xref: /openbmc/linux/drivers/char/ipmi/ipmi_si_intf.c (revision 047f2d94)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_si.c
4  *
5  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
6  * BT).
7  *
8  * Author: MontaVista Software, Inc.
9  *         Corey Minyard <minyard@mvista.com>
10  *         source@mvista.com
11  *
12  * Copyright 2002 MontaVista Software Inc.
13  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14  */
15 
16 /*
17  * This file holds the "policy" for the interface to the SMI state
18  * machine.  It does the configuration, handles timers and interrupts,
19  * and drives the real SMI state machine.
20  */
21 
22 #define pr_fmt(fmt) "ipmi_si: " fmt
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/sched.h>
27 #include <linux/seq_file.h>
28 #include <linux/timer.h>
29 #include <linux/errno.h>
30 #include <linux/spinlock.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/list.h>
34 #include <linux/notifier.h>
35 #include <linux/mutex.h>
36 #include <linux/kthread.h>
37 #include <asm/irq.h>
38 #include <linux/interrupt.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ipmi.h>
41 #include <linux/ipmi_smi.h>
42 #include "ipmi_si.h"
43 #include <linux/string.h>
44 #include <linux/ctype.h>
45 
46 /* Measure times between events in the driver. */
47 #undef DEBUG_TIMING
48 
49 /* Call every 10 ms. */
50 #define SI_TIMEOUT_TIME_USEC	10000
51 #define SI_USEC_PER_JIFFY	(1000000/HZ)
52 #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
53 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
54 				      short timeout */
55 
56 enum si_intf_state {
57 	SI_NORMAL,
58 	SI_GETTING_FLAGS,
59 	SI_GETTING_EVENTS,
60 	SI_CLEARING_FLAGS,
61 	SI_GETTING_MESSAGES,
62 	SI_CHECKING_ENABLES,
63 	SI_SETTING_ENABLES
64 	/* FIXME - add watchdog stuff. */
65 };
66 
67 /* Some BT-specific defines we need here. */
68 #define IPMI_BT_INTMASK_REG		2
69 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
70 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
71 
72 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
73 
74 static int initialized;
75 
76 /*
77  * Indexes into stats[] in smi_info below.
78  */
79 enum si_stat_indexes {
80 	/*
81 	 * Number of times the driver requested a timer while an operation
82 	 * was in progress.
83 	 */
84 	SI_STAT_short_timeouts = 0,
85 
86 	/*
87 	 * Number of times the driver requested a timer while nothing was in
88 	 * progress.
89 	 */
90 	SI_STAT_long_timeouts,
91 
92 	/* Number of times the interface was idle while being polled. */
93 	SI_STAT_idles,
94 
95 	/* Number of interrupts the driver handled. */
96 	SI_STAT_interrupts,
97 
98 	/* Number of time the driver got an ATTN from the hardware. */
99 	SI_STAT_attentions,
100 
101 	/* Number of times the driver requested flags from the hardware. */
102 	SI_STAT_flag_fetches,
103 
104 	/* Number of times the hardware didn't follow the state machine. */
105 	SI_STAT_hosed_count,
106 
107 	/* Number of completed messages. */
108 	SI_STAT_complete_transactions,
109 
110 	/* Number of IPMI events received from the hardware. */
111 	SI_STAT_events,
112 
113 	/* Number of watchdog pretimeouts. */
114 	SI_STAT_watchdog_pretimeouts,
115 
116 	/* Number of asynchronous messages received. */
117 	SI_STAT_incoming_messages,
118 
119 
120 	/* This *must* remain last, add new values above this. */
121 	SI_NUM_STATS
122 };
123 
124 struct smi_info {
125 	int                    si_num;
126 	struct ipmi_smi        *intf;
127 	struct si_sm_data      *si_sm;
128 	const struct si_sm_handlers *handlers;
129 	spinlock_t             si_lock;
130 	struct ipmi_smi_msg    *waiting_msg;
131 	struct ipmi_smi_msg    *curr_msg;
132 	enum si_intf_state     si_state;
133 
134 	/*
135 	 * Used to handle the various types of I/O that can occur with
136 	 * IPMI
137 	 */
138 	struct si_sm_io io;
139 
140 	/*
141 	 * Per-OEM handler, called from handle_flags().  Returns 1
142 	 * when handle_flags() needs to be re-run or 0 indicating it
143 	 * set si_state itself.
144 	 */
145 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
146 
147 	/*
148 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
149 	 * is set to hold the flags until we are done handling everything
150 	 * from the flags.
151 	 */
152 #define RECEIVE_MSG_AVAIL	0x01
153 #define EVENT_MSG_BUFFER_FULL	0x02
154 #define WDT_PRE_TIMEOUT_INT	0x08
155 #define OEM0_DATA_AVAIL     0x20
156 #define OEM1_DATA_AVAIL     0x40
157 #define OEM2_DATA_AVAIL     0x80
158 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
159 			     OEM1_DATA_AVAIL | \
160 			     OEM2_DATA_AVAIL)
161 	unsigned char       msg_flags;
162 
163 	/* Does the BMC have an event buffer? */
164 	bool		    has_event_buffer;
165 
166 	/*
167 	 * If set to true, this will request events the next time the
168 	 * state machine is idle.
169 	 */
170 	atomic_t            req_events;
171 
172 	/*
173 	 * If true, run the state machine to completion on every send
174 	 * call.  Generally used after a panic to make sure stuff goes
175 	 * out.
176 	 */
177 	bool                run_to_completion;
178 
179 	/* The timer for this si. */
180 	struct timer_list   si_timer;
181 
182 	/* This flag is set, if the timer can be set */
183 	bool		    timer_can_start;
184 
185 	/* This flag is set, if the timer is running (timer_pending() isn't enough) */
186 	bool		    timer_running;
187 
188 	/* The time (in jiffies) the last timeout occurred at. */
189 	unsigned long       last_timeout_jiffies;
190 
191 	/* Are we waiting for the events, pretimeouts, received msgs? */
192 	atomic_t            need_watch;
193 
194 	/*
195 	 * The driver will disable interrupts when it gets into a
196 	 * situation where it cannot handle messages due to lack of
197 	 * memory.  Once that situation clears up, it will re-enable
198 	 * interrupts.
199 	 */
200 	bool interrupt_disabled;
201 
202 	/*
203 	 * Does the BMC support events?
204 	 */
205 	bool supports_event_msg_buff;
206 
207 	/*
208 	 * Can we disable interrupts the global enables receive irq
209 	 * bit?  There are currently two forms of brokenness, some
210 	 * systems cannot disable the bit (which is technically within
211 	 * the spec but a bad idea) and some systems have the bit
212 	 * forced to zero even though interrupts work (which is
213 	 * clearly outside the spec).  The next bool tells which form
214 	 * of brokenness is present.
215 	 */
216 	bool cannot_disable_irq;
217 
218 	/*
219 	 * Some systems are broken and cannot set the irq enable
220 	 * bit, even if they support interrupts.
221 	 */
222 	bool irq_enable_broken;
223 
224 	/*
225 	 * Did we get an attention that we did not handle?
226 	 */
227 	bool got_attn;
228 
229 	/* From the get device id response... */
230 	struct ipmi_device_id device_id;
231 
232 	/* Default driver model device. */
233 	struct platform_device *pdev;
234 
235 	/* Have we added the device group to the device? */
236 	bool dev_group_added;
237 
238 	/* Have we added the platform device? */
239 	bool pdev_registered;
240 
241 	/* Counters and things for the proc filesystem. */
242 	atomic_t stats[SI_NUM_STATS];
243 
244 	struct task_struct *thread;
245 
246 	struct list_head link;
247 };
248 
249 #define smi_inc_stat(smi, stat) \
250 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
251 #define smi_get_stat(smi, stat) \
252 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
253 
254 #define IPMI_MAX_INTFS 4
255 static int force_kipmid[IPMI_MAX_INTFS];
256 static int num_force_kipmid;
257 
258 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
259 static int num_max_busy_us;
260 
261 static bool unload_when_empty = true;
262 
263 static int try_smi_init(struct smi_info *smi);
264 static void cleanup_one_si(struct smi_info *smi_info);
265 static void cleanup_ipmi_si(void);
266 
267 #ifdef DEBUG_TIMING
268 void debug_timestamp(char *msg)
269 {
270 	struct timespec64 t;
271 
272 	ktime_get_ts64(&t);
273 	pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
274 }
275 #else
276 #define debug_timestamp(x)
277 #endif
278 
279 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
280 static int register_xaction_notifier(struct notifier_block *nb)
281 {
282 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
283 }
284 
285 static void deliver_recv_msg(struct smi_info *smi_info,
286 			     struct ipmi_smi_msg *msg)
287 {
288 	/* Deliver the message to the upper layer. */
289 	ipmi_smi_msg_received(smi_info->intf, msg);
290 }
291 
292 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
293 {
294 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
295 
296 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
297 		cCode = IPMI_ERR_UNSPECIFIED;
298 	/* else use it as is */
299 
300 	/* Make it a response */
301 	msg->rsp[0] = msg->data[0] | 4;
302 	msg->rsp[1] = msg->data[1];
303 	msg->rsp[2] = cCode;
304 	msg->rsp_size = 3;
305 
306 	smi_info->curr_msg = NULL;
307 	deliver_recv_msg(smi_info, msg);
308 }
309 
310 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
311 {
312 	int              rv;
313 
314 	if (!smi_info->waiting_msg) {
315 		smi_info->curr_msg = NULL;
316 		rv = SI_SM_IDLE;
317 	} else {
318 		int err;
319 
320 		smi_info->curr_msg = smi_info->waiting_msg;
321 		smi_info->waiting_msg = NULL;
322 		debug_timestamp("Start2");
323 		err = atomic_notifier_call_chain(&xaction_notifier_list,
324 				0, smi_info);
325 		if (err & NOTIFY_STOP_MASK) {
326 			rv = SI_SM_CALL_WITHOUT_DELAY;
327 			goto out;
328 		}
329 		err = smi_info->handlers->start_transaction(
330 			smi_info->si_sm,
331 			smi_info->curr_msg->data,
332 			smi_info->curr_msg->data_size);
333 		if (err)
334 			return_hosed_msg(smi_info, err);
335 
336 		rv = SI_SM_CALL_WITHOUT_DELAY;
337 	}
338 out:
339 	return rv;
340 }
341 
342 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
343 {
344 	if (!smi_info->timer_can_start)
345 		return;
346 	smi_info->last_timeout_jiffies = jiffies;
347 	mod_timer(&smi_info->si_timer, new_val);
348 	smi_info->timer_running = true;
349 }
350 
351 /*
352  * Start a new message and (re)start the timer and thread.
