xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 4dc7ccf7)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73 
74 #define PFX "ipmi_si: "
75 
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78 
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC	10000
81 #define SI_USEC_PER_JIFFY	(1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84 				      short timeout */
85 
86 enum si_intf_state {
87 	SI_NORMAL,
88 	SI_GETTING_FLAGS,
89 	SI_GETTING_EVENTS,
90 	SI_CLEARING_FLAGS,
91 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
92 	SI_GETTING_MESSAGES,
93 	SI_ENABLE_INTERRUPTS1,
94 	SI_ENABLE_INTERRUPTS2,
95 	SI_DISABLE_INTERRUPTS1,
96 	SI_DISABLE_INTERRUPTS2
97 	/* FIXME - add watchdog stuff. */
98 };
99 
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG		2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
104 
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109 
110 #define DEVICE_NAME "ipmi_si"
111 
112 static struct platform_driver ipmi_driver = {
113 	.driver = {
114 		.name = DEVICE_NAME,
115 		.bus = &platform_bus_type
116 	}
117 };
118 
119 
120 /*
121  * Indexes into stats[] in smi_info below.
122  */
123 enum si_stat_indexes {
124 	/*
125 	 * Number of times the driver requested a timer while an operation
126 	 * was in progress.
127 	 */
128 	SI_STAT_short_timeouts = 0,
129 
130 	/*
131 	 * Number of times the driver requested a timer while nothing was in
132 	 * progress.
133 	 */
134 	SI_STAT_long_timeouts,
135 
136 	/* Number of times the interface was idle while being polled. */
137 	SI_STAT_idles,
138 
139 	/* Number of interrupts the driver handled. */
140 	SI_STAT_interrupts,
141 
142 	/* Number of time the driver got an ATTN from the hardware. */
143 	SI_STAT_attentions,
144 
145 	/* Number of times the driver requested flags from the hardware. */
146 	SI_STAT_flag_fetches,
147 
148 	/* Number of times the hardware didn't follow the state machine. */
149 	SI_STAT_hosed_count,
150 
151 	/* Number of completed messages. */
152 	SI_STAT_complete_transactions,
153 
154 	/* Number of IPMI events received from the hardware. */
155 	SI_STAT_events,
156 
157 	/* Number of watchdog pretimeouts. */
158 	SI_STAT_watchdog_pretimeouts,
159 
160 	/* Number of asyncronous messages received. */
161 	SI_STAT_incoming_messages,
162 
163 
164 	/* This *must* remain last, add new values above this. */
165 	SI_NUM_STATS
166 };
167 
168 struct smi_info {
169 	int                    intf_num;
170 	ipmi_smi_t             intf;
171 	struct si_sm_data      *si_sm;
172 	struct si_sm_handlers  *handlers;
173 	enum si_type           si_type;
174 	spinlock_t             si_lock;
175 	spinlock_t             msg_lock;
176 	struct list_head       xmit_msgs;
177 	struct list_head       hp_xmit_msgs;
178 	struct ipmi_smi_msg    *curr_msg;
179 	enum si_intf_state     si_state;
180 
181 	/*
182 	 * Used to handle the various types of I/O that can occur with
183 	 * IPMI
184 	 */
185 	struct si_sm_io io;
186 	int (*io_setup)(struct smi_info *info);
187 	void (*io_cleanup)(struct smi_info *info);
188 	int (*irq_setup)(struct smi_info *info);
189 	void (*irq_cleanup)(struct smi_info *info);
190 	unsigned int io_size;
191 	char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
192 	void (*addr_source_cleanup)(struct smi_info *info);
193 	void *addr_source_data;
194 
195 	/*
196 	 * Per-OEM handler, called from handle_flags().  Returns 1
197 	 * when handle_flags() needs to be re-run or 0 indicating it
198 	 * set si_state itself.
199 	 */
200 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
201 
202 	/*
203 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
204 	 * is set to hold the flags until we are done handling everything
205 	 * from the flags.
206 	 */
207 #define RECEIVE_MSG_AVAIL	0x01
208 #define EVENT_MSG_BUFFER_FULL	0x02
209 #define WDT_PRE_TIMEOUT_INT	0x08
210 #define OEM0_DATA_AVAIL     0x20
211 #define OEM1_DATA_AVAIL     0x40
212 #define OEM2_DATA_AVAIL     0x80
213 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
214 			     OEM1_DATA_AVAIL | \
215 			     OEM2_DATA_AVAIL)
216 	unsigned char       msg_flags;
217 
218 	/* Does the BMC have an event buffer? */
219 	char		    has_event_buffer;
220 
221 	/*
222 	 * If set to true, this will request events the next time the
223 	 * state machine is idle.
224 	 */
225 	atomic_t            req_events;
226 
227 	/*
228 	 * If true, run the state machine to completion on every send
229 	 * call.  Generally used after a panic to make sure stuff goes
230 	 * out.
231 	 */
232 	int                 run_to_completion;
233 
234 	/* The I/O port of an SI interface. */
235 	int                 port;
236 
237 	/*
238 	 * The space between start addresses of the two ports.  For
239 	 * instance, if the first port is 0xca2 and the spacing is 4, then
240 	 * the second port is 0xca6.
241 	 */
242 	unsigned int        spacing;
243 
244 	/* zero if no irq; */
245 	int                 irq;
246 
247 	/* The timer for this si. */
248 	struct timer_list   si_timer;
249 
250 	/* The time (in jiffies) the last timeout occurred at. */
251 	unsigned long       last_timeout_jiffies;
252 
253 	/* Used to gracefully stop the timer without race conditions. */
254 	atomic_t            stop_operation;
255 
256 	/*
257 	 * The driver will disable interrupts when it gets into a
258 	 * situation where it cannot handle messages due to lack of
259 	 * memory.  Once that situation clears up, it will re-enable
260 	 * interrupts.
261 	 */
262 	int interrupt_disabled;
263 
264 	/* From the get device id response... */
265 	struct ipmi_device_id device_id;
266 
267 	/* Driver model stuff. */
268 	struct device *dev;
269 	struct platform_device *pdev;
270 
271 	/*
272 	 * True if we allocated the device, false if it came from
273 	 * someplace else (like PCI).
274 	 */
275 	int dev_registered;
276 
277 	/* Slave address, could be reported from DMI. */
278 	unsigned char slave_addr;
279 
280 	/* Counters and things for the proc filesystem. */
281 	atomic_t stats[SI_NUM_STATS];
282 
283 	struct task_struct *thread;
284 
285 	struct list_head link;
286 };
287 
288 #define smi_inc_stat(smi, stat) \
289 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292 
293 #define SI_MAX_PARMS 4
294 
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297 
298 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
299 static int num_max_busy_us;
300 
301 static int unload_when_empty = 1;
302 
303 static int try_smi_init(struct smi_info *smi);
304 static void cleanup_one_si(struct smi_info *to_clean);
305 
306 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
307 static int register_xaction_notifier(struct notifier_block *nb)
308 {
309 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
310 }
311 
312 static void deliver_recv_msg(struct smi_info *smi_info,
313 			     struct ipmi_smi_msg *msg)
314 {
315 	/* Deliver the message to the upper layer with the lock
316 	   released. */
317 	spin_unlock(&(smi_info->si_lock));
318 	ipmi_smi_msg_received(smi_info->intf, msg);
319 	spin_lock(&(smi_info->si_lock));
320 }
321 
322 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
323 {
324 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
325 
326 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
327 		cCode = IPMI_ERR_UNSPECIFIED;
328 	/* else use it as is */
329 
330 	/* Make it a reponse */
331 	msg->rsp[0] = msg->data[0] | 4;
332 	msg->rsp[1] = msg->data[1];
333 	msg->rsp[2] = cCode;
334 	msg->rsp_size = 3;
335 
336 	smi_info->curr_msg = NULL;
337 	deliver_recv_msg(smi_info, msg);
338 }
339 
340 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
341 {
342 	int              rv;
343 	struct list_head *entry = NULL;
344 #ifdef DEBUG_TIMING
345 	struct timeval t;
346 #endif
347 
348 	/*
349 	 * No need to save flags, we aleady have interrupts off and we
350 	 * already hold the SMI lock.
351 	 */
352 	if (!smi_info->run_to_completion)
353 		spin_lock(&(smi_info->msg_lock));
354 
355 	/* Pick the high priority queue first. */
356 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
357 		entry = smi_info->hp_xmit_msgs.next;
358 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
359 		entry = smi_info->xmit_msgs.next;
360 	}
361 
362 	if (!entry) {
363 		smi_info->curr_msg = NULL;
364 		rv = SI_SM_IDLE;
365 	} else {
366 		int err;
367 
368 		list_del(entry);
369 		smi_info->curr_msg = list_entry(entry,
370 						struct ipmi_smi_msg,
371 						link);
372 #ifdef DEBUG_TIMING
373 		do_gettimeofday(&t);
374 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
375 #endif
376 		err = atomic_notifier_call_chain(&xaction_notifier_list,
377 				0, smi_info);
378 		if (err & NOTIFY_STOP_MASK) {
379 			rv = SI_SM_CALL_WITHOUT_DELAY;
380 			goto out;
381 		}
382 		err = smi_info->handlers->start_transaction(
383 			smi_info->si_sm,
384 			smi_info->curr_msg->data,
385 			smi_info->curr_msg->data_size);
386 		if (err)
387 			return_hosed_msg(smi_info, err);
388 
389 		rv = SI_SM_CALL_WITHOUT_DELAY;
390 	}
391  out:
392 	if (!smi_info->run_to_completion)
393 		spin_unlock(&(smi_info->msg_lock));
394 
395 	return rv;
396 }
397 
398 static void start_enable_irq(struct smi_info *smi_info)
399 {
400 	unsigned char msg[2];
401 
402 	/*
403 	 * If we are enabling interrupts, we have to tell the
404 	 * BMC to use them.
405 	 */
406 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
407 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
408 
409 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
410 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
411 }
412 
413 static void start_disable_irq(struct smi_info *smi_info)
414 {
415 	unsigned char msg[2];
416 
417 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
418 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
419 
420 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
421 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
422 }
423 
424 static void start_clear_flags(struct smi_info *smi_info)
425 {
426 	unsigned char msg[3];
427 
428 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
429 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
430 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
431 	msg[2] = WDT_PRE_TIMEOUT_INT;
432 
433 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
434 	smi_info->si_state = SI_CLEARING_FLAGS;
435 }
436 
437 /*
438  * When we have a situtaion where we run out of memory and cannot
439  * allocate messages, we just leave them in the BMC and run the system
440  * polled until we can allocate some memory.  Once we have some
441  * memory, we will re-enable the interrupt.
442  */
443 static inline void disable_si_irq(struct smi_info *smi_info)
444 {
445 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
446 		start_disable_irq(smi_info);
447 		smi_info->interrupt_disabled = 1;
448 	}
449 }
450 
451 static inline void enable_si_irq(struct smi_info *smi_info)
452 {
453 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
454 		start_enable_irq(smi_info);
455 		smi_info->interrupt_disabled = 0;
456 	}
457 }
458 
459 static void handle_flags(struct smi_info *smi_info)
460 {
461  retry:
462 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
463 		/* Watchdog pre-timeout */
464 		smi_inc_stat(smi_info, watchdog_pretimeouts);
465 
466 		start_clear_flags(smi_info);
467 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
468 		spin_unlock(&(smi_info->si_lock));
469 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
470 		spin_lock(&(smi_info->si_lock));
471 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472 		/* Messages available. */
473 		smi_info->curr_msg = ipmi_alloc_smi_msg();
474 		if (!smi_info->curr_msg) {
475 			disable_si_irq(smi_info);
476 			smi_info->si_state = SI_NORMAL;
477 			return;
478 		}
479 		enable_si_irq(smi_info);
480 
481 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
483 		smi_info->curr_msg->data_size = 2;
484 
485 		smi_info->handlers->start_transaction(
486 			smi_info->si_sm,
487 			smi_info->curr_msg->data,
488 			smi_info->curr_msg->data_size);
489 		smi_info->si_state = SI_GETTING_MESSAGES;
490 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
491 		/* Events available. */
492 		smi_info->curr_msg = ipmi_alloc_smi_msg();
493 		if (!smi_info->curr_msg) {
494 			disable_si_irq(smi_info);
495 			smi_info->si_state = SI_NORMAL;
496 			return;
497 		}
498 		enable_si_irq(smi_info);
499 
500 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
501 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
502 		smi_info->curr_msg->data_size = 2;
503 
504 		smi_info->handlers->start_transaction(
505 			smi_info->si_sm,
506 			smi_info->curr_msg->data,
507 			smi_info->curr_msg->data_size);
508 		smi_info->si_state = SI_GETTING_EVENTS;
509 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
510 		   smi_info->oem_data_avail_handler) {
511 		if (smi_info->oem_data_avail_handler(smi_info))
512 			goto retry;
513 	} else
514 		smi_info->si_state = SI_NORMAL;
515 }
516 
517 static void handle_transaction_done(struct smi_info *smi_info)
518 {
519 	struct ipmi_smi_msg *msg;
520 #ifdef DEBUG_TIMING
521 	struct timeval t;
522 
523 	do_gettimeofday(&t);
524 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
525 #endif
526 	switch (smi_info->si_state) {
527 	case SI_NORMAL:
528 		if (!smi_info->curr_msg)
529 			break;
530 
531 		smi_info->curr_msg->rsp_size
532 			= smi_info->handlers->get_result(
533 				smi_info->si_sm,
534 				smi_info->curr_msg->rsp,
535 				IPMI_MAX_MSG_LENGTH);
536 
537 		/*
538 		 * Do this here becase deliver_recv_msg() releases the
539 		 * lock, and a new message can be put in during the
540 		 * time the lock is released.
