1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60 			       struct ipmi_smi_msg *msg);
61 
62 static int initialized;
63 
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67 
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70 
71 #define MAX_EVENTS_IN_QUEUE	25
72 
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT		60000
78 
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME	1000
81 
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84 
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92 
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97 	struct list_head link;
98 
99 	/* Set to false when the user is destroyed. */
100 	bool valid;
101 
102 	struct kref refcount;
103 
104 	/* The upper layer that handles receive messages. */
105 	struct ipmi_user_hndl *handler;
106 	void             *handler_data;
107 
108 	/* The interface this user is bound to. */
109 	ipmi_smi_t intf;
110 
111 	/* Does this interface receive IPMI events? */
112 	bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116 	struct list_head link;
117 
118 	ipmi_user_t   user;
119 	unsigned char netfn;
120 	unsigned char cmd;
121 	unsigned int  chans;
122 
123 	/*
124 	 * This is used to form a linked lised during mass deletion.
125 	 * Since this is in an RCU list, we cannot use the link above
126 	 * or change any data until the RCU period completes.  So we
127 	 * use this next variable during mass deletion so we can have
128 	 * a list and don't have to wait and restart the search on
129 	 * every individual deletion of a command.
130 	 */
131 	struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135 	unsigned int         inuse : 1;
136 	unsigned int         broadcast : 1;
137 
138 	unsigned long        timeout;
139 	unsigned long        orig_timeout;
140 	unsigned int         retries_left;
141 
142 	/*
143 	 * To verify on an incoming send message response that this is
144 	 * the message that the response is for, we keep a sequence id
145 	 * and increment it every time we send a message.
146 	 */
147 	long                 seqid;
148 
149 	/*
150 	 * This is held so we can properly respond to the message on a
151 	 * timeout, and it is used to hold the temporary data for
152 	 * retransmission, too.
153 	 */
154 	struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162 
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 	do {								\
165 		seq = ((msgid >> 26) & 0x3f);				\
166 		seqid = (msgid & 0x3fffff);				\
167 	} while (0)
168 
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170 
171 struct ipmi_channel {
172 	unsigned char medium;
173 	unsigned char protocol;
174 
175 	/*
176 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177 	 * but may be changed by the user.
178 	 */
179 	unsigned char address;
180 
181 	/*
182 	 * My LUN.  This should generally stay the SMS LUN, but just in
183 	 * case...
184 	 */
185 	unsigned char lun;
186 };
187 
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 	char                   *name;
191 	struct ipmi_proc_entry *next;
192 };
193 #endif
194 
195 struct bmc_device {
196 	struct platform_device pdev;
197 	struct ipmi_device_id  id;
198 	unsigned char          guid[16];
199 	int                    guid_set;
200 	char                   name[16];
201 	struct kref	       usecount;
202 };
203 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
204 
205 /*
206  * Various statistics for IPMI, these index stats[] in the ipmi_smi
207  * structure.
208  */
209 enum ipmi_stat_indexes {
210 	/* Commands we got from the user that were invalid. */
211 	IPMI_STAT_sent_invalid_commands = 0,
212 
213 	/* Commands we sent to the MC. */
214 	IPMI_STAT_sent_local_commands,
215 
216 	/* Responses from the MC that were delivered to a user. */
217 	IPMI_STAT_handled_local_responses,
218 
219 	/* Responses from the MC that were not delivered to a user. */
220 	IPMI_STAT_unhandled_local_responses,
221 
222 	/* Commands we sent out to the IPMB bus. */
223 	IPMI_STAT_sent_ipmb_commands,
224 
225 	/* Commands sent on the IPMB that had errors on the SEND CMD */
226 	IPMI_STAT_sent_ipmb_command_errs,
227 
228 	/* Each retransmit increments this count. */
229 	IPMI_STAT_retransmitted_ipmb_commands,
230 
231 	/*
232 	 * When a message times out (runs out of retransmits) this is
233 	 * incremented.
234 	 */
235 	IPMI_STAT_timed_out_ipmb_commands,
236 
237 	/*
238 	 * This is like above, but for broadcasts.  Broadcasts are
239 	 * *not* included in the above count (they are expected to
240 	 * time out).
241 	 */
242 	IPMI_STAT_timed_out_ipmb_broadcasts,
243 
244 	/* Responses I have sent to the IPMB bus. */
245 	IPMI_STAT_sent_ipmb_responses,
246 
247 	/* The response was delivered to the user. */
248 	IPMI_STAT_handled_ipmb_responses,
249 
250 	/* The response had invalid data in it. */
251 	IPMI_STAT_invalid_ipmb_responses,
252 
253 	/* The response didn't have anyone waiting for it. */
254 	IPMI_STAT_unhandled_ipmb_responses,
255 
256 	/* Commands we sent out to the IPMB bus. */
257 	IPMI_STAT_sent_lan_commands,
258 
259 	/* Commands sent on the IPMB that had errors on the SEND CMD */
260 	IPMI_STAT_sent_lan_command_errs,
261 
262 	/* Each retransmit increments this count. */
263 	IPMI_STAT_retransmitted_lan_commands,
264 
265 	/*
266 	 * When a message times out (runs out of retransmits) this is
267 	 * incremented.
268 	 */
269 	IPMI_STAT_timed_out_lan_commands,
270 
271 	/* Responses I have sent to the IPMB bus. */
272 	IPMI_STAT_sent_lan_responses,
273 
274 	/* The response was delivered to the user. */
275 	IPMI_STAT_handled_lan_responses,
276 
277 	/* The response had invalid data in it. */
278 	IPMI_STAT_invalid_lan_responses,
279 
280 	/* The response didn't have anyone waiting for it. */
281 	IPMI_STAT_unhandled_lan_responses,
282 
283 	/* The command was delivered to the user. */
284 	IPMI_STAT_handled_commands,
285 
286 	/* The command had invalid data in it. */
287 	IPMI_STAT_invalid_commands,
288 
289 	/* The command didn't have anyone waiting for it. */
290 	IPMI_STAT_unhandled_commands,
291 
292 	/* Invalid data in an event. */
293 	IPMI_STAT_invalid_events,
294 
295 	/* Events that were received with the proper format. */
296 	IPMI_STAT_events,
297 
298 	/* Retransmissions on IPMB that failed. */
299 	IPMI_STAT_dropped_rexmit_ipmb_commands,
300 
301 	/* Retransmissions on LAN that failed. */
302 	IPMI_STAT_dropped_rexmit_lan_commands,
303 
304 	/* This *must* remain last, add new values above this. */
305 	IPMI_NUM_STATS
306 };
307 
308 
309 #define IPMI_IPMB_NUM_SEQ	64
310 #define IPMI_MAX_CHANNELS       16
311 struct ipmi_smi {
312 	/* What interface number are we? */
313 	int intf_num;
314 
315 	struct kref refcount;
316 
317 	/* Set when the interface is being unregistered. */
318 	bool in_shutdown;
319 
320 	/* Used for a list of interfaces. */
321 	struct list_head link;
322 
323 	/*
324 	 * The list of upper layers that are using me.  seq_lock
325 	 * protects this.
326 	 */
327 	struct list_head users;
328 
329 	/* Information to supply to users. */
330 	unsigned char ipmi_version_major;
331 	unsigned char ipmi_version_minor;
332 
333 	/* Used for wake ups at startup. */
334 	wait_queue_head_t waitq;
335 
336 	struct bmc_device *bmc;
337 	char *my_dev_name;
338 
339 	/*
340 	 * This is the lower-layer's sender routine.  Note that you
341 	 * must either be holding the ipmi_interfaces_mutex or be in
342 	 * an umpreemptible region to use this.  You must fetch the
343 	 * value into a local variable and make sure it is not NULL.
344 	 */
345 	struct ipmi_smi_handlers *handlers;
346 	void                     *send_info;
347 
348 #ifdef CONFIG_PROC_FS
349 	/* A list of proc entries for this interface. */
350 	struct mutex           proc_entry_lock;
351 	struct ipmi_proc_entry *proc_entries;
352 #endif
353 
354 	/* Driver-model device for the system interface. */
355 	struct device          *si_dev;
356 
357 	/*
358 	 * A table of sequence numbers for this interface.  We use the
359 	 * sequence numbers for IPMB messages that go out of the
360 	 * interface to match them up with their responses.  A routine
361 	 * is called periodically to time the items in this list.
362 	 */
363 	spinlock_t       seq_lock;
364 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
365 	int curr_seq;
366 
367 	/*
368 	 * Messages queued for delivery.  If delivery fails (out of memory
369 	 * for instance), They will stay in here to be processed later in a
370 	 * periodic timer interrupt.  The tasklet is for handling received
371 	 * messages directly from the handler.
372 	 */
373 	spinlock_t       waiting_rcv_msgs_lock;
374 	struct list_head waiting_rcv_msgs;
375 	atomic_t	 watchdog_pretimeouts_to_deliver;
376 	struct tasklet_struct recv_tasklet;
377 
378 	spinlock_t             xmit_msgs_lock;
379 	struct list_head       xmit_msgs;
380 	struct ipmi_smi_msg    *curr_msg;
381 	struct list_head       hp_xmit_msgs;
382 
383 	/*
384 	 * The list of command receivers that are registered for commands
385 	 * on this interface.
386 	 */
387 	struct mutex     cmd_rcvrs_mutex;
388 	struct list_head cmd_rcvrs;
389 
390 	/*
391 	 * Events that were queues because no one was there to receive
392 	 * them.
393 	 */
394 	spinlock_t       events_lock; /* For dealing with event stuff. */
395 	struct list_head waiting_events;
396 	unsigned int     waiting_events_count; /* How many events in queue? */
397 	char             delivering_events;
398 	char             event_msg_printed;
399 	atomic_t         event_waiters;
400 	unsigned int     ticks_to_req_ev;
401 	int              last_needs_timer;
402 
403 	/*
404 	 * The event receiver for my BMC, only really used at panic
405 	 * shutdown as a place to store this.
406 	 */
407 	unsigned char event_receiver;
408 	unsigned char event_receiver_lun;
409 	unsigned char local_sel_device;
410 	unsigned char local_event_generator;
411 
412 	/* For handling of maintenance mode. */
413 	int maintenance_mode;
414 	bool maintenance_mode_enable;
415 	int auto_maintenance_timeout;
416 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
417 
418 	/*
419 	 * A cheap hack, if this is non-null and a message to an
420 	 * interface comes in with a NULL user, call this routine with
421 	 * it.  Note that the message will still be freed by the
422 	 * caller.  This only works on the system interface.
423 	 */
424 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
425 
426 	/*
427 	 * When we are scanning the channels for an SMI, this will
428 	 * tell which channel we are scanning.
429 	 */
430 	int curr_channel;
431 
432 	/* Channel information */
433 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
434 
435 	/* Proc FS stuff. */
436 	struct proc_dir_entry *proc_dir;
437 	char                  proc_dir_name[10];
438 
439 	atomic_t stats[IPMI_NUM_STATS];
440 
441 	/*
442 	 * run_to_completion duplicate of smb_info, smi_info
443 	 * and ipmi_serial_info structures. Used to decrease numbers of
444 	 * parameters passed by "low" level IPMI code.
445 	 */
446 	int run_to_completion;
447 };
448 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
449 
450 /**
451  * The driver model view of the IPMI messaging driver.
452  */
453 static struct platform_driver ipmidriver = {
454 	.driver = {
455 		.name = "ipmi",
456 		.bus = &platform_bus_type
457 	}
458 };
459 static DEFINE_MUTEX(ipmidriver_mutex);
460 
461 static LIST_HEAD(ipmi_interfaces);
462 static DEFINE_MUTEX(ipmi_interfaces_mutex);
463 
464 /*
465  * List of watchers that want to know when smi's are added and deleted.
466  */
467 static LIST_HEAD(smi_watchers);
468 static DEFINE_MUTEX(smi_watchers_mutex);
469 
470 #define ipmi_inc_stat(intf, stat) \
471 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
472 #define ipmi_get_stat(intf, stat) \
473 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
474 
475 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
476 				   "ACPI", "SMBIOS", "PCI",
477 				   "device-tree", "default" };
478 
479 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
480 {
481 	if (src > SI_DEFAULT)
482 		src = 0; /* Invalid */
483 	return addr_src_to_str[src];
484 }
485 EXPORT_SYMBOL(ipmi_addr_src_to_str);
486 
487 static int is_lan_addr(struct ipmi_addr *addr)
488 {
489 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
490 }
491 
492 static int is_ipmb_addr(struct ipmi_addr *addr)
493 {
494 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
495 }
496 
497 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
498 {
499 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
500 }
501 
502 static void free_recv_msg_list(struct list_head *q)
503 {
504 	struct ipmi_recv_msg *msg, *msg2;
505 
506 	list_for_each_entry_safe(msg, msg2, q, link) {
507 		list_del(&msg->link);
508 		ipmi_free_recv_msg(msg);
509 	}
510 }
511 
512 static void free_smi_msg_list(struct list_head *q)
513 {
514 	struct ipmi_smi_msg *msg, *msg2;
515 
516 	list_for_each_entry_safe(msg, msg2, q, link) {
517 		list_del(&msg->link);
518 		ipmi_free_smi_msg(msg);
519 	}
520 }
521 
522 static void clean_up_interface_data(ipmi_smi_t intf)
523 {
524 	int              i;
525 	struct cmd_rcvr  *rcvr, *rcvr2;
526 	struct list_head list;
527 
528 	tasklet_kill(&intf->recv_tasklet);
529 
530 	free_smi_msg_list(&intf->waiting_rcv_msgs);
531 	free_recv_msg_list(&intf->waiting_events);
532 
533 	/*
534 	 * Wholesale remove all the entries from the list in the
535 	 * interface and wait for RCU to know that none are in use.
536 	 */
537 	mutex_lock(&intf->cmd_rcvrs_mutex);
538 	INIT_LIST_HEAD(&list);
539 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
540 	mutex_unlock(&intf->cmd_rcvrs_mutex);
541 
542 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
543 		kfree(rcvr);
544 
545 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
546 		if ((intf->seq_table[i].inuse)
547 					&& (intf->seq_table[i].recv_msg))
548 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
549 	}
550 }
551 
552 static void intf_free(struct kref *ref)
553 {
554 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
555 
556 	clean_up_interface_data(intf);
557 	kfree(intf);
558 }
559 
560 struct watcher_entry {
561 	int              intf_num;
562 	ipmi_smi_t       intf;
563 	struct list_head link;
564 };
565 
566 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
567 {
568 	ipmi_smi_t intf;
569 	LIST_HEAD(to_deliver);
570 	struct watcher_entry *e, *e2;
571 
572 	mutex_lock(&smi_watchers_mutex);
573 
574 	mutex_lock(&ipmi_interfaces_mutex);
575 
576 	/* Build a list of things to deliver. */
577 	list_for_each_entry(intf, &ipmi_interfaces, link) {
578 		if (intf->intf_num == -1)
579 			continue;
580 		e = kmalloc(sizeof(*e), GFP_KERNEL);
581 		if (!e)
582 			goto out_err;
583 		kref_get(&intf->refcount);
584 		e->intf = intf;
585 		e->intf_num = intf->intf_num;
586 		list_add_tail(&e->link, &to_deliver);
587 	}
588 
589 	/* We will succeed, so add it to the list. */
590 	list_add(&watcher->link, &smi_watchers);
591 
592 	mutex_unlock(&ipmi_interfaces_mutex);
593 
594 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
595 		list_del(&e->link);
596 		watcher->new_smi(e->intf_num, e->intf->si_dev);
597 		kref_put(&e->intf->refcount, intf_free);
598 		kfree(e);
599 	}
600 
601 	mutex_unlock(&smi_watchers_mutex);
602 
603 	return 0;
604 
605  out_err:
606 	mutex_unlock(&ipmi_interfaces_mutex);
607 	mutex_unlock(&smi_watchers_mutex);
608 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
609 		list_del(&e->link);
610 		kref_put(&e->intf->refcount, intf_free);
611 		kfree(e);
612 	}
613 	return -ENOMEM;
614 }
615 EXPORT_SYMBOL(ipmi_smi_watcher_register);
616 
617 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
618 {
619 	mutex_lock(&smi_watchers_mutex);
620 	list_del(&(watcher->link));
621 	mutex_unlock(&smi_watchers_mutex);
622 	return 0;
623 }
624 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
625 
626 /*
627  * Must be called with smi_watchers_mutex held.
