1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * ipmi_si.c 4 * 5 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 6 * BT). 7 * 8 * Author: MontaVista Software, Inc. 9 * Corey Minyard <minyard@mvista.com> 10 * source@mvista.com 11 * 12 * Copyright 2002 MontaVista Software Inc. 13 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 14 */ 15 16 /* 17 * This file holds the "policy" for the interface to the SMI state 18 * machine. It does the configuration, handles timers and interrupts, 19 * and drives the real SMI state machine. 20 */ 21 22 #define pr_fmt(fmt) "ipmi_si: " fmt 23 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/sched.h> 27 #include <linux/seq_file.h> 28 #include <linux/timer.h> 29 #include <linux/errno.h> 30 #include <linux/spinlock.h> 31 #include <linux/slab.h> 32 #include <linux/delay.h> 33 #include <linux/list.h> 34 #include <linux/notifier.h> 35 #include <linux/mutex.h> 36 #include <linux/kthread.h> 37 #include <asm/irq.h> 38 #include <linux/interrupt.h> 39 #include <linux/rcupdate.h> 40 #include <linux/ipmi.h> 41 #include <linux/ipmi_smi.h> 42 #include "ipmi_si.h" 43 #include <linux/string.h> 44 #include <linux/ctype.h> 45 46 /* Measure times between events in the driver. */ 47 #undef DEBUG_TIMING 48 49 /* Call every 10 ms. */ 50 #define SI_TIMEOUT_TIME_USEC 10000 51 #define SI_USEC_PER_JIFFY (1000000/HZ) 52 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 53 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 54 short timeout */ 55 56 enum si_intf_state { 57 SI_NORMAL, 58 SI_GETTING_FLAGS, 59 SI_GETTING_EVENTS, 60 SI_CLEARING_FLAGS, 61 SI_GETTING_MESSAGES, 62 SI_CHECKING_ENABLES, 63 SI_SETTING_ENABLES 64 /* FIXME - add watchdog stuff. */ 65 }; 66 67 /* Some BT-specific defines we need here. */ 68 #define IPMI_BT_INTMASK_REG 2 69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 71 72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" }; 73 74 static int initialized; 75 76 /* 77 * Indexes into stats[] in smi_info below. 78 */ 79 enum si_stat_indexes { 80 /* 81 * Number of times the driver requested a timer while an operation 82 * was in progress. 83 */ 84 SI_STAT_short_timeouts = 0, 85 86 /* 87 * Number of times the driver requested a timer while nothing was in 88 * progress. 89 */ 90 SI_STAT_long_timeouts, 91 92 /* Number of times the interface was idle while being polled. */ 93 SI_STAT_idles, 94 95 /* Number of interrupts the driver handled. */ 96 SI_STAT_interrupts, 97 98 /* Number of time the driver got an ATTN from the hardware. */ 99 SI_STAT_attentions, 100 101 /* Number of times the driver requested flags from the hardware. */ 102 SI_STAT_flag_fetches, 103 104 /* Number of times the hardware didn't follow the state machine. */ 105 SI_STAT_hosed_count, 106 107 /* Number of completed messages. */ 108 SI_STAT_complete_transactions, 109 110 /* Number of IPMI events received from the hardware. */ 111 SI_STAT_events, 112 113 /* Number of watchdog pretimeouts. */ 114 SI_STAT_watchdog_pretimeouts, 115 116 /* Number of asynchronous messages received. */ 117 SI_STAT_incoming_messages, 118 119 120 /* This *must* remain last, add new values above this. */ 121 SI_NUM_STATS 122 }; 123 124 struct smi_info { 125 int si_num; 126 struct ipmi_smi *intf; 127 struct si_sm_data *si_sm; 128 const struct si_sm_handlers *handlers; 129 spinlock_t si_lock; 130 struct ipmi_smi_msg *waiting_msg; 131 struct ipmi_smi_msg *curr_msg; 132 enum si_intf_state si_state; 133 134 /* 135 * Used to handle the various types of I/O that can occur with 136 * IPMI 137 */ 138 struct si_sm_io io; 139 140 /* 141 * Per-OEM handler, called from handle_flags(). Returns 1 142 * when handle_flags() needs to be re-run or 0 indicating it 143 * set si_state itself. 144 */ 145 int (*oem_data_avail_handler)(struct smi_info *smi_info); 146 147 /* 148 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 149 * is set to hold the flags until we are done handling everything 150 * from the flags. 151 */ 152 #define RECEIVE_MSG_AVAIL 0x01 153 #define EVENT_MSG_BUFFER_FULL 0x02 154 #define WDT_PRE_TIMEOUT_INT 0x08 155 #define OEM0_DATA_AVAIL 0x20 156 #define OEM1_DATA_AVAIL 0x40 157 #define OEM2_DATA_AVAIL 0x80 158 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 159 OEM1_DATA_AVAIL | \ 160 OEM2_DATA_AVAIL) 161 unsigned char msg_flags; 162 163 /* Does the BMC have an event buffer? */ 164 bool has_event_buffer; 165 166 /* 167 * If set to true, this will request events the next time the 168 * state machine is idle. 169 */ 170 atomic_t req_events; 171 172 /* 173 * If true, run the state machine to completion on every send 174 * call. Generally used after a panic to make sure stuff goes 175 * out. 176 */ 177 bool run_to_completion; 178 179 /* The timer for this si. */ 180 struct timer_list si_timer; 181 182 /* This flag is set, if the timer can be set */ 183 bool timer_can_start; 184 185 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 186 bool timer_running; 187 188 /* The time (in jiffies) the last timeout occurred at. */ 189 unsigned long last_timeout_jiffies; 190 191 /* Are we waiting for the events, pretimeouts, received msgs? */ 192 atomic_t need_watch; 193 194 /* 195 * The driver will disable interrupts when it gets into a 196 * situation where it cannot handle messages due to lack of 197 * memory. Once that situation clears up, it will re-enable 198 * interrupts. 199 */ 200 bool interrupt_disabled; 201 202 /* 203 * Does the BMC support events? 204 */ 205 bool supports_event_msg_buff; 206 207 /* 208 * Can we disable interrupts the global enables receive irq 209 * bit? There are currently two forms of brokenness, some 210 * systems cannot disable the bit (which is technically within 211 * the spec but a bad idea) and some systems have the bit 212 * forced to zero even though interrupts work (which is 213 * clearly outside the spec). The next bool tells which form 214 * of brokenness is present. 215 */ 216 bool cannot_disable_irq; 217 218 /* 219 * Some systems are broken and cannot set the irq enable 220 * bit, even if they support interrupts. 221 */ 222 bool irq_enable_broken; 223 224 /* 225 * Did we get an attention that we did not handle? 226 */ 227 bool got_attn; 228 229 /* From the get device id response... */ 230 struct ipmi_device_id device_id; 231 232 /* Have we added the device group to the device? */ 233 bool dev_group_added; 234 235 /* Counters and things for the proc filesystem. */ 236 atomic_t stats[SI_NUM_STATS]; 237 238 struct task_struct *thread; 239 240 struct list_head link; 241 }; 242 243 #define smi_inc_stat(smi, stat) \ 244 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 245 #define smi_get_stat(smi, stat) \ 246 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 247 248 #define IPMI_MAX_INTFS 4 249 static int force_kipmid[IPMI_MAX_INTFS]; 250 static int num_force_kipmid; 251 252 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS]; 253 static int num_max_busy_us; 254 255 static bool unload_when_empty = true; 256 257 static int try_smi_init(struct smi_info *smi); 258 static void cleanup_one_si(struct smi_info *smi_info); 259 static void cleanup_ipmi_si(void); 260 261 #ifdef DEBUG_TIMING 262 void debug_timestamp(char *msg) 263 { 264 struct timespec64 t; 265 266 ktime_get_ts64(&t); 267 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 268 } 269 #else 270 #define debug_timestamp(x) 271 #endif 272 273 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 274 static int register_xaction_notifier(struct notifier_block *nb) 275 { 276 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 277 } 278 279 static void deliver_recv_msg(struct smi_info *smi_info, 280 struct ipmi_smi_msg *msg) 281 { 282 /* Deliver the message to the upper layer. */ 283 ipmi_smi_msg_received(smi_info->intf, msg); 284 } 285 286 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 287 { 288 struct ipmi_smi_msg *msg = smi_info->curr_msg; 289 290 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 291 cCode = IPMI_ERR_UNSPECIFIED; 292 /* else use it as is */ 293 294 /* Make it a response */ 295 msg->rsp[0] = msg->data[0] | 4; 296 msg->rsp[1] = msg->data[1]; 297 msg->rsp[2] = cCode; 298 msg->rsp_size = 3; 299 300 smi_info->curr_msg = NULL; 301 deliver_recv_msg(smi_info, msg); 302 } 303 304 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 305 { 306 int rv; 307 308 if (!smi_info->waiting_msg) { 309 smi_info->curr_msg = NULL; 310 rv = SI_SM_IDLE; 311 } else { 312 int err; 313 314 smi_info->curr_msg = smi_info->waiting_msg; 315 smi_info->waiting_msg = NULL; 316 debug_timestamp("Start2"); 317 err = atomic_notifier_call_chain(&xaction_notifier_list, 318 0, smi_info); 319 if (err & NOTIFY_STOP_MASK) { 320 rv = SI_SM_CALL_WITHOUT_DELAY; 321 goto out; 322 } 323 err = smi_info->handlers->start_transaction( 324 smi_info->si_sm, 325 smi_info->curr_msg->data, 326 smi_info->curr_msg->data_size); 327 if (err) 328 return_hosed_msg(smi_info, err); 329 330 rv = SI_SM_CALL_WITHOUT_DELAY; 331 } 332 out: 333 return rv; 334 } 335 336 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 337 { 338 if (!smi_info->timer_can_start) 339 return; 340 smi_info->last_timeout_jiffies = jiffies; 341 mod_timer(&smi_info->si_timer, new_val); 342 smi_info->timer_running = true; 343 } 344 345 /* 346 * Start a new message and (re)start the timer and thread. 