1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39 
40 #define IPMI_DRIVER_VERSION "39.2"
41 
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 			       struct ipmi_smi_msg *msg);
49 
50 static bool initialized;
51 static bool drvregistered;
52 
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 	IPMI_SEND_PANIC_EVENT_NONE,
56 	IPMI_SEND_PANIC_EVENT,
57 	IPMI_SEND_PANIC_EVENT_STRING,
58 	IPMI_SEND_PANIC_EVENT_MAX
59 };
60 
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63 
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71 
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73 
74 static int panic_op_write_handler(const char *val,
75 				  const struct kernel_param *kp)
76 {
77 	char valcp[16];
78 	int e;
79 
80 	strscpy(valcp, val, sizeof(valcp));
81 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 	if (e < 0)
83 		return e;
84 
85 	ipmi_send_panic_event = e;
86 	return 0;
87 }
88 
89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 	const char *event_str;
92 
93 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 		event_str = "???";
95 	else
96 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97 
98 	return sprintf(buffer, "%s\n", event_str);
99 }
100 
101 static const struct kernel_param_ops panic_op_ops = {
102 	.set = panic_op_write_handler,
103 	.get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107 
108 
109 #define MAX_EVENTS_IN_QUEUE	25
110 
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116 
117 /*
118  * Don't let a message sit in a queue forever, always time it with at lest
119  * the max message timer.  This is in milliseconds.
120  */
121 #define MAX_MSG_TIMEOUT		60000
122 
123 /*
124  * Timeout times below are in milliseconds, and are done off a 1
125  * second timer.  So setting the value to 1000 would mean anything
126  * between 0 and 1000ms.  So really the only reasonable minimum
127  * setting it 2000ms, which is between 1 and 2 seconds.
128  */
129 
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 		 "The time (milliseconds) between retry sends");
135 
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 		 "The time (milliseconds) between retry sends in maintenance mode");
141 
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 		 "The time (milliseconds) between retry sends in maintenance mode");
147 
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152 		 "The most users that may use the IPMI stack at one time.");
153 
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158 		 "The most message a user may have outstanding.");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	atomic_t nr_msgs;
203 
204 	/* Free must run in process context for RCU cleanup. */
205 	struct work_struct remove_work;
206 };
207 
208 static struct workqueue_struct *remove_work_wq;
209 
210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
211 	__acquires(user->release_barrier)
212 {
213 	struct ipmi_user *ruser;
214 
215 	*index = srcu_read_lock(&user->release_barrier);
216 	ruser = srcu_dereference(user->self, &user->release_barrier);
217 	if (!ruser)
218 		srcu_read_unlock(&user->release_barrier, *index);
219 	return ruser;
220 }
221 
222 static void release_ipmi_user(struct ipmi_user *user, int index)
223 {
224 	srcu_read_unlock(&user->release_barrier, index);
225 }
226 
227 struct cmd_rcvr {
228 	struct list_head link;
229 
230 	struct ipmi_user *user;
231 	unsigned char netfn;
232 	unsigned char cmd;
233 	unsigned int  chans;
234 
235 	/*
236 	 * This is used to form a linked lised during mass deletion.
237 	 * Since this is in an RCU list, we cannot use the link above
238 	 * or change any data until the RCU period completes.  So we
239 	 * use this next variable during mass deletion so we can have
240 	 * a list and don't have to wait and restart the search on
241 	 * every individual deletion of a command.
242 	 */
243 	struct cmd_rcvr *next;
244 };
245 
246 struct seq_table {
247 	unsigned int         inuse : 1;
248 	unsigned int         broadcast : 1;
249 
250 	unsigned long        timeout;
251 	unsigned long        orig_timeout;
252 	unsigned int         retries_left;
253 
254 	/*
255 	 * To verify on an incoming send message response that this is
256 	 * the message that the response is for, we keep a sequence id
257 	 * and increment it every time we send a message.
258 	 */
259 	long                 seqid;
260 
261 	/*
262 	 * This is held so we can properly respond to the message on a
263 	 * timeout, and it is used to hold the temporary data for
264 	 * retransmission, too.
265 	 */
266 	struct ipmi_recv_msg *recv_msg;
267 };
268 
269 /*
270  * Store the information in a msgid (long) to allow us to find a
271  * sequence table entry from the msgid.
272  */
273 #define STORE_SEQ_IN_MSGID(seq, seqid) \
274 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
275 
276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
277 	do {								\
278 		seq = (((msgid) >> 26) & 0x3f);				\
279 		seqid = ((msgid) & 0x3ffffff);				\
280 	} while (0)
281 
282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
283 
284 #define IPMI_MAX_CHANNELS       16
285 struct ipmi_channel {
286 	unsigned char medium;
287 	unsigned char protocol;
288 };
289 
290 struct ipmi_channel_set {
291 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
292 };
293 
294 struct ipmi_my_addrinfo {
295 	/*
296 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
297 	 * but may be changed by the user.
298 	 */
299 	unsigned char address;
300 
301 	/*
302 	 * My LUN.  This should generally stay the SMS LUN, but just in
303 	 * case...
304 	 */
305 	unsigned char lun;
306 };
307 
308 /*
309  * Note that the product id, manufacturer id, guid, and device id are
310  * immutable in this structure, so dyn_mutex is not required for
311  * accessing those.  If those change on a BMC, a new BMC is allocated.
312  */
313 struct bmc_device {
314 	struct platform_device pdev;
315 	struct list_head       intfs; /* Interfaces on this BMC. */
316 	struct ipmi_device_id  id;
317 	struct ipmi_device_id  fetch_id;
318 	int                    dyn_id_set;
319 	unsigned long          dyn_id_expiry;
320 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
321 	guid_t                 guid;
322 	guid_t                 fetch_guid;
323 	int                    dyn_guid_set;
324 	struct kref	       usecount;
325 	struct work_struct     remove_work;
326 	unsigned char	       cc; /* completion code */
327 };
328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
329 
330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
331 			     struct ipmi_device_id *id,
332 			     bool *guid_set, guid_t *guid);
333 
334 /*
335  * Various statistics for IPMI, these index stats[] in the ipmi_smi
336  * structure.
337  */
338 enum ipmi_stat_indexes {
339 	/* Commands we got from the user that were invalid. */
340 	IPMI_STAT_sent_invalid_commands = 0,
341 
342 	/* Commands we sent to the MC. */
343 	IPMI_STAT_sent_local_commands,
344 
345 	/* Responses from the MC that were delivered to a user. */
346 	IPMI_STAT_handled_local_responses,
347 
348 	/* Responses from the MC that were not delivered to a user. */
349 	IPMI_STAT_unhandled_local_responses,
350 
351 	/* Commands we sent out to the IPMB bus. */
352 	IPMI_STAT_sent_ipmb_commands,
353 
354 	/* Commands sent on the IPMB that had errors on the SEND CMD */
355 	IPMI_STAT_sent_ipmb_command_errs,
356 
357 	/* Each retransmit increments this count. */
358 	IPMI_STAT_retransmitted_ipmb_commands,
359 
360 	/*
361 	 * When a message times out (runs out of retransmits) this is
362 	 * incremented.
363 	 */
364 	IPMI_STAT_timed_out_ipmb_commands,
365 
366 	/*
367 	 * This is like above, but for broadcasts.  Broadcasts are
368 	 * *not* included in the above count (they are expected to
369 	 * time out).
370 	 */
371 	IPMI_STAT_timed_out_ipmb_broadcasts,
372 
373 	/* Responses I have sent to the IPMB bus. */
374 	IPMI_STAT_sent_ipmb_responses,
375 
376 	/* The response was delivered to the user. */
377 	IPMI_STAT_handled_ipmb_responses,
378 
379 	/* The response had invalid data in it. */
380 	IPMI_STAT_invalid_ipmb_responses,
381 
382 	/* The response didn't have anyone waiting for it. */
383 	IPMI_STAT_unhandled_ipmb_responses,
384 
385 	/* Commands we sent out to the IPMB bus. */
386 	IPMI_STAT_sent_lan_commands,
387 
388 	/* Commands sent on the IPMB that had errors on the SEND CMD */
389 	IPMI_STAT_sent_lan_command_errs,
390 
391 	/* Each retransmit increments this count. */
392 	IPMI_STAT_retransmitted_lan_commands,
393 
394 	/*
395 	 * When a message times out (runs out of retransmits) this is
396 	 * incremented.
