1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <asm/system.h> 37 #include <linux/poll.h> 38 #include <linux/sched.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 49 #define PFX "IPMI message handler: " 50 51 #define IPMI_DRIVER_VERSION "39.2" 52 53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 54 static int ipmi_init_msghandler(void); 55 56 static int initialized; 57 58 #ifdef CONFIG_PROC_FS 59 static struct proc_dir_entry *proc_ipmi_root; 60 #endif /* CONFIG_PROC_FS */ 61 62 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 64 65 #define MAX_EVENTS_IN_QUEUE 25 66 67 /* 68 * Don't let a message sit in a queue forever, always time it with at lest 69 * the max message timer. This is in milliseconds. 70 */ 71 #define MAX_MSG_TIMEOUT 60000 72 73 /* 74 * The main "user" data structure. 75 */ 76 struct ipmi_user { 77 struct list_head link; 78 79 /* Set to "0" when the user is destroyed. */ 80 int valid; 81 82 struct kref refcount; 83 84 /* The upper layer that handles receive messages. */ 85 struct ipmi_user_hndl *handler; 86 void *handler_data; 87 88 /* The interface this user is bound to. */ 89 ipmi_smi_t intf; 90 91 /* Does this interface receive IPMI events? */ 92 int gets_events; 93 }; 94 95 struct cmd_rcvr { 96 struct list_head link; 97 98 ipmi_user_t user; 99 unsigned char netfn; 100 unsigned char cmd; 101 unsigned int chans; 102 103 /* 104 * This is used to form a linked lised during mass deletion. 105 * Since this is in an RCU list, we cannot use the link above 106 * or change any data until the RCU period completes. So we 107 * use this next variable during mass deletion so we can have 108 * a list and don't have to wait and restart the search on 109 * every individual deletion of a command. 110 */ 111 struct cmd_rcvr *next; 112 }; 113 114 struct seq_table { 115 unsigned int inuse : 1; 116 unsigned int broadcast : 1; 117 118 unsigned long timeout; 119 unsigned long orig_timeout; 120 unsigned int retries_left; 121 122 /* 123 * To verify on an incoming send message response that this is 124 * the message that the response is for, we keep a sequence id 125 * and increment it every time we send a message. 126 */ 127 long seqid; 128 129 /* 130 * This is held so we can properly respond to the message on a 131 * timeout, and it is used to hold the temporary data for 132 * retransmission, too. 133 */ 134 struct ipmi_recv_msg *recv_msg; 135 }; 136 137 /* 138 * Store the information in a msgid (long) to allow us to find a 139 * sequence table entry from the msgid. 140 */ 141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff)) 142 143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 144 do { \ 145 seq = ((msgid >> 26) & 0x3f); \ 146 seqid = (msgid & 0x3fffff); \ 147 } while (0) 148 149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff) 150 151 struct ipmi_channel { 152 unsigned char medium; 153 unsigned char protocol; 154 155 /* 156 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 157 * but may be changed by the user. 158 */ 159 unsigned char address; 160 161 /* 162 * My LUN. This should generally stay the SMS LUN, but just in 163 * case... 164 */ 165 unsigned char lun; 166 }; 167 168 #ifdef CONFIG_PROC_FS 169 struct ipmi_proc_entry { 170 char *name; 171 struct ipmi_proc_entry *next; 172 }; 173 #endif 174 175 struct bmc_device { 176 struct platform_device *dev; 177 struct ipmi_device_id id; 178 unsigned char guid[16]; 179 int guid_set; 180 181 struct kref refcount; 182 183 /* bmc device attributes */ 184 struct device_attribute device_id_attr; 185 struct device_attribute provides_dev_sdrs_attr; 186 struct device_attribute revision_attr; 187 struct device_attribute firmware_rev_attr; 188 struct device_attribute version_attr; 189 struct device_attribute add_dev_support_attr; 190 struct device_attribute manufacturer_id_attr; 191 struct device_attribute product_id_attr; 192 struct device_attribute guid_attr; 193 struct device_attribute aux_firmware_rev_attr; 194 }; 195 196 /* 197 * Various statistics for IPMI, these index stats[] in the ipmi_smi 198 * structure. 199 */ 200 enum ipmi_stat_indexes { 201 /* Commands we got from the user that were invalid. */ 202 IPMI_STAT_sent_invalid_commands = 0, 203 204 /* Commands we sent to the MC. */ 205 IPMI_STAT_sent_local_commands, 206 207 /* Responses from the MC that were delivered to a user. */ 208 IPMI_STAT_handled_local_responses, 209 210 /* Responses from the MC that were not delivered to a user. */ 211 IPMI_STAT_unhandled_local_responses, 212 213 /* Commands we sent out to the IPMB bus. */ 214 IPMI_STAT_sent_ipmb_commands, 215 216 /* Commands sent on the IPMB that had errors on the SEND CMD */ 217 IPMI_STAT_sent_ipmb_command_errs, 218 219 /* Each retransmit increments this count. */ 220 IPMI_STAT_retransmitted_ipmb_commands, 221 222 /* 223 * When a message times out (runs out of retransmits) this is 224 * incremented. 225 */ 226 IPMI_STAT_timed_out_ipmb_commands, 227 228 /* 229 * This is like above, but for broadcasts. Broadcasts are 230 * *not* included in the above count (they are expected to 231 * time out). 232 */ 233 IPMI_STAT_timed_out_ipmb_broadcasts, 234 235 /* Responses I have sent to the IPMB bus. */ 236 IPMI_STAT_sent_ipmb_responses, 237 238 /* The response was delivered to the user. */ 239 IPMI_STAT_handled_ipmb_responses, 240 241 /* The response had invalid data in it. */ 242 IPMI_STAT_invalid_ipmb_responses, 243 244 /* The response didn't have anyone waiting for it. */ 245 IPMI_STAT_unhandled_ipmb_responses, 246 247 /* Commands we sent out to the IPMB bus. */ 248 IPMI_STAT_sent_lan_commands, 249 250 /* Commands sent on the IPMB that had errors on the SEND CMD */ 251 IPMI_STAT_sent_lan_command_errs, 252 253 /* Each retransmit increments this count. */ 254 IPMI_STAT_retransmitted_lan_commands, 255 256 /* 257 * When a message times out (runs out of retransmits) this is 258 * incremented. 259 */ 260 IPMI_STAT_timed_out_lan_commands, 261 262 /* Responses I have sent to the IPMB bus. */ 263 IPMI_STAT_sent_lan_responses, 264 265 /* The response was delivered to the user. */ 266 IPMI_STAT_handled_lan_responses, 267 268 /* The response had invalid data in it. */ 269 IPMI_STAT_invalid_lan_responses, 270 271 /* The response didn't have anyone waiting for it. */ 272 IPMI_STAT_unhandled_lan_responses, 273 274 /* The command was delivered to the user. */ 275 IPMI_STAT_handled_commands, 276 277 /* The command had invalid data in it. */ 278 IPMI_STAT_invalid_commands, 279 280 /* The command didn't have anyone waiting for it. */ 281 IPMI_STAT_unhandled_commands, 282 283 /* Invalid data in an event. */ 284 IPMI_STAT_invalid_events, 285 286 /* Events that were received with the proper format. */ 287 IPMI_STAT_events, 288 289 /* Retransmissions on IPMB that failed. */ 290 IPMI_STAT_dropped_rexmit_ipmb_commands, 291 292 /* Retransmissions on LAN that failed. */ 293 IPMI_STAT_dropped_rexmit_lan_commands, 294 295 /* This *must* remain last, add new values above this. */ 296 IPMI_NUM_STATS 297 }; 298 299 300 #define IPMI_IPMB_NUM_SEQ 64 301 #define IPMI_MAX_CHANNELS 16 302 struct ipmi_smi { 303 /* What interface number are we? */ 304 int intf_num; 305 306 struct kref refcount; 307 308 /* Used for a list of interfaces. */ 309 struct list_head link; 310 311 /* 312 * The list of upper layers that are using me. seq_lock 313 * protects this. 314 */ 315 struct list_head users; 316 317 /* Information to supply to users. */ 318 unsigned char ipmi_version_major; 319 unsigned char ipmi_version_minor; 320 321 /* Used for wake ups at startup. */ 322 wait_queue_head_t waitq; 323 324 struct bmc_device *bmc; 325 char *my_dev_name; 326 char *sysfs_name; 327 328 /* 329 * This is the lower-layer's sender routine. Note that you 330 * must either be holding the ipmi_interfaces_mutex or be in 331 * an umpreemptible region to use this. You must fetch the 332 * value into a local variable and make sure it is not NULL. 333 */ 334 struct ipmi_smi_handlers *handlers; 335 void *send_info; 336 337 #ifdef CONFIG_PROC_FS 338 /* A list of proc entries for this interface. */ 339 struct mutex proc_entry_lock; 340 struct ipmi_proc_entry *proc_entries; 341 #endif 342 343 /* Driver-model device for the system interface. */ 344 struct device *si_dev; 345 346 /* 347 * A table of sequence numbers for this interface. We use the 348 * sequence numbers for IPMB messages that go out of the 349 * interface to match them up with their responses. A routine 350 * is called periodically to time the items in this list. 351 */ 352 spinlock_t seq_lock; 353 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 354 int curr_seq; 355 356 /* 357 * Messages that were delayed for some reason (out of memory, 358 * for instance), will go in here to be processed later in a 359 * periodic timer interrupt. 360 */ 361 spinlock_t waiting_msgs_lock; 362 struct list_head waiting_msgs; 363 364 /* 365 * The list of command receivers that are registered for commands 366 * on this interface. 367 */ 368 struct mutex cmd_rcvrs_mutex; 369 struct list_head cmd_rcvrs; 370 371 /* 372 * Events that were queues because no one was there to receive 373 * them. 374 */ 375 spinlock_t events_lock; /* For dealing with event stuff. */ 376 struct list_head waiting_events; 377 unsigned int waiting_events_count; /* How many events in queue? */ 378 char delivering_events; 379 char event_msg_printed; 380 381 /* 382 * The event receiver for my BMC, only really used at panic 383 * shutdown as a place to store this. 384 */ 385 unsigned char event_receiver; 386 unsigned char event_receiver_lun; 387 unsigned char local_sel_device; 388 unsigned char local_event_generator; 389 390 /* For handling of maintenance mode. */ 391 int maintenance_mode; 392 int maintenance_mode_enable; 393 int auto_maintenance_timeout; 394 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 395 396 /* 397 * A cheap hack, if this is non-null and a message to an 398 * interface comes in with a NULL user, call this routine with 399 * it. Note that the message will still be freed by the 400 * caller. This only works on the system interface. 401 */ 402 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 403 404 /* 405 * When we are scanning the channels for an SMI, this will 406 * tell which channel we are scanning. 407 */ 408 int curr_channel; 409 410 /* Channel information */ 411 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 412 413 /* Proc FS stuff. */ 414 struct proc_dir_entry *proc_dir; 415 char proc_dir_name[10]; 416 417 atomic_t stats[IPMI_NUM_STATS]; 418 419 /* 420 * run_to_completion duplicate of smb_info, smi_info 421 * and ipmi_serial_info structures. Used to decrease numbers of 422 * parameters passed by "low" level IPMI code. 423 */ 424 int run_to_completion; 425 }; 426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 427 428 /** 429 * The driver model view of the IPMI messaging driver. 430 */ 431 static struct platform_driver ipmidriver = { 432 .driver = { 433 .name = "ipmi", 434 .bus = &platform_bus_type 435 } 436 }; 437 static DEFINE_MUTEX(ipmidriver_mutex); 438 439 static LIST_HEAD(ipmi_interfaces); 440 static DEFINE_MUTEX(ipmi_interfaces_mutex); 441 442 /* 443 * List of watchers that want to know when smi's are added and deleted. 444 */ 445 static LIST_HEAD(smi_watchers); 446 static DEFINE_MUTEX(smi_watchers_mutex); 447 448 449 #define ipmi_inc_stat(intf, stat) \ 450 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 451 #define ipmi_get_stat(intf, stat) \ 452 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 453 454 static int is_lan_addr(struct ipmi_addr *addr) 455 { 456 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 457 } 458 459 static int is_ipmb_addr(struct ipmi_addr *addr) 460 { 461 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 462 } 463 464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 465 { 466 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 467 } 468 469 static void free_recv_msg_list(struct list_head *q) 470 { 471 struct ipmi_recv_msg *msg, *msg2; 472 473 list_for_each_entry_safe(msg, msg2, q, link) { 474 list_del(&msg->link); 475 ipmi_free_recv_msg(msg); 476 } 477 } 478 479 static void free_smi_msg_list(struct list_head *q) 480 { 481 struct ipmi_smi_msg *msg, *msg2; 482 483 list_for_each_entry_safe(msg, msg2, q, link) { 484 list_del(&msg->link); 485 ipmi_free_smi_msg(msg); 486 } 487 } 488 489 static void clean_up_interface_data(ipmi_smi_t intf) 490 { 491 int i; 492 struct cmd_rcvr *rcvr, *rcvr2; 493 struct list_head list; 494 495 free_smi_msg_list(&intf->waiting_msgs); 496 free_recv_msg_list(&intf->waiting_events); 497 498 /* 499 * Wholesale remove all the entries from the list in the 500 * interface and wait for RCU to know that none are in use. 501 */ 502 mutex_lock(&intf->cmd_rcvrs_mutex); 503 INIT_LIST_HEAD(&list); 504 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 505 mutex_unlock(&intf->cmd_rcvrs_mutex); 506 507 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 508 kfree(rcvr); 509 510 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 511 if ((intf->seq_table[i].inuse) 512 && (intf->seq_table[i].recv_msg)) 513 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 514 } 515 } 516 517 static void intf_free(struct kref *ref) 518 { 519 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 520 521 clean_up_interface_data(intf); 522 kfree(intf); 523 } 524 525 struct watcher_entry { 526 int intf_num; 527 ipmi_smi_t intf; 528 struct list_head link; 529 }; 530 531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 532 { 533 ipmi_smi_t intf; 534 LIST_HEAD(to_deliver); 535 struct watcher_entry *e, *e2; 536 537 mutex_lock(&smi_watchers_mutex); 538 539 mutex_lock(&ipmi_interfaces_mutex); 540 541 /* Build a list of things to deliver. */ 542 list_for_each_entry(intf, &ipmi_interfaces, link) { 543 if (intf->intf_num == -1) 544 continue; 545 e = kmalloc(sizeof(*e), GFP_KERNEL); 546 if (!e) 547 goto out_err; 548 kref_get(&intf->refcount); 549 e->intf = intf; 550 e->intf_num = intf->intf_num; 551 list_add_tail(&e->link, &to_deliver); 552 } 553 554 /* We will succeed, so add it to the list. */ 555 list_add(&watcher->link, &smi_watchers); 556 557 mutex_unlock(&ipmi_interfaces_mutex); 558 559 list_for_each_entry_safe(e, e2, &to_deliver, link) { 560 list_del(&e->link); 561 watcher->new_smi(e->intf_num, e->intf->si_dev); 562 kref_put(&e->intf->refcount, intf_free); 563 kfree(e); 564 } 565 566 mutex_unlock(&smi_watchers_mutex); 567 568 return 0; 569 570 out_err: 571 mutex_unlock(&ipmi_interfaces_mutex); 572 mutex_unlock(&smi_watchers_mutex); 573 list_for_each_entry_safe(e, e2, &to_deliver, link) { 574 list_del(&e->link); 575 kref_put(&e->intf->refcount, intf_free); 576 kfree(e); 577 } 578 return -ENOMEM; 579 } 580 EXPORT_SYMBOL(ipmi_smi_watcher_register); 581 582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 583 { 584 mutex_lock(&smi_watchers_mutex); 585 list_del(&(watcher->link)); 586 mutex_unlock(&smi_watchers_mutex); 587 return 0; 588 } 589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 590 591 /* 592 * Must be called with smi_watchers_mutex held. 593 */ 594 static void 595 call_smi_watchers(int i, struct device *dev) 596 { 597 struct ipmi_smi_watcher *w; 598 599 list_for_each_entry(w, &smi_watchers, link) { 600 if (try_module_get(w->owner)) { 601 w->new_smi(i, dev); 602 module_put(w->owner); 603 } 604 } 605 } 606 607 static int 608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 609 { 610 if (addr1->addr_type != addr2->addr_type) 611 return 0; 612 613 if (addr1->channel != addr2->channel) 614 return 0; 615 616 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 617 struct ipmi_system_interface_addr *smi_addr1 618 = (struct ipmi_system_interface_addr *) addr1; 619 struct ipmi_system_interface_addr *smi_addr2 620 = (struct ipmi_system_interface_addr *) addr2; 621 return (smi_addr1->lun == smi_addr2->lun); 622 } 623 624 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 625 struct ipmi_ipmb_addr *ipmb_addr1 626 = (struct ipmi_ipmb_addr *) addr1; 627 struct ipmi_ipmb_addr *ipmb_addr2 628 = (struct ipmi_ipmb_addr *) addr2; 629 630 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 631 && (ipmb_addr1->lun == ipmb_addr2->lun)); 632 } 633 634 if (is_lan_addr(addr1)) { 635 struct ipmi_lan_addr *lan_addr1 636 = (struct ipmi_lan_addr *) addr1; 637 struct ipmi_lan_addr *lan_addr2 638 = (struct ipmi_lan_addr *) addr2; 639 640 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 641 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 642 && (lan_addr1->session_handle 643 == lan_addr2->session_handle) 644 && (lan_addr1->lun == lan_addr2->lun)); 645 } 646 647 return 1; 648 } 649 650 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 651 { 652 if (len < sizeof(struct ipmi_system_interface_addr)) 653 return -EINVAL; 654 655 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 656 if (addr->channel != IPMI_BMC_CHANNEL) 657 return -EINVAL; 658 return 0; 659 } 660 661 if ((addr->channel == IPMI_BMC_CHANNEL) 662 || (addr->channel >= IPMI_MAX_CHANNELS) 663 || (addr->channel < 0)) 664 return -EINVAL; 665 666 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 667 if (len < sizeof(struct ipmi_ipmb_addr)) 668 return -EINVAL; 669 return 0; 670 } 671 672 if (is_lan_addr(addr)) { 673 if (len < sizeof(struct ipmi_lan_addr)) 674 return -EINVAL; 675 return 0; 676 } 677 678 return -EINVAL; 679 } 680 EXPORT_SYMBOL(ipmi_validate_addr); 681 682 unsigned int ipmi_addr_length(int addr_type) 683 { 684 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 685 return sizeof(struct ipmi_system_interface_addr); 686 687 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 688 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 689 return sizeof(struct ipmi_ipmb_addr); 690 691 if (addr_type == IPMI_LAN_ADDR_TYPE) 692 return sizeof(struct ipmi_lan_addr); 693 694 return 0; 695 } 696 EXPORT_SYMBOL(ipmi_addr_length); 697 698 static void deliver_response(struct ipmi_recv_msg *msg) 699 { 700 if (!msg->user) { 701 ipmi_smi_t intf = msg->user_msg_data; 702 703 /* Special handling for NULL users. */ 704 if (intf->null_user_handler) { 705 intf->null_user_handler(intf, msg); 706 ipmi_inc_stat(intf, handled_local_responses); 707 } else { 708 /* No handler, so give up. */ 709 ipmi_inc_stat(intf, unhandled_local_responses); 710 } 711 ipmi_free_recv_msg(msg); 712 } else { 713 ipmi_user_t user = msg->user; 714 user->handler->ipmi_recv_hndl(msg, user->handler_data); 715 } 716 } 717 718 static void 719 deliver_err_response(struct ipmi_recv_msg *msg, int err) 720 { 721 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 722 msg->msg_data[0] = err; 723 msg->msg.netfn |= 1; /* Convert to a response. */ 724 msg->msg.data_len = 1; 725 msg->msg.data = msg->msg_data; 726 deliver_response(msg); 727 } 728 729 /* 730 * Find the next sequence number not being used and add the given 731 * message with the given timeout to the sequence table. This must be 732 * called with the interface's seq_lock held. 733 */ 734 static int intf_next_seq(ipmi_smi_t intf, 735 struct ipmi_recv_msg *recv_msg, 736 unsigned long timeout, 737 int retries, 738 int broadcast, 739 unsigned char *seq, 740 long *seqid) 741 { 742 int rv = 0; 743 unsigned int i; 744 745 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 746 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 747 if (!intf->seq_table[i].inuse) 748 break; 749 } 750 751 if (!intf->seq_table[i].inuse) { 752 intf->seq_table[i].recv_msg = recv_msg; 753 754 /* 755 * Start with the maximum timeout, when the send response 756 * comes in we will start the real timer. 757 */ 758 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 759 intf->seq_table[i].orig_timeout = timeout; 760 intf->seq_table[i].retries_left = retries; 761 intf->seq_table[i].broadcast = broadcast; 762 intf->seq_table[i].inuse = 1; 763 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 764 *seq = i; 765 *seqid = intf->seq_table[i].seqid; 766 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 767 } else { 768 rv = -EAGAIN; 769 } 770 771 return rv; 772 } 773 774 /* 775 * Return the receive message for the given sequence number and 776 * release the sequence number so it can be reused. Some other data 777 * is passed in to be sure the message matches up correctly (to help 778 * guard against message coming in after their timeout and the 779 * sequence number being reused). 780 */ 781 static int intf_find_seq(ipmi_smi_t intf, 782 unsigned char seq, 783 short channel, 784 unsigned char cmd, 785 unsigned char netfn, 786 struct ipmi_addr *addr, 787 struct ipmi_recv_msg **recv_msg) 788 { 789 int rv = -ENODEV; 790 unsigned long flags; 791 792 if (seq >= IPMI_IPMB_NUM_SEQ) 793 return -EINVAL; 794 795 spin_lock_irqsave(&(intf->seq_lock), flags); 796 if (intf->seq_table[seq].inuse) { 797 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 798 799 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 800 && (msg->msg.netfn == netfn) 801 && (ipmi_addr_equal(addr, &(msg->addr)))) { 802 *recv_msg = msg; 803 intf->seq_table[seq].inuse = 0; 804 rv = 0; 805 } 806 } 807 spin_unlock_irqrestore(&(intf->seq_lock), flags); 808 809 return rv; 810 } 811 812 813 /* Start the timer for a specific sequence table entry. */ 814 static int intf_start_seq_timer(ipmi_smi_t intf, 815 long msgid) 816 { 817 int rv = -ENODEV; 818 unsigned long flags; 819 unsigned char seq; 820 unsigned long seqid; 821 822 823 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 824 825 spin_lock_irqsave(&(intf->seq_lock), flags); 826 /* 827 * We do this verification because the user can be deleted 828 * while a message is outstanding. 829 */ 830 if ((intf->seq_table[seq].inuse) 831 && (intf->seq_table[seq].seqid == seqid)) { 832 struct seq_table *ent = &(intf->seq_table[seq]); 833 ent->timeout = ent->orig_timeout; 834 rv = 0; 835 } 836 spin_unlock_irqrestore(&(intf->seq_lock), flags); 837 838 return rv; 839 } 840 841 /* Got an error for the send message for a specific sequence number. */ 842 static int intf_err_seq(ipmi_smi_t intf, 843 long msgid, 844 unsigned int err) 845 { 846 int rv = -ENODEV; 847 unsigned long flags; 848 unsigned char seq; 849 unsigned long seqid; 850 struct ipmi_recv_msg *msg = NULL; 851 852 853 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 854 855 spin_lock_irqsave(&(intf->seq_lock), flags); 856 /* 857 * We do this verification because the user can be deleted 858 * while a message is outstanding. 859 */ 860 if ((intf->seq_table[seq].inuse) 861 && (intf->seq_table[seq].seqid == seqid)) { 862 struct seq_table *ent = &(intf->seq_table[seq]); 863 864 ent->inuse = 0; 865 msg = ent->recv_msg; 866 rv = 0; 867 } 868 spin_unlock_irqrestore(&(intf->seq_lock), flags); 869 870 if (msg) 871 deliver_err_response(msg, err); 872 873 return rv; 874 } 875 876 877 int ipmi_create_user(unsigned int if_num, 878 struct ipmi_user_hndl *handler, 879 void *handler_data, 880 ipmi_user_t *user) 881 { 882 unsigned long flags; 883 ipmi_user_t new_user; 884 int rv = 0; 885 ipmi_smi_t intf; 886 887 /* 888 * There is no module usecount here, because it's not 889 * required. Since this can only be used by and called from 890 * other modules, they will implicitly use this module, and 891 * thus this can't be removed unless the other modules are 892 * removed. 893 */ 894 895 if (handler == NULL) 896 return -EINVAL; 897 898 /* 899 * Make sure the driver is actually initialized, this handles 900 * problems with initialization order. 901 */ 902 if (!initialized) { 903 rv = ipmi_init_msghandler(); 904 if (rv) 905 return rv; 906 907 /* 908 * The init code doesn't return an error if it was turned 909 * off, but it won't initialize. Check that. 910 */ 911 if (!initialized) 912 return -ENODEV; 913 } 914 915 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 916 if (!new_user) 917 return -ENOMEM; 918 919 mutex_lock(&ipmi_interfaces_mutex); 920 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 921 if (intf->intf_num == if_num) 922 goto found; 923 } 924 /* Not found, return an error */ 925 rv = -EINVAL; 926 goto out_kfree; 927 928 found: 929 /* Note that each existing user holds a refcount to the interface. */ 930 kref_get(&intf->refcount); 931 932 kref_init(&new_user->refcount); 933 new_user->handler = handler; 934 new_user->handler_data = handler_data; 935 new_user->intf = intf; 936 new_user->gets_events = 0; 937 938 if (!try_module_get(intf->handlers->owner)) { 939 rv = -ENODEV; 940 goto out_kref; 941 } 942 943 if (intf->handlers->inc_usecount) { 944 rv = intf->handlers->inc_usecount(intf->send_info); 945 if (rv) { 946 module_put(intf->handlers->owner); 947 goto out_kref; 948 } 949 } 950 951 /* 952 * Hold the lock so intf->handlers is guaranteed to be good 953 * until now 954 */ 955 mutex_unlock(&ipmi_interfaces_mutex); 956 957 new_user->valid = 1; 958 spin_lock_irqsave(&intf->seq_lock, flags); 959 list_add_rcu(&new_user->link, &intf->users); 960 spin_unlock_irqrestore(&intf->seq_lock, flags); 961 *user = new_user; 962 return 0; 963 964 out_kref: 965 kref_put(&intf->refcount, intf_free); 966 out_kfree: 967 mutex_unlock(&ipmi_interfaces_mutex); 968 kfree(new_user); 969 return rv; 970 } 971 EXPORT_SYMBOL(ipmi_create_user); 972 973 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 974 { 975 int rv = 0; 976 ipmi_smi_t intf; 977 struct ipmi_smi_handlers *handlers; 978 979 mutex_lock(&ipmi_interfaces_mutex); 980 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 981 if (intf->intf_num == if_num) 982 goto found; 983 } 984 /* Not found, return an error */ 985 rv = -EINVAL; 986 mutex_unlock(&ipmi_interfaces_mutex); 987 return rv; 988 989 found: 990 handlers = intf->handlers; 991 rv = -ENOSYS; 992 if (handlers->get_smi_info) 993 rv = handlers->get_smi_info(intf->send_info, data); 994 mutex_unlock(&ipmi_interfaces_mutex); 995 996 return rv; 997 } 998 EXPORT_SYMBOL(ipmi_get_smi_info); 999 1000 static void free_user(struct kref *ref) 1001 { 1002 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 1003 kfree(user); 1004 } 1005 1006 int ipmi_destroy_user(ipmi_user_t user) 1007 { 1008 ipmi_smi_t intf = user->intf; 1009 int i; 1010 unsigned long flags; 1011 struct cmd_rcvr *rcvr; 1012 struct cmd_rcvr *rcvrs = NULL; 1013 1014 user->valid = 0; 1015 1016 /* Remove the user from the interface's sequence table. */ 1017 spin_lock_irqsave(&intf->seq_lock, flags); 1018 list_del_rcu(&user->link); 1019 1020 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1021 if (intf->seq_table[i].inuse 1022 && (intf->seq_table[i].recv_msg->user == user)) { 1023 intf->seq_table[i].inuse = 0; 1024 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1025 } 1026 } 1027 spin_unlock_irqrestore(&intf->seq_lock, flags); 1028 1029 /* 1030 * Remove the user from the command receiver's table. First 1031 * we build a list of everything (not using the standard link, 1032 * since other things may be using it till we do 1033 * synchronize_rcu()) then free everything in that list. 1034 */ 1035 mutex_lock(&intf->cmd_rcvrs_mutex); 1036 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1037 if (rcvr->user == user) { 1038 list_del_rcu(&rcvr->link); 1039 rcvr->next = rcvrs; 1040 rcvrs = rcvr; 1041 } 1042 } 1043 mutex_unlock(&intf->cmd_rcvrs_mutex); 1044 synchronize_rcu(); 1045 while (rcvrs) { 1046 rcvr = rcvrs; 1047 rcvrs = rcvr->next; 1048 kfree(rcvr); 1049 } 1050 1051 mutex_lock(&ipmi_interfaces_mutex); 1052 if (intf->handlers) { 1053 module_put(intf->handlers->owner); 1054 if (intf->handlers->dec_usecount) 1055 intf->handlers->dec_usecount(intf->send_info); 1056 } 1057 mutex_unlock(&ipmi_interfaces_mutex); 1058 1059 kref_put(&intf->refcount, intf_free); 1060 1061 kref_put(&user->refcount, free_user); 1062 1063 return 0; 1064 } 1065 EXPORT_SYMBOL(ipmi_destroy_user); 1066 1067 void ipmi_get_version(ipmi_user_t user, 1068 unsigned char *major, 1069 unsigned char *minor) 1070 { 1071 *major = user->intf->ipmi_version_major; 1072 *minor = user->intf->ipmi_version_minor; 1073 } 1074 EXPORT_SYMBOL(ipmi_get_version); 1075 1076 int ipmi_set_my_address(ipmi_user_t user, 1077 unsigned int channel, 1078 unsigned char address) 1079 { 1080 if (channel >= IPMI_MAX_CHANNELS) 1081 return -EINVAL; 1082 user->intf->channels[channel].address = address; 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(ipmi_set_my_address); 1086 1087 int ipmi_get_my_address(ipmi_user_t user, 1088 unsigned int channel, 1089 unsigned char *address) 1090 { 1091 if (channel >= IPMI_MAX_CHANNELS) 1092 return -EINVAL; 1093 *address = user->intf->channels[channel].address; 1094 return 0; 1095 } 1096 EXPORT_SYMBOL(ipmi_get_my_address); 1097 1098 int ipmi_set_my_LUN(ipmi_user_t user, 1099 unsigned int channel, 1100 unsigned char LUN) 1101 { 1102 if (channel >= IPMI_MAX_CHANNELS) 1103 return -EINVAL; 1104 user->intf->channels[channel].lun = LUN & 0x3; 1105 return 0; 1106 } 1107 EXPORT_SYMBOL(ipmi_set_my_LUN); 1108 1109 int ipmi_get_my_LUN(ipmi_user_t user, 1110 unsigned int channel, 1111 unsigned char *address) 1112 { 1113 if (channel >= IPMI_MAX_CHANNELS) 1114 return -EINVAL; 1115 *address = user->intf->channels[channel].lun; 1116 return 0; 1117 } 1118 EXPORT_SYMBOL(ipmi_get_my_LUN); 1119 1120 int ipmi_get_maintenance_mode(ipmi_user_t user) 1121 { 1122 int mode; 1123 unsigned long flags; 1124 1125 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1126 mode = user->intf->maintenance_mode; 1127 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1128 1129 return mode; 1130 } 1131 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1132 1133 static void maintenance_mode_update(ipmi_smi_t intf) 1134 { 1135 if (intf->handlers->set_maintenance_mode) 1136 intf->handlers->set_maintenance_mode( 1137 intf->send_info, intf->maintenance_mode_enable); 1138 } 1139 1140 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1141 { 1142 int rv = 0; 1143 unsigned long flags; 1144 ipmi_smi_t intf = user->intf; 1145 1146 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1147 if (intf->maintenance_mode != mode) { 1148 switch (mode) { 1149 case IPMI_MAINTENANCE_MODE_AUTO: 1150 intf->maintenance_mode = mode; 1151 intf->maintenance_mode_enable 1152 = (intf->auto_maintenance_timeout > 0); 1153 break; 1154 1155 case IPMI_MAINTENANCE_MODE_OFF: 1156 intf->maintenance_mode = mode; 1157 intf->maintenance_mode_enable = 0; 1158 break; 1159 1160 case IPMI_MAINTENANCE_MODE_ON: 1161 intf->maintenance_mode = mode; 1162 intf->maintenance_mode_enable = 1; 1163 break; 1164 1165 default: 1166 rv = -EINVAL; 1167 goto out_unlock; 1168 } 1169 1170 maintenance_mode_update(intf); 1171 } 1172 out_unlock: 1173 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1174 1175 return rv; 1176 } 1177 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1178 1179 int ipmi_set_gets_events(ipmi_user_t user, int val) 1180 { 1181 unsigned long flags; 1182 ipmi_smi_t intf = user->intf; 1183 struct ipmi_recv_msg *msg, *msg2; 1184 struct list_head msgs; 1185 1186 INIT_LIST_HEAD(&msgs); 1187 1188 spin_lock_irqsave(&intf->events_lock, flags); 1189 user->gets_events = val; 1190 1191 if (intf->delivering_events) 1192 /* 1193 * Another thread is delivering events for this, so 1194 * let it handle any new events. 