347 */ 348 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg, 349 unsigned int size) 350 { 351 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 352 353 if (smi_info->thread) 354 wake_up_process(smi_info->thread); 355 356 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size); 357 } 358 359 static void start_check_enables(struct smi_info *smi_info) 360 { 361 unsigned char msg[2]; 362 363 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 364 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 365 366 start_new_msg(smi_info, msg, 2); 367 smi_info->si_state = SI_CHECKING_ENABLES; 368 } 369 370 static void start_clear_flags(struct smi_info *smi_info) 371 { 372 unsigned char msg[3]; 373 374 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 375 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 376 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 377 msg[2] = WDT_PRE_TIMEOUT_INT; 378 379 start_new_msg(smi_info, msg, 3); 380 smi_info->si_state = SI_CLEARING_FLAGS; 381 } 382 383 static void start_getting_msg_queue(struct smi_info *smi_info) 384 { 385 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 386 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 387 smi_info->curr_msg->data_size = 2; 388 389 start_new_msg(smi_info, smi_info->curr_msg->data, 390 smi_info->curr_msg->data_size); 391 smi_info->si_state = SI_GETTING_MESSAGES; 392 } 393 394 static void start_getting_events(struct smi_info *smi_info) 395 { 396 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 397 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 398 smi_info->curr_msg->data_size = 2; 399 400 start_new_msg(smi_info, smi_info->curr_msg->data, 401 smi_info->curr_msg->data_size); 402 smi_info->si_state = SI_GETTING_EVENTS; 403 } 404 405 /* 406 * When we have a situtaion where we run out of memory and cannot 407 * allocate messages, we just leave them in the BMC and run the system 408 * polled until we can allocate some memory. Once we have some 409 * memory, we will re-enable the interrupt. 410 * 411 * Note that we cannot just use disable_irq(), since the interrupt may 412 * be shared. 413 */ 414 static inline bool disable_si_irq(struct smi_info *smi_info) 415 { 416 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 417 smi_info->interrupt_disabled = true; 418 start_check_enables(smi_info); 419 return true; 420 } 421 return false; 422 } 423 424 static inline bool enable_si_irq(struct smi_info *smi_info) 425 { 426 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) { 427 smi_info->interrupt_disabled = false; 428 start_check_enables(smi_info); 429 return true; 430 } 431 return false; 432 } 433 434 /* 435 * Allocate a message. If unable to allocate, start the interrupt 436 * disable process and return NULL. If able to allocate but 437 * interrupts are disabled, free the message and return NULL after 438 * starting the interrupt enable process. 439 */ 440 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 441 { 442 struct ipmi_smi_msg *msg; 443 444 msg = ipmi_alloc_smi_msg(); 445 if (!msg) { 446 if (!disable_si_irq(smi_info)) 447 smi_info->si_state = SI_NORMAL; 448 } else if (enable_si_irq(smi_info)) { 449 ipmi_free_smi_msg(msg); 450 msg = NULL; 451 } 452 return msg; 453 } 454 455 static void handle_flags(struct smi_info *smi_info) 456 { 457 retry: 458 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 459 /* Watchdog pre-timeout */ 460 smi_inc_stat(smi_info, watchdog_pretimeouts); 461 462 start_clear_flags(smi_info); 463 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 464 ipmi_smi_watchdog_pretimeout(smi_info->intf); 465 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 466 /* Messages available. */ 467 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 468 if (!smi_info->curr_msg) 469 return; 470 471 start_getting_msg_queue(smi_info); 472 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 473 /* Events available. */ 474 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 475 if (!smi_info->curr_msg) 476 return; 477 478 start_getting_events(smi_info); 479 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 480 smi_info->oem_data_avail_handler) { 481 if (smi_info->oem_data_avail_handler(smi_info)) 482 goto retry; 483 } else 484 smi_info->si_state = SI_NORMAL; 485 } 486 487 /* 488 * Global enables we care about. 489 */ 490 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 491 IPMI_BMC_EVT_MSG_INTR) 492 493 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 494 bool *irq_on) 495 { 496 u8 enables = 0; 497 498 if (smi_info->supports_event_msg_buff) 499 enables |= IPMI_BMC_EVT_MSG_BUFF; 500 501 if (((smi_info->io.irq && !smi_info->interrupt_disabled) || 502 smi_info->cannot_disable_irq) && 503 !smi_info->irq_enable_broken) 504 enables |= IPMI_BMC_RCV_MSG_INTR; 505 506 if (smi_info->supports_event_msg_buff && 507 smi_info->io.irq && !smi_info->interrupt_disabled && 508 !smi_info->irq_enable_broken) 509 enables |= IPMI_BMC_EVT_MSG_INTR; 510 511 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 512 513 return enables; 514 } 515 516 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 517 { 518 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 519 520 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 521 522 if ((bool)irqstate == irq_on) 523 return; 524 525 if (irq_on) 526 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 527 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 528 else 529 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 530 } 531 532 static void handle_transaction_done(struct smi_info *smi_info) 533 { 534 struct ipmi_smi_msg *msg; 535 536 debug_timestamp("Done"); 537 switch (smi_info->si_state) { 538 case SI_NORMAL: 539 if (!smi_info->curr_msg) 540 break; 541 542 smi_info->curr_msg->rsp_size 543 = smi_info->handlers->get_result( 544 smi_info->si_sm, 545 smi_info->curr_msg->rsp, 546 IPMI_MAX_MSG_LENGTH); 547 548 /* 549 * Do this here becase deliver_recv_msg() releases the 550 * lock, and a new message can be put in during the 551 * time the lock is released. 552 */ 553 msg = smi_info->curr_msg; 554 smi_info->curr_msg = NULL; 555 deliver_recv_msg(smi_info, msg); 556 break; 557 558 case SI_GETTING_FLAGS: 559 { 560 unsigned char msg[4]; 561 unsigned int len; 562 563 /* We got the flags from the SMI, now handle them. */ 564 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 565 if (msg[2] != 0) { 566 /* Error fetching flags, just give up for now. */ 567 smi_info->si_state = SI_NORMAL; 568 } else if (len < 4) { 569 /* 570 * Hmm, no flags. That's technically illegal, but 571 * don't use uninitialized data. 572 */ 573 smi_info->si_state = SI_NORMAL; 574 } else { 575 smi_info->msg_flags = msg[3]; 576 handle_flags(smi_info); 577 } 578 break; 579 } 580 581 case SI_CLEARING_FLAGS: 582 { 583 unsigned char msg[3]; 584 585 /* We cleared the flags. */ 586 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 587 if (msg[2] != 0) { 588 /* Error clearing flags */ 589 dev_warn(smi_info->io.dev, 590 "Error clearing flags: %2.2x\n", msg[2]); 591 } 592 smi_info->si_state = SI_NORMAL; 593 break; 594 } 595 596 case SI_GETTING_EVENTS: 597 { 598 smi_info->curr_msg->rsp_size 599 = smi_info->handlers->get_result( 600 smi_info->si_sm, 601 smi_info->curr_msg->rsp, 602 IPMI_MAX_MSG_LENGTH); 603 604 /* 605 * Do this here becase deliver_recv_msg() releases the 606 * lock, and a new message can be put in during the 607 * time the lock is released. 