541 		 */
542 		msg = smi_info->curr_msg;
543 		smi_info->curr_msg = NULL;
544 		deliver_recv_msg(smi_info, msg);
545 		break;
546 
547 	case SI_GETTING_FLAGS:
548 	{
549 		unsigned char msg[4];
550 		unsigned int  len;
551 
552 		/* We got the flags from the SMI, now handle them. */
553 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
554 		if (msg[2] != 0) {
555 			/* Error fetching flags, just give up for now. */
556 			smi_info->si_state = SI_NORMAL;
557 		} else if (len < 4) {
558 			/*
559 			 * Hmm, no flags.  That's technically illegal, but
560 			 * don't use uninitialized data.
561 			 */
562 			smi_info->si_state = SI_NORMAL;
563 		} else {
564 			smi_info->msg_flags = msg[3];
565 			handle_flags(smi_info);
566 		}
567 		break;
568 	}
569 
570 	case SI_CLEARING_FLAGS:
571 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
572 	{
573 		unsigned char msg[3];
574 
575 		/* We cleared the flags. */
576 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
577 		if (msg[2] != 0) {
578 			/* Error clearing flags */
579 			printk(KERN_WARNING
580 			       "ipmi_si: Error clearing flags: %2.2x\n",
581 			       msg[2]);
582 		}
583 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
584 			start_enable_irq(smi_info);
585 		else
586 			smi_info->si_state = SI_NORMAL;
587 		break;
588 	}
589 
590 	case SI_GETTING_EVENTS:
591 	{
592 		smi_info->curr_msg->rsp_size
593 			= smi_info->handlers->get_result(
594 				smi_info->si_sm,
595 				smi_info->curr_msg->rsp,
596 				IPMI_MAX_MSG_LENGTH);
597 
598 		/*
599 		 * Do this here becase deliver_recv_msg() releases the
600 		 * lock, and a new message can be put in during the
601 		 * time the lock is released.
602 		 */
603 		msg = smi_info->curr_msg;
604 		smi_info->curr_msg = NULL;
605 		if (msg->rsp[2] != 0) {
606 			/* Error getting event, probably done. */
607 			msg->done(msg);
608 
609 			/* Take off the event flag. */
610 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
611 			handle_flags(smi_info);
612 		} else {
613 			smi_inc_stat(smi_info, events);
614 
615 			/*
616 			 * Do this before we deliver the message
617 			 * because delivering the message releases the
618 			 * lock and something else can mess with the
619 			 * state.
620 			 */
621 			handle_flags(smi_info);
622 
623 			deliver_recv_msg(smi_info, msg);
624 		}
625 		break;
626 	}
627 
628 	case SI_GETTING_MESSAGES:
629 	{
630 		smi_info->curr_msg->rsp_size
631 			= smi_info->handlers->get_result(
632 				smi_info->si_sm,
633 				smi_info->curr_msg->rsp,
634 				IPMI_MAX_MSG_LENGTH);
635 
636 		/*
637 		 * Do this here becase deliver_recv_msg() releases the
638 		 * lock, and a new message can be put in during the
639 		 * time the lock is released.
640 		 */
641 		msg = smi_info->curr_msg;
642 		smi_info->curr_msg = NULL;
643 		if (msg->rsp[2] != 0) {
644 			/* Error getting event, probably done. */
645 			msg->done(msg);
646 
647 			/* Take off the msg flag. */
648 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
649 			handle_flags(smi_info);
650 		} else {
651 			smi_inc_stat(smi_info, incoming_messages);
652 
653 			/*
654 			 * Do this before we deliver the message
655 			 * because delivering the message releases the
656 			 * lock and something else can mess with the
657 			 * state.
658 			 */
659 			handle_flags(smi_info);
660 
661 			deliver_recv_msg(smi_info, msg);
662 		}
663 		break;
664 	}
665 
666 	case SI_ENABLE_INTERRUPTS1:
667 	{
668 		unsigned char msg[4];
669 
670 		/* We got the flags from the SMI, now handle them. */
671 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
672 		if (msg[2] != 0) {
673 			printk(KERN_WARNING
674 			       "ipmi_si: Could not enable interrupts"
675 			       ", failed get, using polled mode.\n");
676 			smi_info->si_state = SI_NORMAL;
677 		} else {
678 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
679 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
680 			msg[2] = (msg[3] |
681 				  IPMI_BMC_RCV_MSG_INTR |
682 				  IPMI_BMC_EVT_MSG_INTR);
683 			smi_info->handlers->start_transaction(
684 				smi_info->si_sm, msg, 3);
685 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
686 		}
687 		break;
688 	}
689 
690 	case SI_ENABLE_INTERRUPTS2:
691 	{
692 		unsigned char msg[4];
693 
694 		/* We got the flags from the SMI, now handle them. */
695 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
696 		if (msg[2] != 0) {
697 			printk(KERN_WARNING
698 			       "ipmi_si: Could not enable interrupts"
699 			       ", failed set, using polled mode.\n");
700 		}
701 		smi_info->si_state = SI_NORMAL;
702 		break;
703 	}
704 
705 	case SI_DISABLE_INTERRUPTS1:
706 	{
707 		unsigned char msg[4];
708 
709 		/* We got the flags from the SMI, now handle them. */
710 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
711 		if (msg[2] != 0) {
712 			printk(KERN_WARNING
713 			       "ipmi_si: Could not disable interrupts"
714 			       ", failed get.\n");
715 			smi_info->si_state = SI_NORMAL;
716 		} else {
717 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
718 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
719 			msg[2] = (msg[3] &
720 				  ~(IPMI_BMC_RCV_MSG_INTR |
721 				    IPMI_BMC_EVT_MSG_INTR));
722 			smi_info->handlers->start_transaction(
723 				smi_info->si_sm, msg, 3);
724 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
725 		}
726 		break;
727 	}
728 
729 	case SI_DISABLE_INTERRUPTS2:
730 	{
731 		unsigned char msg[4];
732 
733 		/* We got the flags from the SMI, now handle them. */
734 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
735 		if (msg[2] != 0) {
736 			printk(KERN_WARNING
737 			       "ipmi_si: Could not disable interrupts"
738 			       ", failed set.\n");
739 		}
740 		smi_info->si_state = SI_NORMAL;
741 		break;
742 	}
743 	}
744 }
745 
746 /*
747  * Called on timeouts and events.  Timeouts should pass the elapsed
748  * time, interrupts should pass in zero.  Must be called with
749  * si_lock held and interrupts disabled.
750  */
751 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
752 					   int time)
753 {
754 	enum si_sm_result si_sm_result;
755 
756  restart:
757 	/*
758 	 * There used to be a loop here that waited a little while
759 	 * (around 25us) before giving up.  That turned out to be
760 	 * pointless, the minimum delays I was seeing were in the 300us
761 	 * range, which is far too long to wait in an interrupt.  So
762 	 * we just run until the state machine tells us something
763 	 * happened or it needs a delay.
764 	 */
765 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
766 	time = 0;
767 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
768 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
769 
770 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
771 		smi_inc_stat(smi_info, complete_transactions);
772 
773 		handle_transaction_done(smi_info);
774 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
775 	} else if (si_sm_result == SI_SM_HOSED) {
776 		smi_inc_stat(smi_info, hosed_count);
777 
778 		/*
779 		 * Do the before return_hosed_msg, because that
780 		 * releases the lock.
781 		 */
782 		smi_info->si_state = SI_NORMAL;
783 		if (smi_info->curr_msg != NULL) {
784 			/*
785 			 * If we were handling a user message, format
786 			 * a response to send to the upper layer to
787 			 * tell it about the error.
788 			 */
789 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
790 		}
791 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
792 	}
793 
794 	/*
795 	 * We prefer handling attn over new messages.  But don't do
796 	 * this if there is not yet an upper layer to handle anything.
797 	 */
798 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
799 		unsigned char msg[2];
800 
801 		smi_inc_stat(smi_info, attentions);
802 
803 		/*
804 		 * Got a attn, send down a get message flags to see
805 		 * what's causing it.  It would be better to handle
806 		 * this in the upper layer, but due to the way
807 		 * interrupts work with the SMI, that's not really
808 		 * possible.
809 		 */
810 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
811 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
812 
813 		smi_info->handlers->start_transaction(
814 			smi_info->si_sm, msg, 2);
815 		smi_info->si_state = SI_GETTING_FLAGS;
816 		goto restart;
817 	}
818 
819 	/* If we are currently idle, try to start the next message. */
820 	if (si_sm_result == SI_SM_IDLE) {
821 		smi_inc_stat(smi_info, idles);
822 
823 		si_sm_result = start_next_msg(smi_info);
824 		if (si_sm_result != SI_SM_IDLE)
825 			goto restart;
826 	}
827 
828 	if ((si_sm_result == SI_SM_IDLE)
829 	    && (atomic_read(&smi_info->req_events))) {
830 		/*
831 		 * We are idle and the upper layer requested that I fetch
832 		 * events, so do so.
833 		 */
834 		atomic_set(&smi_info->req_events, 0);
835 
836 		smi_info->curr_msg = ipmi_alloc_smi_msg();
837 		if (!smi_info->curr_msg)
838 			goto out;
839 
840 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
841 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
842 		smi_info->curr_msg->data_size = 2;
843 
844 		smi_info->handlers->start_transaction(
845 			smi_info->si_sm,
846 			smi_info->curr_msg->data,
847 			smi_info->curr_msg->data_size);
848 		smi_info->si_state = SI_GETTING_EVENTS;
849 		goto restart;
850 	}
851  out:
852 	return si_sm_result;
853 }
854 
855 static void sender(void                *send_info,
856 		   struct ipmi_smi_msg *msg,
857 		   int                 priority)
858 {
859 	struct smi_info   *smi_info = send_info;
860 	enum si_sm_result result;
861 	unsigned long     flags;
862 #ifdef DEBUG_TIMING
863 	struct timeval    t;
864 #endif
865 
866 	if (atomic_read(&smi_info->stop_operation)) {
867 		msg->rsp[0] = msg->data[0] | 4;
868 		msg->rsp[1] = msg->data[1];
869 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
870 		msg->rsp_size = 3;
871 		deliver_recv_msg(smi_info, msg);
872 		return;
873 	}
874 
875 #ifdef DEBUG_TIMING
876 	do_gettimeofday(&t);
877 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
878 #endif
879 
880 	if (smi_info->run_to_completion) {
881 		/*
882 		 * If we are running to completion, then throw it in
883 		 * the list and run transactions until everything is
884 		 * clear.  Priority doesn't matter here.
885 		 */
886 
887 		/*
888 		 * Run to completion means we are single-threaded, no
889 		 * need for locks.
890 		 */
891 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
892 
893 		result = smi_event_handler(smi_info, 0);
894 		while (result != SI_SM_IDLE) {
895 			udelay(SI_SHORT_TIMEOUT_USEC);
896 			result = smi_event_handler(smi_info,
897 						   SI_SHORT_TIMEOUT_USEC);
898 		}
899 		return;
900 	}
901 
902 	spin_lock_irqsave(&smi_info->msg_lock, flags);
903 	if (priority > 0)
904 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
905 	else
906 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
907 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
908 
909 	spin_lock_irqsave(&smi_info->si_lock, flags);
910 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
911 		start_next_msg(smi_info);
912 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
913 }
914 
915 static void set_run_to_completion(void *send_info, int i_run_to_completion)
916 {
917 	struct smi_info   *smi_info = send_info;
918 	enum si_sm_result result;
919 
920 	smi_info->run_to_completion = i_run_to_completion;
921 	if (i_run_to_completion) {
922 		result = smi_event_handler(smi_info, 0);
923 		while (result != SI_SM_IDLE) {
924 			udelay(SI_SHORT_TIMEOUT_USEC);
925 			result = smi_event_handler(smi_info,
926 						   SI_SHORT_TIMEOUT_USEC);
927 		}
928 	}
929 }
930 
931 /*
932  * Use -1 in the nsec value of the busy waiting timespec to tell that
933  * we are spinning in kipmid looking for something and not delaying
934  * between checks
935  */
936 static inline void ipmi_si_set_not_busy(struct timespec *ts)
937 {
938 	ts->tv_nsec = -1;
939 }
940 static inline int ipmi_si_is_busy(struct timespec *ts)
941 {
942 	return ts->tv_nsec != -1;
943 }
944 
945 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
946 				 const struct smi_info *smi_info,
947 				 struct timespec *busy_until)
948 {
949 	unsigned int max_busy_us = 0;
950 
951 	if (smi_info->intf_num < num_max_busy_us)
952 		max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
953 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
954 		ipmi_si_set_not_busy(busy_until);
955 	else if (!ipmi_si_is_busy(busy_until)) {
956 		getnstimeofday(busy_until);
957 		timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
958 	} else {
959 		struct timespec now;
960 		getnstimeofday(&now);
961 		if (unlikely(timespec_compare(&now, busy_until) > 0)) {
962 			ipmi_si_set_not_busy(busy_until);
963 			return 0;
964 		}
965 	}
966 	return 1;
967 }
968 
969 
970 /*
971  * A busy-waiting loop for speeding up IPMI operation.
