xref: /openbmc/linux/drivers/char/ipmi/ipmi_msghandler.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60 			       struct ipmi_smi_msg *msg);
61 
62 static int initialized;
63 
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67 
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70 
71 #define MAX_EVENTS_IN_QUEUE	25
72 
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT		60000
78 
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME	1000
81 
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84 
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92 
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97 	struct list_head link;
98 
99 	/* Set to false when the user is destroyed. */
100 	bool valid;
101 
102 	struct kref refcount;
103 
104 	/* The upper layer that handles receive messages. */
105 	struct ipmi_user_hndl *handler;
106 	void             *handler_data;
107 
108 	/* The interface this user is bound to. */
109 	ipmi_smi_t intf;
110 
111 	/* Does this interface receive IPMI events? */
112 	bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116 	struct list_head link;
117 
118 	ipmi_user_t   user;
119 	unsigned char netfn;
120 	unsigned char cmd;
121 	unsigned int  chans;
122 
123 	/*
124 	 * This is used to form a linked lised during mass deletion.
125 	 * Since this is in an RCU list, we cannot use the link above
126 	 * or change any data until the RCU period completes.  So we
127 	 * use this next variable during mass deletion so we can have
128 	 * a list and don't have to wait and restart the search on
129 	 * every individual deletion of a command.
130 	 */
131 	struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135 	unsigned int         inuse : 1;
136 	unsigned int         broadcast : 1;
137 
138 	unsigned long        timeout;
139 	unsigned long        orig_timeout;
140 	unsigned int         retries_left;
141 
142 	/*
143 	 * To verify on an incoming send message response that this is
144 	 * the message that the response is for, we keep a sequence id
145 	 * and increment it every time we send a message.
146 	 */
147 	long                 seqid;
148 
149 	/*
150 	 * This is held so we can properly respond to the message on a
151 	 * timeout, and it is used to hold the temporary data for
152 	 * retransmission, too.
153 	 */
154 	struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162 
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 	do {								\
165 		seq = ((msgid >> 26) & 0x3f);				\
166 		seqid = (msgid & 0x3fffff);				\
167 	} while (0)
168 
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170 
171 struct ipmi_channel {
172 	unsigned char medium;
173 	unsigned char protocol;
174 
175 	/*
176 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177 	 * but may be changed by the user.
178 	 */
179 	unsigned char address;
180 
181 	/*
182 	 * My LUN.  This should generally stay the SMS LUN, but just in
183 	 * case...
184 	 */
185 	unsigned char lun;
186 };
187 
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 	char                   *name;
191 	struct ipmi_proc_entry *next;
192 };
193 #endif
194 
195 struct bmc_device {
196 	struct platform_device pdev;
197 	struct ipmi_device_id  id;
198 	unsigned char          guid[16];
199 	int                    guid_set;
200 	char                   name[16];
201 	struct kref	       usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204 
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210 	/* Commands we got from the user that were invalid. */
211 	IPMI_STAT_sent_invalid_commands = 0,
212 
213 	/* Commands we sent to the MC. */
214 	IPMI_STAT_sent_local_commands,
215 
216 	/* Responses from the MC that were delivered to a user. */
217 	IPMI_STAT_handled_local_responses,
218 
219 	/* Responses from the MC that were not delivered to a user. */
220 	IPMI_STAT_unhandled_local_responses,
221 
222 	/* Commands we sent out to the IPMB bus. */
223 	IPMI_STAT_sent_ipmb_commands,
224 
225 	/* Commands sent on the IPMB that had errors on the SEND CMD */
226 	IPMI_STAT_sent_ipmb_command_errs,
227 
228 	/* Each retransmit increments this count. */
229 	IPMI_STAT_retransmitted_ipmb_commands,
230 
231 	/*
232 	 * When a message times out (runs out of retransmits) this is
233 	 * incremented.
234 	 */
235 	IPMI_STAT_timed_out_ipmb_commands,
236 
237 	/*
238 	 * This is like above, but for broadcasts.  Broadcasts are
239 	 * *not* included in the above count (they are expected to
240 	 * time out).
241 	 */
242 	IPMI_STAT_timed_out_ipmb_broadcasts,
243 
244 	/* Responses I have sent to the IPMB bus. */
245 	IPMI_STAT_sent_ipmb_responses,
246 
247 	/* The response was delivered to the user. */
248 	IPMI_STAT_handled_ipmb_responses,
249 
250 	/* The response had invalid data in it. */
251 	IPMI_STAT_invalid_ipmb_responses,
252 
253 	/* The response didn't have anyone waiting for it. */
254 	IPMI_STAT_unhandled_ipmb_responses,
255 
256 	/* Commands we sent out to the IPMB bus. */
257 	IPMI_STAT_sent_lan_commands,
258 
259 	/* Commands sent on the IPMB that had errors on the SEND CMD */
260 	IPMI_STAT_sent_lan_command_errs,
261 
262 	/* Each retransmit increments this count. */
263 	IPMI_STAT_retransmitted_lan_commands,
264 
265 	/*
266 	 * When a message times out (runs out of retransmits) this is
267 	 * incremented.
268 	 */
269 	IPMI_STAT_timed_out_lan_commands,
270 
271 	/* Responses I have sent to the IPMB bus. */
272 	IPMI_STAT_sent_lan_responses,
273 
274 	/* The response was delivered to the user. */
275 	IPMI_STAT_handled_lan_responses,
276 
277 	/* The response had invalid data in it. */
278 	IPMI_STAT_invalid_lan_responses,
279 
280 	/* The response didn't have anyone waiting for it. */
281 	IPMI_STAT_unhandled_lan_responses,
282 
283 	/* The command was delivered to the user. */
284 	IPMI_STAT_handled_commands,
285 
286 	/* The command had invalid data in it. */
287 	IPMI_STAT_invalid_commands,
288 
289 	/* The command didn't have anyone waiting for it. */
290 	IPMI_STAT_unhandled_commands,
291 
292 	/* Invalid data in an event. */
293 	IPMI_STAT_invalid_events,
294 
295 	/* Events that were received with the proper format. */
296 	IPMI_STAT_events,
297 
298 	/* Retransmissions on IPMB that failed. */
299 	IPMI_STAT_dropped_rexmit_ipmb_commands,
300 
301 	/* Retransmissions on LAN that failed. */
302 	IPMI_STAT_dropped_rexmit_lan_commands,
303 
304 	/* This *must* remain last, add new values above this. */
305 	IPMI_NUM_STATS
306 };
307 
308 
309 #define IPMI_IPMB_NUM_SEQ	64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312 	/* What interface number are we? */
313 	int intf_num;
314 
315 	struct kref refcount;
316 
317 	/* Set when the interface is being unregistered. */
318 	bool in_shutdown;
319 
320 	/* Used for a list of interfaces. */
321 	struct list_head link;
322 
323 	/*
324 	 * The list of upper layers that are using me.  seq_lock
325 	 * protects this.
326 	 */
327 	struct list_head users;
328 
329 	/* Information to supply to users. */
330 	unsigned char ipmi_version_major;
331 	unsigned char ipmi_version_minor;
332 
333 	/* Used for wake ups at startup. */
334 	wait_queue_head_t waitq;
335 
336 	struct bmc_device *bmc;
337 	char *my_dev_name;
338 
339 	/*
340 	 * This is the lower-layer's sender routine.  Note that you
341 	 * must either be holding the ipmi_interfaces_mutex or be in
342 	 * an umpreemptible region to use this.  You must fetch the
343 	 * value into a local variable and make sure it is not NULL.
344 	 */
345 	const struct ipmi_smi_handlers *handlers;
346 	void                     *send_info;
347 
348 #ifdef CONFIG_PROC_FS
349 	/* A list of proc entries for this interface. */
350 	struct mutex           proc_entry_lock;
351 	struct ipmi_proc_entry *proc_entries;
352 #endif
353 
354 	/* Driver-model device for the system interface. */
355 	struct device          *si_dev;
356 
357 	/*
358 	 * A table of sequence numbers for this interface.  We use the
359 	 * sequence numbers for IPMB messages that go out of the
360 	 * interface to match them up with their responses.  A routine
361 	 * is called periodically to time the items in this list.
362 	 */
363 	spinlock_t       seq_lock;
364 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365 	int curr_seq;
366 
367 	/*
368 	 * Messages queued for delivery.  If delivery fails (out of memory
369 	 * for instance), They will stay in here to be processed later in a
370 	 * periodic timer interrupt.  The tasklet is for handling received
371 	 * messages directly from the handler.
372 	 */
373 	spinlock_t       waiting_rcv_msgs_lock;
374 	struct list_head waiting_rcv_msgs;
375 	atomic_t	 watchdog_pretimeouts_to_deliver;
376 	struct tasklet_struct recv_tasklet;
377 
378 	spinlock_t             xmit_msgs_lock;
379 	struct list_head       xmit_msgs;
380 	struct ipmi_smi_msg    *curr_msg;
381 	struct list_head       hp_xmit_msgs;
382 
383 	/*
384 	 * The list of command receivers that are registered for commands
385 	 * on this interface.
386 	 */
387 	struct mutex     cmd_rcvrs_mutex;
388 	struct list_head cmd_rcvrs;
389 
390 	/*
391 	 * Events that were queues because no one was there to receive
392 	 * them.
393 	 */
394 	spinlock_t       events_lock; /* For dealing with event stuff. */
395 	struct list_head waiting_events;
396 	unsigned int     waiting_events_count; /* How many events in queue? */
397 	char             delivering_events;
398 	char             event_msg_printed;
399 	atomic_t         event_waiters;
400 	unsigned int     ticks_to_req_ev;
401 	int              last_needs_timer;
402 
403 	/*
404 	 * The event receiver for my BMC, only really used at panic
405 	 * shutdown as a place to store this.
406 	 */
407 	unsigned char event_receiver;
408 	unsigned char event_receiver_lun;
409 	unsigned char local_sel_device;
410 	unsigned char local_event_generator;
411 
412 	/* For handling of maintenance mode. */
413 	int maintenance_mode;
414 	bool maintenance_mode_enable;
415 	int auto_maintenance_timeout;
416 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
417 
418 	/*
419 	 * A cheap hack, if this is non-null and a message to an
420 	 * interface comes in with a NULL user, call this routine with
421 	 * it.  Note that the message will still be freed by the
422 	 * caller.  This only works on the system interface.
423 	 */
424 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425 
426 	/*
427 	 * When we are scanning the channels for an SMI, this will
428 	 * tell which channel we are scanning.
429 	 */
430 	int curr_channel;
431 
432 	/* Channel information */
433 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434 
435 	/* Proc FS stuff. */
436 	struct proc_dir_entry *proc_dir;
437 	char                  proc_dir_name[10];
438 
439 	atomic_t stats[IPMI_NUM_STATS];
440 
441 	/*
442 	 * run_to_completion duplicate of smb_info, smi_info
443 	 * and ipmi_serial_info structures. Used to decrease numbers of
444 	 * parameters passed by "low" level IPMI code.
445 	 */
446 	int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449 
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454 	.driver = {
455 		.name = "ipmi",
456 		.bus = &platform_bus_type
457 	}
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460 
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463 
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469 
470 #define ipmi_inc_stat(intf, stat) \
471 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474 
475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476 				   "ACPI", "SMBIOS", "PCI",
477 				   "device-tree", "default" };
478 
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480 {
481 	if (src > SI_DEFAULT)
482 		src = 0; /* Invalid */
483 	return addr_src_to_str[src];
484 }
485 EXPORT_SYMBOL(ipmi_addr_src_to_str);
486 
487 static int is_lan_addr(struct ipmi_addr *addr)
488 {
489 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490 }
491 
492 static int is_ipmb_addr(struct ipmi_addr *addr)
493 {
494 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495 }
496 
497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498 {
499 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500 }
501 
502 static void free_recv_msg_list(struct list_head *q)
503 {
504 	struct ipmi_recv_msg *msg, *msg2;
505 
506 	list_for_each_entry_safe(msg, msg2, q, link) {
507 		list_del(&msg->link);
508 		ipmi_free_recv_msg(msg);
509 	}
510 }
511 
512 static void free_smi_msg_list(struct list_head *q)
513 {
514 	struct ipmi_smi_msg *msg, *msg2;
515 
516 	list_for_each_entry_safe(msg, msg2, q, link) {
517 		list_del(&msg->link);
518 		ipmi_free_smi_msg(msg);
519 	}
520 }
521 
522 static void clean_up_interface_data(ipmi_smi_t intf)
523 {
524 	int              i;
525 	struct cmd_rcvr  *rcvr, *rcvr2;
526 	struct list_head list;
527 
528 	tasklet_kill(&intf->recv_tasklet);
529 
530 	free_smi_msg_list(&intf->waiting_rcv_msgs);
531 	free_recv_msg_list(&intf->waiting_events);
532 
533 	/*
534 	 * Wholesale remove all the entries from the list in the
535 	 * interface and wait for RCU to know that none are in use.
536 	 */
537 	mutex_lock(&intf->cmd_rcvrs_mutex);
538 	INIT_LIST_HEAD(&list);
539 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540 	mutex_unlock(&intf->cmd_rcvrs_mutex);
541 
542 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543 		kfree(rcvr);
544 
545 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546 		if ((intf->seq_table[i].inuse)
547 					&& (intf->seq_table[i].recv_msg))
548 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549 	}
550 }
551 
552 static void intf_free(struct kref *ref)
553 {
554 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555 
556 	clean_up_interface_data(intf);
557 	kfree(intf);
558 }
559 
560 struct watcher_entry {
561 	int              intf_num;
562 	ipmi_smi_t       intf;
563 	struct list_head link;
564 };
565 
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567 {
568 	ipmi_smi_t intf;
569 	LIST_HEAD(to_deliver);
570 	struct watcher_entry *e, *e2;
571 
572 	mutex_lock(&smi_watchers_mutex);
573 
574 	mutex_lock(&ipmi_interfaces_mutex);
575 
576 	/* Build a list of things to deliver. */
577 	list_for_each_entry(intf, &ipmi_interfaces, link) {
578 		if (intf->intf_num == -1)
579 			continue;
580 		e = kmalloc(sizeof(*e), GFP_KERNEL);
581 		if (!e)
582 			goto out_err;
583 		kref_get(&intf->refcount);
584 		e->intf = intf;
585 		e->intf_num = intf->intf_num;
586 		list_add_tail(&e->link, &to_deliver);
587 	}
588 
589 	/* We will succeed, so add it to the list. */
590 	list_add(&watcher->link, &smi_watchers);
591 
592 	mutex_unlock(&ipmi_interfaces_mutex);
593 
594 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
595 		list_del(&e->link);
596 		watcher->new_smi(e->intf_num, e->intf->si_dev);
597 		kref_put(&e->intf->refcount, intf_free);
598 		kfree(e);
599 	}
600 
601 	mutex_unlock(&smi_watchers_mutex);
602 
603 	return 0;
604 
605  out_err:
606 	mutex_unlock(&ipmi_interfaces_mutex);
607 	mutex_unlock(&smi_watchers_mutex);
608 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
609 		list_del(&e->link);
610 		kref_put(&e->intf->refcount, intf_free);
611 		kfree(e);
612 	}
613 	return -ENOMEM;
614 }
615 EXPORT_SYMBOL(ipmi_smi_watcher_register);
616 
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618 {
619 	mutex_lock(&smi_watchers_mutex);
620 	list_del(&(watcher->link));
621 	mutex_unlock(&smi_watchers_mutex);
622 	return 0;
623 }
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625 
626 /*
627  * Must be called with smi_watchers_mutex held.
628  */
629 static void
630 call_smi_watchers(int i, struct device *dev)
631 {
632 	struct ipmi_smi_watcher *w;
633 
634 	list_for_each_entry(w, &smi_watchers, link) {
635 		if (try_module_get(w->owner)) {
636 			w->new_smi(i, dev);
637 			module_put(w->owner);
638 		}
639 	}
640 }
641 
642 static int
643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644 {
645 	if (addr1->addr_type != addr2->addr_type)
646 		return 0;
647 
648 	if (addr1->channel != addr2->channel)
649 		return 0;
650 
651 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652 		struct ipmi_system_interface_addr *smi_addr1
653 		    = (struct ipmi_system_interface_addr *) addr1;
654 		struct ipmi_system_interface_addr *smi_addr2
655 		    = (struct ipmi_system_interface_addr *) addr2;
656 		return (smi_addr1->lun == smi_addr2->lun);
657 	}
658 
659 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660 		struct ipmi_ipmb_addr *ipmb_addr1
661 		    = (struct ipmi_ipmb_addr *) addr1;
662 		struct ipmi_ipmb_addr *ipmb_addr2
663 		    = (struct ipmi_ipmb_addr *) addr2;
664 
665 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
667 	}
668 
669 	if (is_lan_addr(addr1)) {
670 		struct ipmi_lan_addr *lan_addr1
671 			= (struct ipmi_lan_addr *) addr1;
672 		struct ipmi_lan_addr *lan_addr2
673 		    = (struct ipmi_lan_addr *) addr2;
674 
675 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
677 			&& (lan_addr1->session_handle
678 			    == lan_addr2->session_handle)
679 			&& (lan_addr1->lun == lan_addr2->lun));
680 	}
681 
682 	return 1;
683 }
684 
685 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686 {
687 	if (len < sizeof(struct ipmi_system_interface_addr))
688 		return -EINVAL;
689 
690 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691 		if (addr->channel != IPMI_BMC_CHANNEL)
692 			return -EINVAL;
693 		return 0;
694 	}
695 
696 	if ((addr->channel == IPMI_BMC_CHANNEL)
697 	    || (addr->channel >= IPMI_MAX_CHANNELS)
698 	    || (addr->channel < 0))
699 		return -EINVAL;
700 
701 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702 		if (len < sizeof(struct ipmi_ipmb_addr))
703 			return -EINVAL;
704 		return 0;
705 	}
706 
707 	if (is_lan_addr(addr)) {
708 		if (len < sizeof(struct ipmi_lan_addr))
709 			return -EINVAL;
710 		return 0;
711 	}
712 
713 	return -EINVAL;
714 }
715 EXPORT_SYMBOL(ipmi_validate_addr);
716 
717 unsigned int ipmi_addr_length(int addr_type)
718 {
719 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720 		return sizeof(struct ipmi_system_interface_addr);
721 
722 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724 		return sizeof(struct ipmi_ipmb_addr);
725 
726 	if (addr_type == IPMI_LAN_ADDR_TYPE)
727 		return sizeof(struct ipmi_lan_addr);
728 
729 	return 0;
730 }
731 EXPORT_SYMBOL(ipmi_addr_length);
732 
733 static void deliver_response(struct ipmi_recv_msg *msg)
734 {
735 	if (!msg->user) {
736 		ipmi_smi_t    intf = msg->user_msg_data;
737 
738 		/* Special handling for NULL users. */
739 		if (intf->null_user_handler) {
740 			intf->null_user_handler(intf, msg);
741 			ipmi_inc_stat(intf, handled_local_responses);
742 		} else {
743 			/* No handler, so give up. */
744 			ipmi_inc_stat(intf, unhandled_local_responses);
745 		}
746 		ipmi_free_recv_msg(msg);
747 	} else if (!oops_in_progress) {
748 		/*
749 		 * If we are running in the panic context, calling the
750 		 * receive handler doesn't much meaning and has a deadlock
751 		 * risk.  At this moment, simply skip it in that case.