397 	 */
398 	IPMI_STAT_timed_out_lan_commands,
399 
400 	/* Responses I have sent to the IPMB bus. */
401 	IPMI_STAT_sent_lan_responses,
402 
403 	/* The response was delivered to the user. */
404 	IPMI_STAT_handled_lan_responses,
405 
406 	/* The response had invalid data in it. */
407 	IPMI_STAT_invalid_lan_responses,
408 
409 	/* The response didn't have anyone waiting for it. */
410 	IPMI_STAT_unhandled_lan_responses,
411 
412 	/* The command was delivered to the user. */
413 	IPMI_STAT_handled_commands,
414 
415 	/* The command had invalid data in it. */
416 	IPMI_STAT_invalid_commands,
417 
418 	/* The command didn't have anyone waiting for it. */
419 	IPMI_STAT_unhandled_commands,
420 
421 	/* Invalid data in an event. */
422 	IPMI_STAT_invalid_events,
423 
424 	/* Events that were received with the proper format. */
425 	IPMI_STAT_events,
426 
427 	/* Retransmissions on IPMB that failed. */
428 	IPMI_STAT_dropped_rexmit_ipmb_commands,
429 
430 	/* Retransmissions on LAN that failed. */
431 	IPMI_STAT_dropped_rexmit_lan_commands,
432 
433 	/* This *must* remain last, add new values above this. */
434 	IPMI_NUM_STATS
435 };
436 
437 
438 #define IPMI_IPMB_NUM_SEQ	64
439 struct ipmi_smi {
440 	struct module *owner;
441 
442 	/* What interface number are we? */
443 	int intf_num;
444 
445 	struct kref refcount;
446 
447 	/* Set when the interface is being unregistered. */
448 	bool in_shutdown;
449 
450 	/* Used for a list of interfaces. */
451 	struct list_head link;
452 
453 	/*
454 	 * The list of upper layers that are using me.  seq_lock write
455 	 * protects this.  Read protection is with srcu.
456 	 */
457 	struct list_head users;
458 	struct srcu_struct users_srcu;
459 	atomic_t nr_users;
460 	struct device_attribute nr_users_devattr;
461 	struct device_attribute nr_msgs_devattr;
462 
463 
464 	/* Used for wake ups at startup. */
465 	wait_queue_head_t waitq;
466 
467 	/*
468 	 * Prevents the interface from being unregistered when the
469 	 * interface is used by being looked up through the BMC
470 	 * structure.
471 	 */
472 	struct mutex bmc_reg_mutex;
473 
474 	struct bmc_device tmp_bmc;
475 	struct bmc_device *bmc;
476 	bool bmc_registered;
477 	struct list_head bmc_link;
478 	char *my_dev_name;
479 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
480 	struct work_struct bmc_reg_work;
481 
482 	const struct ipmi_smi_handlers *handlers;
483 	void                     *send_info;
484 
485 	/* Driver-model device for the system interface. */
486 	struct device          *si_dev;
487 
488 	/*
489 	 * A table of sequence numbers for this interface.  We use the
490 	 * sequence numbers for IPMB messages that go out of the
491 	 * interface to match them up with their responses.  A routine
492 	 * is called periodically to time the items in this list.
493 	 */
494 	spinlock_t       seq_lock;
495 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 	int curr_seq;
497 
498 	/*
499 	 * Messages queued for delivery.  If delivery fails (out of memory
500 	 * for instance), They will stay in here to be processed later in a
501 	 * periodic timer interrupt.  The tasklet is for handling received
502 	 * messages directly from the handler.
503 	 */
504 	spinlock_t       waiting_rcv_msgs_lock;
505 	struct list_head waiting_rcv_msgs;
506 	atomic_t	 watchdog_pretimeouts_to_deliver;
507 	struct tasklet_struct recv_tasklet;
508 
509 	spinlock_t             xmit_msgs_lock;
510 	struct list_head       xmit_msgs;
511 	struct ipmi_smi_msg    *curr_msg;
512 	struct list_head       hp_xmit_msgs;
513 
514 	/*
515 	 * The list of command receivers that are registered for commands
516 	 * on this interface.
517 	 */
518 	struct mutex     cmd_rcvrs_mutex;
519 	struct list_head cmd_rcvrs;
520 
521 	/*
522 	 * Events that were queues because no one was there to receive
523 	 * them.
524 	 */
525 	spinlock_t       events_lock; /* For dealing with event stuff. */
526 	struct list_head waiting_events;
527 	unsigned int     waiting_events_count; /* How many events in queue? */
528 	char             delivering_events;
529 	char             event_msg_printed;
530 
531 	/* How many users are waiting for events? */
532 	atomic_t         event_waiters;
533 	unsigned int     ticks_to_req_ev;
534 
535 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
536 
537 	/* How many users are waiting for commands? */
538 	unsigned int     command_waiters;
539 
540 	/* How many users are waiting for watchdogs? */
541 	unsigned int     watchdog_waiters;
542 
543 	/* How many users are waiting for message responses? */
544 	unsigned int     response_waiters;
545 
546 	/*
547 	 * Tells what the lower layer has last been asked to watch for,
548 	 * messages and/or watchdogs.  Protected by watch_lock.
549 	 */
550 	unsigned int     last_watch_mask;
551 
552 	/*
553 	 * The event receiver for my BMC, only really used at panic
554 	 * shutdown as a place to store this.
555 	 */
556 	unsigned char event_receiver;
557 	unsigned char event_receiver_lun;
558 	unsigned char local_sel_device;
559 	unsigned char local_event_generator;
560 
561 	/* For handling of maintenance mode. */
562 	int maintenance_mode;
563 	bool maintenance_mode_enable;
564 	int auto_maintenance_timeout;
565 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
566 
567 	/*
568 	 * If we are doing maintenance on something on IPMB, extend
569 	 * the timeout time to avoid timeouts writing firmware and
570 	 * such.
571 	 */
572 	int ipmb_maintenance_mode_timeout;
573 
574 	/*
575 	 * A cheap hack, if this is non-null and a message to an
576 	 * interface comes in with a NULL user, call this routine with
577 	 * it.  Note that the message will still be freed by the
578 	 * caller.  This only works on the system interface.
579 	 *
580 	 * Protected by bmc_reg_mutex.
581 	 */
582 	void (*null_user_handler)(struct ipmi_smi *intf,
583 				  struct ipmi_recv_msg *msg);
584 
585 	/*
586 	 * When we are scanning the channels for an SMI, this will
587 	 * tell which channel we are scanning.
588 	 */
589 	int curr_channel;
590 
591 	/* Channel information */
592 	struct ipmi_channel_set *channel_list;
593 	unsigned int curr_working_cset; /* First index into the following. */
594 	struct ipmi_channel_set wchannels[2];
595 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
596 	bool channels_ready;
597 
598 	atomic_t stats[IPMI_NUM_STATS];
599 
600 	/*
601 	 * run_to_completion duplicate of smb_info, smi_info
602 	 * and ipmi_serial_info structures. Used to decrease numbers of
603 	 * parameters passed by "low" level IPMI code.
604 	 */
605 	int run_to_completion;
606 };
607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
608 
609 static void __get_guid(struct ipmi_smi *intf);
610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
611 static int __ipmi_bmc_register(struct ipmi_smi *intf,
612 			       struct ipmi_device_id *id,
613 			       bool guid_set, guid_t *guid, int intf_num);
614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
615 
616 
617 /**
618  * The driver model view of the IPMI messaging driver.
