1 /* 2 * ipmi_si.c 3 * 4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC, 5 * BT). 6 * 7 * Author: MontaVista Software, Inc. 8 * Corey Minyard <minyard@mvista.com> 9 * source@mvista.com 10 * 11 * Copyright 2002 MontaVista Software Inc. 12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com> 13 * 14 * This program is free software; you can redistribute it and/or modify it 15 * under the terms of the GNU General Public License as published by the 16 * Free Software Foundation; either version 2 of the License, or (at your 17 * option) any later version. 18 * 19 * 20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 * 31 * You should have received a copy of the GNU General Public License along 32 * with this program; if not, write to the Free Software Foundation, Inc., 33 * 675 Mass Ave, Cambridge, MA 02139, USA. 34 */ 35 36 /* 37 * This file holds the "policy" for the interface to the SMI state 38 * machine. It does the configuration, handles timers and interrupts, 39 * and drives the real SMI state machine. 40 */ 41 42 #include <linux/module.h> 43 #include <linux/moduleparam.h> 44 #include <linux/sched.h> 45 #include <linux/seq_file.h> 46 #include <linux/timer.h> 47 #include <linux/errno.h> 48 #include <linux/spinlock.h> 49 #include <linux/slab.h> 50 #include <linux/delay.h> 51 #include <linux/list.h> 52 #include <linux/pci.h> 53 #include <linux/ioport.h> 54 #include <linux/notifier.h> 55 #include <linux/mutex.h> 56 #include <linux/kthread.h> 57 #include <asm/irq.h> 58 #include <linux/interrupt.h> 59 #include <linux/rcupdate.h> 60 #include <linux/ipmi.h> 61 #include <linux/ipmi_smi.h> 62 #include <asm/io.h> 63 #include "ipmi_si_sm.h" 64 #include <linux/dmi.h> 65 #include <linux/string.h> 66 #include <linux/ctype.h> 67 #include <linux/pnp.h> 68 #include <linux/of_device.h> 69 #include <linux/of_platform.h> 70 #include <linux/of_address.h> 71 #include <linux/of_irq.h> 72 73 #ifdef CONFIG_PARISC 74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 75 #include <asm/parisc-device.h> 76 #endif 77 78 #define PFX "ipmi_si: " 79 80 /* Measure times between events in the driver. */ 81 #undef DEBUG_TIMING 82 83 /* Call every 10 ms. */ 84 #define SI_TIMEOUT_TIME_USEC 10000 85 #define SI_USEC_PER_JIFFY (1000000/HZ) 86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY) 87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a 88 short timeout */ 89 90 enum si_intf_state { 91 SI_NORMAL, 92 SI_GETTING_FLAGS, 93 SI_GETTING_EVENTS, 94 SI_CLEARING_FLAGS, 95 SI_GETTING_MESSAGES, 96 SI_CHECKING_ENABLES, 97 SI_SETTING_ENABLES 98 /* FIXME - add watchdog stuff. */ 99 }; 100 101 /* Some BT-specific defines we need here. */ 102 #define IPMI_BT_INTMASK_REG 2 103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2 104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1 105 106 enum si_type { 107 SI_KCS, SI_SMIC, SI_BT 108 }; 109 static char *si_to_str[] = { "kcs", "smic", "bt" }; 110 111 #define DEVICE_NAME "ipmi_si" 112 113 static struct platform_driver ipmi_driver; 114 115 /* 116 * Indexes into stats[] in smi_info below. 117 */ 118 enum si_stat_indexes { 119 /* 120 * Number of times the driver requested a timer while an operation 121 * was in progress. 122 */ 123 SI_STAT_short_timeouts = 0, 124 125 /* 126 * Number of times the driver requested a timer while nothing was in 127 * progress. 128 */ 129 SI_STAT_long_timeouts, 130 131 /* Number of times the interface was idle while being polled. */ 132 SI_STAT_idles, 133 134 /* Number of interrupts the driver handled. */ 135 SI_STAT_interrupts, 136 137 /* Number of time the driver got an ATTN from the hardware. */ 138 SI_STAT_attentions, 139 140 /* Number of times the driver requested flags from the hardware. */ 141 SI_STAT_flag_fetches, 142 143 /* Number of times the hardware didn't follow the state machine. */ 144 SI_STAT_hosed_count, 145 146 /* Number of completed messages. */ 147 SI_STAT_complete_transactions, 148 149 /* Number of IPMI events received from the hardware. */ 150 SI_STAT_events, 151 152 /* Number of watchdog pretimeouts. */ 153 SI_STAT_watchdog_pretimeouts, 154 155 /* Number of asynchronous messages received. */ 156 SI_STAT_incoming_messages, 157 158 159 /* This *must* remain last, add new values above this. */ 160 SI_NUM_STATS 161 }; 162 163 struct smi_info { 164 int intf_num; 165 ipmi_smi_t intf; 166 struct si_sm_data *si_sm; 167 struct si_sm_handlers *handlers; 168 enum si_type si_type; 169 spinlock_t si_lock; 170 struct ipmi_smi_msg *waiting_msg; 171 struct ipmi_smi_msg *curr_msg; 172 enum si_intf_state si_state; 173 174 /* 175 * Used to handle the various types of I/O that can occur with 176 * IPMI 177 */ 178 struct si_sm_io io; 179 int (*io_setup)(struct smi_info *info); 180 void (*io_cleanup)(struct smi_info *info); 181 int (*irq_setup)(struct smi_info *info); 182 void (*irq_cleanup)(struct smi_info *info); 183 unsigned int io_size; 184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */ 185 void (*addr_source_cleanup)(struct smi_info *info); 186 void *addr_source_data; 187 188 /* 189 * Per-OEM handler, called from handle_flags(). Returns 1 190 * when handle_flags() needs to be re-run or 0 indicating it 191 * set si_state itself. 192 */ 193 int (*oem_data_avail_handler)(struct smi_info *smi_info); 194 195 /* 196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN 197 * is set to hold the flags until we are done handling everything 198 * from the flags. 199 */ 200 #define RECEIVE_MSG_AVAIL 0x01 201 #define EVENT_MSG_BUFFER_FULL 0x02 202 #define WDT_PRE_TIMEOUT_INT 0x08 203 #define OEM0_DATA_AVAIL 0x20 204 #define OEM1_DATA_AVAIL 0x40 205 #define OEM2_DATA_AVAIL 0x80 206 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \ 207 OEM1_DATA_AVAIL | \ 208 OEM2_DATA_AVAIL) 209 unsigned char msg_flags; 210 211 /* Does the BMC have an event buffer? */ 212 bool has_event_buffer; 213 214 /* 215 * If set to true, this will request events the next time the 216 * state machine is idle. 217 */ 218 atomic_t req_events; 219 220 /* 221 * If true, run the state machine to completion on every send 222 * call. Generally used after a panic to make sure stuff goes 223 * out. 224 */ 225 bool run_to_completion; 226 227 /* The I/O port of an SI interface. */ 228 int port; 229 230 /* 231 * The space between start addresses of the two ports. For 232 * instance, if the first port is 0xca2 and the spacing is 4, then 233 * the second port is 0xca6. 234 */ 235 unsigned int spacing; 236 237 /* zero if no irq; */ 238 int irq; 239 240 /* The timer for this si. */ 241 struct timer_list si_timer; 242 243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */ 244 bool timer_running; 245 246 /* The time (in jiffies) the last timeout occurred at. */ 247 unsigned long last_timeout_jiffies; 248 249 /* Are we waiting for the events, pretimeouts, received msgs? */ 250 atomic_t need_watch; 251 252 /* 253 * The driver will disable interrupts when it gets into a 254 * situation where it cannot handle messages due to lack of 255 * memory. Once that situation clears up, it will re-enable 256 * interrupts. 257 */ 258 bool interrupt_disabled; 259 260 /* 261 * Does the BMC support events? 262 */ 263 bool supports_event_msg_buff; 264 265 /* 266 * Can we clear the global enables receive irq bit? 267 */ 268 bool cannot_clear_recv_irq_bit; 269 270 /* 271 * Did we get an attention that we did not handle? 272 */ 273 bool got_attn; 274 275 /* From the get device id response... */ 276 struct ipmi_device_id device_id; 277 278 /* Driver model stuff. */ 279 struct device *dev; 280 struct platform_device *pdev; 281 282 /* 283 * True if we allocated the device, false if it came from 284 * someplace else (like PCI). 285 */ 286 bool dev_registered; 287 288 /* Slave address, could be reported from DMI. */ 289 unsigned char slave_addr; 290 291 /* Counters and things for the proc filesystem. */ 292 atomic_t stats[SI_NUM_STATS]; 293 294 struct task_struct *thread; 295 296 struct list_head link; 297 union ipmi_smi_info_union addr_info; 298 }; 299 300 #define smi_inc_stat(smi, stat) \ 301 atomic_inc(&(smi)->stats[SI_STAT_ ## stat]) 302 #define smi_get_stat(smi, stat) \ 303 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat])) 304 305 #define SI_MAX_PARMS 4 306 307 static int force_kipmid[SI_MAX_PARMS]; 308 static int num_force_kipmid; 309 #ifdef CONFIG_PCI 310 static bool pci_registered; 311 #endif 312 #ifdef CONFIG_ACPI 313 static bool pnp_registered; 314 #endif 315 #ifdef CONFIG_PARISC 316 static bool parisc_registered; 317 #endif 318 319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS]; 320 static int num_max_busy_us; 321 322 static bool unload_when_empty = true; 323 324 static int add_smi(struct smi_info *smi); 325 static int try_smi_init(struct smi_info *smi); 326 static void cleanup_one_si(struct smi_info *to_clean); 327 static void cleanup_ipmi_si(void); 328 329 #ifdef DEBUG_TIMING 330 void debug_timestamp(char *msg) 331 { 332 struct timespec64 t; 333 334 getnstimeofday64(&t); 335 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec); 336 } 337 #else 338 #define debug_timestamp(x) 339 #endif 340 341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list); 342 static int register_xaction_notifier(struct notifier_block *nb) 343 { 344 return atomic_notifier_chain_register(&xaction_notifier_list, nb); 345 } 346 347 static void deliver_recv_msg(struct smi_info *smi_info, 348 struct ipmi_smi_msg *msg) 349 { 350 /* Deliver the message to the upper layer. */ 351 if (smi_info->intf) 352 ipmi_smi_msg_received(smi_info->intf, msg); 353 else 354 ipmi_free_smi_msg(msg); 355 } 356 357 static void return_hosed_msg(struct smi_info *smi_info, int cCode) 358 { 359 struct ipmi_smi_msg *msg = smi_info->curr_msg; 360 361 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED) 362 cCode = IPMI_ERR_UNSPECIFIED; 363 /* else use it as is */ 364 365 /* Make it a response */ 366 msg->rsp[0] = msg->data[0] | 4; 367 msg->rsp[1] = msg->data[1]; 368 msg->rsp[2] = cCode; 369 msg->rsp_size = 3; 370 371 smi_info->curr_msg = NULL; 372 deliver_recv_msg(smi_info, msg); 373 } 374 375 static enum si_sm_result start_next_msg(struct smi_info *smi_info) 376 { 377 int rv; 378 379 if (!smi_info->waiting_msg) { 380 smi_info->curr_msg = NULL; 381 rv = SI_SM_IDLE; 382 } else { 383 int err; 384 385 smi_info->curr_msg = smi_info->waiting_msg; 386 smi_info->waiting_msg = NULL; 387 debug_timestamp("Start2"); 388 err = atomic_notifier_call_chain(&xaction_notifier_list, 389 0, smi_info); 390 if (err & NOTIFY_STOP_MASK) { 391 rv = SI_SM_CALL_WITHOUT_DELAY; 392 goto out; 393 } 394 err = smi_info->handlers->start_transaction( 395 smi_info->si_sm, 396 smi_info->curr_msg->data, 397 smi_info->curr_msg->data_size); 398 if (err) 399 return_hosed_msg(smi_info, err); 400 401 rv = SI_SM_CALL_WITHOUT_DELAY; 402 } 403 out: 404 return rv; 405 } 406 407 static void start_check_enables(struct smi_info *smi_info) 408 { 409 unsigned char msg[2]; 410 411 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 412 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 413 414 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 415 smi_info->si_state = SI_CHECKING_ENABLES; 416 } 417 418 static void start_clear_flags(struct smi_info *smi_info) 419 { 420 unsigned char msg[3]; 421 422 /* Make sure the watchdog pre-timeout flag is not set at startup. */ 423 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 424 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; 425 msg[2] = WDT_PRE_TIMEOUT_INT; 426 427 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 428 smi_info->si_state = SI_CLEARING_FLAGS; 429 } 430 431 static void start_getting_msg_queue(struct smi_info *smi_info) 432 { 433 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 434 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; 435 smi_info->curr_msg->data_size = 2; 436 437 smi_info->handlers->start_transaction( 438 smi_info->si_sm, 439 smi_info->curr_msg->data, 440 smi_info->curr_msg->data_size); 441 smi_info->si_state = SI_GETTING_MESSAGES; 442 } 443 444 static void start_getting_events(struct smi_info *smi_info) 445 { 446 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 447 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; 448 smi_info->curr_msg->data_size = 2; 449 450 smi_info->handlers->start_transaction( 451 smi_info->si_sm, 452 smi_info->curr_msg->data, 453 smi_info->curr_msg->data_size); 454 smi_info->si_state = SI_GETTING_EVENTS; 455 } 456 457 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val) 458 { 459 smi_info->last_timeout_jiffies = jiffies; 460 mod_timer(&smi_info->si_timer, new_val); 461 smi_info->timer_running = true; 462 } 463 464 /* 465 * When we have a situtaion where we run out of memory and cannot 466 * allocate messages, we just leave them in the BMC and run the system 467 * polled until we can allocate some memory. Once we have some 468 * memory, we will re-enable the interrupt. 469 * 470 * Note that we cannot just use disable_irq(), since the interrupt may 471 * be shared. 472 */ 473 static inline bool disable_si_irq(struct smi_info *smi_info) 474 { 475 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 476 smi_info->interrupt_disabled = true; 477 start_check_enables(smi_info); 478 return true; 479 } 480 return false; 481 } 482 483 static inline bool enable_si_irq(struct smi_info *smi_info) 484 { 485 if ((smi_info->irq) && (smi_info->interrupt_disabled)) { 486 smi_info->interrupt_disabled = false; 487 start_check_enables(smi_info); 488 return true; 489 } 490 return false; 491 } 492 493 /* 494 * Allocate a message. If unable to allocate, start the interrupt 495 * disable process and return NULL. If able to allocate but 496 * interrupts are disabled, free the message and return NULL after 497 * starting the interrupt enable process. 