628  */
629 static void
630 call_smi_watchers(int i, struct device *dev)
631 {
632 	struct ipmi_smi_watcher *w;
633 
634 	list_for_each_entry(w, &smi_watchers, link) {
635 		if (try_module_get(w->owner)) {
636 			w->new_smi(i, dev);
637 			module_put(w->owner);
638 		}
639 	}
640 }
641 
642 static int
643 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
644 {
645 	if (addr1->addr_type != addr2->addr_type)
646 		return 0;
647 
648 	if (addr1->channel != addr2->channel)
649 		return 0;
650 
651 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
652 		struct ipmi_system_interface_addr *smi_addr1
653 		    = (struct ipmi_system_interface_addr *) addr1;
654 		struct ipmi_system_interface_addr *smi_addr2
655 		    = (struct ipmi_system_interface_addr *) addr2;
656 		return (smi_addr1->lun == smi_addr2->lun);
657 	}
658 
659 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
660 		struct ipmi_ipmb_addr *ipmb_addr1
661 		    = (struct ipmi_ipmb_addr *) addr1;
662 		struct ipmi_ipmb_addr *ipmb_addr2
663 		    = (struct ipmi_ipmb_addr *) addr2;
664 
665 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
666 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
667 	}
668 
669 	if (is_lan_addr(addr1)) {
670 		struct ipmi_lan_addr *lan_addr1
671 			= (struct ipmi_lan_addr *) addr1;
672 		struct ipmi_lan_addr *lan_addr2
673 		    = (struct ipmi_lan_addr *) addr2;
674 
675 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
676 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
677 			&& (lan_addr1->session_handle
678 			    == lan_addr2->session_handle)
679 			&& (lan_addr1->lun == lan_addr2->lun));
680 	}
681 
682 	return 1;
683 }
684 
685 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
686 {
687 	if (len < sizeof(struct ipmi_system_interface_addr))
688 		return -EINVAL;
689 
690 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
691 		if (addr->channel != IPMI_BMC_CHANNEL)
692 			return -EINVAL;
693 		return 0;
694 	}
695 
696 	if ((addr->channel == IPMI_BMC_CHANNEL)
697 	    || (addr->channel >= IPMI_MAX_CHANNELS)
698 	    || (addr->channel < 0))
699 		return -EINVAL;
700 
701 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
702 		if (len < sizeof(struct ipmi_ipmb_addr))
703 			return -EINVAL;
704 		return 0;
705 	}
706 
707 	if (is_lan_addr(addr)) {
708 		if (len < sizeof(struct ipmi_lan_addr))
709 			return -EINVAL;
710 		return 0;
711 	}
712 
713 	return -EINVAL;
714 }
715 EXPORT_SYMBOL(ipmi_validate_addr);
716 
717 unsigned int ipmi_addr_length(int addr_type)
718 {
719 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
720 		return sizeof(struct ipmi_system_interface_addr);
721 
722 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
723 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
724 		return sizeof(struct ipmi_ipmb_addr);
725 
726 	if (addr_type == IPMI_LAN_ADDR_TYPE)
727 		return sizeof(struct ipmi_lan_addr);
728 
729 	return 0;
730 }
731 EXPORT_SYMBOL(ipmi_addr_length);
732 
733 static void deliver_response(struct ipmi_recv_msg *msg)
734 {
735 	if (!msg->user) {
736 		ipmi_smi_t    intf = msg->user_msg_data;
737 
738 		/* Special handling for NULL users. */
739 		if (intf->null_user_handler) {
740 			intf->null_user_handler(intf, msg);
741 			ipmi_inc_stat(intf, handled_local_responses);
742 		} else {
743 			/* No handler, so give up. */
744 			ipmi_inc_stat(intf, unhandled_local_responses);
745 		}
746 		ipmi_free_recv_msg(msg);
747 	} else {
748 		ipmi_user_t user = msg->user;
749 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
750 	}
751 }
752 
753 static void
754 deliver_err_response(struct ipmi_recv_msg *msg, int err)
755 {
756 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
757 	msg->msg_data[0] = err;
758 	msg->msg.netfn |= 1; /* Convert to a response. */
759 	msg->msg.data_len = 1;
760 	msg->msg.data = msg->msg_data;
761 	deliver_response(msg);
762 }
763 
764 /*
765  * Find the next sequence number not being used and add the given
766  * message with the given timeout to the sequence table.  This must be
767  * called with the interface's seq_lock held.
768  */
769 static int intf_next_seq(ipmi_smi_t           intf,
770 			 struct ipmi_recv_msg *recv_msg,
771 			 unsigned long        timeout,
772 			 int                  retries,
773 			 int                  broadcast,
774 			 unsigned char        *seq,
775 			 long                 *seqid)
776 {
777 	int          rv = 0;
778 	unsigned int i;
779 
780 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
781 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
782 		if (!intf->seq_table[i].inuse)
783 			break;
784 	}
785 
786 	if (!intf->seq_table[i].inuse) {
787 		intf->seq_table[i].recv_msg = recv_msg;
788 
789 		/*
790 		 * Start with the maximum timeout, when the send response
791 		 * comes in we will start the real timer.
792 		 */
793 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
794 		intf->seq_table[i].orig_timeout = timeout;
795 		intf->seq_table[i].retries_left = retries;
796 		intf->seq_table[i].broadcast = broadcast;
797 		intf->seq_table[i].inuse = 1;
798 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
799 		*seq = i;
800 		*seqid = intf->seq_table[i].seqid;
801 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
802 		need_waiter(intf);
803 	} else {
804 		rv = -EAGAIN;
805 	}
806 
807 	return rv;
808 }
809 
810 /*
811  * Return the receive message for the given sequence number and
812  * release the sequence number so it can be reused.  Some other data
813  * is passed in to be sure the message matches up correctly (to help
814  * guard against message coming in after their timeout and the
815  * sequence number being reused).
816  */
817 static int intf_find_seq(ipmi_smi_t           intf,
818 			 unsigned char        seq,
819 			 short                channel,
820 			 unsigned char        cmd,
821 			 unsigned char        netfn,
822 			 struct ipmi_addr     *addr,
823 			 struct ipmi_recv_msg **recv_msg)
824 {
825 	int           rv = -ENODEV;
826 	unsigned long flags;
827 
828 	if (seq >= IPMI_IPMB_NUM_SEQ)
829 		return -EINVAL;
830 
831 	spin_lock_irqsave(&(intf->seq_lock), flags);
832 	if (intf->seq_table[seq].inuse) {
833 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
834 
835 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
836 				&& (msg->msg.netfn == netfn)
837 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
838 			*recv_msg = msg;
839 			intf->seq_table[seq].inuse = 0;
840 			rv = 0;
841 		}
842 	}
843 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
844 
845 	return rv;
846 }
847 
848 
849 /* Start the timer for a specific sequence table entry. */
850 static int intf_start_seq_timer(ipmi_smi_t intf,
851 				long       msgid)
852 {
853 	int           rv = -ENODEV;
854 	unsigned long flags;
855 	unsigned char seq;
856 	unsigned long seqid;
857 
858 
859 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
860 
861 	spin_lock_irqsave(&(intf->seq_lock), flags);
862 	/*
863 	 * We do this verification because the user can be deleted
864 	 * while a message is outstanding.
865 	 */
866 	if ((intf->seq_table[seq].inuse)
867 				&& (intf->seq_table[seq].seqid == seqid)) {
868 		struct seq_table *ent = &(intf->seq_table[seq]);
869 		ent->timeout = ent->orig_timeout;
870 		rv = 0;
871 	}
872 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
873 
874 	return rv;
875 }
876 
877 /* Got an error for the send message for a specific sequence number. */
878 static int intf_err_seq(ipmi_smi_t   intf,
879 			long         msgid,
880 			unsigned int err)
881 {
882 	int                  rv = -ENODEV;
883 	unsigned long        flags;
884 	unsigned char        seq;
885 	unsigned long        seqid;
886 	struct ipmi_recv_msg *msg = NULL;
887 
888 
889 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
890 
891 	spin_lock_irqsave(&(intf->seq_lock), flags);
892 	/*
893 	 * We do this verification because the user can be deleted
894 	 * while a message is outstanding.
895 	 */
896 	if ((intf->seq_table[seq].inuse)
897 				&& (intf->seq_table[seq].seqid == seqid)) {
898 		struct seq_table *ent = &(intf->seq_table[seq]);
899 
900 		ent->inuse = 0;
901 		msg = ent->recv_msg;
902 		rv = 0;
903 	}
904 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
905 
906 	if (msg)
907 		deliver_err_response(msg, err);
908 
909 	return rv;
910 }
911 
912 
913 int ipmi_create_user(unsigned int          if_num,
914 		     struct ipmi_user_hndl *handler,
915 		     void                  *handler_data,
916 		     ipmi_user_t           *user)
917 {
918 	unsigned long flags;
919 	ipmi_user_t   new_user;
920 	int           rv = 0;
921 	ipmi_smi_t    intf;
922 
923 	/*
924 	 * There is no module usecount here, because it's not
925 	 * required.  Since this can only be used by and called from
926 	 * other modules, they will implicitly use this module, and
927 	 * thus this can't be removed unless the other modules are
928 	 * removed.
929 	 */
930 
931 	if (handler == NULL)
932 		return -EINVAL;
933 
934 	/*
935 	 * Make sure the driver is actually initialized, this handles
936 	 * problems with initialization order.
937 	 */
938 	if (!initialized) {
939 		rv = ipmi_init_msghandler();
940 		if (rv)
941 			return rv;
942 
943 		/*
944 		 * The init code doesn't return an error if it was turned
945 		 * off, but it won't initialize.  Check that.
946 		 */
947 		if (!initialized)
948 			return -ENODEV;
949 	}
950 
951 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
952 	if (!new_user)
953 		return -ENOMEM;
954 
955 	mutex_lock(&ipmi_interfaces_mutex);
956 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
957 		if (intf->intf_num == if_num)
958 			goto found;
959 	}
960 	/* Not found, return an error */
961 	rv = -EINVAL;
962 	goto out_kfree;
963 
964  found:
965 	/* Note that each existing user holds a refcount to the interface. */
966 	kref_get(&intf->refcount);
967 
968 	kref_init(&new_user->refcount);
969 	new_user->handler = handler;
970 	new_user->handler_data = handler_data;
971 	new_user->intf = intf;
972 	new_user->gets_events = false;
973 
974 	if (!try_module_get(intf->handlers->owner)) {
975 		rv = -ENODEV;
976 		goto out_kref;
977 	}
978 
979 	if (intf->handlers->inc_usecount) {
980 		rv = intf->handlers->inc_usecount(intf->send_info);
981 		if (rv) {
982 			module_put(intf->handlers->owner);
983 			goto out_kref;
984 		}
985 	}
986 
987 	/*
988 	 * Hold the lock so intf->handlers is guaranteed to be good
989 	 * until now
990 	 */
991 	mutex_unlock(&ipmi_interfaces_mutex);
992 
993 	new_user->valid = true;
994 	spin_lock_irqsave(&intf->seq_lock, flags);
995 	list_add_rcu(&new_user->link, &intf->users);
996 	spin_unlock_irqrestore(&intf->seq_lock, flags);
997 	if (handler->ipmi_watchdog_pretimeout) {
998 		/* User wants pretimeouts, so make sure to watch for them. */
999 		if (atomic_inc_return(&intf->event_waiters) == 1)
1000 			need_waiter(intf);
1001 	}
1002 	*user = new_user;
1003 	return 0;
1004 
1005 out_kref:
1006 	kref_put(&intf->refcount, intf_free);
1007 out_kfree:
1008 	mutex_unlock(&ipmi_interfaces_mutex);
1009 	kfree(new_user);
1010 	return rv;
1011 }
1012 EXPORT_SYMBOL(ipmi_create_user);
1013 
1014 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015 {
1016 	int           rv = 0;
1017 	ipmi_smi_t    intf;
1018 	struct ipmi_smi_handlers *handlers;
1019 
1020 	mutex_lock(&ipmi_interfaces_mutex);
1021 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022 		if (intf->intf_num == if_num)
1023 			goto found;
1024 	}
1025 	/* Not found, return an error */
1026 	rv = -EINVAL;
1027 	mutex_unlock(&ipmi_interfaces_mutex);
1028 	return rv;
1029 
1030 found:
1031 	handlers = intf->handlers;
1032 	rv = -ENOSYS;
1033 	if (handlers->get_smi_info)
1034 		rv = handlers->get_smi_info(intf->send_info, data);
1035 	mutex_unlock(&ipmi_interfaces_mutex);
1036 
1037 	return rv;
1038 }
1039 EXPORT_SYMBOL(ipmi_get_smi_info);
1040 
1041 static void free_user(struct kref *ref)
1042 {
1043 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044 	kfree(user);
1045 }
1046 
1047 int ipmi_destroy_user(ipmi_user_t user)
1048 {
1049 	ipmi_smi_t       intf = user->intf;
1050 	int              i;
1051 	unsigned long    flags;
1052 	struct cmd_rcvr  *rcvr;
1053 	struct cmd_rcvr  *rcvrs = NULL;
1054 
1055 	user->valid = false;
1056 
1057 	if (user->handler->ipmi_watchdog_pretimeout)
1058 		atomic_dec(&intf->event_waiters);
1059 
1060 	if (user->gets_events)
1061 		atomic_dec(&intf->event_waiters);
1062 
1063 	/* Remove the user from the interface's sequence table. */
1064 	spin_lock_irqsave(&intf->seq_lock, flags);
1065 	list_del_rcu(&user->link);
1066 
1067 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068 		if (intf->seq_table[i].inuse
1069 		    && (intf->seq_table[i].recv_msg->user == user)) {
1070 			intf->seq_table[i].inuse = 0;
1071 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072 		}
1073 	}
1074 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1075 
1076 	/*
1077 	 * Remove the user from the command receiver's table.  First
1078 	 * we build a list of everything (not using the standard link,
1079 	 * since other things may be using it till we do
1080 	 * synchronize_rcu()) then free everything in that list.
1081 	 */
1082 	mutex_lock(&intf->cmd_rcvrs_mutex);
1083 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084 		if (rcvr->user == user) {
1085 			list_del_rcu(&rcvr->link);
1086 			rcvr->next = rcvrs;
1087 			rcvrs = rcvr;
1088 		}
1089 	}
1090 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1091 	synchronize_rcu();
1092 	while (rcvrs) {
1093 		rcvr = rcvrs;
1094 		rcvrs = rcvr->next;
1095 		kfree(rcvr);
1096 	}
1097 
1098 	mutex_lock(&ipmi_interfaces_mutex);
1099 	if (intf->handlers) {
1100 		module_put(intf->handlers->owner);
1101 		if (intf->handlers->dec_usecount)
1102 			intf->handlers->dec_usecount(intf->send_info);
1103 	}
1104 	mutex_unlock(&ipmi_interfaces_mutex);
1105 
1106 	kref_put(&intf->refcount, intf_free);
1107 
1108 	kref_put(&user->refcount, free_user);
1109 
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL(ipmi_destroy_user);
1113 
1114 void ipmi_get_version(ipmi_user_t   user,
1115 		      unsigned char *major,
1116 		      unsigned char *minor)
1117 {
1118 	*major = user->intf->ipmi_version_major;
1119 	*minor = user->intf->ipmi_version_minor;
1120 }
1121 EXPORT_SYMBOL(ipmi_get_version);
1122 
1123 int ipmi_set_my_address(ipmi_user_t   user,
1124 			unsigned int  channel,
1125 			unsigned char address)
1126 {
1127 	if (channel >= IPMI_MAX_CHANNELS)
1128 		return -EINVAL;
1129 	user->intf->channels[channel].address = address;
1130 	return 0;
1131 }
1132 EXPORT_SYMBOL(ipmi_set_my_address);
1133 
1134 int ipmi_get_my_address(ipmi_user_t   user,
1135 			unsigned int  channel,
1136 			unsigned char *address)
1137 {
1138 	if (channel >= IPMI_MAX_CHANNELS)
1139 		return -EINVAL;
1140 	*address = user->intf->channels[channel].address;
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL(ipmi_get_my_address);
1144 
1145 int ipmi_set_my_LUN(ipmi_user_t   user,
1146 		    unsigned int  channel,
1147 		    unsigned char LUN)
1148 {
1149 	if (channel >= IPMI_MAX_CHANNELS)
1150 		return -EINVAL;
1151 	user->intf->channels[channel].lun = LUN & 0x3;
1152 	return 0;
1153 }
1154 EXPORT_SYMBOL(ipmi_set_my_LUN);
1155 
1156 int ipmi_get_my_LUN(ipmi_user_t   user,
1157 		    unsigned int  channel,
1158 		    unsigned char *address)
1159 {
1160 	if (channel >= IPMI_MAX_CHANNELS)
1161 		return -EINVAL;
1162 	*address = user->intf->channels[channel].lun;
1163 	return 0;
1164 }
1165 EXPORT_SYMBOL(ipmi_get_my_LUN);
1166 
1167 int ipmi_get_maintenance_mode(ipmi_user_t user)
1168 {
1169 	int           mode;
1170 	unsigned long flags;
1171 
1172 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173 	mode = user->intf->maintenance_mode;
1174 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175 
1176 	return mode;
1177 }
1178 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179 
1180 static void maintenance_mode_update(ipmi_smi_t intf)
1181 {
1182 	if (intf->handlers->set_maintenance_mode)
1183 		intf->handlers->set_maintenance_mode(
1184 			intf->send_info, intf->maintenance_mode_enable);
1185 }
1186 
1187 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188 {
1189 	int           rv = 0;
1190 	unsigned long flags;
1191 	ipmi_smi_t    intf = user->intf;
1192 
1193 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194 	if (intf->maintenance_mode != mode) {
1195 		switch (mode) {
1196 		case IPMI_MAINTENANCE_MODE_AUTO:
1197 			intf->maintenance_mode_enable
1198 				= (intf->auto_maintenance_timeout > 0);
1199 			break;
1200 
1201 		case IPMI_MAINTENANCE_MODE_OFF:
1202 			intf->maintenance_mode_enable = false;
1203 			break;
1204 
1205 		case IPMI_MAINTENANCE_MODE_ON:
1206 			intf->maintenance_mode_enable = true;
1207 			break;
1208 
1209 		default:
1210 			rv = -EINVAL;
1211 			goto out_unlock;
1212 		}
1213 		intf->maintenance_mode = mode;
1214 
1215 		maintenance_mode_update(intf);
1216 	}
1217  out_unlock:
1218 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219 
1220 	return rv;
1221 }
1222 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223 
1224 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225 {
1226 	unsigned long        flags;
1227 	ipmi_smi_t           intf = user->intf;
1228 	struct ipmi_recv_msg *msg, *msg2;
1229 	struct list_head     msgs;
1230 
1231 	INIT_LIST_HEAD(&msgs);
1232 
1233 	spin_lock_irqsave(&intf->events_lock, flags);
1234 	if (user->gets_events == val)
1235 		goto out;
1236 
1237 	user->gets_events = val;
1238 
1239 	if (val) {
1240 		if (atomic_inc_return(&intf->event_waiters) == 1)
1241 			need_waiter(intf);
1242 	} else {
1243 		atomic_dec(&intf->event_waiters);
1244 	}
1245 
1246 	if (intf->delivering_events)
1247 		/*
1248 		 * Another thread is delivering events for this, so
1249 		 * let it handle any new events.