353  */
354 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
355 			  unsigned int size)
356 {
357 	smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
358 
359 	if (smi_info->thread)
360 		wake_up_process(smi_info->thread);
361 
362 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
363 }
364 
365 static void start_check_enables(struct smi_info *smi_info)
366 {
367 	unsigned char msg[2];
368 
369 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
370 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
371 
372 	start_new_msg(smi_info, msg, 2);
373 	smi_info->si_state = SI_CHECKING_ENABLES;
374 }
375 
376 static void start_clear_flags(struct smi_info *smi_info)
377 {
378 	unsigned char msg[3];
379 
380 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
381 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
382 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
383 	msg[2] = WDT_PRE_TIMEOUT_INT;
384 
385 	start_new_msg(smi_info, msg, 3);
386 	smi_info->si_state = SI_CLEARING_FLAGS;
387 }
388 
389 static void start_getting_msg_queue(struct smi_info *smi_info)
390 {
391 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
392 	smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
393 	smi_info->curr_msg->data_size = 2;
394 
395 	start_new_msg(smi_info, smi_info->curr_msg->data,
396 		      smi_info->curr_msg->data_size);
397 	smi_info->si_state = SI_GETTING_MESSAGES;
398 }
399 
400 static void start_getting_events(struct smi_info *smi_info)
401 {
402 	smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
403 	smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
404 	smi_info->curr_msg->data_size = 2;
405 
406 	start_new_msg(smi_info, smi_info->curr_msg->data,
407 		      smi_info->curr_msg->data_size);
408 	smi_info->si_state = SI_GETTING_EVENTS;
409 }
410 
411 /*
412  * When we have a situtaion where we run out of memory and cannot
413  * allocate messages, we just leave them in the BMC and run the system
414  * polled until we can allocate some memory.  Once we have some
415  * memory, we will re-enable the interrupt.
416  *
417  * Note that we cannot just use disable_irq(), since the interrupt may
418  * be shared.
419  */
420 static inline bool disable_si_irq(struct smi_info *smi_info)
421 {
422 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
423 		smi_info->interrupt_disabled = true;
424 		start_check_enables(smi_info);
425 		return true;
426 	}
427 	return false;
428 }
429 
430 static inline bool enable_si_irq(struct smi_info *smi_info)
431 {
432 	if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
433 		smi_info->interrupt_disabled = false;
434 		start_check_enables(smi_info);
435 		return true;
436 	}
437 	return false;
438 }
439 
440 /*
441  * Allocate a message.  If unable to allocate, start the interrupt
442  * disable process and return NULL.  If able to allocate but
443  * interrupts are disabled, free the message and return NULL after
444  * starting the interrupt enable process.
445  */
446 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
447 {
448 	struct ipmi_smi_msg *msg;
449 
450 	msg = ipmi_alloc_smi_msg();
451 	if (!msg) {
452 		if (!disable_si_irq(smi_info))
453 			smi_info->si_state = SI_NORMAL;
454 	} else if (enable_si_irq(smi_info)) {
455 		ipmi_free_smi_msg(msg);
456 		msg = NULL;
457 	}
458 	return msg;
459 }
460 
461 static void handle_flags(struct smi_info *smi_info)
462 {
463 retry:
464 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
465 		/* Watchdog pre-timeout */
466 		smi_inc_stat(smi_info, watchdog_pretimeouts);
467 
468 		start_clear_flags(smi_info);
469 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
470 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
471 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
472 		/* Messages available. */
473 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
474 		if (!smi_info->curr_msg)
475 			return;
476 
477 		start_getting_msg_queue(smi_info);
478 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
479 		/* Events available. */
480 		smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
481 		if (!smi_info->curr_msg)
482 			return;
483 
484 		start_getting_events(smi_info);
485 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
486 		   smi_info->oem_data_avail_handler) {
487 		if (smi_info->oem_data_avail_handler(smi_info))
488 			goto retry;
489 	} else
490 		smi_info->si_state = SI_NORMAL;
491 }
492 
493 /*
494  * Global enables we care about.
495  */
496 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
497 			     IPMI_BMC_EVT_MSG_INTR)
498 
499 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
500 				 bool *irq_on)
501 {
502 	u8 enables = 0;
503 
504 	if (smi_info->supports_event_msg_buff)
505 		enables |= IPMI_BMC_EVT_MSG_BUFF;
506 
507 	if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
508 	     smi_info->cannot_disable_irq) &&
509 	    !smi_info->irq_enable_broken)
510 		enables |= IPMI_BMC_RCV_MSG_INTR;
511 
512 	if (smi_info->supports_event_msg_buff &&
513 	    smi_info->io.irq && !smi_info->interrupt_disabled &&
514 	    !smi_info->irq_enable_broken)
515 		enables |= IPMI_BMC_EVT_MSG_INTR;
516 
517 	*irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
518 
519 	return enables;
520 }
521 
522 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
523 {
524 	u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
525 
526 	irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
527 
528 	if ((bool)irqstate == irq_on)
529 		return;
530 
531 	if (irq_on)
532 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
533 				     IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
534 	else
535 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
536 }
537 
538 static void handle_transaction_done(struct smi_info *smi_info)
539 {
540 	struct ipmi_smi_msg *msg;
541 
542 	debug_timestamp("Done");
543 	switch (smi_info->si_state) {
544 	case SI_NORMAL:
545 		if (!smi_info->curr_msg)
546 			break;
547 
548 		smi_info->curr_msg->rsp_size
549 			= smi_info->handlers->get_result(
550 				smi_info->si_sm,
551 				smi_info->curr_msg->rsp,
552 				IPMI_MAX_MSG_LENGTH);
553 
554 		/*
555 		 * Do this here becase deliver_recv_msg() releases the
556 		 * lock, and a new message can be put in during the
557 		 * time the lock is released.
558 		 */
559 		msg = smi_info->curr_msg;
560 		smi_info->curr_msg = NULL;
561 		deliver_recv_msg(smi_info, msg);
562 		break;
563 
564 	case SI_GETTING_FLAGS:
565 	{
566 		unsigned char msg[4];
567 		unsigned int  len;
568 
569 		/* We got the flags from the SMI, now handle them. */
570 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
571 		if (msg[2] != 0) {
572 			/* Error fetching flags, just give up for now. */
573 			smi_info->si_state = SI_NORMAL;
574 		} else if (len < 4) {
575 			/*
576 			 * Hmm, no flags.  That's technically illegal, but
577 			 * don't use uninitialized data.
578 			 */
579 			smi_info->si_state = SI_NORMAL;
580 		} else {
581 			smi_info->msg_flags = msg[3];
582 			handle_flags(smi_info);
583 		}
584 		break;
585 	}
586 
587 	case SI_CLEARING_FLAGS:
588 	{
589 		unsigned char msg[3];
590 
591 		/* We cleared the flags. */
592 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
593 		if (msg[2] != 0) {
594 			/* Error clearing flags */
595 			dev_warn(smi_info->io.dev,
596 				 "Error clearing flags: %2.2x\n", msg[2]);
597 		}
598 		smi_info->si_state = SI_NORMAL;
599 		break;
600 	}
601 
602 	case SI_GETTING_EVENTS:
603 	{
604 		smi_info->curr_msg->rsp_size
605 			= smi_info->handlers->get_result(
606 				smi_info->si_sm,
607 				smi_info->curr_msg->rsp,
608 				IPMI_MAX_MSG_LENGTH);
609 
610 		/*
611 		 * Do this here becase deliver_recv_msg() releases the
612 		 * lock, and a new message can be put in during the
613 		 * time the lock is released.