752 		 */
753 
754 		ipmi_user_t user = msg->user;
755 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
756 	}
757 }
758 
759 static void
760 deliver_err_response(struct ipmi_recv_msg *msg, int err)
761 {
762 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
763 	msg->msg_data[0] = err;
764 	msg->msg.netfn |= 1; /* Convert to a response. */
765 	msg->msg.data_len = 1;
766 	msg->msg.data = msg->msg_data;
767 	deliver_response(msg);
768 }
769 
770 /*
771  * Find the next sequence number not being used and add the given
772  * message with the given timeout to the sequence table.  This must be
773  * called with the interface's seq_lock held.
774  */
775 static int intf_next_seq(ipmi_smi_t           intf,
776 			 struct ipmi_recv_msg *recv_msg,
777 			 unsigned long        timeout,
778 			 int                  retries,
779 			 int                  broadcast,
780 			 unsigned char        *seq,
781 			 long                 *seqid)
782 {
783 	int          rv = 0;
784 	unsigned int i;
785 
786 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
787 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
788 		if (!intf->seq_table[i].inuse)
789 			break;
790 	}
791 
792 	if (!intf->seq_table[i].inuse) {
793 		intf->seq_table[i].recv_msg = recv_msg;
794 
795 		/*
796 		 * Start with the maximum timeout, when the send response
797 		 * comes in we will start the real timer.
798 		 */
799 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
800 		intf->seq_table[i].orig_timeout = timeout;
801 		intf->seq_table[i].retries_left = retries;
802 		intf->seq_table[i].broadcast = broadcast;
803 		intf->seq_table[i].inuse = 1;
804 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
805 		*seq = i;
806 		*seqid = intf->seq_table[i].seqid;
807 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
808 		need_waiter(intf);
809 	} else {
810 		rv = -EAGAIN;
811 	}
812 
813 	return rv;
814 }
815 
816 /*
817  * Return the receive message for the given sequence number and
818  * release the sequence number so it can be reused.  Some other data
819  * is passed in to be sure the message matches up correctly (to help
820  * guard against message coming in after their timeout and the
821  * sequence number being reused).
822  */
823 static int intf_find_seq(ipmi_smi_t           intf,
824 			 unsigned char        seq,
825 			 short                channel,
826 			 unsigned char        cmd,
827 			 unsigned char        netfn,
828 			 struct ipmi_addr     *addr,
829 			 struct ipmi_recv_msg **recv_msg)
830 {
831 	int           rv = -ENODEV;
832 	unsigned long flags;
833 
834 	if (seq >= IPMI_IPMB_NUM_SEQ)
835 		return -EINVAL;
836 
837 	spin_lock_irqsave(&(intf->seq_lock), flags);
838 	if (intf->seq_table[seq].inuse) {
839 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
840 
841 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
842 				&& (msg->msg.netfn == netfn)
843 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
844 			*recv_msg = msg;
845 			intf->seq_table[seq].inuse = 0;
846 			rv = 0;
847 		}
848 	}
849 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
850 
851 	return rv;
852 }
853 
854 
855 /* Start the timer for a specific sequence table entry. */
856 static int intf_start_seq_timer(ipmi_smi_t intf,
857 				long       msgid)
858 {
859 	int           rv = -ENODEV;
860 	unsigned long flags;
861 	unsigned char seq;
862 	unsigned long seqid;
863 
864 
865 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
866 
867 	spin_lock_irqsave(&(intf->seq_lock), flags);
868 	/*
869 	 * We do this verification because the user can be deleted
870 	 * while a message is outstanding.
871 	 */
872 	if ((intf->seq_table[seq].inuse)
873 				&& (intf->seq_table[seq].seqid == seqid)) {
874 		struct seq_table *ent = &(intf->seq_table[seq]);
875 		ent->timeout = ent->orig_timeout;
876 		rv = 0;
877 	}
878 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
879 
880 	return rv;
881 }
882 
883 /* Got an error for the send message for a specific sequence number. */
884 static int intf_err_seq(ipmi_smi_t   intf,
885 			long         msgid,
886 			unsigned int err)
887 {
888 	int                  rv = -ENODEV;
889 	unsigned long        flags;
890 	unsigned char        seq;
891 	unsigned long        seqid;
892 	struct ipmi_recv_msg *msg = NULL;
893 
894 
895 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
896 
897 	spin_lock_irqsave(&(intf->seq_lock), flags);
898 	/*
899 	 * We do this verification because the user can be deleted
900 	 * while a message is outstanding.
901 	 */
902 	if ((intf->seq_table[seq].inuse)
903 				&& (intf->seq_table[seq].seqid == seqid)) {
904 		struct seq_table *ent = &(intf->seq_table[seq]);
905 
906 		ent->inuse = 0;
907 		msg = ent->recv_msg;
908 		rv = 0;
909 	}
910 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
911 
912 	if (msg)
913 		deliver_err_response(msg, err);
914 
915 	return rv;
916 }
917 
918 
919 int ipmi_create_user(unsigned int          if_num,
920 		     struct ipmi_user_hndl *handler,
921 		     void                  *handler_data,
922 		     ipmi_user_t           *user)
923 {
924 	unsigned long flags;
925 	ipmi_user_t   new_user;
926 	int           rv = 0;
927 	ipmi_smi_t    intf;
928 
929 	/*
930 	 * There is no module usecount here, because it's not
931 	 * required.  Since this can only be used by and called from
932 	 * other modules, they will implicitly use this module, and
933 	 * thus this can't be removed unless the other modules are
934 	 * removed.
935 	 */
936 
937 	if (handler == NULL)
938 		return -EINVAL;
939 
940 	/*
941 	 * Make sure the driver is actually initialized, this handles
942 	 * problems with initialization order.
943 	 */
944 	if (!initialized) {
945 		rv = ipmi_init_msghandler();
946 		if (rv)
947 			return rv;
948 
949 		/*
950 		 * The init code doesn't return an error if it was turned
951 		 * off, but it won't initialize.  Check that.
952 		 */
953 		if (!initialized)
954 			return -ENODEV;
955 	}
956 
957 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
958 	if (!new_user)
959 		return -ENOMEM;
960 
961 	mutex_lock(&ipmi_interfaces_mutex);
962 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
963 		if (intf->intf_num == if_num)
964 			goto found;
965 	}
966 	/* Not found, return an error */
967 	rv = -EINVAL;
968 	goto out_kfree;
969 
970  found:
971 	/* Note that each existing user holds a refcount to the interface. */
972 	kref_get(&intf->refcount);
973 
974 	kref_init(&new_user->refcount);
975 	new_user->handler = handler;
976 	new_user->handler_data = handler_data;
977 	new_user->intf = intf;
978 	new_user->gets_events = false;
979 
980 	if (!try_module_get(intf->handlers->owner)) {
981 		rv = -ENODEV;
982 		goto out_kref;
983 	}
984 
985 	if (intf->handlers->inc_usecount) {
986 		rv = intf->handlers->inc_usecount(intf->send_info);
987 		if (rv) {
988 			module_put(intf->handlers->owner);
989 			goto out_kref;
990 		}
991 	}
992 
993 	/*
994 	 * Hold the lock so intf->handlers is guaranteed to be good
995 	 * until now
996 	 */
997 	mutex_unlock(&ipmi_interfaces_mutex);
998 
999 	new_user->valid = true;
1000 	spin_lock_irqsave(&intf->seq_lock, flags);
1001 	list_add_rcu(&new_user->link, &intf->users);
1002 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1003 	if (handler->ipmi_watchdog_pretimeout) {
1004 		/* User wants pretimeouts, so make sure to watch for them. */
1005 		if (atomic_inc_return(&intf->event_waiters) == 1)
1006 			need_waiter(intf);
1007 	}
1008 	*user = new_user;
1009 	return 0;
1010 
1011 out_kref:
1012 	kref_put(&intf->refcount, intf_free);
1013 out_kfree:
1014 	mutex_unlock(&ipmi_interfaces_mutex);
1015 	kfree(new_user);
1016 	return rv;
1017 }
1018 EXPORT_SYMBOL(ipmi_create_user);
1019 
1020 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1021 {
1022 	int           rv = 0;
1023 	ipmi_smi_t    intf;
1024 	const struct ipmi_smi_handlers *handlers;
1025 
1026 	mutex_lock(&ipmi_interfaces_mutex);
1027 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1028 		if (intf->intf_num == if_num)
1029 			goto found;
1030 	}
1031 	/* Not found, return an error */
1032 	rv = -EINVAL;
1033 	mutex_unlock(&ipmi_interfaces_mutex);
1034 	return rv;
1035 
1036 found:
1037 	handlers = intf->handlers;
1038 	rv = -ENOSYS;
1039 	if (handlers->get_smi_info)
1040 		rv = handlers->get_smi_info(intf->send_info, data);
1041 	mutex_unlock(&ipmi_interfaces_mutex);
1042 
1043 	return rv;
1044 }
1045 EXPORT_SYMBOL(ipmi_get_smi_info);
1046 
1047 static void free_user(struct kref *ref)
1048 {
1049 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1050 	kfree(user);
1051 }
1052 
1053 int ipmi_destroy_user(ipmi_user_t user)
1054 {
1055 	ipmi_smi_t       intf = user->intf;
1056 	int              i;
1057 	unsigned long    flags;
1058 	struct cmd_rcvr  *rcvr;
1059 	struct cmd_rcvr  *rcvrs = NULL;
1060 
1061 	user->valid = false;
1062 
1063 	if (user->handler->ipmi_watchdog_pretimeout)
1064 		atomic_dec(&intf->event_waiters);
1065 
1066 	if (user->gets_events)
1067 		atomic_dec(&intf->event_waiters);
1068 
1069 	/* Remove the user from the interface's sequence table. */
1070 	spin_lock_irqsave(&intf->seq_lock, flags);
1071 	list_del_rcu(&user->link);
1072 
1073 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1074 		if (intf->seq_table[i].inuse
1075 		    && (intf->seq_table[i].recv_msg->user == user)) {
1076 			intf->seq_table[i].inuse = 0;
1077 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1078 		}
1079 	}
1080 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1081 
1082 	/*
1083 	 * Remove the user from the command receiver's table.  First
1084 	 * we build a list of everything (not using the standard link,
1085 	 * since other things may be using it till we do
1086 	 * synchronize_rcu()) then free everything in that list.
1087 	 */
1088 	mutex_lock(&intf->cmd_rcvrs_mutex);
1089 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1090 		if (rcvr->user == user) {
1091 			list_del_rcu(&rcvr->link);
1092 			rcvr->next = rcvrs;
1093 			rcvrs = rcvr;
1094 		}
1095 	}
1096 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1097 	synchronize_rcu();
1098 	while (rcvrs) {
1099 		rcvr = rcvrs;
1100 		rcvrs = rcvr->next;
1101 		kfree(rcvr);
1102 	}
1103 
1104 	mutex_lock(&ipmi_interfaces_mutex);
1105 	if (intf->handlers) {
1106 		module_put(intf->handlers->owner);
1107 		if (intf->handlers->dec_usecount)
1108 			intf->handlers->dec_usecount(intf->send_info);
1109 	}
1110 	mutex_unlock(&ipmi_interfaces_mutex);
1111 
1112 	kref_put(&intf->refcount, intf_free);
1113 
1114 	kref_put(&user->refcount, free_user);
1115 
1116 	return 0;
1117 }
1118 EXPORT_SYMBOL(ipmi_destroy_user);
1119 
1120 void ipmi_get_version(ipmi_user_t   user,
1121 		      unsigned char *major,
1122 		      unsigned char *minor)
1123 {
1124 	*major = user->intf->ipmi_version_major;
1125 	*minor = user->intf->ipmi_version_minor;
1126 }
1127 EXPORT_SYMBOL(ipmi_get_version);
1128 
1129 int ipmi_set_my_address(ipmi_user_t   user,
1130 			unsigned int  channel,
1131 			unsigned char address)
1132 {
1133 	if (channel >= IPMI_MAX_CHANNELS)
1134 		return -EINVAL;
1135 	user->intf->channels[channel].address = address;
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL(ipmi_set_my_address);
1139 
1140 int ipmi_get_my_address(ipmi_user_t   user,
1141 			unsigned int  channel,
1142 			unsigned char *address)
1143 {
1144 	if (channel >= IPMI_MAX_CHANNELS)
1145 		return -EINVAL;
1146 	*address = user->intf->channels[channel].address;
1147 	return 0;
1148 }
1149 EXPORT_SYMBOL(ipmi_get_my_address);
1150 
1151 int ipmi_set_my_LUN(ipmi_user_t   user,
1152 		    unsigned int  channel,
1153 		    unsigned char LUN)
1154 {
1155 	if (channel >= IPMI_MAX_CHANNELS)
1156 		return -EINVAL;
1157 	user->intf->channels[channel].lun = LUN & 0x3;
1158 	return 0;
1159 }
1160 EXPORT_SYMBOL(ipmi_set_my_LUN);
1161 
1162 int ipmi_get_my_LUN(ipmi_user_t   user,
1163 		    unsigned int  channel,
1164 		    unsigned char *address)
1165 {
1166 	if (channel >= IPMI_MAX_CHANNELS)
1167 		return -EINVAL;
1168 	*address = user->intf->channels[channel].lun;
1169 	return 0;
1170 }
1171 EXPORT_SYMBOL(ipmi_get_my_LUN);
1172 
1173 int ipmi_get_maintenance_mode(ipmi_user_t user)
1174 {
1175 	int           mode;
1176 	unsigned long flags;
1177 
1178 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1179 	mode = user->intf->maintenance_mode;
1180 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1181 
1182 	return mode;
1183 }
1184 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1185 
1186 static void maintenance_mode_update(ipmi_smi_t intf)
1187 {
1188 	if (intf->handlers->set_maintenance_mode)
1189 		intf->handlers->set_maintenance_mode(
1190 			intf->send_info, intf->maintenance_mode_enable);
1191 }
1192 
1193 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1194 {
1195 	int           rv = 0;
1196 	unsigned long flags;
1197 	ipmi_smi_t    intf = user->intf;
1198 
1199 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1200 	if (intf->maintenance_mode != mode) {
1201 		switch (mode) {
1202 		case IPMI_MAINTENANCE_MODE_AUTO:
1203 			intf->maintenance_mode_enable
1204 				= (intf->auto_maintenance_timeout > 0);
1205 			break;
1206 
1207 		case IPMI_MAINTENANCE_MODE_OFF:
1208 			intf->maintenance_mode_enable = false;
1209 			break;
1210 
1211 		case IPMI_MAINTENANCE_MODE_ON:
1212 			intf->maintenance_mode_enable = true;
1213 			break;
1214 
1215 		default:
1216 			rv = -EINVAL;
1217 			goto out_unlock;
1218 		}
1219 		intf->maintenance_mode = mode;
1220 
1221 		maintenance_mode_update(intf);
1222 	}
1223  out_unlock:
1224 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1225 
1226 	return rv;
1227 }
1228 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1229 
1230 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1231 {
1232 	unsigned long        flags;
1233 	ipmi_smi_t           intf = user->intf;
1234 	struct ipmi_recv_msg *msg, *msg2;
1235 	struct list_head     msgs;
1236 
1237 	INIT_LIST_HEAD(&msgs);
1238 
1239 	spin_lock_irqsave(&intf->events_lock, flags);
1240 	if (user->gets_events == val)
1241 		goto out;
1242 
1243 	user->gets_events = val;
1244 
1245 	if (val) {
1246 		if (atomic_inc_return(&intf->event_waiters) == 1)
1247 			need_waiter(intf);
1248 	} else {
1249 		atomic_dec(&intf->event_waiters);
1250 	}
1251 
1252 	if (intf->delivering_events)
1253 		/*
1254 		 * Another thread is delivering events for this, so
1255 		 * let it handle any new events.