608 */ 609 msg = smi_info->curr_msg; 610 smi_info->curr_msg = NULL; 611 if (msg->rsp[2] != 0) { 612 /* Error getting event, probably done. */ 613 msg->done(msg); 614 615 /* Take off the event flag. */ 616 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 617 handle_flags(smi_info); 618 } else { 619 smi_inc_stat(smi_info, events); 620 621 /* 622 * Do this before we deliver the message 623 * because delivering the message releases the 624 * lock and something else can mess with the 625 * state. 626 */ 627 handle_flags(smi_info); 628 629 deliver_recv_msg(smi_info, msg); 630 } 631 break; 632 } 633 634 case SI_GETTING_MESSAGES: 635 { 636 smi_info->curr_msg->rsp_size 637 = smi_info->handlers->get_result( 638 smi_info->si_sm, 639 smi_info->curr_msg->rsp, 640 IPMI_MAX_MSG_LENGTH); 641 642 /* 643 * Do this here becase deliver_recv_msg() releases the 644 * lock, and a new message can be put in during the 645 * time the lock is released. 646 */ 647 msg = smi_info->curr_msg; 648 smi_info->curr_msg = NULL; 649 if (msg->rsp[2] != 0) { 650 /* Error getting event, probably done. */ 651 msg->done(msg); 652 653 /* Take off the msg flag. */ 654 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 655 handle_flags(smi_info); 656 } else { 657 smi_inc_stat(smi_info, incoming_messages); 658 659 /* 660 * Do this before we deliver the message 661 * because delivering the message releases the 662 * lock and something else can mess with the 663 * state. 664 */ 665 handle_flags(smi_info); 666 667 deliver_recv_msg(smi_info, msg); 668 } 669 break; 670 } 671 672 case SI_CHECKING_ENABLES: 673 { 674 unsigned char msg[4]; 675 u8 enables; 676 bool irq_on; 677 678 /* We got the flags from the SMI, now handle them. */ 679 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 680 if (msg[2] != 0) { 681 dev_warn(smi_info->io.dev, 682 "Couldn't get irq info: %x.\n", msg[2]); 683 dev_warn(smi_info->io.dev, 684 "Maybe ok, but ipmi might run very slowly.\n"); 685 smi_info->si_state = SI_NORMAL; 686 break; 687 } 688 enables = current_global_enables(smi_info, 0, &irq_on); 689 if (smi_info->io.si_type == SI_BT) 690 /* BT has its own interrupt enable bit. */ 691 check_bt_irq(smi_info, irq_on); 692 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 693 /* Enables are not correct, fix them. */ 694 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 695 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 696 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 697 smi_info->handlers->start_transaction( 698 smi_info->si_sm, msg, 3); 699 smi_info->si_state = SI_SETTING_ENABLES; 700 } else if (smi_info->supports_event_msg_buff) { 701 smi_info->curr_msg = ipmi_alloc_smi_msg(); 702 if (!smi_info->curr_msg) { 703 smi_info->si_state = SI_NORMAL; 704 break; 705 } 706 start_getting_events(smi_info); 707 } else { 708 smi_info->si_state = SI_NORMAL; 709 } 710 break; 711 } 712 713 case SI_SETTING_ENABLES: 714 { 715 unsigned char msg[4]; 716 717 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 718 if (msg[2] != 0) 719 dev_warn(smi_info->io.dev, 720 "Could not set the global enables: 0x%x.\n", 721 msg[2]); 722 723 if (smi_info->supports_event_msg_buff) { 724 smi_info->curr_msg = ipmi_alloc_smi_msg(); 725 if (!smi_info->curr_msg) { 726 smi_info->si_state = SI_NORMAL; 727 break; 728 } 729 start_getting_events(smi_info); 730 } else { 731 smi_info->si_state = SI_NORMAL; 732 } 733 break; 734 } 735 } 736 } 737 738 /* 739 * Called on timeouts and events. Timeouts should pass the elapsed 740 * time, interrupts should pass in zero. Must be called with 741 * si_lock held and interrupts disabled. 742 */ 743 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 744 int time) 745 { 746 enum si_sm_result si_sm_result; 747 748 restart: 749 /* 750 * There used to be a loop here that waited a little while 751 * (around 25us) before giving up. That turned out to be 752 * pointless, the minimum delays I was seeing were in the 300us 753 * range, which is far too long to wait in an interrupt. So 754 * we just run until the state machine tells us something 755 * happened or it needs a delay. 756 */ 757 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 758 time = 0; 759 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 760 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 761 762 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 763 smi_inc_stat(smi_info, complete_transactions); 764 765 handle_transaction_done(smi_info); 766 goto restart; 767 } else if (si_sm_result == SI_SM_HOSED) { 768 smi_inc_stat(smi_info, hosed_count); 769 770 /* 771 * Do the before return_hosed_msg, because that 772 * releases the lock. 773 */ 774 smi_info->si_state = SI_NORMAL; 775 if (smi_info->curr_msg != NULL) { 776 /* 777 * If we were handling a user message, format 778 * a response to send to the upper layer to 779 * tell it about the error. 780 */ 781 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 782 } 783 goto restart; 784 } 785 786 /* 787 * We prefer handling attn over new messages. But don't do 788 * this if there is not yet an upper layer to handle anything. 789 */ 790 if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) { 791 unsigned char msg[2]; 792 793 if (smi_info->si_state != SI_NORMAL) { 794 /* 795 * We got an ATTN, but we are doing something else. 796 * Handle the ATTN later. 797 */ 798 smi_info->got_attn = true; 799 } else { 800 smi_info->got_attn = false; 801 smi_inc_stat(smi_info, attentions); 802 803 /* 804 * Got a attn, send down a get message flags to see 805 * what's causing it. It would be better to handle 806 * this in the upper layer, but due to the way 807 * interrupts work with the SMI, that's not really 808 * possible. 809 */ 810 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 811 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 812 813 start_new_msg(smi_info, msg, 2); 814 smi_info->si_state = SI_GETTING_FLAGS; 815 goto restart; 816 } 817 } 818 819 /* If we are currently idle, try to start the next message. */ 820 if (si_sm_result == SI_SM_IDLE) { 821 smi_inc_stat(smi_info, idles); 822 823 si_sm_result = start_next_msg(smi_info); 824 if (si_sm_result != SI_SM_IDLE) 825 goto restart; 826 } 827 828 if ((si_sm_result == SI_SM_IDLE) 829 && (atomic_read(&smi_info->req_events))) { 830 /* 831 * We are idle and the upper layer requested that I fetch 832 * events, so do so. 833 */ 834 atomic_set(&smi_info->req_events, 0); 835 836 /* 837 * Take this opportunity to check the interrupt and 838 * message enable state for the BMC. The BMC can be 839 * asynchronously reset, and may thus get interrupts 840 * disable and messages disabled. 841 */ 842 if (smi_info->supports_event_msg_buff || smi_info->io.irq) { 843 start_check_enables(smi_info); 844 } else { 845 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 846 if (!smi_info->curr_msg) 847 goto out; 848 849 start_getting_events(smi_info); 850 } 851 goto restart; 852 } 853 854 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) { 855 /* Ok it if fails, the timer will just go off. */ 856 if (del_timer(&smi_info->si_timer)) 857 smi_info->timer_running = false; 858 } 859 860 out: 861 return si_sm_result; 862 } 863 864 static void check_start_timer_thread(struct smi_info *smi_info) 865 { 866 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 867 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 868 869 if (smi_info->thread) 870 wake_up_process(smi_info->thread); 871 872 start_next_msg(smi_info); 873 smi_event_handler(smi_info, 0); 874 } 875 } 876 877 static void flush_messages(void *send_info) 878 { 879 struct smi_info *smi_info = send_info; 880 enum si_sm_result result; 881 882 /* 883 * Currently, this function is called only in run-to-completion 884 * mode. This means we are single-threaded, no need for locks. 