xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 22246614)
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35 
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41 
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 
68 #ifdef CONFIG_PPC_OF
69 #include <asm/of_device.h>
70 #include <asm/of_platform.h>
71 #endif
72 
73 #define PFX "ipmi_si: "
74 
75 /* Measure times between events in the driver. */
76 #undef DEBUG_TIMING
77 
78 /* Call every 10 ms. */
79 #define SI_TIMEOUT_TIME_USEC	10000
80 #define SI_USEC_PER_JIFFY	(1000000/HZ)
81 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
82 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
83 				      short timeout */
84 
85 /* Bit for BMC global enables. */
86 #define IPMI_BMC_RCV_MSG_INTR     0x01
87 #define IPMI_BMC_EVT_MSG_INTR     0x02
88 #define IPMI_BMC_EVT_MSG_BUFF     0x04
89 #define IPMI_BMC_SYS_LOG          0x08
90 
91 enum si_intf_state {
92 	SI_NORMAL,
93 	SI_GETTING_FLAGS,
94 	SI_GETTING_EVENTS,
95 	SI_CLEARING_FLAGS,
96 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
97 	SI_GETTING_MESSAGES,
98 	SI_ENABLE_INTERRUPTS1,
99 	SI_ENABLE_INTERRUPTS2,
100 	SI_DISABLE_INTERRUPTS1,
101 	SI_DISABLE_INTERRUPTS2
102 	/* FIXME - add watchdog stuff. */
103 };
104 
105 /* Some BT-specific defines we need here. */
106 #define IPMI_BT_INTMASK_REG		2
107 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
108 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
109 
110 enum si_type {
111     SI_KCS, SI_SMIC, SI_BT
112 };
113 static char *si_to_str[] = { "kcs", "smic", "bt" };
114 
115 #define DEVICE_NAME "ipmi_si"
116 
117 static struct device_driver ipmi_driver = {
118 	.name = DEVICE_NAME,
119 	.bus = &platform_bus_type
120 };
121 
122 
123 /*
124  * Indexes into stats[] in smi_info below.
125  */
126 enum si_stat_indexes {
127 	/*
128 	 * Number of times the driver requested a timer while an operation
129 	 * was in progress.
130 	 */
131 	SI_STAT_short_timeouts = 0,
132 
133 	/*
134 	 * Number of times the driver requested a timer while nothing was in
135 	 * progress.
136 	 */
137 	SI_STAT_long_timeouts,
138 
139 	/* Number of times the interface was idle while being polled. */
140 	SI_STAT_idles,
141 
142 	/* Number of interrupts the driver handled. */
143 	SI_STAT_interrupts,
144 
145 	/* Number of time the driver got an ATTN from the hardware. */
146 	SI_STAT_attentions,
147 
148 	/* Number of times the driver requested flags from the hardware. */
149 	SI_STAT_flag_fetches,
150 
151 	/* Number of times the hardware didn't follow the state machine. */
152 	SI_STAT_hosed_count,
153 
154 	/* Number of completed messages. */
155 	SI_STAT_complete_transactions,
156 
157 	/* Number of IPMI events received from the hardware. */
158 	SI_STAT_events,
159 
160 	/* Number of watchdog pretimeouts. */
161 	SI_STAT_watchdog_pretimeouts,
162 
163 	/* Number of asyncronous messages received. */
164 	SI_STAT_incoming_messages,
165 
166 
167 	/* This *must* remain last, add new values above this. */
168 	SI_NUM_STATS
169 };
170 
171 struct smi_info {
172 	int                    intf_num;
173 	ipmi_smi_t             intf;
174 	struct si_sm_data      *si_sm;
175 	struct si_sm_handlers  *handlers;
176 	enum si_type           si_type;
177 	spinlock_t             si_lock;
178 	spinlock_t             msg_lock;
179 	struct list_head       xmit_msgs;
180 	struct list_head       hp_xmit_msgs;
181 	struct ipmi_smi_msg    *curr_msg;
182 	enum si_intf_state     si_state;
183 
184 	/*
185 	 * Used to handle the various types of I/O that can occur with
186 	 * IPMI
187 	 */
188 	struct si_sm_io io;
189 	int (*io_setup)(struct smi_info *info);
190 	void (*io_cleanup)(struct smi_info *info);
191 	int (*irq_setup)(struct smi_info *info);
192 	void (*irq_cleanup)(struct smi_info *info);
193 	unsigned int io_size;
194 	char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
195 	void (*addr_source_cleanup)(struct smi_info *info);
196 	void *addr_source_data;
197 
198 	/*
199 	 * Per-OEM handler, called from handle_flags().  Returns 1
200 	 * when handle_flags() needs to be re-run or 0 indicating it
201 	 * set si_state itself.
202 	 */
203 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
204 
205 	/*
206 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
207 	 * is set to hold the flags until we are done handling everything
208 	 * from the flags.
209 	 */
210 #define RECEIVE_MSG_AVAIL	0x01
211 #define EVENT_MSG_BUFFER_FULL	0x02
212 #define WDT_PRE_TIMEOUT_INT	0x08
213 #define OEM0_DATA_AVAIL     0x20
214 #define OEM1_DATA_AVAIL     0x40
215 #define OEM2_DATA_AVAIL     0x80
216 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
217 			     OEM1_DATA_AVAIL | \
218 			     OEM2_DATA_AVAIL)
219 	unsigned char       msg_flags;
220 
221 	/*
222 	 * If set to true, this will request events the next time the
223 	 * state machine is idle.
224 	 */
225 	atomic_t            req_events;
226 
227 	/*
228 	 * If true, run the state machine to completion on every send
229 	 * call.  Generally used after a panic to make sure stuff goes
230 	 * out.
231 	 */
232 	int                 run_to_completion;
233 
234 	/* The I/O port of an SI interface. */
235 	int                 port;
236 
237 	/*
238 	 * The space between start addresses of the two ports.  For
239 	 * instance, if the first port is 0xca2 and the spacing is 4, then
240 	 * the second port is 0xca6.
241 	 */
242 	unsigned int        spacing;
243 
244 	/* zero if no irq; */
245 	int                 irq;
246 
247 	/* The timer for this si. */
248 	struct timer_list   si_timer;
249 
250 	/* The time (in jiffies) the last timeout occurred at. */
251 	unsigned long       last_timeout_jiffies;
252 
253 	/* Used to gracefully stop the timer without race conditions. */
254 	atomic_t            stop_operation;
255 
256 	/*
257 	 * The driver will disable interrupts when it gets into a
258 	 * situation where it cannot handle messages due to lack of
259 	 * memory.  Once that situation clears up, it will re-enable
260 	 * interrupts.
261 	 */
262 	int interrupt_disabled;
263 
264 	/* From the get device id response... */
265 	struct ipmi_device_id device_id;
266 
267 	/* Driver model stuff. */
268 	struct device *dev;
269 	struct platform_device *pdev;
270 
271 	/*
272 	 * True if we allocated the device, false if it came from
273 	 * someplace else (like PCI).
274 	 */
275 	int dev_registered;
276 
277 	/* Slave address, could be reported from DMI. */
278 	unsigned char slave_addr;
279 
280 	/* Counters and things for the proc filesystem. */
281 	atomic_t stats[SI_NUM_STATS];
282 
283 	struct task_struct *thread;
284 
285 	struct list_head link;
286 };
287 
288 #define smi_inc_stat(smi, stat) \
289 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
290 #define smi_get_stat(smi, stat) \
291 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
292 
293 #define SI_MAX_PARMS 4
294 
295 static int force_kipmid[SI_MAX_PARMS];
296 static int num_force_kipmid;
297 
298 static int unload_when_empty = 1;
299 
300 static int try_smi_init(struct smi_info *smi);
301 static void cleanup_one_si(struct smi_info *to_clean);
302 
303 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
304 static int register_xaction_notifier(struct notifier_block *nb)
305 {
306 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
307 }
308 
309 static void deliver_recv_msg(struct smi_info *smi_info,
310 			     struct ipmi_smi_msg *msg)
311 {
312 	/* Deliver the message to the upper layer with the lock
313 	   released. */
314 	spin_unlock(&(smi_info->si_lock));
315 	ipmi_smi_msg_received(smi_info->intf, msg);
316 	spin_lock(&(smi_info->si_lock));
317 }
318 
319 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
320 {
321 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
322 
323 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
324 		cCode = IPMI_ERR_UNSPECIFIED;
325 	/* else use it as is */
326 
327 	/* Make it a reponse */
328 	msg->rsp[0] = msg->data[0] | 4;
329 	msg->rsp[1] = msg->data[1];
330 	msg->rsp[2] = cCode;
331 	msg->rsp_size = 3;
332 
333 	smi_info->curr_msg = NULL;
334 	deliver_recv_msg(smi_info, msg);
335 }
336 
337 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
338 {
339 	int              rv;
340 	struct list_head *entry = NULL;
341 #ifdef DEBUG_TIMING
342 	struct timeval t;
343 #endif
344 
345 	/*
346 	 * No need to save flags, we aleady have interrupts off and we
347 	 * already hold the SMI lock.
348 	 */
349 	if (!smi_info->run_to_completion)
350 		spin_lock(&(smi_info->msg_lock));
351 
352 	/* Pick the high priority queue first. */
353 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
354 		entry = smi_info->hp_xmit_msgs.next;
355 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
356 		entry = smi_info->xmit_msgs.next;
357 	}
358 
359 	if (!entry) {
360 		smi_info->curr_msg = NULL;
361 		rv = SI_SM_IDLE;
362 	} else {
363 		int err;
364 
365 		list_del(entry);
366 		smi_info->curr_msg = list_entry(entry,
367 						struct ipmi_smi_msg,
368 						link);
369 #ifdef DEBUG_TIMING
370 		do_gettimeofday(&t);
371 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
372 #endif
373 		err = atomic_notifier_call_chain(&xaction_notifier_list,
374 				0, smi_info);
375 		if (err & NOTIFY_STOP_MASK) {
376 			rv = SI_SM_CALL_WITHOUT_DELAY;
377 			goto out;
378 		}
379 		err = smi_info->handlers->start_transaction(
380 			smi_info->si_sm,
381 			smi_info->curr_msg->data,
382 			smi_info->curr_msg->data_size);
383 		if (err)
384 			return_hosed_msg(smi_info, err);
385 
386 		rv = SI_SM_CALL_WITHOUT_DELAY;
387 	}
388  out:
389 	if (!smi_info->run_to_completion)
390 		spin_unlock(&(smi_info->msg_lock));
391 
392 	return rv;
393 }
394 
395 static void start_enable_irq(struct smi_info *smi_info)
396 {
397 	unsigned char msg[2];
398 
399 	/*
400 	 * If we are enabling interrupts, we have to tell the
401 	 * BMC to use them.
402 	 */
403 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
404 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
405 
406 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
407 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
408 }
409 
410 static void start_disable_irq(struct smi_info *smi_info)
411 {
412 	unsigned char msg[2];
413 
414 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416 
417 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
419 }
420 
421 static void start_clear_flags(struct smi_info *smi_info)
422 {
423 	unsigned char msg[3];
424 
425 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
426 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
427 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
428 	msg[2] = WDT_PRE_TIMEOUT_INT;
429 
430 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
431 	smi_info->si_state = SI_CLEARING_FLAGS;
432 }
433 
434 /*
435  * When we have a situtaion where we run out of memory and cannot
436  * allocate messages, we just leave them in the BMC and run the system
437  * polled until we can allocate some memory.  Once we have some
438  * memory, we will re-enable the interrupt.
