(&smi_info->si_timer))
944 			smi_info->timer_running = false;
945 	}
946 
947 out:
948 	return si_sm_result;
949 }
950 
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955 
956 		if (smi_info->thread)
957 			wake_up_process(smi_info->thread);
958 
959 		start_next_msg(smi_info);
960 		smi_event_handler(smi_info, 0);
961 	}
962 }
963 
964 static void flush_messages(void *send_info)
965 {
966 	struct smi_info *smi_info = send_info;
967 	enum si_sm_result result;
968 
969 	/*
970 	 * Currently, this function is called only in run-to-completion
971 	 * mode.  This means we are single-threaded, no need for locks.
972 	 */
973 	result = smi_event_handler(smi_info, 0);
974 	while (result != SI_SM_IDLE) {
975 		udelay(SI_SHORT_TIMEOUT_USEC);
976 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977 	}
978 }
979 
980 static void sender(void                *send_info,
981 		   struct ipmi_smi_msg *msg)
982 {
983 	struct smi_info   *smi_info = send_info;
984 	unsigned long     flags;
985 
986 	debug_timestamp("Enqueue");
987 
988 	if (smi_info->run_to_completion) {
989 		/*
990 		 * If we are running to completion, start it.  Upper
991 		 * layer will call flush_messages to clear it out.
992 		 */
993 		smi_info->waiting_msg = msg;
994 		return;
995 	}
996 
997 	spin_lock_irqsave(&smi_info->si_lock, flags);
998 	/*
999 	 * The following two lines don't need to be under the lock for
1000 	 * the lock's sake, but they do need SMP memory barriers to
1001 	 * avoid getting things out of order.  We are already claiming
1002 	 * the lock, anyway, so just do it under the lock to avoid the
1003 	 * ordering problem.
1004 	 */
1005 	BUG_ON(smi_info->waiting_msg);
1006 	smi_info->waiting_msg = msg;
1007 	check_start_timer_thread(smi_info);
1008 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010 
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013 	struct smi_info   *smi_info = send_info;
1014 
1015 	smi_info->run_to_completion = i_run_to_completion;
1016 	if (i_run_to_completion)
1017 		flush_messages(smi_info);
1018 }
1019 
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027 	ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031 	return ts->tv_nsec != -1;
1032 }
1033 
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035 					const struct smi_info *smi_info,
1036 					struct timespec64 *busy_until)
1037 {
1038 	unsigned int max_busy_us = 0;
1039 
1040 	if (smi_info->intf_num < num_max_busy_us)
1041 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043 		ipmi_si_set_not_busy(busy_until);
1044 	else if (!ipmi_si_is_busy(busy_until)) {
1045 		getnstimeofday64(busy_until);
1046 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047 	} else {
1048 		struct timespec64 now;
1049 
1050 		getnstimeofday64(&now);
1051 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052 			ipmi_si_set_not_busy(busy_until);
1053 			return 0;
1054 		}
1055 	}
1056 	return 1;
1057 }
1058 
1059 
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071 	struct smi_info *smi_info = data;
1072 	unsigned long flags;
1073 	enum si_sm_result smi_result;
1074 	struct timespec64 busy_until;
1075 
1076 	ipmi_si_set_not_busy(&busy_until);
1077 	set_user_nice(current, MAX_NICE);
1078 	while (!kthread_should_stop()) {
1079 		int busy_wait;
1080 
1081 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1082 		smi_result = smi_event_handler(smi_info, 0);
1083 
1084 		/*
1085 		 * If the driver is doing something, there is a possible
1086 		 * race with the timer.  If the timer handler see idle,
1087 		 * and the thread here sees something else, the timer
1088 		 * handler won't restart the timer even though it is
1089 		 * required.  So start it here if necessary.
1090 		 */
1091 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093 
1094 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096 						  &busy_until);
1097 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098 			; /* do nothing */
1099 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100 			schedule();
1101 		else if (smi_result == SI_SM_IDLE) {
1102 			if (atomic_read(&smi_info->need_watch)) {
1103 				schedule_timeout_interruptible(100);
1104 			} else {
1105 				/* Wait to be woken up when we are needed. */
1106 				__set_current_state(TASK_INTERRUPTIBLE);
1107 				schedule();
1108 			}
1109 		} else
1110 			schedule_timeout_interruptible(1);
1111 	}
1112 	return 0;
1113 }
1114 
1115 
1116 static void poll(void *send_info)
1117 {
1118 	struct smi_info *smi_info = send_info;
1119 	unsigned long flags = 0;
1120 	bool run_to_completion = smi_info->run_to_completion;
1121 
1122 	/*
1123 	 * Make sure there is some delay in the poll loop so we can
1124 	 * drive time forward and timeout things.
1125 	 */
1126 	udelay(10);
1127 	if (!run_to_completion)
1128 		spin_lock_irqsave(&smi_info->si_lock, flags);
1129 	smi_event_handler(smi_info, 10);
1130 	if (!run_to_completion)
1131 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133 
1134 static void request_events(void *send_info)
1135 {
1136 	struct smi_info *smi_info = send_info;
1137 
1138 	if (!smi_info->has_event_buffer)
1139 		return;
1140 
1141 	atomic_set(&smi_info->req_events, 1);
1142 }
1143 
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146 	struct smi_info *smi_info = send_info;
1147 	unsigned long flags;
1148 
1149 	atomic_set(&smi_info->need_watch, enable);
1150 	spin_lock_irqsave(&smi_info->si_lock, flags);
1151 	check_start_timer_thread(smi_info);
1152 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154 
1155 static int initialized;
1156 
1157 static void smi_timeout(unsigned long data)
1158 {
1159 	struct smi_info   *smi_info = (struct smi_info *) data;
1160 	enum si_sm_result smi_result;
1161 	unsigned long     flags;
1162 	unsigned long     jiffies_now;
1163 	long              time_diff;
1164 	long		  timeout;
1165 
1166 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1167 	debug_timestamp("Timer");
1168 
1169 	jiffies_now = jiffies;
1170 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171 		     * SI_USEC_PER_JIFFY);
1172 	smi_result = smi_event_handler(smi_info, time_diff);
1173 
1174 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175 		/* Running with interrupts, only do long timeouts. */
1176 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 		smi_inc_stat(smi_info, long_timeouts);
1178 		goto do_mod_timer;
1179 	}
1180 
1181 	/*
1182 	 * If the state machine asks for a short delay, then shorten
1183 	 * the timer timeout.
1184 	 */
1185 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186 		smi_inc_stat(smi_info, short_timeouts);
1187 		timeout = jiffies + 1;
1188 	} else {
1189 		smi_inc_stat(smi_info, long_timeouts);
1190 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191 	}
1192 
1193 do_mod_timer:
1194 	if (smi_result != SI_SM_IDLE)
1195 		smi_mod_timer(smi_info, timeout);
1196 	else
1197 		smi_info->timer_running = false;
1198 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200 
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203 	struct smi_info *smi_info = data;
1204 	unsigned long   flags;
1205 
1206 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1207 
1208 	smi_inc_stat(smi_info, interrupts);
1209 
1210 	debug_timestamp("Interrupt");
1211 
1212 	smi_event_handler(smi_info, 0);
1213 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214 	return IRQ_HANDLED;
1215 }
1216 
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219 	struct smi_info *smi_info = data;
1220 	/* We need to clear the IRQ flag for the BT interface. */
1221 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224 	return si_irq_handler(irq, data);
1225 }
1226 
1227 static int smi_start_processing(void       *send_info,
1228 				ipmi_smi_t intf)
1229 {
1230 	struct smi_info *new_smi = send_info;
1231 	int             enable = 0;
1232 
1233 	new_smi->intf = intf;
1234 
1235 	/* Set up the timer that drives the interface. */
1236 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1238 
1239 	/* Try to claim any interrupts. */
1240 	if (new_smi->irq_setup)
1241 		new_smi->irq_setup(new_smi);
1242 
1243 	/*
1244 	 * Check if the user forcefully enabled the daemon.
1245 	 */
1246 	if (new_smi->intf_num < num_force_kipmid)
1247 		enable = force_kipmid[new_smi->intf_num];
1248 	/*
1249 	 * The BT interface is efficient enough to not need a thread,
1250 	 * and there is no need for a thread if we have interrupts.