885 */ 886 result = smi_event_handler(smi_info, 0); 887 while (result != SI_SM_IDLE) { 888 udelay(SI_SHORT_TIMEOUT_USEC); 889 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC); 890 } 891 } 892 893 static void sender(void *send_info, 894 struct ipmi_smi_msg *msg) 895 { 896 struct smi_info *smi_info = send_info; 897 unsigned long flags; 898 899 debug_timestamp("Enqueue"); 900 901 if (smi_info->run_to_completion) { 902 /* 903 * If we are running to completion, start it. Upper 904 * layer will call flush_messages to clear it out. 905 */ 906 smi_info->waiting_msg = msg; 907 return; 908 } 909 910 spin_lock_irqsave(&smi_info->si_lock, flags); 911 /* 912 * The following two lines don't need to be under the lock for 913 * the lock's sake, but they do need SMP memory barriers to 914 * avoid getting things out of order. We are already claiming 915 * the lock, anyway, so just do it under the lock to avoid the 916 * ordering problem. 917 */ 918 BUG_ON(smi_info->waiting_msg); 919 smi_info->waiting_msg = msg; 920 check_start_timer_thread(smi_info); 921 spin_unlock_irqrestore(&smi_info->si_lock, flags); 922 } 923 924 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 925 { 926 struct smi_info *smi_info = send_info; 927 928 smi_info->run_to_completion = i_run_to_completion; 929 if (i_run_to_completion) 930 flush_messages(smi_info); 931 } 932 933 /* 934 * Use -1 in the nsec value of the busy waiting timespec to tell that 935 * we are spinning in kipmid looking for something and not delaying 936 * between checks 937 */ 938 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 939 { 940 ts->tv_nsec = -1; 941 } 942 static inline int ipmi_si_is_busy(struct timespec64 *ts) 943 { 944 return ts->tv_nsec != -1; 945 } 946 947 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 948 const struct smi_info *smi_info, 949 struct timespec64 *busy_until) 950 { 951 unsigned int max_busy_us = 0; 952 953 if (smi_info->si_num < num_max_busy_us) 954 max_busy_us = kipmid_max_busy_us[smi_info->si_num]; 955 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 956 ipmi_si_set_not_busy(busy_until); 957 else if (!ipmi_si_is_busy(busy_until)) { 958 ktime_get_ts64(busy_until); 959 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 960 } else { 961 struct timespec64 now; 962 963 ktime_get_ts64(&now); 964 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 965 ipmi_si_set_not_busy(busy_until); 966 return 0; 967 } 968 } 969 return 1; 970 } 971 972 973 /* 974 * A busy-waiting loop for speeding up IPMI operation. 975 * 976 * Lousy hardware makes this hard. This is only enabled for systems 977 * that are not BT and do not have interrupts. It starts spinning 978 * when an operation is complete or until max_busy tells it to stop 979 * (if that is enabled). See the paragraph on kimid_max_busy_us in 980 * Documentation/IPMI.txt for details. 981 */ 982 static int ipmi_thread(void *data) 983 { 984 struct smi_info *smi_info = data; 985 unsigned long flags; 986 enum si_sm_result smi_result; 987 struct timespec64 busy_until; 988 989 ipmi_si_set_not_busy(&busy_until); 990 set_user_nice(current, MAX_NICE); 991 while (!kthread_should_stop()) { 992 int busy_wait; 993 994 spin_lock_irqsave(&(smi_info->si_lock), flags); 995 smi_result = smi_event_handler(smi_info, 0); 996 997 /* 998 * If the driver is doing something, there is a possible 999 * race with the timer. If the timer handler see idle, 1000 * and the thread here sees something else, the timer 1001 * handler won't restart the timer even though it is 1002 * required. So start it here if necessary. 1003 */ 1004 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1005 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1006 1007 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1008 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1009 &busy_until); 1010 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1011 ; /* do nothing */ 1012 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1013 schedule(); 1014 else if (smi_result == SI_SM_IDLE) { 1015 if (atomic_read(&smi_info->need_watch)) { 1016 schedule_timeout_interruptible(100); 1017 } else { 1018 /* Wait to be woken up when we are needed. */ 1019 __set_current_state(TASK_INTERRUPTIBLE); 1020 schedule(); 1021 } 1022 } else 1023 schedule_timeout_interruptible(1); 1024 } 1025 return 0; 1026 } 1027 1028 1029 static void poll(void *send_info) 1030 { 1031 struct smi_info *smi_info = send_info; 1032 unsigned long flags = 0; 1033 bool run_to_completion = smi_info->run_to_completion; 1034 1035 /* 1036 * Make sure there is some delay in the poll loop so we can 1037 * drive time forward and timeout things. 1038 */ 1039 udelay(10); 1040 if (!run_to_completion) 1041 spin_lock_irqsave(&smi_info->si_lock, flags); 1042 smi_event_handler(smi_info, 10); 1043 if (!run_to_completion) 1044 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1045 } 1046 1047 static void request_events(void *send_info) 1048 { 1049 struct smi_info *smi_info = send_info; 1050 1051 if (!smi_info->has_event_buffer) 1052 return; 1053 1054 atomic_set(&smi_info->req_events, 1); 1055 } 1056 1057 static void set_need_watch(void *send_info, unsigned int watch_mask) 1058 { 1059 struct smi_info *smi_info = send_info; 1060 unsigned long flags; 1061 int enable; 1062 1063 enable = !!watch_mask; 1064 1065 atomic_set(&smi_info->need_watch, enable); 1066 spin_lock_irqsave(&smi_info->si_lock, flags); 1067 check_start_timer_thread(smi_info); 1068 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1069 } 1070 1071 static void smi_timeout(struct timer_list *t) 1072 { 1073 struct smi_info *smi_info = from_timer(smi_info, t, si_timer); 1074 enum si_sm_result smi_result; 1075 unsigned long flags; 1076 unsigned long jiffies_now; 1077 long time_diff; 1078 long timeout; 1079 1080 spin_lock_irqsave(&(smi_info->si_lock), flags); 1081 debug_timestamp("Timer"); 1082 1083 jiffies_now = jiffies; 1084 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1085 * SI_USEC_PER_JIFFY); 1086 smi_result = smi_event_handler(smi_info, time_diff); 1087 1088 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) { 1089 /* Running with interrupts, only do long timeouts. */ 1090 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1091 smi_inc_stat(smi_info, long_timeouts); 1092 goto do_mod_timer; 1093 } 1094 1095 /* 1096 * If the state machine asks for a short delay, then shorten 1097 * the timer timeout. 1098 */ 1099 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1100 smi_inc_stat(smi_info, short_timeouts); 1101 timeout = jiffies + 1; 1102 } else { 1103 smi_inc_stat(smi_info, long_timeouts); 1104 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1105 } 1106 1107 do_mod_timer: 1108 if (smi_result != SI_SM_IDLE) 1109 smi_mod_timer(smi_info, timeout); 1110 else 1111 smi_info->timer_running = false; 1112 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1113 } 1114 1115 irqreturn_t ipmi_si_irq_handler(int irq, void *data) 1116 { 1117 struct smi_info *smi_info = data; 1118 unsigned long flags; 1119 1120 if (smi_info->io.si_type == SI_BT) 1121 /* We need to clear the IRQ flag for the BT interface. */ 1122 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1123 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1124 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1125 1126 spin_lock_irqsave(&(smi_info->si_lock), flags); 1127 1128 smi_inc_stat(smi_info, interrupts); 1129 1130 debug_timestamp("Interrupt"); 1131 1132 smi_event_handler(smi_info, 0); 1133 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1134 return IRQ_HANDLED; 1135 } 1136 1137 static int smi_start_processing(void *send_info, 1138 struct ipmi_smi *intf) 1139 { 1140 struct smi_info *new_smi = send_info; 1141 int enable = 0; 1142 1143 new_smi->intf = intf; 1144 1145 /* Set up the timer that drives the interface. */ 1146 timer_setup(&new_smi->si_timer, smi_timeout, 0); 1147 new_smi->timer_can_start = true; 1148 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1149 1150 /* Try to claim any interrupts. */ 1151 if (new_smi->io.irq_setup) { 1152 new_smi->io.irq_handler_data = new_smi; 1153 new_smi->io.irq_setup(&new_smi->io); 1154 } 1155 1156 /* 1157 * Check if the user forcefully enabled the daemon. 