1256 		 */
1257 		goto out;
1258 
1259 	/* Deliver any queued events. */
1260 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1261 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1262 			list_move_tail(&msg->link, &msgs);
1263 		intf->waiting_events_count = 0;
1264 		if (intf->event_msg_printed) {
1265 			printk(KERN_WARNING PFX "Event queue no longer"
1266 			       " full\n");
1267 			intf->event_msg_printed = 0;
1268 		}
1269 
1270 		intf->delivering_events = 1;
1271 		spin_unlock_irqrestore(&intf->events_lock, flags);
1272 
1273 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1274 			msg->user = user;
1275 			kref_get(&user->refcount);
1276 			deliver_response(msg);
1277 		}
1278 
1279 		spin_lock_irqsave(&intf->events_lock, flags);
1280 		intf->delivering_events = 0;
1281 	}
1282 
1283  out:
1284 	spin_unlock_irqrestore(&intf->events_lock, flags);
1285 
1286 	return 0;
1287 }
1288 EXPORT_SYMBOL(ipmi_set_gets_events);
1289 
1290 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1291 				      unsigned char netfn,
1292 				      unsigned char cmd,
1293 				      unsigned char chan)
1294 {
1295 	struct cmd_rcvr *rcvr;
1296 
1297 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1298 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1299 					&& (rcvr->chans & (1 << chan)))
1300 			return rcvr;
1301 	}
1302 	return NULL;
1303 }
1304 
1305 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1306 				 unsigned char netfn,
1307 				 unsigned char cmd,
1308 				 unsigned int  chans)
1309 {
1310 	struct cmd_rcvr *rcvr;
1311 
1312 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1313 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1314 					&& (rcvr->chans & chans))
1315 			return 0;
1316 	}
1317 	return 1;
1318 }
1319 
1320 int ipmi_register_for_cmd(ipmi_user_t   user,
1321 			  unsigned char netfn,
1322 			  unsigned char cmd,
1323 			  unsigned int  chans)
1324 {
1325 	ipmi_smi_t      intf = user->intf;
1326 	struct cmd_rcvr *rcvr;
1327 	int             rv = 0;
1328 
1329 
1330 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1331 	if (!rcvr)
1332 		return -ENOMEM;
1333 	rcvr->cmd = cmd;
1334 	rcvr->netfn = netfn;
1335 	rcvr->chans = chans;
1336 	rcvr->user = user;
1337 
1338 	mutex_lock(&intf->cmd_rcvrs_mutex);
1339 	/* Make sure the command/netfn is not already registered. */
1340 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1341 		rv = -EBUSY;
1342 		goto out_unlock;
1343 	}
1344 
1345 	if (atomic_inc_return(&intf->event_waiters) == 1)
1346 		need_waiter(intf);
1347 
1348 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1349 
1350  out_unlock:
1351 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1352 	if (rv)
1353 		kfree(rcvr);
1354 
1355 	return rv;
1356 }
1357 EXPORT_SYMBOL(ipmi_register_for_cmd);
1358 
1359 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1360 			    unsigned char netfn,
1361 			    unsigned char cmd,
1362 			    unsigned int  chans)
1363 {
1364 	ipmi_smi_t      intf = user->intf;
1365 	struct cmd_rcvr *rcvr;
1366 	struct cmd_rcvr *rcvrs = NULL;
1367 	int i, rv = -ENOENT;
1368 
1369 	mutex_lock(&intf->cmd_rcvrs_mutex);
1370 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1371 		if (((1 << i) & chans) == 0)
1372 			continue;
1373 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1374 		if (rcvr == NULL)
1375 			continue;
1376 		if (rcvr->user == user) {
1377 			rv = 0;
1378 			rcvr->chans &= ~chans;
1379 			if (rcvr->chans == 0) {
1380 				list_del_rcu(&rcvr->link);
1381 				rcvr->next = rcvrs;
1382 				rcvrs = rcvr;
1383 			}
1384 		}
1385 	}
1386 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1387 	synchronize_rcu();
1388 	while (rcvrs) {
1389 		atomic_dec(&intf->event_waiters);
1390 		rcvr = rcvrs;
1391 		rcvrs = rcvr->next;
1392 		kfree(rcvr);
1393 	}
1394 	return rv;
1395 }
1396 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1397 
1398 static unsigned char
1399 ipmb_checksum(unsigned char *data, int size)
1400 {
1401 	unsigned char csum = 0;
1402 
1403 	for (; size > 0; size--, data++)
1404 		csum += *data;
1405 
1406 	return -csum;
1407 }
1408 
1409 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1410 				   struct kernel_ipmi_msg *msg,
1411 				   struct ipmi_ipmb_addr *ipmb_addr,
1412 				   long                  msgid,
1413 				   unsigned char         ipmb_seq,
1414 				   int                   broadcast,
1415 				   unsigned char         source_address,
1416 				   unsigned char         source_lun)
1417 {
1418 	int i = broadcast;
1419 
1420 	/* Format the IPMB header data. */
1421 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1422 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1423 	smi_msg->data[2] = ipmb_addr->channel;
1424 	if (broadcast)
1425 		smi_msg->data[3] = 0;
1426 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1427 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1428 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1429 	smi_msg->data[i+6] = source_address;
1430 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1431 	smi_msg->data[i+8] = msg->cmd;
1432 
1433 	/* Now tack on the data to the message. */
1434 	if (msg->data_len > 0)
1435 		memcpy(&(smi_msg->data[i+9]), msg->data,
1436 		       msg->data_len);
1437 	smi_msg->data_size = msg->data_len + 9;
1438 
1439 	/* Now calculate the checksum and tack it on. */
1440 	smi_msg->data[i+smi_msg->data_size]
1441 		= ipmb_checksum(&(smi_msg->data[i+6]),
1442 				smi_msg->data_size-6);
1443 
1444 	/*
1445 	 * Add on the checksum size and the offset from the
1446 	 * broadcast.
1447 	 */
1448 	smi_msg->data_size += 1 + i;
1449 
1450 	smi_msg->msgid = msgid;
1451 }
1452 
1453 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1454 				  struct kernel_ipmi_msg *msg,
1455 				  struct ipmi_lan_addr  *lan_addr,
1456 				  long                  msgid,
1457 				  unsigned char         ipmb_seq,
1458 				  unsigned char         source_lun)
1459 {
1460 	/* Format the IPMB header data. */
1461 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1462 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1463 	smi_msg->data[2] = lan_addr->channel;
1464 	smi_msg->data[3] = lan_addr->session_handle;
1465 	smi_msg->data[4] = lan_addr->remote_SWID;
1466 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1467 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1468 	smi_msg->data[7] = lan_addr->local_SWID;
1469 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1470 	smi_msg->data[9] = msg->cmd;
1471 
1472 	/* Now tack on the data to the message. */
1473 	if (msg->data_len > 0)
1474 		memcpy(&(smi_msg->data[10]), msg->data,
1475 		       msg->data_len);
1476 	smi_msg->data_size = msg->data_len + 10;
1477 
1478 	/* Now calculate the checksum and tack it on. */
1479 	smi_msg->data[smi_msg->data_size]
1480 		= ipmb_checksum(&(smi_msg->data[7]),
1481 				smi_msg->data_size-7);
1482 
1483 	/*
1484 	 * Add on the checksum size and the offset from the
1485 	 * broadcast.
1486 	 */
1487 	smi_msg->data_size += 1;
1488 
1489 	smi_msg->msgid = msgid;
1490 }
1491 
1492 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1493 					     struct ipmi_smi_msg *smi_msg,
1494 					     int priority)
1495 {
1496 	if (intf->curr_msg) {
1497 		if (priority > 0)
1498 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1499 		else
1500 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1501 		smi_msg = NULL;
1502 	} else {
1503 		intf->curr_msg = smi_msg;
1504 	}
1505 
1506 	return smi_msg;
1507 }
1508 
1509 
1510 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1511 		     struct ipmi_smi_msg *smi_msg, int priority)
1512 {
1513 	int run_to_completion = intf->run_to_completion;
1514 
1515 	if (run_to_completion) {
1516 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1517 	} else {
1518 		unsigned long flags;
1519 
1520 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1521 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1522 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1523 	}
1524 
1525 	if (smi_msg)
1526 		handlers->sender(intf->send_info, smi_msg);
1527 }
1528 
1529 /*
1530  * Separate from ipmi_request so that the user does not have to be
1531  * supplied in certain circumstances (mainly at panic time).  If
1532  * messages are supplied, they will be freed, even if an error
1533  * occurs.
1534  */
1535 static int i_ipmi_request(ipmi_user_t          user,
1536 			  ipmi_smi_t           intf,
1537 			  struct ipmi_addr     *addr,
1538 			  long                 msgid,
1539 			  struct kernel_ipmi_msg *msg,
1540 			  void                 *user_msg_data,
1541 			  void                 *supplied_smi,
1542 			  struct ipmi_recv_msg *supplied_recv,
1543 			  int                  priority,
1544 			  unsigned char        source_address,
1545 			  unsigned char        source_lun,
1546 			  int                  retries,
1547 			  unsigned int         retry_time_ms)
1548 {
1549 	int                      rv = 0;
1550 	struct ipmi_smi_msg      *smi_msg;
1551 	struct ipmi_recv_msg     *recv_msg;
1552 	unsigned long            flags;
1553 
1554 
1555 	if (supplied_recv)
1556 		recv_msg = supplied_recv;
1557 	else {
1558 		recv_msg = ipmi_alloc_recv_msg();
1559 		if (recv_msg == NULL)
1560 			return -ENOMEM;
1561 	}
1562 	recv_msg->user_msg_data = user_msg_data;
1563 
1564 	if (supplied_smi)
1565 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1566 	else {
1567 		smi_msg = ipmi_alloc_smi_msg();
1568 		if (smi_msg == NULL) {
1569 			ipmi_free_recv_msg(recv_msg);
1570 			return -ENOMEM;
1571 		}
1572 	}
1573 
1574 	rcu_read_lock();
1575 	if (intf->in_shutdown) {
1576 		rv = -ENODEV;
1577 		goto out_err;
1578 	}
1579 
1580 	recv_msg->user = user;
1581 	if (user)
1582 		kref_get(&user->refcount);
1583 	recv_msg->msgid = msgid;
1584 	/*
1585 	 * Store the message to send in the receive message so timeout
1586 	 * responses can get the proper response data.
1587 	 */
1588 	recv_msg->msg = *msg;
1589 
1590 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1591 		struct ipmi_system_interface_addr *smi_addr;
1592 
1593 		if (msg->netfn & 1) {
1594 			/* Responses are not allowed to the SMI. */
1595 			rv = -EINVAL;
1596 			goto out_err;
1597 		}
1598 
1599 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1600 		if (smi_addr->lun > 3) {
1601 			ipmi_inc_stat(intf, sent_invalid_commands);
1602 			rv = -EINVAL;
1603 			goto out_err;
1604 		}
1605 
1606 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1607 
1608 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1609 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1610 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1611 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1612 			/*
1613 			 * We don't let the user do these, since we manage
1614 			 * the sequence numbers.
1615 			 */
1616 			ipmi_inc_stat(intf, sent_invalid_commands);
1617 			rv = -EINVAL;
1618 			goto out_err;
1619 		}
1620 
1621 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1622 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1623 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1624 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1625 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1626 			intf->auto_maintenance_timeout
1627 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1628 			if (!intf->maintenance_mode
1629 			    && !intf->maintenance_mode_enable) {
1630 				intf->maintenance_mode_enable = true;
1631 				maintenance_mode_update(intf);
1632 			}
1633 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1634 					       flags);
1635 		}
1636 
1637 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1638 			ipmi_inc_stat(intf, sent_invalid_commands);
1639 			rv = -EMSGSIZE;
1640 			goto out_err;
1641 		}
1642 
1643 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1644 		smi_msg->data[1] = msg->cmd;
1645 		smi_msg->msgid = msgid;
1646 		smi_msg->user_data = recv_msg;
1647 		if (msg->data_len > 0)
1648 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1649 		smi_msg->data_size = msg->data_len + 2;
1650 		ipmi_inc_stat(intf, sent_local_commands);
1651 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1652 		struct ipmi_ipmb_addr *ipmb_addr;
1653 		unsigned char         ipmb_seq;
1654 		long                  seqid;
1655 		int                   broadcast = 0;
1656 
1657 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1658 			ipmi_inc_stat(intf, sent_invalid_commands);
1659 			rv = -EINVAL;
1660 			goto out_err;
1661 		}
1662 
1663 		if (intf->channels[addr->channel].medium
1664 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1665 			ipmi_inc_stat(intf, sent_invalid_commands);
1666 			rv = -EINVAL;
1667 			goto out_err;
1668 		}
1669 
1670 		if (retries < 0) {
1671 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1672 			retries = 0; /* Don't retry broadcasts. */
1673 		    else
1674 			retries = 4;
1675 		}
1676 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1677 		    /*
1678 		     * Broadcasts add a zero at the beginning of the
1679 		     * message, but otherwise is the same as an IPMB
1680 		     * address.
1681 		     */
1682 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1683 		    broadcast = 1;
1684 		}
1685 
1686 
1687 		/* Default to 1 second retries. */
1688 		if (retry_time_ms == 0)
1689 		    retry_time_ms = 1000;
1690 
1691 		/*
1692 		 * 9 for the header and 1 for the checksum, plus
1693 		 * possibly one for the broadcast.
1694 		 */
1695 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1696 			ipmi_inc_stat(intf, sent_invalid_commands);
1697 			rv = -EMSGSIZE;
1698 			goto out_err;
1699 		}
1700 
1701 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1702 		if (ipmb_addr->lun > 3) {
1703 			ipmi_inc_stat(intf, sent_invalid_commands);
1704 			rv = -EINVAL;
1705 			goto out_err;
1706 		}
1707 
1708 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1709 
1710 		if (recv_msg->msg.netfn & 0x1) {
1711 			/*
1712 			 * It's a response, so use the user's sequence
1713 			 * from msgid.
1714 			 */
1715 			ipmi_inc_stat(intf, sent_ipmb_responses);
1716 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1717 					msgid, broadcast,
1718 					source_address, source_lun);
1719 
1720 			/*
1721 			 * Save the receive message so we can use it
1722 			 * to deliver the response.
1723 			 */
1724 			smi_msg->user_data = recv_msg;
1725 		} else {
1726 			/* It's a command, so get a sequence for it. */
1727 
1728 			spin_lock_irqsave(&(intf->seq_lock), flags);
1729 
1730 			/*
1731 			 * Create a sequence number with a 1 second
1732 			 * timeout and 4 retries.
1733 			 */
1734 			rv = intf_next_seq(intf,
1735 					   recv_msg,
1736 					   retry_time_ms,
1737 					   retries,
1738 					   broadcast,
1739 					   &ipmb_seq,
1740 					   &seqid);
1741 			if (rv) {
1742 				/*
1743 				 * We have used up all the sequence numbers,
1744 				 * probably, so abort.
1745 				 */
1746 				spin_unlock_irqrestore(&(intf->seq_lock),
1747 						       flags);
1748 				goto out_err;
1749 			}
1750 
1751 			ipmi_inc_stat(intf, sent_ipmb_commands);
1752 
1753 			/*
1754 			 * Store the sequence number in the message,
1755 			 * so that when the send message response
1756 			 * comes back we can start the timer.
1757 			 */
1758 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1759 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1760 					ipmb_seq, broadcast,
1761 					source_address, source_lun);
1762 
1763 			/*
1764 			 * Copy the message into the recv message data, so we
1765 			 * can retransmit it later if necessary.
1766 			 */
1767 			memcpy(recv_msg->msg_data, smi_msg->data,
1768 			       smi_msg->data_size);
1769 			recv_msg->msg.data = recv_msg->msg_data;
1770 			recv_msg->msg.data_len = smi_msg->data_size;
1771 
1772 			/*
1773 			 * We don't unlock until here, because we need
1774 			 * to copy the completed message into the
1775 			 * recv_msg before we release the lock.
1776 			 * Otherwise, race conditions may bite us.  I
1777 			 * know that's pretty paranoid, but I prefer
1778 			 * to be correct.
1779 			 */
1780 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1781 		}
1782 	} else if (is_lan_addr(addr)) {
1783 		struct ipmi_lan_addr  *lan_addr;
1784 		unsigned char         ipmb_seq;
1785 		long                  seqid;
1786 
1787 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1788 			ipmi_inc_stat(intf, sent_invalid_commands);
1789 			rv = -EINVAL;
1790 			goto out_err;
1791 		}
1792 
1793 		if ((intf->channels[addr->channel].medium
1794 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1795 		    && (intf->channels[addr->channel].medium
1796 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1797 			ipmi_inc_stat(intf, sent_invalid_commands);
1798 			rv = -EINVAL;
1799 			goto out_err;
1800 		}
1801 
1802 		retries = 4;
1803 
1804 		/* Default to 1 second retries. */
1805 		if (retry_time_ms == 0)
1806 		    retry_time_ms = 1000;
1807 
1808 		/* 11 for the header and 1 for the checksum. */
1809 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1810 			ipmi_inc_stat(intf, sent_invalid_commands);
1811 			rv = -EMSGSIZE;
1812 			goto out_err;
1813 		}
1814 
1815 		lan_addr = (struct ipmi_lan_addr *) addr;
1816 		if (lan_addr->lun > 3) {
1817 			ipmi_inc_stat(intf, sent_invalid_commands);
1818 			rv = -EINVAL;
1819 			goto out_err;
1820 		}
1821 
1822 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1823 
1824 		if (recv_msg->msg.netfn & 0x1) {
1825 			/*
1826 			 * It's a response, so use the user's sequence
1827 			 * from msgid.
1828 			 */
1829 			ipmi_inc_stat(intf, sent_lan_responses);
1830 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1831 				       msgid, source_lun);
1832 
1833 			/*
1834 			 * Save the receive message so we can use it
1835 			 * to deliver the response.
1836 			 */
1837 			smi_msg->user_data = recv_msg;
1838 		} else {
1839 			/* It's a command, so get a sequence for it. */
1840 
1841 			spin_lock_irqsave(&(intf->seq_lock), flags);
1842 
1843 			/*
1844 			 * Create a sequence number with a 1 second
1845 			 * timeout and 4 retries.
1846 			 */
1847 			rv = intf_next_seq(intf,
1848 					   recv_msg,
1849 					   retry_time_ms,
1850 					   retries,
1851 					   0,
1852 					   &ipmb_seq,
1853 					   &seqid);
1854 			if (rv) {
1855 				/*
1856 				 * We have used up all the sequence numbers,
1857 				 * probably, so abort.