1250 		 */
1251 		goto out;
1252 
1253 	/* Deliver any queued events. */
1254 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256 			list_move_tail(&msg->link, &msgs);
1257 		intf->waiting_events_count = 0;
1258 		if (intf->event_msg_printed) {
1259 			printk(KERN_WARNING PFX "Event queue no longer"
1260 			       " full\n");
1261 			intf->event_msg_printed = 0;
1262 		}
1263 
1264 		intf->delivering_events = 1;
1265 		spin_unlock_irqrestore(&intf->events_lock, flags);
1266 
1267 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268 			msg->user = user;
1269 			kref_get(&user->refcount);
1270 			deliver_response(msg);
1271 		}
1272 
1273 		spin_lock_irqsave(&intf->events_lock, flags);
1274 		intf->delivering_events = 0;
1275 	}
1276 
1277  out:
1278 	spin_unlock_irqrestore(&intf->events_lock, flags);
1279 
1280 	return 0;
1281 }
1282 EXPORT_SYMBOL(ipmi_set_gets_events);
1283 
1284 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1285 				      unsigned char netfn,
1286 				      unsigned char cmd,
1287 				      unsigned char chan)
1288 {
1289 	struct cmd_rcvr *rcvr;
1290 
1291 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293 					&& (rcvr->chans & (1 << chan)))
1294 			return rcvr;
1295 	}
1296 	return NULL;
1297 }
1298 
1299 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1300 				 unsigned char netfn,
1301 				 unsigned char cmd,
1302 				 unsigned int  chans)
1303 {
1304 	struct cmd_rcvr *rcvr;
1305 
1306 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308 					&& (rcvr->chans & chans))
1309 			return 0;
1310 	}
1311 	return 1;
1312 }
1313 
1314 int ipmi_register_for_cmd(ipmi_user_t   user,
1315 			  unsigned char netfn,
1316 			  unsigned char cmd,
1317 			  unsigned int  chans)
1318 {
1319 	ipmi_smi_t      intf = user->intf;
1320 	struct cmd_rcvr *rcvr;
1321 	int             rv = 0;
1322 
1323 
1324 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325 	if (!rcvr)
1326 		return -ENOMEM;
1327 	rcvr->cmd = cmd;
1328 	rcvr->netfn = netfn;
1329 	rcvr->chans = chans;
1330 	rcvr->user = user;
1331 
1332 	mutex_lock(&intf->cmd_rcvrs_mutex);
1333 	/* Make sure the command/netfn is not already registered. */
1334 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335 		rv = -EBUSY;
1336 		goto out_unlock;
1337 	}
1338 
1339 	if (atomic_inc_return(&intf->event_waiters) == 1)
1340 		need_waiter(intf);
1341 
1342 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343 
1344  out_unlock:
1345 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1346 	if (rv)
1347 		kfree(rcvr);
1348 
1349 	return rv;
1350 }
1351 EXPORT_SYMBOL(ipmi_register_for_cmd);
1352 
1353 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1354 			    unsigned char netfn,
1355 			    unsigned char cmd,
1356 			    unsigned int  chans)
1357 {
1358 	ipmi_smi_t      intf = user->intf;
1359 	struct cmd_rcvr *rcvr;
1360 	struct cmd_rcvr *rcvrs = NULL;
1361 	int i, rv = -ENOENT;
1362 
1363 	mutex_lock(&intf->cmd_rcvrs_mutex);
1364 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365 		if (((1 << i) & chans) == 0)
1366 			continue;
1367 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368 		if (rcvr == NULL)
1369 			continue;
1370 		if (rcvr->user == user) {
1371 			rv = 0;
1372 			rcvr->chans &= ~chans;
1373 			if (rcvr->chans == 0) {
1374 				list_del_rcu(&rcvr->link);
1375 				rcvr->next = rcvrs;
1376 				rcvrs = rcvr;
1377 			}
1378 		}
1379 	}
1380 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1381 	synchronize_rcu();
1382 	while (rcvrs) {
1383 		atomic_dec(&intf->event_waiters);
1384 		rcvr = rcvrs;
1385 		rcvrs = rcvr->next;
1386 		kfree(rcvr);
1387 	}
1388 	return rv;
1389 }
1390 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391 
1392 static unsigned char
1393 ipmb_checksum(unsigned char *data, int size)
1394 {
1395 	unsigned char csum = 0;
1396 
1397 	for (; size > 0; size--, data++)
1398 		csum += *data;
1399 
1400 	return -csum;
1401 }
1402 
1403 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1404 				   struct kernel_ipmi_msg *msg,
1405 				   struct ipmi_ipmb_addr *ipmb_addr,
1406 				   long                  msgid,
1407 				   unsigned char         ipmb_seq,
1408 				   int                   broadcast,
1409 				   unsigned char         source_address,
1410 				   unsigned char         source_lun)
1411 {
1412 	int i = broadcast;
1413 
1414 	/* Format the IPMB header data. */
1415 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417 	smi_msg->data[2] = ipmb_addr->channel;
1418 	if (broadcast)
1419 		smi_msg->data[3] = 0;
1420 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423 	smi_msg->data[i+6] = source_address;
1424 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425 	smi_msg->data[i+8] = msg->cmd;
1426 
1427 	/* Now tack on the data to the message. */
1428 	if (msg->data_len > 0)
1429 		memcpy(&(smi_msg->data[i+9]), msg->data,
1430 		       msg->data_len);
1431 	smi_msg->data_size = msg->data_len + 9;
1432 
1433 	/* Now calculate the checksum and tack it on. */
1434 	smi_msg->data[i+smi_msg->data_size]
1435 		= ipmb_checksum(&(smi_msg->data[i+6]),
1436 				smi_msg->data_size-6);
1437 
1438 	/*
1439 	 * Add on the checksum size and the offset from the
1440 	 * broadcast.
1441 	 */
1442 	smi_msg->data_size += 1 + i;
1443 
1444 	smi_msg->msgid = msgid;
1445 }
1446 
1447 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1448 				  struct kernel_ipmi_msg *msg,
1449 				  struct ipmi_lan_addr  *lan_addr,
1450 				  long                  msgid,
1451 				  unsigned char         ipmb_seq,
1452 				  unsigned char         source_lun)
1453 {
1454 	/* Format the IPMB header data. */
1455 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457 	smi_msg->data[2] = lan_addr->channel;
1458 	smi_msg->data[3] = lan_addr->session_handle;
1459 	smi_msg->data[4] = lan_addr->remote_SWID;
1460 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462 	smi_msg->data[7] = lan_addr->local_SWID;
1463 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464 	smi_msg->data[9] = msg->cmd;
1465 
1466 	/* Now tack on the data to the message. */
1467 	if (msg->data_len > 0)
1468 		memcpy(&(smi_msg->data[10]), msg->data,
1469 		       msg->data_len);
1470 	smi_msg->data_size = msg->data_len + 10;
1471 
1472 	/* Now calculate the checksum and tack it on. */
1473 	smi_msg->data[smi_msg->data_size]
1474 		= ipmb_checksum(&(smi_msg->data[7]),
1475 				smi_msg->data_size-7);
1476 
1477 	/*
1478 	 * Add on the checksum size and the offset from the
1479 	 * broadcast.
1480 	 */
1481 	smi_msg->data_size += 1;
1482 
1483 	smi_msg->msgid = msgid;
1484 }
1485 
1486 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1487 		     struct ipmi_smi_msg *smi_msg, int priority)
1488 {
1489 	int run_to_completion = intf->run_to_completion;
1490 	unsigned long flags;
1491 
1492 	if (!run_to_completion)
1493 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1494 	if (intf->curr_msg) {
1495 		if (priority > 0)
1496 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1497 		else
1498 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1499 		smi_msg = NULL;
1500 	} else {
1501 		intf->curr_msg = smi_msg;
1502 	}
1503 	if (!run_to_completion)
1504 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1505 
1506 	if (smi_msg)
1507 		handlers->sender(intf->send_info, smi_msg);
1508 }
1509 
1510 /*
1511  * Separate from ipmi_request so that the user does not have to be
1512  * supplied in certain circumstances (mainly at panic time).  If
1513  * messages are supplied, they will be freed, even if an error
1514  * occurs.
1515  */
1516 static int i_ipmi_request(ipmi_user_t          user,
1517 			  ipmi_smi_t           intf,
1518 			  struct ipmi_addr     *addr,
1519 			  long                 msgid,
1520 			  struct kernel_ipmi_msg *msg,
1521 			  void                 *user_msg_data,
1522 			  void                 *supplied_smi,
1523 			  struct ipmi_recv_msg *supplied_recv,
1524 			  int                  priority,
1525 			  unsigned char        source_address,
1526 			  unsigned char        source_lun,
1527 			  int                  retries,
1528 			  unsigned int         retry_time_ms)
1529 {
1530 	int                      rv = 0;
1531 	struct ipmi_smi_msg      *smi_msg;
1532 	struct ipmi_recv_msg     *recv_msg;
1533 	unsigned long            flags;
1534 
1535 
1536 	if (supplied_recv)
1537 		recv_msg = supplied_recv;
1538 	else {
1539 		recv_msg = ipmi_alloc_recv_msg();
1540 		if (recv_msg == NULL)
1541 			return -ENOMEM;
1542 	}
1543 	recv_msg->user_msg_data = user_msg_data;
1544 
1545 	if (supplied_smi)
1546 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1547 	else {
1548 		smi_msg = ipmi_alloc_smi_msg();
1549 		if (smi_msg == NULL) {
1550 			ipmi_free_recv_msg(recv_msg);
1551 			return -ENOMEM;
1552 		}
1553 	}
1554 
1555 	rcu_read_lock();
1556 	if (intf->in_shutdown) {
1557 		rv = -ENODEV;
1558 		goto out_err;
1559 	}
1560 
1561 	recv_msg->user = user;
1562 	if (user)
1563 		kref_get(&user->refcount);
1564 	recv_msg->msgid = msgid;
1565 	/*
1566 	 * Store the message to send in the receive message so timeout
1567 	 * responses can get the proper response data.
1568 	 */
1569 	recv_msg->msg = *msg;
1570 
1571 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1572 		struct ipmi_system_interface_addr *smi_addr;
1573 
1574 		if (msg->netfn & 1) {
1575 			/* Responses are not allowed to the SMI. */
1576 			rv = -EINVAL;
1577 			goto out_err;
1578 		}
1579 
1580 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1581 		if (smi_addr->lun > 3) {
1582 			ipmi_inc_stat(intf, sent_invalid_commands);
1583 			rv = -EINVAL;
1584 			goto out_err;
1585 		}
1586 
1587 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1588 
1589 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1590 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1591 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1592 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1593 			/*
1594 			 * We don't let the user do these, since we manage
1595 			 * the sequence numbers.
1596 			 */
1597 			ipmi_inc_stat(intf, sent_invalid_commands);
1598 			rv = -EINVAL;
1599 			goto out_err;
1600 		}
1601 
1602 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1604 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1605 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1606 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1607 			intf->auto_maintenance_timeout
1608 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1609 			if (!intf->maintenance_mode
1610 			    && !intf->maintenance_mode_enable) {
1611 				intf->maintenance_mode_enable = true;
1612 				maintenance_mode_update(intf);
1613 			}
1614 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1615 					       flags);
1616 		}
1617 
1618 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1619 			ipmi_inc_stat(intf, sent_invalid_commands);
1620 			rv = -EMSGSIZE;
1621 			goto out_err;
1622 		}
1623 
1624 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1625 		smi_msg->data[1] = msg->cmd;
1626 		smi_msg->msgid = msgid;
1627 		smi_msg->user_data = recv_msg;
1628 		if (msg->data_len > 0)
1629 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1630 		smi_msg->data_size = msg->data_len + 2;
1631 		ipmi_inc_stat(intf, sent_local_commands);
1632 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1633 		struct ipmi_ipmb_addr *ipmb_addr;
1634 		unsigned char         ipmb_seq;
1635 		long                  seqid;
1636 		int                   broadcast = 0;
1637 
1638 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1639 			ipmi_inc_stat(intf, sent_invalid_commands);
1640 			rv = -EINVAL;
1641 			goto out_err;
1642 		}
1643 
1644 		if (intf->channels[addr->channel].medium
1645 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1646 			ipmi_inc_stat(intf, sent_invalid_commands);
1647 			rv = -EINVAL;
1648 			goto out_err;
1649 		}
1650 
1651 		if (retries < 0) {
1652 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1653 			retries = 0; /* Don't retry broadcasts. */
1654 		    else
1655 			retries = 4;
1656 		}
1657 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1658 		    /*
1659 		     * Broadcasts add a zero at the beginning of the
1660 		     * message, but otherwise is the same as an IPMB
1661 		     * address.
1662 		     */
1663 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1664 		    broadcast = 1;
1665 		}
1666 
1667 
1668 		/* Default to 1 second retries. */
1669 		if (retry_time_ms == 0)
1670 		    retry_time_ms = 1000;
1671 
1672 		/*
1673 		 * 9 for the header and 1 for the checksum, plus
1674 		 * possibly one for the broadcast.
1675 		 */
1676 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1677 			ipmi_inc_stat(intf, sent_invalid_commands);
1678 			rv = -EMSGSIZE;
1679 			goto out_err;
1680 		}
1681 
1682 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1683 		if (ipmb_addr->lun > 3) {
1684 			ipmi_inc_stat(intf, sent_invalid_commands);
1685 			rv = -EINVAL;
1686 			goto out_err;
1687 		}
1688 
1689 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1690 
1691 		if (recv_msg->msg.netfn & 0x1) {
1692 			/*
1693 			 * It's a response, so use the user's sequence
1694 			 * from msgid.
1695 			 */
1696 			ipmi_inc_stat(intf, sent_ipmb_responses);
1697 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1698 					msgid, broadcast,
1699 					source_address, source_lun);
1700 
1701 			/*
1702 			 * Save the receive message so we can use it
1703 			 * to deliver the response.
1704 			 */
1705 			smi_msg->user_data = recv_msg;
1706 		} else {
1707 			/* It's a command, so get a sequence for it. */
1708 
1709 			spin_lock_irqsave(&(intf->seq_lock), flags);
1710 
1711 			/*
1712 			 * Create a sequence number with a 1 second
1713 			 * timeout and 4 retries.
1714 			 */
1715 			rv = intf_next_seq(intf,
1716 					   recv_msg,
1717 					   retry_time_ms,
1718 					   retries,
1719 					   broadcast,
1720 					   &ipmb_seq,
1721 					   &seqid);
1722 			if (rv) {
1723 				/*
1724 				 * We have used up all the sequence numbers,
1725 				 * probably, so abort.
1726 				 */
1727 				spin_unlock_irqrestore(&(intf->seq_lock),
1728 						       flags);
1729 				goto out_err;
1730 			}
1731 
1732 			ipmi_inc_stat(intf, sent_ipmb_commands);
1733 
1734 			/*
1735 			 * Store the sequence number in the message,
1736 			 * so that when the send message response
1737 			 * comes back we can start the timer.
1738 			 */
1739 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1740 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1741 					ipmb_seq, broadcast,
1742 					source_address, source_lun);
1743 
1744 			/*
1745 			 * Copy the message into the recv message data, so we
1746 			 * can retransmit it later if necessary.
1747 			 */
1748 			memcpy(recv_msg->msg_data, smi_msg->data,
1749 			       smi_msg->data_size);
1750 			recv_msg->msg.data = recv_msg->msg_data;
1751 			recv_msg->msg.data_len = smi_msg->data_size;
1752 
1753 			/*
1754 			 * We don't unlock until here, because we need
1755 			 * to copy the completed message into the
1756 			 * recv_msg before we release the lock.
1757 			 * Otherwise, race conditions may bite us.  I
1758 			 * know that's pretty paranoid, but I prefer
1759 			 * to be correct.
1760 			 */
1761 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1762 		}
1763 	} else if (is_lan_addr(addr)) {
1764 		struct ipmi_lan_addr  *lan_addr;
1765 		unsigned char         ipmb_seq;
1766 		long                  seqid;
1767 
1768 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1769 			ipmi_inc_stat(intf, sent_invalid_commands);
1770 			rv = -EINVAL;
1771 			goto out_err;
1772 		}
1773 
1774 		if ((intf->channels[addr->channel].medium
1775 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1776 		    && (intf->channels[addr->channel].medium
1777 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1778 			ipmi_inc_stat(intf, sent_invalid_commands);
1779 			rv = -EINVAL;
1780 			goto out_err;
1781 		}
1782 
1783 		retries = 4;
1784 
1785 		/* Default to 1 second retries. */
1786 		if (retry_time_ms == 0)
1787 		    retry_time_ms = 1000;
1788 
1789 		/* 11 for the header and 1 for the checksum. */
1790 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1791 			ipmi_inc_stat(intf, sent_invalid_commands);
1792 			rv = -EMSGSIZE;
1793 			goto out_err;
1794 		}
1795 
1796 		lan_addr = (struct ipmi_lan_addr *) addr;
1797 		if (lan_addr->lun > 3) {
1798 			ipmi_inc_stat(intf, sent_invalid_commands);
1799 			rv = -EINVAL;
1800 			goto out_err;
1801 		}
1802 
1803 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1804 
1805 		if (recv_msg->msg.netfn & 0x1) {
1806 			/*
1807 			 * It's a response, so use the user's sequence
1808 			 * from msgid.
1809 			 */
1810 			ipmi_inc_stat(intf, sent_lan_responses);
1811 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1812 				       msgid, source_lun);
1813 
1814 			/*
1815 			 * Save the receive message so we can use it
1816 			 * to deliver the response.
1817 			 */
1818 			smi_msg->user_data = recv_msg;
1819 		} else {
1820 			/* It's a command, so get a sequence for it. */
1821 
1822 			spin_lock_irqsave(&(intf->seq_lock), flags);
1823 
1824 			/*
1825 			 * Create a sequence number with a 1 second
1826 			 * timeout and 4 retries.
1827 			 */
1828 			rv = intf_next_seq(intf,
1829 					   recv_msg,
1830 					   retry_time_ms,
1831 					   retries,
1832 					   0,
1833 					   &ipmb_seq,
1834 					   &seqid);
1835 			if (rv) {
1836 				/*
1837 				 * We have used up all the sequence numbers,
1838 				 * probably, so abort.