619  */
620 static struct platform_driver ipmidriver = {
621 	.driver = {
622 		.name = "ipmi",
623 		.bus = &platform_bus_type
624 	}
625 };
626 /*
627  * This mutex keeps us from adding the same BMC twice.
628  */
629 static DEFINE_MUTEX(ipmidriver_mutex);
630 
631 static LIST_HEAD(ipmi_interfaces);
632 static DEFINE_MUTEX(ipmi_interfaces_mutex);
633 #define ipmi_interfaces_mutex_held() \
634 	lockdep_is_held(&ipmi_interfaces_mutex)
635 static struct srcu_struct ipmi_interfaces_srcu;
636 
637 /*
638  * List of watchers that want to know when smi's are added and deleted.
639  */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642 
643 #define ipmi_inc_stat(intf, stat) \
644 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647 
648 static const char * const addr_src_to_str[] = {
649 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650 	"device-tree", "platform"
651 };
652 
653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655 	if (src >= SI_LAST)
656 		src = 0; /* Invalid */
657 	return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660 
661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665 
666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670 
671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675 
676 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
677 {
678 	return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
679 }
680 
681 static void free_recv_msg_list(struct list_head *q)
682 {
683 	struct ipmi_recv_msg *msg, *msg2;
684 
685 	list_for_each_entry_safe(msg, msg2, q, link) {
686 		list_del(&msg->link);
687 		ipmi_free_recv_msg(msg);
688 	}
689 }
690 
691 static void free_smi_msg_list(struct list_head *q)
692 {
693 	struct ipmi_smi_msg *msg, *msg2;
694 
695 	list_for_each_entry_safe(msg, msg2, q, link) {
696 		list_del(&msg->link);
697 		ipmi_free_smi_msg(msg);
698 	}
699 }
700 
701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703 	int              i;
704 	struct cmd_rcvr  *rcvr, *rcvr2;
705 	struct list_head list;
706 
707 	tasklet_kill(&intf->recv_tasklet);
708 
709 	free_smi_msg_list(&intf->waiting_rcv_msgs);
710 	free_recv_msg_list(&intf->waiting_events);
711 
712 	/*
713 	 * Wholesale remove all the entries from the list in the
714 	 * interface and wait for RCU to know that none are in use.
715 	 */
716 	mutex_lock(&intf->cmd_rcvrs_mutex);
717 	INIT_LIST_HEAD(&list);
718 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719 	mutex_unlock(&intf->cmd_rcvrs_mutex);
720 
721 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722 		kfree(rcvr);
723 
724 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 		if ((intf->seq_table[i].inuse)
726 					&& (intf->seq_table[i].recv_msg))
727 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 	}
729 }
730 
731 static void intf_free(struct kref *ref)
732 {
733 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734 
735 	clean_up_interface_data(intf);
736 	kfree(intf);
737 }
738 
739 struct watcher_entry {
740 	int              intf_num;
741 	struct ipmi_smi  *intf;
742 	struct list_head link;
743 };
744 
745 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
746 {
747 	struct ipmi_smi *intf;
748 	int index, rv;
749 
750 	/*
751 	 * Make sure the driver is actually initialized, this handles
752 	 * problems with initialization order.
753 	 */
754 	rv = ipmi_init_msghandler();
755 	if (rv)
756 		return rv;
757 
758 	mutex_lock(&smi_watchers_mutex);
759 
760 	list_add(&watcher->link, &smi_watchers);
761 
762 	index = srcu_read_lock(&ipmi_interfaces_srcu);
763 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
764 			lockdep_is_held(&smi_watchers_mutex)) {
765 		int intf_num = READ_ONCE(intf->intf_num);
766 
767 		if (intf_num == -1)
768 			continue;
769 		watcher->new_smi(intf_num, intf->si_dev);
770 	}
771 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
772 
773 	mutex_unlock(&smi_watchers_mutex);
774 
775 	return 0;
776 }
777 EXPORT_SYMBOL(ipmi_smi_watcher_register);
778 
779 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
780 {
781 	mutex_lock(&smi_watchers_mutex);
782 	list_del(&watcher->link);
783 	mutex_unlock(&smi_watchers_mutex);
784 	return 0;
785 }
786 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
787 
788 /*
789  * Must be called with smi_watchers_mutex held.
790  */
791 static void
792 call_smi_watchers(int i, struct device *dev)
793 {
794 	struct ipmi_smi_watcher *w;
795 
796 	mutex_lock(&smi_watchers_mutex);
797 	list_for_each_entry(w, &smi_watchers, link) {
798 		if (try_module_get(w->owner)) {
799 			w->new_smi(i, dev);
800 			module_put(w->owner);
801 		}
802 	}
803 	mutex_unlock(&smi_watchers_mutex);
804 }
805 
806 static int
807 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
808 {
809 	if (addr1->addr_type != addr2->addr_type)
810 		return 0;
811 
812 	if (addr1->channel != addr2->channel)
813 		return 0;
814 
815 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
816 		struct ipmi_system_interface_addr *smi_addr1
817 		    = (struct ipmi_system_interface_addr *) addr1;
818 		struct ipmi_system_interface_addr *smi_addr2
819 		    = (struct ipmi_system_interface_addr *) addr2;
820 		return (smi_addr1->lun == smi_addr2->lun);
821 	}
822 
823 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
824 		struct ipmi_ipmb_addr *ipmb_addr1
825 		    = (struct ipmi_ipmb_addr *) addr1;
826 		struct ipmi_ipmb_addr *ipmb_addr2
827 		    = (struct ipmi_ipmb_addr *) addr2;
828 
829 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
830 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
831 	}
832 
833 	if (is_ipmb_direct_addr(addr1)) {
834 		struct ipmi_ipmb_direct_addr *daddr1
835 			= (struct ipmi_ipmb_direct_addr *) addr1;
836 		struct ipmi_ipmb_direct_addr *daddr2
837 			= (struct ipmi_ipmb_direct_addr *) addr2;
838 
839 		return daddr1->slave_addr == daddr2->slave_addr &&
840 			daddr1->rq_lun == daddr2->rq_lun &&
841 			daddr1->rs_lun == daddr2->rs_lun;
842 	}
843 
844 	if (is_lan_addr(addr1)) {
845 		struct ipmi_lan_addr *lan_addr1
846 			= (struct ipmi_lan_addr *) addr1;
847 		struct ipmi_lan_addr *lan_addr2
848 		    = (struct ipmi_lan_addr *) addr2;
849 
850 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
851 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
852 			&& (lan_addr1->session_handle
853 			    == lan_addr2->session_handle)
854 			&& (lan_addr1->lun == lan_addr2->lun));
855 	}
856 
857 	return 1;
858 }
859 
860 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
861 {
862 	if (len < sizeof(struct ipmi_system_interface_addr))
863 		return -EINVAL;
864 
865 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
866 		if (addr->channel != IPMI_BMC_CHANNEL)
867 			return -EINVAL;
868 		return 0;
869 	}
870 
871 	if ((addr->channel == IPMI_BMC_CHANNEL)
872 	    || (addr->channel >= IPMI_MAX_CHANNELS)
873 	    || (addr->channel < 0))
874 		return -EINVAL;
875 
876 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
877 		if (len < sizeof(struct ipmi_ipmb_addr))
878 			return -EINVAL;
879 		return 0;
880 	}
881 
882 	if (is_ipmb_direct_addr(addr)) {
883 		struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
884 
885 		if (addr->channel != 0)
886 			return -EINVAL;
887 		if (len < sizeof(struct ipmi_ipmb_direct_addr))
888 			return -EINVAL;
889 
890 		if (daddr->slave_addr & 0x01)
891 			return -EINVAL;
892 		if (daddr->rq_lun >= 4)
893 			return -EINVAL;
894 		if (daddr->rs_lun >= 4)
895 			return -EINVAL;
896 		return 0;
897 	}
898 
899 	if (is_lan_addr(addr)) {
900 		if (len < sizeof(struct ipmi_lan_addr))
901 			return -EINVAL;
902 		return 0;
903 	}
904 
905 	return -EINVAL;
906 }
907 EXPORT_SYMBOL(ipmi_validate_addr);
908 
909 unsigned int ipmi_addr_length(int addr_type)
910 {
911 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
912 		return sizeof(struct ipmi_system_interface_addr);
913 
914 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
915 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
916 		return sizeof(struct ipmi_ipmb_addr);
917 
918 	if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
919 		return sizeof(struct ipmi_ipmb_direct_addr);
920 
921 	if (addr_type == IPMI_LAN_ADDR_TYPE)
922 		return sizeof(struct ipmi_lan_addr);
923 
924 	return 0;
925 }
926 EXPORT_SYMBOL(ipmi_addr_length);
927 
928 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
929 {
930 	int rv = 0;
931 
932 	if (!msg->user) {
933 		/* Special handling for NULL users. */
934 		if (intf->null_user_handler) {
935 			intf->null_user_handler(intf, msg);
936 		} else {
937 			/* No handler, so give up. */
938 			rv = -EINVAL;
939 		}
940 		ipmi_free_recv_msg(msg);
941 	} else if (oops_in_progress) {
942 		/*
943 		 * If we are running in the panic context, calling the
944 		 * receive handler doesn't much meaning and has a deadlock
945 		 * risk.  At this moment, simply skip it in that case.