972  *
973  * Lousy hardware makes this hard.  This is only enabled for systems
974  * that are not BT and do not have interrupts.  It starts spinning
975  * when an operation is complete or until max_busy tells it to stop
976  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
977  * Documentation/IPMI.txt for details.
978  */
979 static int ipmi_thread(void *data)
980 {
981 	struct smi_info *smi_info = data;
982 	unsigned long flags;
983 	enum si_sm_result smi_result;
984 	struct timespec busy_until;
985 
986 	ipmi_si_set_not_busy(&busy_until);
987 	set_user_nice(current, 19);
988 	while (!kthread_should_stop()) {
989 		int busy_wait;
990 
991 		spin_lock_irqsave(&(smi_info->si_lock), flags);
992 		smi_result = smi_event_handler(smi_info, 0);
993 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
994 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
995 						  &busy_until);
996 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
997 			; /* do nothing */
998 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
999 			schedule();
1000 		else
1001 			schedule_timeout_interruptible(0);
1002 	}
1003 	return 0;
1004 }
1005 
1006 
1007 static void poll(void *send_info)
1008 {
1009 	struct smi_info *smi_info = send_info;
1010 	unsigned long flags;
1011 
1012 	/*
1013 	 * Make sure there is some delay in the poll loop so we can
1014 	 * drive time forward and timeout things.
1015 	 */
1016 	udelay(10);
1017 	spin_lock_irqsave(&smi_info->si_lock, flags);
1018 	smi_event_handler(smi_info, 10);
1019 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1020 }
1021 
1022 static void request_events(void *send_info)
1023 {
1024 	struct smi_info *smi_info = send_info;
1025 
1026 	if (atomic_read(&smi_info->stop_operation) ||
1027 				!smi_info->has_event_buffer)
1028 		return;
1029 
1030 	atomic_set(&smi_info->req_events, 1);
1031 }
1032 
1033 static int initialized;
1034 
1035 static void smi_timeout(unsigned long data)
1036 {
1037 	struct smi_info   *smi_info = (struct smi_info *) data;
1038 	enum si_sm_result smi_result;
1039 	unsigned long     flags;
1040 	unsigned long     jiffies_now;
1041 	long              time_diff;
1042 #ifdef DEBUG_TIMING
1043 	struct timeval    t;
1044 #endif
1045 
1046 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1047 #ifdef DEBUG_TIMING
1048 	do_gettimeofday(&t);
1049 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1050 #endif
1051 	jiffies_now = jiffies;
1052 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1053 		     * SI_USEC_PER_JIFFY);
1054 	smi_result = smi_event_handler(smi_info, time_diff);
1055 
1056 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1057 
1058 	smi_info->last_timeout_jiffies = jiffies_now;
1059 
1060 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1061 		/* Running with interrupts, only do long timeouts. */
1062 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1063 		smi_inc_stat(smi_info, long_timeouts);
1064 		goto do_add_timer;
1065 	}
1066 
1067 	/*
1068 	 * If the state machine asks for a short delay, then shorten
1069 	 * the timer timeout.
1070 	 */
1071 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1072 		smi_inc_stat(smi_info, short_timeouts);
1073 		smi_info->si_timer.expires = jiffies + 1;
1074 	} else {
1075 		smi_inc_stat(smi_info, long_timeouts);
1076 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1077 	}
1078 
1079  do_add_timer:
1080 	add_timer(&(smi_info->si_timer));
1081 }
1082 
1083 static irqreturn_t si_irq_handler(int irq, void *data)
1084 {
1085 	struct smi_info *smi_info = data;
1086 	unsigned long   flags;
1087 #ifdef DEBUG_TIMING
1088 	struct timeval  t;
1089 #endif
1090 
1091 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1092 
1093 	smi_inc_stat(smi_info, interrupts);
1094 
1095 #ifdef DEBUG_TIMING
1096 	do_gettimeofday(&t);
1097 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1098 #endif
1099 	smi_event_handler(smi_info, 0);
1100 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1101 	return IRQ_HANDLED;
1102 }
1103 
1104 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1105 {
1106 	struct smi_info *smi_info = data;
1107 	/* We need to clear the IRQ flag for the BT interface. */
1108 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1109 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1110 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1111 	return si_irq_handler(irq, data);
1112 }
1113 
1114 static int smi_start_processing(void       *send_info,
1115 				ipmi_smi_t intf)
1116 {
1117 	struct smi_info *new_smi = send_info;
1118 	int             enable = 0;
1119 
1120 	new_smi->intf = intf;
1121 
1122 	/* Try to claim any interrupts. */
1123 	if (new_smi->irq_setup)
1124 		new_smi->irq_setup(new_smi);
1125 
1126 	/* Set up the timer that drives the interface. */
1127 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1128 	new_smi->last_timeout_jiffies = jiffies;
1129 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1130 
1131 	/*
1132 	 * Check if the user forcefully enabled the daemon.
1133 	 */
1134 	if (new_smi->intf_num < num_force_kipmid)
1135 		enable = force_kipmid[new_smi->intf_num];
1136 	/*
1137 	 * The BT interface is efficient enough to not need a thread,
1138 	 * and there is no need for a thread if we have interrupts.
1139 	 */
1140 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1141 		enable = 1;
1142 
1143 	if (enable) {
1144 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1145 					      "kipmi%d", new_smi->intf_num);
1146 		if (IS_ERR(new_smi->thread)) {
1147 			printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1148 			       " kernel thread due to error %ld, only using"
1149 			       " timers to drive the interface\n",
1150 			       PTR_ERR(new_smi->thread));
1151 			new_smi->thread = NULL;
1152 		}
1153 	}
1154 
1155 	return 0;
1156 }
1157 
1158 static void set_maintenance_mode(void *send_info, int enable)
1159 {
1160 	struct smi_info   *smi_info = send_info;
1161 
1162 	if (!enable)
1163 		atomic_set(&smi_info->req_events, 0);
1164 }
1165 
1166 static struct ipmi_smi_handlers handlers = {
1167 	.owner                  = THIS_MODULE,
1168 	.start_processing       = smi_start_processing,
1169 	.sender			= sender,
1170 	.request_events		= request_events,
1171 	.set_maintenance_mode   = set_maintenance_mode,
1172 	.set_run_to_completion  = set_run_to_completion,
1173 	.poll			= poll,
1174 };
1175 
1176 /*
1177  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1178  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1179  */
1180 
1181 static LIST_HEAD(smi_infos);
1182 static DEFINE_MUTEX(smi_infos_lock);
1183 static int smi_num; /* Used to sequence the SMIs */
1184 
1185 #define DEFAULT_REGSPACING	1
1186 #define DEFAULT_REGSIZE		1
1187 
1188 static int           si_trydefaults = 1;
1189 static char          *si_type[SI_MAX_PARMS];
1190 #define MAX_SI_TYPE_STR 30
1191 static char          si_type_str[MAX_SI_TYPE_STR];
1192 static unsigned long addrs[SI_MAX_PARMS];
1193 static unsigned int num_addrs;
1194 static unsigned int  ports[SI_MAX_PARMS];
1195 static unsigned int num_ports;
1196 static int           irqs[SI_MAX_PARMS];
1197 static unsigned int num_irqs;
1198 static int           regspacings[SI_MAX_PARMS];
1199 static unsigned int num_regspacings;
1200 static int           regsizes[SI_MAX_PARMS];
1201 static unsigned int num_regsizes;
1202 static int           regshifts[SI_MAX_PARMS];
1203 static unsigned int num_regshifts;
1204 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1205 static unsigned int num_slave_addrs;
1206 
1207 #define IPMI_IO_ADDR_SPACE  0
1208 #define IPMI_MEM_ADDR_SPACE 1
1209 static char *addr_space_to_str[] = { "i/o", "mem" };
1210 
1211 static int hotmod_handler(const char *val, struct kernel_param *kp);
1212 
1213 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1214 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1215 		 " Documentation/IPMI.txt in the kernel sources for the"
1216 		 " gory details.");
1217 
1218 module_param_named(trydefaults, si_trydefaults, bool, 0);
1219 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1220 		 " default scan of the KCS and SMIC interface at the standard"
1221 		 " address");
1222 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1223 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1224 		 " interface separated by commas.  The types are 'kcs',"
1225 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1226 		 " the first interface to kcs and the second to bt");
1227 module_param_array(addrs, ulong, &num_addrs, 0);
1228 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1229 		 " addresses separated by commas.  Only use if an interface"
1230 		 " is in memory.  Otherwise, set it to zero or leave"
1231 		 " it blank.");
1232 module_param_array(ports, uint, &num_ports, 0);
1233 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1234 		 " addresses separated by commas.  Only use if an interface"
1235 		 " is a port.  Otherwise, set it to zero or leave"
1236 		 " it blank.");
1237 module_param_array(irqs, int, &num_irqs, 0);
1238 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1239 		 " addresses separated by commas.  Only use if an interface"
1240 		 " has an interrupt.  Otherwise, set it to zero or leave"
1241 		 " it blank.");
1242 module_param_array(regspacings, int, &num_regspacings, 0);
1243 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1244 		 " and each successive register used by the interface.  For"
1245 		 " instance, if the start address is 0xca2 and the spacing"
1246 		 " is 2, then the second address is at 0xca4.  Defaults"
1247 		 " to 1.");
1248 module_param_array(regsizes, int, &num_regsizes, 0);
1249 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1250 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1251 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1252 		 " the 8-bit IPMI register has to be read from a larger"
1253 		 " register.");
1254 module_param_array(regshifts, int, &num_regshifts, 0);
1255 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1256 		 " IPMI register, in bits.  For instance, if the data"
1257 		 " is read from a 32-bit word and the IPMI data is in"
1258 		 " bit 8-15, then the shift would be 8");
1259 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1260 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1261 		 " the controller.  Normally this is 0x20, but can be"
1262 		 " overridden by this parm.  This is an array indexed"
1263 		 " by interface number.");
1264 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1265 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1266 		 " disabled(0).  Normally the IPMI driver auto-detects"
1267 		 " this, but the value may be overridden by this parm.");
1268 module_param(unload_when_empty, int, 0);
1269 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1270 		 " specified or found, default is 1.  Setting to 0"
1271 		 " is useful for hot add of devices using hotmod.");
1272 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1273 MODULE_PARM_DESC(kipmid_max_busy_us,
1274 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1275 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1276 		 " if kipmid is using up a lot of CPU time.");
1277 
1278 
1279 static void std_irq_cleanup(struct smi_info *info)
1280 {
1281 	if (info->si_type == SI_BT)
1282 		/* Disable the interrupt in the BT interface. */
1283 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1284 	free_irq(info->irq, info);
1285 }
1286 
1287 static int std_irq_setup(struct smi_info *info)
1288 {
1289 	int rv;
1290 
1291 	if (!info->irq)
1292 		return 0;
1293 
1294 	if (info->si_type == SI_BT) {
1295 		rv = request_irq(info->irq,
1296 				 si_bt_irq_handler,
1297 				 IRQF_SHARED | IRQF_DISABLED,
1298 				 DEVICE_NAME,
1299 				 info);
1300 		if (!rv)
1301 			/* Enable the interrupt in the BT interface. */
1302 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1303 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1304 	} else
1305 		rv = request_irq(info->irq,
1306 				 si_irq_handler,
1307 				 IRQF_SHARED | IRQF_DISABLED,
1308 				 DEVICE_NAME,
1309 				 info);
1310 	if (rv) {
1311 		printk(KERN_WARNING
1312 		       "ipmi_si: %s unable to claim interrupt %d,"
1313 		       " running polled\n",
1314 		       DEVICE_NAME, info->irq);
1315 		info->irq = 0;
1316 	} else {
1317 		info->irq_cleanup = std_irq_cleanup;
1318 		printk("  Using irq %d\n", info->irq);
1319 	}
1320 
1321 	return rv;
1322 }
1323 
1324 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1325 {
1326 	unsigned int addr = io->addr_data;
1327 
1328 	return inb(addr + (offset * io->regspacing));
1329 }
1330 
1331 static void port_outb(struct si_sm_io *io, unsigned int offset,
1332 		      unsigned char b)
1333 {
1334 	unsigned int addr = io->addr_data;
1335 
1336 	outb(b, addr + (offset * io->regspacing));
1337 }
1338 
1339 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1340 {
1341 	unsigned int addr = io->addr_data;
1342 
1343 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1344 }
1345 
1346 static void port_outw(struct si_sm_io *io, unsigned int offset,
1347 		      unsigned char b)
1348 {
1349 	unsigned int addr = io->addr_data;
1350 
1351 	outw(b << io->regshift, addr + (offset * io->regspacing));
1352 }
1353 
1354 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1355 {
1356 	unsigned int addr = io->addr_data;
1357 
1358 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1359 }
1360 
1361 static void port_outl(struct si_sm_io *io, unsigned int offset,
1362 		      unsigned char b)
1363 {
1364 	unsigned int addr = io->addr_data;
1365 
1366 	outl(b << io->regshift, addr+(offset * io->regspacing));
1367 }
1368 
1369 static void port_cleanup(struct smi_info *info)
1370 {
1371 	unsigned int addr = info->io.addr_data;
1372 	int          idx;
1373 
1374 	if (addr) {
1375 		for (idx = 0; idx < info->io_size; idx++)
1376 			release_region(addr + idx * info->io.regspacing,
1377 				       info->io.regsize);
1378 	}
1379 }
1380 
1381 static int port_setup(struct smi_info *info)
1382 {
1383 	unsigned int addr = info->io.addr_data;
1384 	int          idx;
1385 
1386 	if (!addr)
1387 		return -ENODEV;
1388 
1389 	info->io_cleanup = port_cleanup;
1390 
1391 	/*
1392 	 * Figure out the actual inb/inw/inl/etc routine to use based
1393 	 * upon the register size.