1158 */ 1159 if (new_smi->si_num < num_force_kipmid) 1160 enable = force_kipmid[new_smi->si_num]; 1161 /* 1162 * The BT interface is efficient enough to not need a thread, 1163 * and there is no need for a thread if we have interrupts. 1164 */ 1165 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq)) 1166 enable = 1; 1167 1168 if (enable) { 1169 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1170 "kipmi%d", new_smi->si_num); 1171 if (IS_ERR(new_smi->thread)) { 1172 dev_notice(new_smi->io.dev, "Could not start" 1173 " kernel thread due to error %ld, only using" 1174 " timers to drive the interface\n", 1175 PTR_ERR(new_smi->thread)); 1176 new_smi->thread = NULL; 1177 } 1178 } 1179 1180 return 0; 1181 } 1182 1183 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1184 { 1185 struct smi_info *smi = send_info; 1186 1187 data->addr_src = smi->io.addr_source; 1188 data->dev = smi->io.dev; 1189 data->addr_info = smi->io.addr_info; 1190 get_device(smi->io.dev); 1191 1192 return 0; 1193 } 1194 1195 static void set_maintenance_mode(void *send_info, bool enable) 1196 { 1197 struct smi_info *smi_info = send_info; 1198 1199 if (!enable) 1200 atomic_set(&smi_info->req_events, 0); 1201 } 1202 1203 static void shutdown_smi(void *send_info); 1204 static const struct ipmi_smi_handlers handlers = { 1205 .owner = THIS_MODULE, 1206 .start_processing = smi_start_processing, 1207 .shutdown = shutdown_smi, 1208 .get_smi_info = get_smi_info, 1209 .sender = sender, 1210 .request_events = request_events, 1211 .set_need_watch = set_need_watch, 1212 .set_maintenance_mode = set_maintenance_mode, 1213 .set_run_to_completion = set_run_to_completion, 1214 .flush_messages = flush_messages, 1215 .poll = poll, 1216 }; 1217 1218 static LIST_HEAD(smi_infos); 1219 static DEFINE_MUTEX(smi_infos_lock); 1220 static int smi_num; /* Used to sequence the SMIs */ 1221 1222 static const char * const addr_space_to_str[] = { "i/o", "mem" }; 1223 1224 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1225 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1226 " disabled(0). Normally the IPMI driver auto-detects" 1227 " this, but the value may be overridden by this parm."); 1228 module_param(unload_when_empty, bool, 0); 1229 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1230 " specified or found, default is 1. Setting to 0" 1231 " is useful for hot add of devices using hotmod."); 1232 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1233 MODULE_PARM_DESC(kipmid_max_busy_us, 1234 "Max time (in microseconds) to busy-wait for IPMI data before" 1235 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1236 " if kipmid is using up a lot of CPU time."); 1237 1238 void ipmi_irq_finish_setup(struct si_sm_io *io) 1239 { 1240 if (io->si_type == SI_BT) 1241 /* Enable the interrupt in the BT interface. */ 1242 io->outputb(io, IPMI_BT_INTMASK_REG, 1243 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1244 } 1245 1246 void ipmi_irq_start_cleanup(struct si_sm_io *io) 1247 { 1248 if (io->si_type == SI_BT) 1249 /* Disable the interrupt in the BT interface. */ 1250 io->outputb(io, IPMI_BT_INTMASK_REG, 0); 1251 } 1252 1253 static void std_irq_cleanup(struct si_sm_io *io) 1254 { 1255 ipmi_irq_start_cleanup(io); 1256 free_irq(io->irq, io->irq_handler_data); 1257 } 1258 1259 int ipmi_std_irq_setup(struct si_sm_io *io) 1260 { 1261 int rv; 1262 1263 if (!io->irq) 1264 return 0; 1265 1266 rv = request_irq(io->irq, 1267 ipmi_si_irq_handler, 1268 IRQF_SHARED, 1269 DEVICE_NAME, 1270 io->irq_handler_data); 1271 if (rv) { 1272 dev_warn(io->dev, "%s unable to claim interrupt %d," 1273 " running polled\n", 1274 DEVICE_NAME, io->irq); 1275 io->irq = 0; 1276 } else { 1277 io->irq_cleanup = std_irq_cleanup; 1278 ipmi_irq_finish_setup(io); 1279 dev_info(io->dev, "Using irq %d\n", io->irq); 1280 } 1281 1282 return rv; 1283 } 1284 1285 static int wait_for_msg_done(struct smi_info *smi_info) 1286 { 1287 enum si_sm_result smi_result; 1288 1289 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 1290 for (;;) { 1291 if (smi_result == SI_SM_CALL_WITH_DELAY || 1292 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 1293 schedule_timeout_uninterruptible(1); 1294 smi_result = smi_info->handlers->event( 1295 smi_info->si_sm, jiffies_to_usecs(1)); 1296 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 1297 smi_result = smi_info->handlers->event( 1298 smi_info->si_sm, 0); 1299 } else 1300 break; 1301 } 1302 if (smi_result == SI_SM_HOSED) 1303 /* 1304 * We couldn't get the state machine to run, so whatever's at 1305 * the port is probably not an IPMI SMI interface. 1306 */ 1307 return -ENODEV; 1308 1309 return 0; 1310 } 1311 1312 static int try_get_dev_id(struct smi_info *smi_info) 1313 { 1314 unsigned char msg[2]; 1315 unsigned char *resp; 1316 unsigned long resp_len; 1317 int rv = 0; 1318 1319 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1320 if (!resp) 1321 return -ENOMEM; 1322 1323 /* 1324 * Do a Get Device ID command, since it comes back with some 1325 * useful info. 1326 */ 1327 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1328 msg[1] = IPMI_GET_DEVICE_ID_CMD; 1329 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1330 1331 rv = wait_for_msg_done(smi_info); 1332 if (rv) 1333 goto out; 1334 1335 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1336 resp, IPMI_MAX_MSG_LENGTH); 1337 1338 /* Check and record info from the get device id, in case we need it. */ 1339 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], 1340 resp + 2, resp_len - 2, &smi_info->device_id); 1341 1342 out: 1343 kfree(resp); 1344 return rv; 1345 } 1346 1347 static int get_global_enables(struct smi_info *smi_info, u8 *enables) 1348 { 1349 unsigned char msg[3]; 1350 unsigned char *resp; 1351 unsigned long resp_len; 1352 int rv; 1353 1354 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1355 if (!resp) 1356 return -ENOMEM; 1357 1358 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1359 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1360 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1361 1362 rv = wait_for_msg_done(smi_info); 1363 if (rv) { 1364 dev_warn(smi_info->io.dev, 1365 "Error getting response from get global enables command: %d\n", 1366 rv); 1367 goto out; 1368 } 1369 1370 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1371 resp, IPMI_MAX_MSG_LENGTH); 1372 1373 if (resp_len < 4 || 1374 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1375 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1376 resp[2] != 0) { 1377 dev_warn(smi_info->io.dev, 1378 "Invalid return from get global enables command: %ld %x %x %x\n", 1379 resp_len, resp[0], resp[1], resp[2]); 1380 rv = -EINVAL; 1381 goto out; 1382 } else { 1383 *enables = resp[3]; 1384 } 1385 1386 out: 1387 kfree(resp); 1388 return rv; 1389 } 1390 1391 /* 1392 * Returns 1 if it gets an error from the command. 1393 */ 1394 static int set_global_enables(struct smi_info *smi_info, u8 enables) 1395 { 1396 unsigned char msg[3]; 1397 unsigned char *resp; 1398 unsigned long resp_len; 1399 int rv; 1400 1401 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1402 if (!resp) 1403 return -ENOMEM; 1404 1405 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1406 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1407 msg[2] = enables; 1408 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1409 1410 rv = wait_for_msg_done(smi_info); 1411 if (rv) { 1412 dev_warn(smi_info->io.dev, 1413 "Error getting response from set global enables command: %d\n", 1414 rv); 1415 goto out; 1416 } 1417 1418 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1419 resp, IPMI_MAX_MSG_LENGTH); 1420 1421 if (resp_len < 3 || 1422 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1423 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1424 dev_warn(smi_info->io.dev, 1425 "Invalid return from set global enables command: %ld %x %x\n", 1426 resp_len, resp[0], resp[1]); 1427 rv = -EINVAL; 1428 goto out; 1429 } 1430 1431 if (resp[2] != 0) 1432 rv = 1; 1433 1434 out: 1435 kfree(resp); 1436 return rv; 1437 } 1438 1439 /* 1440 * Some BMCs do not support clearing the receive irq bit in the global 1441 * enables (even if they don't support interrupts on the BMC). Check 1442 * for this and handle it properly. 