1195 */ 1196 goto out; 1197 1198 /* Deliver any queued events. */ 1199 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1200 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1201 list_move_tail(&msg->link, &msgs); 1202 intf->waiting_events_count = 0; 1203 if (intf->event_msg_printed) { 1204 printk(KERN_WARNING PFX "Event queue no longer" 1205 " full\n"); 1206 intf->event_msg_printed = 0; 1207 } 1208 1209 intf->delivering_events = 1; 1210 spin_unlock_irqrestore(&intf->events_lock, flags); 1211 1212 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1213 msg->user = user; 1214 kref_get(&user->refcount); 1215 deliver_response(msg); 1216 } 1217 1218 spin_lock_irqsave(&intf->events_lock, flags); 1219 intf->delivering_events = 0; 1220 } 1221 1222 out: 1223 spin_unlock_irqrestore(&intf->events_lock, flags); 1224 1225 return 0; 1226 } 1227 EXPORT_SYMBOL(ipmi_set_gets_events); 1228 1229 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1230 unsigned char netfn, 1231 unsigned char cmd, 1232 unsigned char chan) 1233 { 1234 struct cmd_rcvr *rcvr; 1235 1236 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1237 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1238 && (rcvr->chans & (1 << chan))) 1239 return rcvr; 1240 } 1241 return NULL; 1242 } 1243 1244 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1245 unsigned char netfn, 1246 unsigned char cmd, 1247 unsigned int chans) 1248 { 1249 struct cmd_rcvr *rcvr; 1250 1251 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1252 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1253 && (rcvr->chans & chans)) 1254 return 0; 1255 } 1256 return 1; 1257 } 1258 1259 int ipmi_register_for_cmd(ipmi_user_t user, 1260 unsigned char netfn, 1261 unsigned char cmd, 1262 unsigned int chans) 1263 { 1264 ipmi_smi_t intf = user->intf; 1265 struct cmd_rcvr *rcvr; 1266 int rv = 0; 1267 1268 1269 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1270 if (!rcvr) 1271 return -ENOMEM; 1272 rcvr->cmd = cmd; 1273 rcvr->netfn = netfn; 1274 rcvr->chans = chans; 1275 rcvr->user = user; 1276 1277 mutex_lock(&intf->cmd_rcvrs_mutex); 1278 /* Make sure the command/netfn is not already registered. */ 1279 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1280 rv = -EBUSY; 1281 goto out_unlock; 1282 } 1283 1284 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1285 1286 out_unlock: 1287 mutex_unlock(&intf->cmd_rcvrs_mutex); 1288 if (rv) 1289 kfree(rcvr); 1290 1291 return rv; 1292 } 1293 EXPORT_SYMBOL(ipmi_register_for_cmd); 1294 1295 int ipmi_unregister_for_cmd(ipmi_user_t user, 1296 unsigned char netfn, 1297 unsigned char cmd, 1298 unsigned int chans) 1299 { 1300 ipmi_smi_t intf = user->intf; 1301 struct cmd_rcvr *rcvr; 1302 struct cmd_rcvr *rcvrs = NULL; 1303 int i, rv = -ENOENT; 1304 1305 mutex_lock(&intf->cmd_rcvrs_mutex); 1306 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1307 if (((1 << i) & chans) == 0) 1308 continue; 1309 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1310 if (rcvr == NULL) 1311 continue; 1312 if (rcvr->user == user) { 1313 rv = 0; 1314 rcvr->chans &= ~chans; 1315 if (rcvr->chans == 0) { 1316 list_del_rcu(&rcvr->link); 1317 rcvr->next = rcvrs; 1318 rcvrs = rcvr; 1319 } 1320 } 1321 } 1322 mutex_unlock(&intf->cmd_rcvrs_mutex); 1323 synchronize_rcu(); 1324 while (rcvrs) { 1325 rcvr = rcvrs; 1326 rcvrs = rcvr->next; 1327 kfree(rcvr); 1328 } 1329 return rv; 1330 } 1331 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1332 1333 static unsigned char 1334 ipmb_checksum(unsigned char *data, int size) 1335 { 1336 unsigned char csum = 0; 1337 1338 for (; size > 0; size--, data++) 1339 csum += *data; 1340 1341 return -csum; 1342 } 1343 1344 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1345 struct kernel_ipmi_msg *msg, 1346 struct ipmi_ipmb_addr *ipmb_addr, 1347 long msgid, 1348 unsigned char ipmb_seq, 1349 int broadcast, 1350 unsigned char source_address, 1351 unsigned char source_lun) 1352 { 1353 int i = broadcast; 1354 1355 /* Format the IPMB header data. */ 1356 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1357 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1358 smi_msg->data[2] = ipmb_addr->channel; 1359 if (broadcast) 1360 smi_msg->data[3] = 0; 1361 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1362 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1363 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1364 smi_msg->data[i+6] = source_address; 1365 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1366 smi_msg->data[i+8] = msg->cmd; 1367 1368 /* Now tack on the data to the message. */ 1369 if (msg->data_len > 0) 1370 memcpy(&(smi_msg->data[i+9]), msg->data, 1371 msg->data_len); 1372 smi_msg->data_size = msg->data_len + 9; 1373 1374 /* Now calculate the checksum and tack it on. */ 1375 smi_msg->data[i+smi_msg->data_size] 1376 = ipmb_checksum(&(smi_msg->data[i+6]), 1377 smi_msg->data_size-6); 1378 1379 /* 1380 * Add on the checksum size and the offset from the 1381 * broadcast. 1382 */ 1383 smi_msg->data_size += 1 + i; 1384 1385 smi_msg->msgid = msgid; 1386 } 1387 1388 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1389 struct kernel_ipmi_msg *msg, 1390 struct ipmi_lan_addr *lan_addr, 1391 long msgid, 1392 unsigned char ipmb_seq, 1393 unsigned char source_lun) 1394 { 1395 /* Format the IPMB header data. */ 1396 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1397 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1398 smi_msg->data[2] = lan_addr->channel; 1399 smi_msg->data[3] = lan_addr->session_handle; 1400 smi_msg->data[4] = lan_addr->remote_SWID; 1401 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1402 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1403 smi_msg->data[7] = lan_addr->local_SWID; 1404 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1405 smi_msg->data[9] = msg->cmd; 1406 1407 /* Now tack on the data to the message. */ 1408 if (msg->data_len > 0) 1409 memcpy(&(smi_msg->data[10]), msg->data, 1410 msg->data_len); 1411 smi_msg->data_size = msg->data_len + 10; 1412 1413 /* Now calculate the checksum and tack it on. */ 1414 smi_msg->data[smi_msg->data_size] 1415 = ipmb_checksum(&(smi_msg->data[7]), 1416 smi_msg->data_size-7); 1417 1418 /* 1419 * Add on the checksum size and the offset from the 1420 * broadcast. 1421 */ 1422 smi_msg->data_size += 1; 1423 1424 smi_msg->msgid = msgid; 1425 } 1426 1427 /* 1428 * Separate from ipmi_request so that the user does not have to be 1429 * supplied in certain circumstances (mainly at panic time). If 1430 * messages are supplied, they will be freed, even if an error 1431 * occurs. 1432 */ 1433 static int i_ipmi_request(ipmi_user_t user, 1434 ipmi_smi_t intf, 1435 struct ipmi_addr *addr, 1436 long msgid, 1437 struct kernel_ipmi_msg *msg, 1438 void *user_msg_data, 1439 void *supplied_smi, 1440 struct ipmi_recv_msg *supplied_recv, 1441 int priority, 1442 unsigned char source_address, 1443 unsigned char source_lun, 1444 int retries, 1445 unsigned int retry_time_ms) 1446 { 1447 int rv = 0; 1448 struct ipmi_smi_msg *smi_msg; 1449 struct ipmi_recv_msg *recv_msg; 1450 unsigned long flags; 1451 struct ipmi_smi_handlers *handlers; 1452 1453 1454 if (supplied_recv) 1455 recv_msg = supplied_recv; 1456 else { 1457 recv_msg = ipmi_alloc_recv_msg(); 1458 if (recv_msg == NULL) 1459 return -ENOMEM; 1460 } 1461 recv_msg->user_msg_data = user_msg_data; 1462 1463 if (supplied_smi) 1464 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1465 else { 1466 smi_msg = ipmi_alloc_smi_msg(); 1467 if (smi_msg == NULL) { 1468 ipmi_free_recv_msg(recv_msg); 1469 return -ENOMEM; 1470 } 1471 } 1472 1473 rcu_read_lock(); 1474 handlers = intf->handlers; 1475 if (!handlers) { 1476 rv = -ENODEV; 1477 goto out_err; 1478 } 1479 1480 recv_msg->user = user; 1481 if (user) 1482 kref_get(&user->refcount); 1483 recv_msg->msgid = msgid; 1484 /* 1485 * Store the message to send in the receive message so timeout 1486 * responses can get the proper response data. 1487 */ 1488 recv_msg->msg = *msg; 1489 1490 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1491 struct ipmi_system_interface_addr *smi_addr; 1492 1493 if (msg->netfn & 1) { 1494 /* Responses are not allowed to the SMI. */ 1495 rv = -EINVAL; 1496 goto out_err; 1497 } 1498 1499 smi_addr = (struct ipmi_system_interface_addr *) addr; 1500 if (smi_addr->lun > 3) { 1501 ipmi_inc_stat(intf, sent_invalid_commands); 1502 rv = -EINVAL; 1503 goto out_err; 1504 } 1505 1506 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1507 1508 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1509 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1510 || (msg->cmd == IPMI_GET_MSG_CMD) 1511 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1512 /* 1513 * We don't let the user do these, since we manage 1514 * the sequence numbers. 1515 */ 1516 ipmi_inc_stat(intf, sent_invalid_commands); 1517 rv = -EINVAL; 1518 goto out_err; 1519 } 1520 1521 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1522 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1523 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1524 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1525 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1526 intf->auto_maintenance_timeout 1527 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1528 if (!intf->maintenance_mode 1529 && !intf->maintenance_mode_enable) { 1530 intf->maintenance_mode_enable = 1; 1531 maintenance_mode_update(intf); 1532 } 1533 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1534 flags); 1535 } 1536 1537 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1538 ipmi_inc_stat(intf, sent_invalid_commands); 1539 rv = -EMSGSIZE; 1540 goto out_err; 1541 } 1542 1543 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1544 smi_msg->data[1] = msg->cmd; 1545 smi_msg->msgid = msgid; 1546 smi_msg->user_data = recv_msg; 1547 if (msg->data_len > 0) 1548 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1549 smi_msg->data_size = msg->data_len + 2; 1550 ipmi_inc_stat(intf, sent_local_commands); 1551 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1552 struct ipmi_ipmb_addr *ipmb_addr; 1553 unsigned char ipmb_seq; 1554 long seqid; 1555 int broadcast = 0; 1556 1557 if (addr->channel >= IPMI_MAX_CHANNELS) { 1558 ipmi_inc_stat(intf, sent_invalid_commands); 1559 rv = -EINVAL; 1560 goto out_err; 1561 } 1562 1563 if (intf->channels[addr->channel].medium 1564 != IPMI_CHANNEL_MEDIUM_IPMB) { 1565 ipmi_inc_stat(intf, sent_invalid_commands); 1566 rv = -EINVAL; 1567 goto out_err; 1568 } 1569 1570 if (retries < 0) { 1571 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1572 retries = 0; /* Don't retry broadcasts. */ 1573 else 1574 retries = 4; 1575 } 1576 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1577 /* 1578 * Broadcasts add a zero at the beginning of the 1579 * message, but otherwise is the same as an IPMB 1580 * address. 1581 */ 1582 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1583 broadcast = 1; 1584 } 1585 1586 1587 /* Default to 1 second retries. */ 1588 if (retry_time_ms == 0) 1589 retry_time_ms = 1000; 1590 1591 /* 1592 * 9 for the header and 1 for the checksum, plus 1593 * possibly one for the broadcast. 1594 */ 1595 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1596 ipmi_inc_stat(intf, sent_invalid_commands); 1597 rv = -EMSGSIZE; 1598 goto out_err; 1599 } 1600 1601 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1602 if (ipmb_addr->lun > 3) { 1603 ipmi_inc_stat(intf, sent_invalid_commands); 1604 rv = -EINVAL; 1605 goto out_err; 1606 } 1607 1608 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1609 1610 if (recv_msg->msg.netfn & 0x1) { 1611 /* 1612 * It's a response, so use the user's sequence 1613 * from msgid. 1614 */ 1615 ipmi_inc_stat(intf, sent_ipmb_responses); 1616 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1617 msgid, broadcast, 1618 source_address, source_lun); 1619 1620 /* 1621 * Save the receive message so we can use it 1622 * to deliver the response. 1623 */ 1624 smi_msg->user_data = recv_msg; 1625 } else { 1626 /* It's a command, so get a sequence for it. */ 1627 1628 spin_lock_irqsave(&(intf->seq_lock), flags); 1629 1630 /* 1631 * Create a sequence number with a 1 second 1632 * timeout and 4 retries. 1633 */ 1634 rv = intf_next_seq(intf, 1635 recv_msg, 1636 retry_time_ms, 1637 retries, 1638 broadcast, 1639 &ipmb_seq, 1640 &seqid); 1641 if (rv) { 1642 /* 1643 * We have used up all the sequence numbers, 1644 * probably, so abort. 1645 */ 1646 spin_unlock_irqrestore(&(intf->seq_lock), 1647 flags); 1648 goto out_err; 1649 } 1650 1651 ipmi_inc_stat(intf, sent_ipmb_commands); 1652 1653 /* 1654 * Store the sequence number in the message, 1655 * so that when the send message response 1656 * comes back we can start the timer. 1657 */ 1658 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1659 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1660 ipmb_seq, broadcast, 1661 source_address, source_lun); 1662 1663 /* 1664 * Copy the message into the recv message data, so we 1665 * can retransmit it later if necessary. 1666 */ 1667 memcpy(recv_msg->msg_data, smi_msg->data, 1668 smi_msg->data_size); 1669 recv_msg->msg.data = recv_msg->msg_data; 1670 recv_msg->msg.data_len = smi_msg->data_size; 1671 1672 /* 1673 * We don't unlock until here, because we need 1674 * to copy the completed message into the 1675 * recv_msg before we release the lock. 1676 * Otherwise, race conditions may bite us. I 1677 * know that's pretty paranoid, but I prefer 1678 * to be correct. 1679 */ 1680 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1681 } 1682 } else if (is_lan_addr(addr)) { 1683 struct ipmi_lan_addr *lan_addr; 1684 unsigned char ipmb_seq; 1685 long seqid; 1686 1687 if (addr->channel >= IPMI_MAX_CHANNELS) { 1688 ipmi_inc_stat(intf, sent_invalid_commands); 1689 rv = -EINVAL; 1690 goto out_err; 1691 } 1692 1693 if ((intf->channels[addr->channel].medium 1694 != IPMI_CHANNEL_MEDIUM_8023LAN) 1695 && (intf->channels[addr->channel].medium 1696 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1697 ipmi_inc_stat(intf, sent_invalid_commands); 1698 rv = -EINVAL; 1699 goto out_err; 1700 } 1701 1702 retries = 4; 1703 1704 /* Default to 1 second retries. */ 1705 if (retry_time_ms == 0) 1706 retry_time_ms = 1000; 1707 1708 /* 11 for the header and 1 for the checksum. */ 1709 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1710 ipmi_inc_stat(intf, sent_invalid_commands); 1711 rv = -EMSGSIZE; 1712 goto out_err; 1713 } 1714 1715 lan_addr = (struct ipmi_lan_addr *) addr; 1716 if (lan_addr->lun > 3) { 1717 ipmi_inc_stat(intf, sent_invalid_commands); 1718 rv = -EINVAL; 1719 goto out_err; 1720 } 1721 1722 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1723 1724 if (recv_msg->msg.netfn & 0x1) { 1725 /* 1726 * It's a response, so use the user's sequence 1727 * from msgid. 1728 */ 1729 ipmi_inc_stat(intf, sent_lan_responses); 1730 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1731 msgid, source_lun); 1732 1733 /* 1734 * Save the receive message so we can use it 1735 * to deliver the response. 1736 */ 1737 smi_msg->user_data = recv_msg; 1738 } else { 1739 /* It's a command, so get a sequence for it. */ 1740 1741 spin_lock_irqsave(&(intf->seq_lock), flags); 1742 1743 /* 1744 * Create a sequence number with a 1 second 1745 * timeout and 4 retries. 1746 */ 1747 rv = intf_next_seq(intf, 1748 recv_msg, 1749 retry_time_ms, 1750 retries, 1751 0, 1752 &ipmb_seq, 1753 &seqid); 1754 if (rv) { 1755 /* 1756 * We have used up all the sequence numbers, 1757 * probably, so abort. 1758 */ 1759 spin_unlock_irqrestore(&(intf->seq_lock), 1760 flags); 1761 goto out_err; 1762 } 1763 1764 ipmi_inc_stat(intf, sent_lan_commands); 1765 1766 /* 1767 * Store the sequence number in the message, 1768 * so that when the send message response 1769 * comes back we can start the timer. 1770 */ 1771 format_lan_msg(smi_msg, msg, lan_addr, 1772 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1773 ipmb_seq, source_lun); 1774 1775 /* 1776 * Copy the message into the recv message data, so we 1777 * can retransmit it later if necessary. 