1394 	 */
1395 	switch (info->io.regsize) {
1396 	case 1:
1397 		info->io.inputb = port_inb;
1398 		info->io.outputb = port_outb;
1399 		break;
1400 	case 2:
1401 		info->io.inputb = port_inw;
1402 		info->io.outputb = port_outw;
1403 		break;
1404 	case 4:
1405 		info->io.inputb = port_inl;
1406 		info->io.outputb = port_outl;
1407 		break;
1408 	default:
1409 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1410 		       info->io.regsize);
1411 		return -EINVAL;
1412 	}
1413 
1414 	/*
1415 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1416 	 * tables.  This causes problems when trying to register the
1417 	 * entire I/O region.  Therefore we must register each I/O
1418 	 * port separately.
1419 	 */
1420 	for (idx = 0; idx < info->io_size; idx++) {
1421 		if (request_region(addr + idx * info->io.regspacing,
1422 				   info->io.regsize, DEVICE_NAME) == NULL) {
1423 			/* Undo allocations */
1424 			while (idx--) {
1425 				release_region(addr + idx * info->io.regspacing,
1426 					       info->io.regsize);
1427 			}
1428 			return -EIO;
1429 		}
1430 	}
1431 	return 0;
1432 }
1433 
1434 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1435 {
1436 	return readb((io->addr)+(offset * io->regspacing));
1437 }
1438 
1439 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1440 		     unsigned char b)
1441 {
1442 	writeb(b, (io->addr)+(offset * io->regspacing));
1443 }
1444 
1445 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1446 {
1447 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1448 		& 0xff;
1449 }
1450 
1451 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1452 		     unsigned char b)
1453 {
1454 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1455 }
1456 
1457 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1458 {
1459 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1460 		& 0xff;
1461 }
1462 
1463 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1464 		     unsigned char b)
1465 {
1466 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1467 }
1468 
1469 #ifdef readq
1470 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1471 {
1472 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1473 		& 0xff;
1474 }
1475 
1476 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1477 		     unsigned char b)
1478 {
1479 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1480 }
1481 #endif
1482 
1483 static void mem_cleanup(struct smi_info *info)
1484 {
1485 	unsigned long addr = info->io.addr_data;
1486 	int           mapsize;
1487 
1488 	if (info->io.addr) {
1489 		iounmap(info->io.addr);
1490 
1491 		mapsize = ((info->io_size * info->io.regspacing)
1492 			   - (info->io.regspacing - info->io.regsize));
1493 
1494 		release_mem_region(addr, mapsize);
1495 	}
1496 }
1497 
1498 static int mem_setup(struct smi_info *info)
1499 {
1500 	unsigned long addr = info->io.addr_data;
1501 	int           mapsize;
1502 
1503 	if (!addr)
1504 		return -ENODEV;
1505 
1506 	info->io_cleanup = mem_cleanup;
1507 
1508 	/*
1509 	 * Figure out the actual readb/readw/readl/etc routine to use based
1510 	 * upon the register size.
1511 	 */
1512 	switch (info->io.regsize) {
1513 	case 1:
1514 		info->io.inputb = intf_mem_inb;
1515 		info->io.outputb = intf_mem_outb;
1516 		break;
1517 	case 2:
1518 		info->io.inputb = intf_mem_inw;
1519 		info->io.outputb = intf_mem_outw;
1520 		break;
1521 	case 4:
1522 		info->io.inputb = intf_mem_inl;
1523 		info->io.outputb = intf_mem_outl;
1524 		break;
1525 #ifdef readq
1526 	case 8:
1527 		info->io.inputb = mem_inq;
1528 		info->io.outputb = mem_outq;
1529 		break;
1530 #endif
1531 	default:
1532 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1533 		       info->io.regsize);
1534 		return -EINVAL;
1535 	}
1536 
1537 	/*
1538 	 * Calculate the total amount of memory to claim.  This is an
1539 	 * unusual looking calculation, but it avoids claiming any
1540 	 * more memory than it has to.  It will claim everything
1541 	 * between the first address to the end of the last full
1542 	 * register.
1543 	 */
1544 	mapsize = ((info->io_size * info->io.regspacing)
1545 		   - (info->io.regspacing - info->io.regsize));
1546 
1547 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1548 		return -EIO;
1549 
1550 	info->io.addr = ioremap(addr, mapsize);
1551 	if (info->io.addr == NULL) {
1552 		release_mem_region(addr, mapsize);
1553 		return -EIO;
1554 	}
1555 	return 0;
1556 }
1557 
1558 /*
1559  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1560  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1561  * Options are:
1562  *   rsp=<regspacing>
1563  *   rsi=<regsize>
1564  *   rsh=<regshift>
1565  *   irq=<irq>
1566  *   ipmb=<ipmb addr>
1567  */
1568 enum hotmod_op { HM_ADD, HM_REMOVE };
1569 struct hotmod_vals {
1570 	char *name;
1571 	int  val;
1572 };
1573 static struct hotmod_vals hotmod_ops[] = {
1574 	{ "add",	HM_ADD },
1575 	{ "remove",	HM_REMOVE },
1576 	{ NULL }
1577 };
1578 static struct hotmod_vals hotmod_si[] = {
1579 	{ "kcs",	SI_KCS },
1580 	{ "smic",	SI_SMIC },
1581 	{ "bt",		SI_BT },
1582 	{ NULL }
1583 };
1584 static struct hotmod_vals hotmod_as[] = {
1585 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1586 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1587 	{ NULL }
1588 };
1589 
1590 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1591 {
1592 	char *s;
1593 	int  i;
1594 
1595 	s = strchr(*curr, ',');
1596 	if (!s) {
1597 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1598 		return -EINVAL;
1599 	}
1600 	*s = '\0';
1601 	s++;
1602 	for (i = 0; hotmod_ops[i].name; i++) {
1603 		if (strcmp(*curr, v[i].name) == 0) {
1604 			*val = v[i].val;
1605 			*curr = s;
1606 			return 0;
1607 		}
1608 	}
1609 
1610 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1611 	return -EINVAL;
1612 }
1613 
1614 static int check_hotmod_int_op(const char *curr, const char *option,
1615 			       const char *name, int *val)
1616 {
1617 	char *n;
1618 
1619 	if (strcmp(curr, name) == 0) {
1620 		if (!option) {
1621 			printk(KERN_WARNING PFX
1622 			       "No option given for '%s'\n",
1623 			       curr);
1624 			return -EINVAL;
1625 		}
1626 		*val = simple_strtoul(option, &n, 0);
1627 		if ((*n != '\0') || (*option == '\0')) {
1628 			printk(KERN_WARNING PFX
1629 			       "Bad option given for '%s'\n",
1630 			       curr);
1631 			return -EINVAL;
1632 		}
1633 		return 1;
1634 	}
1635 	return 0;
1636 }
1637 
1638 static int hotmod_handler(const char *val, struct kernel_param *kp)
1639 {
1640 	char *str = kstrdup(val, GFP_KERNEL);
1641 	int  rv;
1642 	char *next, *curr, *s, *n, *o;
1643 	enum hotmod_op op;
1644 	enum si_type si_type;
1645 	int  addr_space;
1646 	unsigned long addr;
1647 	int regspacing;
1648 	int regsize;
1649 	int regshift;
1650 	int irq;
1651 	int ipmb;
1652 	int ival;
1653 	int len;
1654 	struct smi_info *info;
1655 
1656 	if (!str)
1657 		return -ENOMEM;
1658 
1659 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1660 	len = strlen(str);
1661 	ival = len - 1;
1662 	while ((ival >= 0) && isspace(str[ival])) {
1663 		str[ival] = '\0';
1664 		ival--;
1665 	}
1666 
1667 	for (curr = str; curr; curr = next) {
1668 		regspacing = 1;
1669 		regsize = 1;
1670 		regshift = 0;
1671 		irq = 0;
1672 		ipmb = 0; /* Choose the default if not specified */
1673 
1674 		next = strchr(curr, ':');
1675 		if (next) {
1676 			*next = '\0';
1677 			next++;
1678 		}
1679 
1680 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1681 		if (rv)
1682 			break;
1683 		op = ival;
1684 
1685 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1686 		if (rv)
1687 			break;
1688 		si_type = ival;
1689 
1690 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1691 		if (rv)
1692 			break;
1693 
1694 		s = strchr(curr, ',');
1695 		if (s) {
1696 			*s = '\0';
1697 			s++;
1698 		}
1699 		addr = simple_strtoul(curr, &n, 0);
1700 		if ((*n != '\0') || (*curr == '\0')) {
1701 			printk(KERN_WARNING PFX "Invalid hotmod address"
1702 			       " '%s'\n", curr);
1703 			break;
1704 		}
1705 
1706 		while (s) {
1707 			curr = s;
1708 			s = strchr(curr, ',');
1709 			if (s) {
1710 				*s = '\0';
1711 				s++;
1712 			}
1713 			o = strchr(curr, '=');
1714 			if (o) {
1715 				*o = '\0';
1716 				o++;
1717 			}
1718 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1719 			if (rv < 0)
1720 				goto out;
1721 			else if (rv)
1722 				continue;
1723 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1724 			if (rv < 0)
1725 				goto out;
1726 			else if (rv)
1727 				continue;
1728 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1729 			if (rv < 0)
1730 				goto out;
1731 			else if (rv)
1732 				continue;
1733 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1734 			if (rv < 0)
1735 				goto out;
1736 			else if (rv)
1737 				continue;
1738 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1739 			if (rv < 0)
1740 				goto out;
1741 			else if (rv)
1742 				continue;
1743 
1744 			rv = -EINVAL;
1745 			printk(KERN_WARNING PFX
1746 			       "Invalid hotmod option '%s'\n",
1747 			       curr);
1748 			goto out;
1749 		}
1750 
1751 		if (op == HM_ADD) {
1752 			info = kzalloc(sizeof(*info), GFP_KERNEL);
1753 			if (!info) {
1754 				rv = -ENOMEM;
1755 				goto out;
1756 			}
1757 
1758 			info->addr_source = "hotmod";
1759 			info->si_type = si_type;
1760 			info->io.addr_data = addr;
1761 			info->io.addr_type = addr_space;
1762 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1763 				info->io_setup = mem_setup;
1764 			else
1765 				info->io_setup = port_setup;
1766 
1767 			info->io.addr = NULL;
1768 			info->io.regspacing = regspacing;
1769 			if (!info->io.regspacing)
1770 				info->io.regspacing = DEFAULT_REGSPACING;
1771 			info->io.regsize = regsize;
1772 			if (!info->io.regsize)
1773 				info->io.regsize = DEFAULT_REGSPACING;
1774 			info->io.regshift = regshift;
1775 			info->irq = irq;
1776 			if (info->irq)
1777 				info->irq_setup = std_irq_setup;
1778 			info->slave_addr = ipmb;
1779 
1780 			try_smi_init(info);
1781 		} else {
1782 			/* remove */
1783 			struct smi_info *e, *tmp_e;
1784 
1785 			mutex_lock(&smi_infos_lock);
1786 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1787 				if (e->io.addr_type != addr_space)
1788 					continue;
1789 				if (e->si_type != si_type)
1790 					continue;
1791 				if (e->io.addr_data == addr)
1792 					cleanup_one_si(e);
1793 			}
1794 			mutex_unlock(&smi_infos_lock);
1795 		}
1796 	}
1797 	rv = len;
1798  out:
1799 	kfree(str);
1800 	return rv;
1801 }
1802 
1803 static __devinit void hardcode_find_bmc(void)
1804 {
1805 	int             i;
1806 	struct smi_info *info;
1807 
1808 	for (i = 0; i < SI_MAX_PARMS; i++) {
1809 		if (!ports[i] && !addrs[i])
1810 			continue;
1811 
1812 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1813 		if (!info)
1814 			return;
1815 
1816 		info->addr_source = "hardcoded";
1817 
1818 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1819 			info->si_type = SI_KCS;
1820 		} else if (strcmp(si_type[i], "smic") == 0) {
1821 			info->si_type = SI_SMIC;
1822 		} else if (strcmp(si_type[i], "bt") == 0) {
1823 			info->si_type = SI_BT;
1824 		} else {
1825 			printk(KERN_WARNING
1826 			       "ipmi_si: Interface type specified "
1827 			       "for interface %d, was invalid: %s\n",
1828 			       i, si_type[i]);
1829 			kfree(info);
1830 			continue;
1831 		}
1832 
1833 		if (ports[i]) {
1834 			/* An I/O port */
1835 			info->io_setup = port_setup;
1836 			info->io.addr_data = ports[i];
1837 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1838 		} else if (addrs[i]) {
1839 			/* A memory port */
1840 			info->io_setup = mem_setup;
1841 			info->io.addr_data = addrs[i];
1842 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1843 		} else {
1844 			printk(KERN_WARNING
1845 			       "ipmi_si: Interface type specified "
1846 			       "for interface %d, "
1847 			       "but port and address were not set or "
1848 			       "set to zero.\n", i);
1849 			kfree(info);
1850 			continue;
1851 		}
1852 
1853 		info->io.addr = NULL;
1854 		info->io.regspacing = regspacings[i];
1855 		if (!info->io.regspacing)
1856 			info->io.regspacing = DEFAULT_REGSPACING;
1857 		info->io.regsize = regsizes[i];
1858 		if (!info->io.regsize)
1859 			info->io.regsize = DEFAULT_REGSPACING;
1860 		info->io.regshift = regshifts[i];
1861 		info->irq = irqs[i];
1862 		if (info->irq)
1863 			info->irq_setup = std_irq_setup;
1864 		info->slave_addr = slave_addrs[i];
1865 
1866 		try_smi_init(info);
1867 	}
1868 }
1869 
1870 #ifdef CONFIG_ACPI
1871 
1872 #include <linux/acpi.h>
1873 
1874 /*
1875  * Once we get an ACPI failure, we don't try any more, because we go
1876  * through the tables sequentially.  Once we don't find a table, there
1877  * are no more.