946 		 */
947 		ipmi_free_recv_msg(msg);
948 		atomic_dec(&msg->user->nr_msgs);
949 	} else {
950 		int index;
951 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
952 
953 		if (user) {
954 			atomic_dec(&user->nr_msgs);
955 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
956 			release_ipmi_user(user, index);
957 		} else {
958 			/* User went away, give up. */
959 			ipmi_free_recv_msg(msg);
960 			rv = -EINVAL;
961 		}
962 	}
963 
964 	return rv;
965 }
966 
967 static void deliver_local_response(struct ipmi_smi *intf,
968 				   struct ipmi_recv_msg *msg)
969 {
970 	if (deliver_response(intf, msg))
971 		ipmi_inc_stat(intf, unhandled_local_responses);
972 	else
973 		ipmi_inc_stat(intf, handled_local_responses);
974 }
975 
976 static void deliver_err_response(struct ipmi_smi *intf,
977 				 struct ipmi_recv_msg *msg, int err)
978 {
979 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
980 	msg->msg_data[0] = err;
981 	msg->msg.netfn |= 1; /* Convert to a response. */
982 	msg->msg.data_len = 1;
983 	msg->msg.data = msg->msg_data;
984 	deliver_local_response(intf, msg);
985 }
986 
987 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
988 {
989 	unsigned long iflags;
990 
991 	if (!intf->handlers->set_need_watch)
992 		return;
993 
994 	spin_lock_irqsave(&intf->watch_lock, iflags);
995 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
996 		intf->response_waiters++;
997 
998 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
999 		intf->watchdog_waiters++;
1000 
1001 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1002 		intf->command_waiters++;
1003 
1004 	if ((intf->last_watch_mask & flags) != flags) {
1005 		intf->last_watch_mask |= flags;
1006 		intf->handlers->set_need_watch(intf->send_info,
1007 					       intf->last_watch_mask);
1008 	}
1009 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1010 }
1011 
1012 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1013 {
1014 	unsigned long iflags;
1015 
1016 	if (!intf->handlers->set_need_watch)
1017 		return;
1018 
1019 	spin_lock_irqsave(&intf->watch_lock, iflags);
1020 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1021 		intf->response_waiters--;
1022 
1023 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1024 		intf->watchdog_waiters--;
1025 
1026 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1027 		intf->command_waiters--;
1028 
1029 	flags = 0;
1030 	if (intf->response_waiters)
1031 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1032 	if (intf->watchdog_waiters)
1033 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1034 	if (intf->command_waiters)
1035 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1036 
1037 	if (intf->last_watch_mask != flags) {
1038 		intf->last_watch_mask = flags;
1039 		intf->handlers->set_need_watch(intf->send_info,
1040 					       intf->last_watch_mask);
1041 	}
1042 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1043 }
1044 
1045 /*
1046  * Find the next sequence number not being used and add the given
1047  * message with the given timeout to the sequence table.  This must be
1048  * called with the interface's seq_lock held.
1049  */
1050 static int intf_next_seq(struct ipmi_smi      *intf,
1051 			 struct ipmi_recv_msg *recv_msg,
1052 			 unsigned long        timeout,
1053 			 int                  retries,
1054 			 int                  broadcast,
1055 			 unsigned char        *seq,
1056 			 long                 *seqid)
1057 {
1058 	int          rv = 0;
1059 	unsigned int i;
1060 
1061 	if (timeout == 0)
1062 		timeout = default_retry_ms;
1063 	if (retries < 0)
1064 		retries = default_max_retries;
1065 
1066 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1067 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1068 		if (!intf->seq_table[i].inuse)
1069 			break;
1070 	}
1071 
1072 	if (!intf->seq_table[i].inuse) {
1073 		intf->seq_table[i].recv_msg = recv_msg;
1074 
1075 		/*
1076 		 * Start with the maximum timeout, when the send response
1077 		 * comes in we will start the real timer.
1078 		 */
1079 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1080 		intf->seq_table[i].orig_timeout = timeout;
1081 		intf->seq_table[i].retries_left = retries;
1082 		intf->seq_table[i].broadcast = broadcast;
1083 		intf->seq_table[i].inuse = 1;
1084 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1085 		*seq = i;
1086 		*seqid = intf->seq_table[i].seqid;
1087 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1088 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1089 		need_waiter(intf);
1090 	} else {
1091 		rv = -EAGAIN;
1092 	}
1093 
1094 	return rv;
1095 }
1096 
1097 /*
1098  * Return the receive message for the given sequence number and
1099  * release the sequence number so it can be reused.  Some other data
1100  * is passed in to be sure the message matches up correctly (to help
1101  * guard against message coming in after their timeout and the
1102  * sequence number being reused).
1103  */
1104 static int intf_find_seq(struct ipmi_smi      *intf,
1105 			 unsigned char        seq,
1106 			 short                channel,
1107 			 unsigned char        cmd,
1108 			 unsigned char        netfn,
1109 			 struct ipmi_addr     *addr,
1110 			 struct ipmi_recv_msg **recv_msg)
1111 {
1112 	int           rv = -ENODEV;
1113 	unsigned long flags;
1114 
1115 	if (seq >= IPMI_IPMB_NUM_SEQ)
1116 		return -EINVAL;
1117 
1118 	spin_lock_irqsave(&intf->seq_lock, flags);
1119 	if (intf->seq_table[seq].inuse) {
1120 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1121 
1122 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1123 				&& (msg->msg.netfn == netfn)
1124 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1125 			*recv_msg = msg;
1126 			intf->seq_table[seq].inuse = 0;
1127 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1128 			rv = 0;
1129 		}
1130 	}
1131 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1132 
1133 	return rv;
1134 }
1135 
1136 
1137 /* Start the timer for a specific sequence table entry. */
1138 static int intf_start_seq_timer(struct ipmi_smi *intf,
1139 				long       msgid)
1140 {
1141 	int           rv = -ENODEV;
1142 	unsigned long flags;
1143 	unsigned char seq;
1144 	unsigned long seqid;
1145 
1146 
1147 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1148 
1149 	spin_lock_irqsave(&intf->seq_lock, flags);
1150 	/*
1151 	 * We do this verification because the user can be deleted
1152 	 * while a message is outstanding.
1153 	 */
1154 	if ((intf->seq_table[seq].inuse)
1155 				&& (intf->seq_table[seq].seqid == seqid)) {
1156 		struct seq_table *ent = &intf->seq_table[seq];
1157 		ent->timeout = ent->orig_timeout;
1158 		rv = 0;
1159 	}
1160 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1161 
1162 	return rv;
1163 }
1164 
1165 /* Got an error for the send message for a specific sequence number. */
1166 static int intf_err_seq(struct ipmi_smi *intf,
1167 			long         msgid,
1168 			unsigned int err)
1169 {
1170 	int                  rv = -ENODEV;
1171 	unsigned long        flags;
1172 	unsigned char        seq;
1173 	unsigned long        seqid;
1174 	struct ipmi_recv_msg *msg = NULL;
1175 
1176 
1177 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1178 
1179 	spin_lock_irqsave(&intf->seq_lock, flags);
1180 	/*
1181 	 * We do this verification because the user can be deleted
1182 	 * while a message is outstanding.