1251 	 */
1252 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1253 		enable = 1;
1254 
1255 	if (enable) {
1256 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1257 					      "kipmi%d", new_smi->intf_num);
1258 		if (IS_ERR(new_smi->thread)) {
1259 			dev_notice(new_smi->dev, "Could not start"
1260 				   " kernel thread due to error %ld, only using"
1261 				   " timers to drive the interface\n",
1262 				   PTR_ERR(new_smi->thread));
1263 			new_smi->thread = NULL;
1264 		}
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1271 {
1272 	struct smi_info *smi = send_info;
1273 
1274 	data->addr_src = smi->addr_source;
1275 	data->dev = smi->dev;
1276 	data->addr_info = smi->addr_info;
1277 	get_device(smi->dev);
1278 
1279 	return 0;
1280 }
1281 
1282 static void set_maintenance_mode(void *send_info, bool enable)
1283 {
1284 	struct smi_info   *smi_info = send_info;
1285 
1286 	if (!enable)
1287 		atomic_set(&smi_info->req_events, 0);
1288 }
1289 
1290 static const struct ipmi_smi_handlers handlers = {
1291 	.owner                  = THIS_MODULE,
1292 	.start_processing       = smi_start_processing,
1293 	.get_smi_info		= get_smi_info,
1294 	.sender			= sender,
1295 	.request_events		= request_events,
1296 	.set_need_watch		= set_need_watch,
1297 	.set_maintenance_mode   = set_maintenance_mode,
1298 	.set_run_to_completion  = set_run_to_completion,
1299 	.flush_messages		= flush_messages,
1300 	.poll			= poll,
1301 };
1302 
1303 /*
1304  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1305  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1306  */
1307 
1308 static LIST_HEAD(smi_infos);
1309 static DEFINE_MUTEX(smi_infos_lock);
1310 static int smi_num; /* Used to sequence the SMIs */
1311 
1312 #define DEFAULT_REGSPACING	1
1313 #define DEFAULT_REGSIZE		1
1314 
1315 #ifdef CONFIG_ACPI
1316 static bool          si_tryacpi = true;
1317 #endif
1318 #ifdef CONFIG_DMI
1319 static bool          si_trydmi = true;
1320 #endif
1321 static bool          si_tryplatform = true;
1322 #ifdef CONFIG_PCI
1323 static bool          si_trypci = true;
1324 #endif
1325 static char          *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char          si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int  ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int           irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int           regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int           regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int           regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342 
1343 #define IPMI_IO_ADDR_SPACE  0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346 
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348 
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1351 		 " Documentation/IPMI.txt in the kernel sources for the"
1352 		 " gory details.");
1353 
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 		 " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362 		 " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1366 		 " default scan of the interfaces identified via platform"
1367 		 " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1371 		 " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1374 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1375 		 " interface separated by commas.  The types are 'kcs',"
1376 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1377 		 " the first interface to kcs and the second to bt");
1378 module_param_array(addrs, ulong, &num_addrs, 0);
1379 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1380 		 " addresses separated by commas.  Only use if an interface"
1381 		 " is in memory.  Otherwise, set it to zero or leave"
1382 		 " it blank.");
1383 module_param_array(ports, uint, &num_ports, 0);
1384 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1385 		 " addresses separated by commas.  Only use if an interface"
1386 		 " is a port.  Otherwise, set it to zero or leave"
1387 		 " it blank.");
1388 module_param_array(irqs, int, &num_irqs, 0);
1389 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1390 		 " addresses separated by commas.  Only use if an interface"
1391 		 " has an interrupt.  Otherwise, set it to zero or leave"
1392 		 " it blank.");
1393 module_param_array(regspacings, int, &num_regspacings, 0);
1394 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1395 		 " and each successive register used by the interface.  For"
1396 		 " instance, if the start address is 0xca2 and the spacing"
1397 		 " is 2, then the second address is at 0xca4.  Defaults"
1398 		 " to 1.");
1399 module_param_array(regsizes, int, &num_regsizes, 0);
1400 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1401 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1402 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1403 		 " the 8-bit IPMI register has to be read from a larger"
1404 		 " register.");
1405 module_param_array(regshifts, int, &num_regshifts, 0);
1406 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1407 		 " IPMI register, in bits.  For instance, if the data"
1408 		 " is read from a 32-bit word and the IPMI data is in"
1409 		 " bit 8-15, then the shift would be 8");
1410 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1411 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1412 		 " the controller.  Normally this is 0x20, but can be"
1413 		 " overridden by this parm.  This is an array indexed"
1414 		 " by interface number.");
1415 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1416 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1417 		 " disabled(0).  Normally the IPMI driver auto-detects"
1418 		 " this, but the value may be overridden by this parm.");
1419 module_param(unload_when_empty, bool, 0);
1420 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1421 		 " specified or found, default is 1.  Setting to 0"
1422 		 " is useful for hot add of devices using hotmod.");
1423 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1424 MODULE_PARM_DESC(kipmid_max_busy_us,
1425 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1426 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1427 		 " if kipmid is using up a lot of CPU time.");
1428 
1429 
1430 static void std_irq_cleanup(struct smi_info *info)
1431 {
1432 	if (info->si_type == SI_BT)
1433 		/* Disable the interrupt in the BT interface. */
1434 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1435 	free_irq(info->irq, info);
1436 }
1437 
1438 static int std_irq_setup(struct smi_info *info)
1439 {
1440 	int rv;
1441 
1442 	if (!info->irq)
1443 		return 0;
1444 
1445 	if (info->si_type == SI_BT) {
1446 		rv = request_irq(info->irq,
1447 				 si_bt_irq_handler,
1448 				 IRQF_SHARED,
1449 				 DEVICE_NAME,
1450 				 info);
1451 		if (!rv)
1452 			/* Enable the interrupt in the BT interface. */
1453 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1454 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1455 	} else
1456 		rv = request_irq(info->irq,
1457 				 si_irq_handler,
1458 				 IRQF_SHARED,
1459 				 DEVICE_NAME,
1460 				 info);
1461 	if (rv) {
1462 		dev_warn(info->dev, "%s unable to claim interrupt %d,"
1463 			 " running polled\n",
1464 			 DEVICE_NAME, info->irq);
1465 		info->irq = 0;
1466 	} else {
1467 		info->irq_cleanup = std_irq_cleanup;
1468 		dev_info(info->dev, "Using irq %d\n", info->irq);
1469 	}
1470 
1471 	return rv;
1472 }
1473 
1474 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1475 {
1476 	unsigned int addr = io->addr_data;
1477 
1478 	return inb(addr + (offset * io->regspacing));
1479 }
1480 
1481 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1482 		      unsigned char b)
1483 {
1484 	unsigned int addr = io->addr_data;
1485 
1486 	outb(b, addr + (offset * io->regspacing));
1487 }
1488 
1489 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1490 {
1491 	unsigned int addr = io->addr_data;
1492 
1493 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1494 }
1495 
1496 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1497 		      unsigned char b)
1498 {
1499 	unsigned int addr = io->addr_data;
1500 
1501 	outw(b << io->regshift, addr + (offset * io->regspacing));
1502 }
1503 
1504 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1505 {
1506 	unsigned int addr = io->addr_data;
1507 
1508 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1509 }
1510 
1511 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1512 		      unsigned char b)
1513 {
1514 	unsigned int addr = io->addr_data;
1515 
1516 	outl(b << io->regshift, addr+(offset * io->regspacing));
1517 }
1518 
1519 static void port_cleanup(struct smi_info *info)
1520 {
1521 	unsigned int addr = info->io.addr_data;
1522 	int          idx;
1523 
1524 	if (addr) {
1525 		for (idx = 0; idx < info->io_size; idx++)
1526 			release_region(addr + idx * info->io.regspacing,
1527 				       info->io.regsize);
1528 	}
1529 }
1530 
1531 static int port_setup(struct smi_info *info)
1532 {
1533 	unsigned int addr = info->io.addr_data;
1534 	int          idx;
1535 
1536 	if (!addr)
1537 		return -ENODEV;
1538 
1539 	info->io_cleanup = port_cleanup;
1540 
1541 	/*
1542 	 * Figure out the actual inb/inw/inl/etc routine to use based
1543 	 * upon the register size.
1544 	 */
1545 	switch (info->io.regsize) {
1546 	case 1:
1547 		info->io.inputb = port_inb;
1548 		info->io.outputb = port_outb;
1549 		break;
1550 	case 2:
1551 		info->io.inputb = port_inw;
1552 		info->io.outputb = port_outw;
1553 		break;
1554 	case 4:
1555 		info->io.inputb = port_inl;
1556 		info->io.outputb = port_outl;
1557 		break;
1558 	default:
1559 		dev_warn(info->dev, "Invalid register size: %d\n",
1560 			 info->io.regsize);
1561 		return -EINVAL;
1562 	}
1563 
1564 	/*
1565 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1566 	 * tables.  This causes problems when trying to register the
1567 	 * entire I/O region.  Therefore we must register each I/O
1568 	 * port separately.
1569 	 */
1570 	for (idx = 0; idx < info->io_size; idx++) {
1571 		if (request_region(addr + idx * info->io.regspacing,
1572 				   info->io.regsize, DEVICE_NAME) == NULL) {
1573 			/* Undo allocations */
1574 			while (idx--)
1575 				release_region(addr + idx * info->io.regspacing,
1576 					       info->io.regsize);
1577 			return -EIO;
1578 		}
1579 	}
1580 	return 0;
1581 }
1582 
1583 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1584 				  unsigned int offset)
1585 {
1586 	return readb((io->addr)+(offset * io->regspacing));
1587 }
1588 
1589 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1590 			  unsigned char b)
1591 {
1592 	writeb(b, (io->addr)+(offset * io->regspacing));
1593 }
1594 
1595 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1596 				  unsigned int offset)
1597 {
1598 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1599 		& 0xff;
1600 }
1601 
1602 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1603 			  unsigned char b)
1604 {
1605 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1606 }
1607 
1608 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1609 				  unsigned int offset)
1610 {
1611 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1612 		& 0xff;
1613 }
1614 
1615 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1616 			  unsigned char b)
1617 {
1618 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1619 }
1620 
1621 #ifdef readq
1622 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1623 {
1624 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1625 		& 0xff;
1626 }
1627 
1628 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1629 		     unsigned char b)
1630 {
1631 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1632 }
1633 #endif
1634 
1635 static void mem_region_cleanup(struct smi_info *info, int num)
1636 {
1637 	unsigned long addr = info->io.addr_data;
1638 	int idx;
1639 
1640 	for (idx = 0; idx < num; idx++)
1641 		release_mem_region(addr + idx * info->io.regspacing,
1642 				   info->io.regsize);
1643 }
1644 
1645 static void mem_cleanup(struct smi_info *info)
1646 {
1647 	if (info->io.addr) {
1648 		iounmap(info->io.addr);
1649 		mem_region_cleanup(info, info->io_size);
1650 	}
1651 }
1652 
1653 static int mem_setup(struct smi_info *info)
1654 {
1655 	unsigned long addr = info->io.addr_data;
1656 	int           mapsize, idx;
1657 
1658 	if (!addr)
1659 		return -ENODEV;
1660 
1661 	info->io_cleanup = mem_cleanup;
1662 
1663 	/*
1664 	 * Figure out the actual readb/readw/readl/etc routine to use based
1665 	 * upon the register size.
1666 	 */
1667 	switch (info->io.regsize) {
1668 	case 1:
1669 		info->io.inputb = intf_mem_inb;
1670 		info->io.outputb = intf_mem_outb;
1671 		break;
1672 	case 2:
1673 		info->io.inputb = intf_mem_inw;
1674 		info->io.outputb = intf_mem_outw;
1675 		break;
1676 	case 4:
1677 		info->io.inputb = intf_mem_inl;
1678 		info->io.outputb = intf_mem_outl;
1679 		break;
1680 #ifdef readq
1681 	case 8:
1682 		info->io.inputb = mem_inq;
1683 		info->io.outputb = mem_outq;
1684 		break;
1685 #endif
1686 	default:
1687 		dev_warn(info->dev, "Invalid register size: %d\n",
1688 			 info->io.regsize);
1689 		return -EINVAL;
1690 	}
1691 
1692 	/*
1693 	 * Some BIOSes reserve disjoint memory regions in their ACPI
1694 	 * tables.  This causes problems when trying to request the
1695 	 * entire region.  Therefore we must request each register
1696 	 * separately.
1697 	 */
1698 	for (idx = 0; idx < info->io_size; idx++) {
1699 		if (request_mem_region(addr + idx * info->io.regspacing,
1700 				       info->io.regsize, DEVICE_NAME) == NULL) {
1701 			/* Undo allocations */
1702 			mem_region_cleanup(info, idx);
1703 			return -EIO;
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * Calculate the total amount of memory to claim.  This is an
1709 	 * unusual looking calculation, but it avoids claiming any
1710 	 * more memory than it has to.  It will claim everything
1711 	 * between the first address to the end of the last full
1712 	 * register.