1878  */
1879 static int acpi_failure;
1880 
1881 /* For GPE-type interrupts. */
1882 static u32 ipmi_acpi_gpe(void *context)
1883 {
1884 	struct smi_info *smi_info = context;
1885 	unsigned long   flags;
1886 #ifdef DEBUG_TIMING
1887 	struct timeval t;
1888 #endif
1889 
1890 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1891 
1892 	smi_inc_stat(smi_info, interrupts);
1893 
1894 #ifdef DEBUG_TIMING
1895 	do_gettimeofday(&t);
1896 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1897 #endif
1898 	smi_event_handler(smi_info, 0);
1899 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1900 
1901 	return ACPI_INTERRUPT_HANDLED;
1902 }
1903 
1904 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1905 {
1906 	if (!info->irq)
1907 		return;
1908 
1909 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1910 }
1911 
1912 static int acpi_gpe_irq_setup(struct smi_info *info)
1913 {
1914 	acpi_status status;
1915 
1916 	if (!info->irq)
1917 		return 0;
1918 
1919 	/* FIXME - is level triggered right? */
1920 	status = acpi_install_gpe_handler(NULL,
1921 					  info->irq,
1922 					  ACPI_GPE_LEVEL_TRIGGERED,
1923 					  &ipmi_acpi_gpe,
1924 					  info);
1925 	if (status != AE_OK) {
1926 		printk(KERN_WARNING
1927 		       "ipmi_si: %s unable to claim ACPI GPE %d,"
1928 		       " running polled\n",
1929 		       DEVICE_NAME, info->irq);
1930 		info->irq = 0;
1931 		return -EINVAL;
1932 	} else {
1933 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1934 		printk("  Using ACPI GPE %d\n", info->irq);
1935 		return 0;
1936 	}
1937 }
1938 
1939 /*
1940  * Defined at
1941  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1942  * Docs/TechPapers/IA64/hpspmi.pdf
1943  */
1944 struct SPMITable {
1945 	s8	Signature[4];
1946 	u32	Length;
1947 	u8	Revision;
1948 	u8	Checksum;
1949 	s8	OEMID[6];
1950 	s8	OEMTableID[8];
1951 	s8	OEMRevision[4];
1952 	s8	CreatorID[4];
1953 	s8	CreatorRevision[4];
1954 	u8	InterfaceType;
1955 	u8	IPMIlegacy;
1956 	s16	SpecificationRevision;
1957 
1958 	/*
1959 	 * Bit 0 - SCI interrupt supported
1960 	 * Bit 1 - I/O APIC/SAPIC
1961 	 */
1962 	u8	InterruptType;
1963 
1964 	/*
1965 	 * If bit 0 of InterruptType is set, then this is the SCI
1966 	 * interrupt in the GPEx_STS register.
1967 	 */
1968 	u8	GPE;
1969 
1970 	s16	Reserved;
1971 
1972 	/*
1973 	 * If bit 1 of InterruptType is set, then this is the I/O
1974 	 * APIC/SAPIC interrupt.
1975 	 */
1976 	u32	GlobalSystemInterrupt;
1977 
1978 	/* The actual register address. */
1979 	struct acpi_generic_address addr;
1980 
1981 	u8	UID[4];
1982 
1983 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1984 };
1985 
1986 static __devinit int try_init_spmi(struct SPMITable *spmi)
1987 {
1988 	struct smi_info  *info;
1989 	u8 		 addr_space;
1990 
1991 	if (spmi->IPMIlegacy != 1) {
1992 	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1993 	    return -ENODEV;
1994 	}
1995 
1996 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1997 		addr_space = IPMI_MEM_ADDR_SPACE;
1998 	else
1999 		addr_space = IPMI_IO_ADDR_SPACE;
2000 
2001 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2002 	if (!info) {
2003 		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2004 		return -ENOMEM;
2005 	}
2006 
2007 	info->addr_source = "SPMI";
2008 
2009 	/* Figure out the interface type. */
2010 	switch (spmi->InterfaceType) {
2011 	case 1:	/* KCS */
2012 		info->si_type = SI_KCS;
2013 		break;
2014 	case 2:	/* SMIC */
2015 		info->si_type = SI_SMIC;
2016 		break;
2017 	case 3:	/* BT */
2018 		info->si_type = SI_BT;
2019 		break;
2020 	default:
2021 		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2022 			spmi->InterfaceType);
2023 		kfree(info);
2024 		return -EIO;
2025 	}
2026 
2027 	if (spmi->InterruptType & 1) {
2028 		/* We've got a GPE interrupt. */
2029 		info->irq = spmi->GPE;
2030 		info->irq_setup = acpi_gpe_irq_setup;
2031 	} else if (spmi->InterruptType & 2) {
2032 		/* We've got an APIC/SAPIC interrupt. */
2033 		info->irq = spmi->GlobalSystemInterrupt;
2034 		info->irq_setup = std_irq_setup;
2035 	} else {
2036 		/* Use the default interrupt setting. */
2037 		info->irq = 0;
2038 		info->irq_setup = NULL;
2039 	}
2040 
2041 	if (spmi->addr.bit_width) {
2042 		/* A (hopefully) properly formed register bit width. */
2043 		info->io.regspacing = spmi->addr.bit_width / 8;
2044 	} else {
2045 		info->io.regspacing = DEFAULT_REGSPACING;
2046 	}
2047 	info->io.regsize = info->io.regspacing;
2048 	info->io.regshift = spmi->addr.bit_offset;
2049 
2050 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2051 		info->io_setup = mem_setup;
2052 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2053 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2054 		info->io_setup = port_setup;
2055 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2056 	} else {
2057 		kfree(info);
2058 		printk(KERN_WARNING
2059 		       "ipmi_si: Unknown ACPI I/O Address type\n");
2060 		return -EIO;
2061 	}
2062 	info->io.addr_data = spmi->addr.address;
2063 
2064 	try_smi_init(info);
2065 
2066 	return 0;
2067 }
2068 
2069 static __devinit void spmi_find_bmc(void)
2070 {
2071 	acpi_status      status;
2072 	struct SPMITable *spmi;
2073 	int              i;
2074 
2075 	if (acpi_disabled)
2076 		return;
2077 
2078 	if (acpi_failure)
2079 		return;
2080 
2081 	for (i = 0; ; i++) {
2082 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2083 					(struct acpi_table_header **)&spmi);
2084 		if (status != AE_OK)
2085 			return;
2086 
2087 		try_init_spmi(spmi);
2088 	}
2089 }
2090 
2091 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2092 				    const struct pnp_device_id *dev_id)
2093 {
2094 	struct acpi_device *acpi_dev;
2095 	struct smi_info *info;
2096 	acpi_handle handle;
2097 	acpi_status status;
2098 	unsigned long long tmp;
2099 
2100 	acpi_dev = pnp_acpi_device(dev);
2101 	if (!acpi_dev)
2102 		return -ENODEV;
2103 
2104 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 	if (!info)
2106 		return -ENOMEM;
2107 
2108 	info->addr_source = "ACPI";
2109 
2110 	handle = acpi_dev->handle;
2111 
2112 	/* _IFT tells us the interface type: KCS, BT, etc */
2113 	status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2114 	if (ACPI_FAILURE(status))
2115 		goto err_free;
2116 
2117 	switch (tmp) {
2118 	case 1:
2119 		info->si_type = SI_KCS;
2120 		break;
2121 	case 2:
2122 		info->si_type = SI_SMIC;
2123 		break;
2124 	case 3:
2125 		info->si_type = SI_BT;
2126 		break;
2127 	default:
2128 		dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2129 		goto err_free;
2130 	}
2131 
2132 	if (pnp_port_valid(dev, 0)) {
2133 		info->io_setup = port_setup;
2134 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2135 		info->io.addr_data = pnp_port_start(dev, 0);
2136 	} else if (pnp_mem_valid(dev, 0)) {
2137 		info->io_setup = mem_setup;
2138 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2139 		info->io.addr_data = pnp_mem_start(dev, 0);
2140 	} else {
2141 		dev_err(&dev->dev, "no I/O or memory address\n");
2142 		goto err_free;
2143 	}
2144 
2145 	info->io.regspacing = DEFAULT_REGSPACING;
2146 	info->io.regsize = DEFAULT_REGSPACING;
2147 	info->io.regshift = 0;
2148 
2149 	/* If _GPE exists, use it; otherwise use standard interrupts */
2150 	status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2151 	if (ACPI_SUCCESS(status)) {
2152 		info->irq = tmp;
2153 		info->irq_setup = acpi_gpe_irq_setup;
2154 	} else if (pnp_irq_valid(dev, 0)) {
2155 		info->irq = pnp_irq(dev, 0);
2156 		info->irq_setup = std_irq_setup;
2157 	}
2158 
2159 	info->dev = &acpi_dev->dev;
2160 	pnp_set_drvdata(dev, info);
2161 
2162 	return try_smi_init(info);
2163 
2164 err_free:
2165 	kfree(info);
2166 	return -EINVAL;
2167 }
2168 
2169 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2170 {
2171 	struct smi_info *info = pnp_get_drvdata(dev);
2172 
2173 	cleanup_one_si(info);
2174 }
2175 
2176 static const struct pnp_device_id pnp_dev_table[] = {
2177 	{"IPI0001", 0},
2178 	{"", 0},
2179 };
2180 
2181 static struct pnp_driver ipmi_pnp_driver = {
2182 	.name		= DEVICE_NAME,
2183 	.probe		= ipmi_pnp_probe,
2184 	.remove		= __devexit_p(ipmi_pnp_remove),
2185 	.id_table	= pnp_dev_table,
2186 };
2187 #endif
2188 
2189 #ifdef CONFIG_DMI
2190 struct dmi_ipmi_data {
2191 	u8   		type;
2192 	u8   		addr_space;
2193 	unsigned long	base_addr;
2194 	u8   		irq;
2195 	u8              offset;
2196 	u8              slave_addr;
2197 };
2198 
2199 static int __devinit decode_dmi(const struct dmi_header *dm,
2200 				struct dmi_ipmi_data *dmi)
2201 {
2202 	const u8	*data = (const u8 *)dm;
2203 	unsigned long  	base_addr;
2204 	u8		reg_spacing;
2205 	u8              len = dm->length;
2206 
2207 	dmi->type = data[4];
2208 
2209 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2210 	if (len >= 0x11) {
2211 		if (base_addr & 1) {
2212 			/* I/O */
2213 			base_addr &= 0xFFFE;
2214 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2215 		} else
2216 			/* Memory */
2217 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2218 
2219 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2220 		   is odd. */
2221 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2222 
2223 		dmi->irq = data[0x11];
2224 
2225 		/* The top two bits of byte 0x10 hold the register spacing. */
2226 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2227 		switch (reg_spacing) {
2228 		case 0x00: /* Byte boundaries */
2229 		    dmi->offset = 1;
2230 		    break;
2231 		case 0x01: /* 32-bit boundaries */
2232 		    dmi->offset = 4;
2233 		    break;
2234 		case 0x02: /* 16-byte boundaries */
2235 		    dmi->offset = 16;
2236 		    break;
2237 		default:
2238 		    /* Some other interface, just ignore it. */
2239 		    return -EIO;
2240 		}
2241 	} else {
2242 		/* Old DMI spec. */
2243 		/*
2244 		 * Note that technically, the lower bit of the base
2245 		 * address should be 1 if the address is I/O and 0 if
2246 		 * the address is in memory.  So many systems get that
2247 		 * wrong (and all that I have seen are I/O) so we just
2248 		 * ignore that bit and assume I/O.  Systems that use
2249 		 * memory should use the newer spec, anyway.