1858 				 */
1859 				spin_unlock_irqrestore(&(intf->seq_lock),
1860 						       flags);
1861 				goto out_err;
1862 			}
1863 
1864 			ipmi_inc_stat(intf, sent_lan_commands);
1865 
1866 			/*
1867 			 * Store the sequence number in the message,
1868 			 * so that when the send message response
1869 			 * comes back we can start the timer.
1870 			 */
1871 			format_lan_msg(smi_msg, msg, lan_addr,
1872 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1873 				       ipmb_seq, source_lun);
1874 
1875 			/*
1876 			 * Copy the message into the recv message data, so we
1877 			 * can retransmit it later if necessary.
1878 			 */
1879 			memcpy(recv_msg->msg_data, smi_msg->data,
1880 			       smi_msg->data_size);
1881 			recv_msg->msg.data = recv_msg->msg_data;
1882 			recv_msg->msg.data_len = smi_msg->data_size;
1883 
1884 			/*
1885 			 * We don't unlock until here, because we need
1886 			 * to copy the completed message into the
1887 			 * recv_msg before we release the lock.
1888 			 * Otherwise, race conditions may bite us.  I
1889 			 * know that's pretty paranoid, but I prefer
1890 			 * to be correct.
1891 			 */
1892 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1893 		}
1894 	} else {
1895 	    /* Unknown address type. */
1896 		ipmi_inc_stat(intf, sent_invalid_commands);
1897 		rv = -EINVAL;
1898 		goto out_err;
1899 	}
1900 
1901 #ifdef DEBUG_MSGING
1902 	{
1903 		int m;
1904 		for (m = 0; m < smi_msg->data_size; m++)
1905 			printk(" %2.2x", smi_msg->data[m]);
1906 		printk("\n");
1907 	}
1908 #endif
1909 
1910 	smi_send(intf, intf->handlers, smi_msg, priority);
1911 	rcu_read_unlock();
1912 
1913 	return 0;
1914 
1915  out_err:
1916 	rcu_read_unlock();
1917 	ipmi_free_smi_msg(smi_msg);
1918 	ipmi_free_recv_msg(recv_msg);
1919 	return rv;
1920 }
1921 
1922 static int check_addr(ipmi_smi_t       intf,
1923 		      struct ipmi_addr *addr,
1924 		      unsigned char    *saddr,
1925 		      unsigned char    *lun)
1926 {
1927 	if (addr->channel >= IPMI_MAX_CHANNELS)
1928 		return -EINVAL;
1929 	*lun = intf->channels[addr->channel].lun;
1930 	*saddr = intf->channels[addr->channel].address;
1931 	return 0;
1932 }
1933 
1934 int ipmi_request_settime(ipmi_user_t      user,
1935 			 struct ipmi_addr *addr,
1936 			 long             msgid,
1937 			 struct kernel_ipmi_msg  *msg,
1938 			 void             *user_msg_data,
1939 			 int              priority,
1940 			 int              retries,
1941 			 unsigned int     retry_time_ms)
1942 {
1943 	unsigned char saddr = 0, lun = 0;
1944 	int           rv;
1945 
1946 	if (!user)
1947 		return -EINVAL;
1948 	rv = check_addr(user->intf, addr, &saddr, &lun);
1949 	if (rv)
1950 		return rv;
1951 	return i_ipmi_request(user,
1952 			      user->intf,
1953 			      addr,
1954 			      msgid,
1955 			      msg,
1956 			      user_msg_data,
1957 			      NULL, NULL,
1958 			      priority,
1959 			      saddr,
1960 			      lun,
1961 			      retries,
1962 			      retry_time_ms);
1963 }
1964 EXPORT_SYMBOL(ipmi_request_settime);
1965 
1966 int ipmi_request_supply_msgs(ipmi_user_t          user,
1967 			     struct ipmi_addr     *addr,
1968 			     long                 msgid,
1969 			     struct kernel_ipmi_msg *msg,
1970 			     void                 *user_msg_data,
1971 			     void                 *supplied_smi,
1972 			     struct ipmi_recv_msg *supplied_recv,
1973 			     int                  priority)
1974 {
1975 	unsigned char saddr = 0, lun = 0;
1976 	int           rv;
1977 
1978 	if (!user)
1979 		return -EINVAL;
1980 	rv = check_addr(user->intf, addr, &saddr, &lun);
1981 	if (rv)
1982 		return rv;
1983 	return i_ipmi_request(user,
1984 			      user->intf,
1985 			      addr,
1986 			      msgid,
1987 			      msg,
1988 			      user_msg_data,
1989 			      supplied_smi,
1990 			      supplied_recv,
1991 			      priority,
1992 			      saddr,
1993 			      lun,
1994 			      -1, 0);
1995 }
1996 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1997 
1998 #ifdef CONFIG_PROC_FS
1999 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2000 {
2001 	ipmi_smi_t intf = m->private;
2002 	int        i;
2003 
2004 	seq_printf(m, "%x", intf->channels[0].address);
2005 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2006 		seq_printf(m, " %x", intf->channels[i].address);
2007 	seq_putc(m, '\n');
2008 
2009 	return 0;
2010 }
2011 
2012 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2013 {
2014 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2015 }
2016 
2017 static const struct file_operations smi_ipmb_proc_ops = {
2018 	.open		= smi_ipmb_proc_open,
2019 	.read		= seq_read,
2020 	.llseek		= seq_lseek,
2021 	.release	= single_release,
2022 };
2023 
2024 static int smi_version_proc_show(struct seq_file *m, void *v)
2025 {
2026 	ipmi_smi_t intf = m->private;
2027 
2028 	seq_printf(m, "%u.%u\n",
2029 		   ipmi_version_major(&intf->bmc->id),
2030 		   ipmi_version_minor(&intf->bmc->id));
2031 
2032 	return 0;
2033 }
2034 
2035 static int smi_version_proc_open(struct inode *inode, struct file *file)
2036 {
2037 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2038 }
2039 
2040 static const struct file_operations smi_version_proc_ops = {
2041 	.open		= smi_version_proc_open,
2042 	.read		= seq_read,
2043 	.llseek		= seq_lseek,
2044 	.release	= single_release,
2045 };
2046 
2047 static int smi_stats_proc_show(struct seq_file *m, void *v)
2048 {
2049 	ipmi_smi_t intf = m->private;
2050 
2051 	seq_printf(m, "sent_invalid_commands:       %u\n",
2052 		       ipmi_get_stat(intf, sent_invalid_commands));
2053 	seq_printf(m, "sent_local_commands:         %u\n",
2054 		       ipmi_get_stat(intf, sent_local_commands));
2055 	seq_printf(m, "handled_local_responses:     %u\n",
2056 		       ipmi_get_stat(intf, handled_local_responses));
2057 	seq_printf(m, "unhandled_local_responses:   %u\n",
2058 		       ipmi_get_stat(intf, unhandled_local_responses));
2059 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2060 		       ipmi_get_stat(intf, sent_ipmb_commands));
2061 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2062 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2063 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2064 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2065 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2066 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2067 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2068 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2069 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2070 		       ipmi_get_stat(intf, sent_ipmb_responses));
2071 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2072 		       ipmi_get_stat(intf, handled_ipmb_responses));
2073 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2074 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2075 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2076 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2077 	seq_printf(m, "sent_lan_commands:           %u\n",
2078 		       ipmi_get_stat(intf, sent_lan_commands));
2079 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2080 		       ipmi_get_stat(intf, sent_lan_command_errs));
2081 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2082 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2083 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2084 		       ipmi_get_stat(intf, timed_out_lan_commands));
2085 	seq_printf(m, "sent_lan_responses:          %u\n",
2086 		       ipmi_get_stat(intf, sent_lan_responses));
2087 	seq_printf(m, "handled_lan_responses:       %u\n",
2088 		       ipmi_get_stat(intf, handled_lan_responses));
2089 	seq_printf(m, "invalid_lan_responses:       %u\n",
2090 		       ipmi_get_stat(intf, invalid_lan_responses));
2091 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2092 		       ipmi_get_stat(intf, unhandled_lan_responses));
2093 	seq_printf(m, "handled_commands:            %u\n",
2094 		       ipmi_get_stat(intf, handled_commands));
2095 	seq_printf(m, "invalid_commands:            %u\n",
2096 		       ipmi_get_stat(intf, invalid_commands));
2097 	seq_printf(m, "unhandled_commands:          %u\n",
2098 		       ipmi_get_stat(intf, unhandled_commands));
2099 	seq_printf(m, "invalid_events:              %u\n",
2100 		       ipmi_get_stat(intf, invalid_events));
2101 	seq_printf(m, "events:                      %u\n",
2102 		       ipmi_get_stat(intf, events));
2103 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2104 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2105 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2106 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2107 	return 0;
2108 }
2109 
2110 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2111 {
2112 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2113 }
2114 
2115 static const struct file_operations smi_stats_proc_ops = {
2116 	.open		= smi_stats_proc_open,
2117 	.read		= seq_read,
2118 	.llseek		= seq_lseek,
2119 	.release	= single_release,
2120 };
2121 #endif /* CONFIG_PROC_FS */
2122 
2123 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2124 			    const struct file_operations *proc_ops,
2125 			    void *data)
2126 {
2127 	int                    rv = 0;
2128 #ifdef CONFIG_PROC_FS
2129 	struct proc_dir_entry  *file;
2130 	struct ipmi_proc_entry *entry;
2131 
2132 	/* Create a list element. */
2133 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2134 	if (!entry)
2135 		return -ENOMEM;
2136 	entry->name = kstrdup(name, GFP_KERNEL);
2137 	if (!entry->name) {
2138 		kfree(entry);
2139 		return -ENOMEM;
2140 	}
2141 
2142 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2143 	if (!file) {
2144 		kfree(entry->name);
2145 		kfree(entry);
2146 		rv = -ENOMEM;
2147 	} else {
2148 		mutex_lock(&smi->proc_entry_lock);
2149 		/* Stick it on the list. */
2150 		entry->next = smi->proc_entries;
2151 		smi->proc_entries = entry;
2152 		mutex_unlock(&smi->proc_entry_lock);
2153 	}
2154 #endif /* CONFIG_PROC_FS */
2155 
2156 	return rv;
2157 }
2158 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2159 
2160 static int add_proc_entries(ipmi_smi_t smi, int num)
2161 {
2162 	int rv = 0;
2163 
2164 #ifdef CONFIG_PROC_FS
2165 	sprintf(smi->proc_dir_name, "%d", num);
2166 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2167 	if (!smi->proc_dir)
2168 		rv = -ENOMEM;
2169 
2170 	if (rv == 0)
2171 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2172 					     &smi_stats_proc_ops,
2173 					     smi);
2174 
2175 	if (rv == 0)
2176 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2177 					     &smi_ipmb_proc_ops,
2178 					     smi);
2179 
2180 	if (rv == 0)
2181 		rv = ipmi_smi_add_proc_entry(smi, "version",
2182 					     &smi_version_proc_ops,
2183 					     smi);
2184 #endif /* CONFIG_PROC_FS */
2185 
2186 	return rv;
2187 }
2188 
2189 static void remove_proc_entries(ipmi_smi_t smi)
2190 {
2191 #ifdef CONFIG_PROC_FS
2192 	struct ipmi_proc_entry *entry;
2193 
2194 	mutex_lock(&smi->proc_entry_lock);
2195 	while (smi->proc_entries) {
2196 		entry = smi->proc_entries;
2197 		smi->proc_entries = entry->next;
2198 
2199 		remove_proc_entry(entry->name, smi->proc_dir);
2200 		kfree(entry->name);
2201 		kfree(entry);
2202 	}
2203 	mutex_unlock(&smi->proc_entry_lock);
2204 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2205 #endif /* CONFIG_PROC_FS */
2206 }
2207 
2208 static int __find_bmc_guid(struct device *dev, void *data)
2209 {
2210 	unsigned char *id = data;
2211 	struct bmc_device *bmc = to_bmc_device(dev);
2212 	return memcmp(bmc->guid, id, 16) == 0;
2213 }
2214 
2215 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2216 					     unsigned char *guid)
2217 {
2218 	struct device *dev;
2219 
2220 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2221 	if (dev)
2222 		return to_bmc_device(dev);
2223 	else
2224 		return NULL;
2225 }
2226 
2227 struct prod_dev_id {
2228 	unsigned int  product_id;
2229 	unsigned char device_id;
2230 };
2231 
2232 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2233 {
2234 	struct prod_dev_id *id = data;
2235 	struct bmc_device *bmc = to_bmc_device(dev);
2236 
2237 	return (bmc->id.product_id == id->product_id
2238 		&& bmc->id.device_id == id->device_id);
2239 }
2240 
2241 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2242 	struct device_driver *drv,
2243 	unsigned int product_id, unsigned char device_id)
2244 {
2245 	struct prod_dev_id id = {
2246 		.product_id = product_id,
2247 		.device_id = device_id,
2248 	};
2249 	struct device *dev;
2250 
2251 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2252 	if (dev)
2253 		return to_bmc_device(dev);
2254 	else
2255 		return NULL;
2256 }
2257 
2258 static ssize_t device_id_show(struct device *dev,
2259 			      struct device_attribute *attr,
2260 			      char *buf)
2261 {
2262 	struct bmc_device *bmc = to_bmc_device(dev);
2263 
2264 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2265 }
2266 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2267 
2268 static ssize_t provides_device_sdrs_show(struct device *dev,
2269 					 struct device_attribute *attr,
2270 					 char *buf)
2271 {
2272 	struct bmc_device *bmc = to_bmc_device(dev);
2273 
2274 	return snprintf(buf, 10, "%u\n",
2275 			(bmc->id.device_revision & 0x80) >> 7);
2276 }
2277 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2278 		   NULL);
2279 
2280 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2281 			     char *buf)
2282 {
2283 	struct bmc_device *bmc = to_bmc_device(dev);
2284 
2285 	return snprintf(buf, 20, "%u\n",
2286 			bmc->id.device_revision & 0x0F);
2287 }
2288 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2289 
2290 static ssize_t firmware_revision_show(struct device *dev,
2291 				      struct device_attribute *attr,
2292 				      char *buf)
2293 {
2294 	struct bmc_device *bmc = to_bmc_device(dev);
2295 
2296 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2297 			bmc->id.firmware_revision_2);
2298 }
2299 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2300 
2301 static ssize_t ipmi_version_show(struct device *dev,
2302 				 struct device_attribute *attr,
2303 				 char *buf)
2304 {
2305 	struct bmc_device *bmc = to_bmc_device(dev);
2306 
2307 	return snprintf(buf, 20, "%u.%u\n",
2308 			ipmi_version_major(&bmc->id),
2309 			ipmi_version_minor(&bmc->id));
2310 }
2311 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2312 
2313 static ssize_t add_dev_support_show(struct device *dev,
2314 				    struct device_attribute *attr,
2315 				    char *buf)
2316 {
2317 	struct bmc_device *bmc = to_bmc_device(dev);
2318 
2319 	return snprintf(buf, 10, "0x%02x\n",
2320 			bmc->id.additional_device_support);
2321 }
2322 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2323 		   NULL);
2324 
2325 static ssize_t manufacturer_id_show(struct device *dev,
2326 				    struct device_attribute *attr,
2327 				    char *buf)
2328 {
2329 	struct bmc_device *bmc = to_bmc_device(dev);
2330 
2331 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2332 }
2333 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2334 
2335 static ssize_t product_id_show(struct device *dev,
2336 			       struct device_attribute *attr,
2337 			       char *buf)
2338 {
2339 	struct bmc_device *bmc = to_bmc_device(dev);
2340 
2341 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2342 }
2343 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2344 
2345 static ssize_t aux_firmware_rev_show(struct device *dev,
2346 				     struct device_attribute *attr,
2347 				     char *buf)
2348 {
2349 	struct bmc_device *bmc = to_bmc_device(dev);
2350 
2351 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2352 			bmc->id.aux_firmware_revision[3],
2353 			bmc->id.aux_firmware_revision[2],
2354 			bmc->id.aux_firmware_revision[1],
2355 			bmc->id.aux_firmware_revision[0]);
2356 }
2357 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2358 
2359 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2360 			 char *buf)
2361 {
2362 	struct bmc_device *bmc = to_bmc_device(dev);
2363 
2364 	return snprintf(buf, 100, "%Lx%Lx\n",
2365 			(long long) bmc->guid[0],
2366 			(long long) bmc->guid[8]);
2367 }
2368 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2369 
2370 static struct attribute *bmc_dev_attrs[] = {
2371 	&dev_attr_device_id.attr,
2372 	&dev_attr_provides_device_sdrs.attr,
2373 	&dev_attr_revision.attr,
2374 	&dev_attr_firmware_revision.attr,
2375 	&dev_attr_ipmi_version.attr,
2376 	&dev_attr_additional_device_support.attr,
2377 	&dev_attr_manufacturer_id.attr,
2378 	&dev_attr_product_id.attr,
2379 	&dev_attr_aux_firmware_revision.attr,
2380 	&dev_attr_guid.attr,
2381 	NULL
2382 };
2383 
2384 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2385 				       struct attribute *attr, int idx)
2386 {
2387 	struct device *dev = kobj_to_dev(kobj);
2388 	struct bmc_device *bmc = to_bmc_device(dev);
2389 	umode_t mode = attr->mode;
2390 
2391 	if (attr == &dev_attr_aux_firmware_revision.attr)
2392 		return bmc->id.aux_firmware_revision_set ? mode : 0;
2393 	if (attr == &dev_attr_guid.attr)
2394 		return bmc->guid_set ? mode : 0;
2395 	return mode;
2396 }
2397 
2398 static struct attribute_group bmc_dev_attr_group = {
2399 	.attrs		= bmc_dev_attrs,
2400 	.is_visible	= bmc_dev_attr_is_visible,
2401 };
2402 
2403 static const struct attribute_group *bmc_dev_attr_groups[] = {
2404 	&bmc_dev_attr_group,
2405 	NULL
2406 };
2407 
2408 static struct device_type bmc_device_type = {
2409 	.groups		= bmc_dev_attr_groups,
2410 };
2411 
2412 static void
2413 release_bmc_device(struct device *dev)
2414 {
2415 	kfree(to_bmc_device(dev));
2416 }
2417 
2418 static void
2419 cleanup_bmc_device(struct kref *ref)
2420 {
2421 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2422 
2423 	platform_device_unregister(&bmc->pdev);
2424 }
2425 
2426 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2427 {
2428 	struct bmc_device *bmc = intf->bmc;
2429 
2430 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2431 	if (intf->my_dev_name) {
2432 		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2433 		kfree(intf->my_dev_name);
2434 		intf->my_dev_name = NULL;
2435 	}
2436 
2437 	mutex_lock(&ipmidriver_mutex);
2438 	kref_put(&bmc->usecount, cleanup_bmc_device);
2439 	intf->bmc = NULL;
2440 	mutex_unlock(&ipmidriver_mutex);
2441 }
2442 
2443 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2444 {
2445 	int               rv;
2446 	struct bmc_device *bmc = intf->bmc;
2447 	struct bmc_device *old_bmc;
2448 
2449 	mutex_lock(&ipmidriver_mutex);
2450 
2451 	/*
2452 	 * Try to find if there is an bmc_device struct
2453 	 * representing the interfaced BMC already
2454 	 */
2455 	if (bmc->guid_set)
2456 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2457 	else
2458 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2459 						    bmc->id.product_id,
2460 						    bmc->id.device_id);
2461 
2462 	/*
2463 	 * If there is already an bmc_device, free the new one,
2464 	 * otherwise register the new BMC device
2465 	 */
2466 	if (old_bmc) {
2467 		kfree(bmc);
2468 		intf->bmc = old_bmc;
2469 		bmc = old_bmc;
2470 
2471 		kref_get(&bmc->usecount);
2472 		mutex_unlock(&ipmidriver_mutex);
2473 
2474 		printk(KERN_INFO
2475 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2476 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2477 		       bmc->id.manufacturer_id,
2478 		       bmc->id.product_id,
2479 		       bmc->id.device_id);
2480 	} else {
2481 		unsigned char orig_dev_id = bmc->id.device_id;
2482 		int warn_printed = 0;
2483 
2484 		snprintf(bmc->name, sizeof(bmc->name),
2485 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2486 		bmc->pdev.name = bmc->name;
2487 
2488 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2489 						 bmc->id.product_id,
2490 						 bmc->id.device_id)) {
2491 			if (!warn_printed) {
2492 				printk(KERN_WARNING PFX
2493 				       "This machine has two different BMCs"
2494 				       " with the same product id and device"
2495 				       " id.  This is an error in the"
2496 				       " firmware, but incrementing the"
2497 				       " device id to work around the problem."