614 		 */
615 		msg = smi_info->curr_msg;
616 		smi_info->curr_msg = NULL;
617 		if (msg->rsp[2] != 0) {
618 			/* Error getting event, probably done. */
619 			msg->done(msg);
620 
621 			/* Take off the event flag. */
622 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
623 			handle_flags(smi_info);
624 		} else {
625 			smi_inc_stat(smi_info, events);
626 
627 			/*
628 			 * Do this before we deliver the message
629 			 * because delivering the message releases the
630 			 * lock and something else can mess with the
631 			 * state.
632 			 */
633 			handle_flags(smi_info);
634 
635 			deliver_recv_msg(smi_info, msg);
636 		}
637 		break;
638 	}
639 
640 	case SI_GETTING_MESSAGES:
641 	{
642 		smi_info->curr_msg->rsp_size
643 			= smi_info->handlers->get_result(
644 				smi_info->si_sm,
645 				smi_info->curr_msg->rsp,
646 				IPMI_MAX_MSG_LENGTH);
647 
648 		/*
649 		 * Do this here becase deliver_recv_msg() releases the
650 		 * lock, and a new message can be put in during the
651 		 * time the lock is released.
652 		 */
653 		msg = smi_info->curr_msg;
654 		smi_info->curr_msg = NULL;
655 		if (msg->rsp[2] != 0) {
656 			/* Error getting event, probably done. */
657 			msg->done(msg);
658 
659 			/* Take off the msg flag. */
660 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
661 			handle_flags(smi_info);
662 		} else {
663 			smi_inc_stat(smi_info, incoming_messages);
664 
665 			/*
666 			 * Do this before we deliver the message
667 			 * because delivering the message releases the
668 			 * lock and something else can mess with the
669 			 * state.
670 			 */
671 			handle_flags(smi_info);
672 
673 			deliver_recv_msg(smi_info, msg);
674 		}
675 		break;
676 	}
677 
678 	case SI_CHECKING_ENABLES:
679 	{
680 		unsigned char msg[4];
681 		u8 enables;
682 		bool irq_on;
683 
684 		/* We got the flags from the SMI, now handle them. */
685 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
686 		if (msg[2] != 0) {
687 			dev_warn(smi_info->io.dev,
688 				 "Couldn't get irq info: %x.\n", msg[2]);
689 			dev_warn(smi_info->io.dev,
690 				 "Maybe ok, but ipmi might run very slowly.\n");
691 			smi_info->si_state = SI_NORMAL;
692 			break;
693 		}
694 		enables = current_global_enables(smi_info, 0, &irq_on);
695 		if (smi_info->io.si_type == SI_BT)
696 			/* BT has its own interrupt enable bit. */
697 			check_bt_irq(smi_info, irq_on);
698 		if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
699 			/* Enables are not correct, fix them. */
700 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
701 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
702 			msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
703 			smi_info->handlers->start_transaction(
704 				smi_info->si_sm, msg, 3);
705 			smi_info->si_state = SI_SETTING_ENABLES;
706 		} else if (smi_info->supports_event_msg_buff) {
707 			smi_info->curr_msg = ipmi_alloc_smi_msg();
708 			if (!smi_info->curr_msg) {
709 				smi_info->si_state = SI_NORMAL;
710 				break;
711 			}
712 			start_getting_events(smi_info);
713 		} else {
714 			smi_info->si_state = SI_NORMAL;
715 		}
716 		break;
717 	}
718 
719 	case SI_SETTING_ENABLES:
720 	{
721 		unsigned char msg[4];
722 
723 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
724 		if (msg[2] != 0)
725 			dev_warn(smi_info->io.dev,
726 				 "Could not set the global enables: 0x%x.\n",
727 				 msg[2]);
728 
729 		if (smi_info->supports_event_msg_buff) {
730 			smi_info->curr_msg = ipmi_alloc_smi_msg();
731 			if (!smi_info->curr_msg) {
732 				smi_info->si_state = SI_NORMAL;
733 				break;
734 			}
735 			start_getting_events(smi_info);
736 		} else {
737 			smi_info->si_state = SI_NORMAL;
738 		}
739 		break;
740 	}
741 	}
742 }
743 
744 /*
745  * Called on timeouts and events.  Timeouts should pass the elapsed
746  * time, interrupts should pass in zero.  Must be called with
747  * si_lock held and interrupts disabled.
748  */
749 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
750 					   int time)
751 {
752 	enum si_sm_result si_sm_result;
753 
754 restart:
755 	/*
756 	 * There used to be a loop here that waited a little while
757 	 * (around 25us) before giving up.  That turned out to be
758 	 * pointless, the minimum delays I was seeing were in the 300us
759 	 * range, which is far too long to wait in an interrupt.  So
760 	 * we just run until the state machine tells us something
761 	 * happened or it needs a delay.
762 	 */
763 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
764 	time = 0;
765 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
766 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
767 
768 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
769 		smi_inc_stat(smi_info, complete_transactions);
770 
771 		handle_transaction_done(smi_info);
772 		goto restart;
773 	} else if (si_sm_result == SI_SM_HOSED) {
774 		smi_inc_stat(smi_info, hosed_count);
775 
776 		/*
777 		 * Do the before return_hosed_msg, because that
778 		 * releases the lock.
779 		 */
780 		smi_info->si_state = SI_NORMAL;
781 		if (smi_info->curr_msg != NULL) {
782 			/*
783 			 * If we were handling a user message, format
784 			 * a response to send to the upper layer to
785 			 * tell it about the error.
786 			 */
787 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
788 		}
789 		goto restart;
790 	}
791 
792 	/*
793 	 * We prefer handling attn over new messages.  But don't do
794 	 * this if there is not yet an upper layer to handle anything.
795 	 */
796 	if (si_sm_result == SI_SM_ATTN || smi_info->got_attn) {
797 		unsigned char msg[2];
798 
799 		if (smi_info->si_state != SI_NORMAL) {
800 			/*
801 			 * We got an ATTN, but we are doing something else.
802 			 * Handle the ATTN later.
803 			 */
804 			smi_info->got_attn = true;
805 		} else {
806 			smi_info->got_attn = false;
807 			smi_inc_stat(smi_info, attentions);
808 
809 			/*
810 			 * Got a attn, send down a get message flags to see
811 			 * what's causing it.  It would be better to handle
812 			 * this in the upper layer, but due to the way
813 			 * interrupts work with the SMI, that's not really
814 			 * possible.
815 			 */
816 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
817 			msg[1] = IPMI_GET_MSG_FLAGS_CMD;
818 
819 			start_new_msg(smi_info, msg, 2);
820 			smi_info->si_state = SI_GETTING_FLAGS;
821 			goto restart;
822 		}
823 	}
824 
825 	/* If we are currently idle, try to start the next message. */
826 	if (si_sm_result == SI_SM_IDLE) {
827 		smi_inc_stat(smi_info, idles);
828 
829 		si_sm_result = start_next_msg(smi_info);
830 		if (si_sm_result != SI_SM_IDLE)
831 			goto restart;
832 	}
833 
834 	if ((si_sm_result == SI_SM_IDLE)
835 	    && (atomic_read(&smi_info->req_events))) {
836 		/*
837 		 * We are idle and the upper layer requested that I fetch
838 		 * events, so do so.
839 		 */
840 		atomic_set(&smi_info->req_events, 0);
841 
842 		/*
843 		 * Take this opportunity to check the interrupt and
844 		 * message enable state for the BMC.  The BMC can be
845 		 * asynchronously reset, and may thus get interrupts
846 		 * disable and messages disabled.
847 		 */
848 		if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
849 			start_check_enables(smi_info);
850 		} else {
851 			smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
852 			if (!smi_info->curr_msg)
853 				goto out;
854 
855 			start_getting_events(smi_info);
856 		}
857 		goto restart;
858 	}
859 
860 	if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
861 		/* Ok it if fails, the timer will just go off. */
862 		if (del_timer(&smi_info->si_timer))
863 			smi_info->timer_running = false;
864 	}
865 
866 out:
867 	return si_sm_result;
868 }
869 
870 static void check_start_timer_thread(struct smi_info *smi_info)
871 {
872 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
873 		smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
874 
875 		if (smi_info->thread)
876 			wake_up_process(smi_info->thread);
877 
878 		start_next_msg(smi_info);
879 		smi_event_handler(smi_info, 0);
880 	}
881 }
882 
883 static void flush_messages(void *send_info)
884 {
885 	struct smi_info *smi_info = send_info;
886 	enum si_sm_result result;
887 
888 	/*
889 	 * Currently, this function is called only in run-to-completion
890 	 * mode.  This means we are single-threaded, no need for locks.
891 	 */
892 	result = smi_event_handler(smi_info, 0);
893 	while (result != SI_SM_IDLE) {
894 		udelay(SI_SHORT_TIMEOUT_USEC);
895 		result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
896 	}
897 }
898 
899 static void sender(void                *send_info,
900 		   struct ipmi_smi_msg *msg)
901 {
902 	struct smi_info   *smi_info = send_info;
903 	unsigned long     flags;
904 
905 	debug_timestamp("Enqueue");
906 
907 	if (smi_info->run_to_completion) {
908 		/*
909 		 * If we are running to completion, start it.  Upper
910 		 * layer will call flush_messages to clear it out.