498 */ 499 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info) 500 { 501 struct ipmi_smi_msg *msg; 502 503 msg = ipmi_alloc_smi_msg(); 504 if (!msg) { 505 if (!disable_si_irq(smi_info)) 506 smi_info->si_state = SI_NORMAL; 507 } else if (enable_si_irq(smi_info)) { 508 ipmi_free_smi_msg(msg); 509 msg = NULL; 510 } 511 return msg; 512 } 513 514 static void handle_flags(struct smi_info *smi_info) 515 { 516 retry: 517 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) { 518 /* Watchdog pre-timeout */ 519 smi_inc_stat(smi_info, watchdog_pretimeouts); 520 521 start_clear_flags(smi_info); 522 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT; 523 if (smi_info->intf) 524 ipmi_smi_watchdog_pretimeout(smi_info->intf); 525 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) { 526 /* Messages available. */ 527 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 528 if (!smi_info->curr_msg) 529 return; 530 531 start_getting_msg_queue(smi_info); 532 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) { 533 /* Events available. */ 534 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 535 if (!smi_info->curr_msg) 536 return; 537 538 start_getting_events(smi_info); 539 } else if (smi_info->msg_flags & OEM_DATA_AVAIL && 540 smi_info->oem_data_avail_handler) { 541 if (smi_info->oem_data_avail_handler(smi_info)) 542 goto retry; 543 } else 544 smi_info->si_state = SI_NORMAL; 545 } 546 547 /* 548 * Global enables we care about. 549 */ 550 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \ 551 IPMI_BMC_EVT_MSG_INTR) 552 553 static u8 current_global_enables(struct smi_info *smi_info, u8 base, 554 bool *irq_on) 555 { 556 u8 enables = 0; 557 558 if (smi_info->supports_event_msg_buff) 559 enables |= IPMI_BMC_EVT_MSG_BUFF; 560 561 if ((smi_info->irq && !smi_info->interrupt_disabled) || 562 smi_info->cannot_clear_recv_irq_bit) 563 enables |= IPMI_BMC_RCV_MSG_INTR; 564 565 if (smi_info->supports_event_msg_buff && 566 smi_info->irq && !smi_info->interrupt_disabled) 567 568 enables |= IPMI_BMC_EVT_MSG_INTR; 569 570 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR); 571 572 return enables; 573 } 574 575 static void check_bt_irq(struct smi_info *smi_info, bool irq_on) 576 { 577 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG); 578 579 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT; 580 581 if ((bool)irqstate == irq_on) 582 return; 583 584 if (irq_on) 585 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 586 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 587 else 588 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0); 589 } 590 591 static void handle_transaction_done(struct smi_info *smi_info) 592 { 593 struct ipmi_smi_msg *msg; 594 595 debug_timestamp("Done"); 596 switch (smi_info->si_state) { 597 case SI_NORMAL: 598 if (!smi_info->curr_msg) 599 break; 600 601 smi_info->curr_msg->rsp_size 602 = smi_info->handlers->get_result( 603 smi_info->si_sm, 604 smi_info->curr_msg->rsp, 605 IPMI_MAX_MSG_LENGTH); 606 607 /* 608 * Do this here becase deliver_recv_msg() releases the 609 * lock, and a new message can be put in during the 610 * time the lock is released. 611 */ 612 msg = smi_info->curr_msg; 613 smi_info->curr_msg = NULL; 614 deliver_recv_msg(smi_info, msg); 615 break; 616 617 case SI_GETTING_FLAGS: 618 { 619 unsigned char msg[4]; 620 unsigned int len; 621 622 /* We got the flags from the SMI, now handle them. */ 623 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 624 if (msg[2] != 0) { 625 /* Error fetching flags, just give up for now. */ 626 smi_info->si_state = SI_NORMAL; 627 } else if (len < 4) { 628 /* 629 * Hmm, no flags. That's technically illegal, but 630 * don't use uninitialized data. 631 */ 632 smi_info->si_state = SI_NORMAL; 633 } else { 634 smi_info->msg_flags = msg[3]; 635 handle_flags(smi_info); 636 } 637 break; 638 } 639 640 case SI_CLEARING_FLAGS: 641 { 642 unsigned char msg[3]; 643 644 /* We cleared the flags. */ 645 smi_info->handlers->get_result(smi_info->si_sm, msg, 3); 646 if (msg[2] != 0) { 647 /* Error clearing flags */ 648 dev_warn(smi_info->dev, 649 "Error clearing flags: %2.2x\n", msg[2]); 650 } 651 smi_info->si_state = SI_NORMAL; 652 break; 653 } 654 655 case SI_GETTING_EVENTS: 656 { 657 smi_info->curr_msg->rsp_size 658 = smi_info->handlers->get_result( 659 smi_info->si_sm, 660 smi_info->curr_msg->rsp, 661 IPMI_MAX_MSG_LENGTH); 662 663 /* 664 * Do this here becase deliver_recv_msg() releases the 665 * lock, and a new message can be put in during the 666 * time the lock is released. 667 */ 668 msg = smi_info->curr_msg; 669 smi_info->curr_msg = NULL; 670 if (msg->rsp[2] != 0) { 671 /* Error getting event, probably done. */ 672 msg->done(msg); 673 674 /* Take off the event flag. */ 675 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; 676 handle_flags(smi_info); 677 } else { 678 smi_inc_stat(smi_info, events); 679 680 /* 681 * Do this before we deliver the message 682 * because delivering the message releases the 683 * lock and something else can mess with the 684 * state. 685 */ 686 handle_flags(smi_info); 687 688 deliver_recv_msg(smi_info, msg); 689 } 690 break; 691 } 692 693 case SI_GETTING_MESSAGES: 694 { 695 smi_info->curr_msg->rsp_size 696 = smi_info->handlers->get_result( 697 smi_info->si_sm, 698 smi_info->curr_msg->rsp, 699 IPMI_MAX_MSG_LENGTH); 700 701 /* 702 * Do this here becase deliver_recv_msg() releases the 703 * lock, and a new message can be put in during the 704 * time the lock is released. 705 */ 706 msg = smi_info->curr_msg; 707 smi_info->curr_msg = NULL; 708 if (msg->rsp[2] != 0) { 709 /* Error getting event, probably done. */ 710 msg->done(msg); 711 712 /* Take off the msg flag. */ 713 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL; 714 handle_flags(smi_info); 715 } else { 716 smi_inc_stat(smi_info, incoming_messages); 717 718 /* 719 * Do this before we deliver the message 720 * because delivering the message releases the 721 * lock and something else can mess with the 722 * state. 723 */ 724 handle_flags(smi_info); 725 726 deliver_recv_msg(smi_info, msg); 727 } 728 break; 729 } 730 731 case SI_CHECKING_ENABLES: 732 { 733 unsigned char msg[4]; 734 u8 enables; 735 bool irq_on; 736 737 /* We got the flags from the SMI, now handle them. */ 738 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 739 if (msg[2] != 0) { 740 dev_warn(smi_info->dev, 741 "Couldn't get irq info: %x.\n", msg[2]); 742 dev_warn(smi_info->dev, 743 "Maybe ok, but ipmi might run very slowly.\n"); 744 smi_info->si_state = SI_NORMAL; 745 break; 746 } 747 enables = current_global_enables(smi_info, 0, &irq_on); 748 if (smi_info->si_type == SI_BT) 749 /* BT has its own interrupt enable bit. */ 750 check_bt_irq(smi_info, irq_on); 751 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) { 752 /* Enables are not correct, fix them. */ 753 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 754 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 755 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK); 756 smi_info->handlers->start_transaction( 757 smi_info->si_sm, msg, 3); 758 smi_info->si_state = SI_SETTING_ENABLES; 759 } else if (smi_info->supports_event_msg_buff) { 760 smi_info->curr_msg = ipmi_alloc_smi_msg(); 761 if (!smi_info->curr_msg) { 762 smi_info->si_state = SI_NORMAL; 763 break; 764 } 765 start_getting_msg_queue(smi_info); 766 } else { 767 smi_info->si_state = SI_NORMAL; 768 } 769 break; 770 } 771 772 case SI_SETTING_ENABLES: 773 { 774 unsigned char msg[4]; 775 776 smi_info->handlers->get_result(smi_info->si_sm, msg, 4); 777 if (msg[2] != 0) 778 dev_warn(smi_info->dev, 779 "Could not set the global enables: 0x%x.\n", 780 msg[2]); 781 782 if (smi_info->supports_event_msg_buff) { 783 smi_info->curr_msg = ipmi_alloc_smi_msg(); 784 if (!smi_info->curr_msg) { 785 smi_info->si_state = SI_NORMAL; 786 break; 787 } 788 start_getting_msg_queue(smi_info); 789 } else { 790 smi_info->si_state = SI_NORMAL; 791 } 792 break; 793 } 794 } 795 } 796 797 /* 798 * Called on timeouts and events. Timeouts should pass the elapsed 799 * time, interrupts should pass in zero. Must be called with 800 * si_lock held and interrupts disabled. 801 */ 802 static enum si_sm_result smi_event_handler(struct smi_info *smi_info, 803 int time) 804 { 805 enum si_sm_result si_sm_result; 806 807 restart: 808 /* 809 * There used to be a loop here that waited a little while 810 * (around 25us) before giving up. That turned out to be 811 * pointless, the minimum delays I was seeing were in the 300us 812 * range, which is far too long to wait in an interrupt. So 813 * we just run until the state machine tells us something 814 * happened or it needs a delay. 815 */ 816 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time); 817 time = 0; 818 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY) 819 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 820 821 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) { 822 smi_inc_stat(smi_info, complete_transactions); 823 824 handle_transaction_done(smi_info); 825 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 826 } else if (si_sm_result == SI_SM_HOSED) { 827 smi_inc_stat(smi_info, hosed_count); 828 829 /* 830 * Do the before return_hosed_msg, because that 831 * releases the lock. 832 */ 833 smi_info->si_state = SI_NORMAL; 834 if (smi_info->curr_msg != NULL) { 835 /* 836 * If we were handling a user message, format 837 * a response to send to the upper layer to 838 * tell it about the error. 839 */ 840 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED); 841 } 842 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0); 843 } 844 845 /* 846 * We prefer handling attn over new messages. But don't do 847 * this if there is not yet an upper layer to handle anything. 848 */ 849 if (likely(smi_info->intf) && 850 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) { 851 unsigned char msg[2]; 852 853 if (smi_info->si_state != SI_NORMAL) { 854 /* 855 * We got an ATTN, but we are doing something else. 856 * Handle the ATTN later. 857 */ 858 smi_info->got_attn = true; 859 } else { 860 smi_info->got_attn = false; 861 smi_inc_stat(smi_info, attentions); 862 863 /* 864 * Got a attn, send down a get message flags to see 865 * what's causing it. It would be better to handle 866 * this in the upper layer, but due to the way 867 * interrupts work with the SMI, that's not really 868 * possible. 869 */ 870 msg[0] = (IPMI_NETFN_APP_REQUEST << 2); 871 msg[1] = IPMI_GET_MSG_FLAGS_CMD; 872 873 smi_info->handlers->start_transaction( 874 smi_info->si_sm, msg, 2); 875 smi_info->si_state = SI_GETTING_FLAGS; 876 goto restart; 877 } 878 } 879 880 /* If we are currently idle, try to start the next message. */ 881 if (si_sm_result == SI_SM_IDLE) { 882 smi_inc_stat(smi_info, idles); 883 884 si_sm_result = start_next_msg(smi_info); 885 if (si_sm_result != SI_SM_IDLE) 886 goto restart; 887 } 888 889 if ((si_sm_result == SI_SM_IDLE) 890 && (atomic_read(&smi_info->req_events))) { 891 /* 892 * We are idle and the upper layer requested that I fetch 893 * events, so do so. 894 */ 895 atomic_set(&smi_info->req_events, 0); 896 897 /* 898 * Take this opportunity to check the interrupt and 899 * message enable state for the BMC. The BMC can be 900 * asynchronously reset, and may thus get interrupts 901 * disable and messages disabled. 902 */ 903 if (smi_info->supports_event_msg_buff || smi_info->irq) { 904 start_check_enables(smi_info); 905 } else { 906 smi_info->curr_msg = alloc_msg_handle_irq(smi_info); 907 if (!smi_info->curr_msg) 908 goto out; 909 910 start_getting_events(smi_info); 911 } 912 goto restart; 913 } 914 out: 915 return si_sm_result; 916 } 917 918 static void check_start_timer_thread(struct smi_info *smi_info) 919 { 920 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) { 921 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 922 923 if (smi_info->thread) 924 wake_up_process(smi_info->thread); 925 926 start_next_msg(smi_info); 927 smi_event_handler(smi_info, 0); 928 } 929 } 930 931 static void sender(void *send_info, 932 struct ipmi_smi_msg *msg) 933 { 934 struct smi_info *smi_info = send_info; 935 enum si_sm_result result; 936 unsigned long flags; 937 938 debug_timestamp("Enqueue"); 939 940 if (smi_info->run_to_completion) { 941 /* 942 * If we are running to completion, start it and run 943 * transactions until everything is clear. 944 */ 945 smi_info->waiting_msg = msg; 946 947 /* 948 * Run to completion means we are single-threaded, no 949 * need for locks. 950 */ 951 952 result = smi_event_handler(smi_info, 0); 953 while (result != SI_SM_IDLE) { 954 udelay(SI_SHORT_TIMEOUT_USEC); 955 result = smi_event_handler(smi_info, 956 SI_SHORT_TIMEOUT_USEC); 957 } 958 return; 959 } 960 961 spin_lock_irqsave(&smi_info->si_lock, flags); 962 /* 963 * The following two lines don't need to be under the lock for 964 * the lock's sake, but they do need SMP memory barriers to 965 * avoid getting things out of order. We are already claiming 966 * the lock, anyway, so just do it under the lock to avoid the 967 * ordering problem. 