1443 */ 1444 static void check_clr_rcv_irq(struct smi_info *smi_info) 1445 { 1446 u8 enables = 0; 1447 int rv; 1448 1449 rv = get_global_enables(smi_info, &enables); 1450 if (!rv) { 1451 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0) 1452 /* Already clear, should work ok. */ 1453 return; 1454 1455 enables &= ~IPMI_BMC_RCV_MSG_INTR; 1456 rv = set_global_enables(smi_info, enables); 1457 } 1458 1459 if (rv < 0) { 1460 dev_err(smi_info->io.dev, 1461 "Cannot check clearing the rcv irq: %d\n", rv); 1462 return; 1463 } 1464 1465 if (rv) { 1466 /* 1467 * An error when setting the event buffer bit means 1468 * clearing the bit is not supported. 1469 */ 1470 dev_warn(smi_info->io.dev, 1471 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1472 smi_info->cannot_disable_irq = true; 1473 } 1474 } 1475 1476 /* 1477 * Some BMCs do not support setting the interrupt bits in the global 1478 * enables even if they support interrupts. Clearly bad, but we can 1479 * compensate. 1480 */ 1481 static void check_set_rcv_irq(struct smi_info *smi_info) 1482 { 1483 u8 enables = 0; 1484 int rv; 1485 1486 if (!smi_info->io.irq) 1487 return; 1488 1489 rv = get_global_enables(smi_info, &enables); 1490 if (!rv) { 1491 enables |= IPMI_BMC_RCV_MSG_INTR; 1492 rv = set_global_enables(smi_info, enables); 1493 } 1494 1495 if (rv < 0) { 1496 dev_err(smi_info->io.dev, 1497 "Cannot check setting the rcv irq: %d\n", rv); 1498 return; 1499 } 1500 1501 if (rv) { 1502 /* 1503 * An error when setting the event buffer bit means 1504 * setting the bit is not supported. 1505 */ 1506 dev_warn(smi_info->io.dev, 1507 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n"); 1508 smi_info->cannot_disable_irq = true; 1509 smi_info->irq_enable_broken = true; 1510 } 1511 } 1512 1513 static int try_enable_event_buffer(struct smi_info *smi_info) 1514 { 1515 unsigned char msg[3]; 1516 unsigned char *resp; 1517 unsigned long resp_len; 1518 int rv = 0; 1519 1520 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 1521 if (!resp) 1522 return -ENOMEM; 1523 1524 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1525 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 1526 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 1527 1528 rv = wait_for_msg_done(smi_info); 1529 if (rv) { 1530 pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n"); 1531 goto out; 1532 } 1533 1534 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1535 resp, IPMI_MAX_MSG_LENGTH); 1536 1537 if (resp_len < 4 || 1538 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1539 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 1540 resp[2] != 0) { 1541 pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n"); 1542 rv = -EINVAL; 1543 goto out; 1544 } 1545 1546 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 1547 /* buffer is already enabled, nothing to do. */ 1548 smi_info->supports_event_msg_buff = true; 1549 goto out; 1550 } 1551 1552 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 1553 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 1554 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 1555 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 1556 1557 rv = wait_for_msg_done(smi_info); 1558 if (rv) { 1559 pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n"); 1560 goto out; 1561 } 1562 1563 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 1564 resp, IPMI_MAX_MSG_LENGTH); 1565 1566 if (resp_len < 3 || 1567 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 1568 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 1569 pr_warn("Invalid return from get global, enables command, not enable the event buffer\n"); 1570 rv = -EINVAL; 1571 goto out; 1572 } 1573 1574 if (resp[2] != 0) 1575 /* 1576 * An error when setting the event buffer bit means 1577 * that the event buffer is not supported. 1578 */ 1579 rv = -ENOENT; 1580 else 1581 smi_info->supports_event_msg_buff = true; 1582 1583 out: 1584 kfree(resp); 1585 return rv; 1586 } 1587 1588 #define IPMI_SI_ATTR(name) \ 1589 static ssize_t ipmi_##name##_show(struct device *dev, \ 1590 struct device_attribute *attr, \ 1591 char *buf) \ 1592 { \ 1593 struct smi_info *smi_info = dev_get_drvdata(dev); \ 1594 \ 1595 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \ 1596 } \ 1597 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL) 1598 1599 static ssize_t ipmi_type_show(struct device *dev, 1600 struct device_attribute *attr, 1601 char *buf) 1602 { 1603 struct smi_info *smi_info = dev_get_drvdata(dev); 1604 1605 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]); 1606 } 1607 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL); 1608 1609 static ssize_t ipmi_interrupts_enabled_show(struct device *dev, 1610 struct device_attribute *attr, 1611 char *buf) 1612 { 1613 struct smi_info *smi_info = dev_get_drvdata(dev); 1614 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled; 1615 1616 return snprintf(buf, 10, "%d\n", enabled); 1617 } 1618 static DEVICE_ATTR(interrupts_enabled, S_IRUGO, 1619 ipmi_interrupts_enabled_show, NULL); 1620 1621 IPMI_SI_ATTR(short_timeouts); 1622 IPMI_SI_ATTR(long_timeouts); 1623 IPMI_SI_ATTR(idles); 1624 IPMI_SI_ATTR(interrupts); 1625 IPMI_SI_ATTR(attentions); 1626 IPMI_SI_ATTR(flag_fetches); 1627 IPMI_SI_ATTR(hosed_count); 1628 IPMI_SI_ATTR(complete_transactions); 1629 IPMI_SI_ATTR(events); 1630 IPMI_SI_ATTR(watchdog_pretimeouts); 1631 IPMI_SI_ATTR(incoming_messages); 1632 1633 static ssize_t ipmi_params_show(struct device *dev, 1634 struct device_attribute *attr, 1635 char *buf) 1636 { 1637 struct smi_info *smi_info = dev_get_drvdata(dev); 1638 1639 return snprintf(buf, 200, 1640 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 1641 si_to_str[smi_info->io.si_type], 1642 addr_space_to_str[smi_info->io.addr_space], 1643 smi_info->io.addr_data, 1644 smi_info->io.regspacing, 1645 smi_info->io.regsize, 1646 smi_info->io.regshift, 1647 smi_info->io.irq, 1648 smi_info->io.slave_addr); 1649 } 1650 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL); 1651 1652 static struct attribute *ipmi_si_dev_attrs[] = { 1653 &dev_attr_type.attr, 1654 &dev_attr_interrupts_enabled.attr, 1655 &dev_attr_short_timeouts.attr, 1656 &dev_attr_long_timeouts.attr, 1657 &dev_attr_idles.attr, 1658 &dev_attr_interrupts.attr, 1659 &dev_attr_attentions.attr, 1660 &dev_attr_flag_fetches.attr, 1661 &dev_attr_hosed_count.attr, 1662 &dev_attr_complete_transactions.attr, 1663 &dev_attr_events.attr, 1664 &dev_attr_watchdog_pretimeouts.attr, 1665 &dev_attr_incoming_messages.attr, 1666 &dev_attr_params.attr, 1667 NULL 1668 }; 1669 1670 static const struct attribute_group ipmi_si_dev_attr_group = { 1671 .attrs = ipmi_si_dev_attrs, 1672 }; 1673 1674 /* 1675 * oem_data_avail_to_receive_msg_avail 1676 * @info - smi_info structure with msg_flags set 1677 * 1678 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 1679 * Returns 1 indicating need to re-run handle_flags(). 1680 */ 1681 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 1682 { 1683 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 1684 RECEIVE_MSG_AVAIL); 1685 return 1; 1686 } 1687 1688 /* 1689 * setup_dell_poweredge_oem_data_handler 1690 * @info - smi_info.device_id must be populated 1691 * 1692 * Systems that match, but have firmware version < 1.40 may assert 1693 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 1694 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 1695 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 1696 * as RECEIVE_MSG_AVAIL instead. 1697 * 1698 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 1699 * assert the OEM[012] bits, and if it did, the driver would have to 1700 * change to handle that properly, we don't actually check for the 1701 * firmware version. 