1839 				 */
1840 				spin_unlock_irqrestore(&(intf->seq_lock),
1841 						       flags);
1842 				goto out_err;
1843 			}
1844 
1845 			ipmi_inc_stat(intf, sent_lan_commands);
1846 
1847 			/*
1848 			 * Store the sequence number in the message,
1849 			 * so that when the send message response
1850 			 * comes back we can start the timer.
1851 			 */
1852 			format_lan_msg(smi_msg, msg, lan_addr,
1853 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1854 				       ipmb_seq, source_lun);
1855 
1856 			/*
1857 			 * Copy the message into the recv message data, so we
1858 			 * can retransmit it later if necessary.
1859 			 */
1860 			memcpy(recv_msg->msg_data, smi_msg->data,
1861 			       smi_msg->data_size);
1862 			recv_msg->msg.data = recv_msg->msg_data;
1863 			recv_msg->msg.data_len = smi_msg->data_size;
1864 
1865 			/*
1866 			 * We don't unlock until here, because we need
1867 			 * to copy the completed message into the
1868 			 * recv_msg before we release the lock.
1869 			 * Otherwise, race conditions may bite us.  I
1870 			 * know that's pretty paranoid, but I prefer
1871 			 * to be correct.
1872 			 */
1873 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1874 		}
1875 	} else {
1876 	    /* Unknown address type. */
1877 		ipmi_inc_stat(intf, sent_invalid_commands);
1878 		rv = -EINVAL;
1879 		goto out_err;
1880 	}
1881 
1882 #ifdef DEBUG_MSGING
1883 	{
1884 		int m;
1885 		for (m = 0; m < smi_msg->data_size; m++)
1886 			printk(" %2.2x", smi_msg->data[m]);
1887 		printk("\n");
1888 	}
1889 #endif
1890 
1891 	smi_send(intf, intf->handlers, smi_msg, priority);
1892 	rcu_read_unlock();
1893 
1894 	return 0;
1895 
1896  out_err:
1897 	rcu_read_unlock();
1898 	ipmi_free_smi_msg(smi_msg);
1899 	ipmi_free_recv_msg(recv_msg);
1900 	return rv;
1901 }
1902 
1903 static int check_addr(ipmi_smi_t       intf,
1904 		      struct ipmi_addr *addr,
1905 		      unsigned char    *saddr,
1906 		      unsigned char    *lun)
1907 {
1908 	if (addr->channel >= IPMI_MAX_CHANNELS)
1909 		return -EINVAL;
1910 	*lun = intf->channels[addr->channel].lun;
1911 	*saddr = intf->channels[addr->channel].address;
1912 	return 0;
1913 }
1914 
1915 int ipmi_request_settime(ipmi_user_t      user,
1916 			 struct ipmi_addr *addr,
1917 			 long             msgid,
1918 			 struct kernel_ipmi_msg  *msg,
1919 			 void             *user_msg_data,
1920 			 int              priority,
1921 			 int              retries,
1922 			 unsigned int     retry_time_ms)
1923 {
1924 	unsigned char saddr = 0, lun = 0;
1925 	int           rv;
1926 
1927 	if (!user)
1928 		return -EINVAL;
1929 	rv = check_addr(user->intf, addr, &saddr, &lun);
1930 	if (rv)
1931 		return rv;
1932 	return i_ipmi_request(user,
1933 			      user->intf,
1934 			      addr,
1935 			      msgid,
1936 			      msg,
1937 			      user_msg_data,
1938 			      NULL, NULL,
1939 			      priority,
1940 			      saddr,
1941 			      lun,
1942 			      retries,
1943 			      retry_time_ms);
1944 }
1945 EXPORT_SYMBOL(ipmi_request_settime);
1946 
1947 int ipmi_request_supply_msgs(ipmi_user_t          user,
1948 			     struct ipmi_addr     *addr,
1949 			     long                 msgid,
1950 			     struct kernel_ipmi_msg *msg,
1951 			     void                 *user_msg_data,
1952 			     void                 *supplied_smi,
1953 			     struct ipmi_recv_msg *supplied_recv,
1954 			     int                  priority)
1955 {
1956 	unsigned char saddr = 0, lun = 0;
1957 	int           rv;
1958 
1959 	if (!user)
1960 		return -EINVAL;
1961 	rv = check_addr(user->intf, addr, &saddr, &lun);
1962 	if (rv)
1963 		return rv;
1964 	return i_ipmi_request(user,
1965 			      user->intf,
1966 			      addr,
1967 			      msgid,
1968 			      msg,
1969 			      user_msg_data,
1970 			      supplied_smi,
1971 			      supplied_recv,
1972 			      priority,
1973 			      saddr,
1974 			      lun,
1975 			      -1, 0);
1976 }
1977 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1978 
1979 #ifdef CONFIG_PROC_FS
1980 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1981 {
1982 	ipmi_smi_t intf = m->private;
1983 	int        i;
1984 
1985 	seq_printf(m, "%x", intf->channels[0].address);
1986 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1987 		seq_printf(m, " %x", intf->channels[i].address);
1988 	return seq_putc(m, '\n');
1989 }
1990 
1991 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1992 {
1993 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1994 }
1995 
1996 static const struct file_operations smi_ipmb_proc_ops = {
1997 	.open		= smi_ipmb_proc_open,
1998 	.read		= seq_read,
1999 	.llseek		= seq_lseek,
2000 	.release	= single_release,
2001 };
2002 
2003 static int smi_version_proc_show(struct seq_file *m, void *v)
2004 {
2005 	ipmi_smi_t intf = m->private;
2006 
2007 	return seq_printf(m, "%u.%u\n",
2008 		       ipmi_version_major(&intf->bmc->id),
2009 		       ipmi_version_minor(&intf->bmc->id));
2010 }
2011 
2012 static int smi_version_proc_open(struct inode *inode, struct file *file)
2013 {
2014 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2015 }
2016 
2017 static const struct file_operations smi_version_proc_ops = {
2018 	.open		= smi_version_proc_open,
2019 	.read		= seq_read,
2020 	.llseek		= seq_lseek,
2021 	.release	= single_release,
2022 };
2023 
2024 static int smi_stats_proc_show(struct seq_file *m, void *v)
2025 {
2026 	ipmi_smi_t intf = m->private;
2027 
2028 	seq_printf(m, "sent_invalid_commands:       %u\n",
2029 		       ipmi_get_stat(intf, sent_invalid_commands));
2030 	seq_printf(m, "sent_local_commands:         %u\n",
2031 		       ipmi_get_stat(intf, sent_local_commands));
2032 	seq_printf(m, "handled_local_responses:     %u\n",
2033 		       ipmi_get_stat(intf, handled_local_responses));
2034 	seq_printf(m, "unhandled_local_responses:   %u\n",
2035 		       ipmi_get_stat(intf, unhandled_local_responses));
2036 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2037 		       ipmi_get_stat(intf, sent_ipmb_commands));
2038 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2039 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2040 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2041 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2042 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2043 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2044 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2045 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2046 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2047 		       ipmi_get_stat(intf, sent_ipmb_responses));
2048 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2049 		       ipmi_get_stat(intf, handled_ipmb_responses));
2050 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2051 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2052 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2053 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2054 	seq_printf(m, "sent_lan_commands:           %u\n",
2055 		       ipmi_get_stat(intf, sent_lan_commands));
2056 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2057 		       ipmi_get_stat(intf, sent_lan_command_errs));
2058 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2059 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2060 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2061 		       ipmi_get_stat(intf, timed_out_lan_commands));
2062 	seq_printf(m, "sent_lan_responses:          %u\n",
2063 		       ipmi_get_stat(intf, sent_lan_responses));
2064 	seq_printf(m, "handled_lan_responses:       %u\n",
2065 		       ipmi_get_stat(intf, handled_lan_responses));
2066 	seq_printf(m, "invalid_lan_responses:       %u\n",
2067 		       ipmi_get_stat(intf, invalid_lan_responses));
2068 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2069 		       ipmi_get_stat(intf, unhandled_lan_responses));
2070 	seq_printf(m, "handled_commands:            %u\n",
2071 		       ipmi_get_stat(intf, handled_commands));
2072 	seq_printf(m, "invalid_commands:            %u\n",
2073 		       ipmi_get_stat(intf, invalid_commands));
2074 	seq_printf(m, "unhandled_commands:          %u\n",
2075 		       ipmi_get_stat(intf, unhandled_commands));
2076 	seq_printf(m, "invalid_events:              %u\n",
2077 		       ipmi_get_stat(intf, invalid_events));
2078 	seq_printf(m, "events:                      %u\n",
2079 		       ipmi_get_stat(intf, events));
2080 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2081 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2082 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2083 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2084 	return 0;
2085 }
2086 
2087 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2088 {
2089 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2090 }
2091 
2092 static const struct file_operations smi_stats_proc_ops = {
2093 	.open		= smi_stats_proc_open,
2094 	.read		= seq_read,
2095 	.llseek		= seq_lseek,
2096 	.release	= single_release,
2097 };
2098 #endif /* CONFIG_PROC_FS */
2099 
2100 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2101 			    const struct file_operations *proc_ops,
2102 			    void *data)
2103 {
2104 	int                    rv = 0;
2105 #ifdef CONFIG_PROC_FS
2106 	struct proc_dir_entry  *file;
2107 	struct ipmi_proc_entry *entry;
2108 
2109 	/* Create a list element. */
2110 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2111 	if (!entry)
2112 		return -ENOMEM;
2113 	entry->name = kstrdup(name, GFP_KERNEL);
2114 	if (!entry->name) {
2115 		kfree(entry);
2116 		return -ENOMEM;
2117 	}
2118 
2119 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2120 	if (!file) {
2121 		kfree(entry->name);
2122 		kfree(entry);
2123 		rv = -ENOMEM;
2124 	} else {
2125 		mutex_lock(&smi->proc_entry_lock);
2126 		/* Stick it on the list. */
2127 		entry->next = smi->proc_entries;
2128 		smi->proc_entries = entry;
2129 		mutex_unlock(&smi->proc_entry_lock);
2130 	}
2131 #endif /* CONFIG_PROC_FS */
2132 
2133 	return rv;
2134 }
2135 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2136 
2137 static int add_proc_entries(ipmi_smi_t smi, int num)
2138 {
2139 	int rv = 0;
2140 
2141 #ifdef CONFIG_PROC_FS
2142 	sprintf(smi->proc_dir_name, "%d", num);
2143 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2144 	if (!smi->proc_dir)
2145 		rv = -ENOMEM;
2146 
2147 	if (rv == 0)
2148 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2149 					     &smi_stats_proc_ops,
2150 					     smi);
2151 
2152 	if (rv == 0)
2153 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2154 					     &smi_ipmb_proc_ops,
2155 					     smi);
2156 
2157 	if (rv == 0)
2158 		rv = ipmi_smi_add_proc_entry(smi, "version",
2159 					     &smi_version_proc_ops,
2160 					     smi);
2161 #endif /* CONFIG_PROC_FS */
2162 
2163 	return rv;
2164 }
2165 
2166 static void remove_proc_entries(ipmi_smi_t smi)
2167 {
2168 #ifdef CONFIG_PROC_FS
2169 	struct ipmi_proc_entry *entry;
2170 
2171 	mutex_lock(&smi->proc_entry_lock);
2172 	while (smi->proc_entries) {
2173 		entry = smi->proc_entries;
2174 		smi->proc_entries = entry->next;
2175 
2176 		remove_proc_entry(entry->name, smi->proc_dir);
2177 		kfree(entry->name);
2178 		kfree(entry);
2179 	}
2180 	mutex_unlock(&smi->proc_entry_lock);
2181 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2182 #endif /* CONFIG_PROC_FS */
2183 }
2184 
2185 static int __find_bmc_guid(struct device *dev, void *data)
2186 {
2187 	unsigned char *id = data;
2188 	struct bmc_device *bmc = to_bmc_device(dev);
2189 	return memcmp(bmc->guid, id, 16) == 0;
2190 }
2191 
2192 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2193 					     unsigned char *guid)
2194 {
2195 	struct device *dev;
2196 
2197 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2198 	if (dev)
2199 		return to_bmc_device(dev);
2200 	else
2201 		return NULL;
2202 }
2203 
2204 struct prod_dev_id {
2205 	unsigned int  product_id;
2206 	unsigned char device_id;
2207 };
2208 
2209 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2210 {
2211 	struct prod_dev_id *id = data;
2212 	struct bmc_device *bmc = to_bmc_device(dev);
2213 
2214 	return (bmc->id.product_id == id->product_id
2215 		&& bmc->id.device_id == id->device_id);
2216 }
2217 
2218 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2219 	struct device_driver *drv,
2220 	unsigned int product_id, unsigned char device_id)
2221 {
2222 	struct prod_dev_id id = {
2223 		.product_id = product_id,
2224 		.device_id = device_id,
2225 	};
2226 	struct device *dev;
2227 
2228 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2229 	if (dev)
2230 		return to_bmc_device(dev);
2231 	else
2232 		return NULL;
2233 }
2234 
2235 static ssize_t device_id_show(struct device *dev,
2236 			      struct device_attribute *attr,
2237 			      char *buf)
2238 {
2239 	struct bmc_device *bmc = to_bmc_device(dev);
2240 
2241 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2242 }
2243 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2244 
2245 static ssize_t provides_device_sdrs_show(struct device *dev,
2246 					 struct device_attribute *attr,
2247 					 char *buf)
2248 {
2249 	struct bmc_device *bmc = to_bmc_device(dev);
2250 
2251 	return snprintf(buf, 10, "%u\n",
2252 			(bmc->id.device_revision & 0x80) >> 7);
2253 }
2254 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2255 		   NULL);
2256 
2257 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2258 			     char *buf)
2259 {
2260 	struct bmc_device *bmc = to_bmc_device(dev);
2261 
2262 	return snprintf(buf, 20, "%u\n",
2263 			bmc->id.device_revision & 0x0F);
2264 }
2265 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2266 
2267 static ssize_t firmware_revision_show(struct device *dev,
2268 				      struct device_attribute *attr,
2269 				      char *buf)
2270 {
2271 	struct bmc_device *bmc = to_bmc_device(dev);
2272 
2273 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2274 			bmc->id.firmware_revision_2);
2275 }
2276 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2277 
2278 static ssize_t ipmi_version_show(struct device *dev,
2279 				 struct device_attribute *attr,
2280 				 char *buf)
2281 {
2282 	struct bmc_device *bmc = to_bmc_device(dev);
2283 
2284 	return snprintf(buf, 20, "%u.%u\n",
2285 			ipmi_version_major(&bmc->id),
2286 			ipmi_version_minor(&bmc->id));
2287 }
2288 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2289 
2290 static ssize_t add_dev_support_show(struct device *dev,
2291 				    struct device_attribute *attr,
2292 				    char *buf)
2293 {
2294 	struct bmc_device *bmc = to_bmc_device(dev);
2295 
2296 	return snprintf(buf, 10, "0x%02x\n",
2297 			bmc->id.additional_device_support);
2298 }
2299 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2300 		   NULL);
2301 
2302 static ssize_t manufacturer_id_show(struct device *dev,
2303 				    struct device_attribute *attr,
2304 				    char *buf)
2305 {
2306 	struct bmc_device *bmc = to_bmc_device(dev);
2307 
2308 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2309 }
2310 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2311 
2312 static ssize_t product_id_show(struct device *dev,
2313 			       struct device_attribute *attr,
2314 			       char *buf)
2315 {
2316 	struct bmc_device *bmc = to_bmc_device(dev);
2317 
2318 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2319 }
2320 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2321 
2322 static ssize_t aux_firmware_rev_show(struct device *dev,
2323 				     struct device_attribute *attr,
2324 				     char *buf)
2325 {
2326 	struct bmc_device *bmc = to_bmc_device(dev);
2327 
2328 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2329 			bmc->id.aux_firmware_revision[3],
2330 			bmc->id.aux_firmware_revision[2],
2331 			bmc->id.aux_firmware_revision[1],
2332 			bmc->id.aux_firmware_revision[0]);
2333 }
2334 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2335 
2336 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2337 			 char *buf)
2338 {
2339 	struct bmc_device *bmc = to_bmc_device(dev);
2340 
2341 	return snprintf(buf, 100, "%Lx%Lx\n",
2342 			(long long) bmc->guid[0],
2343 			(long long) bmc->guid[8]);
2344 }
2345 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2346 
2347 static struct attribute *bmc_dev_attrs[] = {
2348 	&dev_attr_device_id.attr,
2349 	&dev_attr_provides_device_sdrs.attr,
2350 	&dev_attr_revision.attr,
2351 	&dev_attr_firmware_revision.attr,
2352 	&dev_attr_ipmi_version.attr,
2353 	&dev_attr_additional_device_support.attr,
2354 	&dev_attr_manufacturer_id.attr,
2355 	&dev_attr_product_id.attr,
2356 	NULL
2357 };
2358 
2359 static struct attribute_group bmc_dev_attr_group = {
2360 	.attrs		= bmc_dev_attrs,
2361 };
2362 
2363 static const struct attribute_group *bmc_dev_attr_groups[] = {
2364 	&bmc_dev_attr_group,
2365 	NULL
2366 };
2367 
2368 static struct device_type bmc_device_type = {
2369 	.groups		= bmc_dev_attr_groups,
2370 };
2371 
2372 static void
2373 release_bmc_device(struct device *dev)
2374 {
2375 	kfree(to_bmc_device(dev));
2376 }
2377 
2378 static void
2379 cleanup_bmc_device(struct kref *ref)
2380 {
2381 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2382 
2383 	if (bmc->id.aux_firmware_revision_set)
2384 		device_remove_file(&bmc->pdev.dev,
2385 				   &dev_attr_aux_firmware_revision);
2386 	if (bmc->guid_set)
2387 		device_remove_file(&bmc->pdev.dev,
2388 				   &dev_attr_guid);
2389 
2390 	platform_device_unregister(&bmc->pdev);
2391 }
2392 
2393 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2394 {
2395 	struct bmc_device *bmc = intf->bmc;
2396 
2397 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2398 	if (intf->my_dev_name) {
2399 		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2400 		kfree(intf->my_dev_name);
2401 		intf->my_dev_name = NULL;
2402 	}
2403 
2404 	mutex_lock(&ipmidriver_mutex);
2405 	kref_put(&bmc->usecount, cleanup_bmc_device);
2406 	intf->bmc = NULL;
2407 	mutex_unlock(&ipmidriver_mutex);
2408 }
2409 
2410 static int create_bmc_files(struct bmc_device *bmc)
2411 {
2412 	int err;
2413 
2414 	if (bmc->id.aux_firmware_revision_set) {
2415 		err = device_create_file(&bmc->pdev.dev,
2416 					 &dev_attr_aux_firmware_revision);
2417 		if (err)
2418 			goto out;
2419 	}
2420 	if (bmc->guid_set) {
2421 		err = device_create_file(&bmc->pdev.dev,
2422 					 &dev_attr_guid);
2423 		if (err)
2424 			goto out_aux_firm;
2425 	}
2426 
2427 	return 0;
2428 
2429 out_aux_firm:
2430 	if (bmc->id.aux_firmware_revision_set)
2431 		device_remove_file(&bmc->pdev.dev,
2432 				   &dev_attr_aux_firmware_revision);
2433 out:
2434 	return err;
2435 }
2436 
2437 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438 {
2439 	int               rv;
2440 	struct bmc_device *bmc = intf->bmc;
2441 	struct bmc_device *old_bmc;
2442 
2443 	mutex_lock(&ipmidriver_mutex);
2444 
2445 	/*
2446 	 * Try to find if there is an bmc_device struct
2447 	 * representing the interfaced BMC already
2448 	 */
2449 	if (bmc->guid_set)
2450 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451 	else
2452 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453 						    bmc->id.product_id,
2454 						    bmc->id.device_id);
2455 
2456 	/*
2457 	 * If there is already an bmc_device, free the new one,
2458 	 * otherwise register the new BMC device
2459 	 */
2460 	if (old_bmc) {
2461 		kfree(bmc);
2462 		intf->bmc = old_bmc;
2463 		bmc = old_bmc;
2464 
2465 		kref_get(&bmc->usecount);
2466 		mutex_unlock(&ipmidriver_mutex);
2467 
2468 		printk(KERN_INFO
2469 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471 		       bmc->id.manufacturer_id,
2472 		       bmc->id.product_id,
2473 		       bmc->id.device_id);
2474 	} else {
2475 		unsigned char orig_dev_id = bmc->id.device_id;
2476 		int warn_printed = 0;
2477 
2478 		snprintf(bmc->name, sizeof(bmc->name),
2479 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2480 		bmc->pdev.name = bmc->name;
2481 
2482 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483 						 bmc->id.product_id,
2484 						 bmc->id.device_id)) {
2485 			if (!warn_printed) {
2486 				printk(KERN_WARNING PFX
2487 				       "This machine has two different BMCs"
2488 				       " with the same product id and device"
2489 				       " id.  This is an error in the"
2490 				       " firmware, but incrementing the"
2491 				       " device id to work around the problem."