968 */ 969 BUG_ON(smi_info->waiting_msg); 970 smi_info->waiting_msg = msg; 971 check_start_timer_thread(smi_info); 972 spin_unlock_irqrestore(&smi_info->si_lock, flags); 973 } 974 975 static void set_run_to_completion(void *send_info, bool i_run_to_completion) 976 { 977 struct smi_info *smi_info = send_info; 978 enum si_sm_result result; 979 980 smi_info->run_to_completion = i_run_to_completion; 981 if (i_run_to_completion) { 982 result = smi_event_handler(smi_info, 0); 983 while (result != SI_SM_IDLE) { 984 udelay(SI_SHORT_TIMEOUT_USEC); 985 result = smi_event_handler(smi_info, 986 SI_SHORT_TIMEOUT_USEC); 987 } 988 } 989 } 990 991 /* 992 * Use -1 in the nsec value of the busy waiting timespec to tell that 993 * we are spinning in kipmid looking for something and not delaying 994 * between checks 995 */ 996 static inline void ipmi_si_set_not_busy(struct timespec64 *ts) 997 { 998 ts->tv_nsec = -1; 999 } 1000 static inline int ipmi_si_is_busy(struct timespec64 *ts) 1001 { 1002 return ts->tv_nsec != -1; 1003 } 1004 1005 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result, 1006 const struct smi_info *smi_info, 1007 struct timespec64 *busy_until) 1008 { 1009 unsigned int max_busy_us = 0; 1010 1011 if (smi_info->intf_num < num_max_busy_us) 1012 max_busy_us = kipmid_max_busy_us[smi_info->intf_num]; 1013 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY) 1014 ipmi_si_set_not_busy(busy_until); 1015 else if (!ipmi_si_is_busy(busy_until)) { 1016 getnstimeofday64(busy_until); 1017 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC); 1018 } else { 1019 struct timespec64 now; 1020 1021 getnstimeofday64(&now); 1022 if (unlikely(timespec64_compare(&now, busy_until) > 0)) { 1023 ipmi_si_set_not_busy(busy_until); 1024 return 0; 1025 } 1026 } 1027 return 1; 1028 } 1029 1030 1031 /* 1032 * A busy-waiting loop for speeding up IPMI operation. 1033 * 1034 * Lousy hardware makes this hard. This is only enabled for systems 1035 * that are not BT and do not have interrupts. It starts spinning 1036 * when an operation is complete or until max_busy tells it to stop 1037 * (if that is enabled). See the paragraph on kimid_max_busy_us in 1038 * Documentation/IPMI.txt for details. 1039 */ 1040 static int ipmi_thread(void *data) 1041 { 1042 struct smi_info *smi_info = data; 1043 unsigned long flags; 1044 enum si_sm_result smi_result; 1045 struct timespec64 busy_until; 1046 1047 ipmi_si_set_not_busy(&busy_until); 1048 set_user_nice(current, MAX_NICE); 1049 while (!kthread_should_stop()) { 1050 int busy_wait; 1051 1052 spin_lock_irqsave(&(smi_info->si_lock), flags); 1053 smi_result = smi_event_handler(smi_info, 0); 1054 1055 /* 1056 * If the driver is doing something, there is a possible 1057 * race with the timer. If the timer handler see idle, 1058 * and the thread here sees something else, the timer 1059 * handler won't restart the timer even though it is 1060 * required. So start it here if necessary. 1061 */ 1062 if (smi_result != SI_SM_IDLE && !smi_info->timer_running) 1063 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES); 1064 1065 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1066 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info, 1067 &busy_until); 1068 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) 1069 ; /* do nothing */ 1070 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) 1071 schedule(); 1072 else if (smi_result == SI_SM_IDLE) { 1073 if (atomic_read(&smi_info->need_watch)) { 1074 schedule_timeout_interruptible(100); 1075 } else { 1076 /* Wait to be woken up when we are needed. */ 1077 __set_current_state(TASK_INTERRUPTIBLE); 1078 schedule(); 1079 } 1080 } else 1081 schedule_timeout_interruptible(1); 1082 } 1083 return 0; 1084 } 1085 1086 1087 static void poll(void *send_info) 1088 { 1089 struct smi_info *smi_info = send_info; 1090 unsigned long flags = 0; 1091 bool run_to_completion = smi_info->run_to_completion; 1092 1093 /* 1094 * Make sure there is some delay in the poll loop so we can 1095 * drive time forward and timeout things. 1096 */ 1097 udelay(10); 1098 if (!run_to_completion) 1099 spin_lock_irqsave(&smi_info->si_lock, flags); 1100 smi_event_handler(smi_info, 10); 1101 if (!run_to_completion) 1102 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1103 } 1104 1105 static void request_events(void *send_info) 1106 { 1107 struct smi_info *smi_info = send_info; 1108 1109 if (!smi_info->has_event_buffer) 1110 return; 1111 1112 atomic_set(&smi_info->req_events, 1); 1113 } 1114 1115 static void set_need_watch(void *send_info, bool enable) 1116 { 1117 struct smi_info *smi_info = send_info; 1118 unsigned long flags; 1119 1120 atomic_set(&smi_info->need_watch, enable); 1121 spin_lock_irqsave(&smi_info->si_lock, flags); 1122 check_start_timer_thread(smi_info); 1123 spin_unlock_irqrestore(&smi_info->si_lock, flags); 1124 } 1125 1126 static int initialized; 1127 1128 static void smi_timeout(unsigned long data) 1129 { 1130 struct smi_info *smi_info = (struct smi_info *) data; 1131 enum si_sm_result smi_result; 1132 unsigned long flags; 1133 unsigned long jiffies_now; 1134 long time_diff; 1135 long timeout; 1136 1137 spin_lock_irqsave(&(smi_info->si_lock), flags); 1138 debug_timestamp("Timer"); 1139 1140 jiffies_now = jiffies; 1141 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies) 1142 * SI_USEC_PER_JIFFY); 1143 smi_result = smi_event_handler(smi_info, time_diff); 1144 1145 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) { 1146 /* Running with interrupts, only do long timeouts. */ 1147 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1148 smi_inc_stat(smi_info, long_timeouts); 1149 goto do_mod_timer; 1150 } 1151 1152 /* 1153 * If the state machine asks for a short delay, then shorten 1154 * the timer timeout. 1155 */ 1156 if (smi_result == SI_SM_CALL_WITH_DELAY) { 1157 smi_inc_stat(smi_info, short_timeouts); 1158 timeout = jiffies + 1; 1159 } else { 1160 smi_inc_stat(smi_info, long_timeouts); 1161 timeout = jiffies + SI_TIMEOUT_JIFFIES; 1162 } 1163 1164 do_mod_timer: 1165 if (smi_result != SI_SM_IDLE) 1166 smi_mod_timer(smi_info, timeout); 1167 else 1168 smi_info->timer_running = false; 1169 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1170 } 1171 1172 static irqreturn_t si_irq_handler(int irq, void *data) 1173 { 1174 struct smi_info *smi_info = data; 1175 unsigned long flags; 1176 1177 spin_lock_irqsave(&(smi_info->si_lock), flags); 1178 1179 smi_inc_stat(smi_info, interrupts); 1180 1181 debug_timestamp("Interrupt"); 1182 1183 smi_event_handler(smi_info, 0); 1184 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 1185 return IRQ_HANDLED; 1186 } 1187 1188 static irqreturn_t si_bt_irq_handler(int irq, void *data) 1189 { 1190 struct smi_info *smi_info = data; 1191 /* We need to clear the IRQ flag for the BT interface. */ 1192 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 1193 IPMI_BT_INTMASK_CLEAR_IRQ_BIT 1194 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1195 return si_irq_handler(irq, data); 1196 } 1197 1198 static int smi_start_processing(void *send_info, 1199 ipmi_smi_t intf) 1200 { 1201 struct smi_info *new_smi = send_info; 1202 int enable = 0; 1203 1204 new_smi->intf = intf; 1205 1206 /* Try to claim any interrupts. */ 1207 if (new_smi->irq_setup) 1208 new_smi->irq_setup(new_smi); 1209 1210 /* Set up the timer that drives the interface. */ 1211 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi); 1212 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES); 1213 1214 /* 1215 * Check if the user forcefully enabled the daemon. 1216 */ 1217 if (new_smi->intf_num < num_force_kipmid) 1218 enable = force_kipmid[new_smi->intf_num]; 1219 /* 1220 * The BT interface is efficient enough to not need a thread, 1221 * and there is no need for a thread if we have interrupts. 1222 */ 1223 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq)) 1224 enable = 1; 1225 1226 if (enable) { 1227 new_smi->thread = kthread_run(ipmi_thread, new_smi, 1228 "kipmi%d", new_smi->intf_num); 1229 if (IS_ERR(new_smi->thread)) { 1230 dev_notice(new_smi->dev, "Could not start" 1231 " kernel thread due to error %ld, only using" 1232 " timers to drive the interface\n", 1233 PTR_ERR(new_smi->thread)); 1234 new_smi->thread = NULL; 1235 } 1236 } 1237 1238 return 0; 1239 } 1240 1241 static int get_smi_info(void *send_info, struct ipmi_smi_info *data) 1242 { 1243 struct smi_info *smi = send_info; 1244 1245 data->addr_src = smi->addr_source; 1246 data->dev = smi->dev; 1247 data->addr_info = smi->addr_info; 1248 get_device(smi->dev); 1249 1250 return 0; 1251 } 1252 1253 static void set_maintenance_mode(void *send_info, bool enable) 1254 { 1255 struct smi_info *smi_info = send_info; 1256 1257 if (!enable) 1258 atomic_set(&smi_info->req_events, 0); 1259 } 1260 1261 static struct ipmi_smi_handlers handlers = { 1262 .owner = THIS_MODULE, 1263 .start_processing = smi_start_processing, 1264 .get_smi_info = get_smi_info, 1265 .sender = sender, 1266 .request_events = request_events, 1267 .set_need_watch = set_need_watch, 1268 .set_maintenance_mode = set_maintenance_mode, 1269 .set_run_to_completion = set_run_to_completion, 1270 .poll = poll, 1271 }; 1272 1273 /* 1274 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses, 1275 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS. 1276 */ 1277 1278 static LIST_HEAD(smi_infos); 1279 static DEFINE_MUTEX(smi_infos_lock); 1280 static int smi_num; /* Used to sequence the SMIs */ 1281 1282 #define DEFAULT_REGSPACING 1 1283 #define DEFAULT_REGSIZE 1 1284 1285 #ifdef CONFIG_ACPI 1286 static bool si_tryacpi = 1; 1287 #endif 1288 #ifdef CONFIG_DMI 1289 static bool si_trydmi = 1; 1290 #endif 1291 static bool si_tryplatform = 1; 1292 #ifdef CONFIG_PCI 1293 static bool si_trypci = 1; 1294 #endif 1295 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS); 1296 static char *si_type[SI_MAX_PARMS]; 1297 #define MAX_SI_TYPE_STR 30 1298 static char si_type_str[MAX_SI_TYPE_STR]; 1299 static unsigned long addrs[SI_MAX_PARMS]; 1300 static unsigned int num_addrs; 1301 static unsigned int ports[SI_MAX_PARMS]; 1302 static unsigned int num_ports; 1303 static int irqs[SI_MAX_PARMS]; 1304 static unsigned int num_irqs; 1305 static int regspacings[SI_MAX_PARMS]; 1306 static unsigned int num_regspacings; 1307 static int regsizes[SI_MAX_PARMS]; 1308 static unsigned int num_regsizes; 1309 static int regshifts[SI_MAX_PARMS]; 1310 static unsigned int num_regshifts; 1311 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */ 1312 static unsigned int num_slave_addrs; 1313 1314 #define IPMI_IO_ADDR_SPACE 0 1315 #define IPMI_MEM_ADDR_SPACE 1 1316 static char *addr_space_to_str[] = { "i/o", "mem" }; 1317 1318 static int hotmod_handler(const char *val, struct kernel_param *kp); 1319 1320 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200); 1321 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See" 1322 " Documentation/IPMI.txt in the kernel sources for the" 1323 " gory details."); 1324 1325 #ifdef CONFIG_ACPI 1326 module_param_named(tryacpi, si_tryacpi, bool, 0); 1327 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1328 " default scan of the interfaces identified via ACPI"); 1329 #endif 1330 #ifdef CONFIG_DMI 1331 module_param_named(trydmi, si_trydmi, bool, 0); 1332 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the" 1333 " default scan of the interfaces identified via DMI"); 1334 #endif 1335 module_param_named(tryplatform, si_tryplatform, bool, 0); 1336 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1337 " default scan of the interfaces identified via platform" 1338 " interfaces like openfirmware"); 1339 #ifdef CONFIG_PCI 1340 module_param_named(trypci, si_trypci, bool, 0); 1341 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the" 1342 " default scan of the interfaces identified via pci"); 1343 #endif 1344 module_param_named(trydefaults, si_trydefaults, bool, 0); 1345 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the" 1346 " default scan of the KCS and SMIC interface at the standard" 1347 " address"); 1348 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0); 1349 MODULE_PARM_DESC(type, "Defines the type of each interface, each" 1350 " interface separated by commas. The types are 'kcs'," 1351 " 'smic', and 'bt'. For example si_type=kcs,bt will set" 1352 " the first interface to kcs and the second to bt"); 1353 module_param_array(addrs, ulong, &num_addrs, 0); 1354 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the" 1355 " addresses separated by commas. Only use if an interface" 1356 " is in memory. Otherwise, set it to zero or leave" 1357 " it blank."); 1358 module_param_array(ports, uint, &num_ports, 0); 1359 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the" 1360 " addresses separated by commas. Only use if an interface" 1361 " is a port. Otherwise, set it to zero or leave" 1362 " it blank."); 1363 module_param_array(irqs, int, &num_irqs, 0); 1364 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the" 1365 " addresses separated by commas. Only use if an interface" 1366 " has an interrupt. Otherwise, set it to zero or leave" 1367 " it blank."); 1368 module_param_array(regspacings, int, &num_regspacings, 0); 1369 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address" 1370 " and each successive register used by the interface. For" 1371 " instance, if the start address is 0xca2 and the spacing" 1372 " is 2, then the second address is at 0xca4. Defaults" 1373 " to 1."); 1374 module_param_array(regsizes, int, &num_regsizes, 0); 1375 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes." 1376 " This should generally be 1, 2, 4, or 8 for an 8-bit," 1377 " 16-bit, 32-bit, or 64-bit register. Use this if you" 1378 " the 8-bit IPMI register has to be read from a larger" 1379 " register."); 1380 module_param_array(regshifts, int, &num_regshifts, 0); 1381 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the." 1382 " IPMI register, in bits. For instance, if the data" 1383 " is read from a 32-bit word and the IPMI data is in" 1384 " bit 8-15, then the shift would be 8"); 1385 module_param_array(slave_addrs, int, &num_slave_addrs, 0); 1386 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for" 1387 " the controller. Normally this is 0x20, but can be" 1388 " overridden by this parm. This is an array indexed" 1389 " by interface number."); 1390 module_param_array(force_kipmid, int, &num_force_kipmid, 0); 1391 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or" 1392 " disabled(0). Normally the IPMI driver auto-detects" 1393 " this, but the value may be overridden by this parm."); 1394 module_param(unload_when_empty, bool, 0); 1395 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are" 1396 " specified or found, default is 1. Setting to 0" 1397 " is useful for hot add of devices using hotmod."); 1398 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644); 1399 MODULE_PARM_DESC(kipmid_max_busy_us, 1400 "Max time (in microseconds) to busy-wait for IPMI data before" 1401 " sleeping. 