2250 		 */
2251 		dmi->base_addr = base_addr & 0xfffe;
2252 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2253 		dmi->offset = 1;
2254 	}
2255 
2256 	dmi->slave_addr = data[6];
2257 
2258 	return 0;
2259 }
2260 
2261 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2262 {
2263 	struct smi_info *info;
2264 
2265 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2266 	if (!info) {
2267 		printk(KERN_ERR
2268 		       "ipmi_si: Could not allocate SI data\n");
2269 		return;
2270 	}
2271 
2272 	info->addr_source = "SMBIOS";
2273 
2274 	switch (ipmi_data->type) {
2275 	case 0x01: /* KCS */
2276 		info->si_type = SI_KCS;
2277 		break;
2278 	case 0x02: /* SMIC */
2279 		info->si_type = SI_SMIC;
2280 		break;
2281 	case 0x03: /* BT */
2282 		info->si_type = SI_BT;
2283 		break;
2284 	default:
2285 		kfree(info);
2286 		return;
2287 	}
2288 
2289 	switch (ipmi_data->addr_space) {
2290 	case IPMI_MEM_ADDR_SPACE:
2291 		info->io_setup = mem_setup;
2292 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2293 		break;
2294 
2295 	case IPMI_IO_ADDR_SPACE:
2296 		info->io_setup = port_setup;
2297 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2298 		break;
2299 
2300 	default:
2301 		kfree(info);
2302 		printk(KERN_WARNING
2303 		       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2304 		       ipmi_data->addr_space);
2305 		return;
2306 	}
2307 	info->io.addr_data = ipmi_data->base_addr;
2308 
2309 	info->io.regspacing = ipmi_data->offset;
2310 	if (!info->io.regspacing)
2311 		info->io.regspacing = DEFAULT_REGSPACING;
2312 	info->io.regsize = DEFAULT_REGSPACING;
2313 	info->io.regshift = 0;
2314 
2315 	info->slave_addr = ipmi_data->slave_addr;
2316 
2317 	info->irq = ipmi_data->irq;
2318 	if (info->irq)
2319 		info->irq_setup = std_irq_setup;
2320 
2321 	try_smi_init(info);
2322 }
2323 
2324 static void __devinit dmi_find_bmc(void)
2325 {
2326 	const struct dmi_device *dev = NULL;
2327 	struct dmi_ipmi_data data;
2328 	int                  rv;
2329 
2330 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2331 		memset(&data, 0, sizeof(data));
2332 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2333 				&data);
2334 		if (!rv)
2335 			try_init_dmi(&data);
2336 	}
2337 }
2338 #endif /* CONFIG_DMI */
2339 
2340 #ifdef CONFIG_PCI
2341 
2342 #define PCI_ERMC_CLASSCODE		0x0C0700
2343 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2344 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2345 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2346 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2347 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2348 
2349 #define PCI_HP_VENDOR_ID    0x103C
2350 #define PCI_MMC_DEVICE_ID   0x121A
2351 #define PCI_MMC_ADDR_CW     0x10
2352 
2353 static void ipmi_pci_cleanup(struct smi_info *info)
2354 {
2355 	struct pci_dev *pdev = info->addr_source_data;
2356 
2357 	pci_disable_device(pdev);
2358 }
2359 
2360 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2361 				    const struct pci_device_id *ent)
2362 {
2363 	int rv;
2364 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2365 	struct smi_info *info;
2366 
2367 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2368 	if (!info)
2369 		return -ENOMEM;
2370 
2371 	info->addr_source = "PCI";
2372 
2373 	switch (class_type) {
2374 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2375 		info->si_type = SI_SMIC;
2376 		break;
2377 
2378 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2379 		info->si_type = SI_KCS;
2380 		break;
2381 
2382 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2383 		info->si_type = SI_BT;
2384 		break;
2385 
2386 	default:
2387 		kfree(info);
2388 		printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2389 		       pci_name(pdev), class_type);
2390 		return -ENOMEM;
2391 	}
2392 
2393 	rv = pci_enable_device(pdev);
2394 	if (rv) {
2395 		printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2396 		       pci_name(pdev));
2397 		kfree(info);
2398 		return rv;
2399 	}
2400 
2401 	info->addr_source_cleanup = ipmi_pci_cleanup;
2402 	info->addr_source_data = pdev;
2403 
2404 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2405 		info->io_setup = port_setup;
2406 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2407 	} else {
2408 		info->io_setup = mem_setup;
2409 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2410 	}
2411 	info->io.addr_data = pci_resource_start(pdev, 0);
2412 
2413 	info->io.regspacing = DEFAULT_REGSPACING;
2414 	info->io.regsize = DEFAULT_REGSPACING;
2415 	info->io.regshift = 0;
2416 
2417 	info->irq = pdev->irq;
2418 	if (info->irq)
2419 		info->irq_setup = std_irq_setup;
2420 
2421 	info->dev = &pdev->dev;
2422 	pci_set_drvdata(pdev, info);
2423 
2424 	return try_smi_init(info);
2425 }
2426 
2427 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2428 {
2429 	struct smi_info *info = pci_get_drvdata(pdev);
2430 	cleanup_one_si(info);
2431 }
2432 
2433 #ifdef CONFIG_PM
2434 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2435 {
2436 	return 0;
2437 }
2438 
2439 static int ipmi_pci_resume(struct pci_dev *pdev)
2440 {
2441 	return 0;
2442 }
2443 #endif
2444 
2445 static struct pci_device_id ipmi_pci_devices[] = {
2446 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2447 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2448 	{ 0, }
2449 };
2450 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2451 
2452 static struct pci_driver ipmi_pci_driver = {
2453 	.name =         DEVICE_NAME,
2454 	.id_table =     ipmi_pci_devices,
2455 	.probe =        ipmi_pci_probe,
2456 	.remove =       __devexit_p(ipmi_pci_remove),
2457 #ifdef CONFIG_PM
2458 	.suspend =      ipmi_pci_suspend,
2459 	.resume =       ipmi_pci_resume,
2460 #endif
2461 };
2462 #endif /* CONFIG_PCI */
2463 
2464 
2465 #ifdef CONFIG_PPC_OF
2466 static int __devinit ipmi_of_probe(struct of_device *dev,
2467 			 const struct of_device_id *match)
2468 {
2469 	struct smi_info *info;
2470 	struct resource resource;
2471 	const int *regsize, *regspacing, *regshift;
2472 	struct device_node *np = dev->node;
2473 	int ret;
2474 	int proplen;
2475 
2476 	dev_info(&dev->dev, PFX "probing via device tree\n");
2477 
2478 	ret = of_address_to_resource(np, 0, &resource);
2479 	if (ret) {
2480 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2481 		return ret;
2482 	}
2483 
2484 	regsize = of_get_property(np, "reg-size", &proplen);
2485 	if (regsize && proplen != 4) {
2486 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2487 		return -EINVAL;
2488 	}
2489 
2490 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2491 	if (regspacing && proplen != 4) {
2492 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2493 		return -EINVAL;
2494 	}
2495 
2496 	regshift = of_get_property(np, "reg-shift", &proplen);
2497 	if (regshift && proplen != 4) {
2498 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2499 		return -EINVAL;
2500 	}
2501 
2502 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2503 
2504 	if (!info) {
2505 		dev_err(&dev->dev,
2506 			PFX "could not allocate memory for OF probe\n");
2507 		return -ENOMEM;
2508 	}
2509 
2510 	info->si_type		= (enum si_type) match->data;
2511 	info->addr_source	= "device-tree";
2512 	info->irq_setup		= std_irq_setup;
2513 
2514 	if (resource.flags & IORESOURCE_IO) {
2515 		info->io_setup		= port_setup;
2516 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
2517 	} else {
2518 		info->io_setup		= mem_setup;
2519 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2520 	}
2521 
2522 	info->io.addr_data	= resource.start;
2523 
2524 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2525 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2526 	info->io.regshift	= regshift ? *regshift : 0;
2527 
2528 	info->irq		= irq_of_parse_and_map(dev->node, 0);
2529 	info->dev		= &dev->dev;
2530 
2531 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2532 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2533 		info->irq);
2534 
2535 	dev_set_drvdata(&dev->dev, info);
2536 
2537 	return try_smi_init(info);
2538 }
2539 
2540 static int __devexit ipmi_of_remove(struct of_device *dev)
2541 {
2542 	cleanup_one_si(dev_get_drvdata(&dev->dev));
2543 	return 0;
2544 }
2545 
2546 static struct of_device_id ipmi_match[] =
2547 {
2548 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2549 	  .data = (void *)(unsigned long) SI_KCS },
2550 	{ .type = "ipmi", .compatible = "ipmi-smic",
2551 	  .data = (void *)(unsigned long) SI_SMIC },
2552 	{ .type = "ipmi", .compatible = "ipmi-bt",
2553 	  .data = (void *)(unsigned long) SI_BT },
2554 	{},
2555 };
2556 
2557 static struct of_platform_driver ipmi_of_platform_driver = {
2558 	.name		= "ipmi",
2559 	.match_table	= ipmi_match,
2560 	.probe		= ipmi_of_probe,
2561 	.remove		= __devexit_p(ipmi_of_remove),
2562 };
2563 #endif /* CONFIG_PPC_OF */
2564 
2565 static int wait_for_msg_done(struct smi_info *smi_info)
2566 {
2567 	enum si_sm_result     smi_result;
2568 
2569 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2570 	for (;;) {
2571 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2572 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2573 			schedule_timeout_uninterruptible(1);
2574 			smi_result = smi_info->handlers->event(
2575 				smi_info->si_sm, 100);
2576 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2577 			smi_result = smi_info->handlers->event(
2578 				smi_info->si_sm, 0);
2579 		} else
2580 			break;
2581 	}
2582 	if (smi_result == SI_SM_HOSED)
2583 		/*
2584 		 * We couldn't get the state machine to run, so whatever's at
2585 		 * the port is probably not an IPMI SMI interface.
2586 		 */
2587 		return -ENODEV;
2588 
2589 	return 0;
2590 }
2591 
2592 static int try_get_dev_id(struct smi_info *smi_info)
2593 {
2594 	unsigned char         msg[2];
2595 	unsigned char         *resp;
2596 	unsigned long         resp_len;
2597 	int                   rv = 0;
2598 
2599 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2600 	if (!resp)
2601 		return -ENOMEM;
2602 
2603 	/*
2604 	 * Do a Get Device ID command, since it comes back with some
2605 	 * useful info.