2492 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493 				       bmc->id.product_id, bmc->id.device_id);
2494 				warn_printed = 1;
2495 			}
2496 			bmc->id.device_id++; /* Wraps at 255 */
2497 			if (bmc->id.device_id == orig_dev_id) {
2498 				printk(KERN_ERR PFX
2499 				       "Out of device ids!\n");
2500 				break;
2501 			}
2502 		}
2503 
2504 		bmc->pdev.dev.driver = &ipmidriver.driver;
2505 		bmc->pdev.id = bmc->id.device_id;
2506 		bmc->pdev.dev.release = release_bmc_device;
2507 		bmc->pdev.dev.type = &bmc_device_type;
2508 		kref_init(&bmc->usecount);
2509 
2510 		rv = platform_device_register(&bmc->pdev);
2511 		mutex_unlock(&ipmidriver_mutex);
2512 		if (rv) {
2513 			put_device(&bmc->pdev.dev);
2514 			printk(KERN_ERR
2515 			       "ipmi_msghandler:"
2516 			       " Unable to register bmc device: %d\n",
2517 			       rv);
2518 			/*
2519 			 * Don't go to out_err, you can only do that if
2520 			 * the device is registered already.
2521 			 */
2522 			return rv;
2523 		}
2524 
2525 		rv = create_bmc_files(bmc);
2526 		if (rv) {
2527 			mutex_lock(&ipmidriver_mutex);
2528 			platform_device_unregister(&bmc->pdev);
2529 			mutex_unlock(&ipmidriver_mutex);
2530 
2531 			return rv;
2532 		}
2533 
2534 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2535 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2536 			 bmc->id.manufacturer_id,
2537 			 bmc->id.product_id,
2538 			 bmc->id.device_id);
2539 	}
2540 
2541 	/*
2542 	 * create symlink from system interface device to bmc device
2543 	 * and back.
2544 	 */
2545 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2546 	if (rv) {
2547 		printk(KERN_ERR
2548 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2549 		       rv);
2550 		goto out_err;
2551 	}
2552 
2553 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2554 	if (!intf->my_dev_name) {
2555 		rv = -ENOMEM;
2556 		printk(KERN_ERR
2557 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2558 		       rv);
2559 		goto out_err;
2560 	}
2561 
2562 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2563 			       intf->my_dev_name);
2564 	if (rv) {
2565 		kfree(intf->my_dev_name);
2566 		intf->my_dev_name = NULL;
2567 		printk(KERN_ERR
2568 		       "ipmi_msghandler:"
2569 		       " Unable to create symlink to bmc: %d\n",
2570 		       rv);
2571 		goto out_err;
2572 	}
2573 
2574 	return 0;
2575 
2576 out_err:
2577 	ipmi_bmc_unregister(intf);
2578 	return rv;
2579 }
2580 
2581 static int
2582 send_guid_cmd(ipmi_smi_t intf, int chan)
2583 {
2584 	struct kernel_ipmi_msg            msg;
2585 	struct ipmi_system_interface_addr si;
2586 
2587 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2588 	si.channel = IPMI_BMC_CHANNEL;
2589 	si.lun = 0;
2590 
2591 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2592 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2593 	msg.data = NULL;
2594 	msg.data_len = 0;
2595 	return i_ipmi_request(NULL,
2596 			      intf,
2597 			      (struct ipmi_addr *) &si,
2598 			      0,
2599 			      &msg,
2600 			      intf,
2601 			      NULL,
2602 			      NULL,
2603 			      0,
2604 			      intf->channels[0].address,
2605 			      intf->channels[0].lun,
2606 			      -1, 0);
2607 }
2608 
2609 static void
2610 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2611 {
2612 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2613 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2614 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2615 		/* Not for me */
2616 		return;
2617 
2618 	if (msg->msg.data[0] != 0) {
2619 		/* Error from getting the GUID, the BMC doesn't have one. */
2620 		intf->bmc->guid_set = 0;
2621 		goto out;
2622 	}
2623 
2624 	if (msg->msg.data_len < 17) {
2625 		intf->bmc->guid_set = 0;
2626 		printk(KERN_WARNING PFX
2627 		       "guid_handler: The GUID response from the BMC was too"
2628 		       " short, it was %d but should have been 17.  Assuming"
2629 		       " GUID is not available.\n",
2630 		       msg->msg.data_len);
2631 		goto out;
2632 	}
2633 
2634 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2635 	intf->bmc->guid_set = 1;
2636  out:
2637 	wake_up(&intf->waitq);
2638 }
2639 
2640 static void
2641 get_guid(ipmi_smi_t intf)
2642 {
2643 	int rv;
2644 
2645 	intf->bmc->guid_set = 0x2;
2646 	intf->null_user_handler = guid_handler;
2647 	rv = send_guid_cmd(intf, 0);
2648 	if (rv)
2649 		/* Send failed, no GUID available. */
2650 		intf->bmc->guid_set = 0;
2651 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2652 	intf->null_user_handler = NULL;
2653 }
2654 
2655 static int
2656 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2657 {
2658 	struct kernel_ipmi_msg            msg;
2659 	unsigned char                     data[1];
2660 	struct ipmi_system_interface_addr si;
2661 
2662 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2663 	si.channel = IPMI_BMC_CHANNEL;
2664 	si.lun = 0;
2665 
2666 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2667 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2668 	msg.data = data;
2669 	msg.data_len = 1;
2670 	data[0] = chan;
2671 	return i_ipmi_request(NULL,
2672 			      intf,
2673 			      (struct ipmi_addr *) &si,
2674 			      0,
2675 			      &msg,
2676 			      intf,
2677 			      NULL,
2678 			      NULL,
2679 			      0,
2680 			      intf->channels[0].address,
2681 			      intf->channels[0].lun,
2682 			      -1, 0);
2683 }
2684 
2685 static void
2686 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2687 {
2688 	int rv = 0;
2689 	int chan;
2690 
2691 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2692 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2693 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2694 		/* It's the one we want */
2695 		if (msg->msg.data[0] != 0) {
2696 			/* Got an error from the channel, just go on. */
2697 
2698 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2699 				/*
2700 				 * If the MC does not support this
2701 				 * command, that is legal.  We just
2702 				 * assume it has one IPMB at channel
2703 				 * zero.
2704 				 */
2705 				intf->channels[0].medium
2706 					= IPMI_CHANNEL_MEDIUM_IPMB;
2707 				intf->channels[0].protocol
2708 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2709 
2710 				intf->curr_channel = IPMI_MAX_CHANNELS;
2711 				wake_up(&intf->waitq);
2712 				goto out;
2713 			}
2714 			goto next_channel;
2715 		}
2716 		if (msg->msg.data_len < 4) {
2717 			/* Message not big enough, just go on. */
2718 			goto next_channel;
2719 		}
2720 		chan = intf->curr_channel;
2721 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2722 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2723 
2724  next_channel:
2725 		intf->curr_channel++;
2726 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2727 			wake_up(&intf->waitq);
2728 		else
2729 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2730 
2731 		if (rv) {
2732 			/* Got an error somehow, just give up. */
2733 			printk(KERN_WARNING PFX
2734 			       "Error sending channel information for channel"
2735 			       " %d: %d\n", intf->curr_channel, rv);
2736 
2737 			intf->curr_channel = IPMI_MAX_CHANNELS;
2738 			wake_up(&intf->waitq);
2739 		}
2740 	}
2741  out:
2742 	return;
2743 }
2744 
2745 static void ipmi_poll(ipmi_smi_t intf)
2746 {
2747 	if (intf->handlers->poll)
2748 		intf->handlers->poll(intf->send_info);
2749 	/* In case something came in */
2750 	handle_new_recv_msgs(intf);
2751 }
2752 
2753 void ipmi_poll_interface(ipmi_user_t user)
2754 {
2755 	ipmi_poll(user->intf);
2756 }
2757 EXPORT_SYMBOL(ipmi_poll_interface);
2758 
2759 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2760 		      void		       *send_info,
2761 		      struct ipmi_device_id    *device_id,
2762 		      struct device            *si_dev,
2763 		      unsigned char            slave_addr)
2764 {
2765 	int              i, j;
2766 	int              rv;
2767 	ipmi_smi_t       intf;
2768 	ipmi_smi_t       tintf;
2769 	struct list_head *link;
2770 
2771 	/*
2772 	 * Make sure the driver is actually initialized, this handles
2773 	 * problems with initialization order.
2774 	 */
2775 	if (!initialized) {
2776 		rv = ipmi_init_msghandler();
2777 		if (rv)
2778 			return rv;
2779 		/*
2780 		 * The init code doesn't return an error if it was turned
2781 		 * off, but it won't initialize.  Check that.
2782 		 */
2783 		if (!initialized)
2784 			return -ENODEV;
2785 	}
2786 
2787 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2788 	if (!intf)
2789 		return -ENOMEM;
2790 
2791 	intf->ipmi_version_major = ipmi_version_major(device_id);
2792 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2793 
2794 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2795 	if (!intf->bmc) {
2796 		kfree(intf);
2797 		return -ENOMEM;
2798 	}
2799 	intf->intf_num = -1; /* Mark it invalid for now. */
2800 	kref_init(&intf->refcount);
2801 	intf->bmc->id = *device_id;
2802 	intf->si_dev = si_dev;
2803 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2804 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2805 		intf->channels[j].lun = 2;
2806 	}
2807 	if (slave_addr != 0)
2808 		intf->channels[0].address = slave_addr;
2809 	INIT_LIST_HEAD(&intf->users);
2810 	intf->handlers = handlers;
2811 	intf->send_info = send_info;
2812 	spin_lock_init(&intf->seq_lock);
2813 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2814 		intf->seq_table[j].inuse = 0;
2815 		intf->seq_table[j].seqid = 0;
2816 	}
2817 	intf->curr_seq = 0;
2818 #ifdef CONFIG_PROC_FS
2819 	mutex_init(&intf->proc_entry_lock);
2820 #endif
2821 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2822 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2823 	tasklet_init(&intf->recv_tasklet,
2824 		     smi_recv_tasklet,
2825 		     (unsigned long) intf);
2826 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2827 	spin_lock_init(&intf->xmit_msgs_lock);
2828 	INIT_LIST_HEAD(&intf->xmit_msgs);
2829 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2830 	spin_lock_init(&intf->events_lock);
2831 	atomic_set(&intf->event_waiters, 0);
2832 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2833 	INIT_LIST_HEAD(&intf->waiting_events);
2834 	intf->waiting_events_count = 0;
2835 	mutex_init(&intf->cmd_rcvrs_mutex);
2836 	spin_lock_init(&intf->maintenance_mode_lock);
2837 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2838 	init_waitqueue_head(&intf->waitq);
2839 	for (i = 0; i < IPMI_NUM_STATS; i++)
2840 		atomic_set(&intf->stats[i], 0);
2841 
2842 	intf->proc_dir = NULL;
2843 
2844 	mutex_lock(&smi_watchers_mutex);
2845 	mutex_lock(&ipmi_interfaces_mutex);
2846 	/* Look for a hole in the numbers. */
2847 	i = 0;
2848 	link = &ipmi_interfaces;
2849 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2850 		if (tintf->intf_num != i) {
2851 			link = &tintf->link;
2852 			break;
2853 		}
2854 		i++;
2855 	}
2856 	/* Add the new interface in numeric order. */
2857 	if (i == 0)
2858 		list_add_rcu(&intf->link, &ipmi_interfaces);
2859 	else
2860 		list_add_tail_rcu(&intf->link, link);
2861 
2862 	rv = handlers->start_processing(send_info, intf);
2863 	if (rv)
2864 		goto out;
2865 
2866 	get_guid(intf);
2867 
2868 	if ((intf->ipmi_version_major > 1)
2869 			|| ((intf->ipmi_version_major == 1)
2870 			    && (intf->ipmi_version_minor >= 5))) {
2871 		/*
2872 		 * Start scanning the channels to see what is
2873 		 * available.
2874 		 */
2875 		intf->null_user_handler = channel_handler;
2876 		intf->curr_channel = 0;
2877 		rv = send_channel_info_cmd(intf, 0);
2878 		if (rv) {
2879 			printk(KERN_WARNING PFX
2880 			       "Error sending channel information for channel"
2881 			       " 0, %d\n", rv);
2882 			goto out;
2883 		}
2884 
2885 		/* Wait for the channel info to be read. */
2886 		wait_event(intf->waitq,
2887 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2888 		intf->null_user_handler = NULL;
2889 	} else {
2890 		/* Assume a single IPMB channel at zero. */
2891 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2892 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2893 		intf->curr_channel = IPMI_MAX_CHANNELS;
2894 	}
2895 
2896 	if (rv == 0)
2897 		rv = add_proc_entries(intf, i);
2898 
2899 	rv = ipmi_bmc_register(intf, i);
2900 
2901  out:
2902 	if (rv) {
2903 		if (intf->proc_dir)
2904 			remove_proc_entries(intf);
2905 		intf->handlers = NULL;
2906 		list_del_rcu(&intf->link);
2907 		mutex_unlock(&ipmi_interfaces_mutex);
2908 		mutex_unlock(&smi_watchers_mutex);
2909 		synchronize_rcu();
2910 		kref_put(&intf->refcount, intf_free);
2911 	} else {
2912 		/*
2913 		 * Keep memory order straight for RCU readers.  Make
2914 		 * sure everything else is committed to memory before
2915 		 * setting intf_num to mark the interface valid.
2916 		 */
2917 		smp_wmb();
2918 		intf->intf_num = i;
2919 		mutex_unlock(&ipmi_interfaces_mutex);
2920 		/* After this point the interface is legal to use. */
2921 		call_smi_watchers(i, intf->si_dev);
2922 		mutex_unlock(&smi_watchers_mutex);
2923 	}
2924 
2925 	return rv;
2926 }
2927 EXPORT_SYMBOL(ipmi_register_smi);
2928 
2929 static void deliver_smi_err_response(ipmi_smi_t intf,
2930 				     struct ipmi_smi_msg *msg,
2931 				     unsigned char err)
2932 {
2933 	msg->rsp[0] = msg->data[0] | 4;
2934 	msg->rsp[1] = msg->data[1];
2935 	msg->rsp[2] = err;
2936 	msg->rsp_size = 3;
2937 	/* It's an error, so it will never requeue, no need to check return. */
2938 	handle_one_recv_msg(intf, msg);
2939 }
2940 
2941 static void cleanup_smi_msgs(ipmi_smi_t intf)
2942 {
2943 	int              i;
2944 	struct seq_table *ent;
2945 	struct ipmi_smi_msg *msg;
2946 	struct list_head *entry;
2947 	struct list_head tmplist;
2948 
2949 	/* Clear out our transmit queues and hold the messages. */
2950 	INIT_LIST_HEAD(&tmplist);
2951 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2952 	list_splice_tail(&intf->xmit_msgs, &tmplist);
2953 
2954 	/* Current message first, to preserve order */
2955 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2956 		/* Wait for the message to clear out. */
2957 		schedule_timeout(1);
2958 	}
2959 
2960 	/* No need for locks, the interface is down. */
2961 
2962 	/*
2963 	 * Return errors for all pending messages in queue and in the
2964 	 * tables waiting for remote responses.