1778 */ 1779 memcpy(recv_msg->msg_data, smi_msg->data, 1780 smi_msg->data_size); 1781 recv_msg->msg.data = recv_msg->msg_data; 1782 recv_msg->msg.data_len = smi_msg->data_size; 1783 1784 /* 1785 * We don't unlock until here, because we need 1786 * to copy the completed message into the 1787 * recv_msg before we release the lock. 1788 * Otherwise, race conditions may bite us. I 1789 * know that's pretty paranoid, but I prefer 1790 * to be correct. 1791 */ 1792 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1793 } 1794 } else { 1795 /* Unknown address type. */ 1796 ipmi_inc_stat(intf, sent_invalid_commands); 1797 rv = -EINVAL; 1798 goto out_err; 1799 } 1800 1801 #ifdef DEBUG_MSGING 1802 { 1803 int m; 1804 for (m = 0; m < smi_msg->data_size; m++) 1805 printk(" %2.2x", smi_msg->data[m]); 1806 printk("\n"); 1807 } 1808 #endif 1809 1810 handlers->sender(intf->send_info, smi_msg, priority); 1811 rcu_read_unlock(); 1812 1813 return 0; 1814 1815 out_err: 1816 rcu_read_unlock(); 1817 ipmi_free_smi_msg(smi_msg); 1818 ipmi_free_recv_msg(recv_msg); 1819 return rv; 1820 } 1821 1822 static int check_addr(ipmi_smi_t intf, 1823 struct ipmi_addr *addr, 1824 unsigned char *saddr, 1825 unsigned char *lun) 1826 { 1827 if (addr->channel >= IPMI_MAX_CHANNELS) 1828 return -EINVAL; 1829 *lun = intf->channels[addr->channel].lun; 1830 *saddr = intf->channels[addr->channel].address; 1831 return 0; 1832 } 1833 1834 int ipmi_request_settime(ipmi_user_t user, 1835 struct ipmi_addr *addr, 1836 long msgid, 1837 struct kernel_ipmi_msg *msg, 1838 void *user_msg_data, 1839 int priority, 1840 int retries, 1841 unsigned int retry_time_ms) 1842 { 1843 unsigned char saddr, lun; 1844 int rv; 1845 1846 if (!user) 1847 return -EINVAL; 1848 rv = check_addr(user->intf, addr, &saddr, &lun); 1849 if (rv) 1850 return rv; 1851 return i_ipmi_request(user, 1852 user->intf, 1853 addr, 1854 msgid, 1855 msg, 1856 user_msg_data, 1857 NULL, NULL, 1858 priority, 1859 saddr, 1860 lun, 1861 retries, 1862 retry_time_ms); 1863 } 1864 EXPORT_SYMBOL(ipmi_request_settime); 1865 1866 int ipmi_request_supply_msgs(ipmi_user_t user, 1867 struct ipmi_addr *addr, 1868 long msgid, 1869 struct kernel_ipmi_msg *msg, 1870 void *user_msg_data, 1871 void *supplied_smi, 1872 struct ipmi_recv_msg *supplied_recv, 1873 int priority) 1874 { 1875 unsigned char saddr, lun; 1876 int rv; 1877 1878 if (!user) 1879 return -EINVAL; 1880 rv = check_addr(user->intf, addr, &saddr, &lun); 1881 if (rv) 1882 return rv; 1883 return i_ipmi_request(user, 1884 user->intf, 1885 addr, 1886 msgid, 1887 msg, 1888 user_msg_data, 1889 supplied_smi, 1890 supplied_recv, 1891 priority, 1892 saddr, 1893 lun, 1894 -1, 0); 1895 } 1896 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1897 1898 #ifdef CONFIG_PROC_FS 1899 static int ipmb_file_read_proc(char *page, char **start, off_t off, 1900 int count, int *eof, void *data) 1901 { 1902 char *out = (char *) page; 1903 ipmi_smi_t intf = data; 1904 int i; 1905 int rv = 0; 1906 1907 for (i = 0; i < IPMI_MAX_CHANNELS; i++) 1908 rv += sprintf(out+rv, "%x ", intf->channels[i].address); 1909 out[rv-1] = '\n'; /* Replace the final space with a newline */ 1910 out[rv] = '\0'; 1911 rv++; 1912 return rv; 1913 } 1914 1915 static int version_file_read_proc(char *page, char **start, off_t off, 1916 int count, int *eof, void *data) 1917 { 1918 char *out = (char *) page; 1919 ipmi_smi_t intf = data; 1920 1921 return sprintf(out, "%u.%u\n", 1922 ipmi_version_major(&intf->bmc->id), 1923 ipmi_version_minor(&intf->bmc->id)); 1924 } 1925 1926 static int stat_file_read_proc(char *page, char **start, off_t off, 1927 int count, int *eof, void *data) 1928 { 1929 char *out = (char *) page; 1930 ipmi_smi_t intf = data; 1931 1932 out += sprintf(out, "sent_invalid_commands: %u\n", 1933 ipmi_get_stat(intf, sent_invalid_commands)); 1934 out += sprintf(out, "sent_local_commands: %u\n", 1935 ipmi_get_stat(intf, sent_local_commands)); 1936 out += sprintf(out, "handled_local_responses: %u\n", 1937 ipmi_get_stat(intf, handled_local_responses)); 1938 out += sprintf(out, "unhandled_local_responses: %u\n", 1939 ipmi_get_stat(intf, unhandled_local_responses)); 1940 out += sprintf(out, "sent_ipmb_commands: %u\n", 1941 ipmi_get_stat(intf, sent_ipmb_commands)); 1942 out += sprintf(out, "sent_ipmb_command_errs: %u\n", 1943 ipmi_get_stat(intf, sent_ipmb_command_errs)); 1944 out += sprintf(out, "retransmitted_ipmb_commands: %u\n", 1945 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 1946 out += sprintf(out, "timed_out_ipmb_commands: %u\n", 1947 ipmi_get_stat(intf, timed_out_ipmb_commands)); 1948 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n", 1949 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 1950 out += sprintf(out, "sent_ipmb_responses: %u\n", 1951 ipmi_get_stat(intf, sent_ipmb_responses)); 1952 out += sprintf(out, "handled_ipmb_responses: %u\n", 1953 ipmi_get_stat(intf, handled_ipmb_responses)); 1954 out += sprintf(out, "invalid_ipmb_responses: %u\n", 1955 ipmi_get_stat(intf, invalid_ipmb_responses)); 1956 out += sprintf(out, "unhandled_ipmb_responses: %u\n", 1957 ipmi_get_stat(intf, unhandled_ipmb_responses)); 1958 out += sprintf(out, "sent_lan_commands: %u\n", 1959 ipmi_get_stat(intf, sent_lan_commands)); 1960 out += sprintf(out, "sent_lan_command_errs: %u\n", 1961 ipmi_get_stat(intf, sent_lan_command_errs)); 1962 out += sprintf(out, "retransmitted_lan_commands: %u\n", 1963 ipmi_get_stat(intf, retransmitted_lan_commands)); 1964 out += sprintf(out, "timed_out_lan_commands: %u\n", 1965 ipmi_get_stat(intf, timed_out_lan_commands)); 1966 out += sprintf(out, "sent_lan_responses: %u\n", 1967 ipmi_get_stat(intf, sent_lan_responses)); 1968 out += sprintf(out, "handled_lan_responses: %u\n", 1969 ipmi_get_stat(intf, handled_lan_responses)); 1970 out += sprintf(out, "invalid_lan_responses: %u\n", 1971 ipmi_get_stat(intf, invalid_lan_responses)); 1972 out += sprintf(out, "unhandled_lan_responses: %u\n", 1973 ipmi_get_stat(intf, unhandled_lan_responses)); 1974 out += sprintf(out, "handled_commands: %u\n", 1975 ipmi_get_stat(intf, handled_commands)); 1976 out += sprintf(out, "invalid_commands: %u\n", 1977 ipmi_get_stat(intf, invalid_commands)); 1978 out += sprintf(out, "unhandled_commands: %u\n", 1979 ipmi_get_stat(intf, unhandled_commands)); 1980 out += sprintf(out, "invalid_events: %u\n", 1981 ipmi_get_stat(intf, invalid_events)); 1982 out += sprintf(out, "events: %u\n", 1983 ipmi_get_stat(intf, events)); 1984 out += sprintf(out, "failed rexmit LAN msgs: %u\n", 1985 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 1986 out += sprintf(out, "failed rexmit IPMB msgs: %u\n", 1987 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 1988 1989 return (out - ((char *) page)); 1990 } 1991 #endif /* CONFIG_PROC_FS */ 1992 1993 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 1994 read_proc_t *read_proc, 1995 void *data) 1996 { 1997 int rv = 0; 1998 #ifdef CONFIG_PROC_FS 1999 struct proc_dir_entry *file; 2000 struct ipmi_proc_entry *entry; 2001 2002 /* Create a list element. */ 2003 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2004 if (!entry) 2005 return -ENOMEM; 2006 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL); 2007 if (!entry->name) { 2008 kfree(entry); 2009 return -ENOMEM; 2010 } 2011 strcpy(entry->name, name); 2012 2013 file = create_proc_entry(name, 0, smi->proc_dir); 2014 if (!file) { 2015 kfree(entry->name); 2016 kfree(entry); 2017 rv = -ENOMEM; 2018 } else { 2019 file->data = data; 2020 file->read_proc = read_proc; 2021 2022 mutex_lock(&smi->proc_entry_lock); 2023 /* Stick it on the list. */ 2024 entry->next = smi->proc_entries; 2025 smi->proc_entries = entry; 2026 mutex_unlock(&smi->proc_entry_lock); 2027 } 2028 #endif /* CONFIG_PROC_FS */ 2029 2030 return rv; 2031 } 2032 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2033 2034 static int add_proc_entries(ipmi_smi_t smi, int num) 2035 { 2036 int rv = 0; 2037 2038 #ifdef CONFIG_PROC_FS 2039 sprintf(smi->proc_dir_name, "%d", num); 2040 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2041 if (!smi->proc_dir) 2042 rv = -ENOMEM; 2043 2044 if (rv == 0) 2045 rv = ipmi_smi_add_proc_entry(smi, "stats", 2046 stat_file_read_proc, 2047 smi); 2048 2049 if (rv == 0) 2050 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2051 ipmb_file_read_proc, 2052 smi); 2053 2054 if (rv == 0) 2055 rv = ipmi_smi_add_proc_entry(smi, "version", 2056 version_file_read_proc, 2057 smi); 2058 #endif /* CONFIG_PROC_FS */ 2059 2060 return rv; 2061 } 2062 2063 static void remove_proc_entries(ipmi_smi_t smi) 2064 { 2065 #ifdef CONFIG_PROC_FS 2066 struct ipmi_proc_entry *entry; 2067 2068 mutex_lock(&smi->proc_entry_lock); 2069 while (smi->proc_entries) { 2070 entry = smi->proc_entries; 2071 smi->proc_entries = entry->next; 2072 2073 remove_proc_entry(entry->name, smi->proc_dir); 2074 kfree(entry->name); 2075 kfree(entry); 2076 } 2077 mutex_unlock(&smi->proc_entry_lock); 2078 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2079 #endif /* CONFIG_PROC_FS */ 2080 } 2081 2082 static int __find_bmc_guid(struct device *dev, void *data) 2083 { 2084 unsigned char *id = data; 2085 struct bmc_device *bmc = dev_get_drvdata(dev); 2086 return memcmp(bmc->guid, id, 16) == 0; 2087 } 2088 2089 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2090 unsigned char *guid) 2091 { 2092 struct device *dev; 2093 2094 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2095 if (dev) 2096 return dev_get_drvdata(dev); 2097 else 2098 return NULL; 2099 } 2100 2101 struct prod_dev_id { 2102 unsigned int product_id; 2103 unsigned char device_id; 2104 }; 2105 2106 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2107 { 2108 struct prod_dev_id *id = data; 2109 struct bmc_device *bmc = dev_get_drvdata(dev); 2110 2111 return (bmc->id.product_id == id->product_id 2112 && bmc->id.device_id == id->device_id); 2113 } 2114 2115 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2116 struct device_driver *drv, 2117 unsigned int product_id, unsigned char device_id) 2118 { 2119 struct prod_dev_id id = { 2120 .product_id = product_id, 2121 .device_id = device_id, 2122 }; 2123 struct device *dev; 2124 2125 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2126 if (dev) 2127 return dev_get_drvdata(dev); 2128 else 2129 return NULL; 2130 } 2131 2132 static ssize_t device_id_show(struct device *dev, 2133 struct device_attribute *attr, 2134 char *buf) 2135 { 2136 struct bmc_device *bmc = dev_get_drvdata(dev); 2137 2138 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2139 } 2140 2141 static ssize_t provides_dev_sdrs_show(struct device *dev, 2142 struct device_attribute *attr, 2143 char *buf) 2144 { 2145 struct bmc_device *bmc = dev_get_drvdata(dev); 2146 2147 return snprintf(buf, 10, "%u\n", 2148 (bmc->id.device_revision & 0x80) >> 7); 2149 } 2150 2151 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2152 char *buf) 2153 { 2154 struct bmc_device *bmc = dev_get_drvdata(dev); 2155 2156 return snprintf(buf, 20, "%u\n", 2157 bmc->id.device_revision & 0x0F); 2158 } 2159 2160 static ssize_t firmware_rev_show(struct device *dev, 2161 struct device_attribute *attr, 2162 char *buf) 2163 { 2164 struct bmc_device *bmc = dev_get_drvdata(dev); 2165 2166 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2167 bmc->id.firmware_revision_2); 2168 } 2169 2170 static ssize_t ipmi_version_show(struct device *dev, 2171 struct device_attribute *attr, 2172 char *buf) 2173 { 2174 struct bmc_device *bmc = dev_get_drvdata(dev); 2175 2176 return snprintf(buf, 20, "%u.%u\n", 2177 ipmi_version_major(&bmc->id), 2178 ipmi_version_minor(&bmc->id)); 2179 } 2180 2181 static ssize_t add_dev_support_show(struct device *dev, 2182 struct device_attribute *attr, 2183 char *buf) 2184 { 2185 struct bmc_device *bmc = dev_get_drvdata(dev); 2186 2187 return snprintf(buf, 10, "0x%02x\n", 2188 bmc->id.additional_device_support); 2189 } 2190 2191 static ssize_t manufacturer_id_show(struct device *dev, 2192 struct device_attribute *attr, 2193 char *buf) 2194 { 2195 struct bmc_device *bmc = dev_get_drvdata(dev); 2196 2197 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2198 } 2199 2200 static ssize_t product_id_show(struct device *dev, 2201 struct device_attribute *attr, 2202 char *buf) 2203 { 2204 struct bmc_device *bmc = dev_get_drvdata(dev); 2205 2206 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2207 } 2208 2209 static ssize_t aux_firmware_rev_show(struct device *dev, 2210 struct device_attribute *attr, 2211 char *buf) 2212 { 2213 struct bmc_device *bmc = dev_get_drvdata(dev); 2214 2215 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2216 bmc->id.aux_firmware_revision[3], 2217 bmc->id.aux_firmware_revision[2], 2218 bmc->id.aux_firmware_revision[1], 2219 bmc->id.aux_firmware_revision[0]); 2220 } 2221 2222 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2223 char *buf) 2224 { 2225 struct bmc_device *bmc = dev_get_drvdata(dev); 2226 2227 return snprintf(buf, 100, "%Lx%Lx\n", 2228 (long long) bmc->guid[0], 2229 (long long) bmc->guid[8]); 2230 } 2231 2232 static void remove_files(struct bmc_device *bmc) 2233 { 2234 if (!bmc->dev) 2235 return; 2236 2237 device_remove_file(&bmc->dev->dev, 2238 &bmc->device_id_attr); 2239 device_remove_file(&bmc->dev->dev, 2240 &bmc->provides_dev_sdrs_attr); 2241 device_remove_file(&bmc->dev->dev, 2242 &bmc->revision_attr); 2243 device_remove_file(&bmc->dev->dev, 2244 &bmc->firmware_rev_attr); 2245 device_remove_file(&bmc->dev->dev, 2246 &bmc->version_attr); 2247 device_remove_file(&bmc->dev->dev, 2248 &bmc->add_dev_support_attr); 2249 device_remove_file(&bmc->dev->dev, 2250 &bmc->manufacturer_id_attr); 2251 device_remove_file(&bmc->dev->dev, 2252 &bmc->product_id_attr); 2253 2254 if (bmc->id.aux_firmware_revision_set) 2255 device_remove_file(&bmc->dev->dev, 2256 &bmc->aux_firmware_rev_attr); 2257 if (bmc->guid_set) 2258 device_remove_file(&bmc->dev->dev, 2259 &bmc->guid_attr); 2260 } 2261 2262 static void 2263 cleanup_bmc_device(struct kref *ref) 2264 { 2265 struct bmc_device *bmc; 2266 2267 bmc = container_of(ref, struct bmc_device, refcount); 2268 2269 remove_files(bmc); 2270 platform_device_unregister(bmc->dev); 2271 kfree(bmc); 2272 } 2273 2274 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2275 { 2276 struct bmc_device *bmc = intf->bmc; 2277 2278 if (intf->sysfs_name) { 2279 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name); 2280 kfree(intf->sysfs_name); 2281 intf->sysfs_name = NULL; 2282 } 2283 if (intf->my_dev_name) { 2284 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name); 2285 kfree(intf->my_dev_name); 2286 intf->my_dev_name = NULL; 2287 } 2288 2289 mutex_lock(&ipmidriver_mutex); 2290 kref_put(&bmc->refcount, cleanup_bmc_device); 2291 intf->bmc = NULL; 2292 mutex_unlock(&ipmidriver_mutex); 2293 } 2294 2295 static int create_files(struct bmc_device *bmc) 2296 { 2297 int err; 2298 2299 bmc->device_id_attr.attr.name = "device_id"; 2300 bmc->device_id_attr.attr.mode = S_IRUGO; 2301 bmc->device_id_attr.show = device_id_show; 2302 sysfs_attr_init(&bmc->device_id_attr.attr); 2303 2304 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs"; 2305 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO; 2306 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show; 2307 sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr); 2308 2309 bmc->revision_attr.attr.name = "revision"; 2310 bmc->revision_attr.attr.mode = S_IRUGO; 2311 bmc->revision_attr.show = revision_show; 2312 sysfs_attr_init(&bmc->revision_attr.attr); 2313 2314 bmc->firmware_rev_attr.attr.name = "firmware_revision"; 2315 bmc->firmware_rev_attr.attr.mode = S_IRUGO; 2316 bmc->firmware_rev_attr.show = firmware_rev_show; 2317 sysfs_attr_init(&bmc->firmware_rev_attr.attr); 2318 2319 bmc->version_attr.attr.name = "ipmi_version"; 2320 bmc->version_attr.attr.mode = S_IRUGO; 2321 bmc->version_attr.show = ipmi_version_show; 2322 sysfs_attr_init(&bmc->version_attr.attr); 2323 2324 bmc->add_dev_support_attr.attr.name = "additional_device_support"; 2325 bmc->add_dev_support_attr.attr.mode = S_IRUGO; 2326 bmc->add_dev_support_attr.show = add_dev_support_show; 2327 sysfs_attr_init(&bmc->add_dev_support_attr.attr); 2328 2329 bmc->manufacturer_id_attr.attr.name = "manufacturer_id"; 2330 bmc->manufacturer_id_attr.attr.mode = S_IRUGO; 2331 bmc->manufacturer_id_attr.show = manufacturer_id_show; 2332 sysfs_attr_init(&bmc->manufacturer_id_attr.attr); 2333 2334 bmc->product_id_attr.attr.name = "product_id"; 2335 bmc->product_id_attr.attr.mode = S_IRUGO; 2336 bmc->product_id_attr.show = product_id_show; 2337 sysfs_attr_init(&bmc->product_id_attr.attr); 2338 2339 bmc->guid_attr.attr.name = "guid"; 2340 bmc->guid_attr.attr.mode = S_IRUGO; 2341 bmc->guid_attr.show = guid_show; 2342 sysfs_attr_init(&bmc->guid_attr.attr); 2343 2344 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision"; 2345 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO; 2346 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show; 2347 sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr); 2348 2349 err = device_create_file(&bmc->dev->dev, 2350 &bmc->device_id_attr); 2351 if (err) 2352 goto out; 2353 err = device_create_file(&bmc->dev->dev, 2354 &bmc->provides_dev_sdrs_attr); 2355 if (err) 2356 goto out_devid; 2357 err = device_create_file(&bmc->dev->dev, 2358 &bmc->revision_attr); 2359 if (err) 2360 goto out_sdrs; 2361 err = device_create_file(&bmc->dev->dev, 2362 &bmc->firmware_rev_attr); 2363 if (err) 2364 goto out_rev; 2365 err = device_create_file(&bmc->dev->dev, 2366 &bmc->version_attr); 2367 if (err) 2368 goto out_firm; 2369 err = device_create_file(&bmc->dev->dev, 2370 &bmc->add_dev_support_attr); 2371 if (err) 2372 goto out_version; 2373 err = device_create_file(&bmc->dev->dev, 2374 &bmc->manufacturer_id_attr); 2375 if (err) 2376 goto out_add_dev; 2377 err = device_create_file(&bmc->dev->dev, 2378 &bmc->product_id_attr); 2379 if (err) 2380 goto out_manu; 2381 if (bmc->id.aux_firmware_revision_set) { 2382 err = device_create_file(&bmc->dev->dev, 2383 &bmc->aux_firmware_rev_attr); 2384 if (err) 2385 goto out_prod_id; 2386 } 2387 if (bmc->guid_set) { 2388 err = device_create_file(&bmc->dev->dev, 2389 &bmc->guid_attr); 2390 if (err) 2391 goto out_aux_firm; 2392 } 2393 2394 return 0; 2395 2396 out_aux_firm: 2397 if (bmc->id.aux_firmware_revision_set) 2398 device_remove_file(&bmc->dev->dev, 2399 &bmc->aux_firmware_rev_attr); 2400 out_prod_id: 2401 device_remove_file(&bmc->dev->dev, 2402 &bmc->product_id_attr); 2403 out_manu: 2404 device_remove_file(&bmc->dev->dev, 2405 &bmc->manufacturer_id_attr); 2406 out_add_dev: 2407 device_remove_file(&bmc->dev->dev, 2408 &bmc->add_dev_support_attr); 2409 out_version: 2410 device_remove_file(&bmc->dev->dev, 2411 &bmc->version_attr); 2412 out_firm: 2413 device_remove_file(&bmc->dev->dev, 2414 &bmc->firmware_rev_attr); 2415 out_rev: 2416 device_remove_file(&bmc->dev->dev, 2417 &bmc->revision_attr); 2418 out_sdrs: 2419 device_remove_file(&bmc->dev->dev, 2420 &bmc->provides_dev_sdrs_attr); 2421 out_devid: 2422 device_remove_file(&bmc->dev->dev, 2423 &bmc->device_id_attr); 2424 out: 2425 return err; 2426 } 2427 2428 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum, 2429 const char *sysfs_name) 2430 { 2431 int rv; 2432 struct bmc_device *bmc = intf->bmc; 2433 struct bmc_device *old_bmc; 2434 int size; 2435 char dummy[1]; 2436 2437 mutex_lock(&ipmidriver_mutex); 2438 2439 /* 2440 * Try to find if there is an bmc_device struct 2441 * representing the interfaced BMC already 2442 */ 2443 if (bmc->guid_set) 2444 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2445 else 2446 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2447 bmc->id.product_id, 2448 bmc->id.device_id); 2449 2450 /* 2451 * If there is already an bmc_device, free the new one, 2452 * otherwise register the new BMC device 2453 */ 2454 if (old_bmc) { 2455 kfree(bmc); 2456 intf->bmc = old_bmc; 2457 bmc = old_bmc; 2458 2459 kref_get(&bmc->refcount); 2460 mutex_unlock(&ipmidriver_mutex); 2461 2462 printk(KERN_INFO 2463 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2464 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2465 bmc->id.manufacturer_id, 2466 bmc->id.product_id, 2467 bmc->id.device_id); 2468 } else { 2469 char name[14]; 2470 unsigned char orig_dev_id = bmc->id.device_id; 2471 int warn_printed = 0; 2472 2473 snprintf(name, sizeof(name), 2474 "ipmi_bmc.%4.4x", bmc->id.product_id); 2475 2476 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2477 bmc->id.product_id, 2478 bmc->id.device_id)) { 2479 if (!warn_printed) { 2480 printk(KERN_WARNING PFX 2481 "This machine has two different BMCs" 2482 " with the same product id and device" 2483 " id. This is an error in the" 2484 " firmware, but incrementing the" 2485 " device id to work around the problem." 2486 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2487 bmc->id.product_id, bmc->id.device_id); 2488 warn_printed = 1; 2489 } 2490 bmc->id.device_id++; /* Wraps at 255 */ 2491 if (bmc->id.device_id == orig_dev_id) { 2492 printk(KERN_ERR PFX 2493 "Out of device ids!\n"); 2494 break; 2495 } 2496 } 2497 2498 bmc->dev = platform_device_alloc(name, bmc->id.device_id); 2499 if (!bmc->dev) { 2500 mutex_unlock(&ipmidriver_mutex); 2501 printk(KERN_ERR 2502 "ipmi_msghandler:" 2503 " Unable to allocate platform device\n"); 2504 return -ENOMEM; 2505 } 2506 bmc->dev->dev.driver = &ipmidriver.driver; 2507 dev_set_drvdata(&bmc->dev->dev, bmc); 2508 kref_init(&bmc->refcount); 2509 2510 rv = platform_device_add(bmc->dev); 2511 mutex_unlock(&ipmidriver_mutex); 2512 if (rv) { 2513 platform_device_put(bmc->dev); 2514 bmc->dev = NULL; 2515 printk(KERN_ERR 2516 "ipmi_msghandler:" 2517 " Unable to register bmc device: %d\n", 2518 rv); 2519 /* 2520 * Don't go to out_err, you can only do that if 2521 * the device is registered already. 2522 */ 2523 return rv; 2524 } 2525 2526 rv = create_files(bmc); 2527 if (rv) { 2528 mutex_lock(&ipmidriver_mutex); 2529 platform_device_unregister(bmc->dev); 2530 mutex_unlock(&ipmidriver_mutex); 2531 2532 return rv; 2533 } 2534 2535 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, " 2536 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2537 bmc->id.manufacturer_id, 2538 bmc->id.product_id, 2539 bmc->id.device_id); 2540 } 2541 2542 /* 2543 * create symlink from system interface device to bmc device 2544 * and back. 2545 */ 2546 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL); 2547 if (!intf->sysfs_name) { 2548 rv = -ENOMEM; 2549 printk(KERN_ERR 2550 "ipmi_msghandler: allocate link to BMC: %d\n", 2551 rv); 2552 goto out_err; 2553 } 2554 2555 rv = sysfs_create_link(&intf->si_dev->kobj, 2556 &bmc->dev->dev.kobj, intf->sysfs_name); 2557 if (rv) { 2558 kfree(intf->sysfs_name); 2559 intf->sysfs_name = NULL; 2560 printk(KERN_ERR 2561 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2562 rv); 2563 goto out_err; 2564 } 2565 2566 size = snprintf(dummy, 0, "ipmi%d", ifnum); 2567 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL); 2568 if (!intf->my_dev_name) { 2569 kfree(intf->sysfs_name); 2570 intf->sysfs_name = NULL; 2571 rv = -ENOMEM; 2572 printk(KERN_ERR 2573 "ipmi_msghandler: allocate link from BMC: %d\n", 2574 rv); 2575 goto out_err; 2576 } 2577 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum); 2578 2579 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj, 2580 intf->my_dev_name); 2581 if (rv) { 2582 kfree(intf->sysfs_name); 2583 intf->sysfs_name = NULL; 2584 kfree(intf->my_dev_name); 2585 intf->my_dev_name = NULL; 2586 printk(KERN_ERR 2587 "ipmi_msghandler:" 2588 " Unable to create symlink to bmc: %d\n", 2589 rv); 2590 goto out_err; 2591 } 2592 2593 return 0; 2594 2595 out_err: 2596 ipmi_bmc_unregister(intf); 2597 return rv; 2598 } 2599 2600 static int 2601 send_guid_cmd(ipmi_smi_t intf, int chan) 2602 { 2603 struct kernel_ipmi_msg msg; 2604 struct ipmi_system_interface_addr si; 2605 2606 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2607 si.channel = IPMI_BMC_CHANNEL; 2608 si.lun = 0; 2609 2610 msg.netfn = IPMI_NETFN_APP_REQUEST; 2611 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2612 msg.data = NULL; 2613 msg.data_len = 0; 2614 return i_ipmi_request(NULL, 2615 intf, 2616 (struct ipmi_addr *) &si, 2617 0, 2618 &msg, 2619 intf, 2620 NULL, 2621 NULL, 2622 0, 2623 intf->channels[0].address, 2624 intf->channels[0].lun, 2625 -1, 0); 2626 } 2627 2628 static void 2629 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2630 { 2631 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2632 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2633 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2634 /* Not for me */ 2635 return; 2636 2637 if (msg->msg.data[0] != 0) { 2638 /* Error from getting the GUID, the BMC doesn't have one. */ 2639 intf->bmc->guid_set = 0; 2640 goto out; 2641 } 2642 2643 if (msg->msg.data_len < 17) { 2644 intf->bmc->guid_set = 0; 2645 printk(KERN_WARNING PFX 2646 "guid_handler: The GUID response from the BMC was too" 2647 " short, it was %d but should have been 17. Assuming" 2648 " GUID is not available.\n", 2649 msg->msg.data_len); 2650 goto out; 2651 } 2652 2653 memcpy(intf->bmc->guid, msg->msg.data, 16); 2654 intf->bmc->guid_set = 1; 2655 out: 2656 wake_up(&intf->waitq); 2657 } 2658 2659 static void 2660 get_guid(ipmi_smi_t intf) 2661 { 2662 int rv; 2663 2664 intf->bmc->guid_set = 0x2; 2665 intf->null_user_handler = guid_handler; 2666 rv = send_guid_cmd(intf, 0); 2667 if (rv) 2668 /* Send failed, no GUID available. */ 2669 intf->bmc->guid_set = 0; 2670 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2671 intf->null_user_handler = NULL; 2672 } 2673 2674 static int 2675 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2676 { 2677 struct kernel_ipmi_msg msg; 2678 unsigned char data[1]; 2679 struct ipmi_system_interface_addr si; 2680 2681 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2682 si.channel = IPMI_BMC_CHANNEL; 2683 si.lun = 0; 2684 2685 msg.netfn = IPMI_NETFN_APP_REQUEST; 2686 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2687 msg.data = data; 2688 msg.data_len = 1; 2689 data[0] = chan; 2690 return i_ipmi_request(NULL, 2691 intf, 2692 (struct ipmi_addr *) &si, 2693 0, 2694 &msg, 2695 intf, 2696 NULL, 2697 NULL, 2698 0, 2699 intf->channels[0].address, 2700 intf->channels[0].lun, 2701 -1, 0); 2702 } 2703 2704 static void 2705 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2706 { 2707 int rv = 0; 2708 int chan; 2709 2710 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2711 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2712 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2713 /* It's the one we want */ 2714 if (msg->msg.data[0] != 0) { 2715 /* Got an error from the channel, just go on. */ 2716 2717 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2718 /* 2719 * If the MC does not support this 2720 * command, that is legal. We just 2721 * assume it has one IPMB at channel 2722 * zero. 2723 */ 2724 intf->channels[0].medium 2725 = IPMI_CHANNEL_MEDIUM_IPMB; 2726 intf->channels[0].protocol 2727 = IPMI_CHANNEL_PROTOCOL_IPMB; 2728 rv = -ENOSYS; 2729 2730 intf->curr_channel = IPMI_MAX_CHANNELS; 2731 wake_up(&intf->waitq); 2732 goto out; 2733 } 2734 goto next_channel; 2735 } 2736 if (msg->msg.data_len < 4) { 2737 /* Message not big enough, just go on. */ 2738 goto next_channel; 2739 } 2740 chan = intf->curr_channel; 2741 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2742 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2743 2744 next_channel: 2745 intf->curr_channel++; 2746 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2747 wake_up(&intf->waitq); 2748 else 2749 rv = send_channel_info_cmd(intf, intf->curr_channel); 2750 2751 if (rv) { 2752 /* Got an error somehow, just give up. */ 2753 intf->curr_channel = IPMI_MAX_CHANNELS; 2754 wake_up(&intf->waitq); 2755 2756 printk(KERN_WARNING PFX 2757 "Error sending channel information: %d\n", 2758 rv); 2759 } 2760 } 2761 out: 2762 return; 2763 } 2764 2765 void ipmi_poll_interface(ipmi_user_t user) 2766 { 2767 ipmi_smi_t intf = user->intf; 2768 2769 if (intf->handlers->poll) 2770 intf->handlers->poll(intf->send_info); 2771 } 2772 EXPORT_SYMBOL(ipmi_poll_interface); 2773 2774 int ipmi_register_smi(struct ipmi_smi_handlers *handlers, 2775 void *send_info, 2776 struct ipmi_device_id *device_id, 2777 struct device *si_dev, 2778 const char *sysfs_name, 2779 unsigned char slave_addr) 2780 { 2781 int i, j; 2782 int rv; 2783 ipmi_smi_t intf; 2784 ipmi_smi_t tintf; 2785 struct list_head *link; 2786 2787 /* 2788 * Make sure the driver is actually initialized, this handles 2789 * problems with initialization order. 2790 */ 2791 if (!initialized) { 2792 rv = ipmi_init_msghandler(); 2793 if (rv) 2794 return rv; 2795 /* 2796 * The init code doesn't return an error if it was turned 2797 * off, but it won't initialize. Check that. 2798 */ 2799 if (!initialized) 2800 return -ENODEV; 2801 } 2802 2803 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2804 if (!intf) 2805 return -ENOMEM; 2806 2807 intf->ipmi_version_major = ipmi_version_major(device_id); 2808 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2809 2810 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2811 if (!intf->bmc) { 2812 kfree(intf); 2813 return -ENOMEM; 2814 } 2815 intf->intf_num = -1; /* Mark it invalid for now. */ 2816 kref_init(&intf->refcount); 2817 intf->bmc->id = *device_id; 2818 intf->si_dev = si_dev; 2819 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2820 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2821 intf->channels[j].lun = 2; 2822 } 2823 if (slave_addr != 0) 2824 intf->channels[0].address = slave_addr; 2825 INIT_LIST_HEAD(&intf->users); 2826 intf->handlers = handlers; 2827 intf->send_info = send_info; 2828 spin_lock_init(&intf->seq_lock); 2829 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2830 intf->seq_table[j].inuse = 0; 2831 intf->seq_table[j].seqid = 0; 2832 } 2833 intf->curr_seq = 0; 2834 #ifdef CONFIG_PROC_FS 2835 mutex_init(&intf->proc_entry_lock); 2836 #endif 2837 spin_lock_init(&intf->waiting_msgs_lock); 2838 INIT_LIST_HEAD(&intf->waiting_msgs); 2839 spin_lock_init(&intf->events_lock); 2840 INIT_LIST_HEAD(&intf->waiting_events); 2841 intf->waiting_events_count = 0; 2842 mutex_init(&intf->cmd_rcvrs_mutex); 2843 spin_lock_init(&intf->maintenance_mode_lock); 2844 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2845 init_waitqueue_head(&intf->waitq); 2846 for (i = 0; i < IPMI_NUM_STATS; i++) 2847 atomic_set(&intf->stats[i], 0); 2848 2849 intf->proc_dir = NULL; 2850 2851 mutex_lock(&smi_watchers_mutex); 2852 mutex_lock(&ipmi_interfaces_mutex); 2853 /* Look for a hole in the numbers. */ 2854 i = 0; 2855 link = &ipmi_interfaces; 2856 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2857 if (tintf->intf_num != i) { 2858 link = &tintf->link; 2859 break; 2860 } 2861 i++; 2862 } 2863 /* Add the new interface in numeric order. */ 2864 if (i == 0) 2865 list_add_rcu(&intf->link, &ipmi_interfaces); 2866 else 2867 list_add_tail_rcu(&intf->link, link); 2868 2869 rv = handlers->start_processing(send_info, intf); 2870 if (rv) 2871 goto out; 2872 2873 get_guid(intf); 2874 2875 if ((intf->ipmi_version_major > 1) 2876 || ((intf->ipmi_version_major == 1) 2877 && (intf->ipmi_version_minor >= 5))) { 2878 /* 2879 * Start scanning the channels to see what is 2880 * available. 