439  */
440 static inline void disable_si_irq(struct smi_info *smi_info)
441 {
442 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
443 		start_disable_irq(smi_info);
444 		smi_info->interrupt_disabled = 1;
445 	}
446 }
447 
448 static inline void enable_si_irq(struct smi_info *smi_info)
449 {
450 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
451 		start_enable_irq(smi_info);
452 		smi_info->interrupt_disabled = 0;
453 	}
454 }
455 
456 static void handle_flags(struct smi_info *smi_info)
457 {
458  retry:
459 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
460 		/* Watchdog pre-timeout */
461 		smi_inc_stat(smi_info, watchdog_pretimeouts);
462 
463 		start_clear_flags(smi_info);
464 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
465 		spin_unlock(&(smi_info->si_lock));
466 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
467 		spin_lock(&(smi_info->si_lock));
468 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
469 		/* Messages available. */
470 		smi_info->curr_msg = ipmi_alloc_smi_msg();
471 		if (!smi_info->curr_msg) {
472 			disable_si_irq(smi_info);
473 			smi_info->si_state = SI_NORMAL;
474 			return;
475 		}
476 		enable_si_irq(smi_info);
477 
478 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
479 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
480 		smi_info->curr_msg->data_size = 2;
481 
482 		smi_info->handlers->start_transaction(
483 			smi_info->si_sm,
484 			smi_info->curr_msg->data,
485 			smi_info->curr_msg->data_size);
486 		smi_info->si_state = SI_GETTING_MESSAGES;
487 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
488 		/* Events available. */
489 		smi_info->curr_msg = ipmi_alloc_smi_msg();
490 		if (!smi_info->curr_msg) {
491 			disable_si_irq(smi_info);
492 			smi_info->si_state = SI_NORMAL;
493 			return;
494 		}
495 		enable_si_irq(smi_info);
496 
497 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
498 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
499 		smi_info->curr_msg->data_size = 2;
500 
501 		smi_info->handlers->start_transaction(
502 			smi_info->si_sm,
503 			smi_info->curr_msg->data,
504 			smi_info->curr_msg->data_size);
505 		smi_info->si_state = SI_GETTING_EVENTS;
506 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
507 		   smi_info->oem_data_avail_handler) {
508 		if (smi_info->oem_data_avail_handler(smi_info))
509 			goto retry;
510 	} else
511 		smi_info->si_state = SI_NORMAL;
512 }
513 
514 static void handle_transaction_done(struct smi_info *smi_info)
515 {
516 	struct ipmi_smi_msg *msg;
517 #ifdef DEBUG_TIMING
518 	struct timeval t;
519 
520 	do_gettimeofday(&t);
521 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
522 #endif
523 	switch (smi_info->si_state) {
524 	case SI_NORMAL:
525 		if (!smi_info->curr_msg)
526 			break;
527 
528 		smi_info->curr_msg->rsp_size
529 			= smi_info->handlers->get_result(
530 				smi_info->si_sm,
531 				smi_info->curr_msg->rsp,
532 				IPMI_MAX_MSG_LENGTH);
533 
534 		/*
535 		 * Do this here becase deliver_recv_msg() releases the
536 		 * lock, and a new message can be put in during the
537 		 * time the lock is released.
538 		 */
539 		msg = smi_info->curr_msg;
540 		smi_info->curr_msg = NULL;
541 		deliver_recv_msg(smi_info, msg);
542 		break;
543 
544 	case SI_GETTING_FLAGS:
545 	{
546 		unsigned char msg[4];
547 		unsigned int  len;
548 
549 		/* We got the flags from the SMI, now handle them. */
550 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
551 		if (msg[2] != 0) {
552 			/* Error fetching flags, just give up for now. */
553 			smi_info->si_state = SI_NORMAL;
554 		} else if (len < 4) {
555 			/*
556 			 * Hmm, no flags.  That's technically illegal, but
557 			 * don't use uninitialized data.
558 			 */
559 			smi_info->si_state = SI_NORMAL;
560 		} else {
561 			smi_info->msg_flags = msg[3];
562 			handle_flags(smi_info);
563 		}
564 		break;
565 	}
566 
567 	case SI_CLEARING_FLAGS:
568 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
569 	{
570 		unsigned char msg[3];
571 
572 		/* We cleared the flags. */
573 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
574 		if (msg[2] != 0) {
575 			/* Error clearing flags */
576 			printk(KERN_WARNING
577 			       "ipmi_si: Error clearing flags: %2.2x\n",
578 			       msg[2]);
579 		}
580 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
581 			start_enable_irq(smi_info);
582 		else
583 			smi_info->si_state = SI_NORMAL;
584 		break;
585 	}
586 
587 	case SI_GETTING_EVENTS:
588 	{
589 		smi_info->curr_msg->rsp_size
590 			= smi_info->handlers->get_result(
591 				smi_info->si_sm,
592 				smi_info->curr_msg->rsp,
593 				IPMI_MAX_MSG_LENGTH);
594 
595 		/*
596 		 * Do this here becase deliver_recv_msg() releases the
597 		 * lock, and a new message can be put in during the
598 		 * time the lock is released.
599 		 */
600 		msg = smi_info->curr_msg;
601 		smi_info->curr_msg = NULL;
602 		if (msg->rsp[2] != 0) {
603 			/* Error getting event, probably done. */
604 			msg->done(msg);
605 
606 			/* Take off the event flag. */
607 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
608 			handle_flags(smi_info);
609 		} else {
610 			smi_inc_stat(smi_info, events);
611 
612 			/*
613 			 * Do this before we deliver the message
614 			 * because delivering the message releases the
615 			 * lock and something else can mess with the
616 			 * state.
617 			 */
618 			handle_flags(smi_info);
619 
620 			deliver_recv_msg(smi_info, msg);
621 		}
622 		break;
623 	}
624 
625 	case SI_GETTING_MESSAGES:
626 	{
627 		smi_info->curr_msg->rsp_size
628 			= smi_info->handlers->get_result(
629 				smi_info->si_sm,
630 				smi_info->curr_msg->rsp,
631 				IPMI_MAX_MSG_LENGTH);
632 
633 		/*
634 		 * Do this here becase deliver_recv_msg() releases the
635 		 * lock, and a new message can be put in during the
636 		 * time the lock is released.
637 		 */
638 		msg = smi_info->curr_msg;
639 		smi_info->curr_msg = NULL;
640 		if (msg->rsp[2] != 0) {
641 			/* Error getting event, probably done. */
642 			msg->done(msg);
643 
644 			/* Take off the msg flag. */
645 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
646 			handle_flags(smi_info);
647 		} else {
648 			smi_inc_stat(smi_info, incoming_messages);
649 
650 			/*
651 			 * Do this before we deliver the message
652 			 * because delivering the message releases the
653 			 * lock and something else can mess with the
654 			 * state.
655 			 */
656 			handle_flags(smi_info);
657 
658 			deliver_recv_msg(smi_info, msg);
659 		}
660 		break;
661 	}
662 
663 	case SI_ENABLE_INTERRUPTS1:
664 	{
665 		unsigned char msg[4];
666 
667 		/* We got the flags from the SMI, now handle them. */
668 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
669 		if (msg[2] != 0) {
670 			printk(KERN_WARNING
671 			       "ipmi_si: Could not enable interrupts"
672 			       ", failed get, using polled mode.\n");
673 			smi_info->si_state = SI_NORMAL;
674 		} else {
675 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
676 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
677 			msg[2] = (msg[3] |
678 				  IPMI_BMC_RCV_MSG_INTR |
679 				  IPMI_BMC_EVT_MSG_INTR);
680 			smi_info->handlers->start_transaction(
681 				smi_info->si_sm, msg, 3);
682 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
683 		}
684 		break;
685 	}
686 
687 	case SI_ENABLE_INTERRUPTS2:
688 	{
689 		unsigned char msg[4];
690 
691 		/* We got the flags from the SMI, now handle them. */
692 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
693 		if (msg[2] != 0) {
694 			printk(KERN_WARNING
695 			       "ipmi_si: Could not enable interrupts"
696 			       ", failed set, using polled mode.\n");
697 		}
698 		smi_info->si_state = SI_NORMAL;
699 		break;
700 	}
701 
702 	case SI_DISABLE_INTERRUPTS1:
703 	{
704 		unsigned char msg[4];
705 
706 		/* We got the flags from the SMI, now handle them. */
707 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
708 		if (msg[2] != 0) {
709 			printk(KERN_WARNING
710 			       "ipmi_si: Could not disable interrupts"
711 			       ", failed get.\n");
712 			smi_info->si_state = SI_NORMAL;
713 		} else {
714 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
715 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
716 			msg[2] = (msg[3] &
717 				  ~(IPMI_BMC_RCV_MSG_INTR |
718 				    IPMI_BMC_EVT_MSG_INTR));
719 			smi_info->handlers->start_transaction(
720 				smi_info->si_sm, msg, 3);
721 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
722 		}
723 		break;
724 	}
725 
726 	case SI_DISABLE_INTERRUPTS2:
727 	{
728 		unsigned char msg[4];
729 
730 		/* We got the flags from the SMI, now handle them. */
731 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
732 		if (msg[2] != 0) {
733 			printk(KERN_WARNING
734 			       "ipmi_si: Could not disable interrupts"
735 			       ", failed set.\n");
736 		}
737 		smi_info->si_state = SI_NORMAL;
738 		break;
739 	}
740 	}
741 }
742 
743 /*
744  * Called on timeouts and events.  Timeouts should pass the elapsed
745  * time, interrupts should pass in zero.  Must be called with
746  * si_lock held and interrupts disabled.
747  */
748 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
749 					   int time)
750 {
751 	enum si_sm_result si_sm_result;
752 
753  restart:
754 	/*
755 	 * There used to be a loop here that waited a little while
756 	 * (around 25us) before giving up.  That turned out to be
757 	 * pointless, the minimum delays I was seeing were in the 300us
758 	 * range, which is far too long to wait in an interrupt.  So
759 	 * we just run until the state machine tells us something
760 	 * happened or it needs a delay.
761 	 */
762 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
763 	time = 0;
764 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
765 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
766 
767 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
768 		smi_inc_stat(smi_info, complete_transactions);
769 
770 		handle_transaction_done(smi_info);
771 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
772 	} else if (si_sm_result == SI_SM_HOSED) {
773 		smi_inc_stat(smi_info, hosed_count);
774 
775 		/*
776 		 * Do the before return_hosed_msg, because that
777 		 * releases the lock.
778 		 */
779 		smi_info->si_state = SI_NORMAL;
780 		if (smi_info->curr_msg != NULL) {
781 			/*
782 			 * If we were handling a user message, format
783 			 * a response to send to the upper layer to
784 			 * tell it about the error.
785 			 */
786 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
787 		}
788 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
789 	}
790 
791 	/*
792 	 * We prefer handling attn over new messages.  But don't do
793 	 * this if there is not yet an upper layer to handle anything.
794 	 */
795 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
796 		unsigned char msg[2];
797 
798 		smi_inc_stat(smi_info, attentions);
799 
800 		/*
801 		 * Got a attn, send down a get message flags to see
802 		 * what's causing it.  It would be better to handle
803 		 * this in the upper layer, but due to the way
804 		 * interrupts work with the SMI, that's not really
805 		 * possible.
806 		 */
807 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
808 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
809 
810 		smi_info->handlers->start_transaction(
811 			smi_info->si_sm, msg, 2);
812 		smi_info->si_state = SI_GETTING_FLAGS;
813 		goto restart;
814 	}
815 
816 	/* If we are currently idle, try to start the next message. */
817 	if (si_sm_result == SI_SM_IDLE) {
818 		smi_inc_stat(smi_info, idles);
819 
820 		si_sm_result = start_next_msg(smi_info);
821 		if (si_sm_result != SI_SM_IDLE)
822 			goto restart;
823 	}
824 
825 	if ((si_sm_result == SI_SM_IDLE)
826 	    && (atomic_read(&smi_info->req_events))) {
827 		/*
828 		 * We are idle and the upper layer requested that I fetch
829 		 * events, so do so.