2965 	 */
2966 	while (!list_empty(&tmplist)) {
2967 		entry = tmplist.next;
2968 		list_del(entry);
2969 		msg = list_entry(entry, struct ipmi_smi_msg, link);
2970 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2971 	}
2972 
2973 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2974 		ent = &(intf->seq_table[i]);
2975 		if (!ent->inuse)
2976 			continue;
2977 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2978 	}
2979 }
2980 
2981 int ipmi_unregister_smi(ipmi_smi_t intf)
2982 {
2983 	struct ipmi_smi_watcher *w;
2984 	int intf_num = intf->intf_num;
2985 	ipmi_user_t user;
2986 
2987 	ipmi_bmc_unregister(intf);
2988 
2989 	mutex_lock(&smi_watchers_mutex);
2990 	mutex_lock(&ipmi_interfaces_mutex);
2991 	intf->intf_num = -1;
2992 	intf->in_shutdown = true;
2993 	list_del_rcu(&intf->link);
2994 	mutex_unlock(&ipmi_interfaces_mutex);
2995 	synchronize_rcu();
2996 
2997 	cleanup_smi_msgs(intf);
2998 
2999 	/* Clean up the effects of users on the lower-level software. */
3000 	mutex_lock(&ipmi_interfaces_mutex);
3001 	rcu_read_lock();
3002 	list_for_each_entry_rcu(user, &intf->users, link) {
3003 		module_put(intf->handlers->owner);
3004 		if (intf->handlers->dec_usecount)
3005 			intf->handlers->dec_usecount(intf->send_info);
3006 	}
3007 	rcu_read_unlock();
3008 	intf->handlers = NULL;
3009 	mutex_unlock(&ipmi_interfaces_mutex);
3010 
3011 	remove_proc_entries(intf);
3012 
3013 	/*
3014 	 * Call all the watcher interfaces to tell them that
3015 	 * an interface is gone.
3016 	 */
3017 	list_for_each_entry(w, &smi_watchers, link)
3018 		w->smi_gone(intf_num);
3019 	mutex_unlock(&smi_watchers_mutex);
3020 
3021 	kref_put(&intf->refcount, intf_free);
3022 	return 0;
3023 }
3024 EXPORT_SYMBOL(ipmi_unregister_smi);
3025 
3026 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3027 				   struct ipmi_smi_msg *msg)
3028 {
3029 	struct ipmi_ipmb_addr ipmb_addr;
3030 	struct ipmi_recv_msg  *recv_msg;
3031 
3032 	/*
3033 	 * This is 11, not 10, because the response must contain a
3034 	 * completion code.
3035 	 */
3036 	if (msg->rsp_size < 11) {
3037 		/* Message not big enough, just ignore it. */
3038 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3039 		return 0;
3040 	}
3041 
3042 	if (msg->rsp[2] != 0) {
3043 		/* An error getting the response, just ignore it. */
3044 		return 0;
3045 	}
3046 
3047 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3048 	ipmb_addr.slave_addr = msg->rsp[6];
3049 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3050 	ipmb_addr.lun = msg->rsp[7] & 3;
3051 
3052 	/*
3053 	 * It's a response from a remote entity.  Look up the sequence
3054 	 * number and handle the response.
3055 	 */
3056 	if (intf_find_seq(intf,
3057 			  msg->rsp[7] >> 2,
3058 			  msg->rsp[3] & 0x0f,
3059 			  msg->rsp[8],
3060 			  (msg->rsp[4] >> 2) & (~1),
3061 			  (struct ipmi_addr *) &(ipmb_addr),
3062 			  &recv_msg)) {
3063 		/*
3064 		 * We were unable to find the sequence number,
3065 		 * so just nuke the message.
3066 		 */
3067 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3068 		return 0;
3069 	}
3070 
3071 	memcpy(recv_msg->msg_data,
3072 	       &(msg->rsp[9]),
3073 	       msg->rsp_size - 9);
3074 	/*
3075 	 * The other fields matched, so no need to set them, except
3076 	 * for netfn, which needs to be the response that was
3077 	 * returned, not the request value.
3078 	 */
3079 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3080 	recv_msg->msg.data = recv_msg->msg_data;
3081 	recv_msg->msg.data_len = msg->rsp_size - 10;
3082 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3083 	ipmi_inc_stat(intf, handled_ipmb_responses);
3084 	deliver_response(recv_msg);
3085 
3086 	return 0;
3087 }
3088 
3089 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3090 				   struct ipmi_smi_msg *msg)
3091 {
3092 	struct cmd_rcvr          *rcvr;
3093 	int                      rv = 0;
3094 	unsigned char            netfn;
3095 	unsigned char            cmd;
3096 	unsigned char            chan;
3097 	ipmi_user_t              user = NULL;
3098 	struct ipmi_ipmb_addr    *ipmb_addr;
3099 	struct ipmi_recv_msg     *recv_msg;
3100 
3101 	if (msg->rsp_size < 10) {
3102 		/* Message not big enough, just ignore it. */
3103 		ipmi_inc_stat(intf, invalid_commands);
3104 		return 0;
3105 	}
3106 
3107 	if (msg->rsp[2] != 0) {
3108 		/* An error getting the response, just ignore it. */
3109 		return 0;
3110 	}
3111 
3112 	netfn = msg->rsp[4] >> 2;
3113 	cmd = msg->rsp[8];
3114 	chan = msg->rsp[3] & 0xf;
3115 
3116 	rcu_read_lock();
3117 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3118 	if (rcvr) {
3119 		user = rcvr->user;
3120 		kref_get(&user->refcount);
3121 	} else
3122 		user = NULL;
3123 	rcu_read_unlock();
3124 
3125 	if (user == NULL) {
3126 		/* We didn't find a user, deliver an error response. */
3127 		ipmi_inc_stat(intf, unhandled_commands);
3128 
3129 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3130 		msg->data[1] = IPMI_SEND_MSG_CMD;
3131 		msg->data[2] = msg->rsp[3];
3132 		msg->data[3] = msg->rsp[6];
3133 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3134 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3135 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3136 		/* rqseq/lun */
3137 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3138 		msg->data[8] = msg->rsp[8]; /* cmd */
3139 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3140 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3141 		msg->data_size = 11;
3142 
3143 #ifdef DEBUG_MSGING
3144 	{
3145 		int m;
3146 		printk("Invalid command:");
3147 		for (m = 0; m < msg->data_size; m++)
3148 			printk(" %2.2x", msg->data[m]);
3149 		printk("\n");
3150 	}
3151 #endif
3152 		rcu_read_lock();
3153 		if (!intf->in_shutdown) {
3154 			smi_send(intf, intf->handlers, msg, 0);
3155 			/*
3156 			 * We used the message, so return the value
3157 			 * that causes it to not be freed or
3158 			 * queued.
3159 			 */
3160 			rv = -1;
3161 		}
3162 		rcu_read_unlock();
3163 	} else {
3164 		/* Deliver the message to the user. */
3165 		ipmi_inc_stat(intf, handled_commands);
3166 
3167 		recv_msg = ipmi_alloc_recv_msg();
3168 		if (!recv_msg) {
3169 			/*
3170 			 * We couldn't allocate memory for the
3171 			 * message, so requeue it for handling
3172 			 * later.
3173 			 */
3174 			rv = 1;
3175 			kref_put(&user->refcount, free_user);
3176 		} else {
3177 			/* Extract the source address from the data. */
3178 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3179 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3180 			ipmb_addr->slave_addr = msg->rsp[6];
3181 			ipmb_addr->lun = msg->rsp[7] & 3;
3182 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3183 
3184 			/*
3185 			 * Extract the rest of the message information
3186 			 * from the IPMB header.
3187 			 */
3188 			recv_msg->user = user;
3189 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3190 			recv_msg->msgid = msg->rsp[7] >> 2;
3191 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3192 			recv_msg->msg.cmd = msg->rsp[8];
3193 			recv_msg->msg.data = recv_msg->msg_data;
3194 
3195 			/*
3196 			 * We chop off 10, not 9 bytes because the checksum
3197 			 * at the end also needs to be removed.
3198 			 */
3199 			recv_msg->msg.data_len = msg->rsp_size - 10;
3200 			memcpy(recv_msg->msg_data,
3201 			       &(msg->rsp[9]),
3202 			       msg->rsp_size - 10);
3203 			deliver_response(recv_msg);
3204 		}
3205 	}
3206 
3207 	return rv;
3208 }
3209 
3210 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3211 				  struct ipmi_smi_msg *msg)
3212 {
3213 	struct ipmi_lan_addr  lan_addr;
3214 	struct ipmi_recv_msg  *recv_msg;
3215 
3216 
3217 	/*
3218 	 * This is 13, not 12, because the response must contain a
3219 	 * completion code.
3220 	 */
3221 	if (msg->rsp_size < 13) {
3222 		/* Message not big enough, just ignore it. */
3223 		ipmi_inc_stat(intf, invalid_lan_responses);
3224 		return 0;
3225 	}
3226 
3227 	if (msg->rsp[2] != 0) {
3228 		/* An error getting the response, just ignore it. */
3229 		return 0;
3230 	}
3231 
3232 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3233 	lan_addr.session_handle = msg->rsp[4];
3234 	lan_addr.remote_SWID = msg->rsp[8];
3235 	lan_addr.local_SWID = msg->rsp[5];
3236 	lan_addr.channel = msg->rsp[3] & 0x0f;
3237 	lan_addr.privilege = msg->rsp[3] >> 4;
3238 	lan_addr.lun = msg->rsp[9] & 3;
3239 
3240 	/*
3241 	 * It's a response from a remote entity.  Look up the sequence
3242 	 * number and handle the response.
3243 	 */
3244 	if (intf_find_seq(intf,
3245 			  msg->rsp[9] >> 2,
3246 			  msg->rsp[3] & 0x0f,
3247 			  msg->rsp[10],
3248 			  (msg->rsp[6] >> 2) & (~1),
3249 			  (struct ipmi_addr *) &(lan_addr),
3250 			  &recv_msg)) {
3251 		/*
3252 		 * We were unable to find the sequence number,
3253 		 * so just nuke the message.
3254 		 */
3255 		ipmi_inc_stat(intf, unhandled_lan_responses);
3256 		return 0;
3257 	}
3258 
3259 	memcpy(recv_msg->msg_data,
3260 	       &(msg->rsp[11]),
3261 	       msg->rsp_size - 11);
3262 	/*
3263 	 * The other fields matched, so no need to set them, except
3264 	 * for netfn, which needs to be the response that was
3265 	 * returned, not the request value.
3266 	 */
3267 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3268 	recv_msg->msg.data = recv_msg->msg_data;
3269 	recv_msg->msg.data_len = msg->rsp_size - 12;
3270 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3271 	ipmi_inc_stat(intf, handled_lan_responses);
3272 	deliver_response(recv_msg);
3273 
3274 	return 0;
3275 }
3276 
3277 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3278 				  struct ipmi_smi_msg *msg)
3279 {
3280 	struct cmd_rcvr          *rcvr;
3281 	int                      rv = 0;
3282 	unsigned char            netfn;
3283 	unsigned char            cmd;
3284 	unsigned char            chan;
3285 	ipmi_user_t              user = NULL;
3286 	struct ipmi_lan_addr     *lan_addr;
3287 	struct ipmi_recv_msg     *recv_msg;
3288 
3289 	if (msg->rsp_size < 12) {
3290 		/* Message not big enough, just ignore it. */
3291 		ipmi_inc_stat(intf, invalid_commands);
3292 		return 0;
3293 	}
3294 
3295 	if (msg->rsp[2] != 0) {
3296 		/* An error getting the response, just ignore it. */
3297 		return 0;
3298 	}
3299 
3300 	netfn = msg->rsp[6] >> 2;
3301 	cmd = msg->rsp[10];
3302 	chan = msg->rsp[3] & 0xf;
3303 
3304 	rcu_read_lock();
3305 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3306 	if (rcvr) {
3307 		user = rcvr->user;
3308 		kref_get(&user->refcount);
3309 	} else
3310 		user = NULL;
3311 	rcu_read_unlock();
3312 
3313 	if (user == NULL) {
3314 		/* We didn't find a user, just give up. */
3315 		ipmi_inc_stat(intf, unhandled_commands);
3316 
3317 		/*
3318 		 * Don't do anything with these messages, just allow
3319 		 * them to be freed.
3320 		 */
3321 		rv = 0;
3322 	} else {
3323 		/* Deliver the message to the user. */
3324 		ipmi_inc_stat(intf, handled_commands);
3325 
3326 		recv_msg = ipmi_alloc_recv_msg();
3327 		if (!recv_msg) {
3328 			/*
3329 			 * We couldn't allocate memory for the
3330 			 * message, so requeue it for handling later.
3331 			 */
3332 			rv = 1;
3333 			kref_put(&user->refcount, free_user);
3334 		} else {
3335 			/* Extract the source address from the data. */
3336 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3337 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3338 			lan_addr->session_handle = msg->rsp[4];
3339 			lan_addr->remote_SWID = msg->rsp[8];
3340 			lan_addr->local_SWID = msg->rsp[5];
3341 			lan_addr->lun = msg->rsp[9] & 3;
3342 			lan_addr->channel = msg->rsp[3] & 0xf;
3343 			lan_addr->privilege = msg->rsp[3] >> 4;
3344 
3345 			/*
3346 			 * Extract the rest of the message information
3347 			 * from the IPMB header.
3348 			 */
3349 			recv_msg->user = user;
3350 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3351 			recv_msg->msgid = msg->rsp[9] >> 2;
3352 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3353 			recv_msg->msg.cmd = msg->rsp[10];
3354 			recv_msg->msg.data = recv_msg->msg_data;
3355 
3356 			/*
3357 			 * We chop off 12, not 11 bytes because the checksum
3358 			 * at the end also needs to be removed.
3359 			 */
3360 			recv_msg->msg.data_len = msg->rsp_size - 12;
3361 			memcpy(recv_msg->msg_data,
3362 			       &(msg->rsp[11]),
3363 			       msg->rsp_size - 12);
3364 			deliver_response(recv_msg);
3365 		}
3366 	}
3367 
3368 	return rv;
3369 }
3370 
3371 /*
3372  * This routine will handle "Get Message" command responses with
3373  * channels that use an OEM Medium. The message format belongs to
3374  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3375  * Chapter 22, sections 22.6 and 22.24 for more details.
3376  */
3377 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3378 				  struct ipmi_smi_msg *msg)
3379 {
3380 	struct cmd_rcvr       *rcvr;
3381 	int                   rv = 0;
3382 	unsigned char         netfn;
3383 	unsigned char         cmd;
3384 	unsigned char         chan;
3385 	ipmi_user_t           user = NULL;
3386 	struct ipmi_system_interface_addr *smi_addr;
3387 	struct ipmi_recv_msg  *recv_msg;
3388 
3389 	/*
3390 	 * We expect the OEM SW to perform error checking
3391 	 * so we just do some basic sanity checks
3392 	 */
3393 	if (msg->rsp_size < 4) {
3394 		/* Message not big enough, just ignore it. */
3395 		ipmi_inc_stat(intf, invalid_commands);
3396 		return 0;
3397 	}
3398 
3399 	if (msg->rsp[2] != 0) {
3400 		/* An error getting the response, just ignore it. */
3401 		return 0;
3402 	}
3403 
3404 	/*
3405 	 * This is an OEM Message so the OEM needs to know how
3406 	 * handle the message. We do no interpretation.
3407 	 */
3408 	netfn = msg->rsp[0] >> 2;
3409 	cmd = msg->rsp[1];
3410 	chan = msg->rsp[3] & 0xf;
3411 
3412 	rcu_read_lock();
3413 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3414 	if (rcvr) {
3415 		user = rcvr->user;
3416 		kref_get(&user->refcount);
3417 	} else
3418 		user = NULL;
3419 	rcu_read_unlock();
3420 
3421 	if (user == NULL) {
3422 		/* We didn't find a user, just give up. */
3423 		ipmi_inc_stat(intf, unhandled_commands);
3424 
3425 		/*
3426 		 * Don't do anything with these messages, just allow
3427 		 * them to be freed.
3428 		 */
3429 
3430 		rv = 0;
3431 	} else {
3432 		/* Deliver the message to the user. */
3433 		ipmi_inc_stat(intf, handled_commands);
3434 
3435 		recv_msg = ipmi_alloc_recv_msg();
3436 		if (!recv_msg) {
3437 			/*
3438 			 * We couldn't allocate memory for the
3439 			 * message, so requeue it for handling
3440 			 * later.