2881 */ 2882 intf->null_user_handler = channel_handler; 2883 intf->curr_channel = 0; 2884 rv = send_channel_info_cmd(intf, 0); 2885 if (rv) 2886 goto out; 2887 2888 /* Wait for the channel info to be read. */ 2889 wait_event(intf->waitq, 2890 intf->curr_channel >= IPMI_MAX_CHANNELS); 2891 intf->null_user_handler = NULL; 2892 } else { 2893 /* Assume a single IPMB channel at zero. */ 2894 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2895 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2896 intf->curr_channel = IPMI_MAX_CHANNELS; 2897 } 2898 2899 if (rv == 0) 2900 rv = add_proc_entries(intf, i); 2901 2902 rv = ipmi_bmc_register(intf, i, sysfs_name); 2903 2904 out: 2905 if (rv) { 2906 if (intf->proc_dir) 2907 remove_proc_entries(intf); 2908 intf->handlers = NULL; 2909 list_del_rcu(&intf->link); 2910 mutex_unlock(&ipmi_interfaces_mutex); 2911 mutex_unlock(&smi_watchers_mutex); 2912 synchronize_rcu(); 2913 kref_put(&intf->refcount, intf_free); 2914 } else { 2915 /* 2916 * Keep memory order straight for RCU readers. Make 2917 * sure everything else is committed to memory before 2918 * setting intf_num to mark the interface valid. 2919 */ 2920 smp_wmb(); 2921 intf->intf_num = i; 2922 mutex_unlock(&ipmi_interfaces_mutex); 2923 /* After this point the interface is legal to use. */ 2924 call_smi_watchers(i, intf->si_dev); 2925 mutex_unlock(&smi_watchers_mutex); 2926 } 2927 2928 return rv; 2929 } 2930 EXPORT_SYMBOL(ipmi_register_smi); 2931 2932 static void cleanup_smi_msgs(ipmi_smi_t intf) 2933 { 2934 int i; 2935 struct seq_table *ent; 2936 2937 /* No need for locks, the interface is down. */ 2938 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 2939 ent = &(intf->seq_table[i]); 2940 if (!ent->inuse) 2941 continue; 2942 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 2943 } 2944 } 2945 2946 int ipmi_unregister_smi(ipmi_smi_t intf) 2947 { 2948 struct ipmi_smi_watcher *w; 2949 int intf_num = intf->intf_num; 2950 2951 ipmi_bmc_unregister(intf); 2952 2953 mutex_lock(&smi_watchers_mutex); 2954 mutex_lock(&ipmi_interfaces_mutex); 2955 intf->intf_num = -1; 2956 intf->handlers = NULL; 2957 list_del_rcu(&intf->link); 2958 mutex_unlock(&ipmi_interfaces_mutex); 2959 synchronize_rcu(); 2960 2961 cleanup_smi_msgs(intf); 2962 2963 remove_proc_entries(intf); 2964 2965 /* 2966 * Call all the watcher interfaces to tell them that 2967 * an interface is gone. 2968 */ 2969 list_for_each_entry(w, &smi_watchers, link) 2970 w->smi_gone(intf_num); 2971 mutex_unlock(&smi_watchers_mutex); 2972 2973 kref_put(&intf->refcount, intf_free); 2974 return 0; 2975 } 2976 EXPORT_SYMBOL(ipmi_unregister_smi); 2977 2978 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 2979 struct ipmi_smi_msg *msg) 2980 { 2981 struct ipmi_ipmb_addr ipmb_addr; 2982 struct ipmi_recv_msg *recv_msg; 2983 2984 /* 2985 * This is 11, not 10, because the response must contain a 2986 * completion code. 2987 */ 2988 if (msg->rsp_size < 11) { 2989 /* Message not big enough, just ignore it. */ 2990 ipmi_inc_stat(intf, invalid_ipmb_responses); 2991 return 0; 2992 } 2993 2994 if (msg->rsp[2] != 0) { 2995 /* An error getting the response, just ignore it. */ 2996 return 0; 2997 } 2998 2999 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3000 ipmb_addr.slave_addr = msg->rsp[6]; 3001 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3002 ipmb_addr.lun = msg->rsp[7] & 3; 3003 3004 /* 3005 * It's a response from a remote entity. Look up the sequence 3006 * number and handle the response. 3007 */ 3008 if (intf_find_seq(intf, 3009 msg->rsp[7] >> 2, 3010 msg->rsp[3] & 0x0f, 3011 msg->rsp[8], 3012 (msg->rsp[4] >> 2) & (~1), 3013 (struct ipmi_addr *) &(ipmb_addr), 3014 &recv_msg)) { 3015 /* 3016 * We were unable to find the sequence number, 3017 * so just nuke the message. 3018 */ 3019 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3020 return 0; 3021 } 3022 3023 memcpy(recv_msg->msg_data, 3024 &(msg->rsp[9]), 3025 msg->rsp_size - 9); 3026 /* 3027 * The other fields matched, so no need to set them, except 3028 * for netfn, which needs to be the response that was 3029 * returned, not the request value. 3030 */ 3031 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3032 recv_msg->msg.data = recv_msg->msg_data; 3033 recv_msg->msg.data_len = msg->rsp_size - 10; 3034 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3035 ipmi_inc_stat(intf, handled_ipmb_responses); 3036 deliver_response(recv_msg); 3037 3038 return 0; 3039 } 3040 3041 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3042 struct ipmi_smi_msg *msg) 3043 { 3044 struct cmd_rcvr *rcvr; 3045 int rv = 0; 3046 unsigned char netfn; 3047 unsigned char cmd; 3048 unsigned char chan; 3049 ipmi_user_t user = NULL; 3050 struct ipmi_ipmb_addr *ipmb_addr; 3051 struct ipmi_recv_msg *recv_msg; 3052 struct ipmi_smi_handlers *handlers; 3053 3054 if (msg->rsp_size < 10) { 3055 /* Message not big enough, just ignore it. */ 3056 ipmi_inc_stat(intf, invalid_commands); 3057 return 0; 3058 } 3059 3060 if (msg->rsp[2] != 0) { 3061 /* An error getting the response, just ignore it. */ 3062 return 0; 3063 } 3064 3065 netfn = msg->rsp[4] >> 2; 3066 cmd = msg->rsp[8]; 3067 chan = msg->rsp[3] & 0xf; 3068 3069 rcu_read_lock(); 3070 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3071 if (rcvr) { 3072 user = rcvr->user; 3073 kref_get(&user->refcount); 3074 } else 3075 user = NULL; 3076 rcu_read_unlock(); 3077 3078 if (user == NULL) { 3079 /* We didn't find a user, deliver an error response. */ 3080 ipmi_inc_stat(intf, unhandled_commands); 3081 3082 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3083 msg->data[1] = IPMI_SEND_MSG_CMD; 3084 msg->data[2] = msg->rsp[3]; 3085 msg->data[3] = msg->rsp[6]; 3086 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3087 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3088 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3089 /* rqseq/lun */ 3090 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3091 msg->data[8] = msg->rsp[8]; /* cmd */ 3092 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3093 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3094 msg->data_size = 11; 3095 3096 #ifdef DEBUG_MSGING 3097 { 3098 int m; 3099 printk("Invalid command:"); 3100 for (m = 0; m < msg->data_size; m++) 3101 printk(" %2.2x", msg->data[m]); 3102 printk("\n"); 3103 } 3104 #endif 3105 rcu_read_lock(); 3106 handlers = intf->handlers; 3107 if (handlers) { 3108 handlers->sender(intf->send_info, msg, 0); 3109 /* 3110 * We used the message, so return the value 3111 * that causes it to not be freed or 3112 * queued. 3113 */ 3114 rv = -1; 3115 } 3116 rcu_read_unlock(); 3117 } else { 3118 /* Deliver the message to the user. */ 3119 ipmi_inc_stat(intf, handled_commands); 3120 3121 recv_msg = ipmi_alloc_recv_msg(); 3122 if (!recv_msg) { 3123 /* 3124 * We couldn't allocate memory for the 3125 * message, so requeue it for handling 3126 * later. 3127 */ 3128 rv = 1; 3129 kref_put(&user->refcount, free_user); 3130 } else { 3131 /* Extract the source address from the data. */ 3132 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3133 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3134 ipmb_addr->slave_addr = msg->rsp[6]; 3135 ipmb_addr->lun = msg->rsp[7] & 3; 3136 ipmb_addr->channel = msg->rsp[3] & 0xf; 3137 3138 /* 3139 * Extract the rest of the message information 3140 * from the IPMB header. 3141 */ 3142 recv_msg->user = user; 3143 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3144 recv_msg->msgid = msg->rsp[7] >> 2; 3145 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3146 recv_msg->msg.cmd = msg->rsp[8]; 3147 recv_msg->msg.data = recv_msg->msg_data; 3148 3149 /* 3150 * We chop off 10, not 9 bytes because the checksum 3151 * at the end also needs to be removed. 3152 */ 3153 recv_msg->msg.data_len = msg->rsp_size - 10; 3154 memcpy(recv_msg->msg_data, 3155 &(msg->rsp[9]), 3156 msg->rsp_size - 10); 3157 deliver_response(recv_msg); 3158 } 3159 } 3160 3161 return rv; 3162 } 3163 3164 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3165 struct ipmi_smi_msg *msg) 3166 { 3167 struct ipmi_lan_addr lan_addr; 3168 struct ipmi_recv_msg *recv_msg; 3169 3170 3171 /* 3172 * This is 13, not 12, because the response must contain a 3173 * completion code. 3174 */ 3175 if (msg->rsp_size < 13) { 3176 /* Message not big enough, just ignore it. */ 3177 ipmi_inc_stat(intf, invalid_lan_responses); 3178 return 0; 3179 } 3180 3181 if (msg->rsp[2] != 0) { 3182 /* An error getting the response, just ignore it. */ 3183 return 0; 3184 } 3185 3186 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3187 lan_addr.session_handle = msg->rsp[4]; 3188 lan_addr.remote_SWID = msg->rsp[8]; 3189 lan_addr.local_SWID = msg->rsp[5]; 3190 lan_addr.channel = msg->rsp[3] & 0x0f; 3191 lan_addr.privilege = msg->rsp[3] >> 4; 3192 lan_addr.lun = msg->rsp[9] & 3; 3193 3194 /* 3195 * It's a response from a remote entity. Look up the sequence 3196 * number and handle the response. 3197 */ 3198 if (intf_find_seq(intf, 3199 msg->rsp[9] >> 2, 3200 msg->rsp[3] & 0x0f, 3201 msg->rsp[10], 3202 (msg->rsp[6] >> 2) & (~1), 3203 (struct ipmi_addr *) &(lan_addr), 3204 &recv_msg)) { 3205 /* 3206 * We were unable to find the sequence number, 3207 * so just nuke the message. 3208 */ 3209 ipmi_inc_stat(intf, unhandled_lan_responses); 3210 return 0; 3211 } 3212 3213 memcpy(recv_msg->msg_data, 3214 &(msg->rsp[11]), 3215 msg->rsp_size - 11); 3216 /* 3217 * The other fields matched, so no need to set them, except 3218 * for netfn, which needs to be the response that was 3219 * returned, not the request value. 3220 */ 3221 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3222 recv_msg->msg.data = recv_msg->msg_data; 3223 recv_msg->msg.data_len = msg->rsp_size - 12; 3224 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3225 ipmi_inc_stat(intf, handled_lan_responses); 3226 deliver_response(recv_msg); 3227 3228 return 0; 3229 } 3230 3231 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3232 struct ipmi_smi_msg *msg) 3233 { 3234 struct cmd_rcvr *rcvr; 3235 int rv = 0; 3236 unsigned char netfn; 3237 unsigned char cmd; 3238 unsigned char chan; 3239 ipmi_user_t user = NULL; 3240 struct ipmi_lan_addr *lan_addr; 3241 struct ipmi_recv_msg *recv_msg; 3242 3243 if (msg->rsp_size < 12) { 3244 /* Message not big enough, just ignore it. */ 3245 ipmi_inc_stat(intf, invalid_commands); 3246 return 0; 3247 } 3248 3249 if (msg->rsp[2] != 0) { 3250 /* An error getting the response, just ignore it. */ 3251 return 0; 3252 } 3253 3254 netfn = msg->rsp[6] >> 2; 3255 cmd = msg->rsp[10]; 3256 chan = msg->rsp[3] & 0xf; 3257 3258 rcu_read_lock(); 3259 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3260 if (rcvr) { 3261 user = rcvr->user; 3262 kref_get(&user->refcount); 3263 } else 3264 user = NULL; 3265 rcu_read_unlock(); 3266 3267 if (user == NULL) { 3268 /* We didn't find a user, just give up. */ 3269 ipmi_inc_stat(intf, unhandled_commands); 3270 3271 /* 3272 * Don't do anything with these messages, just allow 3273 * them to be freed. 3274 */ 3275 rv = 0; 3276 } else { 3277 /* Deliver the message to the user. */ 3278 ipmi_inc_stat(intf, handled_commands); 3279 3280 recv_msg = ipmi_alloc_recv_msg(); 3281 if (!recv_msg) { 3282 /* 3283 * We couldn't allocate memory for the 3284 * message, so requeue it for handling later. 3285 */ 3286 rv = 1; 3287 kref_put(&user->refcount, free_user); 3288 } else { 3289 /* Extract the source address from the data. */ 3290 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3291 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3292 lan_addr->session_handle = msg->rsp[4]; 3293 lan_addr->remote_SWID = msg->rsp[8]; 3294 lan_addr->local_SWID = msg->rsp[5]; 3295 lan_addr->lun = msg->rsp[9] & 3; 3296 lan_addr->channel = msg->rsp[3] & 0xf; 3297 lan_addr->privilege = msg->rsp[3] >> 4; 3298 3299 /* 3300 * Extract the rest of the message information 3301 * from the IPMB header. 3302 */ 3303 recv_msg->user = user; 3304 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3305 recv_msg->msgid = msg->rsp[9] >> 2; 3306 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3307 recv_msg->msg.cmd = msg->rsp[10]; 3308 recv_msg->msg.data = recv_msg->msg_data; 3309 3310 /* 3311 * We chop off 12, not 11 bytes because the checksum 3312 * at the end also needs to be removed. 3313 */ 3314 recv_msg->msg.data_len = msg->rsp_size - 12; 3315 memcpy(recv_msg->msg_data, 3316 &(msg->rsp[11]), 3317 msg->rsp_size - 12); 3318 deliver_response(recv_msg); 3319 } 3320 } 3321 3322 return rv; 3323 } 3324 3325 /* 3326 * This routine will handle "Get Message" command responses with 3327 * channels that use an OEM Medium. The message format belongs to 3328 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3329 * Chapter 22, sections 22.6 and 22.24 for more details. 3330 */ 3331 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3332 struct ipmi_smi_msg *msg) 3333 { 3334 struct cmd_rcvr *rcvr; 3335 int rv = 0; 3336 unsigned char netfn; 3337 unsigned char cmd; 3338 unsigned char chan; 3339 ipmi_user_t user = NULL; 3340 struct ipmi_system_interface_addr *smi_addr; 3341 struct ipmi_recv_msg *recv_msg; 3342 3343 /* 3344 * We expect the OEM SW to perform error checking 3345 * so we just do some basic sanity checks 3346 */ 3347 if (msg->rsp_size < 4) { 3348 /* Message not big enough, just ignore it. */ 3349 ipmi_inc_stat(intf, invalid_commands); 3350 return 0; 3351 } 3352 3353 if (msg->rsp[2] != 0) { 3354 /* An error getting the response, just ignore it. */ 3355 return 0; 3356 } 3357 3358 /* 3359 * This is an OEM Message so the OEM needs to know how 3360 * handle the message. We do no interpretation. 3361 */ 3362 netfn = msg->rsp[0] >> 2; 3363 cmd = msg->rsp[1]; 3364 chan = msg->rsp[3] & 0xf; 3365 3366 rcu_read_lock(); 3367 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3368 if (rcvr) { 3369 user = rcvr->user; 3370 kref_get(&user->refcount); 3371 } else 3372 user = NULL; 3373 rcu_read_unlock(); 3374 3375 if (user == NULL) { 3376 /* We didn't find a user, just give up. */ 3377 ipmi_inc_stat(intf, unhandled_commands); 3378 3379 /* 3380 * Don't do anything with these messages, just allow 3381 * them to be freed. 3382 */ 3383 3384 rv = 0; 3385 } else { 3386 /* Deliver the message to the user. */ 3387 ipmi_inc_stat(intf, handled_commands); 3388 3389 recv_msg = ipmi_alloc_recv_msg(); 3390 if (!recv_msg) { 3391 /* 3392 * We couldn't allocate memory for the 3393 * message, so requeue it for handling 3394 * later. 