1713 	 */
1714 	mapsize = ((info->io_size * info->io.regspacing)
1715 		   - (info->io.regspacing - info->io.regsize));
1716 	info->io.addr = ioremap(addr, mapsize);
1717 	if (info->io.addr == NULL) {
1718 		mem_region_cleanup(info, info->io_size);
1719 		return -EIO;
1720 	}
1721 	return 0;
1722 }
1723 
1724 /*
1725  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1726  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1727  * Options are:
1728  *   rsp=<regspacing>
1729  *   rsi=<regsize>
1730  *   rsh=<regshift>
1731  *   irq=<irq>
1732  *   ipmb=<ipmb addr>
1733  */
1734 enum hotmod_op { HM_ADD, HM_REMOVE };
1735 struct hotmod_vals {
1736 	const char *name;
1737 	const int  val;
1738 };
1739 
1740 static const struct hotmod_vals hotmod_ops[] = {
1741 	{ "add",	HM_ADD },
1742 	{ "remove",	HM_REMOVE },
1743 	{ NULL }
1744 };
1745 
1746 static const struct hotmod_vals hotmod_si[] = {
1747 	{ "kcs",	SI_KCS },
1748 	{ "smic",	SI_SMIC },
1749 	{ "bt",		SI_BT },
1750 	{ NULL }
1751 };
1752 
1753 static const struct hotmod_vals hotmod_as[] = {
1754 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1755 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1756 	{ NULL }
1757 };
1758 
1759 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1760 		     char **curr)
1761 {
1762 	char *s;
1763 	int  i;
1764 
1765 	s = strchr(*curr, ',');
1766 	if (!s) {
1767 		pr_warn(PFX "No hotmod %s given.\n", name);
1768 		return -EINVAL;
1769 	}
1770 	*s = '\0';
1771 	s++;
1772 	for (i = 0; v[i].name; i++) {
1773 		if (strcmp(*curr, v[i].name) == 0) {
1774 			*val = v[i].val;
1775 			*curr = s;
1776 			return 0;
1777 		}
1778 	}
1779 
1780 	pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781 	return -EINVAL;
1782 }
1783 
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785 			       const char *name, int *val)
1786 {
1787 	char *n;
1788 
1789 	if (strcmp(curr, name) == 0) {
1790 		if (!option) {
1791 			pr_warn(PFX "No option given for '%s'\n", curr);
1792 			return -EINVAL;
1793 		}
1794 		*val = simple_strtoul(option, &n, 0);
1795 		if ((*n != '\0') || (*option == '\0')) {
1796 			pr_warn(PFX "Bad option given for '%s'\n", curr);
1797 			return -EINVAL;
1798 		}
1799 		return 1;
1800 	}
1801 	return 0;
1802 }
1803 
1804 static struct smi_info *smi_info_alloc(void)
1805 {
1806 	struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1807 
1808 	if (info)
1809 		spin_lock_init(&info->si_lock);
1810 	return info;
1811 }
1812 
1813 static int hotmod_handler(const char *val, struct kernel_param *kp)
1814 {
1815 	char *str = kstrdup(val, GFP_KERNEL);
1816 	int  rv;
1817 	char *next, *curr, *s, *n, *o;
1818 	enum hotmod_op op;
1819 	enum si_type si_type;
1820 	int  addr_space;
1821 	unsigned long addr;
1822 	int regspacing;
1823 	int regsize;
1824 	int regshift;
1825 	int irq;
1826 	int ipmb;
1827 	int ival;
1828 	int len;
1829 	struct smi_info *info;
1830 
1831 	if (!str)
1832 		return -ENOMEM;
1833 
1834 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1835 	len = strlen(str);
1836 	ival = len - 1;
1837 	while ((ival >= 0) && isspace(str[ival])) {
1838 		str[ival] = '\0';
1839 		ival--;
1840 	}
1841 
1842 	for (curr = str; curr; curr = next) {
1843 		regspacing = 1;
1844 		regsize = 1;
1845 		regshift = 0;
1846 		irq = 0;
1847 		ipmb = 0; /* Choose the default if not specified */
1848 
1849 		next = strchr(curr, ':');
1850 		if (next) {
1851 			*next = '\0';
1852 			next++;
1853 		}
1854 
1855 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1856 		if (rv)
1857 			break;
1858 		op = ival;
1859 
1860 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1861 		if (rv)
1862 			break;
1863 		si_type = ival;
1864 
1865 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1866 		if (rv)
1867 			break;
1868 
1869 		s = strchr(curr, ',');
1870 		if (s) {
1871 			*s = '\0';
1872 			s++;
1873 		}
1874 		addr = simple_strtoul(curr, &n, 0);
1875 		if ((*n != '\0') || (*curr == '\0')) {
1876 			pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1877 			break;
1878 		}
1879 
1880 		while (s) {
1881 			curr = s;
1882 			s = strchr(curr, ',');
1883 			if (s) {
1884 				*s = '\0';
1885 				s++;
1886 			}
1887 			o = strchr(curr, '=');
1888 			if (o) {
1889 				*o = '\0';
1890 				o++;
1891 			}
1892 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1893 			if (rv < 0)
1894 				goto out;
1895 			else if (rv)
1896 				continue;
1897 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1898 			if (rv < 0)
1899 				goto out;
1900 			else if (rv)
1901 				continue;
1902 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1903 			if (rv < 0)
1904 				goto out;
1905 			else if (rv)
1906 				continue;
1907 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1908 			if (rv < 0)
1909 				goto out;
1910 			else if (rv)
1911 				continue;
1912 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1913 			if (rv < 0)
1914 				goto out;
1915 			else if (rv)
1916 				continue;
1917 
1918 			rv = -EINVAL;
1919 			pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1920 			goto out;
1921 		}
1922 
1923 		if (op == HM_ADD) {
1924 			info = smi_info_alloc();
1925 			if (!info) {
1926 				rv = -ENOMEM;
1927 				goto out;
1928 			}
1929 
1930 			info->addr_source = SI_HOTMOD;
1931 			info->si_type = si_type;
1932 			info->io.addr_data = addr;
1933 			info->io.addr_type = addr_space;
1934 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1935 				info->io_setup = mem_setup;
1936 			else
1937 				info->io_setup = port_setup;
1938 
1939 			info->io.addr = NULL;
1940 			info->io.regspacing = regspacing;
1941 			if (!info->io.regspacing)
1942 				info->io.regspacing = DEFAULT_REGSPACING;
1943 			info->io.regsize = regsize;
1944 			if (!info->io.regsize)
1945 				info->io.regsize = DEFAULT_REGSPACING;
1946 			info->io.regshift = regshift;
1947 			info->irq = irq;
1948 			if (info->irq)
1949 				info->irq_setup = std_irq_setup;
1950 			info->slave_addr = ipmb;
1951 
1952 			rv = add_smi(info);
1953 			if (rv) {
1954 				kfree(info);
1955 				goto out;
1956 			}
1957 			rv = try_smi_init(info);
1958 			if (rv) {
1959 				cleanup_one_si(info);
1960 				goto out;
1961 			}
1962 		} else {
1963 			/* remove */
1964 			struct smi_info *e, *tmp_e;
1965 
1966 			mutex_lock(&smi_infos_lock);
1967 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1968 				if (e->io.addr_type != addr_space)
1969 					continue;
1970 				if (e->si_type != si_type)
1971 					continue;
1972 				if (e->io.addr_data == addr)
1973 					cleanup_one_si(e);
1974 			}
1975 			mutex_unlock(&smi_infos_lock);
1976 		}
1977 	}
1978 	rv = len;
1979 out:
1980 	kfree(str);
1981 	return rv;
1982 }
1983 
1984 static int hardcode_find_bmc(void)
1985 {
1986 	int ret = -ENODEV;
1987 	int             i;
1988 	struct smi_info *info;
1989 
1990 	for (i = 0; i < SI_MAX_PARMS; i++) {
1991 		if (!ports[i] && !addrs[i])
1992 			continue;
1993 
1994 		info = smi_info_alloc();
1995 		if (!info)
1996 			return -ENOMEM;
1997 
1998 		info->addr_source = SI_HARDCODED;
1999 		pr_info(PFX "probing via hardcoded address\n");
2000 
2001 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2002 			info->si_type = SI_KCS;
2003 		} else if (strcmp(si_type[i], "smic") == 0) {
2004 			info->si_type = SI_SMIC;
2005 		} else if (strcmp(si_type[i], "bt") == 0) {
2006 			info->si_type = SI_BT;
2007 		} else {
2008 			pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2009 				i, si_type[i]);
2010 			kfree(info);
2011 			continue;
2012 		}
2013 
2014 		if (ports[i]) {
2015 			/* An I/O port */
2016 			info->io_setup = port_setup;
2017 			info->io.addr_data = ports[i];
2018 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
2019 		} else if (addrs[i]) {
2020 			/* A memory port */
2021 			info->io_setup = mem_setup;
2022 			info->io.addr_data = addrs[i];
2023 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2024 		} else {
2025 			pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2026 				i);
2027 			kfree(info);
2028 			continue;
2029 		}
2030 
2031 		info->io.addr = NULL;
2032 		info->io.regspacing = regspacings[i];
2033 		if (!info->io.regspacing)
2034 			info->io.regspacing = DEFAULT_REGSPACING;
2035 		info->io.regsize = regsizes[i];
2036 		if (!info->io.regsize)
2037 			info->io.regsize = DEFAULT_REGSPACING;
2038 		info->io.regshift = regshifts[i];
2039 		info->irq = irqs[i];
2040 		if (info->irq)
2041 			info->irq_setup = std_irq_setup;
2042 		info->slave_addr = slave_addrs[i];
2043 
2044 		if (!add_smi(info)) {
2045 			if (try_smi_init(info))
2046 				cleanup_one_si(info);
2047 			ret = 0;
2048 		} else {
2049 			kfree(info);
2050 		}
2051 	}
2052 	return ret;
2053 }
2054 
2055 #ifdef CONFIG_ACPI
2056 
2057 /*
2058  * Once we get an ACPI failure, we don't try any more, because we go
2059  * through the tables sequentially.  Once we don't find a table, there
2060  * are no more.
2061  */
2062 static int acpi_failure;
2063 
2064 /* For GPE-type interrupts. */
2065 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2066 	u32 gpe_number, void *context)
2067 {
2068 	struct smi_info *smi_info = context;
2069 	unsigned long   flags;
2070 
2071 	spin_lock_irqsave(&(smi_info->si_lock), flags);
2072 
2073 	smi_inc_stat(smi_info, interrupts);
2074 
2075 	debug_timestamp("ACPI_GPE");
2076 
2077 	smi_event_handler(smi_info, 0);
2078 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2079 
2080 	return ACPI_INTERRUPT_HANDLED;
2081 }
2082 
2083 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2084 {
2085 	if (!info->irq)
2086 		return;
2087 
2088 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2089 }
2090 
2091 static int acpi_gpe_irq_setup(struct smi_info *info)
2092 {
2093 	acpi_status status;
2094 
2095 	if (!info->irq)
2096 		return 0;
2097 
2098 	status = acpi_install_gpe_handler(NULL,
2099 					  info->irq,
2100 					  ACPI_GPE_LEVEL_TRIGGERED,
2101 					  &ipmi_acpi_gpe,
2102 					  info);
2103 	if (status != AE_OK) {
2104 		dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2105 			 " running polled\n", DEVICE_NAME, info->irq);
2106 		info->irq = 0;
2107 		return -EINVAL;
2108 	} else {
2109 		info->irq_cleanup = acpi_gpe_irq_cleanup;
2110 		dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2111 		return 0;
2112 	}
2113 }
2114 
2115 /*
2116  * Defined at
2117  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2118  */
2119 struct SPMITable {
2120 	s8	Signature[4];
2121 	u32	Length;
2122 	u8	Revision;
2123 	u8	Checksum;
2124 	s8	OEMID[6];
2125 	s8	OEMTableID[8];
2126 	s8	OEMRevision[4];
2127 	s8	CreatorID[4];
2128 	s8	CreatorRevision[4];
2129 	u8	InterfaceType;
2130 	u8	IPMIlegacy;
2131 	s16	SpecificationRevision;
2132 
2133 	/*
2134 	 * Bit 0 - SCI interrupt supported
2135 	 * Bit 1 - I/O APIC/SAPIC
2136 	 */
2137 	u8	InterruptType;
2138 
2139 	/*
2140 	 * If bit 0 of InterruptType is set, then this is the SCI
2141 	 * interrupt in the GPEx_STS register.