2606 	 */
2607 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2608 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2609 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2610 
2611 	rv = wait_for_msg_done(smi_info);
2612 	if (rv)
2613 		goto out;
2614 
2615 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2616 						  resp, IPMI_MAX_MSG_LENGTH);
2617 
2618 	/* Check and record info from the get device id, in case we need it. */
2619 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2620 
2621  out:
2622 	kfree(resp);
2623 	return rv;
2624 }
2625 
2626 static int try_enable_event_buffer(struct smi_info *smi_info)
2627 {
2628 	unsigned char         msg[3];
2629 	unsigned char         *resp;
2630 	unsigned long         resp_len;
2631 	int                   rv = 0;
2632 
2633 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2634 	if (!resp)
2635 		return -ENOMEM;
2636 
2637 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2638 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2639 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2640 
2641 	rv = wait_for_msg_done(smi_info);
2642 	if (rv) {
2643 		printk(KERN_WARNING
2644 		       "ipmi_si: Error getting response from get global,"
2645 		       " enables command, the event buffer is not"
2646 		       " enabled.\n");
2647 		goto out;
2648 	}
2649 
2650 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2651 						  resp, IPMI_MAX_MSG_LENGTH);
2652 
2653 	if (resp_len < 4 ||
2654 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2655 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2656 			resp[2] != 0) {
2657 		printk(KERN_WARNING
2658 		       "ipmi_si: Invalid return from get global"
2659 		       " enables command, cannot enable the event"
2660 		       " buffer.\n");
2661 		rv = -EINVAL;
2662 		goto out;
2663 	}
2664 
2665 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2666 		/* buffer is already enabled, nothing to do. */
2667 		goto out;
2668 
2669 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2670 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2671 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2672 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2673 
2674 	rv = wait_for_msg_done(smi_info);
2675 	if (rv) {
2676 		printk(KERN_WARNING
2677 		       "ipmi_si: Error getting response from set global,"
2678 		       " enables command, the event buffer is not"
2679 		       " enabled.\n");
2680 		goto out;
2681 	}
2682 
2683 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2684 						  resp, IPMI_MAX_MSG_LENGTH);
2685 
2686 	if (resp_len < 3 ||
2687 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2688 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2689 		printk(KERN_WARNING
2690 		       "ipmi_si: Invalid return from get global,"
2691 		       "enables command, not enable the event"
2692 		       " buffer.\n");
2693 		rv = -EINVAL;
2694 		goto out;
2695 	}
2696 
2697 	if (resp[2] != 0)
2698 		/*
2699 		 * An error when setting the event buffer bit means
2700 		 * that the event buffer is not supported.
2701 		 */
2702 		rv = -ENOENT;
2703  out:
2704 	kfree(resp);
2705 	return rv;
2706 }
2707 
2708 static int type_file_read_proc(char *page, char **start, off_t off,
2709 			       int count, int *eof, void *data)
2710 {
2711 	struct smi_info *smi = data;
2712 
2713 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2714 }
2715 
2716 static int stat_file_read_proc(char *page, char **start, off_t off,
2717 			       int count, int *eof, void *data)
2718 {
2719 	char            *out = (char *) page;
2720 	struct smi_info *smi = data;
2721 
2722 	out += sprintf(out, "interrupts_enabled:    %d\n",
2723 		       smi->irq && !smi->interrupt_disabled);
2724 	out += sprintf(out, "short_timeouts:        %u\n",
2725 		       smi_get_stat(smi, short_timeouts));
2726 	out += sprintf(out, "long_timeouts:         %u\n",
2727 		       smi_get_stat(smi, long_timeouts));
2728 	out += sprintf(out, "idles:                 %u\n",
2729 		       smi_get_stat(smi, idles));
2730 	out += sprintf(out, "interrupts:            %u\n",
2731 		       smi_get_stat(smi, interrupts));
2732 	out += sprintf(out, "attentions:            %u\n",
2733 		       smi_get_stat(smi, attentions));
2734 	out += sprintf(out, "flag_fetches:          %u\n",
2735 		       smi_get_stat(smi, flag_fetches));
2736 	out += sprintf(out, "hosed_count:           %u\n",
2737 		       smi_get_stat(smi, hosed_count));
2738 	out += sprintf(out, "complete_transactions: %u\n",
2739 		       smi_get_stat(smi, complete_transactions));
2740 	out += sprintf(out, "events:                %u\n",
2741 		       smi_get_stat(smi, events));
2742 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2743 		       smi_get_stat(smi, watchdog_pretimeouts));
2744 	out += sprintf(out, "incoming_messages:     %u\n",
2745 		       smi_get_stat(smi, incoming_messages));
2746 
2747 	return out - page;
2748 }
2749 
2750 static int param_read_proc(char *page, char **start, off_t off,
2751 			   int count, int *eof, void *data)
2752 {
2753 	struct smi_info *smi = data;
2754 
2755 	return sprintf(page,
2756 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2757 		       si_to_str[smi->si_type],
2758 		       addr_space_to_str[smi->io.addr_type],
2759 		       smi->io.addr_data,
2760 		       smi->io.regspacing,
2761 		       smi->io.regsize,
2762 		       smi->io.regshift,
2763 		       smi->irq,
2764 		       smi->slave_addr);
2765 }
2766 
2767 /*
2768  * oem_data_avail_to_receive_msg_avail
2769  * @info - smi_info structure with msg_flags set
2770  *
2771  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2772  * Returns 1 indicating need to re-run handle_flags().
2773  */
2774 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2775 {
2776 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2777 			       RECEIVE_MSG_AVAIL);
2778 	return 1;
2779 }
2780 
2781 /*
2782  * setup_dell_poweredge_oem_data_handler
2783  * @info - smi_info.device_id must be populated
2784  *
2785  * Systems that match, but have firmware version < 1.40 may assert
2786  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2787  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2788  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2789  * as RECEIVE_MSG_AVAIL instead.
2790  *
2791  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2792  * assert the OEM[012] bits, and if it did, the driver would have to
2793  * change to handle that properly, we don't actually check for the
2794  * firmware version.
2795  * Device ID = 0x20                BMC on PowerEdge 8G servers
2796  * Device Revision = 0x80
2797  * Firmware Revision1 = 0x01       BMC version 1.40
2798  * Firmware Revision2 = 0x40       BCD encoded
2799  * IPMI Version = 0x51             IPMI 1.5
2800  * Manufacturer ID = A2 02 00      Dell IANA
2801  *
2802  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2803  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2804  *
2805  */
2806 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2807 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2808 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2809 #define DELL_IANA_MFR_ID 0x0002a2
2810 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2811 {
2812 	struct ipmi_device_id *id = &smi_info->device_id;
2813 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2814 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2815 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2816 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2817 			smi_info->oem_data_avail_handler =
2818 				oem_data_avail_to_receive_msg_avail;
2819 		} else if (ipmi_version_major(id) < 1 ||
2820 			   (ipmi_version_major(id) == 1 &&
2821 			    ipmi_version_minor(id) < 5)) {
2822 			smi_info->oem_data_avail_handler =
2823 				oem_data_avail_to_receive_msg_avail;
2824 		}
2825 	}
2826 }
2827 
2828 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2829 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2830 {
2831 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2832 
2833 	/* Make it a reponse */
2834 	msg->rsp[0] = msg->data[0] | 4;
2835 	msg->rsp[1] = msg->data[1];
2836 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2837 	msg->rsp_size = 3;
2838 	smi_info->curr_msg = NULL;
2839 	deliver_recv_msg(smi_info, msg);
2840 }
2841 
2842 /*
2843  * dell_poweredge_bt_xaction_handler
2844  * @info - smi_info.device_id must be populated
2845  *
2846  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2847  * not respond to a Get SDR command if the length of the data
2848  * requested is exactly 0x3A, which leads to command timeouts and no
2849  * data returned.  This intercepts such commands, and causes userspace
2850  * callers to try again with a different-sized buffer, which succeeds.
2851  */
2852 
2853 #define STORAGE_NETFN 0x0A
2854 #define STORAGE_CMD_GET_SDR 0x23
2855 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2856 					     unsigned long unused,
2857 					     void *in)
2858 {
2859 	struct smi_info *smi_info = in;
2860 	unsigned char *data = smi_info->curr_msg->data;
2861 	unsigned int size   = smi_info->curr_msg->data_size;
2862 	if (size >= 8 &&
2863 	    (data[0]>>2) == STORAGE_NETFN &&
2864 	    data[1] == STORAGE_CMD_GET_SDR &&
2865 	    data[7] == 0x3A) {
2866 		return_hosed_msg_badsize(smi_info);
2867 		return NOTIFY_STOP;
2868 	}
2869 	return NOTIFY_DONE;
2870 }
2871 
2872 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2873 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2874 };
2875 
2876 /*
2877  * setup_dell_poweredge_bt_xaction_handler
2878  * @info - smi_info.device_id must be filled in already
2879  *
2880  * Fills in smi_info.device_id.start_transaction_pre_hook
2881  * when we know what function to use there.
2882  */
2883 static void
2884 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2885 {
2886 	struct ipmi_device_id *id = &smi_info->device_id;
2887 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2888 	    smi_info->si_type == SI_BT)
2889 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2890 }
2891 
2892 /*
2893  * setup_oem_data_handler
2894  * @info - smi_info.device_id must be filled in already
2895  *
2896  * Fills in smi_info.device_id.oem_data_available_handler
2897  * when we know what function to use there.
2898  */
2899 
2900 static void setup_oem_data_handler(struct smi_info *smi_info)
2901 {
2902 	setup_dell_poweredge_oem_data_handler(smi_info);
2903 }
2904 
2905 static void setup_xaction_handlers(struct smi_info *smi_info)
2906 {
2907 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2908 }
2909 
2910 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2911 {
2912 	if (smi_info->intf) {
2913 		/*
2914 		 * The timer and thread are only running if the
2915 		 * interface has been started up and registered.
2916 		 */
2917 		if (smi_info->thread != NULL)
2918 			kthread_stop(smi_info->thread);
2919 		del_timer_sync(&smi_info->si_timer);
2920 	}
2921 }
2922 
2923 static __devinitdata struct ipmi_default_vals
2924 {
2925 	int type;
2926 	int port;
2927 } ipmi_defaults[] =
2928 {
2929 	{ .type = SI_KCS, .port = 0xca2 },
2930 	{ .type = SI_SMIC, .port = 0xca9 },
2931 	{ .type = SI_BT, .port = 0xe4 },
2932 	{ .port = 0 }
2933 };
2934 
2935 static __devinit void default_find_bmc(void)
2936 {
2937 	struct smi_info *info;
2938 	int             i;
2939 
2940 	for (i = 0; ; i++) {
2941 		if (!ipmi_defaults[i].port)
2942 			break;
2943 #ifdef CONFIG_PPC
2944 		if (check_legacy_ioport(ipmi_defaults[i].port))
2945 			continue;
2946 #endif
2947 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2948 		if (!info)
2949 			return;
2950 
2951 		info->addr_source = NULL;
2952 
2953 		info->si_type = ipmi_defaults[i].type;
2954 		info->io_setup = port_setup;
2955 		info->io.addr_data = ipmi_defaults[i].port;
2956 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2957 
2958 		info->io.addr = NULL;
2959 		info->io.regspacing = DEFAULT_REGSPACING;
2960 		info->io.regsize = DEFAULT_REGSPACING;
2961 		info->io.regshift = 0;
2962 
2963 		if (try_smi_init(info) == 0) {
2964 			/* Found one... */
2965 			printk(KERN_INFO "ipmi_si: Found default %s state"
2966 			       " machine at %s address 0x%lx\n",
2967 			       si_to_str[info->si_type],
2968 			       addr_space_to_str[info->io.addr_type],
2969 			       info->io.addr_data);
2970 			return;
2971 		}
2972 	}
2973 }
2974 
2975 static int is_new_interface(struct smi_info *info)
2976 {
2977 	struct smi_info *e;
2978 
2979 	list_for_each_entry(e, &smi_infos, link) {
2980 		if (e->io.addr_type != info->io.addr_type)
2981 			continue;
2982 		if (e->io.addr_data == info->io.addr_data)
2983 			return 0;
2984 	}
2985 
2986 	return 1;
2987 }
2988 
2989 static int try_smi_init(struct smi_info *new_smi)
2990 {
2991 	int rv;
2992 	int i;
2993 
2994 	if (new_smi->addr_source) {
2995 		printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2996 		       " machine at %s address 0x%lx, slave address 0x%x,"
2997 		       " irq %d\n",
2998 		       new_smi->addr_source,
2999 		       si_to_str[new_smi->si_type],
3000 		       addr_space_to_str[new_smi->io.addr_type],
3001 		       new_smi->io.addr_data,
3002 		       new_smi->slave_addr, new_smi->irq);
3003 	}
3004 
3005 	mutex_lock(&smi_infos_lock);
3006 	if (!is_new_interface(new_smi)) {
3007 		printk(KERN_WARNING "ipmi_si: duplicate interface\n");
3008 		rv = -EBUSY;
3009 		goto out_err;
3010 	}
3011 
3012 	/* So we know not to free it unless we have allocated one. */
3013 	new_smi->intf = NULL;
3014 	new_smi->si_sm = NULL;
3015 	new_smi->handlers = NULL;
3016 
3017 	switch (new_smi->si_type) {
3018 	case SI_KCS:
3019 		new_smi->handlers = &kcs_smi_handlers;
3020 		break;
3021 
3022 	case SI_SMIC:
3023 		new_smi->handlers = &smic_smi_handlers;
3024 		break;
3025 
3026 	case SI_BT:
3027 		new_smi->handlers = &bt_smi_handlers;
3028 		break;
3029 
3030 	default:
3031 		/* No support for anything else yet. */
3032 		rv = -EIO;
3033 		goto out_err;
3034 	}
3035 
3036 	/* Allocate the state machine's data and initialize it. */
3037 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3038 	if (!new_smi->si_sm) {
3039 		printk(KERN_ERR "Could not allocate state machine memory\n");
3040 		rv = -ENOMEM;
3041 		goto out_err;
3042 	}
3043 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3044 							&new_smi->io);
3045 
3046 	/* Now that we know the I/O size, we can set up the I/O. */
3047 	rv = new_smi->io_setup(new_smi);
3048 	if (rv) {
3049 		printk(KERN_ERR "Could not set up I/O space\n");
3050 		goto out_err;
3051 	}
3052 
3053 	spin_lock_init(&(new_smi->si_lock));
3054 	spin_lock_init(&(new_smi->msg_lock));
3055 
3056 	/* Do low-level detection first. */
3057 	if (new_smi->handlers->detect(new_smi->si_sm)) {
3058 		if (new_smi->addr_source)
3059 			printk(KERN_INFO "ipmi_si: Interface detection"
3060 			       " failed\n");
3061 		rv = -ENODEV;
3062 		goto out_err;
3063 	}
3064 
3065 	/*
3066 	 * Attempt a get device id command.  If it fails, we probably
3067 	 * don't have a BMC here.