1183 	 */
1184 	if ((intf->seq_table[seq].inuse)
1185 				&& (intf->seq_table[seq].seqid == seqid)) {
1186 		struct seq_table *ent = &intf->seq_table[seq];
1187 
1188 		ent->inuse = 0;
1189 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1190 		msg = ent->recv_msg;
1191 		rv = 0;
1192 	}
1193 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1194 
1195 	if (msg)
1196 		deliver_err_response(intf, msg, err);
1197 
1198 	return rv;
1199 }
1200 
1201 static void free_user_work(struct work_struct *work)
1202 {
1203 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1204 					      remove_work);
1205 
1206 	cleanup_srcu_struct(&user->release_barrier);
1207 	vfree(user);
1208 }
1209 
1210 int ipmi_create_user(unsigned int          if_num,
1211 		     const struct ipmi_user_hndl *handler,
1212 		     void                  *handler_data,
1213 		     struct ipmi_user      **user)
1214 {
1215 	unsigned long flags;
1216 	struct ipmi_user *new_user;
1217 	int           rv, index;
1218 	struct ipmi_smi *intf;
1219 
1220 	/*
1221 	 * There is no module usecount here, because it's not
1222 	 * required.  Since this can only be used by and called from
1223 	 * other modules, they will implicitly use this module, and
1224 	 * thus this can't be removed unless the other modules are
1225 	 * removed.
1226 	 */
1227 
1228 	if (handler == NULL)
1229 		return -EINVAL;
1230 
1231 	/*
1232 	 * Make sure the driver is actually initialized, this handles
1233 	 * problems with initialization order.
1234 	 */
1235 	rv = ipmi_init_msghandler();
1236 	if (rv)
1237 		return rv;
1238 
1239 	new_user = vzalloc(sizeof(*new_user));
1240 	if (!new_user)
1241 		return -ENOMEM;
1242 
1243 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1244 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1245 		if (intf->intf_num == if_num)
1246 			goto found;
1247 	}
1248 	/* Not found, return an error */
1249 	rv = -EINVAL;
1250 	goto out_kfree;
1251 
1252  found:
1253 	if (atomic_add_return(1, &intf->nr_users) > max_users) {
1254 		rv = -EBUSY;
1255 		goto out_kfree;
1256 	}
1257 
1258 	INIT_WORK(&new_user->remove_work, free_user_work);
1259 
1260 	rv = init_srcu_struct(&new_user->release_barrier);
1261 	if (rv)
1262 		goto out_kfree;
1263 
1264 	if (!try_module_get(intf->owner)) {
1265 		rv = -ENODEV;
1266 		goto out_kfree;
1267 	}
1268 
1269 	/* Note that each existing user holds a refcount to the interface. */
1270 	kref_get(&intf->refcount);
1271 
1272 	atomic_set(&new_user->nr_msgs, 0);
1273 	kref_init(&new_user->refcount);
1274 	new_user->handler = handler;
1275 	new_user->handler_data = handler_data;
1276 	new_user->intf = intf;
1277 	new_user->gets_events = false;
1278 
1279 	rcu_assign_pointer(new_user->self, new_user);
1280 	spin_lock_irqsave(&intf->seq_lock, flags);
1281 	list_add_rcu(&new_user->link, &intf->users);
1282 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1283 	if (handler->ipmi_watchdog_pretimeout)
1284 		/* User wants pretimeouts, so make sure to watch for them. */
1285 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1286 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1287 	*user = new_user;
1288 	return 0;
1289 
1290 out_kfree:
1291 	atomic_dec(&intf->nr_users);
1292 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1293 	vfree(new_user);
1294 	return rv;
1295 }
1296 EXPORT_SYMBOL(ipmi_create_user);
1297 
1298 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1299 {
1300 	int rv, index;
1301 	struct ipmi_smi *intf;
1302 
1303 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1304 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1305 		if (intf->intf_num == if_num)
1306 			goto found;
1307 	}
1308 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1309 
1310 	/* Not found, return an error */
1311 	return -EINVAL;
1312 
1313 found:
1314 	if (!intf->handlers->get_smi_info)
1315 		rv = -ENOTTY;
1316 	else
1317 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1318 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1319 
1320 	return rv;
1321 }
1322 EXPORT_SYMBOL(ipmi_get_smi_info);
1323 
1324 static void free_user(struct kref *ref)
1325 {
1326 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1327 
1328 	/* SRCU cleanup must happen in task context. */
1329 	queue_work(remove_work_wq, &user->remove_work);
1330 }
1331 
1332 static void _ipmi_destroy_user(struct ipmi_user *user)
1333 {
1334 	struct ipmi_smi  *intf = user->intf;
1335 	int              i;
1336 	unsigned long    flags;
1337 	struct cmd_rcvr  *rcvr;
1338 	struct cmd_rcvr  *rcvrs = NULL;
1339 
1340 	if (!acquire_ipmi_user(user, &i)) {
1341 		/*
1342 		 * The user has already been cleaned up, just make sure
1343 		 * nothing is using it and return.
1344 		 */
1345 		synchronize_srcu(&user->release_barrier);
1346 		return;
1347 	}
1348 
1349 	rcu_assign_pointer(user->self, NULL);
1350 	release_ipmi_user(user, i);
1351 
1352 	synchronize_srcu(&user->release_barrier);
1353 
1354 	if (user->handler->shutdown)
1355 		user->handler->shutdown(user->handler_data);
1356 
1357 	if (user->handler->ipmi_watchdog_pretimeout)
1358 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1359 
1360 	if (user->gets_events)
1361 		atomic_dec(&intf->event_waiters);
1362 
1363 	/* Remove the user from the interface's sequence table. */
1364 	spin_lock_irqsave(&intf->seq_lock, flags);
1365 	list_del_rcu(&user->link);
1366 	atomic_dec(&intf->nr_users);
1367 
1368 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1369 		if (intf->seq_table[i].inuse
1370 		    && (intf->seq_table[i].recv_msg->user == user)) {
1371 			intf->seq_table[i].inuse = 0;
1372 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1373 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1374 		}
1375 	}
1376 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1377 
1378 	/*
1379 	 * Remove the user from the command receiver's table.  First
1380 	 * we build a list of everything (not using the standard link,
1381 	 * since other things may be using it till we do
1382 	 * synchronize_srcu()) then free everything in that list.