911 		 */
912 		smi_info->waiting_msg = msg;
913 		return;
914 	}
915 
916 	spin_lock_irqsave(&smi_info->si_lock, flags);
917 	/*
918 	 * The following two lines don't need to be under the lock for
919 	 * the lock's sake, but they do need SMP memory barriers to
920 	 * avoid getting things out of order.  We are already claiming
921 	 * the lock, anyway, so just do it under the lock to avoid the
922 	 * ordering problem.
923 	 */
924 	BUG_ON(smi_info->waiting_msg);
925 	smi_info->waiting_msg = msg;
926 	check_start_timer_thread(smi_info);
927 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
928 }
929 
930 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
931 {
932 	struct smi_info   *smi_info = send_info;
933 
934 	smi_info->run_to_completion = i_run_to_completion;
935 	if (i_run_to_completion)
936 		flush_messages(smi_info);
937 }
938 
939 /*
940  * Use -1 in the nsec value of the busy waiting timespec to tell that
941  * we are spinning in kipmid looking for something and not delaying
942  * between checks
943  */
944 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
945 {
946 	ts->tv_nsec = -1;
947 }
948 static inline int ipmi_si_is_busy(struct timespec64 *ts)
949 {
950 	return ts->tv_nsec != -1;
951 }
952 
953 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
954 					const struct smi_info *smi_info,
955 					struct timespec64 *busy_until)
956 {
957 	unsigned int max_busy_us = 0;
958 
959 	if (smi_info->si_num < num_max_busy_us)
960 		max_busy_us = kipmid_max_busy_us[smi_info->si_num];
961 	if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
962 		ipmi_si_set_not_busy(busy_until);
963 	else if (!ipmi_si_is_busy(busy_until)) {
964 		ktime_get_ts64(busy_until);
965 		timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
966 	} else {
967 		struct timespec64 now;
968 
969 		ktime_get_ts64(&now);
970 		if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
971 			ipmi_si_set_not_busy(busy_until);
972 			return 0;
973 		}
974 	}
975 	return 1;
976 }
977 
978 
979 /*
980  * A busy-waiting loop for speeding up IPMI operation.
981  *
982  * Lousy hardware makes this hard.  This is only enabled for systems
983  * that are not BT and do not have interrupts.  It starts spinning
984  * when an operation is complete or until max_busy tells it to stop
985  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
986  * Documentation/IPMI.txt for details.
987  */
988 static int ipmi_thread(void *data)
989 {
990 	struct smi_info *smi_info = data;
991 	unsigned long flags;
992 	enum si_sm_result smi_result;
993 	struct timespec64 busy_until;
994 
995 	ipmi_si_set_not_busy(&busy_until);
996 	set_user_nice(current, MAX_NICE);
997 	while (!kthread_should_stop()) {
998 		int busy_wait;
999 
1000 		spin_lock_irqsave(&(smi_info->si_lock), flags);
1001 		smi_result = smi_event_handler(smi_info, 0);
1002 
1003 		/*
1004 		 * If the driver is doing something, there is a possible
1005 		 * race with the timer.  If the timer handler see idle,
1006 		 * and the thread here sees something else, the timer
1007 		 * handler won't restart the timer even though it is
1008 		 * required.  So start it here if necessary.
1009 		 */
1010 		if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1011 			smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1012 
1013 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1014 		busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1015 						  &busy_until);
1016 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1017 			; /* do nothing */
1018 		else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1019 			schedule();
1020 		else if (smi_result == SI_SM_IDLE) {
1021 			if (atomic_read(&smi_info->need_watch)) {
1022 				schedule_timeout_interruptible(100);
1023 			} else {
1024 				/* Wait to be woken up when we are needed. */
1025 				__set_current_state(TASK_INTERRUPTIBLE);
1026 				schedule();
1027 			}
1028 		} else
1029 			schedule_timeout_interruptible(1);
1030 	}
1031 	return 0;
1032 }
1033 
1034 
1035 static void poll(void *send_info)
1036 {
1037 	struct smi_info *smi_info = send_info;
1038 	unsigned long flags = 0;
1039 	bool run_to_completion = smi_info->run_to_completion;
1040 
1041 	/*
1042 	 * Make sure there is some delay in the poll loop so we can
1043 	 * drive time forward and timeout things.
1044 	 */
1045 	udelay(10);
1046 	if (!run_to_completion)
1047 		spin_lock_irqsave(&smi_info->si_lock, flags);
1048 	smi_event_handler(smi_info, 10);
1049 	if (!run_to_completion)
1050 		spin_unlock_irqrestore(&smi_info->si_lock, flags);
1051 }
1052 
1053 static void request_events(void *send_info)
1054 {
1055 	struct smi_info *smi_info = send_info;
1056 
1057 	if (!smi_info->has_event_buffer)
1058 		return;
1059 
1060 	atomic_set(&smi_info->req_events, 1);
1061 }
1062 
1063 static void set_need_watch(void *send_info, bool enable)
1064 {
1065 	struct smi_info *smi_info = send_info;
1066 	unsigned long flags;
1067 
1068 	atomic_set(&smi_info->need_watch, enable);
1069 	spin_lock_irqsave(&smi_info->si_lock, flags);
1070 	check_start_timer_thread(smi_info);
1071 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
1072 }
1073 
1074 static void smi_timeout(struct timer_list *t)
1075 {
1076 	struct smi_info   *smi_info = from_timer(smi_info, t, si_timer);
1077 	enum si_sm_result smi_result;
1078 	unsigned long     flags;
1079 	unsigned long     jiffies_now;
1080 	long              time_diff;
1081 	long		  timeout;
1082 
1083 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1084 	debug_timestamp("Timer");
1085 
1086 	jiffies_now = jiffies;
1087 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1088 		     * SI_USEC_PER_JIFFY);
1089 	smi_result = smi_event_handler(smi_info, time_diff);
1090 
1091 	if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1092 		/* Running with interrupts, only do long timeouts. */
1093 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1094 		smi_inc_stat(smi_info, long_timeouts);
1095 		goto do_mod_timer;
1096 	}
1097 
1098 	/*
1099 	 * If the state machine asks for a short delay, then shorten
1100 	 * the timer timeout.
1101 	 */
1102 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
1103 		smi_inc_stat(smi_info, short_timeouts);
1104 		timeout = jiffies + 1;
1105 	} else {
1106 		smi_inc_stat(smi_info, long_timeouts);
1107 		timeout = jiffies + SI_TIMEOUT_JIFFIES;
1108 	}
1109 
1110 do_mod_timer:
1111 	if (smi_result != SI_SM_IDLE)
1112 		smi_mod_timer(smi_info, timeout);
1113 	else
1114 		smi_info->timer_running = false;
1115 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1116 }
1117 
1118 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1119 {
1120 	struct smi_info *smi_info = data;
1121 	unsigned long   flags;
1122 
1123 	if (smi_info->io.si_type == SI_BT)
1124 		/* We need to clear the IRQ flag for the BT interface. */
1125 		smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1126 				     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1127 				     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1128 
1129 	spin_lock_irqsave(&(smi_info->si_lock), flags);
1130 
1131 	smi_inc_stat(smi_info, interrupts);
1132 
1133 	debug_timestamp("Interrupt");
1134 
1135 	smi_event_handler(smi_info, 0);
1136 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1137 	return IRQ_HANDLED;
1138 }
1139 
1140 static int smi_start_processing(void            *send_info,
1141 				struct ipmi_smi *intf)
1142 {
1143 	struct smi_info *new_smi = send_info;
1144 	int             enable = 0;
1145 
1146 	new_smi->intf = intf;
1147 
1148 	/* Set up the timer that drives the interface. */
1149 	timer_setup(&new_smi->si_timer, smi_timeout, 0);
1150 	new_smi->timer_can_start = true;
1151 	smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1152 
1153 	/* Try to claim any interrupts. */
1154 	if (new_smi->io.irq_setup) {
1155 		new_smi->io.irq_handler_data = new_smi;
1156 		new_smi->io.irq_setup(&new_smi->io);
1157 	}
1158 
1159 	/*
1160 	 * Check if the user forcefully enabled the daemon.
1161 	 */
1162 	if (new_smi->si_num < num_force_kipmid)
1163 		enable = force_kipmid[new_smi->si_num];
1164 	/*
1165 	 * The BT interface is efficient enough to not need a thread,
1166 	 * and there is no need for a thread if we have interrupts.