2498 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2499 				       bmc->id.product_id, bmc->id.device_id);
2500 				warn_printed = 1;
2501 			}
2502 			bmc->id.device_id++; /* Wraps at 255 */
2503 			if (bmc->id.device_id == orig_dev_id) {
2504 				printk(KERN_ERR PFX
2505 				       "Out of device ids!\n");
2506 				break;
2507 			}
2508 		}
2509 
2510 		bmc->pdev.dev.driver = &ipmidriver.driver;
2511 		bmc->pdev.id = bmc->id.device_id;
2512 		bmc->pdev.dev.release = release_bmc_device;
2513 		bmc->pdev.dev.type = &bmc_device_type;
2514 		kref_init(&bmc->usecount);
2515 
2516 		rv = platform_device_register(&bmc->pdev);
2517 		mutex_unlock(&ipmidriver_mutex);
2518 		if (rv) {
2519 			put_device(&bmc->pdev.dev);
2520 			printk(KERN_ERR
2521 			       "ipmi_msghandler:"
2522 			       " Unable to register bmc device: %d\n",
2523 			       rv);
2524 			/*
2525 			 * Don't go to out_err, you can only do that if
2526 			 * the device is registered already.
2527 			 */
2528 			return rv;
2529 		}
2530 
2531 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2532 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2533 			 bmc->id.manufacturer_id,
2534 			 bmc->id.product_id,
2535 			 bmc->id.device_id);
2536 	}
2537 
2538 	/*
2539 	 * create symlink from system interface device to bmc device
2540 	 * and back.
2541 	 */
2542 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2543 	if (rv) {
2544 		printk(KERN_ERR
2545 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2546 		       rv);
2547 		goto out_err;
2548 	}
2549 
2550 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2551 	if (!intf->my_dev_name) {
2552 		rv = -ENOMEM;
2553 		printk(KERN_ERR
2554 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2555 		       rv);
2556 		goto out_err;
2557 	}
2558 
2559 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2560 			       intf->my_dev_name);
2561 	if (rv) {
2562 		kfree(intf->my_dev_name);
2563 		intf->my_dev_name = NULL;
2564 		printk(KERN_ERR
2565 		       "ipmi_msghandler:"
2566 		       " Unable to create symlink to bmc: %d\n",
2567 		       rv);
2568 		goto out_err;
2569 	}
2570 
2571 	return 0;
2572 
2573 out_err:
2574 	ipmi_bmc_unregister(intf);
2575 	return rv;
2576 }
2577 
2578 static int
2579 send_guid_cmd(ipmi_smi_t intf, int chan)
2580 {
2581 	struct kernel_ipmi_msg            msg;
2582 	struct ipmi_system_interface_addr si;
2583 
2584 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2585 	si.channel = IPMI_BMC_CHANNEL;
2586 	si.lun = 0;
2587 
2588 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2589 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2590 	msg.data = NULL;
2591 	msg.data_len = 0;
2592 	return i_ipmi_request(NULL,
2593 			      intf,
2594 			      (struct ipmi_addr *) &si,
2595 			      0,
2596 			      &msg,
2597 			      intf,
2598 			      NULL,
2599 			      NULL,
2600 			      0,
2601 			      intf->channels[0].address,
2602 			      intf->channels[0].lun,
2603 			      -1, 0);
2604 }
2605 
2606 static void
2607 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2608 {
2609 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2610 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2611 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2612 		/* Not for me */
2613 		return;
2614 
2615 	if (msg->msg.data[0] != 0) {
2616 		/* Error from getting the GUID, the BMC doesn't have one. */
2617 		intf->bmc->guid_set = 0;
2618 		goto out;
2619 	}
2620 
2621 	if (msg->msg.data_len < 17) {
2622 		intf->bmc->guid_set = 0;
2623 		printk(KERN_WARNING PFX
2624 		       "guid_handler: The GUID response from the BMC was too"
2625 		       " short, it was %d but should have been 17.  Assuming"
2626 		       " GUID is not available.\n",
2627 		       msg->msg.data_len);
2628 		goto out;
2629 	}
2630 
2631 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2632 	intf->bmc->guid_set = 1;
2633  out:
2634 	wake_up(&intf->waitq);
2635 }
2636 
2637 static void
2638 get_guid(ipmi_smi_t intf)
2639 {
2640 	int rv;
2641 
2642 	intf->bmc->guid_set = 0x2;
2643 	intf->null_user_handler = guid_handler;
2644 	rv = send_guid_cmd(intf, 0);
2645 	if (rv)
2646 		/* Send failed, no GUID available. */
2647 		intf->bmc->guid_set = 0;
2648 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2649 	intf->null_user_handler = NULL;
2650 }
2651 
2652 static int
2653 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2654 {
2655 	struct kernel_ipmi_msg            msg;
2656 	unsigned char                     data[1];
2657 	struct ipmi_system_interface_addr si;
2658 
2659 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2660 	si.channel = IPMI_BMC_CHANNEL;
2661 	si.lun = 0;
2662 
2663 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2664 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2665 	msg.data = data;
2666 	msg.data_len = 1;
2667 	data[0] = chan;
2668 	return i_ipmi_request(NULL,
2669 			      intf,
2670 			      (struct ipmi_addr *) &si,
2671 			      0,
2672 			      &msg,
2673 			      intf,
2674 			      NULL,
2675 			      NULL,
2676 			      0,
2677 			      intf->channels[0].address,
2678 			      intf->channels[0].lun,
2679 			      -1, 0);
2680 }
2681 
2682 static void
2683 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2684 {
2685 	int rv = 0;
2686 	int chan;
2687 
2688 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2689 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2690 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2691 		/* It's the one we want */
2692 		if (msg->msg.data[0] != 0) {
2693 			/* Got an error from the channel, just go on. */
2694 
2695 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2696 				/*
2697 				 * If the MC does not support this
2698 				 * command, that is legal.  We just
2699 				 * assume it has one IPMB at channel
2700 				 * zero.
2701 				 */
2702 				intf->channels[0].medium
2703 					= IPMI_CHANNEL_MEDIUM_IPMB;
2704 				intf->channels[0].protocol
2705 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2706 
2707 				intf->curr_channel = IPMI_MAX_CHANNELS;
2708 				wake_up(&intf->waitq);
2709 				goto out;
2710 			}
2711 			goto next_channel;
2712 		}
2713 		if (msg->msg.data_len < 4) {
2714 			/* Message not big enough, just go on. */
2715 			goto next_channel;
2716 		}
2717 		chan = intf->curr_channel;
2718 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2719 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2720 
2721  next_channel:
2722 		intf->curr_channel++;
2723 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2724 			wake_up(&intf->waitq);
2725 		else
2726 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2727 
2728 		if (rv) {
2729 			/* Got an error somehow, just give up. */
2730 			printk(KERN_WARNING PFX
2731 			       "Error sending channel information for channel"
2732 			       " %d: %d\n", intf->curr_channel, rv);
2733 
2734 			intf->curr_channel = IPMI_MAX_CHANNELS;
2735 			wake_up(&intf->waitq);
2736 		}
2737 	}
2738  out:
2739 	return;
2740 }
2741 
2742 static void ipmi_poll(ipmi_smi_t intf)
2743 {
2744 	if (intf->handlers->poll)
2745 		intf->handlers->poll(intf->send_info);
2746 	/* In case something came in */
2747 	handle_new_recv_msgs(intf);
2748 }
2749 
2750 void ipmi_poll_interface(ipmi_user_t user)
2751 {
2752 	ipmi_poll(user->intf);
2753 }
2754 EXPORT_SYMBOL(ipmi_poll_interface);
2755 
2756 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2757 		      void		       *send_info,
2758 		      struct ipmi_device_id    *device_id,
2759 		      struct device            *si_dev,
2760 		      unsigned char            slave_addr)
2761 {
2762 	int              i, j;
2763 	int              rv;
2764 	ipmi_smi_t       intf;
2765 	ipmi_smi_t       tintf;
2766 	struct list_head *link;
2767 
2768 	/*
2769 	 * Make sure the driver is actually initialized, this handles
2770 	 * problems with initialization order.
2771 	 */
2772 	if (!initialized) {
2773 		rv = ipmi_init_msghandler();
2774 		if (rv)
2775 			return rv;
2776 		/*
2777 		 * The init code doesn't return an error if it was turned
2778 		 * off, but it won't initialize.  Check that.
2779 		 */
2780 		if (!initialized)
2781 			return -ENODEV;
2782 	}
2783 
2784 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2785 	if (!intf)
2786 		return -ENOMEM;
2787 
2788 	intf->ipmi_version_major = ipmi_version_major(device_id);
2789 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2790 
2791 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2792 	if (!intf->bmc) {
2793 		kfree(intf);
2794 		return -ENOMEM;
2795 	}
2796 	intf->intf_num = -1; /* Mark it invalid for now. */
2797 	kref_init(&intf->refcount);
2798 	intf->bmc->id = *device_id;
2799 	intf->si_dev = si_dev;
2800 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2801 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2802 		intf->channels[j].lun = 2;
2803 	}
2804 	if (slave_addr != 0)
2805 		intf->channels[0].address = slave_addr;
2806 	INIT_LIST_HEAD(&intf->users);
2807 	intf->handlers = handlers;
2808 	intf->send_info = send_info;
2809 	spin_lock_init(&intf->seq_lock);
2810 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2811 		intf->seq_table[j].inuse = 0;
2812 		intf->seq_table[j].seqid = 0;
2813 	}
2814 	intf->curr_seq = 0;
2815 #ifdef CONFIG_PROC_FS
2816 	mutex_init(&intf->proc_entry_lock);
2817 #endif
2818 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2819 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2820 	tasklet_init(&intf->recv_tasklet,
2821 		     smi_recv_tasklet,
2822 		     (unsigned long) intf);
2823 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2824 	spin_lock_init(&intf->xmit_msgs_lock);
2825 	INIT_LIST_HEAD(&intf->xmit_msgs);
2826 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2827 	spin_lock_init(&intf->events_lock);
2828 	atomic_set(&intf->event_waiters, 0);
2829 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2830 	INIT_LIST_HEAD(&intf->waiting_events);
2831 	intf->waiting_events_count = 0;
2832 	mutex_init(&intf->cmd_rcvrs_mutex);
2833 	spin_lock_init(&intf->maintenance_mode_lock);
2834 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2835 	init_waitqueue_head(&intf->waitq);
2836 	for (i = 0; i < IPMI_NUM_STATS; i++)
2837 		atomic_set(&intf->stats[i], 0);
2838 
2839 	intf->proc_dir = NULL;
2840 
2841 	mutex_lock(&smi_watchers_mutex);
2842 	mutex_lock(&ipmi_interfaces_mutex);
2843 	/* Look for a hole in the numbers. */
2844 	i = 0;
2845 	link = &ipmi_interfaces;
2846 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2847 		if (tintf->intf_num != i) {
2848 			link = &tintf->link;
2849 			break;
2850 		}
2851 		i++;
2852 	}
2853 	/* Add the new interface in numeric order. */
2854 	if (i == 0)
2855 		list_add_rcu(&intf->link, &ipmi_interfaces);
2856 	else
2857 		list_add_tail_rcu(&intf->link, link);
2858 
2859 	rv = handlers->start_processing(send_info, intf);
2860 	if (rv)
2861 		goto out;
2862 
2863 	get_guid(intf);
2864 
2865 	if ((intf->ipmi_version_major > 1)
2866 			|| ((intf->ipmi_version_major == 1)
2867 			    && (intf->ipmi_version_minor >= 5))) {
2868 		/*
2869 		 * Start scanning the channels to see what is
2870 		 * available.
2871 		 */
2872 		intf->null_user_handler = channel_handler;
2873 		intf->curr_channel = 0;
2874 		rv = send_channel_info_cmd(intf, 0);
2875 		if (rv) {
2876 			printk(KERN_WARNING PFX
2877 			       "Error sending channel information for channel"
2878 			       " 0, %d\n", rv);
2879 			goto out;
2880 		}
2881 
2882 		/* Wait for the channel info to be read. */
2883 		wait_event(intf->waitq,
2884 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2885 		intf->null_user_handler = NULL;
2886 	} else {
2887 		/* Assume a single IPMB channel at zero. */
2888 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2889 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2890 		intf->curr_channel = IPMI_MAX_CHANNELS;
2891 	}
2892 
2893 	if (rv == 0)
2894 		rv = add_proc_entries(intf, i);
2895 
2896 	rv = ipmi_bmc_register(intf, i);
2897 
2898  out:
2899 	if (rv) {
2900 		if (intf->proc_dir)
2901 			remove_proc_entries(intf);
2902 		intf->handlers = NULL;
2903 		list_del_rcu(&intf->link);
2904 		mutex_unlock(&ipmi_interfaces_mutex);
2905 		mutex_unlock(&smi_watchers_mutex);
2906 		synchronize_rcu();
2907 		kref_put(&intf->refcount, intf_free);
2908 	} else {
2909 		/*
2910 		 * Keep memory order straight for RCU readers.  Make
2911 		 * sure everything else is committed to memory before
2912 		 * setting intf_num to mark the interface valid.
2913 		 */
2914 		smp_wmb();
2915 		intf->intf_num = i;
2916 		mutex_unlock(&ipmi_interfaces_mutex);
2917 		/* After this point the interface is legal to use. */
2918 		call_smi_watchers(i, intf->si_dev);
2919 		mutex_unlock(&smi_watchers_mutex);
2920 	}
2921 
2922 	return rv;
2923 }
2924 EXPORT_SYMBOL(ipmi_register_smi);
2925 
2926 static void deliver_smi_err_response(ipmi_smi_t intf,
2927 				     struct ipmi_smi_msg *msg,
2928 				     unsigned char err)
2929 {
2930 	msg->rsp[0] = msg->data[0] | 4;
2931 	msg->rsp[1] = msg->data[1];
2932 	msg->rsp[2] = err;
2933 	msg->rsp_size = 3;
2934 	/* It's an error, so it will never requeue, no need to check return. */
2935 	handle_one_recv_msg(intf, msg);
2936 }
2937 
2938 static void cleanup_smi_msgs(ipmi_smi_t intf)
2939 {
2940 	int              i;
2941 	struct seq_table *ent;
2942 	struct ipmi_smi_msg *msg;
2943 	struct list_head *entry;
2944 	struct list_head tmplist;
2945 
2946 	/* Clear out our transmit queues and hold the messages. */
2947 	INIT_LIST_HEAD(&tmplist);
2948 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2949 	list_splice_tail(&intf->xmit_msgs, &tmplist);
2950 
2951 	/* Current message first, to preserve order */
2952 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2953 		/* Wait for the message to clear out. */
2954 		schedule_timeout(1);
2955 	}
2956 
2957 	/* No need for locks, the interface is down. */
2958 
2959 	/*
2960 	 * Return errors for all pending messages in queue and in the
2961 	 * tables waiting for remote responses.