2142 	 */
2143 	u8	GPE;
2144 
2145 	s16	Reserved;
2146 
2147 	/*
2148 	 * If bit 1 of InterruptType is set, then this is the I/O
2149 	 * APIC/SAPIC interrupt.
2150 	 */
2151 	u32	GlobalSystemInterrupt;
2152 
2153 	/* The actual register address. */
2154 	struct acpi_generic_address addr;
2155 
2156 	u8	UID[4];
2157 
2158 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2159 };
2160 
2161 static int try_init_spmi(struct SPMITable *spmi)
2162 {
2163 	struct smi_info  *info;
2164 	int rv;
2165 
2166 	if (spmi->IPMIlegacy != 1) {
2167 		pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2168 		return -ENODEV;
2169 	}
2170 
2171 	info = smi_info_alloc();
2172 	if (!info) {
2173 		pr_err(PFX "Could not allocate SI data (3)\n");
2174 		return -ENOMEM;
2175 	}
2176 
2177 	info->addr_source = SI_SPMI;
2178 	pr_info(PFX "probing via SPMI\n");
2179 
2180 	/* Figure out the interface type. */
2181 	switch (spmi->InterfaceType) {
2182 	case 1:	/* KCS */
2183 		info->si_type = SI_KCS;
2184 		break;
2185 	case 2:	/* SMIC */
2186 		info->si_type = SI_SMIC;
2187 		break;
2188 	case 3:	/* BT */
2189 		info->si_type = SI_BT;
2190 		break;
2191 	case 4: /* SSIF, just ignore */
2192 		kfree(info);
2193 		return -EIO;
2194 	default:
2195 		pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2196 			spmi->InterfaceType);
2197 		kfree(info);
2198 		return -EIO;
2199 	}
2200 
2201 	if (spmi->InterruptType & 1) {
2202 		/* We've got a GPE interrupt. */
2203 		info->irq = spmi->GPE;
2204 		info->irq_setup = acpi_gpe_irq_setup;
2205 	} else if (spmi->InterruptType & 2) {
2206 		/* We've got an APIC/SAPIC interrupt. */
2207 		info->irq = spmi->GlobalSystemInterrupt;
2208 		info->irq_setup = std_irq_setup;
2209 	} else {
2210 		/* Use the default interrupt setting. */
2211 		info->irq = 0;
2212 		info->irq_setup = NULL;
2213 	}
2214 
2215 	if (spmi->addr.bit_width) {
2216 		/* A (hopefully) properly formed register bit width. */
2217 		info->io.regspacing = spmi->addr.bit_width / 8;
2218 	} else {
2219 		info->io.regspacing = DEFAULT_REGSPACING;
2220 	}
2221 	info->io.regsize = info->io.regspacing;
2222 	info->io.regshift = spmi->addr.bit_offset;
2223 
2224 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2225 		info->io_setup = mem_setup;
2226 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2227 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2228 		info->io_setup = port_setup;
2229 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2230 	} else {
2231 		kfree(info);
2232 		pr_warn(PFX "Unknown ACPI I/O Address type\n");
2233 		return -EIO;
2234 	}
2235 	info->io.addr_data = spmi->addr.address;
2236 
2237 	pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2238 		(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2239 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2240 		info->irq);
2241 
2242 	rv = add_smi(info);
2243 	if (rv)
2244 		kfree(info);
2245 
2246 	return rv;
2247 }
2248 
2249 static void spmi_find_bmc(void)
2250 {
2251 	acpi_status      status;
2252 	struct SPMITable *spmi;
2253 	int              i;
2254 
2255 	if (acpi_disabled)
2256 		return;
2257 
2258 	if (acpi_failure)
2259 		return;
2260 
2261 	for (i = 0; ; i++) {
2262 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2263 					(struct acpi_table_header **)&spmi);
2264 		if (status != AE_OK)
2265 			return;
2266 
2267 		try_init_spmi(spmi);
2268 	}
2269 }
2270 #endif
2271 
2272 #ifdef CONFIG_DMI
2273 struct dmi_ipmi_data {
2274 	u8   		type;
2275 	u8   		addr_space;
2276 	unsigned long	base_addr;
2277 	u8   		irq;
2278 	u8              offset;
2279 	u8              slave_addr;
2280 };
2281 
2282 static int decode_dmi(const struct dmi_header *dm,
2283 				struct dmi_ipmi_data *dmi)
2284 {
2285 	const u8	*data = (const u8 *)dm;
2286 	unsigned long  	base_addr;
2287 	u8		reg_spacing;
2288 	u8              len = dm->length;
2289 
2290 	dmi->type = data[4];
2291 
2292 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2293 	if (len >= 0x11) {
2294 		if (base_addr & 1) {
2295 			/* I/O */
2296 			base_addr &= 0xFFFE;
2297 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2298 		} else
2299 			/* Memory */
2300 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2301 
2302 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2303 		   is odd. */
2304 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2305 
2306 		dmi->irq = data[0x11];
2307 
2308 		/* The top two bits of byte 0x10 hold the register spacing. */
2309 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2310 		switch (reg_spacing) {
2311 		case 0x00: /* Byte boundaries */
2312 		    dmi->offset = 1;
2313 		    break;
2314 		case 0x01: /* 32-bit boundaries */
2315 		    dmi->offset = 4;
2316 		    break;
2317 		case 0x02: /* 16-byte boundaries */
2318 		    dmi->offset = 16;
2319 		    break;
2320 		default:
2321 		    /* Some other interface, just ignore it. */
2322 		    return -EIO;
2323 		}
2324 	} else {
2325 		/* Old DMI spec. */
2326 		/*
2327 		 * Note that technically, the lower bit of the base
2328 		 * address should be 1 if the address is I/O and 0 if
2329 		 * the address is in memory.  So many systems get that
2330 		 * wrong (and all that I have seen are I/O) so we just
2331 		 * ignore that bit and assume I/O.  Systems that use
2332 		 * memory should use the newer spec, anyway.
2333 		 */
2334 		dmi->base_addr = base_addr & 0xfffe;
2335 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2336 		dmi->offset = 1;
2337 	}
2338 
2339 	dmi->slave_addr = data[6];
2340 
2341 	return 0;
2342 }
2343 
2344 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2345 {
2346 	struct smi_info *info;
2347 
2348 	info = smi_info_alloc();
2349 	if (!info) {
2350 		pr_err(PFX "Could not allocate SI data\n");
2351 		return;
2352 	}
2353 
2354 	info->addr_source = SI_SMBIOS;
2355 	pr_info(PFX "probing via SMBIOS\n");
2356 
2357 	switch (ipmi_data->type) {
2358 	case 0x01: /* KCS */
2359 		info->si_type = SI_KCS;
2360 		break;
2361 	case 0x02: /* SMIC */
2362 		info->si_type = SI_SMIC;
2363 		break;
2364 	case 0x03: /* BT */
2365 		info->si_type = SI_BT;
2366 		break;
2367 	default:
2368 		kfree(info);
2369 		return;
2370 	}
2371 
2372 	switch (ipmi_data->addr_space) {
2373 	case IPMI_MEM_ADDR_SPACE:
2374 		info->io_setup = mem_setup;
2375 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2376 		break;
2377 
2378 	case IPMI_IO_ADDR_SPACE:
2379 		info->io_setup = port_setup;
2380 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2381 		break;
2382 
2383 	default:
2384 		kfree(info);
2385 		pr_warn(PFX "Unknown SMBIOS I/O Address type: %d\n",
2386 			ipmi_data->addr_space);
2387 		return;
2388 	}
2389 	info->io.addr_data = ipmi_data->base_addr;
2390 
2391 	info->io.regspacing = ipmi_data->offset;
2392 	if (!info->io.regspacing)
2393 		info->io.regspacing = DEFAULT_REGSPACING;
2394 	info->io.regsize = DEFAULT_REGSPACING;
2395 	info->io.regshift = 0;
2396 
2397 	info->slave_addr = ipmi_data->slave_addr;
2398 
2399 	info->irq = ipmi_data->irq;
2400 	if (info->irq)
2401 		info->irq_setup = std_irq_setup;
2402 
2403 	pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2404 		(info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2405 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2406 		info->irq);
2407 
2408 	if (add_smi(info))
2409 		kfree(info);
2410 }
2411 
2412 static void dmi_find_bmc(void)
2413 {
2414 	const struct dmi_device *dev = NULL;
2415 	struct dmi_ipmi_data data;
2416 	int                  rv;
2417 
2418 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2419 		memset(&data, 0, sizeof(data));
2420 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2421 				&data);
2422 		if (!rv)
2423 			try_init_dmi(&data);
2424 	}
2425 }
2426 #endif /* CONFIG_DMI */
2427 
2428 #ifdef CONFIG_PCI
2429 
2430 #define PCI_ERMC_CLASSCODE		0x0C0700
2431 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2432 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2433 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2434 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2435 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2436 
2437 #define PCI_HP_VENDOR_ID    0x103C
2438 #define PCI_MMC_DEVICE_ID   0x121A
2439 #define PCI_MMC_ADDR_CW     0x10
2440 
2441 static void ipmi_pci_cleanup(struct smi_info *info)
2442 {
2443 	struct pci_dev *pdev = info->addr_source_data;
2444 
2445 	pci_disable_device(pdev);
2446 }
2447 
2448 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2449 {
2450 	if (info->si_type == SI_KCS) {
2451 		unsigned char	status;
2452 		int		regspacing;
2453 
2454 		info->io.regsize = DEFAULT_REGSIZE;
2455 		info->io.regshift = 0;
2456 		info->io_size = 2;
2457 		info->handlers = &kcs_smi_handlers;
2458 
2459 		/* detect 1, 4, 16byte spacing */
2460 		for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2461 			info->io.regspacing = regspacing;
2462 			if (info->io_setup(info)) {
2463 				dev_err(info->dev,
2464 					"Could not setup I/O space\n");
2465 				return DEFAULT_REGSPACING;
2466 			}
2467 			/* write invalid cmd */
2468 			info->io.outputb(&info->io, 1, 0x10);
2469 			/* read status back */
2470 			status = info->io.inputb(&info->io, 1);
2471 			info->io_cleanup(info);
2472 			if (status)
2473 				return regspacing;
2474 			regspacing *= 4;
2475 		}
2476 	}
2477 	return DEFAULT_REGSPACING;
2478 }
2479 
2480 static int ipmi_pci_probe(struct pci_dev *pdev,
2481 				    const struct pci_device_id *ent)
2482 {
2483 	int rv;
2484 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2485 	struct smi_info *info;
2486 
2487 	info = smi_info_alloc();
2488 	if (!info)
2489 		return -ENOMEM;
2490 
2491 	info->addr_source = SI_PCI;
2492 	dev_info(&pdev->dev, "probing via PCI");
2493 
2494 	switch (class_type) {
2495 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2496 		info->si_type = SI_SMIC;
2497 		break;
2498 
2499 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2500 		info->si_type = SI_KCS;
2501 		break;
2502 
2503 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2504 		info->si_type = SI_BT;
2505 		break;
2506 
2507 	default:
2508 		kfree(info);
2509 		dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2510 		return -ENOMEM;
2511 	}
2512 
2513 	rv = pci_enable_device(pdev);
2514 	if (rv) {
2515 		dev_err(&pdev->dev, "couldn't enable PCI device\n");
2516 		kfree(info);
2517 		return rv;
2518 	}
2519 
2520 	info->addr_source_cleanup = ipmi_pci_cleanup;
2521 	info->addr_source_data = pdev;
2522 
2523 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2524 		info->io_setup = port_setup;
2525 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2526 	} else {
2527 		info->io_setup = mem_setup;
2528 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2529 	}