1383 	 */
1384 	mutex_lock(&intf->cmd_rcvrs_mutex);
1385 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1386 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1387 		if (rcvr->user == user) {
1388 			list_del_rcu(&rcvr->link);
1389 			rcvr->next = rcvrs;
1390 			rcvrs = rcvr;
1391 		}
1392 	}
1393 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1394 	synchronize_rcu();
1395 	while (rcvrs) {
1396 		rcvr = rcvrs;
1397 		rcvrs = rcvr->next;
1398 		kfree(rcvr);
1399 	}
1400 
1401 	kref_put(&intf->refcount, intf_free);
1402 	module_put(intf->owner);
1403 }
1404 
1405 int ipmi_destroy_user(struct ipmi_user *user)
1406 {
1407 	_ipmi_destroy_user(user);
1408 
1409 	kref_put(&user->refcount, free_user);
1410 
1411 	return 0;
1412 }
1413 EXPORT_SYMBOL(ipmi_destroy_user);
1414 
1415 int ipmi_get_version(struct ipmi_user *user,
1416 		     unsigned char *major,
1417 		     unsigned char *minor)
1418 {
1419 	struct ipmi_device_id id;
1420 	int rv, index;
1421 
1422 	user = acquire_ipmi_user(user, &index);
1423 	if (!user)
1424 		return -ENODEV;
1425 
1426 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1427 	if (!rv) {
1428 		*major = ipmi_version_major(&id);
1429 		*minor = ipmi_version_minor(&id);
1430 	}
1431 	release_ipmi_user(user, index);
1432 
1433 	return rv;
1434 }
1435 EXPORT_SYMBOL(ipmi_get_version);
1436 
1437 int ipmi_set_my_address(struct ipmi_user *user,
1438 			unsigned int  channel,
1439 			unsigned char address)
1440 {
1441 	int index, rv = 0;
1442 
1443 	user = acquire_ipmi_user(user, &index);
1444 	if (!user)
1445 		return -ENODEV;
1446 
1447 	if (channel >= IPMI_MAX_CHANNELS) {
1448 		rv = -EINVAL;
1449 	} else {
1450 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1451 		user->intf->addrinfo[channel].address = address;
1452 	}
1453 	release_ipmi_user(user, index);
1454 
1455 	return rv;
1456 }
1457 EXPORT_SYMBOL(ipmi_set_my_address);
1458 
1459 int ipmi_get_my_address(struct ipmi_user *user,
1460 			unsigned int  channel,
1461 			unsigned char *address)
1462 {
1463 	int index, rv = 0;
1464 
1465 	user = acquire_ipmi_user(user, &index);
1466 	if (!user)
1467 		return -ENODEV;
1468 
1469 	if (channel >= IPMI_MAX_CHANNELS) {
1470 		rv = -EINVAL;
1471 	} else {
1472 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1473 		*address = user->intf->addrinfo[channel].address;
1474 	}
1475 	release_ipmi_user(user, index);
1476 
1477 	return rv;
1478 }
1479 EXPORT_SYMBOL(ipmi_get_my_address);
1480 
1481 int ipmi_set_my_LUN(struct ipmi_user *user,
1482 		    unsigned int  channel,
1483 		    unsigned char LUN)
1484 {
1485 	int index, rv = 0;
1486 
1487 	user = acquire_ipmi_user(user, &index);
1488 	if (!user)
1489 		return -ENODEV;
1490 
1491 	if (channel >= IPMI_MAX_CHANNELS) {
1492 		rv = -EINVAL;
1493 	} else {
1494 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1495 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1496 	}
1497 	release_ipmi_user(user, index);
1498 
1499 	return rv;
1500 }
1501 EXPORT_SYMBOL(ipmi_set_my_LUN);
1502 
1503 int ipmi_get_my_LUN(struct ipmi_user *user,
1504 		    unsigned int  channel,
1505 		    unsigned char *address)
1506 {
1507 	int index, rv = 0;
1508 
1509 	user = acquire_ipmi_user(user, &index);
1510 	if (!user)
1511 		return -ENODEV;
1512 
1513 	if (channel >= IPMI_MAX_CHANNELS) {
1514 		rv = -EINVAL;
1515 	} else {
1516 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1517 		*address = user->intf->addrinfo[channel].lun;
1518 	}
1519 	release_ipmi_user(user, index);
1520 
1521 	return rv;
1522 }
1523 EXPORT_SYMBOL(ipmi_get_my_LUN);
1524 
1525 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1526 {
1527 	int mode, index;
1528 	unsigned long flags;
1529 
1530 	user = acquire_ipmi_user(user, &index);
1531 	if (!user)
1532 		return -ENODEV;
1533 
1534 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1535 	mode = user->intf->maintenance_mode;
1536 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1537 	release_ipmi_user(user, index);
1538 
1539 	return mode;
1540 }
1541 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1542 
1543 static void maintenance_mode_update(struct ipmi_smi *intf)
1544 {
1545 	if (intf->handlers->set_maintenance_mode)
1546 		intf->handlers->set_maintenance_mode(
1547 			intf->send_info, intf->maintenance_mode_enable);
1548 }
1549 
1550 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1551 {
1552 	int rv = 0, index;
1553 	unsigned long flags;
1554 	struct ipmi_smi *intf = user->intf;
1555 
1556 	user = acquire_ipmi_user(user, &index);
1557 	if (!user)
1558 		return -ENODEV;
1559 
1560 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1561 	if (intf->maintenance_mode != mode) {
1562 		switch (mode) {
1563 		case IPMI_MAINTENANCE_MODE_AUTO:
1564 			intf->maintenance_mode_enable
1565 				= (intf->auto_maintenance_timeout > 0);
1566 			break;
1567 
1568 		case IPMI_MAINTENANCE_MODE_OFF:
1569 			intf->maintenance_mode_enable = false;
1570 			break;
1571 
1572 		case IPMI_MAINTENANCE_MODE_ON:
1573 			intf->maintenance_mode_enable = true;
1574 			break;
1575 
1576 		default:
1577 			rv = -EINVAL;
1578 			goto out_unlock;
1579 		}
1580 		intf->maintenance_mode = mode;
1581 
1582 		maintenance_mode_update(intf);
1583 	}
1584  out_unlock:
1585 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1586 	release_ipmi_user(user, index);
1587 
1588 	return rv;
1589 }
1590 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1591 
1592 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1593 {
1594 	unsigned long        flags;
1595 	struct ipmi_smi      *intf = user->intf;
1596 	struct ipmi_recv_msg *msg, *msg2;
1597 	struct list_head     msgs;
1598 	int index;
1599 
1600 	user = acquire_ipmi_user(user, &index);
1601 	if (!user)
1602 		return -ENODEV;
1603 
1604 	INIT_LIST_HEAD(&msgs);
1605 
1606 	spin_lock_irqsave(&intf->events_lock, flags);
1607 	if (user->gets_events == val)
1608 		goto out;
1609 
1610 	user->gets_events = val;
1611 
1612 	if (val) {
1613 		if (atomic_inc_return(&intf->event_waiters) == 1)
1614 			need_waiter(intf);
1615 	} else {
1616 		atomic_dec(&intf->event_waiters);
1617 	}
1618 
1619 	if (intf->delivering_events)
1620 		/*
1621 		 * Another thread is delivering events for this, so
1622 		 * let it handle any new events.