830 		 */
831 		atomic_set(&smi_info->req_events, 0);
832 
833 		smi_info->curr_msg = ipmi_alloc_smi_msg();
834 		if (!smi_info->curr_msg)
835 			goto out;
836 
837 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
838 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
839 		smi_info->curr_msg->data_size = 2;
840 
841 		smi_info->handlers->start_transaction(
842 			smi_info->si_sm,
843 			smi_info->curr_msg->data,
844 			smi_info->curr_msg->data_size);
845 		smi_info->si_state = SI_GETTING_EVENTS;
846 		goto restart;
847 	}
848  out:
849 	return si_sm_result;
850 }
851 
852 static void sender(void                *send_info,
853 		   struct ipmi_smi_msg *msg,
854 		   int                 priority)
855 {
856 	struct smi_info   *smi_info = send_info;
857 	enum si_sm_result result;
858 	unsigned long     flags;
859 #ifdef DEBUG_TIMING
860 	struct timeval    t;
861 #endif
862 
863 	if (atomic_read(&smi_info->stop_operation)) {
864 		msg->rsp[0] = msg->data[0] | 4;
865 		msg->rsp[1] = msg->data[1];
866 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
867 		msg->rsp_size = 3;
868 		deliver_recv_msg(smi_info, msg);
869 		return;
870 	}
871 
872 #ifdef DEBUG_TIMING
873 	do_gettimeofday(&t);
874 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
875 #endif
876 
877 	if (smi_info->run_to_completion) {
878 		/*
879 		 * If we are running to completion, then throw it in
880 		 * the list and run transactions until everything is
881 		 * clear.  Priority doesn't matter here.
882 		 */
883 
884 		/*
885 		 * Run to completion means we are single-threaded, no
886 		 * need for locks.
887 		 */
888 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
889 
890 		result = smi_event_handler(smi_info, 0);
891 		while (result != SI_SM_IDLE) {
892 			udelay(SI_SHORT_TIMEOUT_USEC);
893 			result = smi_event_handler(smi_info,
894 						   SI_SHORT_TIMEOUT_USEC);
895 		}
896 		return;
897 	}
898 
899 	spin_lock_irqsave(&smi_info->msg_lock, flags);
900 	if (priority > 0)
901 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
902 	else
903 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
904 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
905 
906 	spin_lock_irqsave(&smi_info->si_lock, flags);
907 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
908 		start_next_msg(smi_info);
909 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
910 }
911 
912 static void set_run_to_completion(void *send_info, int i_run_to_completion)
913 {
914 	struct smi_info   *smi_info = send_info;
915 	enum si_sm_result result;
916 
917 	smi_info->run_to_completion = i_run_to_completion;
918 	if (i_run_to_completion) {
919 		result = smi_event_handler(smi_info, 0);
920 		while (result != SI_SM_IDLE) {
921 			udelay(SI_SHORT_TIMEOUT_USEC);
922 			result = smi_event_handler(smi_info,
923 						   SI_SHORT_TIMEOUT_USEC);
924 		}
925 	}
926 }
927 
928 static int ipmi_thread(void *data)
929 {
930 	struct smi_info *smi_info = data;
931 	unsigned long flags;
932 	enum si_sm_result smi_result;
933 
934 	set_user_nice(current, 19);
935 	while (!kthread_should_stop()) {
936 		spin_lock_irqsave(&(smi_info->si_lock), flags);
937 		smi_result = smi_event_handler(smi_info, 0);
938 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
939 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
940 			; /* do nothing */
941 		else if (smi_result == SI_SM_CALL_WITH_DELAY)
942 			schedule();
943 		else
944 			schedule_timeout_interruptible(1);
945 	}
946 	return 0;
947 }
948 
949 
950 static void poll(void *send_info)
951 {
952 	struct smi_info *smi_info = send_info;
953 	unsigned long flags;
954 
955 	/*
956 	 * Make sure there is some delay in the poll loop so we can
957 	 * drive time forward and timeout things.
958 	 */
959 	udelay(10);
960 	spin_lock_irqsave(&smi_info->si_lock, flags);
961 	smi_event_handler(smi_info, 10);
962 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
963 }
964 
965 static void request_events(void *send_info)
966 {
967 	struct smi_info *smi_info = send_info;
968 
969 	if (atomic_read(&smi_info->stop_operation))
970 		return;
971 
972 	atomic_set(&smi_info->req_events, 1);
973 }
974 
975 static int initialized;
976 
977 static void smi_timeout(unsigned long data)
978 {
979 	struct smi_info   *smi_info = (struct smi_info *) data;
980 	enum si_sm_result smi_result;
981 	unsigned long     flags;
982 	unsigned long     jiffies_now;
983 	long              time_diff;
984 #ifdef DEBUG_TIMING
985 	struct timeval    t;
986 #endif
987 
988 	spin_lock_irqsave(&(smi_info->si_lock), flags);
989 #ifdef DEBUG_TIMING
990 	do_gettimeofday(&t);
991 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
992 #endif
993 	jiffies_now = jiffies;
994 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
995 		     * SI_USEC_PER_JIFFY);
996 	smi_result = smi_event_handler(smi_info, time_diff);
997 
998 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
999 
1000 	smi_info->last_timeout_jiffies = jiffies_now;
1001 
1002 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1003 		/* Running with interrupts, only do long timeouts. */
1004 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1005 		smi_inc_stat(smi_info, long_timeouts);
1006 		goto do_add_timer;
1007 	}
1008 
1009 	/*
1010 	 * If the state machine asks for a short delay, then shorten
1011 	 * the timer timeout.
1012 	 */
1013 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1014 		smi_inc_stat(smi_info, short_timeouts);
1015 		smi_info->si_timer.expires = jiffies + 1;
1016 	} else {
1017 		smi_inc_stat(smi_info, long_timeouts);
1018 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1019 	}
1020 
1021  do_add_timer:
1022 	add_timer(&(smi_info->si_timer));
1023 }
1024 
1025 static irqreturn_t si_irq_handler(int irq, void *data)
1026 {
1027 	struct smi_info *smi_info = data;
1028 	unsigned long   flags;
1029 #ifdef DEBUG_TIMING
1030 	struct timeval  t;
1031 #endif
1032 
1033 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1034 
1035 	smi_inc_stat(smi_info, interrupts);
1036 
1037 #ifdef DEBUG_TIMING
1038 	do_gettimeofday(&t);
1039 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1040 #endif
1041 	smi_event_handler(smi_info, 0);
1042 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1043 	return IRQ_HANDLED;
1044 }
1045 
1046 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1047 {
1048 	struct smi_info *smi_info = data;
1049 	/* We need to clear the IRQ flag for the BT interface. */
1050 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1051 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1052 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1053 	return si_irq_handler(irq, data);
1054 }
1055 
1056 static int smi_start_processing(void       *send_info,
1057 				ipmi_smi_t intf)
1058 {
1059 	struct smi_info *new_smi = send_info;
1060 	int             enable = 0;
1061 
1062 	new_smi->intf = intf;
1063 
1064 	/* Try to claim any interrupts. */
1065 	if (new_smi->irq_setup)
1066 		new_smi->irq_setup(new_smi);
1067 
1068 	/* Set up the timer that drives the interface. */
1069 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1070 	new_smi->last_timeout_jiffies = jiffies;
1071 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1072 
1073 	/*
1074 	 * Check if the user forcefully enabled the daemon.
1075 	 */
1076 	if (new_smi->intf_num < num_force_kipmid)
1077 		enable = force_kipmid[new_smi->intf_num];
1078 	/*
1079 	 * The BT interface is efficient enough to not need a thread,
1080 	 * and there is no need for a thread if we have interrupts.
1081 	 */
1082 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1083 		enable = 1;
1084 
1085 	if (enable) {
1086 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1087 					      "kipmi%d", new_smi->intf_num);
1088 		if (IS_ERR(new_smi->thread)) {
1089 			printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1090 			       " kernel thread due to error %ld, only using"
1091 			       " timers to drive the interface\n",
1092 			       PTR_ERR(new_smi->thread));
1093 			new_smi->thread = NULL;
1094 		}
1095 	}
1096 
1097 	return 0;
1098 }
1099 
1100 static void set_maintenance_mode(void *send_info, int enable)
1101 {
1102 	struct smi_info   *smi_info = send_info;
1103 
1104 	if (!enable)
1105 		atomic_set(&smi_info->req_events, 0);
1106 }
1107 
1108 static struct ipmi_smi_handlers handlers = {
1109 	.owner                  = THIS_MODULE,
1110 	.start_processing       = smi_start_processing,
1111 	.sender			= sender,
1112 	.request_events		= request_events,
1113 	.set_maintenance_mode   = set_maintenance_mode,
1114 	.set_run_to_completion  = set_run_to_completion,
1115 	.poll			= poll,
1116 };
1117 
1118 /*
1119  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1120  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1121  */
1122 
1123 static LIST_HEAD(smi_infos);
1124 static DEFINE_MUTEX(smi_infos_lock);
1125 static int smi_num; /* Used to sequence the SMIs */
1126 
1127 #define DEFAULT_REGSPACING	1
1128 #define DEFAULT_REGSIZE		1
1129 
1130 static int           si_trydefaults = 1;
1131 static char          *si_type[SI_MAX_PARMS];
1132 #define MAX_SI_TYPE_STR 30
1133 static char          si_type_str[MAX_SI_TYPE_STR];
1134 static unsigned long addrs[SI_MAX_PARMS];
1135 static unsigned int num_addrs;
1136 static unsigned int  ports[SI_MAX_PARMS];
1137 static unsigned int num_ports;
1138 static int           irqs[SI_MAX_PARMS];
1139 static unsigned int num_irqs;
1140 static int           regspacings[SI_MAX_PARMS];
1141 static unsigned int num_regspacings;
1142 static int           regsizes[SI_MAX_PARMS];
1143 static unsigned int num_regsizes;
1144 static int           regshifts[SI_MAX_PARMS];
1145 static unsigned int num_regshifts;
1146 static int slave_addrs[SI_MAX_PARMS];
1147 static unsigned int num_slave_addrs;
1148 
1149 #define IPMI_IO_ADDR_SPACE  0
1150 #define IPMI_MEM_ADDR_SPACE 1
1151 static char *addr_space_to_str[] = { "i/o", "mem" };
1152 
1153 static int hotmod_handler(const char *val, struct kernel_param *kp);
1154 
1155 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1156 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1157 		 " Documentation/IPMI.txt in the kernel sources for the"
1158 		 " gory details.");
1159 
1160 module_param_named(trydefaults, si_trydefaults, bool, 0);
1161 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1162 		 " default scan of the KCS and SMIC interface at the standard"
1163 		 " address");
1164 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1165 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1166 		 " interface separated by commas.  The types are 'kcs',"
1167 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1168 		 " the first interface to kcs and the second to bt");
1169 module_param_array(addrs, ulong, &num_addrs, 0);
1170 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1171 		 " addresses separated by commas.  Only use if an interface"
1172 		 " is in memory.  Otherwise, set it to zero or leave"
1173 		 " it blank.");
1174 module_param_array(ports, uint, &num_ports, 0);
1175 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1176 		 " addresses separated by commas.  Only use if an interface"
1177 		 " is a port.  Otherwise, set it to zero or leave"
1178 		 " it blank.");
1179 module_param_array(irqs, int, &num_irqs, 0);
1180 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1181 		 " addresses separated by commas.  Only use if an interface"
1182 		 " has an interrupt.  Otherwise, set it to zero or leave"
1183 		 " it blank.");
1184 module_param_array(regspacings, int, &num_regspacings, 0);
1185 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1186 		 " and each successive register used by the interface.  For"
1187 		 " instance, if the start address is 0xca2 and the spacing"
1188 		 " is 2, then the second address is at 0xca4.  Defaults"
1189 		 " to 1.");
1190 module_param_array(regsizes, int, &num_regsizes, 0);
1191 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1192 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1193 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1194 		 " the 8-bit IPMI register has to be read from a larger"
1195 		 " register.");
1196 module_param_array(regshifts, int, &num_regshifts, 0);
1197 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1198 		 " IPMI register, in bits.  For instance, if the data"
1199 		 " is read from a 32-bit word and the IPMI data is in"
1200 		 " bit 8-15, then the shift would be 8");
1201 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1202 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1203 		 " the controller.  Normally this is 0x20, but can be"
1204 		 " overridden by this parm.  This is an array indexed"
1205 		 " by interface number.");
1206 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1207 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1208 		 " disabled(0).  Normally the IPMI driver auto-detects"
1209 		 " this, but the value may be overridden by this parm.");
1210 module_param(unload_when_empty, int, 0);
1211 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1212 		 " specified or found, default is 1.  Setting to 0"
1213 		 " is useful for hot add of devices using hotmod.");
1214 
1215 
1216 static void std_irq_cleanup(struct smi_info *info)
1217 {
1218 	if (info->si_type == SI_BT)
1219 		/* Disable the interrupt in the BT interface. */
1220 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1221 	free_irq(info->irq, info);
1222 }
1223 
1224 static int std_irq_setup(struct smi_info *info)
1225 {
1226 	int rv;
1227 
1228 	if (!info->irq)
1229 		return 0;
1230 
1231 	if (info->si_type == SI_BT) {
1232 		rv = request_irq(info->irq,
1233 				 si_bt_irq_handler,
1234 				 IRQF_SHARED | IRQF_DISABLED,
1235 				 DEVICE_NAME,
1236 				 info);
1237 		if (!rv)
1238 			/* Enable the interrupt in the BT interface. */
1239 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1240 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1241 	} else
1242 		rv = request_irq(info->irq,
1243 				 si_irq_handler,
1244 				 IRQF_SHARED | IRQF_DISABLED,
1245 				 DEVICE_NAME,
1246 				 info);
1247 	if (rv) {
1248 		printk(KERN_WARNING
1249 		       "ipmi_si: %s unable to claim interrupt %d,"
1250 		       " running polled\n",
1251 		       DEVICE_NAME, info->irq);
1252 		info->irq = 0;
1253 	} else {
1254 		info->irq_cleanup = std_irq_cleanup;
1255 		printk("  Using irq %d\n", info->irq);
1256 	}
1257 
1258 	return rv;
1259 }
1260 
1261 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1262 {
1263 	unsigned int addr = io->addr_data;
1264 
1265 	return inb(addr + (offset * io->regspacing));
1266 }
1267 
1268 static void port_outb(struct si_sm_io *io, unsigned int offset,
1269 		      unsigned char b)
1270 {
1271 	unsigned int addr = io->addr_data;
1272 
1273 	outb(b, addr + (offset * io->regspacing));
1274 }
1275 
1276 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1277 {
1278 	unsigned int addr = io->addr_data;
1279 
1280 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1281 }
1282 
1283 static void port_outw(struct si_sm_io *io, unsigned int offset,
1284 		      unsigned char b)
1285 {
1286 	unsigned int addr = io->addr_data;
1287 
1288 	outw(b << io->regshift, addr + (offset * io->regspacing));
1289 }
1290 
1291 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1292 {
1293 	unsigned int addr = io->addr_data;
1294 
1295 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1296 }
1297 
1298 static void port_outl(struct si_sm_io *io, unsigned int offset,
1299 		      unsigned char b)
1300 {
1301 	unsigned int addr = io->addr_data;
1302 
1303 	outl(b << io->regshift, addr+(offset * io->regspacing));
1304 }
1305 
1306 static void port_cleanup(struct smi_info *info)
1307 {
1308 	unsigned int addr = info->io.addr_data;
1309 	int          idx;
1310 
1311 	if (addr) {
1312 		for (idx = 0; idx < info->io_size; idx++)
1313 			release_region(addr + idx * info->io.regspacing,
1314 				       info->io.regsize);
1315 	}
1316 }
1317 
1318 static int port_setup(struct smi_info *info)
1319 {
1320 	unsigned int addr = info->io.addr_data;
1321 	int          idx;
1322 
1323 	if (!addr)
1324 		return -ENODEV;
1325 
1326 	info->io_cleanup = port_cleanup;
1327 
1328 	/*
1329 	 * Figure out the actual inb/inw/inl/etc routine to use based
1330 	 * upon the register size.