2530 	info->io.addr_data = pci_resource_start(pdev, 0);
2531 
2532 	info->io.regspacing = ipmi_pci_probe_regspacing(info);
2533 	info->io.regsize = DEFAULT_REGSIZE;
2534 	info->io.regshift = 0;
2535 
2536 	info->irq = pdev->irq;
2537 	if (info->irq)
2538 		info->irq_setup = std_irq_setup;
2539 
2540 	info->dev = &pdev->dev;
2541 	pci_set_drvdata(pdev, info);
2542 
2543 	dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2544 		&pdev->resource[0], info->io.regsize, info->io.regspacing,
2545 		info->irq);
2546 
2547 	rv = add_smi(info);
2548 	if (rv) {
2549 		kfree(info);
2550 		pci_disable_device(pdev);
2551 	}
2552 
2553 	return rv;
2554 }
2555 
2556 static void ipmi_pci_remove(struct pci_dev *pdev)
2557 {
2558 	struct smi_info *info = pci_get_drvdata(pdev);
2559 	cleanup_one_si(info);
2560 }
2561 
2562 static const struct pci_device_id ipmi_pci_devices[] = {
2563 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2564 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2565 	{ 0, }
2566 };
2567 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2568 
2569 static struct pci_driver ipmi_pci_driver = {
2570 	.name =         DEVICE_NAME,
2571 	.id_table =     ipmi_pci_devices,
2572 	.probe =        ipmi_pci_probe,
2573 	.remove =       ipmi_pci_remove,
2574 };
2575 #endif /* CONFIG_PCI */
2576 
2577 #ifdef CONFIG_OF
2578 static const struct of_device_id of_ipmi_match[] = {
2579 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2580 	  .data = (void *)(unsigned long) SI_KCS },
2581 	{ .type = "ipmi", .compatible = "ipmi-smic",
2582 	  .data = (void *)(unsigned long) SI_SMIC },
2583 	{ .type = "ipmi", .compatible = "ipmi-bt",
2584 	  .data = (void *)(unsigned long) SI_BT },
2585 	{},
2586 };
2587 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2588 
2589 static int of_ipmi_probe(struct platform_device *dev)
2590 {
2591 	const struct of_device_id *match;
2592 	struct smi_info *info;
2593 	struct resource resource;
2594 	const __be32 *regsize, *regspacing, *regshift;
2595 	struct device_node *np = dev->dev.of_node;
2596 	int ret;
2597 	int proplen;
2598 
2599 	dev_info(&dev->dev, "probing via device tree\n");
2600 
2601 	match = of_match_device(of_ipmi_match, &dev->dev);
2602 	if (!match)
2603 		return -ENODEV;
2604 
2605 	if (!of_device_is_available(np))
2606 		return -EINVAL;
2607 
2608 	ret = of_address_to_resource(np, 0, &resource);
2609 	if (ret) {
2610 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2611 		return ret;
2612 	}
2613 
2614 	regsize = of_get_property(np, "reg-size", &proplen);
2615 	if (regsize && proplen != 4) {
2616 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2617 		return -EINVAL;
2618 	}
2619 
2620 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2621 	if (regspacing && proplen != 4) {
2622 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2623 		return -EINVAL;
2624 	}
2625 
2626 	regshift = of_get_property(np, "reg-shift", &proplen);
2627 	if (regshift && proplen != 4) {
2628 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2629 		return -EINVAL;
2630 	}
2631 
2632 	info = smi_info_alloc();
2633 
2634 	if (!info) {
2635 		dev_err(&dev->dev,
2636 			"could not allocate memory for OF probe\n");
2637 		return -ENOMEM;
2638 	}
2639 
2640 	info->si_type		= (enum si_type) match->data;
2641 	info->addr_source	= SI_DEVICETREE;
2642 	info->irq_setup		= std_irq_setup;
2643 
2644 	if (resource.flags & IORESOURCE_IO) {
2645 		info->io_setup		= port_setup;
2646 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2647 	} else {
2648 		info->io_setup		= mem_setup;
2649 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2650 	}
2651 
2652 	info->io.addr_data	= resource.start;
2653 
2654 	info->io.regsize	= regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2655 	info->io.regspacing	= regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2656 	info->io.regshift	= regshift ? be32_to_cpup(regshift) : 0;
2657 
2658 	info->irq		= irq_of_parse_and_map(dev->dev.of_node, 0);
2659 	info->dev		= &dev->dev;
2660 
2661 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2662 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2663 		info->irq);
2664 
2665 	dev_set_drvdata(&dev->dev, info);
2666 
2667 	ret = add_smi(info);
2668 	if (ret) {
2669 		kfree(info);
2670 		return ret;
2671 	}
2672 	return 0;
2673 }
2674 #else
2675 #define of_ipmi_match NULL
2676 static int of_ipmi_probe(struct platform_device *dev)
2677 {
2678 	return -ENODEV;
2679 }
2680 #endif
2681 
2682 #ifdef CONFIG_ACPI
2683 static int acpi_ipmi_probe(struct platform_device *dev)
2684 {
2685 	struct smi_info *info;
2686 	struct resource *res, *res_second;
2687 	acpi_handle handle;
2688 	acpi_status status;
2689 	unsigned long long tmp;
2690 	int rv = -EINVAL;
2691 
2692 	if (!si_tryacpi)
2693 	       return 0;
2694 
2695 	handle = ACPI_HANDLE(&dev->dev);
2696 	if (!handle)
2697 		return -ENODEV;
2698 
2699 	info = smi_info_alloc();
2700 	if (!info)
2701 		return -ENOMEM;
2702 
2703 	info->addr_source = SI_ACPI;
2704 	dev_info(&dev->dev, PFX "probing via ACPI\n");
2705 
2706 	info->addr_info.acpi_info.acpi_handle = handle;
2707 
2708 	/* _IFT tells us the interface type: KCS, BT, etc */
2709 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2710 	if (ACPI_FAILURE(status)) {
2711 		dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2712 		goto err_free;
2713 	}
2714 
2715 	switch (tmp) {
2716 	case 1:
2717 		info->si_type = SI_KCS;
2718 		break;
2719 	case 2:
2720 		info->si_type = SI_SMIC;
2721 		break;
2722 	case 3:
2723 		info->si_type = SI_BT;
2724 		break;
2725 	case 4: /* SSIF, just ignore */
2726 		rv = -ENODEV;
2727 		goto err_free;
2728 	default:
2729 		dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2730 		goto err_free;
2731 	}
2732 
2733 	res = platform_get_resource(dev, IORESOURCE_IO, 0);
2734 	if (res) {
2735 		info->io_setup = port_setup;
2736 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2737 	} else {
2738 		res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2739 		if (res) {
2740 			info->io_setup = mem_setup;
2741 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2742 		}
2743 	}
2744 	if (!res) {
2745 		dev_err(&dev->dev, "no I/O or memory address\n");
2746 		goto err_free;
2747 	}
2748 	info->io.addr_data = res->start;
2749 
2750 	info->io.regspacing = DEFAULT_REGSPACING;
2751 	res_second = platform_get_resource(dev,
2752 			       (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2753 					IORESOURCE_IO : IORESOURCE_MEM,
2754 			       1);
2755 	if (res_second) {
2756 		if (res_second->start > info->io.addr_data)
2757 			info->io.regspacing =
2758 				res_second->start - info->io.addr_data;
2759 	}
2760 	info->io.regsize = DEFAULT_REGSPACING;
2761 	info->io.regshift = 0;
2762 
2763 	/* If _GPE exists, use it; otherwise use standard interrupts */
2764 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2765 	if (ACPI_SUCCESS(status)) {
2766 		info->irq = tmp;
2767 		info->irq_setup = acpi_gpe_irq_setup;
2768 	} else {
2769 		int irq = platform_get_irq(dev, 0);
2770 
2771 		if (irq > 0) {
2772 			info->irq = irq;
2773 			info->irq_setup = std_irq_setup;
2774 		}
2775 	}
2776 
2777 	info->dev = &dev->dev;
2778 	platform_set_drvdata(dev, info);
2779 
2780 	dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2781 		 res, info->io.regsize, info->io.regspacing,
2782 		 info->irq);
2783 
2784 	rv = add_smi(info);
2785 	if (rv)
2786 		kfree(info);
2787 
2788 	return rv;
2789 
2790 err_free:
2791 	kfree(info);
2792 	return rv;
2793 }
2794 
2795 static const struct acpi_device_id acpi_ipmi_match[] = {
2796 	{ "IPI0001", 0 },
2797 	{ },
2798 };
2799 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2800 #else
2801 static int acpi_ipmi_probe(struct platform_device *dev)
2802 {
2803 	return -ENODEV;
2804 }
2805 #endif
2806 
2807 static int ipmi_probe(struct platform_device *dev)
2808 {
2809 	if (of_ipmi_probe(dev) == 0)
2810 		return 0;
2811 
2812 	return acpi_ipmi_probe(dev);
2813 }
2814 
2815 static int ipmi_remove(struct platform_device *dev)
2816 {
2817 	struct smi_info *info = dev_get_drvdata(&dev->dev);
2818 
2819 	cleanup_one_si(info);
2820 	return 0;
2821 }
2822 
2823 static struct platform_driver ipmi_driver = {
2824 	.driver = {
2825 		.name = DEVICE_NAME,
2826 		.of_match_table = of_ipmi_match,
2827 		.acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2828 	},
2829 	.probe		= ipmi_probe,
2830 	.remove		= ipmi_remove,
2831 };
2832 
2833 #ifdef CONFIG_PARISC
2834 static int ipmi_parisc_probe(struct parisc_device *dev)
2835 {
2836 	struct smi_info *info;
2837 	int rv;
2838 
2839 	info = smi_info_alloc();
2840 
2841 	if (!info) {
2842 		dev_err(&dev->dev,
2843 			"could not allocate memory for PARISC probe\n");
2844 		return -ENOMEM;
2845 	}
2846 
2847 	info->si_type		= SI_KCS;
2848 	info->addr_source	= SI_DEVICETREE;
2849 	info->io_setup		= mem_setup;
2850 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2851 	info->io.addr_data	= dev->hpa.start;
2852 	info->io.regsize	= 1;
2853 	info->io.regspacing	= 1;
2854 	info->io.regshift	= 0;
2855 	info->irq		= 0; /* no interrupt */
2856 	info->irq_setup		= NULL;
2857 	info->dev		= &dev->dev;
2858 
2859 	dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2860 
2861 	dev_set_drvdata(&dev->dev, info);
2862 
2863 	rv = add_smi(info);
2864 	if (rv) {
2865 		kfree(info);
2866 		return rv;
2867 	}
2868 
2869 	return 0;
2870 }
2871 
2872 static int ipmi_parisc_remove(struct parisc_device *dev)
2873 {
2874 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2875 	return 0;
2876 }
2877 
2878 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2879 	{ HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2880 	{ 0, }
2881 };
2882 
2883 static struct parisc_driver ipmi_parisc_driver = {
2884 	.name =		"ipmi",
2885 	.id_table =	ipmi_parisc_tbl,
2886 	.probe =	ipmi_parisc_probe,
2887 	.remove =	ipmi_parisc_remove,
2888 };
2889 #endif /* CONFIG_PARISC */
2890 
2891 static int wait_for_msg_done(struct smi_info *smi_info)
2892 {
2893 	enum si_sm_result     smi_result;
2894 
2895 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2896 	for (;;) {
2897 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2898 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2899 			schedule_timeout_uninterruptible(1);
2900 			smi_result = smi_info->handlers->event(
2901 				smi_info->si_sm, jiffies_to_usecs(1));
2902 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2903 			smi_result = smi_info->handlers->event(
2904 				smi_info->si_sm, 0);
2905 		} else
2906 			break;
2907 	}
2908 	if (smi_result == SI_SM_HOSED)
2909 		/*
2910 		 * We couldn't get the state machine to run, so whatever's at
2911 		 * the port is probably not an IPMI SMI interface.