1623 		 */
1624 		goto out;
1625 
1626 	/* Deliver any queued events. */
1627 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1628 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1629 			list_move_tail(&msg->link, &msgs);
1630 		intf->waiting_events_count = 0;
1631 		if (intf->event_msg_printed) {
1632 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1633 			intf->event_msg_printed = 0;
1634 		}
1635 
1636 		intf->delivering_events = 1;
1637 		spin_unlock_irqrestore(&intf->events_lock, flags);
1638 
1639 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1640 			msg->user = user;
1641 			kref_get(&user->refcount);
1642 			deliver_local_response(intf, msg);
1643 		}
1644 
1645 		spin_lock_irqsave(&intf->events_lock, flags);
1646 		intf->delivering_events = 0;
1647 	}
1648 
1649  out:
1650 	spin_unlock_irqrestore(&intf->events_lock, flags);
1651 	release_ipmi_user(user, index);
1652 
1653 	return 0;
1654 }
1655 EXPORT_SYMBOL(ipmi_set_gets_events);
1656 
1657 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1658 				      unsigned char netfn,
1659 				      unsigned char cmd,
1660 				      unsigned char chan)
1661 {
1662 	struct cmd_rcvr *rcvr;
1663 
1664 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1665 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1666 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1667 					&& (rcvr->chans & (1 << chan)))
1668 			return rcvr;
1669 	}
1670 	return NULL;
1671 }
1672 
1673 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1674 				 unsigned char netfn,
1675 				 unsigned char cmd,
1676 				 unsigned int  chans)
1677 {
1678 	struct cmd_rcvr *rcvr;
1679 
1680 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1681 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1682 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1683 					&& (rcvr->chans & chans))
1684 			return 0;
1685 	}
1686 	return 1;
1687 }
1688 
1689 int ipmi_register_for_cmd(struct ipmi_user *user,
1690 			  unsigned char netfn,
1691 			  unsigned char cmd,
1692 			  unsigned int  chans)
1693 {
1694 	struct ipmi_smi *intf = user->intf;
1695 	struct cmd_rcvr *rcvr;
1696 	int rv = 0, index;
1697 
1698 	user = acquire_ipmi_user(user, &index);
1699 	if (!user)
1700 		return -ENODEV;
1701 
1702 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1703 	if (!rcvr) {
1704 		rv = -ENOMEM;
1705 		goto out_release;
1706 	}
1707 	rcvr->cmd = cmd;
1708 	rcvr->netfn = netfn;
1709 	rcvr->chans = chans;
1710 	rcvr->user = user;
1711 
1712 	mutex_lock(&intf->cmd_rcvrs_mutex);
1713 	/* Make sure the command/netfn is not already registered. */
1714 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1715 		rv = -EBUSY;
1716 		goto out_unlock;
1717 	}
1718 
1719 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1720 
1721 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1722 
1723 out_unlock:
1724 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1725 	if (rv)
1726 		kfree(rcvr);
1727 out_release:
1728 	release_ipmi_user(user, index);
1729 
1730 	return rv;
1731 }
1732 EXPORT_SYMBOL(ipmi_register_for_cmd);
1733 
1734 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1735 			    unsigned char netfn,
1736 			    unsigned char cmd,
1737 			    unsigned int  chans)
1738 {
1739 	struct ipmi_smi *intf = user->intf;
1740 	struct cmd_rcvr *rcvr;
1741 	struct cmd_rcvr *rcvrs = NULL;
1742 	int i, rv = -ENOENT, index;
1743 
1744 	user = acquire_ipmi_user(user, &index);
1745 	if (!user)
1746 		return -ENODEV;
1747 
1748 	mutex_lock(&intf->cmd_rcvrs_mutex);
1749 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1750 		if (((1 << i) & chans) == 0)
1751 			continue;
1752 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1753 		if (rcvr == NULL)
1754 			continue;
1755 		if (rcvr->user == user) {
1756 			rv = 0;
1757 			rcvr->chans &= ~chans;
1758 			if (rcvr->chans == 0) {
1759 				list_del_rcu(&rcvr->link);
1760 				rcvr->next = rcvrs;
1761 				rcvrs = rcvr;
1762 			}
1763 		}
1764 	}
1765 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1766 	synchronize_rcu();
1767 	release_ipmi_user(user, index);
1768 	while (rcvrs) {
1769 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1770 		rcvr = rcvrs;
1771 		rcvrs = rcvr->next;
1772 		kfree(rcvr);
1773 	}
1774 
1775 	return rv;
1776 }
1777 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1778 
1779 unsigned char
1780 ipmb_checksum(unsigned char *data, int size)
1781 {
1782 	unsigned char csum = 0;
1783 
1784 	for (; size > 0; size--, data++)
1785 		csum += *data;
1786 
1787 	return -csum;
1788 }
1789 EXPORT_SYMBOL(ipmb_checksum);
1790 
1791 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1792 				   struct kernel_ipmi_msg *msg,
1793 				   struct ipmi_ipmb_addr *ipmb_addr,
1794 				   long                  msgid,
1795 				   unsigned char         ipmb_seq,
1796 				   int                   broadcast,
1797 				   unsigned char         source_address,
1798 				   unsigned char         source_lun)
1799 {
1800 	int i = broadcast;
1801 
1802 	/* Format the IPMB header data. */
1803 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1804 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1805 	smi_msg->data[2] = ipmb_addr->channel;
1806 	if (broadcast)
1807 		smi_msg->data[3] = 0;
1808 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1809 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1810 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1811 	smi_msg->data[i+6] = source_address;
1812 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1813 	smi_msg->data[i+8] = msg->cmd;
1814 
1815 	/* Now tack on the data to the message. */
1816 	if (msg->data_len > 0)
1817 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1818 	smi_msg->data_size = msg->data_len + 9;
1819 
1820 	/* Now calculate the checksum and tack it on. */
1821 	smi_msg->data[i+smi_msg->data_size]
1822 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1823 
1824 	/*
1825 	 * Add on the checksum size and the offset from the
1826 	 * broadcast.
1827 	 */
1828 	smi_msg->data_size += 1 + i;
1829 
1830 	smi_msg->msgid = msgid;
1831 }
1832 
1833 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1834 				  struct kernel_ipmi_msg *msg,
1835 				  struct ipmi_lan_addr  *lan_addr,
1836 				  long                  msgid,
1837 				  unsigned char         ipmb_seq,
1838 				  unsigned char         source_lun)
1839 {
1840 	/* Format the IPMB header data. */
1841 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1842 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1843 	smi_msg->data[2] = lan_addr->channel;
1844 	smi_msg->data[3] = lan_addr->session_handle;
1845 	smi_msg->data[4] = lan_addr->remote_SWID;
1846 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1847 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1848 	smi_msg->data[7] = lan_addr->local_SWID;
1849 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1850 	smi_msg->data[9] = msg->cmd;
1851 
1852 	/* Now tack on the data to the message. */
1853 	if (msg->data_len > 0)
1854 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1855 	smi_msg->data_size = msg->data_len + 10;
1856 
1857 	/* Now calculate the checksum and tack it on. */
1858 	smi_msg->data[smi_msg->data_size]
1859 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1860 
1861 	/*
1862 	 * Add on the checksum size and the offset from the
1863 	 * broadcast.
1864 	 */
1865 	smi_msg->data_size += 1;
1866 
1867 	smi_msg->msgid = msgid;
1868 }
1869 
1870 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1871 					     struct ipmi_smi_msg *smi_msg,
1872 					     int priority)
1873 {
1874 	if (intf->curr_msg) {
1875 		if (priority > 0)
1876 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1877 		else
1878 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1879 		smi_msg = NULL;
1880 	} else {
1881 		intf->curr_msg = smi_msg;
1882 	}
1883 
1884 	return smi_msg;
1885 }
1886 
1887 static void smi_send(struct ipmi_smi *intf,
1888 		     const struct ipmi_smi_handlers *handlers,
1889 		     struct ipmi_smi_msg *smi_msg, int priority)
1890 {
1891 	int run_to_completion = intf->run_to_completion;
1892 	unsigned long flags = 0;
1893 
1894 	if (!run_to_completion)
1895 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1896 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1897 
1898 	if (!run_to_completion)
1899 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1900 
1901 	if (smi_msg)
1902 		handlers->sender(intf->send_info, smi_msg);
1903 }
1904 
1905 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1906 {
1907 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1908 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1909 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1910 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1911 }
1912 
1913 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1914 			      struct ipmi_addr       *addr,
1915 			      long                   msgid,
1916 			      struct kernel_ipmi_msg *msg,
1917 			      struct ipmi_smi_msg    *smi_msg,
1918 			      struct ipmi_recv_msg   *recv_msg,
1919 			      int                    retries,
1920 			      unsigned int           retry_time_ms)
1921 {
1922 	struct ipmi_system_interface_addr *smi_addr;
1923 
1924 	if (msg->netfn & 1)
1925 		/* Responses are not allowed to the SMI. */
1926 		return -EINVAL;
1927 
1928 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1929 	if (smi_addr->lun > 3) {
1930 		ipmi_inc_stat(intf, sent_invalid_commands);
1931 		return -EINVAL;
1932 	}
1933 
1934 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1935 
1936 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1937 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1938 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1939 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1940 		/*
1941 		 * We don't let the user do these, since we manage
1942 		 * the sequence numbers.