1331 	 */
1332 	switch (info->io.regsize) {
1333 	case 1:
1334 		info->io.inputb = port_inb;
1335 		info->io.outputb = port_outb;
1336 		break;
1337 	case 2:
1338 		info->io.inputb = port_inw;
1339 		info->io.outputb = port_outw;
1340 		break;
1341 	case 4:
1342 		info->io.inputb = port_inl;
1343 		info->io.outputb = port_outl;
1344 		break;
1345 	default:
1346 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1347 		       info->io.regsize);
1348 		return -EINVAL;
1349 	}
1350 
1351 	/*
1352 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
1353 	 * tables.  This causes problems when trying to register the
1354 	 * entire I/O region.  Therefore we must register each I/O
1355 	 * port separately.
1356 	 */
1357 	for (idx = 0; idx < info->io_size; idx++) {
1358 		if (request_region(addr + idx * info->io.regspacing,
1359 				   info->io.regsize, DEVICE_NAME) == NULL) {
1360 			/* Undo allocations */
1361 			while (idx--) {
1362 				release_region(addr + idx * info->io.regspacing,
1363 					       info->io.regsize);
1364 			}
1365 			return -EIO;
1366 		}
1367 	}
1368 	return 0;
1369 }
1370 
1371 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1372 {
1373 	return readb((io->addr)+(offset * io->regspacing));
1374 }
1375 
1376 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1377 		     unsigned char b)
1378 {
1379 	writeb(b, (io->addr)+(offset * io->regspacing));
1380 }
1381 
1382 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1383 {
1384 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1385 		& 0xff;
1386 }
1387 
1388 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1389 		     unsigned char b)
1390 {
1391 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1392 }
1393 
1394 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1395 {
1396 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1397 		& 0xff;
1398 }
1399 
1400 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1401 		     unsigned char b)
1402 {
1403 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1404 }
1405 
1406 #ifdef readq
1407 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1408 {
1409 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1410 		& 0xff;
1411 }
1412 
1413 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1414 		     unsigned char b)
1415 {
1416 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1417 }
1418 #endif
1419 
1420 static void mem_cleanup(struct smi_info *info)
1421 {
1422 	unsigned long addr = info->io.addr_data;
1423 	int           mapsize;
1424 
1425 	if (info->io.addr) {
1426 		iounmap(info->io.addr);
1427 
1428 		mapsize = ((info->io_size * info->io.regspacing)
1429 			   - (info->io.regspacing - info->io.regsize));
1430 
1431 		release_mem_region(addr, mapsize);
1432 	}
1433 }
1434 
1435 static int mem_setup(struct smi_info *info)
1436 {
1437 	unsigned long addr = info->io.addr_data;
1438 	int           mapsize;
1439 
1440 	if (!addr)
1441 		return -ENODEV;
1442 
1443 	info->io_cleanup = mem_cleanup;
1444 
1445 	/*
1446 	 * Figure out the actual readb/readw/readl/etc routine to use based
1447 	 * upon the register size.
1448 	 */
1449 	switch (info->io.regsize) {
1450 	case 1:
1451 		info->io.inputb = intf_mem_inb;
1452 		info->io.outputb = intf_mem_outb;
1453 		break;
1454 	case 2:
1455 		info->io.inputb = intf_mem_inw;
1456 		info->io.outputb = intf_mem_outw;
1457 		break;
1458 	case 4:
1459 		info->io.inputb = intf_mem_inl;
1460 		info->io.outputb = intf_mem_outl;
1461 		break;
1462 #ifdef readq
1463 	case 8:
1464 		info->io.inputb = mem_inq;
1465 		info->io.outputb = mem_outq;
1466 		break;
1467 #endif
1468 	default:
1469 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1470 		       info->io.regsize);
1471 		return -EINVAL;
1472 	}
1473 
1474 	/*
1475 	 * Calculate the total amount of memory to claim.  This is an
1476 	 * unusual looking calculation, but it avoids claiming any
1477 	 * more memory than it has to.  It will claim everything
1478 	 * between the first address to the end of the last full
1479 	 * register.
1480 	 */
1481 	mapsize = ((info->io_size * info->io.regspacing)
1482 		   - (info->io.regspacing - info->io.regsize));
1483 
1484 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1485 		return -EIO;
1486 
1487 	info->io.addr = ioremap(addr, mapsize);
1488 	if (info->io.addr == NULL) {
1489 		release_mem_region(addr, mapsize);
1490 		return -EIO;
1491 	}
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1497  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1498  * Options are:
1499  *   rsp=<regspacing>
1500  *   rsi=<regsize>
1501  *   rsh=<regshift>
1502  *   irq=<irq>
1503  *   ipmb=<ipmb addr>
1504  */
1505 enum hotmod_op { HM_ADD, HM_REMOVE };
1506 struct hotmod_vals {
1507 	char *name;
1508 	int  val;
1509 };
1510 static struct hotmod_vals hotmod_ops[] = {
1511 	{ "add",	HM_ADD },
1512 	{ "remove",	HM_REMOVE },
1513 	{ NULL }
1514 };
1515 static struct hotmod_vals hotmod_si[] = {
1516 	{ "kcs",	SI_KCS },
1517 	{ "smic",	SI_SMIC },
1518 	{ "bt",		SI_BT },
1519 	{ NULL }
1520 };
1521 static struct hotmod_vals hotmod_as[] = {
1522 	{ "mem",	IPMI_MEM_ADDR_SPACE },
1523 	{ "i/o",	IPMI_IO_ADDR_SPACE },
1524 	{ NULL }
1525 };
1526 
1527 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1528 {
1529 	char *s;
1530 	int  i;
1531 
1532 	s = strchr(*curr, ',');
1533 	if (!s) {
1534 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1535 		return -EINVAL;
1536 	}
1537 	*s = '\0';
1538 	s++;
1539 	for (i = 0; hotmod_ops[i].name; i++) {
1540 		if (strcmp(*curr, v[i].name) == 0) {
1541 			*val = v[i].val;
1542 			*curr = s;
1543 			return 0;
1544 		}
1545 	}
1546 
1547 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1548 	return -EINVAL;
1549 }
1550 
1551 static int check_hotmod_int_op(const char *curr, const char *option,
1552 			       const char *name, int *val)
1553 {
1554 	char *n;
1555 
1556 	if (strcmp(curr, name) == 0) {
1557 		if (!option) {
1558 			printk(KERN_WARNING PFX
1559 			       "No option given for '%s'\n",
1560 			       curr);
1561 			return -EINVAL;
1562 		}
1563 		*val = simple_strtoul(option, &n, 0);
1564 		if ((*n != '\0') || (*option == '\0')) {
1565 			printk(KERN_WARNING PFX
1566 			       "Bad option given for '%s'\n",
1567 			       curr);
1568 			return -EINVAL;
1569 		}
1570 		return 1;
1571 	}
1572 	return 0;
1573 }
1574 
1575 static int hotmod_handler(const char *val, struct kernel_param *kp)
1576 {
1577 	char *str = kstrdup(val, GFP_KERNEL);
1578 	int  rv;
1579 	char *next, *curr, *s, *n, *o;
1580 	enum hotmod_op op;
1581 	enum si_type si_type;
1582 	int  addr_space;
1583 	unsigned long addr;
1584 	int regspacing;
1585 	int regsize;
1586 	int regshift;
1587 	int irq;
1588 	int ipmb;
1589 	int ival;
1590 	int len;
1591 	struct smi_info *info;
1592 
1593 	if (!str)
1594 		return -ENOMEM;
1595 
1596 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
1597 	len = strlen(str);
1598 	ival = len - 1;
1599 	while ((ival >= 0) && isspace(str[ival])) {
1600 		str[ival] = '\0';
1601 		ival--;
1602 	}
1603 
1604 	for (curr = str; curr; curr = next) {
1605 		regspacing = 1;
1606 		regsize = 1;
1607 		regshift = 0;
1608 		irq = 0;
1609 		ipmb = 0x20;
1610 
1611 		next = strchr(curr, ':');
1612 		if (next) {
1613 			*next = '\0';
1614 			next++;
1615 		}
1616 
1617 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1618 		if (rv)
1619 			break;
1620 		op = ival;
1621 
1622 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1623 		if (rv)
1624 			break;
1625 		si_type = ival;
1626 
1627 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1628 		if (rv)
1629 			break;
1630 
1631 		s = strchr(curr, ',');
1632 		if (s) {
1633 			*s = '\0';
1634 			s++;
1635 		}
1636 		addr = simple_strtoul(curr, &n, 0);
1637 		if ((*n != '\0') || (*curr == '\0')) {
1638 			printk(KERN_WARNING PFX "Invalid hotmod address"
1639 			       " '%s'\n", curr);
1640 			break;
1641 		}
1642 
1643 		while (s) {
1644 			curr = s;
1645 			s = strchr(curr, ',');
1646 			if (s) {
1647 				*s = '\0';
1648 				s++;
1649 			}
1650 			o = strchr(curr, '=');
1651 			if (o) {
1652 				*o = '\0';
1653 				o++;
1654 			}
1655 			rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1656 			if (rv < 0)
1657 				goto out;
1658 			else if (rv)
1659 				continue;
1660 			rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1661 			if (rv < 0)
1662 				goto out;
1663 			else if (rv)
1664 				continue;
1665 			rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1666 			if (rv < 0)
1667 				goto out;
1668 			else if (rv)
1669 				continue;
1670 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
1671 			if (rv < 0)
1672 				goto out;
1673 			else if (rv)
1674 				continue;
1675 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1676 			if (rv < 0)
1677 				goto out;
1678 			else if (rv)
1679 				continue;
1680 
1681 			rv = -EINVAL;
1682 			printk(KERN_WARNING PFX
1683 			       "Invalid hotmod option '%s'\n",
1684 			       curr);
1685 			goto out;
1686 		}
1687 
1688 		if (op == HM_ADD) {
1689 			info = kzalloc(sizeof(*info), GFP_KERNEL);
1690 			if (!info) {
1691 				rv = -ENOMEM;
1692 				goto out;
1693 			}
1694 
1695 			info->addr_source = "hotmod";
1696 			info->si_type = si_type;
1697 			info->io.addr_data = addr;
1698 			info->io.addr_type = addr_space;
1699 			if (addr_space == IPMI_MEM_ADDR_SPACE)
1700 				info->io_setup = mem_setup;
1701 			else
1702 				info->io_setup = port_setup;
1703 
1704 			info->io.addr = NULL;
1705 			info->io.regspacing = regspacing;
1706 			if (!info->io.regspacing)
1707 				info->io.regspacing = DEFAULT_REGSPACING;
1708 			info->io.regsize = regsize;
1709 			if (!info->io.regsize)
1710 				info->io.regsize = DEFAULT_REGSPACING;
1711 			info->io.regshift = regshift;
1712 			info->irq = irq;
1713 			if (info->irq)
1714 				info->irq_setup = std_irq_setup;
1715 			info->slave_addr = ipmb;
1716 
1717 			try_smi_init(info);
1718 		} else {
1719 			/* remove */
1720 			struct smi_info *e, *tmp_e;
1721 
1722 			mutex_lock(&smi_infos_lock);