3441 			 */
3442 			rv = 1;
3443 			kref_put(&user->refcount, free_user);
3444 		} else {
3445 			/*
3446 			 * OEM Messages are expected to be delivered via
3447 			 * the system interface to SMS software.  We might
3448 			 * need to visit this again depending on OEM
3449 			 * requirements
3450 			 */
3451 			smi_addr = ((struct ipmi_system_interface_addr *)
3452 				    &(recv_msg->addr));
3453 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3454 			smi_addr->channel = IPMI_BMC_CHANNEL;
3455 			smi_addr->lun = msg->rsp[0] & 3;
3456 
3457 			recv_msg->user = user;
3458 			recv_msg->user_msg_data = NULL;
3459 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3460 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3461 			recv_msg->msg.cmd = msg->rsp[1];
3462 			recv_msg->msg.data = recv_msg->msg_data;
3463 
3464 			/*
3465 			 * The message starts at byte 4 which follows the
3466 			 * the Channel Byte in the "GET MESSAGE" command
3467 			 */
3468 			recv_msg->msg.data_len = msg->rsp_size - 4;
3469 			memcpy(recv_msg->msg_data,
3470 			       &(msg->rsp[4]),
3471 			       msg->rsp_size - 4);
3472 			deliver_response(recv_msg);
3473 		}
3474 	}
3475 
3476 	return rv;
3477 }
3478 
3479 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3480 				     struct ipmi_smi_msg  *msg)
3481 {
3482 	struct ipmi_system_interface_addr *smi_addr;
3483 
3484 	recv_msg->msgid = 0;
3485 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3486 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3487 	smi_addr->channel = IPMI_BMC_CHANNEL;
3488 	smi_addr->lun = msg->rsp[0] & 3;
3489 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3490 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3491 	recv_msg->msg.cmd = msg->rsp[1];
3492 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3493 	recv_msg->msg.data = recv_msg->msg_data;
3494 	recv_msg->msg.data_len = msg->rsp_size - 3;
3495 }
3496 
3497 static int handle_read_event_rsp(ipmi_smi_t          intf,
3498 				 struct ipmi_smi_msg *msg)
3499 {
3500 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3501 	struct list_head     msgs;
3502 	ipmi_user_t          user;
3503 	int                  rv = 0;
3504 	int                  deliver_count = 0;
3505 	unsigned long        flags;
3506 
3507 	if (msg->rsp_size < 19) {
3508 		/* Message is too small to be an IPMB event. */
3509 		ipmi_inc_stat(intf, invalid_events);
3510 		return 0;
3511 	}
3512 
3513 	if (msg->rsp[2] != 0) {
3514 		/* An error getting the event, just ignore it. */
3515 		return 0;
3516 	}
3517 
3518 	INIT_LIST_HEAD(&msgs);
3519 
3520 	spin_lock_irqsave(&intf->events_lock, flags);
3521 
3522 	ipmi_inc_stat(intf, events);
3523 
3524 	/*
3525 	 * Allocate and fill in one message for every user that is
3526 	 * getting events.
3527 	 */
3528 	rcu_read_lock();
3529 	list_for_each_entry_rcu(user, &intf->users, link) {
3530 		if (!user->gets_events)
3531 			continue;
3532 
3533 		recv_msg = ipmi_alloc_recv_msg();
3534 		if (!recv_msg) {
3535 			rcu_read_unlock();
3536 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3537 						 link) {
3538 				list_del(&recv_msg->link);
3539 				ipmi_free_recv_msg(recv_msg);
3540 			}
3541 			/*
3542 			 * We couldn't allocate memory for the
3543 			 * message, so requeue it for handling
3544 			 * later.
3545 			 */
3546 			rv = 1;
3547 			goto out;
3548 		}
3549 
3550 		deliver_count++;
3551 
3552 		copy_event_into_recv_msg(recv_msg, msg);
3553 		recv_msg->user = user;
3554 		kref_get(&user->refcount);
3555 		list_add_tail(&(recv_msg->link), &msgs);
3556 	}
3557 	rcu_read_unlock();
3558 
3559 	if (deliver_count) {
3560 		/* Now deliver all the messages. */
3561 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3562 			list_del(&recv_msg->link);
3563 			deliver_response(recv_msg);
3564 		}
3565 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3566 		/*
3567 		 * No one to receive the message, put it in queue if there's
3568 		 * not already too many things in the queue.
3569 		 */
3570 		recv_msg = ipmi_alloc_recv_msg();
3571 		if (!recv_msg) {
3572 			/*
3573 			 * We couldn't allocate memory for the
3574 			 * message, so requeue it for handling
3575 			 * later.
3576 			 */
3577 			rv = 1;
3578 			goto out;
3579 		}
3580 
3581 		copy_event_into_recv_msg(recv_msg, msg);
3582 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3583 		intf->waiting_events_count++;
3584 	} else if (!intf->event_msg_printed) {
3585 		/*
3586 		 * There's too many things in the queue, discard this
3587 		 * message.
3588 		 */
3589 		printk(KERN_WARNING PFX "Event queue full, discarding"
3590 		       " incoming events\n");
3591 		intf->event_msg_printed = 1;
3592 	}
3593 
3594  out:
3595 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3596 
3597 	return rv;
3598 }
3599 
3600 static int handle_bmc_rsp(ipmi_smi_t          intf,
3601 			  struct ipmi_smi_msg *msg)
3602 {
3603 	struct ipmi_recv_msg *recv_msg;
3604 	struct ipmi_user     *user;
3605 
3606 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3607 	if (recv_msg == NULL) {
3608 		printk(KERN_WARNING
3609 		       "IPMI message received with no owner. This\n"
3610 		       "could be because of a malformed message, or\n"
3611 		       "because of a hardware error.  Contact your\n"
3612 		       "hardware vender for assistance\n");
3613 		return 0;
3614 	}
3615 
3616 	user = recv_msg->user;
3617 	/* Make sure the user still exists. */
3618 	if (user && !user->valid) {
3619 		/* The user for the message went away, so give up. */
3620 		ipmi_inc_stat(intf, unhandled_local_responses);
3621 		ipmi_free_recv_msg(recv_msg);
3622 	} else {
3623 		struct ipmi_system_interface_addr *smi_addr;
3624 
3625 		ipmi_inc_stat(intf, handled_local_responses);
3626 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3627 		recv_msg->msgid = msg->msgid;
3628 		smi_addr = ((struct ipmi_system_interface_addr *)
3629 			    &(recv_msg->addr));
3630 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3631 		smi_addr->channel = IPMI_BMC_CHANNEL;
3632 		smi_addr->lun = msg->rsp[0] & 3;
3633 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3634 		recv_msg->msg.cmd = msg->rsp[1];
3635 		memcpy(recv_msg->msg_data,
3636 		       &(msg->rsp[2]),
3637 		       msg->rsp_size - 2);
3638 		recv_msg->msg.data = recv_msg->msg_data;
3639 		recv_msg->msg.data_len = msg->rsp_size - 2;
3640 		deliver_response(recv_msg);
3641 	}
3642 
3643 	return 0;
3644 }
3645 
3646 /*
3647  * Handle a received message.  Return 1 if the message should be requeued,
3648  * 0 if the message should be freed, or -1 if the message should not
3649  * be freed or requeued.
3650  */
3651 static int handle_one_recv_msg(ipmi_smi_t          intf,
3652 			       struct ipmi_smi_msg *msg)
3653 {
3654 	int requeue;
3655 	int chan;
3656 
3657 #ifdef DEBUG_MSGING
3658 	int m;
3659 	printk("Recv:");
3660 	for (m = 0; m < msg->rsp_size; m++)
3661 		printk(" %2.2x", msg->rsp[m]);
3662 	printk("\n");
3663 #endif
3664 	if (msg->rsp_size < 2) {
3665 		/* Message is too small to be correct. */
3666 		printk(KERN_WARNING PFX "BMC returned to small a message"
3667 		       " for netfn %x cmd %x, got %d bytes\n",
3668 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3669 
3670 		/* Generate an error response for the message. */
3671 		msg->rsp[0] = msg->data[0] | (1 << 2);
3672 		msg->rsp[1] = msg->data[1];
3673 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3674 		msg->rsp_size = 3;
3675 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3676 		   || (msg->rsp[1] != msg->data[1])) {
3677 		/*
3678 		 * The NetFN and Command in the response is not even
3679 		 * marginally correct.
3680 		 */
3681 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3682 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3683 		       (msg->data[0] >> 2) | 1, msg->data[1],
3684 		       msg->rsp[0] >> 2, msg->rsp[1]);
3685 
3686 		/* Generate an error response for the message. */
3687 		msg->rsp[0] = msg->data[0] | (1 << 2);
3688 		msg->rsp[1] = msg->data[1];
3689 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3690 		msg->rsp_size = 3;
3691 	}
3692 
3693 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3694 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3695 	    && (msg->user_data != NULL)) {
3696 		/*
3697 		 * It's a response to a response we sent.  For this we
3698 		 * deliver a send message response to the user.
3699 		 */
3700 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3701 
3702 		requeue = 0;
3703 		if (msg->rsp_size < 2)
3704 			/* Message is too small to be correct. */
3705 			goto out;
3706 
3707 		chan = msg->data[2] & 0x0f;
3708 		if (chan >= IPMI_MAX_CHANNELS)
3709 			/* Invalid channel number */
3710 			goto out;
3711 
3712 		if (!recv_msg)
3713 			goto out;
3714 
3715 		/* Make sure the user still exists. */
3716 		if (!recv_msg->user || !recv_msg->user->valid)
3717 			goto out;
3718 
3719 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3720 		recv_msg->msg.data = recv_msg->msg_data;
3721 		recv_msg->msg.data_len = 1;
3722 		recv_msg->msg_data[0] = msg->rsp[2];
3723 		deliver_response(recv_msg);
3724 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3725 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3726 		/* It's from the receive queue. */
3727 		chan = msg->rsp[3] & 0xf;
3728 		if (chan >= IPMI_MAX_CHANNELS) {
3729 			/* Invalid channel number */
3730 			requeue = 0;
3731 			goto out;
3732 		}
3733 
3734 		/*
3735 		 * We need to make sure the channels have been initialized.
3736 		 * The channel_handler routine will set the "curr_channel"
3737 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3738 		 * channels for this interface have been initialized.
3739 		 */
3740 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3741 			requeue = 0; /* Throw the message away */
3742 			goto out;
3743 		}
3744 
3745 		switch (intf->channels[chan].medium) {
3746 		case IPMI_CHANNEL_MEDIUM_IPMB:
3747 			if (msg->rsp[4] & 0x04) {
3748 				/*
3749 				 * It's a response, so find the
3750 				 * requesting message and send it up.
3751 				 */
3752 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3753 			} else {
3754 				/*
3755 				 * It's a command to the SMS from some other
3756 				 * entity.  Handle that.
3757 				 */
3758 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3759 			}
3760 			break;
3761 
3762 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3763 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3764 			if (msg->rsp[6] & 0x04) {
3765 				/*
3766 				 * It's a response, so find the
3767 				 * requesting message and send it up.
3768 				 */
3769 				requeue = handle_lan_get_msg_rsp(intf, msg);
3770 			} else {
3771 				/*
3772 				 * It's a command to the SMS from some other
3773 				 * entity.  Handle that.
3774 				 */
3775 				requeue = handle_lan_get_msg_cmd(intf, msg);
3776 			}
3777 			break;
3778 
3779 		default:
3780 			/* Check for OEM Channels.  Clients had better
3781 			   register for these commands. */
3782 			if ((intf->channels[chan].medium
3783 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3784 			    && (intf->channels[chan].medium
3785 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3786 				requeue = handle_oem_get_msg_cmd(intf, msg);
3787 			} else {
3788 				/*
3789 				 * We don't handle the channel type, so just
3790 				 * free the message.
3791 				 */
3792 				requeue = 0;
3793 			}
3794 		}
3795 
3796 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3797 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3798 		/* It's an asynchronous event. */
3799 		requeue = handle_read_event_rsp(intf, msg);
3800 	} else {
3801 		/* It's a response from the local BMC. */
3802 		requeue = handle_bmc_rsp(intf, msg);
3803 	}
3804 
3805  out:
3806 	return requeue;
3807 }
3808 
3809 /*
3810  * If there are messages in the queue or pretimeouts, handle them.
3811  */
3812 static void handle_new_recv_msgs(ipmi_smi_t intf)
3813 {
3814 	struct ipmi_smi_msg  *smi_msg;
3815 	unsigned long        flags = 0;
3816 	int                  rv;
3817 	int                  run_to_completion = intf->run_to_completion;
3818 
3819 	/* See if any waiting messages need to be processed. */
3820 	if (!run_to_completion)
3821 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822 	while (!list_empty(&intf->waiting_rcv_msgs)) {
3823 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3824 				     struct ipmi_smi_msg, link);
3825 		if (!run_to_completion)
3826 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3827 					       flags);
3828 		rv = handle_one_recv_msg(intf, smi_msg);
3829 		if (!run_to_completion)
3830 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3831 		if (rv > 0) {
3832 			/*
3833 			 * To preserve message order, quit if we
3834 			 * can't handle a message.
3835 			 */
3836 			break;
3837 		} else {
3838 			list_del(&smi_msg->link);
3839 			if (rv == 0)
3840 				/* Message handled */
3841 				ipmi_free_smi_msg(smi_msg);
3842 			/* If rv < 0, fatal error, del but don't free. */
3843 		}
3844 	}
3845 	if (!run_to_completion)
3846 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3847 
3848 	/*
3849 	 * If the pretimout count is non-zero, decrement one from it and
3850 	 * deliver pretimeouts to all the users.
3851 	 */
3852 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3853 		ipmi_user_t user;
3854 
3855 		rcu_read_lock();
3856 		list_for_each_entry_rcu(user, &intf->users, link) {
3857 			if (user->handler->ipmi_watchdog_pretimeout)
3858 				user->handler->ipmi_watchdog_pretimeout(
3859 					user->handler_data);
3860 		}
3861 		rcu_read_unlock();
3862 	}
3863 }
3864 
3865 static void smi_recv_tasklet(unsigned long val)
3866 {
3867 	unsigned long flags = 0; /* keep us warning-free. */
3868 	ipmi_smi_t intf = (ipmi_smi_t) val;
3869 	int run_to_completion = intf->run_to_completion;
3870 	struct ipmi_smi_msg *newmsg = NULL;
3871 
3872 	/*
3873 	 * Start the next message if available.
3874 	 *
3875 	 * Do this here, not in the actual receiver, because we may deadlock
3876 	 * because the lower layer is allowed to hold locks while calling
3877 	 * message delivery.
3878 	 */
3879 	if (!run_to_completion)
3880 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3881 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3882 		struct list_head *entry = NULL;
3883 
3884 		/* Pick the high priority queue first. */
3885 		if (!list_empty(&intf->hp_xmit_msgs))
3886 			entry = intf->hp_xmit_msgs.next;
3887 		else if (!list_empty(&intf->xmit_msgs))
3888 			entry = intf->xmit_msgs.next;
3889 
3890 		if (entry) {
3891 			list_del(entry);
3892 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3893 			intf->curr_msg = newmsg;
3894 		}
3895 	}
3896 	if (!run_to_completion)
3897 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3898 	if (newmsg)
3899 		intf->handlers->sender(intf->send_info, newmsg);
3900 
3901 	handle_new_recv_msgs(intf);
3902 }
3903 
3904 /* Handle a new message from the lower layer. */
3905 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3906 			   struct ipmi_smi_msg *msg)
3907 {
3908 	unsigned long flags = 0; /* keep us warning-free. */
3909 	int run_to_completion = intf->run_to_completion;
3910 
3911 	if ((msg->data_size >= 2)
3912 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3913 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3914 	    && (msg->user_data == NULL)) {
3915 
3916 		if (intf->in_shutdown)
3917 			goto free_msg;
3918 
3919 		/*
3920 		 * This is the local response to a command send, start
3921 		 * the timer for these.  The user_data will not be
3922 		 * NULL if this is a response send, and we will let
3923 		 * response sends just go through.
3924 		 */
3925 
3926 		/*
3927 		 * Check for errors, if we get certain errors (ones
3928 		 * that mean basically we can try again later), we
3929 		 * ignore them and start the timer.  Otherwise we
3930 		 * report the error immediately.
3931 		 */
3932 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3933 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3934 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3935 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3936 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3937 			int chan = msg->rsp[3] & 0xf;
3938 
3939 			/* Got an error sending the message, handle it. */
3940 			if (chan >= IPMI_MAX_CHANNELS)
3941 				; /* This shouldn't happen */
3942 			else if ((intf->channels[chan].medium
3943 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3944 				 || (intf->channels[chan].medium
3945 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3946 				ipmi_inc_stat(intf, sent_lan_command_errs);
3947 			else
3948 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3949 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3950 		} else
3951 			/* The message was sent, start the timer. */
3952 			intf_start_seq_timer(intf, msg->msgid);
3953 
3954 free_msg:
3955 		ipmi_free_smi_msg(msg);
3956 	} else {
3957 		/*
3958 		 * To preserve message order, we keep a queue and deliver from
3959 		 * a tasklet.
3960 		 */
3961 		if (!run_to_completion)
3962 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3963 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3964 		if (!run_to_completion)
3965 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3966 					       flags);
3967 	}
3968 
3969 	if (!run_to_completion)
3970 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3971 	if (msg == intf->curr_msg)
3972 		intf->curr_msg = NULL;
3973 	if (!run_to_completion)
3974 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3975 
3976 	if (run_to_completion)
3977 		smi_recv_tasklet((unsigned long) intf);
3978 	else
3979 		tasklet_schedule(&intf->recv_tasklet);
3980 }
3981 EXPORT_SYMBOL(ipmi_smi_msg_received);
3982 
3983 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3984 {
3985 	if (intf->in_shutdown)
3986 		return;
3987 
3988 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3989 	tasklet_schedule(&intf->recv_tasklet);
3990 }
3991 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3992 
3993 static struct ipmi_smi_msg *
3994 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3995 		  unsigned char seq, long seqid)
3996 {
3997 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3998 	if (!smi_msg)
3999 		/*
4000 		 * If we can't allocate the message, then just return, we
4001 		 * get 4 retries, so this should be ok.