0 (default) means to wait forever. Set to 100-500" 1402 " if kipmid is using up a lot of CPU time."); 1403 1404 1405 static void std_irq_cleanup(struct smi_info *info) 1406 { 1407 if (info->si_type == SI_BT) 1408 /* Disable the interrupt in the BT interface. */ 1409 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0); 1410 free_irq(info->irq, info); 1411 } 1412 1413 static int std_irq_setup(struct smi_info *info) 1414 { 1415 int rv; 1416 1417 if (!info->irq) 1418 return 0; 1419 1420 if (info->si_type == SI_BT) { 1421 rv = request_irq(info->irq, 1422 si_bt_irq_handler, 1423 IRQF_SHARED, 1424 DEVICE_NAME, 1425 info); 1426 if (!rv) 1427 /* Enable the interrupt in the BT interface. */ 1428 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 1429 IPMI_BT_INTMASK_ENABLE_IRQ_BIT); 1430 } else 1431 rv = request_irq(info->irq, 1432 si_irq_handler, 1433 IRQF_SHARED, 1434 DEVICE_NAME, 1435 info); 1436 if (rv) { 1437 dev_warn(info->dev, "%s unable to claim interrupt %d," 1438 " running polled\n", 1439 DEVICE_NAME, info->irq); 1440 info->irq = 0; 1441 } else { 1442 info->irq_cleanup = std_irq_cleanup; 1443 dev_info(info->dev, "Using irq %d\n", info->irq); 1444 } 1445 1446 return rv; 1447 } 1448 1449 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset) 1450 { 1451 unsigned int addr = io->addr_data; 1452 1453 return inb(addr + (offset * io->regspacing)); 1454 } 1455 1456 static void port_outb(struct si_sm_io *io, unsigned int offset, 1457 unsigned char b) 1458 { 1459 unsigned int addr = io->addr_data; 1460 1461 outb(b, addr + (offset * io->regspacing)); 1462 } 1463 1464 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset) 1465 { 1466 unsigned int addr = io->addr_data; 1467 1468 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1469 } 1470 1471 static void port_outw(struct si_sm_io *io, unsigned int offset, 1472 unsigned char b) 1473 { 1474 unsigned int addr = io->addr_data; 1475 1476 outw(b << io->regshift, addr + (offset * io->regspacing)); 1477 } 1478 1479 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset) 1480 { 1481 unsigned int addr = io->addr_data; 1482 1483 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff; 1484 } 1485 1486 static void port_outl(struct si_sm_io *io, unsigned int offset, 1487 unsigned char b) 1488 { 1489 unsigned int addr = io->addr_data; 1490 1491 outl(b << io->regshift, addr+(offset * io->regspacing)); 1492 } 1493 1494 static void port_cleanup(struct smi_info *info) 1495 { 1496 unsigned int addr = info->io.addr_data; 1497 int idx; 1498 1499 if (addr) { 1500 for (idx = 0; idx < info->io_size; idx++) 1501 release_region(addr + idx * info->io.regspacing, 1502 info->io.regsize); 1503 } 1504 } 1505 1506 static int port_setup(struct smi_info *info) 1507 { 1508 unsigned int addr = info->io.addr_data; 1509 int idx; 1510 1511 if (!addr) 1512 return -ENODEV; 1513 1514 info->io_cleanup = port_cleanup; 1515 1516 /* 1517 * Figure out the actual inb/inw/inl/etc routine to use based 1518 * upon the register size. 1519 */ 1520 switch (info->io.regsize) { 1521 case 1: 1522 info->io.inputb = port_inb; 1523 info->io.outputb = port_outb; 1524 break; 1525 case 2: 1526 info->io.inputb = port_inw; 1527 info->io.outputb = port_outw; 1528 break; 1529 case 4: 1530 info->io.inputb = port_inl; 1531 info->io.outputb = port_outl; 1532 break; 1533 default: 1534 dev_warn(info->dev, "Invalid register size: %d\n", 1535 info->io.regsize); 1536 return -EINVAL; 1537 } 1538 1539 /* 1540 * Some BIOSes reserve disjoint I/O regions in their ACPI 1541 * tables. This causes problems when trying to register the 1542 * entire I/O region. Therefore we must register each I/O 1543 * port separately. 1544 */ 1545 for (idx = 0; idx < info->io_size; idx++) { 1546 if (request_region(addr + idx * info->io.regspacing, 1547 info->io.regsize, DEVICE_NAME) == NULL) { 1548 /* Undo allocations */ 1549 while (idx--) { 1550 release_region(addr + idx * info->io.regspacing, 1551 info->io.regsize); 1552 } 1553 return -EIO; 1554 } 1555 } 1556 return 0; 1557 } 1558 1559 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset) 1560 { 1561 return readb((io->addr)+(offset * io->regspacing)); 1562 } 1563 1564 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset, 1565 unsigned char b) 1566 { 1567 writeb(b, (io->addr)+(offset * io->regspacing)); 1568 } 1569 1570 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset) 1571 { 1572 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift) 1573 & 0xff; 1574 } 1575 1576 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset, 1577 unsigned char b) 1578 { 1579 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1580 } 1581 1582 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset) 1583 { 1584 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift) 1585 & 0xff; 1586 } 1587 1588 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset, 1589 unsigned char b) 1590 { 1591 writel(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1592 } 1593 1594 #ifdef readq 1595 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset) 1596 { 1597 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift) 1598 & 0xff; 1599 } 1600 1601 static void mem_outq(struct si_sm_io *io, unsigned int offset, 1602 unsigned char b) 1603 { 1604 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing)); 1605 } 1606 #endif 1607 1608 static void mem_cleanup(struct smi_info *info) 1609 { 1610 unsigned long addr = info->io.addr_data; 1611 int mapsize; 1612 1613 if (info->io.addr) { 1614 iounmap(info->io.addr); 1615 1616 mapsize = ((info->io_size * info->io.regspacing) 1617 - (info->io.regspacing - info->io.regsize)); 1618 1619 release_mem_region(addr, mapsize); 1620 } 1621 } 1622 1623 static int mem_setup(struct smi_info *info) 1624 { 1625 unsigned long addr = info->io.addr_data; 1626 int mapsize; 1627 1628 if (!addr) 1629 return -ENODEV; 1630 1631 info->io_cleanup = mem_cleanup; 1632 1633 /* 1634 * Figure out the actual readb/readw/readl/etc routine to use based 1635 * upon the register size. 1636 */ 1637 switch (info->io.regsize) { 1638 case 1: 1639 info->io.inputb = intf_mem_inb; 1640 info->io.outputb = intf_mem_outb; 1641 break; 1642 case 2: 1643 info->io.inputb = intf_mem_inw; 1644 info->io.outputb = intf_mem_outw; 1645 break; 1646 case 4: 1647 info->io.inputb = intf_mem_inl; 1648 info->io.outputb = intf_mem_outl; 1649 break; 1650 #ifdef readq 1651 case 8: 1652 info->io.inputb = mem_inq; 1653 info->io.outputb = mem_outq; 1654 break; 1655 #endif 1656 default: 1657 dev_warn(info->dev, "Invalid register size: %d\n", 1658 info->io.regsize); 1659 return -EINVAL; 1660 } 1661 1662 /* 1663 * Calculate the total amount of memory to claim. This is an 1664 * unusual looking calculation, but it avoids claiming any 1665 * more memory than it has to. It will claim everything 1666 * between the first address to the end of the last full 1667 * register. 1668 */ 1669 mapsize = ((info->io_size * info->io.regspacing) 1670 - (info->io.regspacing - info->io.regsize)); 1671 1672 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL) 1673 return -EIO; 1674 1675 info->io.addr = ioremap(addr, mapsize); 1676 if (info->io.addr == NULL) { 1677 release_mem_region(addr, mapsize); 1678 return -EIO; 1679 } 1680 return 0; 1681 } 1682 1683 /* 1684 * Parms come in as <op1>[:op2[:op3...]]. ops are: 1685 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]] 1686 * Options are: 1687 * rsp=<regspacing> 1688 * rsi=<regsize> 1689 * rsh=<regshift> 1690 * irq=<irq> 1691 * ipmb=<ipmb addr> 1692 */ 1693 enum hotmod_op { HM_ADD, HM_REMOVE }; 1694 struct hotmod_vals { 1695 char *name; 1696 int val; 1697 }; 1698 static struct hotmod_vals hotmod_ops[] = { 1699 { "add", HM_ADD }, 1700 { "remove", HM_REMOVE }, 1701 { NULL } 1702 }; 1703 static struct hotmod_vals hotmod_si[] = { 1704 { "kcs", SI_KCS }, 1705 { "smic", SI_SMIC }, 1706 { "bt", SI_BT }, 1707 { NULL } 1708 }; 1709 static struct hotmod_vals hotmod_as[] = { 1710 { "mem", IPMI_MEM_ADDR_SPACE }, 1711 { "i/o", IPMI_IO_ADDR_SPACE }, 1712 { NULL } 1713 }; 1714 1715 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr) 1716 { 1717 char *s; 1718 int i; 1719 1720 s = strchr(*curr, ','); 1721 if (!s) { 1722 printk(KERN_WARNING PFX "No hotmod %s given.\n", name); 1723 return -EINVAL; 1724 } 1725 *s = '\0'; 1726 s++; 1727 for (i = 0; v[i].name; i++) { 1728 if (strcmp(*curr, v[i].name) == 0) { 1729 *val = v[i].val; 1730 *curr = s; 1731 return 0; 1732 } 1733 } 1734 1735 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr); 1736 return -EINVAL; 1737 } 1738 1739 static int check_hotmod_int_op(const char *curr, const char *option, 1740 const char *name, int *val) 1741 { 1742 char *n; 1743 1744 if (strcmp(curr, name) == 0) { 1745 if (!option) { 1746 printk(KERN_WARNING PFX 1747 "No option given for '%s'\n", 1748 curr); 1749 return -EINVAL; 1750 } 1751 *val = simple_strtoul(option, &n, 0); 1752 if ((*n != '\0') || (*option == '\0')) { 1753 printk(KERN_WARNING PFX 1754 "Bad option given for '%s'\n", 1755 curr); 1756 return -EINVAL; 1757 } 1758 return 1; 1759 } 1760 return 0; 1761 } 1762 1763 static struct smi_info *smi_info_alloc(void) 1764 { 1765 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL); 1766 1767 if (info) 1768 spin_lock_init(&info->si_lock); 1769 return info; 1770 } 1771 1772 static int hotmod_handler(const char *val, struct kernel_param *kp) 1773 { 1774 char *str = kstrdup(val, GFP_KERNEL); 1775 int rv; 1776 char *next, *curr, *s, *n, *o; 1777 enum hotmod_op op; 1778 enum si_type si_type; 1779 int addr_space; 1780 unsigned long addr; 1781 int regspacing; 1782 int regsize; 1783 int regshift; 1784 int irq; 1785 int ipmb; 1786 int ival; 1787 int len; 1788 struct smi_info *info; 1789 1790 if (!str) 1791 return -ENOMEM; 1792 1793 /* Kill any trailing spaces, as we can get a "\n" from echo. */ 1794 len = strlen(str); 1795 ival = len - 1; 1796 while ((ival >= 0) && isspace(str[ival])) { 1797 str[ival] = '\0'; 1798 ival--; 1799 } 1800 1801 for (curr = str; curr; curr = next) { 1802 regspacing = 1; 1803 regsize = 1; 1804 regshift = 0; 1805 irq = 0; 1806 ipmb = 0; /* Choose the default if not specified */ 1807 1808 next = strchr(curr, ':'); 1809 if (next) { 1810 *next = '\0'; 1811 next++; 1812 } 1813 1814 rv = parse_str(hotmod_ops, &ival, "operation", &curr); 1815 if (rv) 1816 break; 1817 op = ival; 1818 1819 rv = parse_str(hotmod_si, &ival, "interface type", &curr); 1820 if (rv) 1821 break; 1822 si_type = ival; 1823 1824 rv = parse_str(hotmod_as, &addr_space, "address space", &curr); 1825 if (rv) 1826 break; 1827 1828 s = strchr(curr, ','); 1829 if (s) { 1830 *s = '\0'; 1831 s++; 1832 } 1833 addr = simple_strtoul(curr, &n, 0); 1834 if ((*n != '\0') || (*curr == '\0')) { 1835 printk(KERN_WARNING PFX "Invalid hotmod address" 1836 " '%s'\n", curr); 1837 break; 1838 } 1839 1840 while (s) { 1841 curr = s; 1842 s = strchr(curr, ','); 1843 if (s) { 1844 *s = '\0'; 1845 s++; 1846 } 1847 o = strchr(curr, '='); 1848 if (o) { 1849 *o = '\0'; 1850 o++; 1851 } 1852 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing); 1853 if (rv < 0) 1854 goto out; 1855 else if (rv) 1856 continue; 1857 rv = check_hotmod_int_op(curr, o, "rsi", ®size); 1858 if (rv < 0) 1859 goto out; 1860 else if (rv) 1861 continue; 1862 rv = check_hotmod_int_op(curr, o, "rsh", ®shift); 1863 if (rv < 0) 1864 goto out; 1865 else if (rv) 1866 continue; 1867 rv = check_hotmod_int_op(curr, o, "irq", &irq); 1868 if (rv < 0) 1869 goto out; 1870 else if (rv) 1871 continue; 1872 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb); 1873 if (rv < 0) 1874 goto out; 1875 else if (rv) 1876 continue; 1877 1878 rv = -EINVAL; 1879 printk(KERN_WARNING PFX 1880 "Invalid hotmod option '%s'\n", 1881 curr); 1882 goto out; 1883 } 1884 1885 if (op == HM_ADD) { 1886 info = smi_info_alloc(); 1887 if (!info) { 1888 rv = -ENOMEM; 1889 goto out; 1890 } 1891 1892 info->addr_source = SI_HOTMOD; 1893 info->si_type = si_type; 1894 info->io.addr_data = addr; 1895 info->io.addr_type = addr_space; 1896 if (addr_space == IPMI_MEM_ADDR_SPACE) 1897 info->io_setup = mem_setup; 1898 else 1899 info->io_setup = port_setup; 1900 1901 info->io.addr = NULL; 1902 info->io.regspacing = regspacing; 1903 if (!info->io.regspacing) 1904 info->io.regspacing = DEFAULT_REGSPACING; 1905 info->io.regsize = regsize; 1906 if (!info->io.regsize) 1907 info->io.regsize = DEFAULT_REGSPACING; 1908 info->io.regshift = regshift; 1909 info->irq = irq; 1910 if (info->irq) 1911 info->irq_setup = std_irq_setup; 1912 info->slave_addr = ipmb; 1913 1914 rv = add_smi(info); 1915 if (rv) { 1916 kfree(info); 1917 goto out; 1918 } 1919 rv = try_smi_init(info); 1920 if (rv) { 1921 cleanup_one_si(info); 1922 goto out; 1923 } 1924 } else { 1925 /* remove */ 1926 struct smi_info *e, *tmp_e; 1927 1928 mutex_lock(&smi_infos_lock); 1929 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) { 1930 if (e->io.addr_type != addr_space) 1931 continue; 1932 if (e->si_type != si_type) 1933 continue; 1934 if (e->io.addr_data == addr) 1935 cleanup_one_si(e); 1936 } 1937 mutex_unlock(&smi_infos_lock); 1938 } 1939 } 1940 rv = len; 1941 out: 1942 kfree(str); 1943 return rv; 1944 } 1945 1946 static int hardcode_find_bmc(void) 1947 { 1948 int ret = -ENODEV; 1949 int i; 1950 struct smi_info *info; 1951 1952 for (i = 0; i < SI_MAX_PARMS; i++) { 1953 if (!ports[i] && !addrs[i]) 1954 continue; 1955 1956 info = smi_info_alloc(); 1957 if (!info) 1958 return -ENOMEM; 1959 1960 info->addr_source = SI_HARDCODED; 1961 printk(KERN_INFO PFX "probing via hardcoded address\n"); 1962 1963 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) { 1964 info->si_type = SI_KCS; 1965 } else if (strcmp(si_type[i], "smic") == 0) { 1966 info->si_type = SI_SMIC; 1967 } else if (strcmp(si_type[i], "bt") == 0) { 1968 info->si_type = SI_BT; 1969 } else { 1970 printk(KERN_WARNING PFX "Interface type specified " 1971 "for interface %d, was invalid: %s\n", 1972 i, si_type[i]); 1973 kfree(info); 1974 continue; 1975 } 1976 1977 if (ports[i]) { 1978 /* An I/O port */ 1979 info->io_setup = port_setup; 1980 info->io.addr_data = ports[i]; 1981 info->io.addr_type = IPMI_IO_ADDR_SPACE; 1982 } else if (addrs[i]) { 1983 /* A memory port */ 1984 info->io_setup = mem_setup; 1985 info->io.addr_data = addrs[i]; 1986 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 1987 } else { 1988 printk(KERN_WARNING PFX "Interface type specified " 1989 "for interface %d, but port and address were " 1990 "not set or set to zero.\n", i); 1991 kfree(info); 1992 continue; 1993 } 1994 1995 info->io.addr = NULL; 1996 info->io.regspacing = regspacings[i]; 1997 if (!info->io.regspacing) 1998 info->io.regspacing = DEFAULT_REGSPACING; 1999 info->io.regsize = regsizes[i]; 2000 if (!info->io.regsize) 2001 info->io.regsize = DEFAULT_REGSPACING; 2002 info->io.regshift = regshifts[i]; 2003 info->irq = irqs[i]; 2004 if (info->irq) 2005 info->irq_setup = std_irq_setup; 2006 info->slave_addr = slave_addrs[i]; 2007 2008 if (!add_smi(info)) { 2009 if (try_smi_init(info)) 2010 cleanup_one_si(info); 2011 ret = 0; 2012 } else { 2013 kfree(info); 2014 } 2015 } 2016 return ret; 2017 } 2018 2019 #ifdef CONFIG_ACPI 2020 2021 #include <linux/acpi.h> 2022 2023 /* 2024 * Once we get an ACPI failure, we don't try any more, because we go 2025 * through the tables sequentially. Once we don't find a table, there 2026 * are no more. 2027 */ 2028 static int acpi_failure; 2029 2030 /* For GPE-type interrupts. */ 2031 static u32 ipmi_acpi_gpe(acpi_handle gpe_device, 2032 u32 gpe_number, void *context) 2033 { 2034 struct smi_info *smi_info = context; 2035 unsigned long flags; 2036 2037 spin_lock_irqsave(&(smi_info->si_lock), flags); 2038 2039 smi_inc_stat(smi_info, interrupts); 2040 2041 debug_timestamp("ACPI_GPE"); 2042 2043 smi_event_handler(smi_info, 0); 2044 spin_unlock_irqrestore(&(smi_info->si_lock), flags); 2045 2046 return ACPI_INTERRUPT_HANDLED; 2047 } 2048 2049 static void acpi_gpe_irq_cleanup(struct smi_info *info) 2050 { 2051 if (!info->irq) 2052 return; 2053 2054 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe); 2055 } 2056 2057 static int acpi_gpe_irq_setup(struct smi_info *info) 2058 { 2059 acpi_status status; 2060 2061 if (!info->irq) 2062 return 0; 2063 2064 status = acpi_install_gpe_handler(NULL, 2065 info->irq, 2066 ACPI_GPE_LEVEL_TRIGGERED, 2067 &ipmi_acpi_gpe, 2068 info); 2069 if (status != AE_OK) { 2070 dev_warn(info->dev, "%s unable to claim ACPI GPE %d," 2071 " running polled\n", DEVICE_NAME, info->irq); 2072 info->irq = 0; 2073 return -EINVAL; 2074 } else { 2075 info->irq_cleanup = acpi_gpe_irq_cleanup; 2076 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq); 2077 return 0; 2078 } 2079 } 2080 2081 /* 2082 * Defined at 2083 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf 2084 */ 2085 struct SPMITable { 2086 s8 Signature[4]; 2087 u32 Length; 2088 u8 Revision; 2089 u8 Checksum; 2090 s8 OEMID[6]; 2091 s8 OEMTableID[8]; 2092 s8 OEMRevision[4]; 2093 s8 CreatorID[4]; 2094 s8 CreatorRevision[4]; 2095 u8 InterfaceType; 2096 u8 IPMIlegacy; 2097 s16 SpecificationRevision; 2098 2099 /* 2100 * Bit 0 - SCI interrupt supported 2101 * Bit 1 - I/O APIC/SAPIC 2102 */ 2103 u8 InterruptType; 2104 2105 /* 2106 * If bit 0 of InterruptType is set, then this is the SCI 2107 * interrupt in the GPEx_STS register. 2108 */ 2109 u8 GPE; 2110 2111 s16 Reserved; 2112 2113 /* 2114 * If bit 1 of InterruptType is set, then this is the I/O 2115 * APIC/SAPIC interrupt. 2116 */ 2117 u32 GlobalSystemInterrupt; 2118 2119 /* The actual register address. */ 2120 struct acpi_generic_address addr; 2121 2122 u8 UID[4]; 2123 2124 s8 spmi_id[1]; /* A '\0' terminated array starts here. */ 2125 }; 2126 2127 static int try_init_spmi(struct SPMITable *spmi) 2128 { 2129 struct smi_info *info; 2130 int rv; 2131 2132 if (spmi->IPMIlegacy != 1) { 2133 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy); 2134 return -ENODEV; 2135 } 2136 2137 info = smi_info_alloc(); 2138 if (!info) { 2139 printk(KERN_ERR PFX "Could not allocate SI data (3)\n"); 2140 return -ENOMEM; 2141 } 2142 2143 info->addr_source = SI_SPMI; 2144 printk(KERN_INFO PFX "probing via SPMI\n"); 2145 2146 /* Figure out the interface type. */ 2147 switch (spmi->InterfaceType) { 2148 case 1: /* KCS */ 2149 info->si_type = SI_KCS; 2150 break; 2151 case 2: /* SMIC */ 2152 info->si_type = SI_SMIC; 2153 break; 2154 case 3: /* BT */ 2155 info->si_type = SI_BT; 2156 break; 2157 case 4: /* SSIF, just ignore */ 2158 kfree(info); 2159 return -EIO; 2160 default: 2161 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n", 2162 spmi->InterfaceType); 2163 kfree(info); 2164 return -EIO; 2165 } 2166 2167 if (spmi->InterruptType & 1) { 2168 /* We've got a GPE interrupt. */ 2169 info->irq = spmi->GPE; 2170 info->irq_setup = acpi_gpe_irq_setup; 2171 } else if (spmi->InterruptType & 2) { 2172 /* We've got an APIC/SAPIC interrupt. */ 2173 info->irq = spmi->GlobalSystemInterrupt; 2174 info->irq_setup = std_irq_setup; 2175 } else { 2176 /* Use the default interrupt setting. */ 2177 info->irq = 0; 2178 info->irq_setup = NULL; 2179 } 2180 2181 if (spmi->addr.bit_width) { 2182 /* A (hopefully) properly formed register bit width. */ 2183 info->io.regspacing = spmi->addr.bit_width / 8; 2184 } else { 2185 info->io.regspacing = DEFAULT_REGSPACING; 2186 } 2187 info->io.regsize = info->io.regspacing; 2188 info->io.regshift = spmi->addr.bit_offset; 2189 2190 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) { 2191 info->io_setup = mem_setup; 2192 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2193 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) { 2194 info->io_setup = port_setup; 2195 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2196 } else { 2197 kfree(info); 2198 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n"); 2199 return -EIO; 2200 } 2201 info->io.addr_data = spmi->addr.address; 2202 2203 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n", 2204 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2205 info->io.addr_data, info->io.regsize, info->io.regspacing, 2206 info->irq); 2207 2208 rv = add_smi(info); 2209 if (rv) 2210 kfree(info); 2211 2212 return rv; 2213 } 2214 2215 static void spmi_find_bmc(void) 2216 { 2217 acpi_status status; 2218 struct SPMITable *spmi; 2219 int i; 2220 2221 if (acpi_disabled) 2222 return; 2223 2224 if (acpi_failure) 2225 return; 2226 2227 for (i = 0; ; i++) { 2228 status = acpi_get_table(ACPI_SIG_SPMI, i+1, 2229 (struct acpi_table_header **)&spmi); 2230 if (status != AE_OK) 2231 return; 2232 2233 try_init_spmi(spmi); 2234 } 2235 } 2236 2237 static int ipmi_pnp_probe(struct pnp_dev *dev, 2238 const struct pnp_device_id *dev_id) 2239 { 2240 struct acpi_device *acpi_dev; 2241 struct smi_info *info; 2242 struct resource *res, *res_second; 2243 acpi_handle handle; 2244 acpi_status status; 2245 unsigned long long tmp; 2246 int rv = -EINVAL; 2247 2248 acpi_dev = pnp_acpi_device(dev); 2249 if (!acpi_dev) 2250 return -ENODEV; 2251 2252 info = smi_info_alloc(); 2253 if (!info) 2254 return -ENOMEM; 2255 2256 info->addr_source = SI_ACPI; 2257 printk(KERN_INFO PFX "probing via ACPI\n"); 2258 2259 handle = acpi_dev->handle; 2260 info->addr_info.acpi_info.acpi_handle = handle; 2261 2262 /* _IFT tells us the interface type: KCS, BT, etc */ 2263 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp); 2264 if (ACPI_FAILURE(status)) { 2265 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n"); 2266 goto err_free; 2267 } 2268 2269 switch (tmp) { 2270 case 1: 2271 info->si_type = SI_KCS; 2272 break; 2273 case 2: 2274 info->si_type = SI_SMIC; 2275 break; 2276 case 3: 2277 info->si_type = SI_BT; 2278 break; 2279 case 4: /* SSIF, just ignore */ 2280 rv = -ENODEV; 2281 goto err_free; 2282 default: 2283 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp); 2284 goto err_free; 2285 } 2286 2287 res = pnp_get_resource(dev, IORESOURCE_IO, 0); 2288 if (res) { 2289 info->io_setup = port_setup; 2290 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2291 } else { 2292 res = pnp_get_resource(dev, IORESOURCE_MEM, 0); 2293 if (res) { 2294 info->io_setup = mem_setup; 2295 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2296 } 2297 } 2298 if (!res) { 2299 dev_err(&dev->dev, "no I/O or memory address\n"); 2300 goto err_free; 2301 } 2302 info->io.addr_data = res->start; 2303 2304 info->io.regspacing = DEFAULT_REGSPACING; 2305 res_second = pnp_get_resource(dev, 2306 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? 2307 IORESOURCE_IO : IORESOURCE_MEM, 2308 1); 2309 if (res_second) { 2310 if (res_second->start > info->io.addr_data) 2311 info->io.regspacing = res_second->start - info->io.addr_data; 2312 } 2313 info->io.regsize = DEFAULT_REGSPACING; 2314 info->io.regshift = 0; 2315 2316 /* If _GPE exists, use it; otherwise use standard interrupts */ 2317 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp); 2318 if (ACPI_SUCCESS(status)) { 2319 info->irq = tmp; 2320 info->irq_setup = acpi_gpe_irq_setup; 2321 } else if (pnp_irq_valid(dev, 0)) { 2322 info->irq = pnp_irq(dev, 0); 2323 info->irq_setup = std_irq_setup; 2324 } 2325 2326 info->dev = &dev->dev; 2327 pnp_set_drvdata(dev, info); 2328 2329 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n", 2330 res, info->io.regsize, info->io.regspacing, 2331 info->irq); 2332 2333 rv = add_smi(info); 2334 if (rv) 2335 kfree(info); 2336 2337 return rv; 2338 2339 err_free: 2340 kfree(info); 2341 return rv; 2342 } 2343 2344 static void ipmi_pnp_remove(struct pnp_dev *dev) 2345 { 2346 struct smi_info *info = pnp_get_drvdata(dev); 2347 2348 cleanup_one_si(info); 2349 } 2350 2351 static const struct pnp_device_id pnp_dev_table[] = { 2352 {"IPI0001", 0}, 2353 {"", 0}, 2354 }; 2355 2356 static struct pnp_driver ipmi_pnp_driver = { 2357 .name = DEVICE_NAME, 2358 .probe = ipmi_pnp_probe, 2359 .remove = ipmi_pnp_remove, 2360 .id_table = pnp_dev_table, 2361 }; 2362 2363 MODULE_DEVICE_TABLE(pnp, pnp_dev_table); 2364 #endif 2365 2366 #ifdef CONFIG_DMI 2367 struct dmi_ipmi_data { 2368 u8 type; 2369 u8 addr_space; 2370 unsigned long base_addr; 2371 u8 irq; 2372 u8 offset; 2373 u8 slave_addr; 2374 }; 2375 2376 static int decode_dmi(const struct dmi_header *dm, 2377 struct dmi_ipmi_data *dmi) 2378 { 2379 const u8 *data = (const u8 *)dm; 2380 unsigned long base_addr; 2381 u8 reg_spacing; 2382 u8 len = dm->length; 2383 2384 dmi->type = data[4]; 2385 2386 memcpy(&base_addr, data+8, sizeof(unsigned long)); 2387 if (len >= 0x11) { 2388 if (base_addr & 1) { 2389 /* I/O */ 2390 base_addr &= 0xFFFE; 2391 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2392 } else 2393 /* Memory */ 2394 dmi->addr_space = IPMI_MEM_ADDR_SPACE; 2395 2396 /* If bit 4 of byte 0x10 is set, then the lsb for the address 2397 is odd. */ 2398 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4); 2399 2400 dmi->irq = data[0x11]; 2401 2402 /* The top two bits of byte 0x10 hold the register spacing. */ 2403 reg_spacing = (data[0x10] & 0xC0) >> 6; 2404 switch (reg_spacing) { 2405 case 0x00: /* Byte boundaries */ 2406 dmi->offset = 1; 2407 break; 2408 case 0x01: /* 32-bit boundaries */ 2409 dmi->offset = 4; 2410 break; 2411 case 0x02: /* 16-byte boundaries */ 2412 dmi->offset = 16; 2413 break; 2414 default: 2415 /* Some other interface, just ignore it. */ 2416 return -EIO; 2417 } 2418 } else { 2419 /* Old DMI spec. */ 2420 /* 2421 * Note that technically, the lower bit of the base 2422 * address should be 1 if the address is I/O and 0 if 2423 * the address is in memory. So many systems get that 2424 * wrong (and all that I have seen are I/O) so we just 2425 * ignore that bit and assume I/O. Systems that use 2426 * memory should use the newer spec, anyway. 