1723 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1724 				if (e->io.addr_type != addr_space)
1725 					continue;
1726 				if (e->si_type != si_type)
1727 					continue;
1728 				if (e->io.addr_data == addr)
1729 					cleanup_one_si(e);
1730 			}
1731 			mutex_unlock(&smi_infos_lock);
1732 		}
1733 	}
1734 	rv = len;
1735  out:
1736 	kfree(str);
1737 	return rv;
1738 }
1739 
1740 static __devinit void hardcode_find_bmc(void)
1741 {
1742 	int             i;
1743 	struct smi_info *info;
1744 
1745 	for (i = 0; i < SI_MAX_PARMS; i++) {
1746 		if (!ports[i] && !addrs[i])
1747 			continue;
1748 
1749 		info = kzalloc(sizeof(*info), GFP_KERNEL);
1750 		if (!info)
1751 			return;
1752 
1753 		info->addr_source = "hardcoded";
1754 
1755 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1756 			info->si_type = SI_KCS;
1757 		} else if (strcmp(si_type[i], "smic") == 0) {
1758 			info->si_type = SI_SMIC;
1759 		} else if (strcmp(si_type[i], "bt") == 0) {
1760 			info->si_type = SI_BT;
1761 		} else {
1762 			printk(KERN_WARNING
1763 			       "ipmi_si: Interface type specified "
1764 			       "for interface %d, was invalid: %s\n",
1765 			       i, si_type[i]);
1766 			kfree(info);
1767 			continue;
1768 		}
1769 
1770 		if (ports[i]) {
1771 			/* An I/O port */
1772 			info->io_setup = port_setup;
1773 			info->io.addr_data = ports[i];
1774 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
1775 		} else if (addrs[i]) {
1776 			/* A memory port */
1777 			info->io_setup = mem_setup;
1778 			info->io.addr_data = addrs[i];
1779 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1780 		} else {
1781 			printk(KERN_WARNING
1782 			       "ipmi_si: Interface type specified "
1783 			       "for interface %d, "
1784 			       "but port and address were not set or "
1785 			       "set to zero.\n", i);
1786 			kfree(info);
1787 			continue;
1788 		}
1789 
1790 		info->io.addr = NULL;
1791 		info->io.regspacing = regspacings[i];
1792 		if (!info->io.regspacing)
1793 			info->io.regspacing = DEFAULT_REGSPACING;
1794 		info->io.regsize = regsizes[i];
1795 		if (!info->io.regsize)
1796 			info->io.regsize = DEFAULT_REGSPACING;
1797 		info->io.regshift = regshifts[i];
1798 		info->irq = irqs[i];
1799 		if (info->irq)
1800 			info->irq_setup = std_irq_setup;
1801 
1802 		try_smi_init(info);
1803 	}
1804 }
1805 
1806 #ifdef CONFIG_ACPI
1807 
1808 #include <linux/acpi.h>
1809 
1810 /*
1811  * Once we get an ACPI failure, we don't try any more, because we go
1812  * through the tables sequentially.  Once we don't find a table, there
1813  * are no more.
1814  */
1815 static int acpi_failure;
1816 
1817 /* For GPE-type interrupts. */
1818 static u32 ipmi_acpi_gpe(void *context)
1819 {
1820 	struct smi_info *smi_info = context;
1821 	unsigned long   flags;
1822 #ifdef DEBUG_TIMING
1823 	struct timeval t;
1824 #endif
1825 
1826 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1827 
1828 	smi_inc_stat(smi_info, interrupts);
1829 
1830 #ifdef DEBUG_TIMING
1831 	do_gettimeofday(&t);
1832 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1833 #endif
1834 	smi_event_handler(smi_info, 0);
1835 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1836 
1837 	return ACPI_INTERRUPT_HANDLED;
1838 }
1839 
1840 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1841 {
1842 	if (!info->irq)
1843 		return;
1844 
1845 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1846 }
1847 
1848 static int acpi_gpe_irq_setup(struct smi_info *info)
1849 {
1850 	acpi_status status;
1851 
1852 	if (!info->irq)
1853 		return 0;
1854 
1855 	/* FIXME - is level triggered right? */
1856 	status = acpi_install_gpe_handler(NULL,
1857 					  info->irq,
1858 					  ACPI_GPE_LEVEL_TRIGGERED,
1859 					  &ipmi_acpi_gpe,
1860 					  info);
1861 	if (status != AE_OK) {
1862 		printk(KERN_WARNING
1863 		       "ipmi_si: %s unable to claim ACPI GPE %d,"
1864 		       " running polled\n",
1865 		       DEVICE_NAME, info->irq);
1866 		info->irq = 0;
1867 		return -EINVAL;
1868 	} else {
1869 		info->irq_cleanup = acpi_gpe_irq_cleanup;
1870 		printk("  Using ACPI GPE %d\n", info->irq);
1871 		return 0;
1872 	}
1873 }
1874 
1875 /*
1876  * Defined at
1877  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1878  * Docs/TechPapers/IA64/hpspmi.pdf
1879  */
1880 struct SPMITable {
1881 	s8	Signature[4];
1882 	u32	Length;
1883 	u8	Revision;
1884 	u8	Checksum;
1885 	s8	OEMID[6];
1886 	s8	OEMTableID[8];
1887 	s8	OEMRevision[4];
1888 	s8	CreatorID[4];
1889 	s8	CreatorRevision[4];
1890 	u8	InterfaceType;
1891 	u8	IPMIlegacy;
1892 	s16	SpecificationRevision;
1893 
1894 	/*
1895 	 * Bit 0 - SCI interrupt supported
1896 	 * Bit 1 - I/O APIC/SAPIC
1897 	 */
1898 	u8	InterruptType;
1899 
1900 	/*
1901 	 * If bit 0 of InterruptType is set, then this is the SCI
1902 	 * interrupt in the GPEx_STS register.
1903 	 */
1904 	u8	GPE;
1905 
1906 	s16	Reserved;
1907 
1908 	/*
1909 	 * If bit 1 of InterruptType is set, then this is the I/O
1910 	 * APIC/SAPIC interrupt.
1911 	 */
1912 	u32	GlobalSystemInterrupt;
1913 
1914 	/* The actual register address. */
1915 	struct acpi_generic_address addr;
1916 
1917 	u8	UID[4];
1918 
1919 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1920 };
1921 
1922 static __devinit int try_init_acpi(struct SPMITable *spmi)
1923 {
1924 	struct smi_info  *info;
1925 	u8 		 addr_space;
1926 
1927 	if (spmi->IPMIlegacy != 1) {
1928 	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1929 	    return -ENODEV;
1930 	}
1931 
1932 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1933 		addr_space = IPMI_MEM_ADDR_SPACE;
1934 	else
1935 		addr_space = IPMI_IO_ADDR_SPACE;
1936 
1937 	info = kzalloc(sizeof(*info), GFP_KERNEL);
1938 	if (!info) {
1939 		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1940 		return -ENOMEM;
1941 	}
1942 
1943 	info->addr_source = "ACPI";
1944 
1945 	/* Figure out the interface type. */
1946 	switch (spmi->InterfaceType) {
1947 	case 1:	/* KCS */
1948 		info->si_type = SI_KCS;
1949 		break;
1950 	case 2:	/* SMIC */
1951 		info->si_type = SI_SMIC;
1952 		break;
1953 	case 3:	/* BT */
1954 		info->si_type = SI_BT;
1955 		break;
1956 	default:
1957 		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1958 			spmi->InterfaceType);
1959 		kfree(info);
1960 		return -EIO;
1961 	}
1962 
1963 	if (spmi->InterruptType & 1) {
1964 		/* We've got a GPE interrupt. */
1965 		info->irq = spmi->GPE;
1966 		info->irq_setup = acpi_gpe_irq_setup;
1967 	} else if (spmi->InterruptType & 2) {
1968 		/* We've got an APIC/SAPIC interrupt. */
1969 		info->irq = spmi->GlobalSystemInterrupt;
1970 		info->irq_setup = std_irq_setup;
1971 	} else {
1972 		/* Use the default interrupt setting. */
1973 		info->irq = 0;
1974 		info->irq_setup = NULL;
1975 	}
1976 
1977 	if (spmi->addr.bit_width) {
1978 		/* A (hopefully) properly formed register bit width. */
1979 		info->io.regspacing = spmi->addr.bit_width / 8;
1980 	} else {
1981 		info->io.regspacing = DEFAULT_REGSPACING;
1982 	}
1983 	info->io.regsize = info->io.regspacing;
1984 	info->io.regshift = spmi->addr.bit_offset;
1985 
1986 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1987 		info->io_setup = mem_setup;
1988 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1989 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1990 		info->io_setup = port_setup;
1991 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
1992 	} else {
1993 		kfree(info);
1994 		printk(KERN_WARNING
1995 		       "ipmi_si: Unknown ACPI I/O Address type\n");
1996 		return -EIO;
1997 	}
1998 	info->io.addr_data = spmi->addr.address;
1999 
2000 	try_smi_init(info);
2001 
2002 	return 0;
2003 }
2004 
2005 static __devinit void acpi_find_bmc(void)
2006 {
2007 	acpi_status      status;
2008 	struct SPMITable *spmi;
2009 	int              i;
2010 
2011 	if (acpi_disabled)
2012 		return;
2013 
2014 	if (acpi_failure)
2015 		return;
2016 
2017 	for (i = 0; ; i++) {
2018 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2019 					(struct acpi_table_header **)&spmi);
2020 		if (status != AE_OK)
2021 			return;
2022 
2023 		try_init_acpi(spmi);
2024 	}
2025 }
2026 #endif
2027 
2028 #ifdef CONFIG_DMI
2029 struct dmi_ipmi_data {
2030 	u8   		type;
2031 	u8   		addr_space;
2032 	unsigned long	base_addr;
2033 	u8   		irq;
2034 	u8              offset;
2035 	u8              slave_addr;
2036 };
2037 
2038 static int __devinit decode_dmi(const struct dmi_header *dm,
2039 				struct dmi_ipmi_data *dmi)
2040 {
2041 	const u8	*data = (const u8 *)dm;
2042 	unsigned long  	base_addr;
2043 	u8		reg_spacing;
2044 	u8              len = dm->length;
2045 
2046 	dmi->type = data[4];
2047 
2048 	memcpy(&base_addr, data+8, sizeof(unsigned long));
2049 	if (len >= 0x11) {
2050 		if (base_addr & 1) {
2051 			/* I/O */
2052 			base_addr &= 0xFFFE;
2053 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
2054 		} else
2055 			/* Memory */
2056 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2057 
2058 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
2059 		   is odd. */
2060 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2061 
2062 		dmi->irq = data[0x11];
2063 
2064 		/* The top two bits of byte 0x10 hold the register spacing. */
2065 		reg_spacing = (data[0x10] & 0xC0) >> 6;
2066 		switch (reg_spacing) {
2067 		case 0x00: /* Byte boundaries */
2068 		    dmi->offset = 1;
2069 		    break;
2070 		case 0x01: /* 32-bit boundaries */
2071 		    dmi->offset = 4;
2072 		    break;
2073 		case 0x02: /* 16-byte boundaries */
2074 		    dmi->offset = 16;
2075 		    break;
2076 		default:
2077 		    /* Some other interface, just ignore it. */
2078 		    return -EIO;
2079 		}
2080 	} else {
2081 		/* Old DMI spec. */
2082 		/*
2083 		 * Note that technically, the lower bit of the base
2084 		 * address should be 1 if the address is I/O and 0 if
2085 		 * the address is in memory.  So many systems get that
2086 		 * wrong (and all that I have seen are I/O) so we just
2087 		 * ignore that bit and assume I/O.  Systems that use
2088 		 * memory should use the newer spec, anyway.