2962 	 */
2963 	while (!list_empty(&tmplist)) {
2964 		entry = tmplist.next;
2965 		list_del(entry);
2966 		msg = list_entry(entry, struct ipmi_smi_msg, link);
2967 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2968 	}
2969 
2970 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2971 		ent = &(intf->seq_table[i]);
2972 		if (!ent->inuse)
2973 			continue;
2974 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2975 	}
2976 }
2977 
2978 int ipmi_unregister_smi(ipmi_smi_t intf)
2979 {
2980 	struct ipmi_smi_watcher *w;
2981 	int intf_num = intf->intf_num;
2982 	ipmi_user_t user;
2983 
2984 	ipmi_bmc_unregister(intf);
2985 
2986 	mutex_lock(&smi_watchers_mutex);
2987 	mutex_lock(&ipmi_interfaces_mutex);
2988 	intf->intf_num = -1;
2989 	intf->in_shutdown = true;
2990 	list_del_rcu(&intf->link);
2991 	mutex_unlock(&ipmi_interfaces_mutex);
2992 	synchronize_rcu();
2993 
2994 	cleanup_smi_msgs(intf);
2995 
2996 	/* Clean up the effects of users on the lower-level software. */
2997 	mutex_lock(&ipmi_interfaces_mutex);
2998 	rcu_read_lock();
2999 	list_for_each_entry_rcu(user, &intf->users, link) {
3000 		module_put(intf->handlers->owner);
3001 		if (intf->handlers->dec_usecount)
3002 			intf->handlers->dec_usecount(intf->send_info);
3003 	}
3004 	rcu_read_unlock();
3005 	intf->handlers = NULL;
3006 	mutex_unlock(&ipmi_interfaces_mutex);
3007 
3008 	remove_proc_entries(intf);
3009 
3010 	/*
3011 	 * Call all the watcher interfaces to tell them that
3012 	 * an interface is gone.
3013 	 */
3014 	list_for_each_entry(w, &smi_watchers, link)
3015 		w->smi_gone(intf_num);
3016 	mutex_unlock(&smi_watchers_mutex);
3017 
3018 	kref_put(&intf->refcount, intf_free);
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(ipmi_unregister_smi);
3022 
3023 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3024 				   struct ipmi_smi_msg *msg)
3025 {
3026 	struct ipmi_ipmb_addr ipmb_addr;
3027 	struct ipmi_recv_msg  *recv_msg;
3028 
3029 	/*
3030 	 * This is 11, not 10, because the response must contain a
3031 	 * completion code.
3032 	 */
3033 	if (msg->rsp_size < 11) {
3034 		/* Message not big enough, just ignore it. */
3035 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3036 		return 0;
3037 	}
3038 
3039 	if (msg->rsp[2] != 0) {
3040 		/* An error getting the response, just ignore it. */
3041 		return 0;
3042 	}
3043 
3044 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3045 	ipmb_addr.slave_addr = msg->rsp[6];
3046 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3047 	ipmb_addr.lun = msg->rsp[7] & 3;
3048 
3049 	/*
3050 	 * It's a response from a remote entity.  Look up the sequence
3051 	 * number and handle the response.
3052 	 */
3053 	if (intf_find_seq(intf,
3054 			  msg->rsp[7] >> 2,
3055 			  msg->rsp[3] & 0x0f,
3056 			  msg->rsp[8],
3057 			  (msg->rsp[4] >> 2) & (~1),
3058 			  (struct ipmi_addr *) &(ipmb_addr),
3059 			  &recv_msg)) {
3060 		/*
3061 		 * We were unable to find the sequence number,
3062 		 * so just nuke the message.
3063 		 */
3064 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3065 		return 0;
3066 	}
3067 
3068 	memcpy(recv_msg->msg_data,
3069 	       &(msg->rsp[9]),
3070 	       msg->rsp_size - 9);
3071 	/*
3072 	 * The other fields matched, so no need to set them, except
3073 	 * for netfn, which needs to be the response that was
3074 	 * returned, not the request value.
3075 	 */
3076 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3077 	recv_msg->msg.data = recv_msg->msg_data;
3078 	recv_msg->msg.data_len = msg->rsp_size - 10;
3079 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3080 	ipmi_inc_stat(intf, handled_ipmb_responses);
3081 	deliver_response(recv_msg);
3082 
3083 	return 0;
3084 }
3085 
3086 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3087 				   struct ipmi_smi_msg *msg)
3088 {
3089 	struct cmd_rcvr          *rcvr;
3090 	int                      rv = 0;
3091 	unsigned char            netfn;
3092 	unsigned char            cmd;
3093 	unsigned char            chan;
3094 	ipmi_user_t              user = NULL;
3095 	struct ipmi_ipmb_addr    *ipmb_addr;
3096 	struct ipmi_recv_msg     *recv_msg;
3097 
3098 	if (msg->rsp_size < 10) {
3099 		/* Message not big enough, just ignore it. */
3100 		ipmi_inc_stat(intf, invalid_commands);
3101 		return 0;
3102 	}
3103 
3104 	if (msg->rsp[2] != 0) {
3105 		/* An error getting the response, just ignore it. */
3106 		return 0;
3107 	}
3108 
3109 	netfn = msg->rsp[4] >> 2;
3110 	cmd = msg->rsp[8];
3111 	chan = msg->rsp[3] & 0xf;
3112 
3113 	rcu_read_lock();
3114 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3115 	if (rcvr) {
3116 		user = rcvr->user;
3117 		kref_get(&user->refcount);
3118 	} else
3119 		user = NULL;
3120 	rcu_read_unlock();
3121 
3122 	if (user == NULL) {
3123 		/* We didn't find a user, deliver an error response. */
3124 		ipmi_inc_stat(intf, unhandled_commands);
3125 
3126 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3127 		msg->data[1] = IPMI_SEND_MSG_CMD;
3128 		msg->data[2] = msg->rsp[3];
3129 		msg->data[3] = msg->rsp[6];
3130 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3131 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3132 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3133 		/* rqseq/lun */
3134 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3135 		msg->data[8] = msg->rsp[8]; /* cmd */
3136 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3137 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3138 		msg->data_size = 11;
3139 
3140 #ifdef DEBUG_MSGING
3141 	{
3142 		int m;
3143 		printk("Invalid command:");
3144 		for (m = 0; m < msg->data_size; m++)
3145 			printk(" %2.2x", msg->data[m]);
3146 		printk("\n");
3147 	}
3148 #endif
3149 		rcu_read_lock();
3150 		if (!intf->in_shutdown) {
3151 			smi_send(intf, intf->handlers, msg, 0);
3152 			/*
3153 			 * We used the message, so return the value
3154 			 * that causes it to not be freed or
3155 			 * queued.
3156 			 */
3157 			rv = -1;
3158 		}
3159 		rcu_read_unlock();
3160 	} else {
3161 		/* Deliver the message to the user. */
3162 		ipmi_inc_stat(intf, handled_commands);
3163 
3164 		recv_msg = ipmi_alloc_recv_msg();
3165 		if (!recv_msg) {
3166 			/*
3167 			 * We couldn't allocate memory for the
3168 			 * message, so requeue it for handling
3169 			 * later.
3170 			 */
3171 			rv = 1;
3172 			kref_put(&user->refcount, free_user);
3173 		} else {
3174 			/* Extract the source address from the data. */
3175 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3176 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3177 			ipmb_addr->slave_addr = msg->rsp[6];
3178 			ipmb_addr->lun = msg->rsp[7] & 3;
3179 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3180 
3181 			/*
3182 			 * Extract the rest of the message information
3183 			 * from the IPMB header.
3184 			 */
3185 			recv_msg->user = user;
3186 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3187 			recv_msg->msgid = msg->rsp[7] >> 2;
3188 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3189 			recv_msg->msg.cmd = msg->rsp[8];
3190 			recv_msg->msg.data = recv_msg->msg_data;
3191 
3192 			/*
3193 			 * We chop off 10, not 9 bytes because the checksum
3194 			 * at the end also needs to be removed.
3195 			 */
3196 			recv_msg->msg.data_len = msg->rsp_size - 10;
3197 			memcpy(recv_msg->msg_data,
3198 			       &(msg->rsp[9]),
3199 			       msg->rsp_size - 10);
3200 			deliver_response(recv_msg);
3201 		}
3202 	}
3203 
3204 	return rv;
3205 }
3206 
3207 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3208 				  struct ipmi_smi_msg *msg)
3209 {
3210 	struct ipmi_lan_addr  lan_addr;
3211 	struct ipmi_recv_msg  *recv_msg;
3212 
3213 
3214 	/*
3215 	 * This is 13, not 12, because the response must contain a
3216 	 * completion code.
3217 	 */
3218 	if (msg->rsp_size < 13) {
3219 		/* Message not big enough, just ignore it. */
3220 		ipmi_inc_stat(intf, invalid_lan_responses);
3221 		return 0;
3222 	}
3223 
3224 	if (msg->rsp[2] != 0) {
3225 		/* An error getting the response, just ignore it. */
3226 		return 0;
3227 	}
3228 
3229 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3230 	lan_addr.session_handle = msg->rsp[4];
3231 	lan_addr.remote_SWID = msg->rsp[8];
3232 	lan_addr.local_SWID = msg->rsp[5];
3233 	lan_addr.channel = msg->rsp[3] & 0x0f;
3234 	lan_addr.privilege = msg->rsp[3] >> 4;
3235 	lan_addr.lun = msg->rsp[9] & 3;
3236 
3237 	/*
3238 	 * It's a response from a remote entity.  Look up the sequence
3239 	 * number and handle the response.
3240 	 */
3241 	if (intf_find_seq(intf,
3242 			  msg->rsp[9] >> 2,
3243 			  msg->rsp[3] & 0x0f,
3244 			  msg->rsp[10],
3245 			  (msg->rsp[6] >> 2) & (~1),
3246 			  (struct ipmi_addr *) &(lan_addr),
3247 			  &recv_msg)) {
3248 		/*
3249 		 * We were unable to find the sequence number,
3250 		 * so just nuke the message.
3251 		 */
3252 		ipmi_inc_stat(intf, unhandled_lan_responses);
3253 		return 0;
3254 	}
3255 
3256 	memcpy(recv_msg->msg_data,
3257 	       &(msg->rsp[11]),
3258 	       msg->rsp_size - 11);
3259 	/*
3260 	 * The other fields matched, so no need to set them, except
3261 	 * for netfn, which needs to be the response that was
3262 	 * returned, not the request value.
3263 	 */
3264 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3265 	recv_msg->msg.data = recv_msg->msg_data;
3266 	recv_msg->msg.data_len = msg->rsp_size - 12;
3267 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3268 	ipmi_inc_stat(intf, handled_lan_responses);
3269 	deliver_response(recv_msg);
3270 
3271 	return 0;
3272 }
3273 
3274 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3275 				  struct ipmi_smi_msg *msg)
3276 {
3277 	struct cmd_rcvr          *rcvr;
3278 	int                      rv = 0;
3279 	unsigned char            netfn;
3280 	unsigned char            cmd;
3281 	unsigned char            chan;
3282 	ipmi_user_t              user = NULL;
3283 	struct ipmi_lan_addr     *lan_addr;
3284 	struct ipmi_recv_msg     *recv_msg;
3285 
3286 	if (msg->rsp_size < 12) {
3287 		/* Message not big enough, just ignore it. */
3288 		ipmi_inc_stat(intf, invalid_commands);
3289 		return 0;
3290 	}
3291 
3292 	if (msg->rsp[2] != 0) {
3293 		/* An error getting the response, just ignore it. */
3294 		return 0;
3295 	}
3296 
3297 	netfn = msg->rsp[6] >> 2;
3298 	cmd = msg->rsp[10];
3299 	chan = msg->rsp[3] & 0xf;
3300 
3301 	rcu_read_lock();
3302 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3303 	if (rcvr) {
3304 		user = rcvr->user;
3305 		kref_get(&user->refcount);
3306 	} else
3307 		user = NULL;
3308 	rcu_read_unlock();
3309 
3310 	if (user == NULL) {
3311 		/* We didn't find a user, just give up. */
3312 		ipmi_inc_stat(intf, unhandled_commands);
3313 
3314 		/*
3315 		 * Don't do anything with these messages, just allow
3316 		 * them to be freed.
3317 		 */
3318 		rv = 0;
3319 	} else {
3320 		/* Deliver the message to the user. */
3321 		ipmi_inc_stat(intf, handled_commands);
3322 
3323 		recv_msg = ipmi_alloc_recv_msg();
3324 		if (!recv_msg) {
3325 			/*
3326 			 * We couldn't allocate memory for the
3327 			 * message, so requeue it for handling later.
3328 			 */
3329 			rv = 1;
3330 			kref_put(&user->refcount, free_user);
3331 		} else {
3332 			/* Extract the source address from the data. */
3333 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3334 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3335 			lan_addr->session_handle = msg->rsp[4];
3336 			lan_addr->remote_SWID = msg->rsp[8];
3337 			lan_addr->local_SWID = msg->rsp[5];
3338 			lan_addr->lun = msg->rsp[9] & 3;
3339 			lan_addr->channel = msg->rsp[3] & 0xf;
3340 			lan_addr->privilege = msg->rsp[3] >> 4;
3341 
3342 			/*
3343 			 * Extract the rest of the message information
3344 			 * from the IPMB header.
3345 			 */
3346 			recv_msg->user = user;
3347 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3348 			recv_msg->msgid = msg->rsp[9] >> 2;
3349 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3350 			recv_msg->msg.cmd = msg->rsp[10];
3351 			recv_msg->msg.data = recv_msg->msg_data;
3352 
3353 			/*
3354 			 * We chop off 12, not 11 bytes because the checksum
3355 			 * at the end also needs to be removed.
3356 			 */
3357 			recv_msg->msg.data_len = msg->rsp_size - 12;
3358 			memcpy(recv_msg->msg_data,
3359 			       &(msg->rsp[11]),
3360 			       msg->rsp_size - 12);
3361 			deliver_response(recv_msg);
3362 		}
3363 	}
3364 
3365 	return rv;
3366 }
3367 
3368 /*
3369  * This routine will handle "Get Message" command responses with
3370  * channels that use an OEM Medium. The message format belongs to
3371  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3372  * Chapter 22, sections 22.6 and 22.24 for more details.
3373  */
3374 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3375 				  struct ipmi_smi_msg *msg)
3376 {
3377 	struct cmd_rcvr       *rcvr;
3378 	int                   rv = 0;
3379 	unsigned char         netfn;
3380 	unsigned char         cmd;
3381 	unsigned char         chan;
3382 	ipmi_user_t           user = NULL;
3383 	struct ipmi_system_interface_addr *smi_addr;
3384 	struct ipmi_recv_msg  *recv_msg;
3385 
3386 	/*
3387 	 * We expect the OEM SW to perform error checking
3388 	 * so we just do some basic sanity checks
3389 	 */
3390 	if (msg->rsp_size < 4) {
3391 		/* Message not big enough, just ignore it. */
3392 		ipmi_inc_stat(intf, invalid_commands);
3393 		return 0;
3394 	}
3395 
3396 	if (msg->rsp[2] != 0) {
3397 		/* An error getting the response, just ignore it. */
3398 		return 0;
3399 	}
3400 
3401 	/*
3402 	 * This is an OEM Message so the OEM needs to know how
3403 	 * handle the message. We do no interpretation.
3404 	 */
3405 	netfn = msg->rsp[0] >> 2;
3406 	cmd = msg->rsp[1];
3407 	chan = msg->rsp[3] & 0xf;
3408 
3409 	rcu_read_lock();
3410 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3411 	if (rcvr) {
3412 		user = rcvr->user;
3413 		kref_get(&user->refcount);
3414 	} else
3415 		user = NULL;
3416 	rcu_read_unlock();
3417 
3418 	if (user == NULL) {
3419 		/* We didn't find a user, just give up. */
3420 		ipmi_inc_stat(intf, unhandled_commands);
3421 
3422 		/*
3423 		 * Don't do anything with these messages, just allow
3424 		 * them to be freed.
3425 		 */
3426 
3427 		rv = 0;
3428 	} else {
3429 		/* Deliver the message to the user. */
3430 		ipmi_inc_stat(intf, handled_commands);
3431 
3432 		recv_msg = ipmi_alloc_recv_msg();
3433 		if (!recv_msg) {
3434 			/*
3435 			 * We couldn't allocate memory for the
3436 			 * message, so requeue it for handling
3437 			 * later.
3438 			 */
3439 			rv = 1;
3440 			kref_put(&user->refcount, free_user);
3441 		} else {
3442 			/*
3443 			 * OEM Messages are expected to be delivered via
3444 			 * the system interface to SMS software.  We might
3445 			 * need to visit this again depending on OEM
3446 			 * requirements
3447 			 */
3448 			smi_addr = ((struct ipmi_system_interface_addr *)
3449 				    &(recv_msg->addr));
3450 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3451 			smi_addr->channel = IPMI_BMC_CHANNEL;
3452 			smi_addr->lun = msg->rsp[0] & 3;
3453 
3454 			recv_msg->user = user;
3455 			recv_msg->user_msg_data = NULL;
3456 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3457 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3458 			recv_msg->msg.cmd = msg->rsp[1];
3459 			recv_msg->msg.data = recv_msg->msg_data;
3460 
3461 			/*
3462 			 * The message starts at byte 4 which follows the
3463 			 * the Channel Byte in the "GET MESSAGE" command
3464 			 */
3465 			recv_msg->msg.data_len = msg->rsp_size - 4;
3466 			memcpy(recv_msg->msg_data,
3467 			       &(msg->rsp[4]),
3468 			       msg->rsp_size - 4);
3469 			deliver_response(recv_msg);
3470 		}
3471 	}
3472 
3473 	return rv;
3474 }
3475 
3476 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3477 				     struct ipmi_smi_msg  *msg)
3478 {
3479 	struct ipmi_system_interface_addr *smi_addr;
3480 
3481 	recv_msg->msgid = 0;
3482 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3483 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3484 	smi_addr->channel = IPMI_BMC_CHANNEL;
3485 	smi_addr->lun = msg->rsp[0] & 3;
3486 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3487 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3488 	recv_msg->msg.cmd = msg->rsp[1];
3489 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3490 	recv_msg->msg.data = recv_msg->msg_data;
3491 	recv_msg->msg.data_len = msg->rsp_size - 3;
3492 }
3493 
3494 static int handle_read_event_rsp(ipmi_smi_t          intf,
3495 				 struct ipmi_smi_msg *msg)
3496 {
3497 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3498 	struct list_head     msgs;
3499 	ipmi_user_t          user;
3500 	int                  rv = 0;
3501 	int                  deliver_count = 0;
3502 	unsigned long        flags;
3503 
3504 	if (msg->rsp_size < 19) {
3505 		/* Message is too small to be an IPMB event. */
3506 		ipmi_inc_stat(intf, invalid_events);
3507 		return 0;
3508 	}
3509 
3510 	if (msg->rsp[2] != 0) {
3511 		/* An error getting the event, just ignore it. */
3512 		return 0;
3513 	}
3514 
3515 	INIT_LIST_HEAD(&msgs);
3516 
3517 	spin_lock_irqsave(&intf->events_lock, flags);
3518 
3519 	ipmi_inc_stat(intf, events);
3520 
3521 	/*
3522 	 * Allocate and fill in one message for every user that is
3523 	 * getting events.