2427 */ 2428 dmi->base_addr = base_addr & 0xfffe; 2429 dmi->addr_space = IPMI_IO_ADDR_SPACE; 2430 dmi->offset = 1; 2431 } 2432 2433 dmi->slave_addr = data[6]; 2434 2435 return 0; 2436 } 2437 2438 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data) 2439 { 2440 struct smi_info *info; 2441 2442 info = smi_info_alloc(); 2443 if (!info) { 2444 printk(KERN_ERR PFX "Could not allocate SI data\n"); 2445 return; 2446 } 2447 2448 info->addr_source = SI_SMBIOS; 2449 printk(KERN_INFO PFX "probing via SMBIOS\n"); 2450 2451 switch (ipmi_data->type) { 2452 case 0x01: /* KCS */ 2453 info->si_type = SI_KCS; 2454 break; 2455 case 0x02: /* SMIC */ 2456 info->si_type = SI_SMIC; 2457 break; 2458 case 0x03: /* BT */ 2459 info->si_type = SI_BT; 2460 break; 2461 default: 2462 kfree(info); 2463 return; 2464 } 2465 2466 switch (ipmi_data->addr_space) { 2467 case IPMI_MEM_ADDR_SPACE: 2468 info->io_setup = mem_setup; 2469 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2470 break; 2471 2472 case IPMI_IO_ADDR_SPACE: 2473 info->io_setup = port_setup; 2474 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2475 break; 2476 2477 default: 2478 kfree(info); 2479 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n", 2480 ipmi_data->addr_space); 2481 return; 2482 } 2483 info->io.addr_data = ipmi_data->base_addr; 2484 2485 info->io.regspacing = ipmi_data->offset; 2486 if (!info->io.regspacing) 2487 info->io.regspacing = DEFAULT_REGSPACING; 2488 info->io.regsize = DEFAULT_REGSPACING; 2489 info->io.regshift = 0; 2490 2491 info->slave_addr = ipmi_data->slave_addr; 2492 2493 info->irq = ipmi_data->irq; 2494 if (info->irq) 2495 info->irq_setup = std_irq_setup; 2496 2497 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n", 2498 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem", 2499 info->io.addr_data, info->io.regsize, info->io.regspacing, 2500 info->irq); 2501 2502 if (add_smi(info)) 2503 kfree(info); 2504 } 2505 2506 static void dmi_find_bmc(void) 2507 { 2508 const struct dmi_device *dev = NULL; 2509 struct dmi_ipmi_data data; 2510 int rv; 2511 2512 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) { 2513 memset(&data, 0, sizeof(data)); 2514 rv = decode_dmi((const struct dmi_header *) dev->device_data, 2515 &data); 2516 if (!rv) 2517 try_init_dmi(&data); 2518 } 2519 } 2520 #endif /* CONFIG_DMI */ 2521 2522 #ifdef CONFIG_PCI 2523 2524 #define PCI_ERMC_CLASSCODE 0x0C0700 2525 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00 2526 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff 2527 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00 2528 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01 2529 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02 2530 2531 #define PCI_HP_VENDOR_ID 0x103C 2532 #define PCI_MMC_DEVICE_ID 0x121A 2533 #define PCI_MMC_ADDR_CW 0x10 2534 2535 static void ipmi_pci_cleanup(struct smi_info *info) 2536 { 2537 struct pci_dev *pdev = info->addr_source_data; 2538 2539 pci_disable_device(pdev); 2540 } 2541 2542 static int ipmi_pci_probe_regspacing(struct smi_info *info) 2543 { 2544 if (info->si_type == SI_KCS) { 2545 unsigned char status; 2546 int regspacing; 2547 2548 info->io.regsize = DEFAULT_REGSIZE; 2549 info->io.regshift = 0; 2550 info->io_size = 2; 2551 info->handlers = &kcs_smi_handlers; 2552 2553 /* detect 1, 4, 16byte spacing */ 2554 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) { 2555 info->io.regspacing = regspacing; 2556 if (info->io_setup(info)) { 2557 dev_err(info->dev, 2558 "Could not setup I/O space\n"); 2559 return DEFAULT_REGSPACING; 2560 } 2561 /* write invalid cmd */ 2562 info->io.outputb(&info->io, 1, 0x10); 2563 /* read status back */ 2564 status = info->io.inputb(&info->io, 1); 2565 info->io_cleanup(info); 2566 if (status) 2567 return regspacing; 2568 regspacing *= 4; 2569 } 2570 } 2571 return DEFAULT_REGSPACING; 2572 } 2573 2574 static int ipmi_pci_probe(struct pci_dev *pdev, 2575 const struct pci_device_id *ent) 2576 { 2577 int rv; 2578 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK; 2579 struct smi_info *info; 2580 2581 info = smi_info_alloc(); 2582 if (!info) 2583 return -ENOMEM; 2584 2585 info->addr_source = SI_PCI; 2586 dev_info(&pdev->dev, "probing via PCI"); 2587 2588 switch (class_type) { 2589 case PCI_ERMC_CLASSCODE_TYPE_SMIC: 2590 info->si_type = SI_SMIC; 2591 break; 2592 2593 case PCI_ERMC_CLASSCODE_TYPE_KCS: 2594 info->si_type = SI_KCS; 2595 break; 2596 2597 case PCI_ERMC_CLASSCODE_TYPE_BT: 2598 info->si_type = SI_BT; 2599 break; 2600 2601 default: 2602 kfree(info); 2603 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type); 2604 return -ENOMEM; 2605 } 2606 2607 rv = pci_enable_device(pdev); 2608 if (rv) { 2609 dev_err(&pdev->dev, "couldn't enable PCI device\n"); 2610 kfree(info); 2611 return rv; 2612 } 2613 2614 info->addr_source_cleanup = ipmi_pci_cleanup; 2615 info->addr_source_data = pdev; 2616 2617 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) { 2618 info->io_setup = port_setup; 2619 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2620 } else { 2621 info->io_setup = mem_setup; 2622 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2623 } 2624 info->io.addr_data = pci_resource_start(pdev, 0); 2625 2626 info->io.regspacing = ipmi_pci_probe_regspacing(info); 2627 info->io.regsize = DEFAULT_REGSIZE; 2628 info->io.regshift = 0; 2629 2630 info->irq = pdev->irq; 2631 if (info->irq) 2632 info->irq_setup = std_irq_setup; 2633 2634 info->dev = &pdev->dev; 2635 pci_set_drvdata(pdev, info); 2636 2637 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n", 2638 &pdev->resource[0], info->io.regsize, info->io.regspacing, 2639 info->irq); 2640 2641 rv = add_smi(info); 2642 if (rv) { 2643 kfree(info); 2644 pci_disable_device(pdev); 2645 } 2646 2647 return rv; 2648 } 2649 2650 static void ipmi_pci_remove(struct pci_dev *pdev) 2651 { 2652 struct smi_info *info = pci_get_drvdata(pdev); 2653 cleanup_one_si(info); 2654 pci_disable_device(pdev); 2655 } 2656 2657 static struct pci_device_id ipmi_pci_devices[] = { 2658 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) }, 2659 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) }, 2660 { 0, } 2661 }; 2662 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices); 2663 2664 static struct pci_driver ipmi_pci_driver = { 2665 .name = DEVICE_NAME, 2666 .id_table = ipmi_pci_devices, 2667 .probe = ipmi_pci_probe, 2668 .remove = ipmi_pci_remove, 2669 }; 2670 #endif /* CONFIG_PCI */ 2671 2672 static const struct of_device_id ipmi_match[]; 2673 static int ipmi_probe(struct platform_device *dev) 2674 { 2675 #ifdef CONFIG_OF 2676 const struct of_device_id *match; 2677 struct smi_info *info; 2678 struct resource resource; 2679 const __be32 *regsize, *regspacing, *regshift; 2680 struct device_node *np = dev->dev.of_node; 2681 int ret; 2682 int proplen; 2683 2684 dev_info(&dev->dev, "probing via device tree\n"); 2685 2686 match = of_match_device(ipmi_match, &dev->dev); 2687 if (!match) 2688 return -EINVAL; 2689 2690 if (!of_device_is_available(np)) 2691 return -EINVAL; 2692 2693 ret = of_address_to_resource(np, 0, &resource); 2694 if (ret) { 2695 dev_warn(&dev->dev, PFX "invalid address from OF\n"); 2696 return ret; 2697 } 2698 2699 regsize = of_get_property(np, "reg-size", &proplen); 2700 if (regsize && proplen != 4) { 2701 dev_warn(&dev->dev, PFX "invalid regsize from OF\n"); 2702 return -EINVAL; 2703 } 2704 2705 regspacing = of_get_property(np, "reg-spacing", &proplen); 2706 if (regspacing && proplen != 4) { 2707 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n"); 2708 return -EINVAL; 2709 } 2710 2711 regshift = of_get_property(np, "reg-shift", &proplen); 2712 if (regshift && proplen != 4) { 2713 dev_warn(&dev->dev, PFX "invalid regshift from OF\n"); 2714 return -EINVAL; 2715 } 2716 2717 info = smi_info_alloc(); 2718 2719 if (!info) { 2720 dev_err(&dev->dev, 2721 "could not allocate memory for OF probe\n"); 2722 return -ENOMEM; 2723 } 2724 2725 info->si_type = (enum si_type) match->data; 2726 info->addr_source = SI_DEVICETREE; 2727 info->irq_setup = std_irq_setup; 2728 2729 if (resource.flags & IORESOURCE_IO) { 2730 info->io_setup = port_setup; 2731 info->io.addr_type = IPMI_IO_ADDR_SPACE; 2732 } else { 2733 info->io_setup = mem_setup; 2734 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2735 } 2736 2737 info->io.addr_data = resource.start; 2738 2739 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE; 2740 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING; 2741 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0; 2742 2743 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 2744 info->dev = &dev->dev; 2745 2746 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n", 2747 info->io.addr_data, info->io.regsize, info->io.regspacing, 2748 info->irq); 2749 2750 dev_set_drvdata(&dev->dev, info); 2751 2752 ret = add_smi(info); 2753 if (ret) { 2754 kfree(info); 2755 return ret; 2756 } 2757 #endif 2758 return 0; 2759 } 2760 2761 static int ipmi_remove(struct platform_device *dev) 2762 { 2763 #ifdef CONFIG_OF 2764 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2765 #endif 2766 return 0; 2767 } 2768 2769 static const struct of_device_id ipmi_match[] = 2770 { 2771 { .type = "ipmi", .compatible = "ipmi-kcs", 2772 .data = (void *)(unsigned long) SI_KCS }, 2773 { .type = "ipmi", .compatible = "ipmi-smic", 2774 .data = (void *)(unsigned long) SI_SMIC }, 2775 { .type = "ipmi", .compatible = "ipmi-bt", 2776 .data = (void *)(unsigned long) SI_BT }, 2777 {}, 2778 }; 2779 2780 static struct platform_driver ipmi_driver = { 2781 .driver = { 2782 .name = DEVICE_NAME, 2783 .of_match_table = ipmi_match, 2784 }, 2785 .probe = ipmi_probe, 2786 .remove = ipmi_remove, 2787 }; 2788 2789 #ifdef CONFIG_PARISC 2790 static int ipmi_parisc_probe(struct parisc_device *dev) 2791 { 2792 struct smi_info *info; 2793 int rv; 2794 2795 info = smi_info_alloc(); 2796 2797 if (!info) { 2798 dev_err(&dev->dev, 2799 "could not allocate memory for PARISC probe\n"); 2800 return -ENOMEM; 2801 } 2802 2803 info->si_type = SI_KCS; 2804 info->addr_source = SI_DEVICETREE; 2805 info->io_setup = mem_setup; 2806 info->io.addr_type = IPMI_MEM_ADDR_SPACE; 2807 info->io.addr_data = dev->hpa.start; 2808 info->io.regsize = 1; 2809 info->io.regspacing = 1; 2810 info->io.regshift = 0; 2811 info->irq = 0; /* no interrupt */ 2812 info->irq_setup = NULL; 2813 info->dev = &dev->dev; 2814 2815 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data); 2816 2817 dev_set_drvdata(&dev->dev, info); 2818 2819 rv = add_smi(info); 2820 if (rv) { 2821 kfree(info); 2822 return rv; 2823 } 2824 2825 return 0; 2826 } 2827 2828 static int ipmi_parisc_remove(struct parisc_device *dev) 2829 { 2830 cleanup_one_si(dev_get_drvdata(&dev->dev)); 2831 return 0; 2832 } 2833 2834 static struct parisc_device_id ipmi_parisc_tbl[] = { 2835 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 }, 2836 { 0, } 2837 }; 2838 2839 static struct parisc_driver ipmi_parisc_driver = { 2840 .name = "ipmi", 2841 .id_table = ipmi_parisc_tbl, 2842 .probe = ipmi_parisc_probe, 2843 .remove = ipmi_parisc_remove, 2844 }; 2845 #endif /* CONFIG_PARISC */ 2846 2847 static int wait_for_msg_done(struct smi_info *smi_info) 2848 { 2849 enum si_sm_result smi_result; 2850 2851 smi_result = smi_info->handlers->event(smi_info->si_sm, 0); 2852 for (;;) { 2853 if (smi_result == SI_SM_CALL_WITH_DELAY || 2854 smi_result == SI_SM_CALL_WITH_TICK_DELAY) { 2855 schedule_timeout_uninterruptible(1); 2856 smi_result = smi_info->handlers->event( 2857 smi_info->si_sm, jiffies_to_usecs(1)); 2858 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) { 2859 smi_result = smi_info->handlers->event( 2860 smi_info->si_sm, 0); 2861 } else 2862 break; 2863 } 2864 if (smi_result == SI_SM_HOSED) 2865 /* 2866 * We couldn't get the state machine to run, so whatever's at 2867 * the port is probably not an IPMI SMI interface. 2868 */ 2869 return -ENODEV; 2870 2871 return 0; 2872 } 2873 2874 static int try_get_dev_id(struct smi_info *smi_info) 2875 { 2876 unsigned char msg[2]; 2877 unsigned char *resp; 2878 unsigned long resp_len; 2879 int rv = 0; 2880 2881 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2882 if (!resp) 2883 return -ENOMEM; 2884 2885 /* 2886 * Do a Get Device ID command, since it comes back with some 2887 * useful info. 2888 */ 2889 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2890 msg[1] = IPMI_GET_DEVICE_ID_CMD; 2891 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2892 2893 rv = wait_for_msg_done(smi_info); 2894 if (rv) 2895 goto out; 2896 2897 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2898 resp, IPMI_MAX_MSG_LENGTH); 2899 2900 /* Check and record info from the get device id, in case we need it. */ 2901 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id); 2902 2903 out: 2904 kfree(resp); 2905 return rv; 2906 } 2907 2908 /* 2909 * Some BMCs do not support clearing the receive irq bit in the global 2910 * enables (even if they don't support interrupts on the BMC). Check 2911 * for this and handle it properly. 2912 */ 2913 static void check_clr_rcv_irq(struct smi_info *smi_info) 2914 { 2915 unsigned char msg[3]; 2916 unsigned char *resp; 2917 unsigned long resp_len; 2918 int rv; 2919 2920 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 2921 if (!resp) { 2922 printk(KERN_WARNING PFX "Out of memory allocating response for" 2923 " global enables command, cannot check recv irq bit" 2924 " handling.