2089 		 */
2090 		dmi->base_addr = base_addr & 0xfffe;
2091 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
2092 		dmi->offset = 1;
2093 	}
2094 
2095 	dmi->slave_addr = data[6];
2096 
2097 	return 0;
2098 }
2099 
2100 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2101 {
2102 	struct smi_info *info;
2103 
2104 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2105 	if (!info) {
2106 		printk(KERN_ERR
2107 		       "ipmi_si: Could not allocate SI data\n");
2108 		return;
2109 	}
2110 
2111 	info->addr_source = "SMBIOS";
2112 
2113 	switch (ipmi_data->type) {
2114 	case 0x01: /* KCS */
2115 		info->si_type = SI_KCS;
2116 		break;
2117 	case 0x02: /* SMIC */
2118 		info->si_type = SI_SMIC;
2119 		break;
2120 	case 0x03: /* BT */
2121 		info->si_type = SI_BT;
2122 		break;
2123 	default:
2124 		kfree(info);
2125 		return;
2126 	}
2127 
2128 	switch (ipmi_data->addr_space) {
2129 	case IPMI_MEM_ADDR_SPACE:
2130 		info->io_setup = mem_setup;
2131 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2132 		break;
2133 
2134 	case IPMI_IO_ADDR_SPACE:
2135 		info->io_setup = port_setup;
2136 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2137 		break;
2138 
2139 	default:
2140 		kfree(info);
2141 		printk(KERN_WARNING
2142 		       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2143 		       ipmi_data->addr_space);
2144 		return;
2145 	}
2146 	info->io.addr_data = ipmi_data->base_addr;
2147 
2148 	info->io.regspacing = ipmi_data->offset;
2149 	if (!info->io.regspacing)
2150 		info->io.regspacing = DEFAULT_REGSPACING;
2151 	info->io.regsize = DEFAULT_REGSPACING;
2152 	info->io.regshift = 0;
2153 
2154 	info->slave_addr = ipmi_data->slave_addr;
2155 
2156 	info->irq = ipmi_data->irq;
2157 	if (info->irq)
2158 		info->irq_setup = std_irq_setup;
2159 
2160 	try_smi_init(info);
2161 }
2162 
2163 static void __devinit dmi_find_bmc(void)
2164 {
2165 	const struct dmi_device *dev = NULL;
2166 	struct dmi_ipmi_data data;
2167 	int                  rv;
2168 
2169 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2170 		memset(&data, 0, sizeof(data));
2171 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
2172 				&data);
2173 		if (!rv)
2174 			try_init_dmi(&data);
2175 	}
2176 }
2177 #endif /* CONFIG_DMI */
2178 
2179 #ifdef CONFIG_PCI
2180 
2181 #define PCI_ERMC_CLASSCODE		0x0C0700
2182 #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
2183 #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
2184 #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
2185 #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
2186 #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
2187 
2188 #define PCI_HP_VENDOR_ID    0x103C
2189 #define PCI_MMC_DEVICE_ID   0x121A
2190 #define PCI_MMC_ADDR_CW     0x10
2191 
2192 static void ipmi_pci_cleanup(struct smi_info *info)
2193 {
2194 	struct pci_dev *pdev = info->addr_source_data;
2195 
2196 	pci_disable_device(pdev);
2197 }
2198 
2199 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2200 				    const struct pci_device_id *ent)
2201 {
2202 	int rv;
2203 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2204 	struct smi_info *info;
2205 	int first_reg_offset = 0;
2206 
2207 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2208 	if (!info)
2209 		return -ENOMEM;
2210 
2211 	info->addr_source = "PCI";
2212 
2213 	switch (class_type) {
2214 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2215 		info->si_type = SI_SMIC;
2216 		break;
2217 
2218 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
2219 		info->si_type = SI_KCS;
2220 		break;
2221 
2222 	case PCI_ERMC_CLASSCODE_TYPE_BT:
2223 		info->si_type = SI_BT;
2224 		break;
2225 
2226 	default:
2227 		kfree(info);
2228 		printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2229 		       pci_name(pdev), class_type);
2230 		return -ENOMEM;
2231 	}
2232 
2233 	rv = pci_enable_device(pdev);
2234 	if (rv) {
2235 		printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2236 		       pci_name(pdev));
2237 		kfree(info);
2238 		return rv;
2239 	}
2240 
2241 	info->addr_source_cleanup = ipmi_pci_cleanup;
2242 	info->addr_source_data = pdev;
2243 
2244 	if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
2245 		first_reg_offset = 1;
2246 
2247 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2248 		info->io_setup = port_setup;
2249 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2250 	} else {
2251 		info->io_setup = mem_setup;
2252 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2253 	}
2254 	info->io.addr_data = pci_resource_start(pdev, 0);
2255 
2256 	info->io.regspacing = DEFAULT_REGSPACING;
2257 	info->io.regsize = DEFAULT_REGSPACING;
2258 	info->io.regshift = 0;
2259 
2260 	info->irq = pdev->irq;
2261 	if (info->irq)
2262 		info->irq_setup = std_irq_setup;
2263 
2264 	info->dev = &pdev->dev;
2265 	pci_set_drvdata(pdev, info);
2266 
2267 	return try_smi_init(info);
2268 }
2269 
2270 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2271 {
2272 	struct smi_info *info = pci_get_drvdata(pdev);
2273 	cleanup_one_si(info);
2274 }
2275 
2276 #ifdef CONFIG_PM
2277 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2278 {
2279 	return 0;
2280 }
2281 
2282 static int ipmi_pci_resume(struct pci_dev *pdev)
2283 {
2284 	return 0;
2285 }
2286 #endif
2287 
2288 static struct pci_device_id ipmi_pci_devices[] = {
2289 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2290 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2291 	{ 0, }
2292 };
2293 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2294 
2295 static struct pci_driver ipmi_pci_driver = {
2296 	.name =         DEVICE_NAME,
2297 	.id_table =     ipmi_pci_devices,
2298 	.probe =        ipmi_pci_probe,
2299 	.remove =       __devexit_p(ipmi_pci_remove),
2300 #ifdef CONFIG_PM
2301 	.suspend =      ipmi_pci_suspend,
2302 	.resume =       ipmi_pci_resume,
2303 #endif
2304 };
2305 #endif /* CONFIG_PCI */
2306 
2307 
2308 #ifdef CONFIG_PPC_OF
2309 static int __devinit ipmi_of_probe(struct of_device *dev,
2310 			 const struct of_device_id *match)
2311 {
2312 	struct smi_info *info;
2313 	struct resource resource;
2314 	const int *regsize, *regspacing, *regshift;
2315 	struct device_node *np = dev->node;
2316 	int ret;
2317 	int proplen;
2318 
2319 	dev_info(&dev->dev, PFX "probing via device tree\n");
2320 
2321 	ret = of_address_to_resource(np, 0, &resource);
2322 	if (ret) {
2323 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
2324 		return ret;
2325 	}
2326 
2327 	regsize = of_get_property(np, "reg-size", &proplen);
2328 	if (regsize && proplen != 4) {
2329 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2330 		return -EINVAL;
2331 	}
2332 
2333 	regspacing = of_get_property(np, "reg-spacing", &proplen);
2334 	if (regspacing && proplen != 4) {
2335 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2336 		return -EINVAL;
2337 	}
2338 
2339 	regshift = of_get_property(np, "reg-shift", &proplen);
2340 	if (regshift && proplen != 4) {
2341 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2342 		return -EINVAL;
2343 	}
2344 
2345 	info = kzalloc(sizeof(*info), GFP_KERNEL);
2346 
2347 	if (!info) {
2348 		dev_err(&dev->dev,
2349 			PFX "could not allocate memory for OF probe\n");
2350 		return -ENOMEM;
2351 	}
2352 
2353 	info->si_type		= (enum si_type) match->data;
2354 	info->addr_source	= "device-tree";
2355 	info->io_setup		= mem_setup;
2356 	info->irq_setup		= std_irq_setup;
2357 
2358 	info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
2359 	info->io.addr_data	= resource.start;
2360 
2361 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
2362 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
2363 	info->io.regshift	= regshift ? *regshift : 0;
2364 
2365 	info->irq		= irq_of_parse_and_map(dev->node, 0);
2366 	info->dev		= &dev->dev;
2367 
2368 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2369 		info->io.addr_data, info->io.regsize, info->io.regspacing,
2370 		info->irq);
2371 
2372 	dev->dev.driver_data = (void *) info;
2373 
2374 	return try_smi_init(info);
2375 }
2376 
2377 static int __devexit ipmi_of_remove(struct of_device *dev)
2378 {
2379 	cleanup_one_si(dev->dev.driver_data);
2380 	return 0;
2381 }
2382 
2383 static struct of_device_id ipmi_match[] =
2384 {
2385 	{ .type = "ipmi", .compatible = "ipmi-kcs",
2386 	  .data = (void *)(unsigned long) SI_KCS },
2387 	{ .type = "ipmi", .compatible = "ipmi-smic",
2388 	  .data = (void *)(unsigned long) SI_SMIC },
2389 	{ .type = "ipmi", .compatible = "ipmi-bt",
2390 	  .data = (void *)(unsigned long) SI_BT },
2391 	{},
2392 };
2393 
2394 static struct of_platform_driver ipmi_of_platform_driver = {
2395 	.name		= "ipmi",
2396 	.match_table	= ipmi_match,
2397 	.probe		= ipmi_of_probe,
2398 	.remove		= __devexit_p(ipmi_of_remove),
2399 };
2400 #endif /* CONFIG_PPC_OF */
2401 
2402 
2403 static int try_get_dev_id(struct smi_info *smi_info)
2404 {
2405 	unsigned char         msg[2];
2406 	unsigned char         *resp;
2407 	unsigned long         resp_len;
2408 	enum si_sm_result     smi_result;
2409 	int                   rv = 0;
2410 
2411 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2412 	if (!resp)
2413 		return -ENOMEM;
2414 
2415 	/*
2416 	 * Do a Get Device ID command, since it comes back with some
2417 	 * useful info.
2418 	 */
2419 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2420 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
2421 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2422 
2423 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2424 	for (;;) {
2425 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
2426 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2427 			schedule_timeout_uninterruptible(1);
2428 			smi_result = smi_info->handlers->event(
2429 				smi_info->si_sm, 100);
2430 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2431 			smi_result = smi_info->handlers->event(
2432 				smi_info->si_sm, 0);
2433 		} else
2434 			break;
2435 	}
2436 	if (smi_result == SI_SM_HOSED) {
2437 		/*
2438 		 * We couldn't get the state machine to run, so whatever's at
2439 		 * the port is probably not an IPMI SMI interface.