3395 */ 3396 rv = 1; 3397 kref_put(&user->refcount, free_user); 3398 } else { 3399 /* 3400 * OEM Messages are expected to be delivered via 3401 * the system interface to SMS software. We might 3402 * need to visit this again depending on OEM 3403 * requirements 3404 */ 3405 smi_addr = ((struct ipmi_system_interface_addr *) 3406 &(recv_msg->addr)); 3407 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3408 smi_addr->channel = IPMI_BMC_CHANNEL; 3409 smi_addr->lun = msg->rsp[0] & 3; 3410 3411 recv_msg->user = user; 3412 recv_msg->user_msg_data = NULL; 3413 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3414 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3415 recv_msg->msg.cmd = msg->rsp[1]; 3416 recv_msg->msg.data = recv_msg->msg_data; 3417 3418 /* 3419 * The message starts at byte 4 which follows the 3420 * the Channel Byte in the "GET MESSAGE" command 3421 */ 3422 recv_msg->msg.data_len = msg->rsp_size - 4; 3423 memcpy(recv_msg->msg_data, 3424 &(msg->rsp[4]), 3425 msg->rsp_size - 4); 3426 deliver_response(recv_msg); 3427 } 3428 } 3429 3430 return rv; 3431 } 3432 3433 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3434 struct ipmi_smi_msg *msg) 3435 { 3436 struct ipmi_system_interface_addr *smi_addr; 3437 3438 recv_msg->msgid = 0; 3439 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3440 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3441 smi_addr->channel = IPMI_BMC_CHANNEL; 3442 smi_addr->lun = msg->rsp[0] & 3; 3443 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3444 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3445 recv_msg->msg.cmd = msg->rsp[1]; 3446 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3447 recv_msg->msg.data = recv_msg->msg_data; 3448 recv_msg->msg.data_len = msg->rsp_size - 3; 3449 } 3450 3451 static int handle_read_event_rsp(ipmi_smi_t intf, 3452 struct ipmi_smi_msg *msg) 3453 { 3454 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3455 struct list_head msgs; 3456 ipmi_user_t user; 3457 int rv = 0; 3458 int deliver_count = 0; 3459 unsigned long flags; 3460 3461 if (msg->rsp_size < 19) { 3462 /* Message is too small to be an IPMB event. */ 3463 ipmi_inc_stat(intf, invalid_events); 3464 return 0; 3465 } 3466 3467 if (msg->rsp[2] != 0) { 3468 /* An error getting the event, just ignore it. */ 3469 return 0; 3470 } 3471 3472 INIT_LIST_HEAD(&msgs); 3473 3474 spin_lock_irqsave(&intf->events_lock, flags); 3475 3476 ipmi_inc_stat(intf, events); 3477 3478 /* 3479 * Allocate and fill in one message for every user that is 3480 * getting events. 3481 */ 3482 rcu_read_lock(); 3483 list_for_each_entry_rcu(user, &intf->users, link) { 3484 if (!user->gets_events) 3485 continue; 3486 3487 recv_msg = ipmi_alloc_recv_msg(); 3488 if (!recv_msg) { 3489 rcu_read_unlock(); 3490 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3491 link) { 3492 list_del(&recv_msg->link); 3493 ipmi_free_recv_msg(recv_msg); 3494 } 3495 /* 3496 * We couldn't allocate memory for the 3497 * message, so requeue it for handling 3498 * later. 3499 */ 3500 rv = 1; 3501 goto out; 3502 } 3503 3504 deliver_count++; 3505 3506 copy_event_into_recv_msg(recv_msg, msg); 3507 recv_msg->user = user; 3508 kref_get(&user->refcount); 3509 list_add_tail(&(recv_msg->link), &msgs); 3510 } 3511 rcu_read_unlock(); 3512 3513 if (deliver_count) { 3514 /* Now deliver all the messages. */ 3515 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3516 list_del(&recv_msg->link); 3517 deliver_response(recv_msg); 3518 } 3519 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3520 /* 3521 * No one to receive the message, put it in queue if there's 3522 * not already too many things in the queue. 3523 */ 3524 recv_msg = ipmi_alloc_recv_msg(); 3525 if (!recv_msg) { 3526 /* 3527 * We couldn't allocate memory for the 3528 * message, so requeue it for handling 3529 * later. 3530 */ 3531 rv = 1; 3532 goto out; 3533 } 3534 3535 copy_event_into_recv_msg(recv_msg, msg); 3536 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3537 intf->waiting_events_count++; 3538 } else if (!intf->event_msg_printed) { 3539 /* 3540 * There's too many things in the queue, discard this 3541 * message. 3542 */ 3543 printk(KERN_WARNING PFX "Event queue full, discarding" 3544 " incoming events\n"); 3545 intf->event_msg_printed = 1; 3546 } 3547 3548 out: 3549 spin_unlock_irqrestore(&(intf->events_lock), flags); 3550 3551 return rv; 3552 } 3553 3554 static int handle_bmc_rsp(ipmi_smi_t intf, 3555 struct ipmi_smi_msg *msg) 3556 { 3557 struct ipmi_recv_msg *recv_msg; 3558 struct ipmi_user *user; 3559 3560 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3561 if (recv_msg == NULL) { 3562 printk(KERN_WARNING 3563 "IPMI message received with no owner. This\n" 3564 "could be because of a malformed message, or\n" 3565 "because of a hardware error. Contact your\n" 3566 "hardware vender for assistance\n"); 3567 return 0; 3568 } 3569 3570 user = recv_msg->user; 3571 /* Make sure the user still exists. */ 3572 if (user && !user->valid) { 3573 /* The user for the message went away, so give up. */ 3574 ipmi_inc_stat(intf, unhandled_local_responses); 3575 ipmi_free_recv_msg(recv_msg); 3576 } else { 3577 struct ipmi_system_interface_addr *smi_addr; 3578 3579 ipmi_inc_stat(intf, handled_local_responses); 3580 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3581 recv_msg->msgid = msg->msgid; 3582 smi_addr = ((struct ipmi_system_interface_addr *) 3583 &(recv_msg->addr)); 3584 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3585 smi_addr->channel = IPMI_BMC_CHANNEL; 3586 smi_addr->lun = msg->rsp[0] & 3; 3587 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3588 recv_msg->msg.cmd = msg->rsp[1]; 3589 memcpy(recv_msg->msg_data, 3590 &(msg->rsp[2]), 3591 msg->rsp_size - 2); 3592 recv_msg->msg.data = recv_msg->msg_data; 3593 recv_msg->msg.data_len = msg->rsp_size - 2; 3594 deliver_response(recv_msg); 3595 } 3596 3597 return 0; 3598 } 3599 3600 /* 3601 * Handle a new message. Return 1 if the message should be requeued, 3602 * 0 if the message should be freed, or -1 if the message should not 3603 * be freed or requeued. 3604 */ 3605 static int handle_new_recv_msg(ipmi_smi_t intf, 3606 struct ipmi_smi_msg *msg) 3607 { 3608 int requeue; 3609 int chan; 3610 3611 #ifdef DEBUG_MSGING 3612 int m; 3613 printk("Recv:"); 3614 for (m = 0; m < msg->rsp_size; m++) 3615 printk(" %2.2x", msg->rsp[m]); 3616 printk("\n"); 3617 #endif 3618 if (msg->rsp_size < 2) { 3619 /* Message is too small to be correct. */ 3620 printk(KERN_WARNING PFX "BMC returned to small a message" 3621 " for netfn %x cmd %x, got %d bytes\n", 3622 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3623 3624 /* Generate an error response for the message. */ 3625 msg->rsp[0] = msg->data[0] | (1 << 2); 3626 msg->rsp[1] = msg->data[1]; 3627 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3628 msg->rsp_size = 3; 3629 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3630 || (msg->rsp[1] != msg->data[1])) { 3631 /* 3632 * The NetFN and Command in the response is not even 3633 * marginally correct. 3634 */ 3635 printk(KERN_WARNING PFX "BMC returned incorrect response," 3636 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3637 (msg->data[0] >> 2) | 1, msg->data[1], 3638 msg->rsp[0] >> 2, msg->rsp[1]); 3639 3640 /* Generate an error response for the message. */ 3641 msg->rsp[0] = msg->data[0] | (1 << 2); 3642 msg->rsp[1] = msg->data[1]; 3643 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3644 msg->rsp_size = 3; 3645 } 3646 3647 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3648 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3649 && (msg->user_data != NULL)) { 3650 /* 3651 * It's a response to a response we sent. For this we 3652 * deliver a send message response to the user. 3653 */ 3654 struct ipmi_recv_msg *recv_msg = msg->user_data; 3655 3656 requeue = 0; 3657 if (msg->rsp_size < 2) 3658 /* Message is too small to be correct. */ 3659 goto out; 3660 3661 chan = msg->data[2] & 0x0f; 3662 if (chan >= IPMI_MAX_CHANNELS) 3663 /* Invalid channel number */ 3664 goto out; 3665 3666 if (!recv_msg) 3667 goto out; 3668 3669 /* Make sure the user still exists. */ 3670 if (!recv_msg->user || !recv_msg->user->valid) 3671 goto out; 3672 3673 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3674 recv_msg->msg.data = recv_msg->msg_data; 3675 recv_msg->msg.data_len = 1; 3676 recv_msg->msg_data[0] = msg->rsp[2]; 3677 deliver_response(recv_msg); 3678 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3679 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3680 /* It's from the receive queue. */ 3681 chan = msg->rsp[3] & 0xf; 3682 if (chan >= IPMI_MAX_CHANNELS) { 3683 /* Invalid channel number */ 3684 requeue = 0; 3685 goto out; 3686 } 3687 3688 /* 3689 * We need to make sure the channels have been initialized. 3690 * The channel_handler routine will set the "curr_channel" 3691 * equal to or greater than IPMI_MAX_CHANNELS when all the 3692 * channels for this interface have been initialized. 3693 */ 3694 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3695 requeue = 0; /* Throw the message away */ 3696 goto out; 3697 } 3698 3699 switch (intf->channels[chan].medium) { 3700 case IPMI_CHANNEL_MEDIUM_IPMB: 3701 if (msg->rsp[4] & 0x04) { 3702 /* 3703 * It's a response, so find the 3704 * requesting message and send it up. 3705 */ 3706 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3707 } else { 3708 /* 3709 * It's a command to the SMS from some other 3710 * entity. Handle that. 3711 */ 3712 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3713 } 3714 break; 3715 3716 case IPMI_CHANNEL_MEDIUM_8023LAN: 3717 case IPMI_CHANNEL_MEDIUM_ASYNC: 3718 if (msg->rsp[6] & 0x04) { 3719 /* 3720 * It's a response, so find the 3721 * requesting message and send it up. 3722 */ 3723 requeue = handle_lan_get_msg_rsp(intf, msg); 3724 } else { 3725 /* 3726 * It's a command to the SMS from some other 3727 * entity. Handle that. 3728 */ 3729 requeue = handle_lan_get_msg_cmd(intf, msg); 3730 } 3731 break; 3732 3733 default: 3734 /* Check for OEM Channels. Clients had better 3735 register for these commands. */ 3736 if ((intf->channels[chan].medium 3737 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3738 && (intf->channels[chan].medium 3739 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3740 requeue = handle_oem_get_msg_cmd(intf, msg); 3741 } else { 3742 /* 3743 * We don't handle the channel type, so just 3744 * free the message. 3745 */ 3746 requeue = 0; 3747 } 3748 } 3749 3750 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3751 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3752 /* It's an asyncronous event. */ 3753 requeue = handle_read_event_rsp(intf, msg); 3754 } else { 3755 /* It's a response from the local BMC. */ 3756 requeue = handle_bmc_rsp(intf, msg); 3757 } 3758 3759 out: 3760 return requeue; 3761 } 3762 3763 /* Handle a new message from the lower layer. */ 3764 void ipmi_smi_msg_received(ipmi_smi_t intf, 3765 struct ipmi_smi_msg *msg) 3766 { 3767 unsigned long flags = 0; /* keep us warning-free. */ 3768 int rv; 3769 int run_to_completion; 3770 3771 3772 if ((msg->data_size >= 2) 3773 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3774 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3775 && (msg->user_data == NULL)) { 3776 /* 3777 * This is the local response to a command send, start 3778 * the timer for these. The user_data will not be 3779 * NULL if this is a response send, and we will let 3780 * response sends just go through. 3781 */ 3782 3783 /* 3784 * Check for errors, if we get certain errors (ones 3785 * that mean basically we can try again later), we 3786 * ignore them and start the timer. Otherwise we 3787 * report the error immediately. 3788 */ 3789 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3790 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3791 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3792 && (msg->rsp[2] != IPMI_BUS_ERR) 3793 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3794 int chan = msg->rsp[3] & 0xf; 3795 3796 /* Got an error sending the message, handle it. */ 3797 if (chan >= IPMI_MAX_CHANNELS) 3798 ; /* This shouldn't happen */ 3799 else if ((intf->channels[chan].medium 3800 == IPMI_CHANNEL_MEDIUM_8023LAN) 3801 || (intf->channels[chan].medium 3802 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3803 ipmi_inc_stat(intf, sent_lan_command_errs); 3804 else 3805 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3806 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3807 } else 3808 /* The message was sent, start the timer. */ 3809 intf_start_seq_timer(intf, msg->msgid); 3810 3811 ipmi_free_smi_msg(msg); 3812 goto out; 3813 } 3814 3815 /* 3816 * To preserve message order, if the list is not empty, we 3817 * tack this message onto the end of the list. 3818 */ 3819 run_to_completion = intf->run_to_completion; 3820 if (!run_to_completion) 3821 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3822 if (!list_empty(&intf->waiting_msgs)) { 3823 list_add_tail(&msg->link, &intf->waiting_msgs); 3824 if (!run_to_completion) 3825 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3826 goto out; 3827 } 3828 if (!run_to_completion) 3829 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3830 3831 rv = handle_new_recv_msg(intf, msg); 3832 if (rv > 0) { 3833 /* 3834 * Could not handle the message now, just add it to a 3835 * list to handle later. 3836 */ 3837 run_to_completion = intf->run_to_completion; 3838 if (!run_to_completion) 3839 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3840 list_add_tail(&msg->link, &intf->waiting_msgs); 3841 if (!run_to_completion) 3842 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3843 } else if (rv == 0) { 3844 ipmi_free_smi_msg(msg); 3845 } 3846 3847 out: 3848 return; 3849 } 3850 EXPORT_SYMBOL(ipmi_smi_msg_received); 3851 3852 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3853 { 3854 ipmi_user_t user; 3855 3856 rcu_read_lock(); 3857 list_for_each_entry_rcu(user, &intf->users, link) { 3858 if (!user->handler->ipmi_watchdog_pretimeout) 3859 continue; 3860 3861 user->handler->ipmi_watchdog_pretimeout(user->handler_data); 3862 } 3863 rcu_read_unlock(); 3864 } 3865 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3866 3867 static struct ipmi_smi_msg * 3868 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 3869 unsigned char seq, long seqid) 3870 { 3871 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 3872 if (!smi_msg) 3873 /* 3874 * If we can't allocate the message, then just return, we 3875 * get 4 retries, so this should be ok. 3876 */ 3877 return NULL; 3878 3879 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 3880 smi_msg->data_size = recv_msg->msg.data_len; 3881 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 3882 3883 #ifdef DEBUG_MSGING 3884 { 3885 int m; 3886 printk("Resend: "); 3887 for (m = 0; m < smi_msg->data_size; m++) 3888 printk(" %2.2x", smi_msg->data[m]); 3889 printk("\n"); 3890 } 3891 #endif 3892 return smi_msg; 3893 } 3894 3895 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 3896 struct list_head *timeouts, long timeout_period, 3897 int slot, unsigned long *flags) 3898 { 3899 struct ipmi_recv_msg *msg; 3900 struct ipmi_smi_handlers *handlers; 3901 3902 if (intf->intf_num == -1) 3903 return; 3904 3905 if (!ent->inuse) 3906 return; 3907 3908 ent->timeout -= timeout_period; 3909 if (ent->timeout > 0) 3910 return; 3911 3912 if (ent->retries_left == 0) { 3913 /* The message has used all its retries. */ 3914 ent->inuse = 0; 3915 msg = ent->recv_msg; 3916 list_add_tail(&msg->link, timeouts); 3917 if (ent->broadcast) 3918 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 3919 else if (is_lan_addr(&ent->recv_msg->addr)) 3920 ipmi_inc_stat(intf, timed_out_lan_commands); 3921 else 3922 ipmi_inc_stat(intf, timed_out_ipmb_commands); 3923 } else { 3924 struct ipmi_smi_msg *smi_msg; 3925 /* More retries, send again. */ 3926 3927 /* 3928 * Start with the max timer, set to normal timer after 3929 * the message is sent. 3930 */ 3931 ent->timeout = MAX_MSG_TIMEOUT; 3932 ent->retries_left--; 3933 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 3934 ent->seqid); 3935 if (!smi_msg) { 3936 if (is_lan_addr(&ent->recv_msg->addr)) 3937 ipmi_inc_stat(intf, 3938 dropped_rexmit_lan_commands); 3939 else 3940 ipmi_inc_stat(intf, 3941 dropped_rexmit_ipmb_commands); 3942 return; 3943 } 3944 3945 spin_unlock_irqrestore(&intf->seq_lock, *flags); 3946 3947 /* 3948 * Send the new message. We send with a zero 3949 * priority. It timed out, I doubt time is that 3950 * critical now, and high priority messages are really 3951 * only for messages to the local MC, which don't get 3952 * resent. 