1167 	 */
1168 	else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1169 		enable = 1;
1170 
1171 	if (enable) {
1172 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
1173 					      "kipmi%d", new_smi->si_num);
1174 		if (IS_ERR(new_smi->thread)) {
1175 			dev_notice(new_smi->io.dev, "Could not start"
1176 				   " kernel thread due to error %ld, only using"
1177 				   " timers to drive the interface\n",
1178 				   PTR_ERR(new_smi->thread));
1179 			new_smi->thread = NULL;
1180 		}
1181 	}
1182 
1183 	return 0;
1184 }
1185 
1186 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1187 {
1188 	struct smi_info *smi = send_info;
1189 
1190 	data->addr_src = smi->io.addr_source;
1191 	data->dev = smi->io.dev;
1192 	data->addr_info = smi->io.addr_info;
1193 	get_device(smi->io.dev);
1194 
1195 	return 0;
1196 }
1197 
1198 static void set_maintenance_mode(void *send_info, bool enable)
1199 {
1200 	struct smi_info   *smi_info = send_info;
1201 
1202 	if (!enable)
1203 		atomic_set(&smi_info->req_events, 0);
1204 }
1205 
1206 static void shutdown_smi(void *send_info);
1207 static const struct ipmi_smi_handlers handlers = {
1208 	.owner                  = THIS_MODULE,
1209 	.start_processing       = smi_start_processing,
1210 	.shutdown               = shutdown_smi,
1211 	.get_smi_info		= get_smi_info,
1212 	.sender			= sender,
1213 	.request_events		= request_events,
1214 	.set_need_watch		= set_need_watch,
1215 	.set_maintenance_mode   = set_maintenance_mode,
1216 	.set_run_to_completion  = set_run_to_completion,
1217 	.flush_messages		= flush_messages,
1218 	.poll			= poll,
1219 };
1220 
1221 static LIST_HEAD(smi_infos);
1222 static DEFINE_MUTEX(smi_infos_lock);
1223 static int smi_num; /* Used to sequence the SMIs */
1224 
1225 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1226 
1227 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1228 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1229 		 " disabled(0).  Normally the IPMI driver auto-detects"
1230 		 " this, but the value may be overridden by this parm.");
1231 module_param(unload_when_empty, bool, 0);
1232 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1233 		 " specified or found, default is 1.  Setting to 0"
1234 		 " is useful for hot add of devices using hotmod.");
1235 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1236 MODULE_PARM_DESC(kipmid_max_busy_us,
1237 		 "Max time (in microseconds) to busy-wait for IPMI data before"
1238 		 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1239 		 " if kipmid is using up a lot of CPU time.");
1240 
1241 void ipmi_irq_finish_setup(struct si_sm_io *io)
1242 {
1243 	if (io->si_type == SI_BT)
1244 		/* Enable the interrupt in the BT interface. */
1245 		io->outputb(io, IPMI_BT_INTMASK_REG,
1246 			    IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1247 }
1248 
1249 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1250 {
1251 	if (io->si_type == SI_BT)
1252 		/* Disable the interrupt in the BT interface. */
1253 		io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1254 }
1255 
1256 static void std_irq_cleanup(struct si_sm_io *io)
1257 {
1258 	ipmi_irq_start_cleanup(io);
1259 	free_irq(io->irq, io->irq_handler_data);
1260 }
1261 
1262 int ipmi_std_irq_setup(struct si_sm_io *io)
1263 {
1264 	int rv;
1265 
1266 	if (!io->irq)
1267 		return 0;
1268 
1269 	rv = request_irq(io->irq,
1270 			 ipmi_si_irq_handler,
1271 			 IRQF_SHARED,
1272 			 DEVICE_NAME,
1273 			 io->irq_handler_data);
1274 	if (rv) {
1275 		dev_warn(io->dev, "%s unable to claim interrupt %d,"
1276 			 " running polled\n",
1277 			 DEVICE_NAME, io->irq);
1278 		io->irq = 0;
1279 	} else {
1280 		io->irq_cleanup = std_irq_cleanup;
1281 		ipmi_irq_finish_setup(io);
1282 		dev_info(io->dev, "Using irq %d\n", io->irq);
1283 	}
1284 
1285 	return rv;
1286 }
1287 
1288 static int wait_for_msg_done(struct smi_info *smi_info)
1289 {
1290 	enum si_sm_result     smi_result;
1291 
1292 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1293 	for (;;) {
1294 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
1295 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1296 			schedule_timeout_uninterruptible(1);
1297 			smi_result = smi_info->handlers->event(
1298 				smi_info->si_sm, jiffies_to_usecs(1));
1299 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1300 			smi_result = smi_info->handlers->event(
1301 				smi_info->si_sm, 0);
1302 		} else
1303 			break;
1304 	}
1305 	if (smi_result == SI_SM_HOSED)
1306 		/*
1307 		 * We couldn't get the state machine to run, so whatever's at
1308 		 * the port is probably not an IPMI SMI interface.
1309 		 */
1310 		return -ENODEV;
1311 
1312 	return 0;
1313 }
1314 
1315 static int try_get_dev_id(struct smi_info *smi_info)
1316 {
1317 	unsigned char         msg[2];
1318 	unsigned char         *resp;
1319 	unsigned long         resp_len;
1320 	int                   rv = 0;
1321 
1322 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1323 	if (!resp)
1324 		return -ENOMEM;
1325 
1326 	/*
1327 	 * Do a Get Device ID command, since it comes back with some
1328 	 * useful info.
1329 	 */
1330 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1331 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
1332 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1333 
1334 	rv = wait_for_msg_done(smi_info);
1335 	if (rv)
1336 		goto out;
1337 
1338 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1339 						  resp, IPMI_MAX_MSG_LENGTH);
1340 
1341 	/* Check and record info from the get device id, in case we need it. */
1342 	rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1343 			resp + 2, resp_len - 2, &smi_info->device_id);
1344 
1345 out:
1346 	kfree(resp);
1347 	return rv;
1348 }
1349 
1350 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1351 {
1352 	unsigned char         msg[3];
1353 	unsigned char         *resp;
1354 	unsigned long         resp_len;
1355 	int                   rv;
1356 
1357 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1358 	if (!resp)
1359 		return -ENOMEM;
1360 
1361 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1362 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1363 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1364 
1365 	rv = wait_for_msg_done(smi_info);
1366 	if (rv) {
1367 		dev_warn(smi_info->io.dev,
1368 			 "Error getting response from get global enables command: %d\n",
1369 			 rv);
1370 		goto out;
1371 	}
1372 
1373 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1374 						  resp, IPMI_MAX_MSG_LENGTH);
1375 
1376 	if (resp_len < 4 ||
1377 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1378 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1379 			resp[2] != 0) {
1380 		dev_warn(smi_info->io.dev,
1381 			 "Invalid return from get global enables command: %ld %x %x %x\n",
1382 			 resp_len, resp[0], resp[1], resp[2]);
1383 		rv = -EINVAL;
1384 		goto out;
1385 	} else {
1386 		*enables = resp[3];
1387 	}
1388 
1389 out:
1390 	kfree(resp);
1391 	return rv;
1392 }
1393 
1394 /*
1395  * Returns 1 if it gets an error from the command.
1396  */
1397 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1398 {
1399 	unsigned char         msg[3];
1400 	unsigned char         *resp;
1401 	unsigned long         resp_len;
1402 	int                   rv;
1403 
1404 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1405 	if (!resp)
1406 		return -ENOMEM;
1407 
1408 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1409 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1410 	msg[2] = enables;
1411 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1412 
1413 	rv = wait_for_msg_done(smi_info);
1414 	if (rv) {
1415 		dev_warn(smi_info->io.dev,
1416 			 "Error getting response from set global enables command: %d\n",
1417 			 rv);
1418 		goto out;
1419 	}
1420 
1421 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1422 						  resp, IPMI_MAX_MSG_LENGTH);
1423 
1424 	if (resp_len < 3 ||
1425 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1426 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1427 		dev_warn(smi_info->io.dev,
1428 			 "Invalid return from set global enables command: %ld %x %x\n",
1429 			 resp_len, resp[0], resp[1]);
1430 		rv = -EINVAL;
1431 		goto out;
1432 	}
1433 
1434 	if (resp[2] != 0)
1435 		rv = 1;
1436 
1437 out:
1438 	kfree(resp);
1439 	return rv;
1440 }
1441 
1442 /*
1443  * Some BMCs do not support clearing the receive irq bit in the global
1444  * enables (even if they don't support interrupts on the BMC).  Check
1445  * for this and handle it properly.
1446  */
1447 static void check_clr_rcv_irq(struct smi_info *smi_info)
1448 {
1449 	u8 enables = 0;
1450 	int rv;
1451 
1452 	rv = get_global_enables(smi_info, &enables);
1453 	if (!rv) {
1454 		if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1455 			/* Already clear, should work ok. */
1456 			return;
1457 
1458 		enables &= ~IPMI_BMC_RCV_MSG_INTR;
1459 		rv = set_global_enables(smi_info, enables);
1460 	}
1461 
1462 	if (rv < 0) {
1463 		dev_err(smi_info->io.dev,
1464 			"Cannot check clearing the rcv irq: %d\n", rv);
1465 		return;
1466 	}
1467 
1468 	if (rv) {
1469 		/*
1470 		 * An error when setting the event buffer bit means
1471 		 * clearing the bit is not supported.
1472 		 */
1473 		dev_warn(smi_info->io.dev,
1474 			 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1475 		smi_info->cannot_disable_irq = true;
1476 	}
1477 }
1478 
1479 /*
1480  * Some BMCs do not support setting the interrupt bits in the global
1481  * enables even if they support interrupts.  Clearly bad, but we can
1482  * compensate.
1483  */
1484 static void check_set_rcv_irq(struct smi_info *smi_info)
1485 {
1486 	u8 enables = 0;
1487 	int rv;
1488 
1489 	if (!smi_info->io.irq)
1490 		return;
1491 
1492 	rv = get_global_enables(smi_info, &enables);
1493 	if (!rv) {
1494 		enables |= IPMI_BMC_RCV_MSG_INTR;
1495 		rv = set_global_enables(smi_info, enables);
1496 	}
1497 
1498 	if (rv < 0) {
1499 		dev_err(smi_info->io.dev,
1500 			"Cannot check setting the rcv irq: %d\n", rv);
1501 		return;
1502 	}
1503 
1504 	if (rv) {
1505 		/*
1506 		 * An error when setting the event buffer bit means
1507 		 * setting the bit is not supported.