2440 		 */
2441 		rv = -ENODEV;
2442 		goto out;
2443 	}
2444 
2445 	/* Otherwise, we got some data. */
2446 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2447 						  resp, IPMI_MAX_MSG_LENGTH);
2448 
2449 	/* Check and record info from the get device id, in case we need it. */
2450 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2451 
2452  out:
2453 	kfree(resp);
2454 	return rv;
2455 }
2456 
2457 static int type_file_read_proc(char *page, char **start, off_t off,
2458 			       int count, int *eof, void *data)
2459 {
2460 	struct smi_info *smi = data;
2461 
2462 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2463 }
2464 
2465 static int stat_file_read_proc(char *page, char **start, off_t off,
2466 			       int count, int *eof, void *data)
2467 {
2468 	char            *out = (char *) page;
2469 	struct smi_info *smi = data;
2470 
2471 	out += sprintf(out, "interrupts_enabled:    %d\n",
2472 		       smi->irq && !smi->interrupt_disabled);
2473 	out += sprintf(out, "short_timeouts:        %u\n",
2474 		       smi_get_stat(smi, short_timeouts));
2475 	out += sprintf(out, "long_timeouts:         %u\n",
2476 		       smi_get_stat(smi, long_timeouts));
2477 	out += sprintf(out, "idles:                 %u\n",
2478 		       smi_get_stat(smi, idles));
2479 	out += sprintf(out, "interrupts:            %u\n",
2480 		       smi_get_stat(smi, interrupts));
2481 	out += sprintf(out, "attentions:            %u\n",
2482 		       smi_get_stat(smi, attentions));
2483 	out += sprintf(out, "flag_fetches:          %u\n",
2484 		       smi_get_stat(smi, flag_fetches));
2485 	out += sprintf(out, "hosed_count:           %u\n",
2486 		       smi_get_stat(smi, hosed_count));
2487 	out += sprintf(out, "complete_transactions: %u\n",
2488 		       smi_get_stat(smi, complete_transactions));
2489 	out += sprintf(out, "events:                %u\n",
2490 		       smi_get_stat(smi, events));
2491 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2492 		       smi_get_stat(smi, watchdog_pretimeouts));
2493 	out += sprintf(out, "incoming_messages:     %u\n",
2494 		       smi_get_stat(smi, incoming_messages));
2495 
2496 	return out - page;
2497 }
2498 
2499 static int param_read_proc(char *page, char **start, off_t off,
2500 			   int count, int *eof, void *data)
2501 {
2502 	struct smi_info *smi = data;
2503 
2504 	return sprintf(page,
2505 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2506 		       si_to_str[smi->si_type],
2507 		       addr_space_to_str[smi->io.addr_type],
2508 		       smi->io.addr_data,
2509 		       smi->io.regspacing,
2510 		       smi->io.regsize,
2511 		       smi->io.regshift,
2512 		       smi->irq,
2513 		       smi->slave_addr);
2514 }
2515 
2516 /*
2517  * oem_data_avail_to_receive_msg_avail
2518  * @info - smi_info structure with msg_flags set
2519  *
2520  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2521  * Returns 1 indicating need to re-run handle_flags().
2522  */
2523 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2524 {
2525 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2526 			       RECEIVE_MSG_AVAIL);
2527 	return 1;
2528 }
2529 
2530 /*
2531  * setup_dell_poweredge_oem_data_handler
2532  * @info - smi_info.device_id must be populated
2533  *
2534  * Systems that match, but have firmware version < 1.40 may assert
2535  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2536  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2537  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2538  * as RECEIVE_MSG_AVAIL instead.
2539  *
2540  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2541  * assert the OEM[012] bits, and if it did, the driver would have to
2542  * change to handle that properly, we don't actually check for the
2543  * firmware version.
2544  * Device ID = 0x20                BMC on PowerEdge 8G servers
2545  * Device Revision = 0x80
2546  * Firmware Revision1 = 0x01       BMC version 1.40
2547  * Firmware Revision2 = 0x40       BCD encoded
2548  * IPMI Version = 0x51             IPMI 1.5
2549  * Manufacturer ID = A2 02 00      Dell IANA
2550  *
2551  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2552  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2553  *
2554  */
2555 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2556 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2557 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2558 #define DELL_IANA_MFR_ID 0x0002a2
2559 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2560 {
2561 	struct ipmi_device_id *id = &smi_info->device_id;
2562 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2563 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2564 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2565 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2566 			smi_info->oem_data_avail_handler =
2567 				oem_data_avail_to_receive_msg_avail;
2568 		} else if (ipmi_version_major(id) < 1 ||
2569 			   (ipmi_version_major(id) == 1 &&
2570 			    ipmi_version_minor(id) < 5)) {
2571 			smi_info->oem_data_avail_handler =
2572 				oem_data_avail_to_receive_msg_avail;
2573 		}
2574 	}
2575 }
2576 
2577 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2578 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2579 {
2580 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
2581 
2582 	/* Make it a reponse */
2583 	msg->rsp[0] = msg->data[0] | 4;
2584 	msg->rsp[1] = msg->data[1];
2585 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2586 	msg->rsp_size = 3;
2587 	smi_info->curr_msg = NULL;
2588 	deliver_recv_msg(smi_info, msg);
2589 }
2590 
2591 /*
2592  * dell_poweredge_bt_xaction_handler
2593  * @info - smi_info.device_id must be populated
2594  *
2595  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2596  * not respond to a Get SDR command if the length of the data
2597  * requested is exactly 0x3A, which leads to command timeouts and no
2598  * data returned.  This intercepts such commands, and causes userspace
2599  * callers to try again with a different-sized buffer, which succeeds.
2600  */
2601 
2602 #define STORAGE_NETFN 0x0A
2603 #define STORAGE_CMD_GET_SDR 0x23
2604 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2605 					     unsigned long unused,
2606 					     void *in)
2607 {
2608 	struct smi_info *smi_info = in;
2609 	unsigned char *data = smi_info->curr_msg->data;
2610 	unsigned int size   = smi_info->curr_msg->data_size;
2611 	if (size >= 8 &&
2612 	    (data[0]>>2) == STORAGE_NETFN &&
2613 	    data[1] == STORAGE_CMD_GET_SDR &&
2614 	    data[7] == 0x3A) {
2615 		return_hosed_msg_badsize(smi_info);
2616 		return NOTIFY_STOP;
2617 	}
2618 	return NOTIFY_DONE;
2619 }
2620 
2621 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2622 	.notifier_call	= dell_poweredge_bt_xaction_handler,
2623 };
2624 
2625 /*
2626  * setup_dell_poweredge_bt_xaction_handler
2627  * @info - smi_info.device_id must be filled in already
2628  *
2629  * Fills in smi_info.device_id.start_transaction_pre_hook
2630  * when we know what function to use there.
2631  */
2632 static void
2633 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2634 {
2635 	struct ipmi_device_id *id = &smi_info->device_id;
2636 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2637 	    smi_info->si_type == SI_BT)
2638 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2639 }
2640 
2641 /*
2642  * setup_oem_data_handler
2643  * @info - smi_info.device_id must be filled in already
2644  *
2645  * Fills in smi_info.device_id.oem_data_available_handler
2646  * when we know what function to use there.
2647  */
2648 
2649 static void setup_oem_data_handler(struct smi_info *smi_info)
2650 {
2651 	setup_dell_poweredge_oem_data_handler(smi_info);
2652 }
2653 
2654 static void setup_xaction_handlers(struct smi_info *smi_info)
2655 {
2656 	setup_dell_poweredge_bt_xaction_handler(smi_info);
2657 }
2658 
2659 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2660 {
2661 	if (smi_info->intf) {
2662 		/*
2663 		 * The timer and thread are only running if the
2664 		 * interface has been started up and registered.
2665 		 */
2666 		if (smi_info->thread != NULL)
2667 			kthread_stop(smi_info->thread);
2668 		del_timer_sync(&smi_info->si_timer);
2669 	}
2670 }
2671 
2672 static __devinitdata struct ipmi_default_vals
2673 {
2674 	int type;
2675 	int port;
2676 } ipmi_defaults[] =
2677 {
2678 	{ .type = SI_KCS, .port = 0xca2 },
2679 	{ .type = SI_SMIC, .port = 0xca9 },
2680 	{ .type = SI_BT, .port = 0xe4 },
2681 	{ .port = 0 }
2682 };
2683 
2684 static __devinit void default_find_bmc(void)
2685 {
2686 	struct smi_info *info;
2687 	int             i;
2688 
2689 	for (i = 0; ; i++) {
2690 		if (!ipmi_defaults[i].port)
2691 			break;
2692 
2693 		info = kzalloc(sizeof(*info), GFP_KERNEL);
2694 		if (!info)
2695 			return;
2696 
2697 #ifdef CONFIG_PPC_MERGE
2698 		if (check_legacy_ioport(ipmi_defaults[i].port))
2699 			continue;
2700 #endif
2701 
2702 		info->addr_source = NULL;
2703 
2704 		info->si_type = ipmi_defaults[i].type;
2705 		info->io_setup = port_setup;
2706 		info->io.addr_data = ipmi_defaults[i].port;
2707 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
2708 
2709 		info->io.addr = NULL;
2710 		info->io.regspacing = DEFAULT_REGSPACING;
2711 		info->io.regsize = DEFAULT_REGSPACING;
2712 		info->io.regshift = 0;
2713 
2714 		if (try_smi_init(info) == 0) {
2715 			/* Found one... */
2716 			printk(KERN_INFO "ipmi_si: Found default %s state"
2717 			       " machine at %s address 0x%lx\n",
2718 			       si_to_str[info->si_type],
2719 			       addr_space_to_str[info->io.addr_type],
2720 			       info->io.addr_data);
2721 			return;
2722 		}
2723 	}
2724 }
2725 
2726 static int is_new_interface(struct smi_info *info)
2727 {
2728 	struct smi_info *e;
2729 
2730 	list_for_each_entry(e, &smi_infos, link) {
2731 		if (e->io.addr_type != info->io.addr_type)
2732 			continue;
2733 		if (e->io.addr_data == info->io.addr_data)
2734 			return 0;
2735 	}
2736 
2737 	return 1;
2738 }
2739 
2740 static int try_smi_init(struct smi_info *new_smi)
2741 {
2742 	int rv;
2743 	int i;
2744 
2745 	if (new_smi->addr_source) {
2746 		printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2747 		       " machine at %s address 0x%lx, slave address 0x%x,"
2748 		       " irq %d\n",
2749 		       new_smi->addr_source,
2750 		       si_to_str[new_smi->si_type],
2751 		       addr_space_to_str[new_smi->io.addr_type],
2752 		       new_smi->io.addr_data,
2753 		       new_smi->slave_addr, new_smi->irq);
2754 	}
2755 
2756 	mutex_lock(&smi_infos_lock);
2757 	if (!is_new_interface(new_smi)) {
2758 		printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2759 		rv = -EBUSY;
2760 		goto out_err;
2761 	}
2762 
2763 	/* So we know not to free it unless we have allocated one. */
2764 	new_smi->intf = NULL;
2765 	new_smi->si_sm = NULL;
2766 	new_smi->handlers = NULL;
2767 
2768 	switch (new_smi->si_type) {
2769 	case SI_KCS:
2770 		new_smi->handlers = &kcs_smi_handlers;
2771 		break;
2772 
2773 	case SI_SMIC:
2774 		new_smi->handlers = &smic_smi_handlers;
2775 		break;
2776 
2777 	case SI_BT:
2778 		new_smi->handlers = &bt_smi_handlers;
2779 		break;
2780 
2781 	default:
2782 		/* No support for anything else yet. */
2783 		rv = -EIO;
2784 		goto out_err;
2785 	}
2786 
2787 	/* Allocate the state machine's data and initialize it. */
2788 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2789 	if (!new_smi->si_sm) {
2790 		printk(KERN_ERR "Could not allocate state machine memory\n");
2791 		rv = -ENOMEM;
2792 		goto out_err;
2793 	}
2794 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2795 							&new_smi->io);
2796 
2797 	/* Now that we know the I/O size, we can set up the I/O. */
2798 	rv = new_smi->io_setup(new_smi);
2799 	if (rv) {
2800 		printk(KERN_ERR "Could not set up I/O space\n");
2801 		goto out_err;
2802 	}
2803 
2804 	spin_lock_init(&(new_smi->si_lock));
2805 	spin_lock_init(&(new_smi->msg_lock));
2806 
2807 	/* Do low-level detection first. */
2808 	if (new_smi->handlers->detect(new_smi->si_sm)) {
2809 		if (new_smi->addr_source)
2810 			printk(KERN_INFO "ipmi_si: Interface detection"
2811 			       " failed\n");
2812 		rv = -ENODEV;
2813 		goto out_err;
2814 	}
2815 
2816 	/*
2817 	 * Attempt a get device id command.  If it fails, we probably
2818 	 * don't have a BMC here.