3953 */ 3954 handlers = intf->handlers; 3955 if (handlers) { 3956 if (is_lan_addr(&ent->recv_msg->addr)) 3957 ipmi_inc_stat(intf, 3958 retransmitted_lan_commands); 3959 else 3960 ipmi_inc_stat(intf, 3961 retransmitted_ipmb_commands); 3962 3963 intf->handlers->sender(intf->send_info, 3964 smi_msg, 0); 3965 } else 3966 ipmi_free_smi_msg(smi_msg); 3967 3968 spin_lock_irqsave(&intf->seq_lock, *flags); 3969 } 3970 } 3971 3972 static void ipmi_timeout_handler(long timeout_period) 3973 { 3974 ipmi_smi_t intf; 3975 struct list_head timeouts; 3976 struct ipmi_recv_msg *msg, *msg2; 3977 struct ipmi_smi_msg *smi_msg, *smi_msg2; 3978 unsigned long flags; 3979 int i; 3980 3981 rcu_read_lock(); 3982 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 3983 /* See if any waiting messages need to be processed. */ 3984 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3985 list_for_each_entry_safe(smi_msg, smi_msg2, 3986 &intf->waiting_msgs, link) { 3987 if (!handle_new_recv_msg(intf, smi_msg)) { 3988 list_del(&smi_msg->link); 3989 ipmi_free_smi_msg(smi_msg); 3990 } else { 3991 /* 3992 * To preserve message order, quit if we 3993 * can't handle a message. 3994 */ 3995 break; 3996 } 3997 } 3998 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3999 4000 /* 4001 * Go through the seq table and find any messages that 4002 * have timed out, putting them in the timeouts 4003 * list. 4004 */ 4005 INIT_LIST_HEAD(&timeouts); 4006 spin_lock_irqsave(&intf->seq_lock, flags); 4007 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4008 check_msg_timeout(intf, &(intf->seq_table[i]), 4009 &timeouts, timeout_period, i, 4010 &flags); 4011 spin_unlock_irqrestore(&intf->seq_lock, flags); 4012 4013 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4014 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 4015 4016 /* 4017 * Maintenance mode handling. Check the timeout 4018 * optimistically before we claim the lock. It may 4019 * mean a timeout gets missed occasionally, but that 4020 * only means the timeout gets extended by one period 4021 * in that case. No big deal, and it avoids the lock 4022 * most of the time. 4023 */ 4024 if (intf->auto_maintenance_timeout > 0) { 4025 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4026 if (intf->auto_maintenance_timeout > 0) { 4027 intf->auto_maintenance_timeout 4028 -= timeout_period; 4029 if (!intf->maintenance_mode 4030 && (intf->auto_maintenance_timeout <= 0)) { 4031 intf->maintenance_mode_enable = 0; 4032 maintenance_mode_update(intf); 4033 } 4034 } 4035 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4036 flags); 4037 } 4038 } 4039 rcu_read_unlock(); 4040 } 4041 4042 static void ipmi_request_event(void) 4043 { 4044 ipmi_smi_t intf; 4045 struct ipmi_smi_handlers *handlers; 4046 4047 rcu_read_lock(); 4048 /* 4049 * Called from the timer, no need to check if handlers is 4050 * valid. 4051 */ 4052 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4053 /* No event requests when in maintenance mode. */ 4054 if (intf->maintenance_mode_enable) 4055 continue; 4056 4057 handlers = intf->handlers; 4058 if (handlers) 4059 handlers->request_events(intf->send_info); 4060 } 4061 rcu_read_unlock(); 4062 } 4063 4064 static struct timer_list ipmi_timer; 4065 4066 /* Call every ~1000 ms. */ 4067 #define IPMI_TIMEOUT_TIME 1000 4068 4069 /* How many jiffies does it take to get to the timeout time. */ 4070 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 4071 4072 /* 4073 * Request events from the queue every second (this is the number of 4074 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 4075 * future, IPMI will add a way to know immediately if an event is in 4076 * the queue and this silliness can go away. 4077 */ 4078 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 4079 4080 static atomic_t stop_operation; 4081 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4082 4083 static void ipmi_timeout(unsigned long data) 4084 { 4085 if (atomic_read(&stop_operation)) 4086 return; 4087 4088 ticks_to_req_ev--; 4089 if (ticks_to_req_ev == 0) { 4090 ipmi_request_event(); 4091 ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4092 } 4093 4094 ipmi_timeout_handler(IPMI_TIMEOUT_TIME); 4095 4096 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4097 } 4098 4099 4100 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4101 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4102 4103 /* FIXME - convert these to slabs. */ 4104 static void free_smi_msg(struct ipmi_smi_msg *msg) 4105 { 4106 atomic_dec(&smi_msg_inuse_count); 4107 kfree(msg); 4108 } 4109 4110 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4111 { 4112 struct ipmi_smi_msg *rv; 4113 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4114 if (rv) { 4115 rv->done = free_smi_msg; 4116 rv->user_data = NULL; 4117 atomic_inc(&smi_msg_inuse_count); 4118 } 4119 return rv; 4120 } 4121 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4122 4123 static void free_recv_msg(struct ipmi_recv_msg *msg) 4124 { 4125 atomic_dec(&recv_msg_inuse_count); 4126 kfree(msg); 4127 } 4128 4129 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4130 { 4131 struct ipmi_recv_msg *rv; 4132 4133 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4134 if (rv) { 4135 rv->user = NULL; 4136 rv->done = free_recv_msg; 4137 atomic_inc(&recv_msg_inuse_count); 4138 } 4139 return rv; 4140 } 4141 4142 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4143 { 4144 if (msg->user) 4145 kref_put(&msg->user->refcount, free_user); 4146 msg->done(msg); 4147 } 4148 EXPORT_SYMBOL(ipmi_free_recv_msg); 4149 4150 #ifdef CONFIG_IPMI_PANIC_EVENT 4151 4152 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4153 { 4154 } 4155 4156 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4157 { 4158 } 4159 4160 #ifdef CONFIG_IPMI_PANIC_STRING 4161 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4162 { 4163 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4164 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4165 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4166 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4167 /* A get event receiver command, save it. */ 4168 intf->event_receiver = msg->msg.data[1]; 4169 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4170 } 4171 } 4172 4173 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4174 { 4175 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4176 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4177 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4178 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4179 /* 4180 * A get device id command, save if we are an event 4181 * receiver or generator. 4182 */ 4183 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4184 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4185 } 4186 } 4187 #endif 4188 4189 static void send_panic_events(char *str) 4190 { 4191 struct kernel_ipmi_msg msg; 4192 ipmi_smi_t intf; 4193 unsigned char data[16]; 4194 struct ipmi_system_interface_addr *si; 4195 struct ipmi_addr addr; 4196 struct ipmi_smi_msg smi_msg; 4197 struct ipmi_recv_msg recv_msg; 4198 4199 si = (struct ipmi_system_interface_addr *) &addr; 4200 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4201 si->channel = IPMI_BMC_CHANNEL; 4202 si->lun = 0; 4203 4204 /* Fill in an event telling that we have failed. */ 4205 msg.netfn = 0x04; /* Sensor or Event. */ 4206 msg.cmd = 2; /* Platform event command. */ 4207 msg.data = data; 4208 msg.data_len = 8; 4209 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4210 data[1] = 0x03; /* This is for IPMI 1.0. */ 4211 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4212 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4213 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4214 4215 /* 4216 * Put a few breadcrumbs in. Hopefully later we can add more things 4217 * to make the panic events more useful. 4218 */ 4219 if (str) { 4220 data[3] = str[0]; 4221 data[6] = str[1]; 4222 data[7] = str[2]; 4223 } 4224 4225 smi_msg.done = dummy_smi_done_handler; 4226 recv_msg.done = dummy_recv_done_handler; 4227 4228 /* For every registered interface, send the event. */ 4229 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4230 if (!intf->handlers) 4231 /* Interface is not ready. */ 4232 continue; 4233 4234 intf->run_to_completion = 1; 4235 /* Send the event announcing the panic. */ 4236 intf->handlers->set_run_to_completion(intf->send_info, 1); 4237 i_ipmi_request(NULL, 4238 intf, 4239 &addr, 4240 0, 4241 &msg, 4242 intf, 4243 &smi_msg, 4244 &recv_msg, 4245 0, 4246 intf->channels[0].address, 4247 intf->channels[0].lun, 4248 0, 1); /* Don't retry, and don't wait. */ 4249 } 4250 4251 #ifdef CONFIG_IPMI_PANIC_STRING 4252 /* 4253 * On every interface, dump a bunch of OEM event holding the 4254 * string. 4255 */ 4256 if (!str) 4257 return; 4258 4259 /* For every registered interface, send the event. */ 4260 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4261 char *p = str; 4262 struct ipmi_ipmb_addr *ipmb; 4263 int j; 4264 4265 if (intf->intf_num == -1) 4266 /* Interface was not ready yet. */ 4267 continue; 4268 4269 /* 4270 * intf_num is used as an marker to tell if the 4271 * interface is valid. Thus we need a read barrier to 4272 * make sure data fetched before checking intf_num 4273 * won't be used. 4274 */ 4275 smp_rmb(); 4276 4277 /* 4278 * First job here is to figure out where to send the 4279 * OEM events. There's no way in IPMI to send OEM 4280 * events using an event send command, so we have to 4281 * find the SEL to put them in and stick them in 4282 * there. 4283 */ 4284 4285 /* Get capabilities from the get device id. */ 4286 intf->local_sel_device = 0; 4287 intf->local_event_generator = 0; 4288 intf->event_receiver = 0; 4289 4290 /* Request the device info from the local MC. */ 4291 msg.netfn = IPMI_NETFN_APP_REQUEST; 4292 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4293 msg.data = NULL; 4294 msg.data_len = 0; 4295 intf->null_user_handler = device_id_fetcher; 4296 i_ipmi_request(NULL, 4297 intf, 4298 &addr, 4299 0, 4300 &msg, 4301 intf, 4302 &smi_msg, 4303 &recv_msg, 4304 0, 4305 intf->channels[0].address, 4306 intf->channels[0].lun, 4307 0, 1); /* Don't retry, and don't wait. */ 4308 4309 if (intf->local_event_generator) { 4310 /* Request the event receiver from the local MC. */ 4311 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4312 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4313 msg.data = NULL; 4314 msg.data_len = 0; 4315 intf->null_user_handler = event_receiver_fetcher; 4316 i_ipmi_request(NULL, 4317 intf, 4318 &addr, 4319 0, 4320 &msg, 4321 intf, 4322 &smi_msg, 4323 &recv_msg, 4324 0, 4325 intf->channels[0].address, 4326 intf->channels[0].lun, 4327 0, 1); /* no retry, and no wait. */ 4328 } 4329 intf->null_user_handler = NULL; 4330 4331 /* 4332 * Validate the event receiver. The low bit must not 4333 * be 1 (it must be a valid IPMB address), it cannot 4334 * be zero, and it must not be my address. 4335 */ 4336 if (((intf->event_receiver & 1) == 0) 4337 && (intf->event_receiver != 0) 4338 && (intf->event_receiver != intf->channels[0].address)) { 4339 /* 4340 * The event receiver is valid, send an IPMB 4341 * message. 4342 */ 4343 ipmb = (struct ipmi_ipmb_addr *) &addr; 4344 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4345 ipmb->channel = 0; /* FIXME - is this right? */ 4346 ipmb->lun = intf->event_receiver_lun; 4347 ipmb->slave_addr = intf->event_receiver; 4348 } else if (intf->local_sel_device) { 4349 /* 4350 * The event receiver was not valid (or was 4351 * me), but I am an SEL device, just dump it 4352 * in my SEL. 4353 */ 4354 si = (struct ipmi_system_interface_addr *) &addr; 4355 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4356 si->channel = IPMI_BMC_CHANNEL; 4357 si->lun = 0; 4358 } else 4359 continue; /* No where to send the event. */ 4360 4361 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4362 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4363 msg.data = data; 4364 msg.data_len = 16; 4365 4366 j = 0; 4367 while (*p) { 4368 int size = strlen(p); 4369 4370 if (size > 11) 4371 size = 11; 4372 data[0] = 0; 4373 data[1] = 0; 4374 data[2] = 0xf0; /* OEM event without timestamp. */ 4375 data[3] = intf->channels[0].address; 4376 data[4] = j++; /* sequence # */ 4377 /* 4378 * Always give 11 bytes, so strncpy will fill 4379 * it with zeroes for me. 4380 */ 4381 strncpy(data+5, p, 11); 4382 p += size; 4383 4384 i_ipmi_request(NULL, 4385 intf, 4386 &addr, 4387 0, 4388 &msg, 4389 intf, 4390 &smi_msg, 4391 &recv_msg, 4392 0, 4393 intf->channels[0].address, 4394 intf->channels[0].lun, 4395 0, 1); /* no retry, and no wait. */ 4396 } 4397 } 4398 #endif /* CONFIG_IPMI_PANIC_STRING */ 4399 } 4400 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4401 4402 static int has_panicked; 4403 4404 static int panic_event(struct notifier_block *this, 4405 unsigned long event, 4406 void *ptr) 4407 { 4408 ipmi_smi_t intf; 4409 4410 if (has_panicked) 4411 return NOTIFY_DONE; 4412 has_panicked = 1; 4413 4414 /* For every registered interface, set it to run to completion. */ 4415 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4416 if (!intf->handlers) 4417 /* Interface is not ready. */ 4418 continue; 4419 4420 intf->run_to_completion = 1; 4421 intf->handlers->set_run_to_completion(intf->send_info, 1); 4422 } 4423 4424 #ifdef CONFIG_IPMI_PANIC_EVENT 4425 send_panic_events(ptr); 4426 #endif 4427 4428 return NOTIFY_DONE; 4429 } 4430 4431 static struct notifier_block panic_block = { 4432 .notifier_call = panic_event, 4433 .next = NULL, 4434 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4435 }; 4436 4437 static int ipmi_init_msghandler(void) 4438 { 4439 int rv; 4440 4441 if (initialized) 4442 return 0; 4443 4444 rv = driver_register(&ipmidriver.driver); 4445 if (rv) { 4446 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4447 return rv; 4448 } 4449 4450 printk(KERN_INFO "ipmi message handler version " 4451 IPMI_DRIVER_VERSION "\n"); 4452 4453 #ifdef CONFIG_PROC_FS 4454 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4455 if (!proc_ipmi_root) { 4456 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4457 return -ENOMEM; 4458 } 4459 4460 #endif /* CONFIG_PROC_FS */ 4461 4462 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4463 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4464 4465 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4466 4467 initialized = 1; 4468 4469 return 0; 4470 } 4471 4472 static int __init ipmi_init_msghandler_mod(void) 4473 { 4474 ipmi_init_msghandler(); 4475 return 0; 4476 } 4477 4478 static void __exit cleanup_ipmi(void) 4479 { 4480 int count; 4481 4482 if (!initialized) 4483 return; 4484 4485 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4486 4487 /* 4488 * This can't be called if any interfaces exist, so no worry 4489 * about shutting down the interfaces. 4490 */ 4491 4492 /* 4493 * Tell the timer to stop, then wait for it to stop. This 4494 * avoids problems with race conditions removing the timer 4495 * here. 4496 */ 4497 atomic_inc(&stop_operation); 4498 del_timer_sync(&ipmi_timer); 4499 4500 #ifdef CONFIG_PROC_FS 4501 remove_proc_entry(proc_ipmi_root->name, NULL); 4502 #endif /* CONFIG_PROC_FS */ 4503 4504 driver_unregister(&ipmidriver.driver); 4505 4506 initialized = 0; 4507 4508 /* Check for buffer leaks. */ 4509 count = atomic_read(&smi_msg_inuse_count); 4510 if (count != 0) 4511 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4512 count); 4513 count = atomic_read(&recv_msg_inuse_count); 4514 if (count != 0) 4515 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4516 count); 4517 } 4518 module_exit(cleanup_ipmi); 4519 4520 module_init(ipmi_init_msghandler_mod); 4521 MODULE_LICENSE("GPL"); 4522 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4523 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4524 " interface."); 4525 MODULE_VERSION(IPMI_DRIVER_VERSION); 4526