1508 		 */
1509 		dev_warn(smi_info->io.dev,
1510 			 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1511 		smi_info->cannot_disable_irq = true;
1512 		smi_info->irq_enable_broken = true;
1513 	}
1514 }
1515 
1516 static int try_enable_event_buffer(struct smi_info *smi_info)
1517 {
1518 	unsigned char         msg[3];
1519 	unsigned char         *resp;
1520 	unsigned long         resp_len;
1521 	int                   rv = 0;
1522 
1523 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1524 	if (!resp)
1525 		return -ENOMEM;
1526 
1527 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1528 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1529 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1530 
1531 	rv = wait_for_msg_done(smi_info);
1532 	if (rv) {
1533 		pr_warn("Error getting response from get global enables command, the event buffer is not enabled\n");
1534 		goto out;
1535 	}
1536 
1537 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1538 						  resp, IPMI_MAX_MSG_LENGTH);
1539 
1540 	if (resp_len < 4 ||
1541 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1542 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
1543 			resp[2] != 0) {
1544 		pr_warn("Invalid return from get global enables command, cannot enable the event buffer\n");
1545 		rv = -EINVAL;
1546 		goto out;
1547 	}
1548 
1549 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1550 		/* buffer is already enabled, nothing to do. */
1551 		smi_info->supports_event_msg_buff = true;
1552 		goto out;
1553 	}
1554 
1555 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1556 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1557 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1558 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1559 
1560 	rv = wait_for_msg_done(smi_info);
1561 	if (rv) {
1562 		pr_warn("Error getting response from set global, enables command, the event buffer is not enabled\n");
1563 		goto out;
1564 	}
1565 
1566 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1567 						  resp, IPMI_MAX_MSG_LENGTH);
1568 
1569 	if (resp_len < 3 ||
1570 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1571 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1572 		pr_warn("Invalid return from get global, enables command, not enable the event buffer\n");
1573 		rv = -EINVAL;
1574 		goto out;
1575 	}
1576 
1577 	if (resp[2] != 0)
1578 		/*
1579 		 * An error when setting the event buffer bit means
1580 		 * that the event buffer is not supported.
1581 		 */
1582 		rv = -ENOENT;
1583 	else
1584 		smi_info->supports_event_msg_buff = true;
1585 
1586 out:
1587 	kfree(resp);
1588 	return rv;
1589 }
1590 
1591 #define IPMI_SI_ATTR(name) \
1592 static ssize_t ipmi_##name##_show(struct device *dev,			\
1593 				  struct device_attribute *attr,	\
1594 				  char *buf)				\
1595 {									\
1596 	struct smi_info *smi_info = dev_get_drvdata(dev);		\
1597 									\
1598 	return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name));	\
1599 }									\
1600 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1601 
1602 static ssize_t ipmi_type_show(struct device *dev,
1603 			      struct device_attribute *attr,
1604 			      char *buf)
1605 {
1606 	struct smi_info *smi_info = dev_get_drvdata(dev);
1607 
1608 	return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1609 }
1610 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1611 
1612 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1613 					    struct device_attribute *attr,
1614 					    char *buf)
1615 {
1616 	struct smi_info *smi_info = dev_get_drvdata(dev);
1617 	int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1618 
1619 	return snprintf(buf, 10, "%d\n", enabled);
1620 }
1621 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1622 		   ipmi_interrupts_enabled_show, NULL);
1623 
1624 IPMI_SI_ATTR(short_timeouts);
1625 IPMI_SI_ATTR(long_timeouts);
1626 IPMI_SI_ATTR(idles);
1627 IPMI_SI_ATTR(interrupts);
1628 IPMI_SI_ATTR(attentions);
1629 IPMI_SI_ATTR(flag_fetches);
1630 IPMI_SI_ATTR(hosed_count);
1631 IPMI_SI_ATTR(complete_transactions);
1632 IPMI_SI_ATTR(events);
1633 IPMI_SI_ATTR(watchdog_pretimeouts);
1634 IPMI_SI_ATTR(incoming_messages);
1635 
1636 static ssize_t ipmi_params_show(struct device *dev,
1637 				struct device_attribute *attr,
1638 				char *buf)
1639 {
1640 	struct smi_info *smi_info = dev_get_drvdata(dev);
1641 
1642 	return snprintf(buf, 200,
1643 			"%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1644 			si_to_str[smi_info->io.si_type],
1645 			addr_space_to_str[smi_info->io.addr_type],
1646 			smi_info->io.addr_data,
1647 			smi_info->io.regspacing,
1648 			smi_info->io.regsize,
1649 			smi_info->io.regshift,
1650 			smi_info->io.irq,
1651 			smi_info->io.slave_addr);
1652 }
1653 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1654 
1655 static struct attribute *ipmi_si_dev_attrs[] = {
1656 	&dev_attr_type.attr,
1657 	&dev_attr_interrupts_enabled.attr,
1658 	&dev_attr_short_timeouts.attr,
1659 	&dev_attr_long_timeouts.attr,
1660 	&dev_attr_idles.attr,
1661 	&dev_attr_interrupts.attr,
1662 	&dev_attr_attentions.attr,
1663 	&dev_attr_flag_fetches.attr,
1664 	&dev_attr_hosed_count.attr,
1665 	&dev_attr_complete_transactions.attr,
1666 	&dev_attr_events.attr,
1667 	&dev_attr_watchdog_pretimeouts.attr,
1668 	&dev_attr_incoming_messages.attr,
1669 	&dev_attr_params.attr,
1670 	NULL
1671 };
1672 
1673 static const struct attribute_group ipmi_si_dev_attr_group = {
1674 	.attrs		= ipmi_si_dev_attrs,
1675 };
1676 
1677 /*
1678  * oem_data_avail_to_receive_msg_avail
1679  * @info - smi_info structure with msg_flags set
1680  *
1681  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1682  * Returns 1 indicating need to re-run handle_flags().
1683  */
1684 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1685 {
1686 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1687 			       RECEIVE_MSG_AVAIL);
1688 	return 1;
1689 }
1690 
1691 /*
1692  * setup_dell_poweredge_oem_data_handler
1693  * @info - smi_info.device_id must be populated
1694  *
1695  * Systems that match, but have firmware version < 1.40 may assert
1696  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1697  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
1698  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1699  * as RECEIVE_MSG_AVAIL instead.
1700  *
1701  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1702  * assert the OEM[012] bits, and if it did, the driver would have to
1703  * change to handle that properly, we don't actually check for the
1704  * firmware version.
1705  * Device ID = 0x20                BMC on PowerEdge 8G servers
1706  * Device Revision = 0x80
1707  * Firmware Revision1 = 0x01       BMC version 1.40
1708  * Firmware Revision2 = 0x40       BCD encoded
1709  * IPMI Version = 0x51             IPMI 1.5
1710  * Manufacturer ID = A2 02 00      Dell IANA
1711  *
1712  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1713  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1714  *
1715  */
1716 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
1717 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1718 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1719 #define DELL_IANA_MFR_ID 0x0002a2
1720 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1721 {
1722 	struct ipmi_device_id *id = &smi_info->device_id;
1723 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1724 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
1725 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1726 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1727 			smi_info->oem_data_avail_handler =
1728 				oem_data_avail_to_receive_msg_avail;
1729 		} else if (ipmi_version_major(id) < 1 ||
1730 			   (ipmi_version_major(id) == 1 &&
1731 			    ipmi_version_minor(id) < 5)) {
1732 			smi_info->oem_data_avail_handler =
1733 				oem_data_avail_to_receive_msg_avail;
1734 		}
1735 	}
1736 }
1737 
1738 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1739 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1740 {
1741 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
1742 
1743 	/* Make it a response */
1744 	msg->rsp[0] = msg->data[0] | 4;
1745 	msg->rsp[1] = msg->data[1];
1746 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1747 	msg->rsp_size = 3;
1748 	smi_info->curr_msg = NULL;
1749 	deliver_recv_msg(smi_info, msg);
1750 }
1751 
1752 /*
1753  * dell_poweredge_bt_xaction_handler
1754  * @info - smi_info.device_id must be populated
1755  *
1756  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1757  * not respond to a Get SDR command if the length of the data
1758  * requested is exactly 0x3A, which leads to command timeouts and no
1759  * data returned.  This intercepts such commands, and causes userspace
1760  * callers to try again with a different-sized buffer, which succeeds.
1761  */
1762 
1763 #define STORAGE_NETFN 0x0A
1764 #define STORAGE_CMD_GET_SDR 0x23
1765 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1766 					     unsigned long unused,
1767 					     void *in)
1768 {
1769 	struct smi_info *smi_info = in;
1770 	unsigned char *data = smi_info->curr_msg->data;
1771 	unsigned int size   = smi_info->curr_msg->data_size;
1772 	if (size >= 8 &&
1773 	    (data[0]>>2) == STORAGE_NETFN &&
1774 	    data[1] == STORAGE_CMD_GET_SDR &&
1775 	    data[7] == 0x3A) {
1776 		return_hosed_msg_badsize(smi_info);
1777 		return NOTIFY_STOP;
1778 	}
1779 	return NOTIFY_DONE;
1780 }
1781 
1782 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1783 	.notifier_call	= dell_poweredge_bt_xaction_handler,
1784 };
1785 
1786 /*
1787  * setup_dell_poweredge_bt_xaction_handler
1788  * @info - smi_info.device_id must be filled in already
1789  *
1790  * Fills in smi_info.device_id.start_transaction_pre_hook
1791  * when we know what function to use there.