2912 		 */
2913 		return -ENODEV;
2914 
2915 	return 0;
2916 }
2917 
2918 static int try_get_dev_id(struct smi_info *smi_info)
2919 {
2920 	unsigned char         msg[2];
2921 	unsigned char         *resp;
2922 	unsigned long         resp_len;
2923 	int                   rv = 0;
2924 
2925 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2926 	if (!resp)
2927 		return -ENOMEM;
2928 
2929 	/*
2930 	 * Do a Get Device ID command, since it comes back with some
2931 	 * useful info.
2932 	 */
2933 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2934 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2935 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2936 
2937 	rv = wait_for_msg_done(smi_info);
2938 	if (rv)
2939 		goto out;
2940 
2941 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2942 						  resp, IPMI_MAX_MSG_LENGTH);
2943 
2944 	/* Check and record info from the get device id, in case we need it. */
2945 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2946 
2947 out:
2948 	kfree(resp);
2949 	return rv;
2950 }
2951 
2952 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2953 {
2954 	unsigned char         msg[3];
2955 	unsigned char         *resp;
2956 	unsigned long         resp_len;
2957 	int                   rv;
2958 
2959 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2960 	if (!resp)
2961 		return -ENOMEM;
2962 
2963 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2964 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2965 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2966 
2967 	rv = wait_for_msg_done(smi_info);
2968 	if (rv) {
2969 		dev_warn(smi_info->dev,
2970 			 "Error getting response from get global enables command: %d\n",
2971 			 rv);
2972 		goto out;
2973 	}
2974 
2975 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2976 						  resp, IPMI_MAX_MSG_LENGTH);
2977 
2978 	if (resp_len < 4 ||
2979 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2980 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2981 			resp[2] != 0) {
2982 		dev_warn(smi_info->dev,
2983 			 "Invalid return from get global enables command: %ld %x %x %x\n",
2984 			 resp_len, resp[0], resp[1], resp[2]);
2985 		rv = -EINVAL;
2986 		goto out;
2987 	} else {
2988 		*enables = resp[3];
2989 	}
2990 
2991 out:
2992 	kfree(resp);
2993 	return rv;
2994 }
2995 
2996 /*
2997  * Returns 1 if it gets an error from the command.
2998  */
2999 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3000 {
3001 	unsigned char         msg[3];
3002 	unsigned char         *resp;
3003 	unsigned long         resp_len;
3004 	int                   rv;
3005 
3006 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3007 	if (!resp)
3008 		return -ENOMEM;
3009 
3010 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3011 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3012 	msg[2] = enables;
3013 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3014 
3015 	rv = wait_for_msg_done(smi_info);
3016 	if (rv) {
3017 		dev_warn(smi_info->dev,
3018 			 "Error getting response from set global enables command: %d\n",
3019 			 rv);
3020 		goto out;
3021 	}
3022 
3023 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3024 						  resp, IPMI_MAX_MSG_LENGTH);
3025 
3026 	if (resp_len < 3 ||
3027 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3028 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3029 		dev_warn(smi_info->dev,
3030 			 "Invalid return from set global enables command: %ld %x %x\n",
3031 			 resp_len, resp[0], resp[1]);
3032 		rv = -EINVAL;
3033 		goto out;
3034 	}
3035 
3036 	if (resp[2] != 0)
3037 		rv = 1;
3038 
3039 out:
3040 	kfree(resp);
3041 	return rv;
3042 }
3043 
3044 /*
3045  * Some BMCs do not support clearing the receive irq bit in the global
3046  * enables (even if they don't support interrupts on the BMC).  Check
3047  * for this and handle it properly.
3048  */
3049 static void check_clr_rcv_irq(struct smi_info *smi_info)
3050 {
3051 	u8 enables = 0;
3052 	int rv;
3053 
3054 	rv = get_global_enables(smi_info, &enables);
3055 	if (!rv) {
3056 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3057 			/* Already clear, should work ok. */
3058 			return;
3059 
3060 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
3061 		rv = set_global_enables(smi_info, enables);
3062 	}
3063 
3064 	if (rv < 0) {
3065 		dev_err(smi_info->dev,
3066 			"Cannot check clearing the rcv irq: %d\n", rv);
3067 		return;
3068 	}
3069 
3070 	if (rv) {
3071 		/*
3072 		 * An error when setting the event buffer bit means
3073 		 * clearing the bit is not supported.
3074 		 */
3075 		dev_warn(smi_info->dev,
3076 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3077 		smi_info->cannot_disable_irq = true;
3078 	}
3079 }
3080 
3081 /*
3082  * Some BMCs do not support setting the interrupt bits in the global
3083  * enables even if they support interrupts.  Clearly bad, but we can
3084  * compensate.
3085  */
3086 static void check_set_rcv_irq(struct smi_info *smi_info)
3087 {
3088 	u8 enables = 0;
3089 	int rv;
3090 
3091 	if (!smi_info->irq)
3092 		return;
3093 
3094 	rv = get_global_enables(smi_info, &enables);
3095 	if (!rv) {
3096 		enables |= IPMI_BMC_RCV_MSG_INTR;
3097 		rv = set_global_enables(smi_info, enables);
3098 	}
3099 
3100 	if (rv < 0) {
3101 		dev_err(smi_info->dev,
3102 			"Cannot check setting the rcv irq: %d\n", rv);
3103 		return;
3104 	}
3105 
3106 	if (rv) {
3107 		/*
3108 		 * An error when setting the event buffer bit means
3109 		 * setting the bit is not supported.
3110 		 */
3111 		dev_warn(smi_info->dev,
3112 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3113 		smi_info->cannot_disable_irq = true;
3114 		smi_info->irq_enable_broken = true;
3115 	}
3116 }
3117 
3118 static int try_enable_event_buffer(struct smi_info *smi_info)
3119 {
3120 	unsigned char         msg[3];
3121 	unsigned char         *resp;
3122 	unsigned long         resp_len;
3123 	int                   rv = 0;
3124 
3125 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3126 	if (!resp)
3127 		return -ENOMEM;
3128 
3129 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3130 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3131 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3132 
3133 	rv = wait_for_msg_done(smi_info);
3134 	if (rv) {
3135 		pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3136 		goto out;
3137 	}
3138 
3139 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3140 						  resp, IPMI_MAX_MSG_LENGTH);
3141 
3142 	if (resp_len < 4 ||
3143 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3144 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3145 			resp[2] != 0) {
3146 		pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3147 		rv = -EINVAL;
3148 		goto out;
3149 	}
3150 
3151 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3152 		/* buffer is already enabled, nothing to do. */
3153 		smi_info->supports_event_msg_buff = true;
3154 		goto out;
3155 	}
3156 
3157 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3158 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3159 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3160 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3161 
3162 	rv = wait_for_msg_done(smi_info);
3163 	if (rv) {
3164 		pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3165 		goto out;
3166 	}
3167 
3168 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3169 						  resp, IPMI_MAX_MSG_LENGTH);
3170 
3171 	if (resp_len < 3 ||
3172 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3173 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3174 		pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3175 		rv = -EINVAL;
3176 		goto out;
3177 	}
3178 
3179 	if (resp[2] != 0)
3180 		/*
3181 		 * An error when setting the event buffer bit means
3182 		 * that the event buffer is not supported.
3183 		 */
3184 		rv = -ENOENT;
3185 	else
3186 		smi_info->supports_event_msg_buff = true;
3187 
3188 out:
3189 	kfree(resp);
3190 	return rv;
3191 }
3192 
3193 static int smi_type_proc_show(struct seq_file *m, void *v)
3194 {
3195 	struct smi_info *smi = m->private;
3196 
3197 	seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3198 
3199 	return 0;
3200 }
3201 
3202 static int smi_type_proc_open(struct inode *inode, struct file *file)
3203 {
3204 	return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3205 }
3206 
3207 static const struct file_operations smi_type_proc_ops = {
3208 	.open		= smi_type_proc_open,
3209 	.read		= seq_read,
3210 	.llseek		= seq_lseek,
3211 	.release	= single_release,
3212 };
3213 
3214 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3215 {
3216 	struct smi_info *smi = m->private;
3217 
3218 	seq_printf(m, "interrupts_enabled:    %d\n",
3219 		       smi->irq && !smi->interrupt_disabled);
3220 	seq_printf(m, "short_timeouts:        %u\n",
3221 		       smi_get_stat(smi, short_timeouts));
3222 	seq_printf(m, "long_timeouts:         %u\n",
3223 		       smi_get_stat(smi, long_timeouts));
3224 	seq_printf(m, "idles:                 %u\n",
3225 		       smi_get_stat(smi, idles));
3226 	seq_printf(m, "interrupts:            %u\n",
3227 		       smi_get_stat(smi, interrupts));
3228 	seq_printf(m, "attentions:            %u\n",
3229 		       smi_get_stat(smi, attentions));
3230 	seq_printf(m, "flag_fetches:          %u\n",
3231 		       smi_get_stat(smi, flag_fetches));
3232 	seq_printf(m, "hosed_count:           %u\n",
3233 		       smi_get_stat(smi, hosed_count));
3234 	seq_printf(m, "complete_transactions: %u\n",
3235 		       smi_get_stat(smi, complete_transactions));
3236 	seq_printf(m, "events:                %u\n",
3237 		       smi_get_stat(smi, events));
3238 	seq_printf(m, "watchdog_pretimeouts:  %u\n",
3239 		       smi_get_stat(smi, watchdog_pretimeouts));
3240 	seq_printf(m, "incoming_messages:     %u\n",
3241 		       smi_get_stat(smi, incoming_messages));
3242 	return 0;
3243 }
3244 
3245 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3246 {
3247 	return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3248 }
3249 
3250 static const struct file_operations smi_si_stats_proc_ops = {
3251 	.open		= smi_si_stats_proc_open,
3252 	.read		= seq_read,
3253 	.llseek		= seq_lseek,
3254 	.release	= single_release,
3255 };
3256 
3257 static int smi_params_proc_show(struct seq_file *m, void *v)
3258 {
3259 	struct smi_info *smi = m->private;
3260 
3261 	seq_printf(m,
3262 		   "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3263 		   si_to_str[smi->si_type],
3264 		   addr_space_to_str[smi->io.addr_type],
3265 		   smi->io.addr_data,
3266 		   smi->io.regspacing,
3267 		   smi->io.regsize,
3268 		   smi->io.regshift,
3269 		   smi->irq,
3270 		   smi->slave_addr);
3271 
3272 	return 0;
3273 }
3274 
3275 static int smi_params_proc_open(struct inode *inode, struct file *file)
3276 {
3277 	return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3278 }
3279 
3280 static const struct file_operations smi_params_proc_ops = {
3281 	.open		= smi_params_proc_open,
3282 	.read		= seq_read,
3283 	.llseek		= seq_lseek,
3284 	.release	= single_release,
3285 };
3286 
3287 /*
3288  * oem_data_avail_to_receive_msg_avail
3289  * @info - smi_info structure with msg_flags set
3290  *
3291  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3292  * Returns 1 indicating need to re-run handle_flags().