3068 	 */
3069 	rv = try_get_dev_id(new_smi);
3070 	if (rv) {
3071 		if (new_smi->addr_source)
3072 			printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3073 			       " at this location\n");
3074 		goto out_err;
3075 	}
3076 
3077 	setup_oem_data_handler(new_smi);
3078 	setup_xaction_handlers(new_smi);
3079 
3080 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3081 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3082 	new_smi->curr_msg = NULL;
3083 	atomic_set(&new_smi->req_events, 0);
3084 	new_smi->run_to_completion = 0;
3085 	for (i = 0; i < SI_NUM_STATS; i++)
3086 		atomic_set(&new_smi->stats[i], 0);
3087 
3088 	new_smi->interrupt_disabled = 0;
3089 	atomic_set(&new_smi->stop_operation, 0);
3090 	new_smi->intf_num = smi_num;
3091 	smi_num++;
3092 
3093 	rv = try_enable_event_buffer(new_smi);
3094 	if (rv == 0)
3095 		new_smi->has_event_buffer = 1;
3096 
3097 	/*
3098 	 * Start clearing the flags before we enable interrupts or the
3099 	 * timer to avoid racing with the timer.
3100 	 */
3101 	start_clear_flags(new_smi);
3102 	/* IRQ is defined to be set when non-zero. */
3103 	if (new_smi->irq)
3104 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3105 
3106 	if (!new_smi->dev) {
3107 		/*
3108 		 * If we don't already have a device from something
3109 		 * else (like PCI), then register a new one.
3110 		 */
3111 		new_smi->pdev = platform_device_alloc("ipmi_si",
3112 						      new_smi->intf_num);
3113 		if (!new_smi->pdev) {
3114 			printk(KERN_ERR
3115 			       "ipmi_si_intf:"
3116 			       " Unable to allocate platform device\n");
3117 			goto out_err;
3118 		}
3119 		new_smi->dev = &new_smi->pdev->dev;
3120 		new_smi->dev->driver = &ipmi_driver.driver;
3121 
3122 		rv = platform_device_add(new_smi->pdev);
3123 		if (rv) {
3124 			printk(KERN_ERR
3125 			       "ipmi_si_intf:"
3126 			       " Unable to register system interface device:"
3127 			       " %d\n",
3128 			       rv);
3129 			goto out_err;
3130 		}
3131 		new_smi->dev_registered = 1;
3132 	}
3133 
3134 	rv = ipmi_register_smi(&handlers,
3135 			       new_smi,
3136 			       &new_smi->device_id,
3137 			       new_smi->dev,
3138 			       "bmc",
3139 			       new_smi->slave_addr);
3140 	if (rv) {
3141 		printk(KERN_ERR
3142 		       "ipmi_si: Unable to register device: error %d\n",
3143 		       rv);
3144 		goto out_err_stop_timer;
3145 	}
3146 
3147 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3148 				     type_file_read_proc,
3149 				     new_smi);
3150 	if (rv) {
3151 		printk(KERN_ERR
3152 		       "ipmi_si: Unable to create proc entry: %d\n",
3153 		       rv);
3154 		goto out_err_stop_timer;
3155 	}
3156 
3157 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3158 				     stat_file_read_proc,
3159 				     new_smi);
3160 	if (rv) {
3161 		printk(KERN_ERR
3162 		       "ipmi_si: Unable to create proc entry: %d\n",
3163 		       rv);
3164 		goto out_err_stop_timer;
3165 	}
3166 
3167 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3168 				     param_read_proc,
3169 				     new_smi);
3170 	if (rv) {
3171 		printk(KERN_ERR
3172 		       "ipmi_si: Unable to create proc entry: %d\n",
3173 		       rv);
3174 		goto out_err_stop_timer;
3175 	}
3176 
3177 	list_add_tail(&new_smi->link, &smi_infos);
3178 
3179 	mutex_unlock(&smi_infos_lock);
3180 
3181 	printk(KERN_INFO "IPMI %s interface initialized\n",
3182 	       si_to_str[new_smi->si_type]);
3183 
3184 	return 0;
3185 
3186  out_err_stop_timer:
3187 	atomic_inc(&new_smi->stop_operation);
3188 	wait_for_timer_and_thread(new_smi);
3189 
3190  out_err:
3191 	if (new_smi->intf)
3192 		ipmi_unregister_smi(new_smi->intf);
3193 
3194 	if (new_smi->irq_cleanup)
3195 		new_smi->irq_cleanup(new_smi);
3196 
3197 	/*
3198 	 * Wait until we know that we are out of any interrupt
3199 	 * handlers might have been running before we freed the
3200 	 * interrupt.
3201 	 */
3202 	synchronize_sched();
3203 
3204 	if (new_smi->si_sm) {
3205 		if (new_smi->handlers)
3206 			new_smi->handlers->cleanup(new_smi->si_sm);
3207 		kfree(new_smi->si_sm);
3208 	}
3209 	if (new_smi->addr_source_cleanup)
3210 		new_smi->addr_source_cleanup(new_smi);
3211 	if (new_smi->io_cleanup)
3212 		new_smi->io_cleanup(new_smi);
3213 
3214 	if (new_smi->dev_registered)
3215 		platform_device_unregister(new_smi->pdev);
3216 
3217 	kfree(new_smi);
3218 
3219 	mutex_unlock(&smi_infos_lock);
3220 
3221 	return rv;
3222 }
3223 
3224 static __devinit int init_ipmi_si(void)
3225 {
3226 	int  i;
3227 	char *str;
3228 	int  rv;
3229 
3230 	if (initialized)
3231 		return 0;
3232 	initialized = 1;
3233 
3234 	/* Register the device drivers. */
3235 	rv = driver_register(&ipmi_driver.driver);
3236 	if (rv) {
3237 		printk(KERN_ERR
3238 		       "init_ipmi_si: Unable to register driver: %d\n",
3239 		       rv);
3240 		return rv;
3241 	}
3242 
3243 
3244 	/* Parse out the si_type string into its components. */
3245 	str = si_type_str;
3246 	if (*str != '\0') {
3247 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3248 			si_type[i] = str;
3249 			str = strchr(str, ',');
3250 			if (str) {
3251 				*str = '\0';
3252 				str++;
3253 			} else {
3254 				break;
3255 			}
3256 		}
3257 	}
3258 
3259 	printk(KERN_INFO "IPMI System Interface driver.\n");
3260 
3261 	hardcode_find_bmc();
3262 
3263 #ifdef CONFIG_DMI
3264 	dmi_find_bmc();
3265 #endif
3266 
3267 #ifdef CONFIG_ACPI
3268 	spmi_find_bmc();
3269 #endif
3270 #ifdef CONFIG_ACPI
3271 	pnp_register_driver(&ipmi_pnp_driver);
3272 #endif
3273 
3274 #ifdef CONFIG_PCI
3275 	rv = pci_register_driver(&ipmi_pci_driver);
3276 	if (rv)
3277 		printk(KERN_ERR
3278 		       "init_ipmi_si: Unable to register PCI driver: %d\n",
3279 		       rv);
3280 #endif
3281 
3282 #ifdef CONFIG_PPC_OF
3283 	of_register_platform_driver(&ipmi_of_platform_driver);
3284 #endif
3285 
3286 	if (si_trydefaults) {
3287 		mutex_lock(&smi_infos_lock);
3288 		if (list_empty(&smi_infos)) {
3289 			/* No BMC was found, try defaults. */
3290 			mutex_unlock(&smi_infos_lock);
3291 			default_find_bmc();
3292 		} else {
3293 			mutex_unlock(&smi_infos_lock);
3294 		}
3295 	}
3296 
3297 	mutex_lock(&smi_infos_lock);
3298 	if (unload_when_empty && list_empty(&smi_infos)) {
3299 		mutex_unlock(&smi_infos_lock);
3300 #ifdef CONFIG_PCI
3301 		pci_unregister_driver(&ipmi_pci_driver);
3302 #endif
3303 
3304 #ifdef CONFIG_PPC_OF
3305 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3306 #endif
3307 		driver_unregister(&ipmi_driver.driver);
3308 		printk(KERN_WARNING
3309 		       "ipmi_si: Unable to find any System Interface(s)\n");
3310 		return -ENODEV;
3311 	} else {
3312 		mutex_unlock(&smi_infos_lock);
3313 		return 0;
3314 	}
3315 }
3316 module_init(init_ipmi_si);
3317 
3318 static void cleanup_one_si(struct smi_info *to_clean)
3319 {
3320 	int           rv;
3321 	unsigned long flags;
3322 
3323 	if (!to_clean)
3324 		return;
3325 
3326 	list_del(&to_clean->link);
3327 
3328 	/* Tell the driver that we are shutting down. */
3329 	atomic_inc(&to_clean->stop_operation);
3330 
3331 	/*
3332 	 * Make sure the timer and thread are stopped and will not run
3333 	 * again.
3334 	 */
3335 	wait_for_timer_and_thread(to_clean);
3336 
3337 	/*
3338 	 * Timeouts are stopped, now make sure the interrupts are off
3339 	 * for the device.  A little tricky with locks to make sure
3340 	 * there are no races.
3341 	 */
3342 	spin_lock_irqsave(&to_clean->si_lock, flags);
3343 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3344 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3345 		poll(to_clean);
3346 		schedule_timeout_uninterruptible(1);
3347 		spin_lock_irqsave(&to_clean->si_lock, flags);
3348 	}
3349 	disable_si_irq(to_clean);
3350 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3351 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3352 		poll(to_clean);
3353 		schedule_timeout_uninterruptible(1);
3354 	}
3355 
3356 	/* Clean up interrupts and make sure that everything is done. */
3357 	if (to_clean->irq_cleanup)
3358 		to_clean->irq_cleanup(to_clean);
3359 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3360 		poll(to_clean);
3361 		schedule_timeout_uninterruptible(1);
3362 	}
3363 
3364 	rv = ipmi_unregister_smi(to_clean->intf);
3365 	if (rv) {
3366 		printk(KERN_ERR
3367 		       "ipmi_si: Unable to unregister device: errno=%d\n",
3368 		       rv);
3369 	}
3370 
3371 	to_clean->handlers->cleanup(to_clean->si_sm);
3372 
3373 	kfree(to_clean->si_sm);
3374 
3375 	if (to_clean->addr_source_cleanup)
3376 		to_clean->addr_source_cleanup(to_clean);
3377 	if (to_clean->io_cleanup)
3378 		to_clean->io_cleanup(to_clean);
3379 
3380 	if (to_clean->dev_registered)
3381 		platform_device_unregister(to_clean->pdev);
3382 
3383 	kfree(to_clean);
3384 }
3385 
3386 static __exit void cleanup_ipmi_si(void)
3387 {
3388 	struct smi_info *e, *tmp_e;
3389 
3390 	if (!initialized)
3391 		return;
3392 
3393 #ifdef CONFIG_PCI
3394 	pci_unregister_driver(&ipmi_pci_driver);
3395 #endif
3396 #ifdef CONFIG_ACPI
3397 	pnp_unregister_driver(&ipmi_pnp_driver);
3398 #endif
3399 
3400 #ifdef CONFIG_PPC_OF
3401 	of_unregister_platform_driver(&ipmi_of_platform_driver);
3402 #endif
3403 
3404 	mutex_lock(&smi_infos_lock);
3405 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3406 		cleanup_one_si(e);
3407 	mutex_unlock(&smi_infos_lock);
3408 
3409 	driver_unregister(&ipmi_driver.driver);
3410 }
3411 module_exit(cleanup_ipmi_si);
3412 
3413 MODULE_LICENSE("GPL");
3414 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3415 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3416 		   " system interfaces.");
3417