\n"); 2925 return; 2926 } 2927 2928 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2929 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 2930 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 2931 2932 rv = wait_for_msg_done(smi_info); 2933 if (rv) { 2934 printk(KERN_WARNING PFX "Error getting response from get" 2935 " global enables command, cannot check recv irq bit" 2936 " handling.\n"); 2937 goto out; 2938 } 2939 2940 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2941 resp, IPMI_MAX_MSG_LENGTH); 2942 2943 if (resp_len < 4 || 2944 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2945 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 2946 resp[2] != 0) { 2947 printk(KERN_WARNING PFX "Invalid return from get global" 2948 " enables command, cannot check recv irq bit" 2949 " handling.\n"); 2950 rv = -EINVAL; 2951 goto out; 2952 } 2953 2954 if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0) 2955 /* Already clear, should work ok. */ 2956 goto out; 2957 2958 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 2959 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 2960 msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR; 2961 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 2962 2963 rv = wait_for_msg_done(smi_info); 2964 if (rv) { 2965 printk(KERN_WARNING PFX "Error getting response from set" 2966 " global enables command, cannot check recv irq bit" 2967 " handling.\n"); 2968 goto out; 2969 } 2970 2971 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 2972 resp, IPMI_MAX_MSG_LENGTH); 2973 2974 if (resp_len < 3 || 2975 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 2976 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 2977 printk(KERN_WARNING PFX "Invalid return from get global" 2978 " enables command, cannot check recv irq bit" 2979 " handling.\n"); 2980 rv = -EINVAL; 2981 goto out; 2982 } 2983 2984 if (resp[2] != 0) { 2985 /* 2986 * An error when setting the event buffer bit means 2987 * clearing the bit is not supported. 2988 */ 2989 printk(KERN_WARNING PFX "The BMC does not support clearing" 2990 " the recv irq bit, compensating, but the BMC needs to" 2991 " be fixed.\n"); 2992 smi_info->cannot_clear_recv_irq_bit = true; 2993 } 2994 out: 2995 kfree(resp); 2996 } 2997 2998 static int try_enable_event_buffer(struct smi_info *smi_info) 2999 { 3000 unsigned char msg[3]; 3001 unsigned char *resp; 3002 unsigned long resp_len; 3003 int rv = 0; 3004 3005 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); 3006 if (!resp) 3007 return -ENOMEM; 3008 3009 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3010 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; 3011 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); 3012 3013 rv = wait_for_msg_done(smi_info); 3014 if (rv) { 3015 printk(KERN_WARNING PFX "Error getting response from get" 3016 " global enables command, the event buffer is not" 3017 " enabled.\n"); 3018 goto out; 3019 } 3020 3021 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3022 resp, IPMI_MAX_MSG_LENGTH); 3023 3024 if (resp_len < 4 || 3025 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3026 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD || 3027 resp[2] != 0) { 3028 printk(KERN_WARNING PFX "Invalid return from get global" 3029 " enables command, cannot enable the event buffer.\n"); 3030 rv = -EINVAL; 3031 goto out; 3032 } 3033 3034 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) { 3035 /* buffer is already enabled, nothing to do. */ 3036 smi_info->supports_event_msg_buff = true; 3037 goto out; 3038 } 3039 3040 msg[0] = IPMI_NETFN_APP_REQUEST << 2; 3041 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; 3042 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF; 3043 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3); 3044 3045 rv = wait_for_msg_done(smi_info); 3046 if (rv) { 3047 printk(KERN_WARNING PFX "Error getting response from set" 3048 " global, enables command, the event buffer is not" 3049 " enabled.\n"); 3050 goto out; 3051 } 3052 3053 resp_len = smi_info->handlers->get_result(smi_info->si_sm, 3054 resp, IPMI_MAX_MSG_LENGTH); 3055 3056 if (resp_len < 3 || 3057 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 || 3058 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) { 3059 printk(KERN_WARNING PFX "Invalid return from get global," 3060 "enables command, not enable the event buffer.\n"); 3061 rv = -EINVAL; 3062 goto out; 3063 } 3064 3065 if (resp[2] != 0) 3066 /* 3067 * An error when setting the event buffer bit means 3068 * that the event buffer is not supported. 3069 */ 3070 rv = -ENOENT; 3071 else 3072 smi_info->supports_event_msg_buff = true; 3073 3074 out: 3075 kfree(resp); 3076 return rv; 3077 } 3078 3079 static int smi_type_proc_show(struct seq_file *m, void *v) 3080 { 3081 struct smi_info *smi = m->private; 3082 3083 seq_printf(m, "%s\n", si_to_str[smi->si_type]); 3084 3085 return 0; 3086 } 3087 3088 static int smi_type_proc_open(struct inode *inode, struct file *file) 3089 { 3090 return single_open(file, smi_type_proc_show, PDE_DATA(inode)); 3091 } 3092 3093 static const struct file_operations smi_type_proc_ops = { 3094 .open = smi_type_proc_open, 3095 .read = seq_read, 3096 .llseek = seq_lseek, 3097 .release = single_release, 3098 }; 3099 3100 static int smi_si_stats_proc_show(struct seq_file *m, void *v) 3101 { 3102 struct smi_info *smi = m->private; 3103 3104 seq_printf(m, "interrupts_enabled: %d\n", 3105 smi->irq && !smi->interrupt_disabled); 3106 seq_printf(m, "short_timeouts: %u\n", 3107 smi_get_stat(smi, short_timeouts)); 3108 seq_printf(m, "long_timeouts: %u\n", 3109 smi_get_stat(smi, long_timeouts)); 3110 seq_printf(m, "idles: %u\n", 3111 smi_get_stat(smi, idles)); 3112 seq_printf(m, "interrupts: %u\n", 3113 smi_get_stat(smi, interrupts)); 3114 seq_printf(m, "attentions: %u\n", 3115 smi_get_stat(smi, attentions)); 3116 seq_printf(m, "flag_fetches: %u\n", 3117 smi_get_stat(smi, flag_fetches)); 3118 seq_printf(m, "hosed_count: %u\n", 3119 smi_get_stat(smi, hosed_count)); 3120 seq_printf(m, "complete_transactions: %u\n", 3121 smi_get_stat(smi, complete_transactions)); 3122 seq_printf(m, "events: %u\n", 3123 smi_get_stat(smi, events)); 3124 seq_printf(m, "watchdog_pretimeouts: %u\n", 3125 smi_get_stat(smi, watchdog_pretimeouts)); 3126 seq_printf(m, "incoming_messages: %u\n", 3127 smi_get_stat(smi, incoming_messages)); 3128 return 0; 3129 } 3130 3131 static int smi_si_stats_proc_open(struct inode *inode, struct file *file) 3132 { 3133 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode)); 3134 } 3135 3136 static const struct file_operations smi_si_stats_proc_ops = { 3137 .open = smi_si_stats_proc_open, 3138 .read = seq_read, 3139 .llseek = seq_lseek, 3140 .release = single_release, 3141 }; 3142 3143 static int smi_params_proc_show(struct seq_file *m, void *v) 3144 { 3145 struct smi_info *smi = m->private; 3146 3147 seq_printf(m, 3148 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n", 3149 si_to_str[smi->si_type], 3150 addr_space_to_str[smi->io.addr_type], 3151 smi->io.addr_data, 3152 smi->io.regspacing, 3153 smi->io.regsize, 3154 smi->io.regshift, 3155 smi->irq, 3156 smi->slave_addr); 3157 3158 return 0; 3159 } 3160 3161 static int smi_params_proc_open(struct inode *inode, struct file *file) 3162 { 3163 return single_open(file, smi_params_proc_show, PDE_DATA(inode)); 3164 } 3165 3166 static const struct file_operations smi_params_proc_ops = { 3167 .open = smi_params_proc_open, 3168 .read = seq_read, 3169 .llseek = seq_lseek, 3170 .release = single_release, 3171 }; 3172 3173 /* 3174 * oem_data_avail_to_receive_msg_avail 3175 * @info - smi_info structure with msg_flags set 3176 * 3177 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL 3178 * Returns 1 indicating need to re-run handle_flags(). 3179 */ 3180 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info) 3181 { 3182 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) | 3183 RECEIVE_MSG_AVAIL); 3184 return 1; 3185 } 3186 3187 /* 3188 * setup_dell_poweredge_oem_data_handler 3189 * @info - smi_info.device_id must be populated 3190 * 3191 * Systems that match, but have firmware version < 1.40 may assert 3192 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that 3193 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL 3194 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags 3195 * as RECEIVE_MSG_AVAIL instead. 3196 * 3197 * As Dell has no plans to release IPMI 1.5 firmware that *ever* 3198 * assert the OEM[012] bits, and if it did, the driver would have to 3199 * change to handle that properly, we don't actually check for the 3200 * firmware version. 3201 * Device ID = 0x20 BMC on PowerEdge 8G servers 3202 * Device Revision = 0x80 3203 * Firmware Revision1 = 0x01 BMC version 1.40 3204 * Firmware Revision2 = 0x40 BCD encoded 3205 * IPMI Version = 0x51 IPMI 1.5 3206 * Manufacturer ID = A2 02 00 Dell IANA 3207 * 3208 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert 3209 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL. 3210 * 3211 */ 3212 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20 3213 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80 3214 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51 3215 #define DELL_IANA_MFR_ID 0x0002a2 3216 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info) 3217 { 3218 struct ipmi_device_id *id = &smi_info->device_id; 3219 if (id->manufacturer_id == DELL_IANA_MFR_ID) { 3220 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID && 3221 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV && 3222 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) { 3223 smi_info->oem_data_avail_handler = 3224 oem_data_avail_to_receive_msg_avail; 3225 } else if (ipmi_version_major(id) < 1 || 3226 (ipmi_version_major(id) == 1 && 3227 ipmi_version_minor(id) < 5)) { 3228 smi_info->oem_data_avail_handler = 3229 oem_data_avail_to_receive_msg_avail; 3230 } 3231 } 3232 } 3233 3234 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA 3235 static void return_hosed_msg_badsize(struct smi_info *smi_info) 3236 { 3237 struct ipmi_smi_msg *msg = smi_info->curr_msg; 3238 3239 /* Make it a response */ 3240 msg->rsp[0] = msg->data[0] | 4; 3241 msg->rsp[1] = msg->data[1]; 3242 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH; 3243 msg->rsp_size = 3; 3244 smi_info->curr_msg = NULL; 3245 deliver_recv_msg(smi_info, msg); 3246 } 3247 3248 /* 3249 * dell_poweredge_bt_xaction_handler 3250 * @info - smi_info.device_id must be populated 3251 * 3252 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will 3253 * not respond to a Get SDR command if the length of the data 3254 * requested is exactly 0x3A, which leads to command timeouts and no 3255 * data returned. This intercepts such commands, and causes userspace 3256 * callers to try again with a different-sized buffer, which succeeds. 3257 */ 3258 3259 #define STORAGE_NETFN 0x0A 3260 #define STORAGE_CMD_GET_SDR 0x23 3261 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self, 3262 unsigned long unused, 3263 void *in) 3264 { 3265 struct smi_info *smi_info = in; 3266 unsigned char *data = smi_info->curr_msg->data; 3267 unsigned int size = smi_info->curr_msg->data_size; 3268 if (size >= 8 && 3269 (data[0]>>2) == STORAGE_NETFN && 3270 data[1] == STORAGE_CMD_GET_SDR && 3271 data[7] == 0x3A) { 3272 return_hosed_msg_badsize(smi_info); 3273 return NOTIFY_STOP; 3274 } 3275 return NOTIFY_DONE; 3276 } 3277 3278 static struct notifier_block dell_poweredge_bt_xaction_notifier = { 3279 .notifier_call = dell_poweredge_bt_xaction_handler, 3280 }; 3281 3282 /* 3283 * setup_dell_poweredge_bt_xaction_handler 3284 * @info - smi_info.device_id must be filled in already 3285 * 3286 * Fills in smi_info.device_id.start_transaction_pre_hook 3287 * when we know what function to use there. 3288 */ 3289 static void 3290 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info) 3291 { 3292 struct ipmi_device_id *id = &smi_info->device_id; 3293 if (id->manufacturer_id == DELL_IANA_MFR_ID && 3294 smi_info->si_type == SI_BT) 3295 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier); 3296 } 3297 3298 /* 3299 * setup_oem_data_handler 3300 * @info - smi_info.device_id must be filled in already 3301 * 3302 * Fills in smi_info.device_id.oem_data_available_handler 3303 * when we know what function to use there. 