3293  */
3294 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3295 {
3296 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3297 			       RECEIVE_MSG_AVAIL);
3298 	return 1;
3299 }
3300 
3301 /*
3302  * setup_dell_poweredge_oem_data_handler
3303  * @info - smi_info.device_id must be populated
3304  *
3305  * Systems that match, but have firmware version < 1.40 may assert
3306  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3307  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3308  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3309  * as RECEIVE_MSG_AVAIL instead.
3310  *
3311  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3312  * assert the OEM[012] bits, and if it did, the driver would have to
3313  * change to handle that properly, we don't actually check for the
3314  * firmware version.
3315  * Device ID = 0x20                BMC on PowerEdge 8G servers
3316  * Device Revision = 0x80
3317  * Firmware Revision1 = 0x01       BMC version 1.40
3318  * Firmware Revision2 = 0x40       BCD encoded
3319  * IPMI Version = 0x51             IPMI 1.5
3320  * Manufacturer ID = A2 02 00      Dell IANA
3321  *
3322  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3323  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3324  *
3325  */
3326 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3327 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3328 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3329 #define DELL_IANA_MFR_ID 0x0002a2
3330 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3331 {
3332 	struct ipmi_device_id *id = &smi_info->device_id;
3333 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3334 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3335 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3336 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3337 			smi_info->oem_data_avail_handler =
3338 				oem_data_avail_to_receive_msg_avail;
3339 		} else if (ipmi_version_major(id) < 1 ||
3340 			   (ipmi_version_major(id) == 1 &&
3341 			    ipmi_version_minor(id) < 5)) {
3342 			smi_info->oem_data_avail_handler =
3343 				oem_data_avail_to_receive_msg_avail;
3344 		}
3345 	}
3346 }
3347 
3348 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3349 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3350 {
3351 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
3352 
3353 	/* Make it a response */
3354 	msg->rsp[0] = msg->data[0] | 4;
3355 	msg->rsp[1] = msg->data[1];
3356 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3357 	msg->rsp_size = 3;
3358 	smi_info->curr_msg = NULL;
3359 	deliver_recv_msg(smi_info, msg);
3360 }
3361 
3362 /*
3363  * dell_poweredge_bt_xaction_handler
3364  * @info - smi_info.device_id must be populated
3365  *
3366  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3367  * not respond to a Get SDR command if the length of the data
3368  * requested is exactly 0x3A, which leads to command timeouts and no
3369  * data returned.  This intercepts such commands, and causes userspace
3370  * callers to try again with a different-sized buffer, which succeeds.
3371  */
3372 
3373 #define STORAGE_NETFN 0x0A
3374 #define STORAGE_CMD_GET_SDR 0x23
3375 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3376 					     unsigned long unused,
3377 					     void *in)
3378 {
3379 	struct smi_info *smi_info = in;
3380 	unsigned char *data = smi_info->curr_msg->data;
3381 	unsigned int size   = smi_info->curr_msg->data_size;
3382 	if (size >= 8 &&
3383 	    (data[0]>>2) == STORAGE_NETFN &&
3384 	    data[1] == STORAGE_CMD_GET_SDR &&
3385 	    data[7] == 0x3A) {
3386 		return_hosed_msg_badsize(smi_info);
3387 		return NOTIFY_STOP;
3388 	}
3389 	return NOTIFY_DONE;
3390 }
3391 
3392 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3393 	.notifier_call	= dell_poweredge_bt_xaction_handler,
3394 };
3395 
3396 /*
3397  * setup_dell_poweredge_bt_xaction_handler
3398  * @info - smi_info.device_id must be filled in already
3399  *
3400  * Fills in smi_info.device_id.start_transaction_pre_hook
3401  * when we know what function to use there.
3402  */
3403 static void
3404 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3405 {
3406 	struct ipmi_device_id *id = &smi_info->device_id;
3407 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3408 	    smi_info->si_type == SI_BT)
3409 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3410 }
3411 
3412 /*
3413  * setup_oem_data_handler
3414  * @info - smi_info.device_id must be filled in already
3415  *
3416  * Fills in smi_info.device_id.oem_data_available_handler
3417  * when we know what function to use there.
3418  */
3419 
3420 static void setup_oem_data_handler(struct smi_info *smi_info)
3421 {
3422 	setup_dell_poweredge_oem_data_handler(smi_info);
3423 }
3424 
3425 static void setup_xaction_handlers(struct smi_info *smi_info)
3426 {
3427 	setup_dell_poweredge_bt_xaction_handler(smi_info);
3428 }
3429 
3430 static void check_for_broken_irqs(struct smi_info *smi_info)
3431 {
3432 	check_clr_rcv_irq(smi_info);
3433 	check_set_rcv_irq(smi_info);
3434 }
3435 
3436 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3437 {
3438 	if (smi_info->thread != NULL)
3439 		kthread_stop(smi_info->thread);
3440 	if (smi_info->timer_running)
3441 		del_timer_sync(&smi_info->si_timer);
3442 }
3443 
3444 static int is_new_interface(struct smi_info *info)
3445 {
3446 	struct smi_info *e;
3447 
3448 	list_for_each_entry(e, &smi_infos, link) {
3449 		if (e->io.addr_type != info->io.addr_type)
3450 			continue;
3451 		if (e->io.addr_data == info->io.addr_data) {
3452 			/*
3453 			 * This is a cheap hack, ACPI doesn't have a defined
3454 			 * slave address but SMBIOS does.  Pick it up from
3455 			 * any source that has it available.
3456 			 */
3457 			if (info->slave_addr && !e->slave_addr)
3458 				e->slave_addr = info->slave_addr;
3459 			return 0;
3460 		}
3461 	}
3462 
3463 	return 1;
3464 }
3465 
3466 static int add_smi(struct smi_info *new_smi)
3467 {
3468 	int rv = 0;
3469 
3470 	mutex_lock(&smi_infos_lock);
3471 	if (!is_new_interface(new_smi)) {
3472 		pr_info(PFX "%s-specified %s state machine: duplicate\n",
3473 			ipmi_addr_src_to_str(new_smi->addr_source),
3474 			si_to_str[new_smi->si_type]);
3475 		rv = -EBUSY;
3476 		goto out_err;
3477 	}
3478 
3479 	pr_info(PFX "Adding %s-specified %s state machine\n",
3480 		ipmi_addr_src_to_str(new_smi->addr_source),
3481 		si_to_str[new_smi->si_type]);
3482 
3483 	/* So we know not to free it unless we have allocated one. */
3484 	new_smi->intf = NULL;
3485 	new_smi->si_sm = NULL;
3486 	new_smi->handlers = NULL;
3487 
3488 	list_add_tail(&new_smi->link, &smi_infos);
3489 
3490 out_err:
3491 	mutex_unlock(&smi_infos_lock);
3492 	return rv;
3493 }
3494 
3495 static int try_smi_init(struct smi_info *new_smi)
3496 {
3497 	int rv = 0;
3498 	int i;
3499 	char *init_name = NULL;
3500 
3501 	pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3502 		ipmi_addr_src_to_str(new_smi->addr_source),
3503 		si_to_str[new_smi->si_type],
3504 		addr_space_to_str[new_smi->io.addr_type],
3505 		new_smi->io.addr_data,
3506 		new_smi->slave_addr, new_smi->irq);
3507 
3508 	switch (new_smi->si_type) {
3509 	case SI_KCS:
3510 		new_smi->handlers = &kcs_smi_handlers;
3511 		break;
3512 
3513 	case SI_SMIC:
3514 		new_smi->handlers = &smic_smi_handlers;
3515 		break;
3516 
3517 	case SI_BT:
3518 		new_smi->handlers = &bt_smi_handlers;
3519 		break;
3520 
3521 	default:
3522 		/* No support for anything else yet. */
3523 		rv = -EIO;
3524 		goto out_err;
3525 	}
3526 
3527 	/* Do this early so it's available for logs. */
3528 	if (!new_smi->dev) {
3529 		init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d", 0);
3530 
3531 		/*
3532 		 * If we don't already have a device from something
3533 		 * else (like PCI), then register a new one.
3534 		 */
3535 		new_smi->pdev = platform_device_alloc("ipmi_si",
3536 						      new_smi->intf_num);
3537 		if (!new_smi->pdev) {
3538 			pr_err(PFX "Unable to allocate platform device\n");
3539 			goto out_err;
3540 		}
3541 		new_smi->dev = &new_smi->pdev->dev;
3542 		new_smi->dev->driver = &ipmi_driver.driver;
3543 		/* Nulled by device_add() */
3544 		new_smi->dev->init_name = init_name;
3545 	}
3546 
3547 	/* Allocate the state machine's data and initialize it. */
3548 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3549 	if (!new_smi->si_sm) {
3550 		pr_err(PFX "Could not allocate state machine memory\n");
3551 		rv = -ENOMEM;
3552 		goto out_err;
3553 	}
3554 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3555 							&new_smi->io);
3556 
3557 	/* Now that we know the I/O size, we can set up the I/O. */
3558 	rv = new_smi->io_setup(new_smi);
3559 	if (rv) {
3560 		dev_err(new_smi->dev, "Could not set up I/O space\n");
3561 		goto out_err;
3562 	}
3563 
3564 	/* Do low-level detection first. */
3565 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3566 		if (new_smi->addr_source)
3567 			dev_err(new_smi->dev, "Interface detection failed\n");
3568 		rv = -ENODEV;
3569 		goto out_err;
3570 	}
3571 
3572 	/*
3573 	 * Attempt a get device id command.  If it fails, we probably
3574 	 * don't have a BMC here.