4002 		 */
4003 		return NULL;
4004 
4005 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4006 	smi_msg->data_size = recv_msg->msg.data_len;
4007 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4008 
4009 #ifdef DEBUG_MSGING
4010 	{
4011 		int m;
4012 		printk("Resend: ");
4013 		for (m = 0; m < smi_msg->data_size; m++)
4014 			printk(" %2.2x", smi_msg->data[m]);
4015 		printk("\n");
4016 	}
4017 #endif
4018 	return smi_msg;
4019 }
4020 
4021 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4022 			      struct list_head *timeouts, long timeout_period,
4023 			      int slot, unsigned long *flags,
4024 			      unsigned int *waiting_msgs)
4025 {
4026 	struct ipmi_recv_msg     *msg;
4027 	struct ipmi_smi_handlers *handlers;
4028 
4029 	if (intf->in_shutdown)
4030 		return;
4031 
4032 	if (!ent->inuse)
4033 		return;
4034 
4035 	ent->timeout -= timeout_period;
4036 	if (ent->timeout > 0) {
4037 		(*waiting_msgs)++;
4038 		return;
4039 	}
4040 
4041 	if (ent->retries_left == 0) {
4042 		/* The message has used all its retries. */
4043 		ent->inuse = 0;
4044 		msg = ent->recv_msg;
4045 		list_add_tail(&msg->link, timeouts);
4046 		if (ent->broadcast)
4047 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4048 		else if (is_lan_addr(&ent->recv_msg->addr))
4049 			ipmi_inc_stat(intf, timed_out_lan_commands);
4050 		else
4051 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4052 	} else {
4053 		struct ipmi_smi_msg *smi_msg;
4054 		/* More retries, send again. */
4055 
4056 		(*waiting_msgs)++;
4057 
4058 		/*
4059 		 * Start with the max timer, set to normal timer after
4060 		 * the message is sent.
4061 		 */
4062 		ent->timeout = MAX_MSG_TIMEOUT;
4063 		ent->retries_left--;
4064 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4065 					    ent->seqid);
4066 		if (!smi_msg) {
4067 			if (is_lan_addr(&ent->recv_msg->addr))
4068 				ipmi_inc_stat(intf,
4069 					      dropped_rexmit_lan_commands);
4070 			else
4071 				ipmi_inc_stat(intf,
4072 					      dropped_rexmit_ipmb_commands);
4073 			return;
4074 		}
4075 
4076 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4077 
4078 		/*
4079 		 * Send the new message.  We send with a zero
4080 		 * priority.  It timed out, I doubt time is that
4081 		 * critical now, and high priority messages are really
4082 		 * only for messages to the local MC, which don't get
4083 		 * resent.
4084 		 */
4085 		handlers = intf->handlers;
4086 		if (handlers) {
4087 			if (is_lan_addr(&ent->recv_msg->addr))
4088 				ipmi_inc_stat(intf,
4089 					      retransmitted_lan_commands);
4090 			else
4091 				ipmi_inc_stat(intf,
4092 					      retransmitted_ipmb_commands);
4093 
4094 			smi_send(intf, intf->handlers, smi_msg, 0);
4095 		} else
4096 			ipmi_free_smi_msg(smi_msg);
4097 
4098 		spin_lock_irqsave(&intf->seq_lock, *flags);
4099 	}
4100 }
4101 
4102 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4103 {
4104 	struct list_head     timeouts;
4105 	struct ipmi_recv_msg *msg, *msg2;
4106 	unsigned long        flags;
4107 	int                  i;
4108 	unsigned int         waiting_msgs = 0;
4109 
4110 	/*
4111 	 * Go through the seq table and find any messages that
4112 	 * have timed out, putting them in the timeouts
4113 	 * list.
4114 	 */
4115 	INIT_LIST_HEAD(&timeouts);
4116 	spin_lock_irqsave(&intf->seq_lock, flags);
4117 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4118 		check_msg_timeout(intf, &(intf->seq_table[i]),
4119 				  &timeouts, timeout_period, i,
4120 				  &flags, &waiting_msgs);
4121 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4122 
4123 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4124 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4125 
4126 	/*
4127 	 * Maintenance mode handling.  Check the timeout
4128 	 * optimistically before we claim the lock.  It may
4129 	 * mean a timeout gets missed occasionally, but that
4130 	 * only means the timeout gets extended by one period
4131 	 * in that case.  No big deal, and it avoids the lock
4132 	 * most of the time.
4133 	 */
4134 	if (intf->auto_maintenance_timeout > 0) {
4135 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4136 		if (intf->auto_maintenance_timeout > 0) {
4137 			intf->auto_maintenance_timeout
4138 				-= timeout_period;
4139 			if (!intf->maintenance_mode
4140 			    && (intf->auto_maintenance_timeout <= 0)) {
4141 				intf->maintenance_mode_enable = false;
4142 				maintenance_mode_update(intf);
4143 			}
4144 		}
4145 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4146 				       flags);
4147 	}
4148 
4149 	tasklet_schedule(&intf->recv_tasklet);
4150 
4151 	return waiting_msgs;
4152 }
4153 
4154 static void ipmi_request_event(ipmi_smi_t intf)
4155 {
4156 	/* No event requests when in maintenance mode. */
4157 	if (intf->maintenance_mode_enable)
4158 		return;
4159 
4160 	if (!intf->in_shutdown)
4161 		intf->handlers->request_events(intf->send_info);
4162 }
4163 
4164 static struct timer_list ipmi_timer;
4165 
4166 static atomic_t stop_operation;
4167 
4168 static void ipmi_timeout(unsigned long data)
4169 {
4170 	ipmi_smi_t intf;
4171 	int nt = 0;
4172 
4173 	if (atomic_read(&stop_operation))
4174 		return;
4175 
4176 	rcu_read_lock();
4177 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4178 		int lnt = 0;
4179 
4180 		if (atomic_read(&intf->event_waiters)) {
4181 			intf->ticks_to_req_ev--;
4182 			if (intf->ticks_to_req_ev == 0) {
4183 				ipmi_request_event(intf);
4184 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4185 			}
4186 			lnt++;
4187 		}
4188 
4189 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4190 
4191 		lnt = !!lnt;
4192 		if (lnt != intf->last_needs_timer &&
4193 					intf->handlers->set_need_watch)
4194 			intf->handlers->set_need_watch(intf->send_info, lnt);
4195 		intf->last_needs_timer = lnt;
4196 
4197 		nt += lnt;
4198 	}
4199 	rcu_read_unlock();
4200 
4201 	if (nt)
4202 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4203 }
4204 
4205 static void need_waiter(ipmi_smi_t intf)
4206 {
4207 	/* Racy, but worst case we start the timer twice. */
4208 	if (!timer_pending(&ipmi_timer))
4209 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4210 }
4211 
4212 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4213 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4214 
4215 /* FIXME - convert these to slabs. */
4216 static void free_smi_msg(struct ipmi_smi_msg *msg)
4217 {
4218 	atomic_dec(&smi_msg_inuse_count);
4219 	kfree(msg);
4220 }
4221 
4222 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4223 {
4224 	struct ipmi_smi_msg *rv;
4225 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4226 	if (rv) {
4227 		rv->done = free_smi_msg;
4228 		rv->user_data = NULL;
4229 		atomic_inc(&smi_msg_inuse_count);
4230 	}
4231 	return rv;
4232 }
4233 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4234 
4235 static void free_recv_msg(struct ipmi_recv_msg *msg)
4236 {
4237 	atomic_dec(&recv_msg_inuse_count);
4238 	kfree(msg);
4239 }
4240 
4241 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4242 {
4243 	struct ipmi_recv_msg *rv;
4244 
4245 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4246 	if (rv) {
4247 		rv->user = NULL;
4248 		rv->done = free_recv_msg;
4249 		atomic_inc(&recv_msg_inuse_count);
4250 	}
4251 	return rv;
4252 }
4253 
4254 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4255 {
4256 	if (msg->user)
4257 		kref_put(&msg->user->refcount, free_user);
4258 	msg->done(msg);
4259 }
4260 EXPORT_SYMBOL(ipmi_free_recv_msg);
4261 
4262 #ifdef CONFIG_IPMI_PANIC_EVENT
4263 
4264 static atomic_t panic_done_count = ATOMIC_INIT(0);
4265 
4266 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4267 {
4268 	atomic_dec(&panic_done_count);
4269 }
4270 
4271 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4272 {
4273 	atomic_dec(&panic_done_count);
4274 }
4275 
4276 /*
4277  * Inside a panic, send a message and wait for a response.
4278  */
4279 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4280 					struct ipmi_addr     *addr,
4281 					struct kernel_ipmi_msg *msg)
4282 {
4283 	struct ipmi_smi_msg  smi_msg;
4284 	struct ipmi_recv_msg recv_msg;
4285 	int rv;
4286 
4287 	smi_msg.done = dummy_smi_done_handler;
4288 	recv_msg.done = dummy_recv_done_handler;
4289 	atomic_add(2, &panic_done_count);
4290 	rv = i_ipmi_request(NULL,
4291 			    intf,
4292 			    addr,
4293 			    0,
4294 			    msg,
4295 			    intf,
4296 			    &smi_msg,
4297 			    &recv_msg,
4298 			    0,
4299 			    intf->channels[0].address,
4300 			    intf->channels[0].lun,
4301 			    0, 1); /* Don't retry, and don't wait. */
4302 	if (rv)
4303 		atomic_sub(2, &panic_done_count);
4304 	while (atomic_read(&panic_done_count) != 0)
4305 		ipmi_poll(intf);
4306 }
4307 
4308 #ifdef CONFIG_IPMI_PANIC_STRING
4309 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4310 {
4311 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4312 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4313 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4314 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4315 		/* A get event receiver command, save it. */
4316 		intf->event_receiver = msg->msg.data[1];
4317 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4318 	}
4319 }
4320 
4321 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4322 {
4323 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4324 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4325 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4326 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4327 		/*
4328 		 * A get device id command, save if we are an event
4329 		 * receiver or generator.
4330 		 */
4331 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4332 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4333 	}
4334 }
4335 #endif
4336 
4337 static void send_panic_events(char *str)
4338 {
4339 	struct kernel_ipmi_msg            msg;
4340 	ipmi_smi_t                        intf;
4341 	unsigned char                     data[16];
4342 	struct ipmi_system_interface_addr *si;
4343 	struct ipmi_addr                  addr;
4344 
4345 	si = (struct ipmi_system_interface_addr *) &addr;
4346 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4347 	si->channel = IPMI_BMC_CHANNEL;
4348 	si->lun = 0;
4349 
4350 	/* Fill in an event telling that we have failed. */
4351 	msg.netfn = 0x04; /* Sensor or Event. */
4352 	msg.cmd = 2; /* Platform event command. */
4353 	msg.data = data;
4354 	msg.data_len = 8;
4355 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4356 	data[1] = 0x03; /* This is for IPMI 1.0. */
4357 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4358 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4359 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4360 
4361 	/*
4362 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4363 	 * to make the panic events more useful.
4364 	 */
4365 	if (str) {
4366 		data[3] = str[0];
4367 		data[6] = str[1];
4368 		data[7] = str[2];
4369 	}
4370 
4371 	/* For every registered interface, send the event. */
4372 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4373 		if (!intf->handlers)
4374 			/* Interface is not ready. */
4375 			continue;
4376 
4377 		intf->run_to_completion = 1;
4378 		/* Send the event announcing the panic. */
4379 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4380 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4381 	}
4382 
4383 #ifdef CONFIG_IPMI_PANIC_STRING
4384 	/*
4385 	 * On every interface, dump a bunch of OEM event holding the
4386 	 * string.
4387 	 */
4388 	if (!str)
4389 		return;
4390 
4391 	/* For every registered interface, send the event. */
4392 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4393 		char                  *p = str;
4394 		struct ipmi_ipmb_addr *ipmb;
4395 		int                   j;
4396 
4397 		if (intf->intf_num == -1)
4398 			/* Interface was not ready yet. */
4399 			continue;
4400 
4401 		/*
4402 		 * intf_num is used as an marker to tell if the
4403 		 * interface is valid.  Thus we need a read barrier to
4404 		 * make sure data fetched before checking intf_num
4405 		 * won't be used.
4406 		 */
4407 		smp_rmb();
4408 
4409 		/*
4410 		 * First job here is to figure out where to send the
4411 		 * OEM events.  There's no way in IPMI to send OEM
4412 		 * events using an event send command, so we have to
4413 		 * find the SEL to put them in and stick them in
4414 		 * there.
4415 		 */
4416 
4417 		/* Get capabilities from the get device id. */
4418 		intf->local_sel_device = 0;
4419 		intf->local_event_generator = 0;
4420 		intf->event_receiver = 0;
4421 
4422 		/* Request the device info from the local MC. */
4423 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4424 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4425 		msg.data = NULL;
4426 		msg.data_len = 0;
4427 		intf->null_user_handler = device_id_fetcher;
4428 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4429 
4430 		if (intf->local_event_generator) {
4431 			/* Request the event receiver from the local MC. */
4432 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4433 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4434 			msg.data = NULL;
4435 			msg.data_len = 0;
4436 			intf->null_user_handler = event_receiver_fetcher;
4437 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4438 		}
4439 		intf->null_user_handler = NULL;
4440 
4441 		/*
4442 		 * Validate the event receiver.  The low bit must not
4443 		 * be 1 (it must be a valid IPMB address), it cannot
4444 		 * be zero, and it must not be my address.
4445 		 */
4446 		if (((intf->event_receiver & 1) == 0)
4447 		    && (intf->event_receiver != 0)
4448 		    && (intf->event_receiver != intf->channels[0].address)) {
4449 			/*
4450 			 * The event receiver is valid, send an IPMB
4451 			 * message.
4452 			 */
4453 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4454 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4455 			ipmb->channel = 0; /* FIXME - is this right? */
4456 			ipmb->lun = intf->event_receiver_lun;
4457 			ipmb->slave_addr = intf->event_receiver;
4458 		} else if (intf->local_sel_device) {
4459 			/*
4460 			 * The event receiver was not valid (or was
4461 			 * me), but I am an SEL device, just dump it
4462 			 * in my SEL.
4463 			 */
4464 			si = (struct ipmi_system_interface_addr *) &addr;
4465 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4466 			si->channel = IPMI_BMC_CHANNEL;
4467 			si->lun = 0;
4468 		} else
4469 			continue; /* No where to send the event. */
4470 
4471 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4472 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4473 		msg.data = data;
4474 		msg.data_len = 16;
4475 
4476 		j = 0;
4477 		while (*p) {
4478 			int size = strlen(p);
4479 
4480 			if (size > 11)
4481 				size = 11;
4482 			data[0] = 0;
4483 			data[1] = 0;
4484 			data[2] = 0xf0; /* OEM event without timestamp. */
4485 			data[3] = intf->channels[0].address;
4486 			data[4] = j++; /* sequence # */
4487 			/*
4488 			 * Always give 11 bytes, so strncpy will fill
4489 			 * it with zeroes for me.
4490 			 */
4491 			strncpy(data+5, p, 11);
4492 			p += size;
4493 
4494 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4495 		}
4496 	}
4497 #endif /* CONFIG_IPMI_PANIC_STRING */
4498 }
4499 #endif /* CONFIG_IPMI_PANIC_EVENT */
4500 
4501 static int has_panicked;
4502 
4503 static int panic_event(struct notifier_block *this,
4504 		       unsigned long         event,
4505 		       void                  *ptr)
4506 {
4507 	ipmi_smi_t intf;
4508 
4509 	if (has_panicked)
4510 		return NOTIFY_DONE;
4511 	has_panicked = 1;
4512 
4513 	/* For every registered interface, set it to run to completion. */
4514 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4515 		if (!intf->handlers)
4516 			/* Interface is not ready. */
4517 			continue;
4518 
4519 		intf->run_to_completion = 1;
4520 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4521 	}
4522 
4523 #ifdef CONFIG_IPMI_PANIC_EVENT
4524 	send_panic_events(ptr);
4525 #endif
4526 
4527 	return NOTIFY_DONE;
4528 }
4529 
4530 static struct notifier_block panic_block = {
4531 	.notifier_call	= panic_event,
4532 	.next		= NULL,
4533 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4534 };
4535 
4536 static int ipmi_init_msghandler(void)
4537 {
4538 	int rv;
4539 
4540 	if (initialized)
4541 		return 0;
4542 
4543 	rv = driver_register(&ipmidriver.driver);
4544 	if (rv) {
4545 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4546 		return rv;
4547 	}
4548 
4549 	printk(KERN_INFO "ipmi message handler version "
4550 	       IPMI_DRIVER_VERSION "\n");
4551 
4552 #ifdef CONFIG_PROC_FS
4553 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4554 	if (!proc_ipmi_root) {
4555 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4556 	    driver_unregister(&ipmidriver.driver);
4557 	    return -ENOMEM;
4558 	}
4559 
4560 #endif /* CONFIG_PROC_FS */
4561 
4562 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4563 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4564 
4565 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4566 
4567 	initialized = 1;
4568 
4569 	return 0;
4570 }
4571 
4572 static int __init ipmi_init_msghandler_mod(void)
4573 {
4574 	ipmi_init_msghandler();
4575 	return 0;
4576 }
4577 
4578 static void __exit cleanup_ipmi(void)
4579 {
4580 	int count;
4581 
4582 	if (!initialized)
4583 		return;
4584 
4585 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4586 
4587 	/*
4588 	 * This can't be called if any interfaces exist, so no worry
4589 	 * about shutting down the interfaces.
4590 	 */
4591 
4592 	/*
4593 	 * Tell the timer to stop, then wait for it to stop.  This
4594 	 * avoids problems with race conditions removing the timer
4595 	 * here.
4596 	 */
4597 	atomic_inc(&stop_operation);
4598 	del_timer_sync(&ipmi_timer);
4599 
4600 #ifdef CONFIG_PROC_FS
4601 	proc_remove(proc_ipmi_root);
4602 #endif /* CONFIG_PROC_FS */
4603 
4604 	driver_unregister(&ipmidriver.driver);
4605 
4606 	initialized = 0;
4607 
4608 	/* Check for buffer leaks. */
4609 	count = atomic_read(&smi_msg_inuse_count);
4610 	if (count != 0)
4611 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4612 		       count);
4613 	count = atomic_read(&recv_msg_inuse_count);
4614 	if (count != 0)
4615 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4616 		       count);
4617 }
4618 module_exit(cleanup_ipmi);
4619 
4620 module_init(ipmi_init_msghandler_mod);
4621 MODULE_LICENSE("GPL");
4622 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4623 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4624 		   " interface.");
4625 MODULE_VERSION(IPMI_DRIVER_VERSION);
4626