1792  */
1793 static void
1794 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1795 {
1796 	struct ipmi_device_id *id = &smi_info->device_id;
1797 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1798 	    smi_info->io.si_type == SI_BT)
1799 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1800 }
1801 
1802 /*
1803  * setup_oem_data_handler
1804  * @info - smi_info.device_id must be filled in already
1805  *
1806  * Fills in smi_info.device_id.oem_data_available_handler
1807  * when we know what function to use there.
1808  */
1809 
1810 static void setup_oem_data_handler(struct smi_info *smi_info)
1811 {
1812 	setup_dell_poweredge_oem_data_handler(smi_info);
1813 }
1814 
1815 static void setup_xaction_handlers(struct smi_info *smi_info)
1816 {
1817 	setup_dell_poweredge_bt_xaction_handler(smi_info);
1818 }
1819 
1820 static void check_for_broken_irqs(struct smi_info *smi_info)
1821 {
1822 	check_clr_rcv_irq(smi_info);
1823 	check_set_rcv_irq(smi_info);
1824 }
1825 
1826 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1827 {
1828 	if (smi_info->thread != NULL) {
1829 		kthread_stop(smi_info->thread);
1830 		smi_info->thread = NULL;
1831 	}
1832 
1833 	smi_info->timer_can_start = false;
1834 	if (smi_info->timer_running)
1835 		del_timer_sync(&smi_info->si_timer);
1836 }
1837 
1838 static struct smi_info *find_dup_si(struct smi_info *info)
1839 {
1840 	struct smi_info *e;
1841 
1842 	list_for_each_entry(e, &smi_infos, link) {
1843 		if (e->io.addr_type != info->io.addr_type)
1844 			continue;
1845 		if (e->io.addr_data == info->io.addr_data) {
1846 			/*
1847 			 * This is a cheap hack, ACPI doesn't have a defined
1848 			 * slave address but SMBIOS does.  Pick it up from
1849 			 * any source that has it available.
1850 			 */
1851 			if (info->io.slave_addr && !e->io.slave_addr)
1852 				e->io.slave_addr = info->io.slave_addr;
1853 			return e;
1854 		}
1855 	}
1856 
1857 	return NULL;
1858 }
1859 
1860 int ipmi_si_add_smi(struct si_sm_io *io)
1861 {
1862 	int rv = 0;
1863 	struct smi_info *new_smi, *dup;
1864 
1865 	if (!io->io_setup) {
1866 		if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1867 			io->io_setup = ipmi_si_port_setup;
1868 		} else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1869 			io->io_setup = ipmi_si_mem_setup;
1870 		} else {
1871 			return -EINVAL;
1872 		}
1873 	}
1874 
1875 	new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1876 	if (!new_smi)
1877 		return -ENOMEM;
1878 	spin_lock_init(&new_smi->si_lock);
1879 
1880 	new_smi->io = *io;
1881 
1882 	mutex_lock(&smi_infos_lock);
1883 	dup = find_dup_si(new_smi);
1884 	if (dup) {
1885 		if (new_smi->io.addr_source == SI_ACPI &&
1886 		    dup->io.addr_source == SI_SMBIOS) {
1887 			/* We prefer ACPI over SMBIOS. */
1888 			dev_info(dup->io.dev,
1889 				 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
1890 				 si_to_str[new_smi->io.si_type]);
1891 			cleanup_one_si(dup);
1892 		} else {
1893 			dev_info(new_smi->io.dev,
1894 				 "%s-specified %s state machine: duplicate\n",
1895 				 ipmi_addr_src_to_str(new_smi->io.addr_source),
1896 				 si_to_str[new_smi->io.si_type]);
1897 			rv = -EBUSY;
1898 			kfree(new_smi);
1899 			goto out_err;
1900 		}
1901 	}
1902 
1903 	pr_info("Adding %s-specified %s state machine\n",
1904 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1905 		si_to_str[new_smi->io.si_type]);
1906 
1907 	list_add_tail(&new_smi->link, &smi_infos);
1908 
1909 	if (initialized)
1910 		rv = try_smi_init(new_smi);
1911 out_err:
1912 	mutex_unlock(&smi_infos_lock);
1913 	return rv;
1914 }
1915 
1916 /*
1917  * Try to start up an interface.  Must be called with smi_infos_lock
1918  * held, primarily to keep smi_num consistent, we only one to do these
1919  * one at a time.
1920  */
1921 static int try_smi_init(struct smi_info *new_smi)
1922 {
1923 	int rv = 0;
1924 	int i;
1925 	char *init_name = NULL;
1926 
1927 	pr_info("Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
1928 		ipmi_addr_src_to_str(new_smi->io.addr_source),
1929 		si_to_str[new_smi->io.si_type],
1930 		addr_space_to_str[new_smi->io.addr_type],
1931 		new_smi->io.addr_data,
1932 		new_smi->io.slave_addr, new_smi->io.irq);
1933 
1934 	switch (new_smi->io.si_type) {
1935 	case SI_KCS:
1936 		new_smi->handlers = &kcs_smi_handlers;
1937 		break;
1938 
1939 	case SI_SMIC:
1940 		new_smi->handlers = &smic_smi_handlers;
1941 		break;
1942 
1943 	case SI_BT:
1944 		new_smi->handlers = &bt_smi_handlers;
1945 		break;
1946 
1947 	default:
1948 		/* No support for anything else yet. */
1949 		rv = -EIO;
1950 		goto out_err;
1951 	}
1952 
1953 	new_smi->si_num = smi_num;
1954 
1955 	/* Do this early so it's available for logs. */
1956 	if (!new_smi->io.dev) {
1957 		init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
1958 				      new_smi->si_num);
1959 
1960 		/*
1961 		 * If we don't already have a device from something
1962 		 * else (like PCI), then register a new one.
1963 		 */
1964 		new_smi->pdev = platform_device_alloc("ipmi_si",
1965 						      new_smi->si_num);
1966 		if (!new_smi->pdev) {
1967 			pr_err("Unable to allocate platform device\n");
1968 			rv = -ENOMEM;
1969 			goto out_err;
1970 		}
1971 		new_smi->io.dev = &new_smi->pdev->dev;
1972 		new_smi->io.dev->driver = &ipmi_platform_driver.driver;
1973 		/* Nulled by device_add() */
1974 		new_smi->io.dev->init_name = init_name;
1975 	}
1976 
1977 	/* Allocate the state machine's data and initialize it. */
1978 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
1979 	if (!new_smi->si_sm) {
1980 		rv = -ENOMEM;
1981 		goto out_err;
1982 	}
1983 	new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
1984 							   &new_smi->io);
1985 
1986 	/* Now that we know the I/O size, we can set up the I/O. */
1987 	rv = new_smi->io.io_setup(&new_smi->io);
1988 	if (rv) {
1989 		dev_err(new_smi->io.dev, "Could not set up I/O space\n");
1990 		goto out_err;
1991 	}
1992 
1993 	/* Do low-level detection first. */
1994 	if (new_smi->handlers->detect(new_smi->si_sm)) {
1995 		if (new_smi->io.addr_source)
1996 			dev_err(new_smi->io.dev,
1997 				"Interface detection failed\n");
1998 		rv = -ENODEV;
1999 		goto out_err;
2000 	}
2001 
2002 	/*
2003 	 * Attempt a get device id command.  If it fails, we probably
2004 	 * don't have a BMC here.
2005 	 */
2006 	rv = try_get_dev_id(new_smi);
2007 	if (rv) {
2008 		if (new_smi->io.addr_source)
2009 			dev_err(new_smi->io.dev,
2010 			       "There appears to be no BMC at this location\n");
2011 		goto out_err;
2012 	}
2013 
2014 	setup_oem_data_handler(new_smi);
2015 	setup_xaction_handlers(new_smi);
2016 	check_for_broken_irqs(new_smi);
2017 
2018 	new_smi->waiting_msg = NULL;
2019 	new_smi->curr_msg = NULL;
2020 	atomic_set(&new_smi->req_events, 0);
2021 	new_smi->run_to_completion = false;
2022 	for (i = 0; i < SI_NUM_STATS; i++)
2023 		atomic_set(&new_smi->stats[i], 0);
2024 
2025 	new_smi->interrupt_disabled = true;
2026 	atomic_set(&new_smi->need_watch, 0);
2027 
2028 	rv = try_enable_event_buffer(new_smi);
2029 	if (rv == 0)
2030 		new_smi->has_event_buffer = true;
2031 
2032 	/*
2033 	 * Start clearing the flags before we enable interrupts or the
2034 	 * timer to avoid racing with the timer.
2035 	 */
2036 	start_clear_flags(new_smi);
2037 
2038 	/*
2039 	 * IRQ is defined to be set when non-zero.  req_events will
2040 	 * cause a global flags check that will enable interrupts.