2819 	 */
2820 	rv = try_get_dev_id(new_smi);
2821 	if (rv) {
2822 		if (new_smi->addr_source)
2823 			printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2824 			       " at this location\n");
2825 		goto out_err;
2826 	}
2827 
2828 	setup_oem_data_handler(new_smi);
2829 	setup_xaction_handlers(new_smi);
2830 
2831 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2832 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2833 	new_smi->curr_msg = NULL;
2834 	atomic_set(&new_smi->req_events, 0);
2835 	new_smi->run_to_completion = 0;
2836 	for (i = 0; i < SI_NUM_STATS; i++)
2837 		atomic_set(&new_smi->stats[i], 0);
2838 
2839 	new_smi->interrupt_disabled = 0;
2840 	atomic_set(&new_smi->stop_operation, 0);
2841 	new_smi->intf_num = smi_num;
2842 	smi_num++;
2843 
2844 	/*
2845 	 * Start clearing the flags before we enable interrupts or the
2846 	 * timer to avoid racing with the timer.
2847 	 */
2848 	start_clear_flags(new_smi);
2849 	/* IRQ is defined to be set when non-zero. */
2850 	if (new_smi->irq)
2851 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2852 
2853 	if (!new_smi->dev) {
2854 		/*
2855 		 * If we don't already have a device from something
2856 		 * else (like PCI), then register a new one.
2857 		 */
2858 		new_smi->pdev = platform_device_alloc("ipmi_si",
2859 						      new_smi->intf_num);
2860 		if (rv) {
2861 			printk(KERN_ERR
2862 			       "ipmi_si_intf:"
2863 			       " Unable to allocate platform device\n");
2864 			goto out_err;
2865 		}
2866 		new_smi->dev = &new_smi->pdev->dev;
2867 		new_smi->dev->driver = &ipmi_driver;
2868 
2869 		rv = platform_device_add(new_smi->pdev);
2870 		if (rv) {
2871 			printk(KERN_ERR
2872 			       "ipmi_si_intf:"
2873 			       " Unable to register system interface device:"
2874 			       " %d\n",
2875 			       rv);
2876 			goto out_err;
2877 		}
2878 		new_smi->dev_registered = 1;
2879 	}
2880 
2881 	rv = ipmi_register_smi(&handlers,
2882 			       new_smi,
2883 			       &new_smi->device_id,
2884 			       new_smi->dev,
2885 			       "bmc",
2886 			       new_smi->slave_addr);
2887 	if (rv) {
2888 		printk(KERN_ERR
2889 		       "ipmi_si: Unable to register device: error %d\n",
2890 		       rv);
2891 		goto out_err_stop_timer;
2892 	}
2893 
2894 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2895 				     type_file_read_proc,
2896 				     new_smi, THIS_MODULE);
2897 	if (rv) {
2898 		printk(KERN_ERR
2899 		       "ipmi_si: Unable to create proc entry: %d\n",
2900 		       rv);
2901 		goto out_err_stop_timer;
2902 	}
2903 
2904 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2905 				     stat_file_read_proc,
2906 				     new_smi, THIS_MODULE);
2907 	if (rv) {
2908 		printk(KERN_ERR
2909 		       "ipmi_si: Unable to create proc entry: %d\n",
2910 		       rv);
2911 		goto out_err_stop_timer;
2912 	}
2913 
2914 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2915 				     param_read_proc,
2916 				     new_smi, THIS_MODULE);
2917 	if (rv) {
2918 		printk(KERN_ERR
2919 		       "ipmi_si: Unable to create proc entry: %d\n",
2920 		       rv);
2921 		goto out_err_stop_timer;
2922 	}
2923 
2924 	list_add_tail(&new_smi->link, &smi_infos);
2925 
2926 	mutex_unlock(&smi_infos_lock);
2927 
2928 	printk(KERN_INFO "IPMI %s interface initialized\n",
2929 	       si_to_str[new_smi->si_type]);
2930 
2931 	return 0;
2932 
2933  out_err_stop_timer:
2934 	atomic_inc(&new_smi->stop_operation);
2935 	wait_for_timer_and_thread(new_smi);
2936 
2937  out_err:
2938 	if (new_smi->intf)
2939 		ipmi_unregister_smi(new_smi->intf);
2940 
2941 	if (new_smi->irq_cleanup)
2942 		new_smi->irq_cleanup(new_smi);
2943 
2944 	/*
2945 	 * Wait until we know that we are out of any interrupt
2946 	 * handlers might have been running before we freed the
2947 	 * interrupt.
2948 	 */
2949 	synchronize_sched();
2950 
2951 	if (new_smi->si_sm) {
2952 		if (new_smi->handlers)
2953 			new_smi->handlers->cleanup(new_smi->si_sm);
2954 		kfree(new_smi->si_sm);
2955 	}
2956 	if (new_smi->addr_source_cleanup)
2957 		new_smi->addr_source_cleanup(new_smi);
2958 	if (new_smi->io_cleanup)
2959 		new_smi->io_cleanup(new_smi);
2960 
2961 	if (new_smi->dev_registered)
2962 		platform_device_unregister(new_smi->pdev);
2963 
2964 	kfree(new_smi);
2965 
2966 	mutex_unlock(&smi_infos_lock);
2967 
2968 	return rv;
2969 }
2970 
2971 static __devinit int init_ipmi_si(void)
2972 {
2973 	int  i;
2974 	char *str;
2975 	int  rv;
2976 
2977 	if (initialized)
2978 		return 0;
2979 	initialized = 1;
2980 
2981 	/* Register the device drivers. */
2982 	rv = driver_register(&ipmi_driver);
2983 	if (rv) {
2984 		printk(KERN_ERR
2985 		       "init_ipmi_si: Unable to register driver: %d\n",
2986 		       rv);
2987 		return rv;
2988 	}
2989 
2990 
2991 	/* Parse out the si_type string into its components. */
2992 	str = si_type_str;
2993 	if (*str != '\0') {
2994 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
2995 			si_type[i] = str;
2996 			str = strchr(str, ',');
2997 			if (str) {
2998 				*str = '\0';
2999 				str++;
3000 			} else {
3001 				break;
3002 			}
3003 		}
3004 	}
3005 
3006 	printk(KERN_INFO "IPMI System Interface driver.\n");
3007 
3008 	hardcode_find_bmc();
3009 
3010 #ifdef CONFIG_DMI
3011 	dmi_find_bmc();
3012 #endif
3013 
3014 #ifdef CONFIG_ACPI
3015 	acpi_find_bmc();
3016 #endif
3017 
3018 #ifdef CONFIG_PCI
3019 	rv = pci_register_driver(&ipmi_pci_driver);
3020 	if (rv)
3021 		printk(KERN_ERR
3022 		       "init_ipmi_si: Unable to register PCI driver: %d\n",
3023 		       rv);
3024 #endif
3025 
3026 #ifdef CONFIG_PPC_OF
3027 	of_register_platform_driver(&ipmi_of_platform_driver);
3028 #endif
3029 
3030 	if (si_trydefaults) {
3031 		mutex_lock(&smi_infos_lock);
3032 		if (list_empty(&smi_infos)) {
3033 			/* No BMC was found, try defaults. */
3034 			mutex_unlock(&smi_infos_lock);
3035 			default_find_bmc();
3036 		} else {
3037 			mutex_unlock(&smi_infos_lock);
3038 		}
3039 	}
3040 
3041 	mutex_lock(&smi_infos_lock);
3042 	if (unload_when_empty && list_empty(&smi_infos)) {
3043 		mutex_unlock(&smi_infos_lock);
3044 #ifdef CONFIG_PCI
3045 		pci_unregister_driver(&ipmi_pci_driver);
3046 #endif
3047 
3048 #ifdef CONFIG_PPC_OF
3049 		of_unregister_platform_driver(&ipmi_of_platform_driver);
3050 #endif
3051 		driver_unregister(&ipmi_driver);
3052 		printk(KERN_WARNING
3053 		       "ipmi_si: Unable to find any System Interface(s)\n");
3054 		return -ENODEV;
3055 	} else {
3056 		mutex_unlock(&smi_infos_lock);
3057 		return 0;
3058 	}
3059 }
3060 module_init(init_ipmi_si);
3061 
3062 static void cleanup_one_si(struct smi_info *to_clean)
3063 {
3064 	int           rv;
3065 	unsigned long flags;
3066 
3067 	if (!to_clean)
3068 		return;
3069 
3070 	list_del(&to_clean->link);
3071 
3072 	/* Tell the driver that we are shutting down. */
3073 	atomic_inc(&to_clean->stop_operation);
3074 
3075 	/*
3076 	 * Make sure the timer and thread are stopped and will not run
3077 	 * again.
3078 	 */
3079 	wait_for_timer_and_thread(to_clean);
3080 
3081 	/*
3082 	 * Timeouts are stopped, now make sure the interrupts are off
3083 	 * for the device.  A little tricky with locks to make sure
3084 	 * there are no races.
3085 	 */
3086 	spin_lock_irqsave(&to_clean->si_lock, flags);
3087 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3088 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
3089 		poll(to_clean);
3090 		schedule_timeout_uninterruptible(1);
3091 		spin_lock_irqsave(&to_clean->si_lock, flags);
3092 	}
3093 	disable_si_irq(to_clean);
3094 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
3095 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3096 		poll(to_clean);
3097 		schedule_timeout_uninterruptible(1);
3098 	}
3099 
3100 	/* Clean up interrupts and make sure that everything is done. */
3101 	if (to_clean->irq_cleanup)
3102 		to_clean->irq_cleanup(to_clean);
3103 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3104 		poll(to_clean);
3105 		schedule_timeout_uninterruptible(1);
3106 	}
3107 
3108 	rv = ipmi_unregister_smi(to_clean->intf);
3109 	if (rv) {
3110 		printk(KERN_ERR
3111 		       "ipmi_si: Unable to unregister device: errno=%d\n",
3112 		       rv);
3113 	}
3114 
3115 	to_clean->handlers->cleanup(to_clean->si_sm);
3116 
3117 	kfree(to_clean->si_sm);
3118 
3119 	if (to_clean->addr_source_cleanup)
3120 		to_clean->addr_source_cleanup(to_clean);
3121 	if (to_clean->io_cleanup)
3122 		to_clean->io_cleanup(to_clean);
3123 
3124 	if (to_clean->dev_registered)
3125 		platform_device_unregister(to_clean->pdev);
3126 
3127 	kfree(to_clean);
3128 }
3129 
3130 static __exit void cleanup_ipmi_si(void)
3131 {
3132 	struct smi_info *e, *tmp_e;
3133 
3134 	if (!initialized)
3135 		return;
3136 
3137 #ifdef CONFIG_PCI
3138 	pci_unregister_driver(&ipmi_pci_driver);
3139 #endif
3140 
3141 #ifdef CONFIG_PPC_OF
3142 	of_unregister_platform_driver(&ipmi_of_platform_driver);
3143 #endif
3144 
3145 	mutex_lock(&smi_infos_lock);
3146 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3147 		cleanup_one_si(e);
3148 	mutex_unlock(&smi_infos_lock);
3149 
3150 	driver_unregister(&ipmi_driver);
3151 }
3152 module_exit(cleanup_ipmi_si);
3153 
3154 MODULE_LICENSE("GPL");
3155 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3156 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3157 		   " system interfaces.");
3158