1702 * Device ID = 0x20 BMC on PowerEdge 8G servers 1703 * Device Revision = 0x80 1704 * Firmware Revision1 = 0x01 BMC version 1.40 1705 * Firmware Revision2 = 0x40 BCD encoded 1706 * IPMI Version = 0x51 IPMI 1.5 1707 * Manufacturer ID = A2 02 00 Dell IANA 1708 * 1709 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 1710 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 1711 * 1712 */ 1713 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 1714 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 1715 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 1716 #define DELL_IANA_MFR_ID 0x0002a2 1717 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 1718 { 1719 struct ipmi_device_id *id = &smi_info->device_id; 1720 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 1721 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 1722 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 1723 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 1724 smi_info->oem_data_avail_handler = 1725 oem_data_avail_to_receive_msg_avail; 1726 } else if (ipmi_version_major(id) < 1 || 1727 (ipmi_version_major(id) == 1 && 1728 ipmi_version_minor(id) < 5)) { 1729 smi_info->oem_data_avail_handler = 1730 oem_data_avail_to_receive_msg_avail; 1731 } 1732 } 1733 } 1734 1735 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 1736 static void return_hosed_msg_badsize(struct smi_info *smi_info) 1737 { 1738 struct ipmi_smi_msg *msg = smi_info->curr_msg; 1739 1740 /* Make it a response */ 1741 msg->rsp[0] = msg->data[0] | 4; 1742 msg->rsp[1] = msg->data[1]; 1743 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 1744 msg->rsp_size = 3; 1745 smi_info->curr_msg = NULL; 1746 deliver_recv_msg(smi_info, msg); 1747 } 1748 1749 /* 1750 * dell_poweredge_bt_xaction_handler 1751 * @info - smi_info.device_id must be populated 1752 * 1753 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 1754 * not respond to a Get SDR command if the length of the data 1755 * requested is exactly 0x3A, which leads to command timeouts and no 1756 * data returned. This intercepts such commands, and causes userspace 1757 * callers to try again with a different-sized buffer, which succeeds. 1758 */ 1759 1760 #define STORAGE_NETFN 0x0A 1761 #define STORAGE_CMD_GET_SDR 0x23 1762 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 1763 unsigned long unused, 1764 void *in) 1765 { 1766 struct smi_info *smi_info = in; 1767 unsigned char *data = smi_info->curr_msg->data; 1768 unsigned int size = smi_info->curr_msg->data_size; 1769 if (size >= 8 && 1770 (data[0]>>2) == STORAGE_NETFN && 1771 data[1] == STORAGE_CMD_GET_SDR && 1772 data[7] == 0x3A) { 1773 return_hosed_msg_badsize(smi_info); 1774 return NOTIFY_STOP; 1775 } 1776 return NOTIFY_DONE; 1777 } 1778 1779 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 1780 .notifier_call = dell_poweredge_bt_xaction_handler, 1781 }; 1782 1783 /* 1784 * setup_dell_poweredge_bt_xaction_handler 1785 * @info - smi_info.device_id must be filled in already 1786 * 1787 * Fills in smi_info.device_id.start_transaction_pre_hook 1788 * when we know what function to use there. 1789 */ 1790 static void 1791 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 1792 { 1793 struct ipmi_device_id *id = &smi_info->device_id; 1794 if (id->manufacturer_id == DELL_IANA_MFR_ID && 1795 smi_info->io.si_type == SI_BT) 1796 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 1797 } 1798 1799 /* 1800 * setup_oem_data_handler 1801 * @info - smi_info.device_id must be filled in already 1802 * 1803 * Fills in smi_info.device_id.oem_data_available_handler 1804 * when we know what function to use there. 1805 */ 1806 1807 static void setup_oem_data_handler(struct smi_info *smi_info) 1808 { 1809 setup_dell_poweredge_oem_data_handler(smi_info); 1810 } 1811 1812 static void setup_xaction_handlers(struct smi_info *smi_info) 1813 { 1814 setup_dell_poweredge_bt_xaction_handler(smi_info); 1815 } 1816 1817 static void check_for_broken_irqs(struct smi_info *smi_info) 1818 { 1819 check_clr_rcv_irq(smi_info); 1820 check_set_rcv_irq(smi_info); 1821 } 1822 1823 static inline void stop_timer_and_thread(struct smi_info *smi_info) 1824 { 1825 if (smi_info->thread != NULL) { 1826 kthread_stop(smi_info->thread); 1827 smi_info->thread = NULL; 1828 } 1829 1830 smi_info->timer_can_start = false; 1831 if (smi_info->timer_running) 1832 del_timer_sync(&smi_info->si_timer); 1833 } 1834 1835 static struct smi_info *find_dup_si(struct smi_info *info) 1836 { 1837 struct smi_info *e; 1838 1839 list_for_each_entry(e, &smi_infos, link) { 1840 if (e->io.addr_space != info->io.addr_space) 1841 continue; 1842 if (e->io.addr_data == info->io.addr_data) { 1843 /* 1844 * This is a cheap hack, ACPI doesn't have a defined 1845 * slave address but SMBIOS does. Pick it up from 1846 * any source that has it available. 1847 */ 1848 if (info->io.slave_addr && !e->io.slave_addr) 1849 e->io.slave_addr = info->io.slave_addr; 1850 return e; 1851 } 1852 } 1853 1854 return NULL; 1855 } 1856 1857 int ipmi_si_add_smi(struct si_sm_io *io) 1858 { 1859 int rv = 0; 1860 struct smi_info *new_smi, *dup; 1861 1862 /* 1863 * If the user gave us a hard-coded device at the same 1864 * address, they presumably want us to use it and not what is 1865 * in the firmware. 1866 */ 1867 if (io->addr_source != SI_HARDCODED && io->addr_source != SI_HOTMOD && 1868 ipmi_si_hardcode_match(io->addr_space, io->addr_data)) { 1869 dev_info(io->dev, 1870 "Hard-coded device at this address already exists"); 1871 return -ENODEV; 1872 } 1873 1874 if (!io->io_setup) { 1875 if (io->addr_space == IPMI_IO_ADDR_SPACE) { 1876 io->io_setup = ipmi_si_port_setup; 1877 } else if (io->addr_space == IPMI_MEM_ADDR_SPACE) { 1878 io->io_setup = ipmi_si_mem_setup; 1879 } else { 1880 return -EINVAL; 1881 } 1882 } 1883 1884 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL); 1885 if (!new_smi) 1886 return -ENOMEM; 1887 spin_lock_init(&new_smi->si_lock); 1888 1889 new_smi->io = *io; 1890 1891 mutex_lock(&smi_infos_lock); 1892 dup = find_dup_si(new_smi); 1893 if (dup) { 1894 if (new_smi->io.addr_source == SI_ACPI && 1895 dup->io.addr_source == SI_SMBIOS) { 1896 /* We prefer ACPI over SMBIOS. */ 1897 dev_info(dup->io.dev, 1898 "Removing SMBIOS-specified %s state machine in favor of ACPI\n", 1899 si_to_str[new_smi->io.si_type]); 1900 cleanup_one_si(dup); 1901 } else { 1902 dev_info(new_smi->io.dev, 1903 "%s-specified %s state machine: duplicate\n", 1904 ipmi_addr_src_to_str(new_smi->io.addr_source), 1905 si_to_str[new_smi->io.si_type]); 1906 rv = -EBUSY; 1907 kfree(new_smi); 1908 goto out_err; 1909 } 1910 } 1911 1912 pr_info("Adding %s-specified %s state machine\n", 1913 ipmi_addr_src_to_str(new_smi->io.addr_source), 1914 si_to_str[new_smi->io.si_type]); 1915 1916 list_add_tail(&new_smi->link, &smi_infos); 1917 1918 if (initialized) 1919 rv = try_smi_init(new_smi); 1920 out_err: 1921 mutex_unlock(&smi_infos_lock); 1922 return rv; 1923 } 1924 1925 /* 1926 * Try to start up an interface. Must be called with smi_infos_lock 1927 * held, primarily to keep smi_num consistent, we only one to do these 1928 * one at a time. 1929 */ 1930 static int try_smi_init(struct smi_info *new_smi) 1931 { 1932 int rv = 0; 1933 int i; 1934 1935 pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n", 1936 ipmi_addr_src_to_str(new_smi->io.addr_source), 1937 si_to_str[new_smi->io.si_type], 1938 addr_space_to_str[new_smi->io.addr_space], 1939 new_smi->io.addr_data, 1940 new_smi->io.slave_addr, new_smi->io.irq); 1941 1942 switch (new_smi->io.si_type) { 1943 case SI_KCS: 1944 new_smi->handlers = &kcs_smi_handlers; 1945 break; 1946 1947 case SI_SMIC: 1948 new_smi->handlers = &smic_smi_handlers; 1949 break; 1950 1951 case SI_BT: 1952 new_smi->handlers = &bt_smi_handlers; 1953 break; 1954 1955 default: 1956 /* No support for anything else yet. */ 1957 rv = -EIO; 1958 goto out_err; 1959 } 1960 1961 new_smi->si_num = smi_num; 1962 1963 /* Do this early so it's available for logs. */ 1964 if (!new_smi->io.dev) { 1965 pr_err("IPMI interface added with no device\n"); 1966 rv = EIO; 1967 goto out_err; 1968 } 1969 1970 /* Allocate the state machine's data and initialize it. */ 1971 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 1972 if (!new_smi->si_sm) { 1973 rv = -ENOMEM; 1974 goto out_err; 1975 } 1976 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm, 1977 &new_smi->io); 1978 1979 /* Now that we know the I/O size, we can set up the I/O. */ 1980 rv = new_smi->io.io_setup(&new_smi->io); 1981 if (rv) { 1982 dev_err(new_smi->io.dev, "Could not set up I/O space\n"); 1983 goto out_err; 1984 } 1985 1986 /* Do low-level detection first. */ 1987 if (new_smi->handlers->detect(new_smi->si_sm)) { 1988 if (new_smi->io.addr_source) 1989 dev_err(new_smi->io.dev, 1990 "Interface detection failed\n"); 1991 rv = -ENODEV; 1992 goto out_err; 1993 } 1994 1995 /* 1996 * Attempt a get device id command. If it fails, we probably 1997 * don't have a BMC here. 1998 */ 1999 rv = try_get_dev_id(new_smi); 2000 if (rv) { 2001 if (new_smi->io.addr_source) 2002 dev_err(new_smi->io.dev, 2003 "There appears to be no BMC at this location\n"); 2004 goto out_err; 2005 } 2006 2007 setup_oem_data_handler(new_smi); 2008 setup_xaction_handlers(new_smi); 2009 check_for_broken_irqs(new_smi); 2010 2011 new_smi->waiting_msg = NULL; 2012 new_smi->curr_msg = NULL; 2013 atomic_set(&new_smi->req_events, 0); 2014 new_smi->run_to_completion = false; 2015 for (i = 0; i < SI_NUM_STATS; i++) 2016 atomic_set(&new_smi->stats[i], 0); 2017 2018 new_smi->interrupt_disabled = true; 2019 atomic_set(&new_smi->need_watch, 0); 2020 2021 rv = try_enable_event_buffer(new_smi); 2022 if (rv == 0) 2023 new_smi->has_event_buffer = true; 2024 2025 /* 2026 * Start clearing the flags before we enable interrupts or the 2027 * timer to avoid racing with the timer. 