2041 	 */
2042 	if (new_smi->io.irq) {
2043 		new_smi->interrupt_disabled = false;
2044 		atomic_set(&new_smi->req_events, 1);
2045 	}
2046 
2047 	if (new_smi->pdev && !new_smi->pdev_registered) {
2048 		rv = platform_device_add(new_smi->pdev);
2049 		if (rv) {
2050 			dev_err(new_smi->io.dev,
2051 				"Unable to register system interface device: %d\n",
2052 				rv);
2053 			goto out_err;
2054 		}
2055 		new_smi->pdev_registered = true;
2056 	}
2057 
2058 	dev_set_drvdata(new_smi->io.dev, new_smi);
2059 	rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2060 	if (rv) {
2061 		dev_err(new_smi->io.dev,
2062 			"Unable to add device attributes: error %d\n",
2063 			rv);
2064 		goto out_err;
2065 	}
2066 	new_smi->dev_group_added = true;
2067 
2068 	rv = ipmi_register_smi(&handlers,
2069 			       new_smi,
2070 			       new_smi->io.dev,
2071 			       new_smi->io.slave_addr);
2072 	if (rv) {
2073 		dev_err(new_smi->io.dev,
2074 			"Unable to register device: error %d\n",
2075 			rv);
2076 		goto out_err;
2077 	}
2078 
2079 	/* Don't increment till we know we have succeeded. */
2080 	smi_num++;
2081 
2082 	dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2083 		 si_to_str[new_smi->io.si_type]);
2084 
2085 	WARN_ON(new_smi->io.dev->init_name != NULL);
2086 
2087  out_err:
2088 	kfree(init_name);
2089 	return rv;
2090 }
2091 
2092 static int init_ipmi_si(void)
2093 {
2094 	struct smi_info *e;
2095 	enum ipmi_addr_src type = SI_INVALID;
2096 
2097 	if (initialized)
2098 		return 0;
2099 
2100 	pr_info("IPMI System Interface driver\n");
2101 
2102 	/* If the user gave us a device, they presumably want us to use it */
2103 	if (!ipmi_si_hardcode_find_bmc())
2104 		goto do_scan;
2105 
2106 	ipmi_si_platform_init();
2107 
2108 	ipmi_si_pci_init();
2109 
2110 	ipmi_si_parisc_init();
2111 
2112 	/* We prefer devices with interrupts, but in the case of a machine
2113 	   with multiple BMCs we assume that there will be several instances
2114 	   of a given type so if we succeed in registering a type then also
2115 	   try to register everything else of the same type */
2116 do_scan:
2117 	mutex_lock(&smi_infos_lock);
2118 	list_for_each_entry(e, &smi_infos, link) {
2119 		/* Try to register a device if it has an IRQ and we either
2120 		   haven't successfully registered a device yet or this
2121 		   device has the same type as one we successfully registered */
2122 		if (e->io.irq && (!type || e->io.addr_source == type)) {
2123 			if (!try_smi_init(e)) {
2124 				type = e->io.addr_source;
2125 			}
2126 		}
2127 	}
2128 
2129 	/* type will only have been set if we successfully registered an si */
2130 	if (type)
2131 		goto skip_fallback_noirq;
2132 
2133 	/* Fall back to the preferred device */
2134 
2135 	list_for_each_entry(e, &smi_infos, link) {
2136 		if (!e->io.irq && (!type || e->io.addr_source == type)) {
2137 			if (!try_smi_init(e)) {
2138 				type = e->io.addr_source;
2139 			}
2140 		}
2141 	}
2142 
2143 skip_fallback_noirq:
2144 	initialized = 1;
2145 	mutex_unlock(&smi_infos_lock);
2146 
2147 	if (type)
2148 		return 0;
2149 
2150 	mutex_lock(&smi_infos_lock);
2151 	if (unload_when_empty && list_empty(&smi_infos)) {
2152 		mutex_unlock(&smi_infos_lock);
2153 		cleanup_ipmi_si();
2154 		pr_warn("Unable to find any System Interface(s)\n");
2155 		return -ENODEV;
2156 	} else {
2157 		mutex_unlock(&smi_infos_lock);
2158 		return 0;
2159 	}
2160 }
2161 module_init(init_ipmi_si);
2162 
2163 static void shutdown_smi(void *send_info)
2164 {
2165 	struct smi_info *smi_info = send_info;
2166 
2167 	if (smi_info->dev_group_added) {
2168 		device_remove_group(smi_info->io.dev, &ipmi_si_dev_attr_group);
2169 		smi_info->dev_group_added = false;
2170 	}
2171 	if (smi_info->io.dev)
2172 		dev_set_drvdata(smi_info->io.dev, NULL);
2173 
2174 	/*
2175 	 * Make sure that interrupts, the timer and the thread are
2176 	 * stopped and will not run again.
2177 	 */
2178 	smi_info->interrupt_disabled = true;
2179 	if (smi_info->io.irq_cleanup) {
2180 		smi_info->io.irq_cleanup(&smi_info->io);
2181 		smi_info->io.irq_cleanup = NULL;
2182 	}
2183 	stop_timer_and_thread(smi_info);
2184 
2185 	/*
2186 	 * Wait until we know that we are out of any interrupt
2187 	 * handlers might have been running before we freed the
2188 	 * interrupt.
2189 	 */
2190 	synchronize_rcu();
2191 
2192 	/*
2193 	 * Timeouts are stopped, now make sure the interrupts are off
2194 	 * in the BMC.  Note that timers and CPU interrupts are off,
2195 	 * so no need for locks.
2196 	 */
2197 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2198 		poll(smi_info);
2199 		schedule_timeout_uninterruptible(1);
2200 	}
2201 	if (smi_info->handlers)
2202 		disable_si_irq(smi_info);
2203 	while (smi_info->curr_msg || (smi_info->si_state != SI_NORMAL)) {
2204 		poll(smi_info);
2205 		schedule_timeout_uninterruptible(1);
2206 	}
2207 	if (smi_info->handlers)
2208 		smi_info->handlers->cleanup(smi_info->si_sm);
2209 
2210 	if (smi_info->io.addr_source_cleanup) {
2211 		smi_info->io.addr_source_cleanup(&smi_info->io);
2212 		smi_info->io.addr_source_cleanup = NULL;
2213 	}
2214 	if (smi_info->io.io_cleanup) {
2215 		smi_info->io.io_cleanup(&smi_info->io);
2216 		smi_info->io.io_cleanup = NULL;
2217 	}
2218 
2219 	kfree(smi_info->si_sm);
2220 	smi_info->si_sm = NULL;
2221 
2222 	smi_info->intf = NULL;
2223 }
2224 
2225 /*
2226  * Must be called with smi_infos_lock held, to serialize the
2227  * smi_info->intf check.
2228  */
2229 static void cleanup_one_si(struct smi_info *smi_info)
2230 {
2231 	if (!smi_info)
2232 		return;
2233 
2234 	list_del(&smi_info->link);
2235 
2236 	if (smi_info->intf)
2237 		ipmi_unregister_smi(smi_info->intf);
2238 
2239 	if (smi_info->pdev) {
2240 		if (smi_info->pdev_registered)
2241 			platform_device_unregister(smi_info->pdev);
2242 		else
2243 			platform_device_put(smi_info->pdev);
2244 	}
2245 
2246 	kfree(smi_info);
2247 }
2248 
2249 int ipmi_si_remove_by_dev(struct device *dev)
2250 {
2251 	struct smi_info *e;
2252 	int rv = -ENOENT;
2253 
2254 	mutex_lock(&smi_infos_lock);
2255 	list_for_each_entry(e, &smi_infos, link) {
2256 		if (e->io.dev == dev) {
2257 			cleanup_one_si(e);
2258 			rv = 0;
2259 			break;
2260 		}
2261 	}
2262 	mutex_unlock(&smi_infos_lock);
2263 
2264 	return rv;
2265 }
2266 
2267 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2268 			    unsigned long addr)
2269 {
2270 	/* remove */
2271 	struct smi_info *e, *tmp_e;
2272 
2273 	mutex_lock(&smi_infos_lock);
2274 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2275 		if (e->io.addr_type != addr_space)
2276 			continue;
2277 		if (e->io.si_type != si_type)
2278 			continue;
2279 		if (e->io.addr_data == addr)
2280 			cleanup_one_si(e);
2281 	}
2282 	mutex_unlock(&smi_infos_lock);
2283 }
2284 
2285 static void cleanup_ipmi_si(void)
2286 {
2287 	struct smi_info *e, *tmp_e;
2288 
2289 	if (!initialized)
2290 		return;
2291 
2292 	ipmi_si_pci_shutdown();
2293 
2294 	ipmi_si_parisc_shutdown();
2295 
2296 	ipmi_si_platform_shutdown();
2297 
2298 	mutex_lock(&smi_infos_lock);
2299 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2300 		cleanup_one_si(e);
2301 	mutex_unlock(&smi_infos_lock);
2302 }
2303 module_exit(cleanup_ipmi_si);
2304 
2305 MODULE_ALIAS("platform:dmi-ipmi-si");
2306 MODULE_LICENSE("GPL");
2307 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2308 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2309 		   " system interfaces.");
2310