3575 	 */
3576 	rv = try_get_dev_id(new_smi);
3577 	if (rv) {
3578 		if (new_smi->addr_source)
3579 			dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3580 		goto out_err;
3581 	}
3582 
3583 	setup_oem_data_handler(new_smi);
3584 	setup_xaction_handlers(new_smi);
3585 	check_for_broken_irqs(new_smi);
3586 
3587 	new_smi->waiting_msg = NULL;
3588 	new_smi->curr_msg = NULL;
3589 	atomic_set(&new_smi->req_events, 0);
3590 	new_smi->run_to_completion = false;
3591 	for (i = 0; i < SI_NUM_STATS; i++)
3592 		atomic_set(&new_smi->stats[i], 0);
3593 
3594 	new_smi->interrupt_disabled = true;
3595 	atomic_set(&new_smi->need_watch, 0);
3596 	new_smi->intf_num = smi_num;
3597 	smi_num++;
3598 
3599 	rv = try_enable_event_buffer(new_smi);
3600 	if (rv == 0)
3601 		new_smi->has_event_buffer = true;
3602 
3603 	/*
3604 	 * Start clearing the flags before we enable interrupts or the
3605 	 * timer to avoid racing with the timer.
3606 	 */
3607 	start_clear_flags(new_smi, false);
3608 
3609 	/*
3610 	 * IRQ is defined to be set when non-zero.  req_events will
3611 	 * cause a global flags check that will enable interrupts.
3612 	 */
3613 	if (new_smi->irq) {
3614 		new_smi->interrupt_disabled = false;
3615 		atomic_set(&new_smi->req_events, 1);
3616 	}
3617 
3618 	if (new_smi->pdev) {
3619 		rv = platform_device_add(new_smi->pdev);
3620 		if (rv) {
3621 			dev_err(new_smi->dev,
3622 				"Unable to register system interface device: %d\n",
3623 				rv);
3624 			goto out_err;
3625 		}
3626 		new_smi->dev_registered = true;
3627 	}
3628 
3629 	rv = ipmi_register_smi(&handlers,
3630 			       new_smi,
3631 			       &new_smi->device_id,
3632 			       new_smi->dev,
3633 			       new_smi->slave_addr);
3634 	if (rv) {
3635 		dev_err(new_smi->dev, "Unable to register device: error %d\n",
3636 			rv);
3637 		goto out_err_stop_timer;
3638 	}
3639 
3640 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3641 				     &smi_type_proc_ops,
3642 				     new_smi);
3643 	if (rv) {
3644 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3645 		goto out_err_stop_timer;
3646 	}
3647 
3648 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3649 				     &smi_si_stats_proc_ops,
3650 				     new_smi);
3651 	if (rv) {
3652 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3653 		goto out_err_stop_timer;
3654 	}
3655 
3656 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3657 				     &smi_params_proc_ops,
3658 				     new_smi);
3659 	if (rv) {
3660 		dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3661 		goto out_err_stop_timer;
3662 	}
3663 
3664 	dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3665 		 si_to_str[new_smi->si_type]);
3666 
3667 	WARN_ON(new_smi->dev->init_name != NULL);
3668 	kfree(init_name);
3669 
3670 	return 0;
3671 
3672 out_err_stop_timer:
3673 	wait_for_timer_and_thread(new_smi);
3674 
3675 out_err:
3676 	new_smi->interrupt_disabled = true;
3677 
3678 	if (new_smi->intf) {
3679 		ipmi_smi_t intf = new_smi->intf;
3680 		new_smi->intf = NULL;
3681 		ipmi_unregister_smi(intf);
3682 	}
3683 
3684 	if (new_smi->irq_cleanup) {
3685 		new_smi->irq_cleanup(new_smi);
3686 		new_smi->irq_cleanup = NULL;
3687 	}
3688 
3689 	/*
3690 	 * Wait until we know that we are out of any interrupt
3691 	 * handlers might have been running before we freed the
3692 	 * interrupt.
3693 	 */
3694 	synchronize_sched();
3695 
3696 	if (new_smi->si_sm) {
3697 		if (new_smi->handlers)
3698 			new_smi->handlers->cleanup(new_smi->si_sm);
3699 		kfree(new_smi->si_sm);
3700 		new_smi->si_sm = NULL;
3701 	}
3702 	if (new_smi->addr_source_cleanup) {
3703 		new_smi->addr_source_cleanup(new_smi);
3704 		new_smi->addr_source_cleanup = NULL;
3705 	}
3706 	if (new_smi->io_cleanup) {
3707 		new_smi->io_cleanup(new_smi);
3708 		new_smi->io_cleanup = NULL;
3709 	}
3710 
3711 	if (new_smi->dev_registered) {
3712 		platform_device_unregister(new_smi->pdev);
3713 		new_smi->dev_registered = false;
3714 		new_smi->pdev = NULL;
3715 	} else if (new_smi->pdev) {
3716 		platform_device_put(new_smi->pdev);
3717 		new_smi->pdev = NULL;
3718 	}
3719 
3720 	kfree(init_name);
3721 
3722 	return rv;
3723 }
3724 
3725 static int init_ipmi_si(void)
3726 {
3727 	int  i;
3728 	char *str;
3729 	int  rv;
3730 	struct smi_info *e;
3731 	enum ipmi_addr_src type = SI_INVALID;
3732 
3733 	if (initialized)
3734 		return 0;
3735 	initialized = 1;
3736 
3737 	if (si_tryplatform) {
3738 		rv = platform_driver_register(&ipmi_driver);
3739 		if (rv) {
3740 			pr_err(PFX "Unable to register driver: %d\n", rv);
3741 			return rv;
3742 		}
3743 	}
3744 
3745 	/* Parse out the si_type string into its components. */
3746 	str = si_type_str;
3747 	if (*str != '\0') {
3748 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3749 			si_type[i] = str;
3750 			str = strchr(str, ',');
3751 			if (str) {
3752 				*str = '\0';
3753 				str++;
3754 			} else {
3755 				break;
3756 			}
3757 		}
3758 	}
3759 
3760 	pr_info("IPMI System Interface driver.\n");
3761 
3762 	/* If the user gave us a device, they presumably want us to use it */
3763 	if (!hardcode_find_bmc())
3764 		return 0;
3765 
3766 #ifdef CONFIG_PCI
3767 	if (si_trypci) {
3768 		rv = pci_register_driver(&ipmi_pci_driver);
3769 		if (rv)
3770 			pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3771 		else
3772 			pci_registered = true;
3773 	}
3774 #endif
3775 
3776 #ifdef CONFIG_DMI
3777 	if (si_trydmi)
3778 		dmi_find_bmc();
3779 #endif
3780 
3781 #ifdef CONFIG_ACPI
3782 	if (si_tryacpi)
3783 		spmi_find_bmc();
3784 #endif
3785 
3786 #ifdef CONFIG_PARISC
3787 	register_parisc_driver(&ipmi_parisc_driver);
3788 	parisc_registered = true;
3789 #endif
3790 
3791 	/* We prefer devices with interrupts, but in the case of a machine
3792 	   with multiple BMCs we assume that there will be several instances
3793 	   of a given type so if we succeed in registering a type then also
3794 	   try to register everything else of the same type */
3795 
3796 	mutex_lock(&smi_infos_lock);
3797 	list_for_each_entry(e, &smi_infos, link) {
3798 		/* Try to register a device if it has an IRQ and we either
3799 		   haven't successfully registered a device yet or this
3800 		   device has the same type as one we successfully registered */
3801 		if (e->irq && (!type || e->addr_source == type)) {
3802 			if (!try_smi_init(e)) {
3803 				type = e->addr_source;
3804 			}
3805 		}
3806 	}
3807 
3808 	/* type will only have been set if we successfully registered an si */
3809 	if (type) {
3810 		mutex_unlock(&smi_infos_lock);
3811 		return 0;
3812 	}
3813 
3814 	/* Fall back to the preferred device */
3815 
3816 	list_for_each_entry(e, &smi_infos, link) {
3817 		if (!e->irq && (!type || e->addr_source == type)) {
3818 			if (!try_smi_init(e)) {
3819 				type = e->addr_source;
3820 			}
3821 		}
3822 	}
3823 	mutex_unlock(&smi_infos_lock);
3824 
3825 	if (type)
3826 		return 0;
3827 
3828 	mutex_lock(&smi_infos_lock);
3829 	if (unload_when_empty && list_empty(&smi_infos)) {
3830 		mutex_unlock(&smi_infos_lock);
3831 		cleanup_ipmi_si();
3832 		pr_warn(PFX "Unable to find any System Interface(s)\n");
3833 		return -ENODEV;
3834 	} else {
3835 		mutex_unlock(&smi_infos_lock);
3836 		return 0;
3837 	}
3838 }
3839 module_init(init_ipmi_si);
3840 
3841 static void cleanup_one_si(struct smi_info *to_clean)
3842 {
3843 	int           rv = 0;
3844 
3845 	if (!to_clean)
3846 		return;
3847 
3848 	if (to_clean->intf) {
3849 		ipmi_smi_t intf = to_clean->intf;
3850 
3851 		to_clean->intf = NULL;
3852 		rv = ipmi_unregister_smi(intf);
3853 		if (rv) {
3854 			pr_err(PFX "Unable to unregister device: errno=%d\n",
3855 			       rv);
3856 		}
3857 	}
3858 
3859 	if (to_clean->dev)
3860 		dev_set_drvdata(to_clean->dev, NULL);
3861 
3862 	list_del(&to_clean->link);
3863 
3864 	/*
3865 	 * Make sure that interrupts, the timer and the thread are
3866 	 * stopped and will not run again.
3867 	 */
3868 	if (to_clean->irq_cleanup)
3869 		to_clean->irq_cleanup(to_clean);
3870 	wait_for_timer_and_thread(to_clean);
3871 
3872 	/*
3873 	 * Timeouts are stopped, now make sure the interrupts are off
3874 	 * in the BMC.  Note that timers and CPU interrupts are off,
3875 	 * so no need for locks.
3876 	 */
3877 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3878 		poll(to_clean);
3879 		schedule_timeout_uninterruptible(1);
3880 	}
3881 	disable_si_irq(to_clean, false);
3882 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3883 		poll(to_clean);
3884 		schedule_timeout_uninterruptible(1);
3885 	}
3886 
3887 	if (to_clean->handlers)
3888 		to_clean->handlers->cleanup(to_clean->si_sm);
3889 
3890 	kfree(to_clean->si_sm);
3891 
3892 	if (to_clean->addr_source_cleanup)
3893 		to_clean->addr_source_cleanup(to_clean);
3894 	if (to_clean->io_cleanup)
3895 		to_clean->io_cleanup(to_clean);
3896 
3897 	if (to_clean->dev_registered)
3898 		platform_device_unregister(to_clean->pdev);
3899 
3900 	kfree(to_clean);
3901 }
3902 
3903 static void cleanup_ipmi_si(void)
3904 {
3905 	struct smi_info *e, *tmp_e;
3906 
3907 	if (!initialized)
3908 		return;
3909 
3910 #ifdef CONFIG_PCI
3911 	if (pci_registered)
3912 		pci_unregister_driver(&ipmi_pci_driver);
3913 #endif
3914 #ifdef CONFIG_PARISC
3915 	if (parisc_registered)
3916 		unregister_parisc_driver(&ipmi_parisc_driver);
3917 #endif
3918 
3919 	platform_driver_unregister(&ipmi_driver);
3920 
3921 	mutex_lock(&smi_infos_lock);
3922 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3923 		cleanup_one_si(e);
3924 	mutex_unlock(&smi_infos_lock);
3925 }
3926 module_exit(cleanup_ipmi_si);
3927 
3928 MODULE_LICENSE("GPL");
3929 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3930 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3931 		   " system interfaces.");
3932