2028 */ 2029 start_clear_flags(new_smi); 2030 2031 /* 2032 * IRQ is defined to be set when non-zero. req_events will 2033 * cause a global flags check that will enable interrupts. 2034 */ 2035 if (new_smi->io.irq) { 2036 new_smi->interrupt_disabled = false; 2037 atomic_set(&new_smi->req_events, 1); 2038 } 2039 2040 dev_set_drvdata(new_smi->io.dev, new_smi); 2041 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group); 2042 if (rv) { 2043 dev_err(new_smi->io.dev, 2044 "Unable to add device attributes: error %d\n", 2045 rv); 2046 goto out_err; 2047 } 2048 new_smi->dev_group_added = true; 2049 2050 rv = ipmi_register_smi(&handlers, 2051 new_smi, 2052 new_smi->io.dev, 2053 new_smi->io.slave_addr); 2054 if (rv) { 2055 dev_err(new_smi->io.dev, 2056 "Unable to register device: error %d\n", 2057 rv); 2058 goto out_err; 2059 } 2060 2061 /* Don't increment till we know we have succeeded. */ 2062 smi_num++; 2063 2064 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n", 2065 si_to_str[new_smi->io.si_type]); 2066 2067 WARN_ON(new_smi->io.dev->init_name != NULL); 2068 2069 out_err: 2070 if (rv && new_smi->io.io_cleanup) { 2071 new_smi->io.io_cleanup(&new_smi->io); 2072 new_smi->io.io_cleanup = NULL; 2073 } 2074 2075 return rv; 2076 } 2077 2078 static int __init init_ipmi_si(void) 2079 { 2080 struct smi_info *e; 2081 enum ipmi_addr_src type = SI_INVALID; 2082 2083 if (initialized) 2084 return 0; 2085 2086 ipmi_hardcode_init(); 2087 2088 pr_info("IPMI System Interface driver\n"); 2089 2090 ipmi_si_platform_init(); 2091 2092 ipmi_si_pci_init(); 2093 2094 ipmi_si_parisc_init(); 2095 2096 /* We prefer devices with interrupts, but in the case of a machine 2097 with multiple BMCs we assume that there will be several instances 2098 of a given type so if we succeed in registering a type then also 2099 try to register everything else of the same type */ 2100 mutex_lock(&smi_infos_lock); 2101 list_for_each_entry(e, &smi_infos, link) { 2102 /* Try to register a device if it has an IRQ and we either 2103 haven't successfully registered a device yet or this 2104 device has the same type as one we successfully registered */ 2105 if (e->io.irq && (!type || e->io.addr_source == type)) { 2106 if (!try_smi_init(e)) { 2107 type = e->io.addr_source; 2108 } 2109 } 2110 } 2111 2112 /* type will only have been set if we successfully registered an si */ 2113 if (type) 2114 goto skip_fallback_noirq; 2115 2116 /* Fall back to the preferred device */ 2117 2118 list_for_each_entry(e, &smi_infos, link) { 2119 if (!e->io.irq && (!type || e->io.addr_source == type)) { 2120 if (!try_smi_init(e)) { 2121 type = e->io.addr_source; 2122 } 2123 } 2124 } 2125 2126 skip_fallback_noirq: 2127 initialized = 1; 2128 mutex_unlock(&smi_infos_lock); 2129 2130 if (type) 2131 return 0; 2132 2133 mutex_lock(&smi_infos_lock); 2134 if (unload_when_empty && list_empty(&smi_infos)) { 2135 mutex_unlock(&smi_infos_lock); 2136 cleanup_ipmi_si(); 2137 pr_warn("Unable to find any System Interface(s)\n"); 2138 return -ENODEV; 2139 } else { 2140 mutex_unlock(&smi_infos_lock); 2141 return 0; 2142 } 2143 } 2144 module_init(init_ipmi_si); 2145 2146 static void shutdown_smi(void *send_info) 2147 { 2148 struct smi_info *smi_info = send_info; 2149 2150 if (smi_info->dev_group_added) { 2151 device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group); 2152 smi_info->dev_group_added = false; 2153 } 2154 if (smi_info->io.dev) 2155 dev_set_drvdata(smi_info->io.dev, NULL); 2156 2157 /* 2158 * Make sure that interrupts, the timer and the thread are 2159 * stopped and will not run again. 2160 */ 2161 smi_info->interrupt_disabled = true; 2162 if (smi_info->io.irq_cleanup) { 2163 smi_info->io.irq_cleanup(&smi_info->io); 2164 smi_info->io.irq_cleanup = NULL; 2165 } 2166 stop_timer_and_thread(smi_info); 2167 2168 /* 2169 * Wait until we know that we are out of any interrupt 2170 * handlers might have been running before we freed the 2171 * interrupt. 2172 */ 2173 synchronize_rcu(); 2174 2175 /* 2176 * Timeouts are stopped, now make sure the interrupts are off 2177 * in the BMC. Note that timers and CPU interrupts are off, 2178 * so no need for locks. 2179 */ 2180 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { 2181 poll(smi_info); 2182 schedule_timeout_uninterruptible(1); 2183 } 2184 if (smi_info->handlers) 2185 disable_si_irq(smi_info); 2186 while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) { 2187 poll(smi_info); 2188 schedule_timeout_uninterruptible(1); 2189 } 2190 if (smi_info->handlers) 2191 smi_info->handlers->cleanup(smi_info->si_sm); 2192 2193 if (smi_info->io.addr_source_cleanup) { 2194 smi_info->io.addr_source_cleanup(&smi_info->io); 2195 smi_info->io.addr_source_cleanup = NULL; 2196 } 2197 if (smi_info->io.io_cleanup) { 2198 smi_info->io.io_cleanup(&smi_info->io); 2199 smi_info->io.io_cleanup = NULL; 2200 } 2201 2202 kfree(smi_info->si_sm); 2203 smi_info->si_sm = NULL; 2204 2205 smi_info->intf = NULL; 2206 } 2207 2208 /* 2209 * Must be called with smi_infos_lock held, to serialize the 2210 * smi_info->intf check. 2211 */ 2212 static void cleanup_one_si(struct smi_info *smi_info) 2213 { 2214 if (!smi_info) 2215 return; 2216 2217 list_del(&smi_info->link); 2218 2219 if (smi_info->intf) 2220 ipmi_unregister_smi(smi_info->intf); 2221 2222 kfree(smi_info); 2223 } 2224 2225 int ipmi_si_remove_by_dev(struct device *dev) 2226 { 2227 struct smi_info *e; 2228 int rv = -ENOENT; 2229 2230 mutex_lock(&smi_infos_lock); 2231 list_for_each_entry(e, &smi_infos, link) { 2232 if (e->io.dev == dev) { 2233 cleanup_one_si(e); 2234 rv = 0; 2235 break; 2236 } 2237 } 2238 mutex_unlock(&smi_infos_lock); 2239 2240 return rv; 2241 } 2242 2243 struct device *ipmi_si_remove_by_data(int addr_space, enum si_type si_type, 2244 unsigned long addr) 2245 { 2246 /* remove */ 2247 struct smi_info *e, *tmp_e; 2248 struct device *dev = NULL; 2249 2250 mutex_lock(&smi_infos_lock); 2251 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 2252 if (e->io.addr_space != addr_space) 2253 continue; 2254 if (e->io.si_type != si_type) 2255 continue; 2256 if (e->io.addr_data == addr) { 2257 dev = get_device(e->io.dev); 2258 cleanup_one_si(e); 2259 } 2260 } 2261 mutex_unlock(&smi_infos_lock); 2262 2263 return dev; 2264 } 2265 2266 static void cleanup_ipmi_si(void) 2267 { 2268 struct smi_info *e, *tmp_e; 2269 2270 if (!initialized) 2271 return; 2272 2273 ipmi_si_pci_shutdown(); 2274 2275 ipmi_si_parisc_shutdown(); 2276 2277 ipmi_si_platform_shutdown(); 2278 2279 mutex_lock(&smi_infos_lock); 2280 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 2281 cleanup_one_si(e); 2282 mutex_unlock(&smi_infos_lock); 2283 2284 ipmi_si_hardcode_exit(); 2285 ipmi_si_hotmod_exit(); 2286 } 2287 module_exit(cleanup_ipmi_si); 2288 2289 MODULE_ALIAS("platform:dmi-ipmi-si"); 2290 MODULE_LICENSE("GPL"); 2291 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 2292 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 2293 " system interfaces."); 2294