3524 	 */
3525 	rcu_read_lock();
3526 	list_for_each_entry_rcu(user, &intf->users, link) {
3527 		if (!user->gets_events)
3528 			continue;
3529 
3530 		recv_msg = ipmi_alloc_recv_msg();
3531 		if (!recv_msg) {
3532 			rcu_read_unlock();
3533 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3534 						 link) {
3535 				list_del(&recv_msg->link);
3536 				ipmi_free_recv_msg(recv_msg);
3537 			}
3538 			/*
3539 			 * We couldn't allocate memory for the
3540 			 * message, so requeue it for handling
3541 			 * later.
3542 			 */
3543 			rv = 1;
3544 			goto out;
3545 		}
3546 
3547 		deliver_count++;
3548 
3549 		copy_event_into_recv_msg(recv_msg, msg);
3550 		recv_msg->user = user;
3551 		kref_get(&user->refcount);
3552 		list_add_tail(&(recv_msg->link), &msgs);
3553 	}
3554 	rcu_read_unlock();
3555 
3556 	if (deliver_count) {
3557 		/* Now deliver all the messages. */
3558 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3559 			list_del(&recv_msg->link);
3560 			deliver_response(recv_msg);
3561 		}
3562 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3563 		/*
3564 		 * No one to receive the message, put it in queue if there's
3565 		 * not already too many things in the queue.
3566 		 */
3567 		recv_msg = ipmi_alloc_recv_msg();
3568 		if (!recv_msg) {
3569 			/*
3570 			 * We couldn't allocate memory for the
3571 			 * message, so requeue it for handling
3572 			 * later.
3573 			 */
3574 			rv = 1;
3575 			goto out;
3576 		}
3577 
3578 		copy_event_into_recv_msg(recv_msg, msg);
3579 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3580 		intf->waiting_events_count++;
3581 	} else if (!intf->event_msg_printed) {
3582 		/*
3583 		 * There's too many things in the queue, discard this
3584 		 * message.
3585 		 */
3586 		printk(KERN_WARNING PFX "Event queue full, discarding"
3587 		       " incoming events\n");
3588 		intf->event_msg_printed = 1;
3589 	}
3590 
3591  out:
3592 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3593 
3594 	return rv;
3595 }
3596 
3597 static int handle_bmc_rsp(ipmi_smi_t          intf,
3598 			  struct ipmi_smi_msg *msg)
3599 {
3600 	struct ipmi_recv_msg *recv_msg;
3601 	struct ipmi_user     *user;
3602 
3603 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3604 	if (recv_msg == NULL) {
3605 		printk(KERN_WARNING
3606 		       "IPMI message received with no owner. This\n"
3607 		       "could be because of a malformed message, or\n"
3608 		       "because of a hardware error.  Contact your\n"
3609 		       "hardware vender for assistance\n");
3610 		return 0;
3611 	}
3612 
3613 	user = recv_msg->user;
3614 	/* Make sure the user still exists. */
3615 	if (user && !user->valid) {
3616 		/* The user for the message went away, so give up. */
3617 		ipmi_inc_stat(intf, unhandled_local_responses);
3618 		ipmi_free_recv_msg(recv_msg);
3619 	} else {
3620 		struct ipmi_system_interface_addr *smi_addr;
3621 
3622 		ipmi_inc_stat(intf, handled_local_responses);
3623 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3624 		recv_msg->msgid = msg->msgid;
3625 		smi_addr = ((struct ipmi_system_interface_addr *)
3626 			    &(recv_msg->addr));
3627 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3628 		smi_addr->channel = IPMI_BMC_CHANNEL;
3629 		smi_addr->lun = msg->rsp[0] & 3;
3630 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3631 		recv_msg->msg.cmd = msg->rsp[1];
3632 		memcpy(recv_msg->msg_data,
3633 		       &(msg->rsp[2]),
3634 		       msg->rsp_size - 2);
3635 		recv_msg->msg.data = recv_msg->msg_data;
3636 		recv_msg->msg.data_len = msg->rsp_size - 2;
3637 		deliver_response(recv_msg);
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 /*
3644  * Handle a received message.  Return 1 if the message should be requeued,
3645  * 0 if the message should be freed, or -1 if the message should not
3646  * be freed or requeued.
3647  */
3648 static int handle_one_recv_msg(ipmi_smi_t          intf,
3649 			       struct ipmi_smi_msg *msg)
3650 {
3651 	int requeue;
3652 	int chan;
3653 
3654 #ifdef DEBUG_MSGING
3655 	int m;
3656 	printk("Recv:");
3657 	for (m = 0; m < msg->rsp_size; m++)
3658 		printk(" %2.2x", msg->rsp[m]);
3659 	printk("\n");
3660 #endif
3661 	if (msg->rsp_size < 2) {
3662 		/* Message is too small to be correct. */
3663 		printk(KERN_WARNING PFX "BMC returned to small a message"
3664 		       " for netfn %x cmd %x, got %d bytes\n",
3665 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3666 
3667 		/* Generate an error response for the message. */
3668 		msg->rsp[0] = msg->data[0] | (1 << 2);
3669 		msg->rsp[1] = msg->data[1];
3670 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3671 		msg->rsp_size = 3;
3672 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3673 		   || (msg->rsp[1] != msg->data[1])) {
3674 		/*
3675 		 * The NetFN and Command in the response is not even
3676 		 * marginally correct.
3677 		 */
3678 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3679 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3680 		       (msg->data[0] >> 2) | 1, msg->data[1],
3681 		       msg->rsp[0] >> 2, msg->rsp[1]);
3682 
3683 		/* Generate an error response for the message. */
3684 		msg->rsp[0] = msg->data[0] | (1 << 2);
3685 		msg->rsp[1] = msg->data[1];
3686 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3687 		msg->rsp_size = 3;
3688 	}
3689 
3690 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3691 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3692 	    && (msg->user_data != NULL)) {
3693 		/*
3694 		 * It's a response to a response we sent.  For this we
3695 		 * deliver a send message response to the user.
3696 		 */
3697 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3698 
3699 		requeue = 0;
3700 		if (msg->rsp_size < 2)
3701 			/* Message is too small to be correct. */
3702 			goto out;
3703 
3704 		chan = msg->data[2] & 0x0f;
3705 		if (chan >= IPMI_MAX_CHANNELS)
3706 			/* Invalid channel number */
3707 			goto out;
3708 
3709 		if (!recv_msg)
3710 			goto out;
3711 
3712 		/* Make sure the user still exists. */
3713 		if (!recv_msg->user || !recv_msg->user->valid)
3714 			goto out;
3715 
3716 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3717 		recv_msg->msg.data = recv_msg->msg_data;
3718 		recv_msg->msg.data_len = 1;
3719 		recv_msg->msg_data[0] = msg->rsp[2];
3720 		deliver_response(recv_msg);
3721 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3722 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3723 		/* It's from the receive queue. */
3724 		chan = msg->rsp[3] & 0xf;
3725 		if (chan >= IPMI_MAX_CHANNELS) {
3726 			/* Invalid channel number */
3727 			requeue = 0;
3728 			goto out;
3729 		}
3730 
3731 		/*
3732 		 * We need to make sure the channels have been initialized.
3733 		 * The channel_handler routine will set the "curr_channel"
3734 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3735 		 * channels for this interface have been initialized.
3736 		 */
3737 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3738 			requeue = 0; /* Throw the message away */
3739 			goto out;
3740 		}
3741 
3742 		switch (intf->channels[chan].medium) {
3743 		case IPMI_CHANNEL_MEDIUM_IPMB:
3744 			if (msg->rsp[4] & 0x04) {
3745 				/*
3746 				 * It's a response, so find the
3747 				 * requesting message and send it up.
3748 				 */
3749 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3750 			} else {
3751 				/*
3752 				 * It's a command to the SMS from some other
3753 				 * entity.  Handle that.
3754 				 */
3755 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3756 			}
3757 			break;
3758 
3759 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3760 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3761 			if (msg->rsp[6] & 0x04) {
3762 				/*
3763 				 * It's a response, so find the
3764 				 * requesting message and send it up.
3765 				 */
3766 				requeue = handle_lan_get_msg_rsp(intf, msg);
3767 			} else {
3768 				/*
3769 				 * It's a command to the SMS from some other
3770 				 * entity.  Handle that.
3771 				 */
3772 				requeue = handle_lan_get_msg_cmd(intf, msg);
3773 			}
3774 			break;
3775 
3776 		default:
3777 			/* Check for OEM Channels.  Clients had better
3778 			   register for these commands. */
3779 			if ((intf->channels[chan].medium
3780 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3781 			    && (intf->channels[chan].medium
3782 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3783 				requeue = handle_oem_get_msg_cmd(intf, msg);
3784 			} else {
3785 				/*
3786 				 * We don't handle the channel type, so just
3787 				 * free the message.
3788 				 */
3789 				requeue = 0;
3790 			}
3791 		}
3792 
3793 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3794 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3795 		/* It's an asynchronous event. */
3796 		requeue = handle_read_event_rsp(intf, msg);
3797 	} else {
3798 		/* It's a response from the local BMC. */
3799 		requeue = handle_bmc_rsp(intf, msg);
3800 	}
3801 
3802  out:
3803 	return requeue;
3804 }
3805 
3806 /*
3807  * If there are messages in the queue or pretimeouts, handle them.
3808  */
3809 static void handle_new_recv_msgs(ipmi_smi_t intf)
3810 {
3811 	struct ipmi_smi_msg  *smi_msg;
3812 	unsigned long        flags = 0;
3813 	int                  rv;
3814 	int                  run_to_completion = intf->run_to_completion;
3815 
3816 	/* See if any waiting messages need to be processed. */
3817 	if (!run_to_completion)
3818 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3819 	while (!list_empty(&intf->waiting_rcv_msgs)) {
3820 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3821 				     struct ipmi_smi_msg, link);
3822 		if (!run_to_completion)
3823 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3824 					       flags);
3825 		rv = handle_one_recv_msg(intf, smi_msg);
3826 		if (!run_to_completion)
3827 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3828 		if (rv > 0) {
3829 			/*
3830 			 * To preserve message order, quit if we
3831 			 * can't handle a message.
3832 			 */
3833 			break;
3834 		} else {
3835 			list_del(&smi_msg->link);
3836 			if (rv == 0)
3837 				/* Message handled */
3838 				ipmi_free_smi_msg(smi_msg);
3839 			/* If rv < 0, fatal error, del but don't free. */
3840 		}
3841 	}
3842 	if (!run_to_completion)
3843 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3844 
3845 	/*
3846 	 * If the pretimout count is non-zero, decrement one from it and
3847 	 * deliver pretimeouts to all the users.
3848 	 */
3849 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3850 		ipmi_user_t user;
3851 
3852 		rcu_read_lock();
3853 		list_for_each_entry_rcu(user, &intf->users, link) {
3854 			if (user->handler->ipmi_watchdog_pretimeout)
3855 				user->handler->ipmi_watchdog_pretimeout(
3856 					user->handler_data);
3857 		}
3858 		rcu_read_unlock();
3859 	}
3860 }
3861 
3862 static void smi_recv_tasklet(unsigned long val)
3863 {
3864 	unsigned long flags = 0; /* keep us warning-free. */
3865 	ipmi_smi_t intf = (ipmi_smi_t) val;
3866 	int run_to_completion = intf->run_to_completion;
3867 	struct ipmi_smi_msg *newmsg = NULL;
3868 
3869 	/*
3870 	 * Start the next message if available.
3871 	 *
3872 	 * Do this here, not in the actual receiver, because we may deadlock
3873 	 * because the lower layer is allowed to hold locks while calling
3874 	 * message delivery.
3875 	 */
3876 	if (!run_to_completion)
3877 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3878 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3879 		struct list_head *entry = NULL;
3880 
3881 		/* Pick the high priority queue first. */
3882 		if (!list_empty(&intf->hp_xmit_msgs))
3883 			entry = intf->hp_xmit_msgs.next;
3884 		else if (!list_empty(&intf->xmit_msgs))
3885 			entry = intf->xmit_msgs.next;
3886 
3887 		if (entry) {
3888 			list_del(entry);
3889 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3890 			intf->curr_msg = newmsg;
3891 		}
3892 	}
3893 	if (!run_to_completion)
3894 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3895 	if (newmsg)
3896 		intf->handlers->sender(intf->send_info, newmsg);
3897 
3898 	handle_new_recv_msgs(intf);
3899 }
3900 
3901 /* Handle a new message from the lower layer. */
3902 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3903 			   struct ipmi_smi_msg *msg)
3904 {
3905 	unsigned long flags = 0; /* keep us warning-free. */
3906 	int run_to_completion = intf->run_to_completion;
3907 
3908 	if ((msg->data_size >= 2)
3909 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3910 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3911 	    && (msg->user_data == NULL)) {
3912 
3913 		if (intf->in_shutdown)
3914 			goto free_msg;
3915 
3916 		/*
3917 		 * This is the local response to a command send, start
3918 		 * the timer for these.  The user_data will not be
3919 		 * NULL if this is a response send, and we will let
3920 		 * response sends just go through.
3921 		 */
3922 
3923 		/*
3924 		 * Check for errors, if we get certain errors (ones
3925 		 * that mean basically we can try again later), we
3926 		 * ignore them and start the timer.  Otherwise we
3927 		 * report the error immediately.
3928 		 */
3929 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3930 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3931 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3932 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3933 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3934 			int chan = msg->rsp[3] & 0xf;
3935 
3936 			/* Got an error sending the message, handle it. */
3937 			if (chan >= IPMI_MAX_CHANNELS)
3938 				; /* This shouldn't happen */
3939 			else if ((intf->channels[chan].medium
3940 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3941 				 || (intf->channels[chan].medium
3942 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3943 				ipmi_inc_stat(intf, sent_lan_command_errs);
3944 			else
3945 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3946 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3947 		} else
3948 			/* The message was sent, start the timer. */
3949 			intf_start_seq_timer(intf, msg->msgid);
3950 
3951 free_msg:
3952 		ipmi_free_smi_msg(msg);
3953 	} else {
3954 		/*
3955 		 * To preserve message order, we keep a queue and deliver from
3956 		 * a tasklet.
3957 		 */
3958 		if (!run_to_completion)
3959 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3960 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3961 		if (!run_to_completion)
3962 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3963 					       flags);
3964 	}
3965 
3966 	if (!run_to_completion)
3967 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3968 	/*
3969 	 * We can get an asynchronous event or receive message in addition
3970 	 * to commands we send.
3971 	 */
3972 	if (msg == intf->curr_msg)
3973 		intf->curr_msg = NULL;
3974 	if (!run_to_completion)
3975 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3976 
3977 	if (run_to_completion)
3978 		smi_recv_tasklet((unsigned long) intf);
3979 	else
3980 		tasklet_schedule(&intf->recv_tasklet);
3981 }
3982 EXPORT_SYMBOL(ipmi_smi_msg_received);
3983 
3984 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3985 {
3986 	if (intf->in_shutdown)
3987 		return;
3988 
3989 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3990 	tasklet_schedule(&intf->recv_tasklet);
3991 }
3992 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3993 
3994 static struct ipmi_smi_msg *
3995 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3996 		  unsigned char seq, long seqid)
3997 {
3998 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3999 	if (!smi_msg)
4000 		/*
4001 		 * If we can't allocate the message, then just return, we
4002 		 * get 4 retries, so this should be ok.
4003 		 */
4004 		return NULL;
4005 
4006 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4007 	smi_msg->data_size = recv_msg->msg.data_len;
4008 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4009 
4010 #ifdef DEBUG_MSGING
4011 	{
4012 		int m;
4013 		printk("Resend: ");
4014 		for (m = 0; m < smi_msg->data_size; m++)
4015 			printk(" %2.2x", smi_msg->data[m]);
4016 		printk("\n");
4017 	}
4018 #endif
4019 	return smi_msg;
4020 }
4021 
4022 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4023 			      struct list_head *timeouts, long timeout_period,
4024 			      int slot, unsigned long *flags,
4025 			      unsigned int *waiting_msgs)
4026 {
4027 	struct ipmi_recv_msg     *msg;
4028 	const struct ipmi_smi_handlers *handlers;
4029 
4030 	if (intf->in_shutdown)
4031 		return;
4032 
4033 	if (!ent->inuse)
4034 		return;
4035 
4036 	ent->timeout -= timeout_period;
4037 	if (ent->timeout > 0) {
4038 		(*waiting_msgs)++;
4039 		return;
4040 	}
4041 
4042 	if (ent->retries_left == 0) {
4043 		/* The message has used all its retries. */
4044 		ent->inuse = 0;
4045 		msg = ent->recv_msg;
4046 		list_add_tail(&msg->link, timeouts);
4047 		if (ent->broadcast)
4048 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4049 		else if (is_lan_addr(&ent->recv_msg->addr))
4050 			ipmi_inc_stat(intf, timed_out_lan_commands);
4051 		else
4052 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4053 	} else {
4054 		struct ipmi_smi_msg *smi_msg;
4055 		/* More retries, send again. */
4056 
4057 		(*waiting_msgs)++;
4058 
4059 		/*
4060 		 * Start with the max timer, set to normal timer after
4061 		 * the message is sent.