3304 */ 3305 3306 static void setup_oem_data_handler(struct smi_info *smi_info) 3307 { 3308 setup_dell_poweredge_oem_data_handler(smi_info); 3309 } 3310 3311 static void setup_xaction_handlers(struct smi_info *smi_info) 3312 { 3313 setup_dell_poweredge_bt_xaction_handler(smi_info); 3314 } 3315 3316 static inline void wait_for_timer_and_thread(struct smi_info *smi_info) 3317 { 3318 if (smi_info->thread != NULL) 3319 kthread_stop(smi_info->thread); 3320 if (smi_info->timer_running) 3321 del_timer_sync(&smi_info->si_timer); 3322 } 3323 3324 static struct ipmi_default_vals 3325 { 3326 int type; 3327 int port; 3328 } ipmi_defaults[] = 3329 { 3330 { .type = SI_KCS, .port = 0xca2 }, 3331 { .type = SI_SMIC, .port = 0xca9 }, 3332 { .type = SI_BT, .port = 0xe4 }, 3333 { .port = 0 } 3334 }; 3335 3336 static void default_find_bmc(void) 3337 { 3338 struct smi_info *info; 3339 int i; 3340 3341 for (i = 0; ; i++) { 3342 if (!ipmi_defaults[i].port) 3343 break; 3344 #ifdef CONFIG_PPC 3345 if (check_legacy_ioport(ipmi_defaults[i].port)) 3346 continue; 3347 #endif 3348 info = smi_info_alloc(); 3349 if (!info) 3350 return; 3351 3352 info->addr_source = SI_DEFAULT; 3353 3354 info->si_type = ipmi_defaults[i].type; 3355 info->io_setup = port_setup; 3356 info->io.addr_data = ipmi_defaults[i].port; 3357 info->io.addr_type = IPMI_IO_ADDR_SPACE; 3358 3359 info->io.addr = NULL; 3360 info->io.regspacing = DEFAULT_REGSPACING; 3361 info->io.regsize = DEFAULT_REGSPACING; 3362 info->io.regshift = 0; 3363 3364 if (add_smi(info) == 0) { 3365 if ((try_smi_init(info)) == 0) { 3366 /* Found one... */ 3367 printk(KERN_INFO PFX "Found default %s" 3368 " state machine at %s address 0x%lx\n", 3369 si_to_str[info->si_type], 3370 addr_space_to_str[info->io.addr_type], 3371 info->io.addr_data); 3372 } else 3373 cleanup_one_si(info); 3374 } else { 3375 kfree(info); 3376 } 3377 } 3378 } 3379 3380 static int is_new_interface(struct smi_info *info) 3381 { 3382 struct smi_info *e; 3383 3384 list_for_each_entry(e, &smi_infos, link) { 3385 if (e->io.addr_type != info->io.addr_type) 3386 continue; 3387 if (e->io.addr_data == info->io.addr_data) 3388 return 0; 3389 } 3390 3391 return 1; 3392 } 3393 3394 static int add_smi(struct smi_info *new_smi) 3395 { 3396 int rv = 0; 3397 3398 printk(KERN_INFO PFX "Adding %s-specified %s state machine", 3399 ipmi_addr_src_to_str(new_smi->addr_source), 3400 si_to_str[new_smi->si_type]); 3401 mutex_lock(&smi_infos_lock); 3402 if (!is_new_interface(new_smi)) { 3403 printk(KERN_CONT " duplicate interface\n"); 3404 rv = -EBUSY; 3405 goto out_err; 3406 } 3407 3408 printk(KERN_CONT "\n"); 3409 3410 /* So we know not to free it unless we have allocated one. */ 3411 new_smi->intf = NULL; 3412 new_smi->si_sm = NULL; 3413 new_smi->handlers = NULL; 3414 3415 list_add_tail(&new_smi->link, &smi_infos); 3416 3417 out_err: 3418 mutex_unlock(&smi_infos_lock); 3419 return rv; 3420 } 3421 3422 static int try_smi_init(struct smi_info *new_smi) 3423 { 3424 int rv = 0; 3425 int i; 3426 3427 printk(KERN_INFO PFX "Trying %s-specified %s state" 3428 " machine at %s address 0x%lx, slave address 0x%x," 3429 " irq %d\n", 3430 ipmi_addr_src_to_str(new_smi->addr_source), 3431 si_to_str[new_smi->si_type], 3432 addr_space_to_str[new_smi->io.addr_type], 3433 new_smi->io.addr_data, 3434 new_smi->slave_addr, new_smi->irq); 3435 3436 switch (new_smi->si_type) { 3437 case SI_KCS: 3438 new_smi->handlers = &kcs_smi_handlers; 3439 break; 3440 3441 case SI_SMIC: 3442 new_smi->handlers = &smic_smi_handlers; 3443 break; 3444 3445 case SI_BT: 3446 new_smi->handlers = &bt_smi_handlers; 3447 break; 3448 3449 default: 3450 /* No support for anything else yet. */ 3451 rv = -EIO; 3452 goto out_err; 3453 } 3454 3455 /* Allocate the state machine's data and initialize it. */ 3456 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL); 3457 if (!new_smi->si_sm) { 3458 printk(KERN_ERR PFX 3459 "Could not allocate state machine memory\n"); 3460 rv = -ENOMEM; 3461 goto out_err; 3462 } 3463 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm, 3464 &new_smi->io); 3465 3466 /* Now that we know the I/O size, we can set up the I/O. */ 3467 rv = new_smi->io_setup(new_smi); 3468 if (rv) { 3469 printk(KERN_ERR PFX "Could not set up I/O space\n"); 3470 goto out_err; 3471 } 3472 3473 /* Do low-level detection first. */ 3474 if (new_smi->handlers->detect(new_smi->si_sm)) { 3475 if (new_smi->addr_source) 3476 printk(KERN_INFO PFX "Interface detection failed\n"); 3477 rv = -ENODEV; 3478 goto out_err; 3479 } 3480 3481 /* 3482 * Attempt a get device id command. If it fails, we probably 3483 * don't have a BMC here. 3484 */ 3485 rv = try_get_dev_id(new_smi); 3486 if (rv) { 3487 if (new_smi->addr_source) 3488 printk(KERN_INFO PFX "There appears to be no BMC" 3489 " at this location\n"); 3490 goto out_err; 3491 } 3492 3493 check_clr_rcv_irq(new_smi); 3494 3495 setup_oem_data_handler(new_smi); 3496 setup_xaction_handlers(new_smi); 3497 3498 new_smi->waiting_msg = NULL; 3499 new_smi->curr_msg = NULL; 3500 atomic_set(&new_smi->req_events, 0); 3501 new_smi->run_to_completion = false; 3502 for (i = 0; i < SI_NUM_STATS; i++) 3503 atomic_set(&new_smi->stats[i], 0); 3504 3505 new_smi->interrupt_disabled = true; 3506 atomic_set(&new_smi->need_watch, 0); 3507 new_smi->intf_num = smi_num; 3508 smi_num++; 3509 3510 rv = try_enable_event_buffer(new_smi); 3511 if (rv == 0) 3512 new_smi->has_event_buffer = true; 3513 3514 /* 3515 * Start clearing the flags before we enable interrupts or the 3516 * timer to avoid racing with the timer. 3517 */ 3518 start_clear_flags(new_smi); 3519 3520 /* 3521 * IRQ is defined to be set when non-zero. req_events will 3522 * cause a global flags check that will enable interrupts. 3523 */ 3524 if (new_smi->irq) { 3525 new_smi->interrupt_disabled = false; 3526 atomic_set(&new_smi->req_events, 1); 3527 } 3528 3529 if (!new_smi->dev) { 3530 /* 3531 * If we don't already have a device from something 3532 * else (like PCI), then register a new one. 3533 */ 3534 new_smi->pdev = platform_device_alloc("ipmi_si", 3535 new_smi->intf_num); 3536 if (!new_smi->pdev) { 3537 printk(KERN_ERR PFX 3538 "Unable to allocate platform device\n"); 3539 goto out_err; 3540 } 3541 new_smi->dev = &new_smi->pdev->dev; 3542 new_smi->dev->driver = &ipmi_driver.driver; 3543 3544 rv = platform_device_add(new_smi->pdev); 3545 if (rv) { 3546 printk(KERN_ERR PFX 3547 "Unable to register system interface device:" 3548 " %d\n", 3549 rv); 3550 goto out_err; 3551 } 3552 new_smi->dev_registered = true; 3553 } 3554 3555 rv = ipmi_register_smi(&handlers, 3556 new_smi, 3557 &new_smi->device_id, 3558 new_smi->dev, 3559 new_smi->slave_addr); 3560 if (rv) { 3561 dev_err(new_smi->dev, "Unable to register device: error %d\n", 3562 rv); 3563 goto out_err_stop_timer; 3564 } 3565 3566 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type", 3567 &smi_type_proc_ops, 3568 new_smi); 3569 if (rv) { 3570 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3571 goto out_err_stop_timer; 3572 } 3573 3574 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats", 3575 &smi_si_stats_proc_ops, 3576 new_smi); 3577 if (rv) { 3578 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3579 goto out_err_stop_timer; 3580 } 3581 3582 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params", 3583 &smi_params_proc_ops, 3584 new_smi); 3585 if (rv) { 3586 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv); 3587 goto out_err_stop_timer; 3588 } 3589 3590 dev_info(new_smi->dev, "IPMI %s interface initialized\n", 3591 si_to_str[new_smi->si_type]); 3592 3593 return 0; 3594 3595 out_err_stop_timer: 3596 wait_for_timer_and_thread(new_smi); 3597 3598 out_err: 3599 new_smi->interrupt_disabled = true; 3600 3601 if (new_smi->intf) { 3602 ipmi_smi_t intf = new_smi->intf; 3603 new_smi->intf = NULL; 3604 ipmi_unregister_smi(intf); 3605 } 3606 3607 if (new_smi->irq_cleanup) { 3608 new_smi->irq_cleanup(new_smi); 3609 new_smi->irq_cleanup = NULL; 3610 } 3611 3612 /* 3613 * Wait until we know that we are out of any interrupt 3614 * handlers might have been running before we freed the 3615 * interrupt. 3616 */ 3617 synchronize_sched(); 3618 3619 if (new_smi->si_sm) { 3620 if (new_smi->handlers) 3621 new_smi->handlers->cleanup(new_smi->si_sm); 3622 kfree(new_smi->si_sm); 3623 new_smi->si_sm = NULL; 3624 } 3625 if (new_smi->addr_source_cleanup) { 3626 new_smi->addr_source_cleanup(new_smi); 3627 new_smi->addr_source_cleanup = NULL; 3628 } 3629 if (new_smi->io_cleanup) { 3630 new_smi->io_cleanup(new_smi); 3631 new_smi->io_cleanup = NULL; 3632 } 3633 3634 if (new_smi->dev_registered) { 3635 platform_device_unregister(new_smi->pdev); 3636 new_smi->dev_registered = false; 3637 } 3638 3639 return rv; 3640 } 3641 3642 static int init_ipmi_si(void) 3643 { 3644 int i; 3645 char *str; 3646 int rv; 3647 struct smi_info *e; 3648 enum ipmi_addr_src type = SI_INVALID; 3649 3650 if (initialized) 3651 return 0; 3652 initialized = 1; 3653 3654 if (si_tryplatform) { 3655 rv = platform_driver_register(&ipmi_driver); 3656 if (rv) { 3657 printk(KERN_ERR PFX "Unable to register " 3658 "driver: %d\n", rv); 3659 return rv; 3660 } 3661 } 3662 3663 /* Parse out the si_type string into its components. */ 3664 str = si_type_str; 3665 if (*str != '\0') { 3666 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) { 3667 si_type[i] = str; 3668 str = strchr(str, ','); 3669 if (str) { 3670 *str = '\0'; 3671 str++; 3672 } else { 3673 break; 3674 } 3675 } 3676 } 3677 3678 printk(KERN_INFO "IPMI System Interface driver.\n"); 3679 3680 /* If the user gave us a device, they presumably want us to use it */ 3681 if (!hardcode_find_bmc()) 3682 return 0; 3683 3684 #ifdef CONFIG_PCI 3685 if (si_trypci) { 3686 rv = pci_register_driver(&ipmi_pci_driver); 3687 if (rv) 3688 printk(KERN_ERR PFX "Unable to register " 3689 "PCI driver: %d\n", rv); 3690 else 3691 pci_registered = true; 3692 } 3693 #endif 3694 3695 #ifdef CONFIG_ACPI 3696 if (si_tryacpi) { 3697 pnp_register_driver(&ipmi_pnp_driver); 3698 pnp_registered = true; 3699 } 3700 #endif 3701 3702 #ifdef CONFIG_DMI 3703 if (si_trydmi) 3704 dmi_find_bmc(); 3705 #endif 3706 3707 #ifdef CONFIG_ACPI 3708 if (si_tryacpi) 3709 spmi_find_bmc(); 3710 #endif 3711 3712 #ifdef CONFIG_PARISC 3713 register_parisc_driver(&ipmi_parisc_driver); 3714 parisc_registered = true; 3715 /* poking PC IO addresses will crash machine, don't do it */ 3716 si_trydefaults = 0; 3717 #endif 3718 3719 /* We prefer devices with interrupts, but in the case of a machine 3720 with multiple BMCs we assume that there will be several instances 3721 of a given type so if we succeed in registering a type then also 3722 try to register everything else of the same type */ 3723 3724 mutex_lock(&smi_infos_lock); 3725 list_for_each_entry(e, &smi_infos, link) { 3726 /* Try to register a device if it has an IRQ and we either 3727 haven't successfully registered a device yet or this 3728 device has the same type as one we successfully registered */ 3729 if (e->irq && (!type || e->addr_source == type)) { 3730 if (!try_smi_init(e)) { 3731 type = e->addr_source; 3732 } 3733 } 3734 } 3735 3736 /* type will only have been set if we successfully registered an si */ 3737 if (type) { 3738 mutex_unlock(&smi_infos_lock); 3739 return 0; 3740 } 3741 3742 /* Fall back to the preferred device */ 3743 3744 list_for_each_entry(e, &smi_infos, link) { 3745 if (!e->irq && (!type || e->addr_source == type)) { 3746 if (!try_smi_init(e)) { 3747 type = e->addr_source; 3748 } 3749 } 3750 } 3751 mutex_unlock(&smi_infos_lock); 3752 3753 if (type) 3754 return 0; 3755 3756 if (si_trydefaults) { 3757 mutex_lock(&smi_infos_lock); 3758 if (list_empty(&smi_infos)) { 3759 /* No BMC was found, try defaults. */ 3760 mutex_unlock(&smi_infos_lock); 3761 default_find_bmc(); 3762 } else 3763 mutex_unlock(&smi_infos_lock); 3764 } 3765 3766 mutex_lock(&smi_infos_lock); 3767 if (unload_when_empty && list_empty(&smi_infos)) { 3768 mutex_unlock(&smi_infos_lock); 3769 cleanup_ipmi_si(); 3770 printk(KERN_WARNING PFX 3771 "Unable to find any System Interface(s)\n"); 3772 return -ENODEV; 3773 } else { 3774 mutex_unlock(&smi_infos_lock); 3775 return 0; 3776 } 3777 } 3778 module_init(init_ipmi_si); 3779 3780 static void cleanup_one_si(struct smi_info *to_clean) 3781 { 3782 int rv = 0; 3783 3784 if (!to_clean) 3785 return; 3786 3787 if (to_clean->intf) { 3788 ipmi_smi_t intf = to_clean->intf; 3789 3790 to_clean->intf = NULL; 3791 rv = ipmi_unregister_smi(intf); 3792 if (rv) { 3793 pr_err(PFX "Unable to unregister device: errno=%d\n", 3794 rv); 3795 } 3796 } 3797 3798 if (to_clean->dev) 3799 dev_set_drvdata(to_clean->dev, NULL); 3800 3801 list_del(&to_clean->link); 3802 3803 /* 3804 * Make sure that interrupts, the timer and the thread are 3805 * stopped and will not run again. 3806 */ 3807 if (to_clean->irq_cleanup) 3808 to_clean->irq_cleanup(to_clean); 3809 wait_for_timer_and_thread(to_clean); 3810 3811 /* 3812 * Timeouts are stopped, now make sure the interrupts are off 3813 * in the BMC. Note that timers and CPU interrupts are off, 3814 * so no need for locks. 3815 */ 3816 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3817 poll(to_clean); 3818 schedule_timeout_uninterruptible(1); 3819 } 3820 disable_si_irq(to_clean); 3821 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) { 3822 poll(to_clean); 3823 schedule_timeout_uninterruptible(1); 3824 } 3825 3826 if (to_clean->handlers) 3827 to_clean->handlers->cleanup(to_clean->si_sm); 3828 3829 kfree(to_clean->si_sm); 3830 3831 if (to_clean->addr_source_cleanup) 3832 to_clean->addr_source_cleanup(to_clean); 3833 if (to_clean->io_cleanup) 3834 to_clean->io_cleanup(to_clean); 3835 3836 if (to_clean->dev_registered) 3837 platform_device_unregister(to_clean->pdev); 3838 3839 kfree(to_clean); 3840 } 3841 3842 static void cleanup_ipmi_si(void) 3843 { 3844 struct smi_info *e, *tmp_e; 3845 3846 if (!initialized) 3847 return; 3848 3849 #ifdef CONFIG_PCI 3850 if (pci_registered) 3851 pci_unregister_driver(&ipmi_pci_driver); 3852 #endif 3853 #ifdef CONFIG_ACPI 3854 if (pnp_registered) 3855 pnp_unregister_driver(&ipmi_pnp_driver); 3856 #endif 3857 #ifdef CONFIG_PARISC 3858 if (parisc_registered) 3859 unregister_parisc_driver(&ipmi_parisc_driver); 3860 #endif 3861 3862 platform_driver_unregister(&ipmi_driver); 3863 3864 mutex_lock(&smi_infos_lock); 3865 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) 3866 cleanup_one_si(e); 3867 mutex_unlock(&smi_infos_lock); 3868 } 3869 module_exit(cleanup_ipmi_si); 3870 3871 MODULE_LICENSE("GPL"); 3872 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 3873 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT" 3874 " system interfaces."); 3875