4062 		 */
4063 		ent->timeout = MAX_MSG_TIMEOUT;
4064 		ent->retries_left--;
4065 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4066 					    ent->seqid);
4067 		if (!smi_msg) {
4068 			if (is_lan_addr(&ent->recv_msg->addr))
4069 				ipmi_inc_stat(intf,
4070 					      dropped_rexmit_lan_commands);
4071 			else
4072 				ipmi_inc_stat(intf,
4073 					      dropped_rexmit_ipmb_commands);
4074 			return;
4075 		}
4076 
4077 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4078 
4079 		/*
4080 		 * Send the new message.  We send with a zero
4081 		 * priority.  It timed out, I doubt time is that
4082 		 * critical now, and high priority messages are really
4083 		 * only for messages to the local MC, which don't get
4084 		 * resent.
4085 		 */
4086 		handlers = intf->handlers;
4087 		if (handlers) {
4088 			if (is_lan_addr(&ent->recv_msg->addr))
4089 				ipmi_inc_stat(intf,
4090 					      retransmitted_lan_commands);
4091 			else
4092 				ipmi_inc_stat(intf,
4093 					      retransmitted_ipmb_commands);
4094 
4095 			smi_send(intf, handlers, smi_msg, 0);
4096 		} else
4097 			ipmi_free_smi_msg(smi_msg);
4098 
4099 		spin_lock_irqsave(&intf->seq_lock, *flags);
4100 	}
4101 }
4102 
4103 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4104 {
4105 	struct list_head     timeouts;
4106 	struct ipmi_recv_msg *msg, *msg2;
4107 	unsigned long        flags;
4108 	int                  i;
4109 	unsigned int         waiting_msgs = 0;
4110 
4111 	/*
4112 	 * Go through the seq table and find any messages that
4113 	 * have timed out, putting them in the timeouts
4114 	 * list.
4115 	 */
4116 	INIT_LIST_HEAD(&timeouts);
4117 	spin_lock_irqsave(&intf->seq_lock, flags);
4118 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4119 		check_msg_timeout(intf, &(intf->seq_table[i]),
4120 				  &timeouts, timeout_period, i,
4121 				  &flags, &waiting_msgs);
4122 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4123 
4124 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4125 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4126 
4127 	/*
4128 	 * Maintenance mode handling.  Check the timeout
4129 	 * optimistically before we claim the lock.  It may
4130 	 * mean a timeout gets missed occasionally, but that
4131 	 * only means the timeout gets extended by one period
4132 	 * in that case.  No big deal, and it avoids the lock
4133 	 * most of the time.
4134 	 */
4135 	if (intf->auto_maintenance_timeout > 0) {
4136 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4137 		if (intf->auto_maintenance_timeout > 0) {
4138 			intf->auto_maintenance_timeout
4139 				-= timeout_period;
4140 			if (!intf->maintenance_mode
4141 			    && (intf->auto_maintenance_timeout <= 0)) {
4142 				intf->maintenance_mode_enable = false;
4143 				maintenance_mode_update(intf);
4144 			}
4145 		}
4146 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4147 				       flags);
4148 	}
4149 
4150 	tasklet_schedule(&intf->recv_tasklet);
4151 
4152 	return waiting_msgs;
4153 }
4154 
4155 static void ipmi_request_event(ipmi_smi_t intf)
4156 {
4157 	/* No event requests when in maintenance mode. */
4158 	if (intf->maintenance_mode_enable)
4159 		return;
4160 
4161 	if (!intf->in_shutdown)
4162 		intf->handlers->request_events(intf->send_info);
4163 }
4164 
4165 static struct timer_list ipmi_timer;
4166 
4167 static atomic_t stop_operation;
4168 
4169 static void ipmi_timeout(unsigned long data)
4170 {
4171 	ipmi_smi_t intf;
4172 	int nt = 0;
4173 
4174 	if (atomic_read(&stop_operation))
4175 		return;
4176 
4177 	rcu_read_lock();
4178 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4179 		int lnt = 0;
4180 
4181 		if (atomic_read(&intf->event_waiters)) {
4182 			intf->ticks_to_req_ev--;
4183 			if (intf->ticks_to_req_ev == 0) {
4184 				ipmi_request_event(intf);
4185 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4186 			}
4187 			lnt++;
4188 		}
4189 
4190 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4191 
4192 		lnt = !!lnt;
4193 		if (lnt != intf->last_needs_timer &&
4194 					intf->handlers->set_need_watch)
4195 			intf->handlers->set_need_watch(intf->send_info, lnt);
4196 		intf->last_needs_timer = lnt;
4197 
4198 		nt += lnt;
4199 	}
4200 	rcu_read_unlock();
4201 
4202 	if (nt)
4203 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4204 }
4205 
4206 static void need_waiter(ipmi_smi_t intf)
4207 {
4208 	/* Racy, but worst case we start the timer twice. */
4209 	if (!timer_pending(&ipmi_timer))
4210 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4211 }
4212 
4213 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4214 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4215 
4216 static void free_smi_msg(struct ipmi_smi_msg *msg)
4217 {
4218 	atomic_dec(&smi_msg_inuse_count);
4219 	kfree(msg);
4220 }
4221 
4222 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4223 {
4224 	struct ipmi_smi_msg *rv;
4225 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4226 	if (rv) {
4227 		rv->done = free_smi_msg;
4228 		rv->user_data = NULL;
4229 		atomic_inc(&smi_msg_inuse_count);
4230 	}
4231 	return rv;
4232 }
4233 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4234 
4235 static void free_recv_msg(struct ipmi_recv_msg *msg)
4236 {
4237 	atomic_dec(&recv_msg_inuse_count);
4238 	kfree(msg);
4239 }
4240 
4241 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4242 {
4243 	struct ipmi_recv_msg *rv;
4244 
4245 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4246 	if (rv) {
4247 		rv->user = NULL;
4248 		rv->done = free_recv_msg;
4249 		atomic_inc(&recv_msg_inuse_count);
4250 	}
4251 	return rv;
4252 }
4253 
4254 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4255 {
4256 	if (msg->user)
4257 		kref_put(&msg->user->refcount, free_user);
4258 	msg->done(msg);
4259 }
4260 EXPORT_SYMBOL(ipmi_free_recv_msg);
4261 
4262 #ifdef CONFIG_IPMI_PANIC_EVENT
4263 
4264 static atomic_t panic_done_count = ATOMIC_INIT(0);
4265 
4266 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4267 {
4268 	atomic_dec(&panic_done_count);
4269 }
4270 
4271 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4272 {
4273 	atomic_dec(&panic_done_count);
4274 }
4275 
4276 /*
4277  * Inside a panic, send a message and wait for a response.
4278  */
4279 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4280 					struct ipmi_addr     *addr,
4281 					struct kernel_ipmi_msg *msg)
4282 {
4283 	struct ipmi_smi_msg  smi_msg;
4284 	struct ipmi_recv_msg recv_msg;
4285 	int rv;
4286 
4287 	smi_msg.done = dummy_smi_done_handler;
4288 	recv_msg.done = dummy_recv_done_handler;
4289 	atomic_add(2, &panic_done_count);
4290 	rv = i_ipmi_request(NULL,
4291 			    intf,
4292 			    addr,
4293 			    0,
4294 			    msg,
4295 			    intf,
4296 			    &smi_msg,
4297 			    &recv_msg,
4298 			    0,
4299 			    intf->channels[0].address,
4300 			    intf->channels[0].lun,
4301 			    0, 1); /* Don't retry, and don't wait. */
4302 	if (rv)
4303 		atomic_sub(2, &panic_done_count);
4304 	else if (intf->handlers->flush_messages)
4305 		intf->handlers->flush_messages(intf->send_info);
4306 
4307 	while (atomic_read(&panic_done_count) != 0)
4308 		ipmi_poll(intf);
4309 }
4310 
4311 #ifdef CONFIG_IPMI_PANIC_STRING
4312 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4313 {
4314 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4315 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4316 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4317 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4318 		/* A get event receiver command, save it. */
4319 		intf->event_receiver = msg->msg.data[1];
4320 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4321 	}
4322 }
4323 
4324 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4325 {
4326 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4327 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4328 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4329 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4330 		/*
4331 		 * A get device id command, save if we are an event
4332 		 * receiver or generator.
4333 		 */
4334 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4335 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4336 	}
4337 }
4338 #endif
4339 
4340 static void send_panic_events(char *str)
4341 {
4342 	struct kernel_ipmi_msg            msg;
4343 	ipmi_smi_t                        intf;
4344 	unsigned char                     data[16];
4345 	struct ipmi_system_interface_addr *si;
4346 	struct ipmi_addr                  addr;
4347 
4348 	si = (struct ipmi_system_interface_addr *) &addr;
4349 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4350 	si->channel = IPMI_BMC_CHANNEL;
4351 	si->lun = 0;
4352 
4353 	/* Fill in an event telling that we have failed. */
4354 	msg.netfn = 0x04; /* Sensor or Event. */
4355 	msg.cmd = 2; /* Platform event command. */
4356 	msg.data = data;
4357 	msg.data_len = 8;
4358 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4359 	data[1] = 0x03; /* This is for IPMI 1.0. */
4360 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4361 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4362 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4363 
4364 	/*
4365 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4366 	 * to make the panic events more useful.
4367 	 */
4368 	if (str) {
4369 		data[3] = str[0];
4370 		data[6] = str[1];
4371 		data[7] = str[2];
4372 	}
4373 
4374 	/* For every registered interface, send the event. */
4375 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4376 		if (!intf->handlers)
4377 			/* Interface is not ready. */
4378 			continue;
4379 
4380 		/* Send the event announcing the panic. */
4381 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4382 	}
4383 
4384 #ifdef CONFIG_IPMI_PANIC_STRING
4385 	/*
4386 	 * On every interface, dump a bunch of OEM event holding the
4387 	 * string.
4388 	 */
4389 	if (!str)
4390 		return;
4391 
4392 	/* For every registered interface, send the event. */
4393 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4394 		char                  *p = str;
4395 		struct ipmi_ipmb_addr *ipmb;
4396 		int                   j;
4397 
4398 		if (intf->intf_num == -1)
4399 			/* Interface was not ready yet. */
4400 			continue;
4401 
4402 		/*
4403 		 * intf_num is used as an marker to tell if the
4404 		 * interface is valid.  Thus we need a read barrier to
4405 		 * make sure data fetched before checking intf_num
4406 		 * won't be used.
4407 		 */
4408 		smp_rmb();
4409 
4410 		/*
4411 		 * First job here is to figure out where to send the
4412 		 * OEM events.  There's no way in IPMI to send OEM
4413 		 * events using an event send command, so we have to
4414 		 * find the SEL to put them in and stick them in
4415 		 * there.
4416 		 */
4417 
4418 		/* Get capabilities from the get device id. */
4419 		intf->local_sel_device = 0;
4420 		intf->local_event_generator = 0;
4421 		intf->event_receiver = 0;
4422 
4423 		/* Request the device info from the local MC. */
4424 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4425 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4426 		msg.data = NULL;
4427 		msg.data_len = 0;
4428 		intf->null_user_handler = device_id_fetcher;
4429 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4430 
4431 		if (intf->local_event_generator) {
4432 			/* Request the event receiver from the local MC. */
4433 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4434 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4435 			msg.data = NULL;
4436 			msg.data_len = 0;
4437 			intf->null_user_handler = event_receiver_fetcher;
4438 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4439 		}
4440 		intf->null_user_handler = NULL;
4441 
4442 		/*
4443 		 * Validate the event receiver.  The low bit must not
4444 		 * be 1 (it must be a valid IPMB address), it cannot
4445 		 * be zero, and it must not be my address.
4446 		 */
4447 		if (((intf->event_receiver & 1) == 0)
4448 		    && (intf->event_receiver != 0)
4449 		    && (intf->event_receiver != intf->channels[0].address)) {
4450 			/*
4451 			 * The event receiver is valid, send an IPMB
4452 			 * message.
4453 			 */
4454 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4455 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4456 			ipmb->channel = 0; /* FIXME - is this right? */
4457 			ipmb->lun = intf->event_receiver_lun;
4458 			ipmb->slave_addr = intf->event_receiver;
4459 		} else if (intf->local_sel_device) {
4460 			/*
4461 			 * The event receiver was not valid (or was
4462 			 * me), but I am an SEL device, just dump it
4463 			 * in my SEL.
4464 			 */
4465 			si = (struct ipmi_system_interface_addr *) &addr;
4466 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4467 			si->channel = IPMI_BMC_CHANNEL;
4468 			si->lun = 0;
4469 		} else
4470 			continue; /* No where to send the event. */
4471 
4472 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4473 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4474 		msg.data = data;
4475 		msg.data_len = 16;
4476 
4477 		j = 0;
4478 		while (*p) {
4479 			int size = strlen(p);
4480 
4481 			if (size > 11)
4482 				size = 11;
4483 			data[0] = 0;
4484 			data[1] = 0;
4485 			data[2] = 0xf0; /* OEM event without timestamp. */
4486 			data[3] = intf->channels[0].address;
4487 			data[4] = j++; /* sequence # */
4488 			/*
4489 			 * Always give 11 bytes, so strncpy will fill
4490 			 * it with zeroes for me.
4491 			 */
4492 			strncpy(data+5, p, 11);
4493 			p += size;
4494 
4495 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4496 		}
4497 	}
4498 #endif /* CONFIG_IPMI_PANIC_STRING */
4499 }
4500 #endif /* CONFIG_IPMI_PANIC_EVENT */
4501 
4502 static int has_panicked;
4503 
4504 static int panic_event(struct notifier_block *this,
4505 		       unsigned long         event,
4506 		       void                  *ptr)
4507 {
4508 	ipmi_smi_t intf;
4509 
4510 	if (has_panicked)
4511 		return NOTIFY_DONE;
4512 	has_panicked = 1;
4513 
4514 	/* For every registered interface, set it to run to completion. */
4515 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4516 		if (!intf->handlers)
4517 			/* Interface is not ready. */
4518 			continue;
4519 
4520 		/*
4521 		 * If we were interrupted while locking xmit_msgs_lock or
4522 		 * waiting_rcv_msgs_lock, the corresponding list may be
4523 		 * corrupted.  In this case, drop items on the list for
4524 		 * the safety.
4525 		 */
4526 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
4527 			INIT_LIST_HEAD(&intf->xmit_msgs);
4528 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4529 		} else
4530 			spin_unlock(&intf->xmit_msgs_lock);
4531 
4532 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4533 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4534 		else
4535 			spin_unlock(&intf->waiting_rcv_msgs_lock);
4536 
4537 		intf->run_to_completion = 1;
4538 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4539 	}
4540 
4541 #ifdef CONFIG_IPMI_PANIC_EVENT
4542 	send_panic_events(ptr);
4543 #endif
4544 
4545 	return NOTIFY_DONE;
4546 }
4547 
4548 static struct notifier_block panic_block = {
4549 	.notifier_call	= panic_event,
4550 	.next		= NULL,
4551 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4552 };
4553 
4554 static int ipmi_init_msghandler(void)
4555 {
4556 	int rv;
4557 
4558 	if (initialized)
4559 		return 0;
4560 
4561 	rv = driver_register(&ipmidriver.driver);
4562 	if (rv) {
4563 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4564 		return rv;
4565 	}
4566 
4567 	printk(KERN_INFO "ipmi message handler version "
4568 	       IPMI_DRIVER_VERSION "\n");
4569 
4570 #ifdef CONFIG_PROC_FS
4571 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4572 	if (!proc_ipmi_root) {
4573 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4574 	    driver_unregister(&ipmidriver.driver);
4575 	    return -ENOMEM;
4576 	}
4577 
4578 #endif /* CONFIG_PROC_FS */
4579 
4580 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4581 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4582 
4583 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4584 
4585 	initialized = 1;
4586 
4587 	return 0;
4588 }
4589 
4590 static int __init ipmi_init_msghandler_mod(void)
4591 {
4592 	ipmi_init_msghandler();
4593 	return 0;
4594 }
4595 
4596 static void __exit cleanup_ipmi(void)
4597 {
4598 	int count;
4599 
4600 	if (!initialized)
4601 		return;
4602 
4603 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4604 
4605 	/*
4606 	 * This can't be called if any interfaces exist, so no worry
4607 	 * about shutting down the interfaces.
4608 	 */
4609 
4610 	/*
4611 	 * Tell the timer to stop, then wait for it to stop.  This
4612 	 * avoids problems with race conditions removing the timer
4613 	 * here.
4614 	 */
4615 	atomic_inc(&stop_operation);
4616 	del_timer_sync(&ipmi_timer);
4617 
4618 #ifdef CONFIG_PROC_FS
4619 	proc_remove(proc_ipmi_root);
4620 #endif /* CONFIG_PROC_FS */
4621 
4622 	driver_unregister(&ipmidriver.driver);
4623 
4624 	initialized = 0;
4625 
4626 	/* Check for buffer leaks. */
4627 	count = atomic_read(&smi_msg_inuse_count);
4628 	if (count != 0)
4629 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4630 		       count);
4631 	count = atomic_read(&recv_msg_inuse_count);
4632 	if (count != 0)
4633 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4634 		       count);
4635 }
4636 module_exit(cleanup_ipmi);
4637 
4638 module_init(ipmi_init_msghandler_mod);
4639 MODULE_LICENSE("GPL");
4640 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4641 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4642 		   " interface.");
4643 MODULE_VERSION(IPMI_DRIVER_VERSION);
4644