1943 		 */
1944 		ipmi_inc_stat(intf, sent_invalid_commands);
1945 		return -EINVAL;
1946 	}
1947 
1948 	if (is_maintenance_mode_cmd(msg)) {
1949 		unsigned long flags;
1950 
1951 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1952 		intf->auto_maintenance_timeout
1953 			= maintenance_mode_timeout_ms;
1954 		if (!intf->maintenance_mode
1955 		    && !intf->maintenance_mode_enable) {
1956 			intf->maintenance_mode_enable = true;
1957 			maintenance_mode_update(intf);
1958 		}
1959 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1960 				       flags);
1961 	}
1962 
1963 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1964 		ipmi_inc_stat(intf, sent_invalid_commands);
1965 		return -EMSGSIZE;
1966 	}
1967 
1968 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1969 	smi_msg->data[1] = msg->cmd;
1970 	smi_msg->msgid = msgid;
1971 	smi_msg->user_data = recv_msg;
1972 	if (msg->data_len > 0)
1973 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1974 	smi_msg->data_size = msg->data_len + 2;
1975 	ipmi_inc_stat(intf, sent_local_commands);
1976 
1977 	return 0;
1978 }
1979 
1980 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1981 			   struct ipmi_addr       *addr,
1982 			   long                   msgid,
1983 			   struct kernel_ipmi_msg *msg,
1984 			   struct ipmi_smi_msg    *smi_msg,
1985 			   struct ipmi_recv_msg   *recv_msg,
1986 			   unsigned char          source_address,
1987 			   unsigned char          source_lun,
1988 			   int                    retries,
1989 			   unsigned int           retry_time_ms)
1990 {
1991 	struct ipmi_ipmb_addr *ipmb_addr;
1992 	unsigned char ipmb_seq;
1993 	long seqid;
1994 	int broadcast = 0;
1995 	struct ipmi_channel *chans;
1996 	int rv = 0;
1997 
1998 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1999 		ipmi_inc_stat(intf, sent_invalid_commands);
2000 		return -EINVAL;
2001 	}
2002 
2003 	chans = READ_ONCE(intf->channel_list)->c;
2004 
2005 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
2006 		ipmi_inc_stat(intf, sent_invalid_commands);
2007 		return -EINVAL;
2008 	}
2009 
2010 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2011 		/*
2012 		 * Broadcasts add a zero at the beginning of the
2013 		 * message, but otherwise is the same as an IPMB
2014 		 * address.
2015 		 */
2016 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2017 		broadcast = 1;
2018 		retries = 0; /* Don't retry broadcasts. */
2019 	}
2020 
2021 	/*
2022 	 * 9 for the header and 1 for the checksum, plus
2023 	 * possibly one for the broadcast.
2024 	 */
2025 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2026 		ipmi_inc_stat(intf, sent_invalid_commands);
2027 		return -EMSGSIZE;
2028 	}
2029 
2030 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2031 	if (ipmb_addr->lun > 3) {
2032 		ipmi_inc_stat(intf, sent_invalid_commands);
2033 		return -EINVAL;
2034 	}
2035 
2036 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2037 
2038 	if (recv_msg->msg.netfn & 0x1) {
2039 		/*
2040 		 * It's a response, so use the user's sequence
2041 		 * from msgid.
2042 		 */
2043 		ipmi_inc_stat(intf, sent_ipmb_responses);
2044 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2045 				msgid, broadcast,
2046 				source_address, source_lun);
2047 
2048 		/*
2049 		 * Save the receive message so we can use it
2050 		 * to deliver the response.
2051 		 */
2052 		smi_msg->user_data = recv_msg;
2053 	} else {
2054 		/* It's a command, so get a sequence for it. */
2055 		unsigned long flags;
2056 
2057 		spin_lock_irqsave(&intf->seq_lock, flags);
2058 
2059 		if (is_maintenance_mode_cmd(msg))
2060 			intf->ipmb_maintenance_mode_timeout =
2061 				maintenance_mode_timeout_ms;
2062 
2063 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2064 			/* Different default in maintenance mode */
2065 			retry_time_ms = default_maintenance_retry_ms;
2066 
2067 		/*
2068 		 * Create a sequence number with a 1 second
2069 		 * timeout and 4 retries.
2070 		 */
2071 		rv = intf_next_seq(intf,
2072 				   recv_msg,
2073 				   retry_time_ms,
2074 				   retries,
2075 				   broadcast,
2076 				   &ipmb_seq,
2077 				   &seqid);
2078 		if (rv)
2079 			/*
2080 			 * We have used up all the sequence numbers,
2081 			 * probably, so abort.
2082 			 */
2083 			goto out_err;
2084 
2085 		ipmi_inc_stat(intf, sent_ipmb_commands);
2086 
2087 		/*
2088 		 * Store the sequence number in the message,
2089 		 * so that when the send message response
2090 		 * comes back we can start the timer.
2091 		 */
2092 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2093 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2094 				ipmb_seq, broadcast,
2095 				source_address, source_lun);
2096 
2097 		/*
2098 		 * Copy the message into the recv message data, so we
2099 		 * can retransmit it later if necessary.
2100 		 */
2101 		memcpy(recv_msg->msg_data, smi_msg->data,
2102 		       smi_msg->data_size);
2103 		recv_msg->msg.data = recv_msg->msg_data;
2104 		recv_msg->msg.data_len = smi_msg->data_size;
2105 
2106 		/*
2107 		 * We don't unlock until here, because we need
2108 		 * to copy the completed message into the
2109 		 * recv_msg before we release the lock.
2110 		 * Otherwise, race conditions may bite us.  I
2111 		 * know that's pretty paranoid, but I prefer
2112 		 * to be correct.
2113 		 */
2114 out_err:
2115 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2116 	}
2117 
2118 	return rv;
2119 }
2120 
2121 static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
2122 				  struct ipmi_addr       *addr,
2123 				  long			 msgid,
2124 				  struct kernel_ipmi_msg *msg,
2125 				  struct ipmi_smi_msg    *smi_msg,
2126 				  struct ipmi_recv_msg   *recv_msg,
2127 				  unsigned char          source_lun)
2128 {
2129 	struct ipmi_ipmb_direct_addr *daddr;
2130 	bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2131 
2132 	if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2133 		return -EAFNOSUPPORT;
2134 
2135 	/* Responses must have a completion code. */
2136 	if (!is_cmd && msg->data_len < 1) {
2137 		ipmi_inc_stat(intf, sent_invalid_commands);
2138 		return -EINVAL;
2139 	}
2140 
2141 	if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2142 		ipmi_inc_stat(intf, sent_invalid_commands);
2143 		return -EMSGSIZE;
2144 	}
2145 
2146 	daddr = (struct ipmi_ipmb_direct_addr *) addr;
2147 	if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2148 		ipmi_inc_stat(intf, sent_invalid_commands);
2149 		return -EINVAL;
2150 	}
2151 
2152 	smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2153 	smi_msg->msgid = msgid;
2154 
2155 	if (is_cmd) {
2156 		smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2157 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2158 	} else {
2159 		smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2160 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2161 	}
2162 	smi_msg->data[1] = daddr->slave_addr;
2163 	smi_msg->data[3] = msg->cmd;
2164 
2165 	memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2166 	smi_msg->data_size = msg->data_len + 4;
2167 
2168 	smi_msg->user_data = recv_msg;
2169 
2170 	return 0;
2171 }
2172 
2173 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2174 			  struct ipmi_addr       *addr,
2175 			  long                   msgid,
2176 			  struct kernel_ipmi_msg *msg,
2177 			  struct ipmi_smi_msg    *smi_msg,
2178 			  struct ipmi_recv_msg   *recv_msg,
2179 			  unsigned char          source_lun,
2180 			  int                    retries,
2181 			  unsigned int           retry_time_ms)
2182 {
2183 	struct ipmi_lan_addr  *lan_addr;
2184 	unsigned char ipmb_seq;
2185 	long seqid;
2186 	struct ipmi_channel *chans;
2187 	int rv = 0;
2188 
2189 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2190 		ipmi_inc_stat(intf, sent_invalid_commands);
2191 		return -EINVAL;
2192 	}
2193 
2194 	chans = READ_ONCE(intf->channel_list)->c;
2195 
2196 	if ((chans[addr->channel].medium
2197 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2198 			&& (chans[addr->channel].medium
2199 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2200 		ipmi_inc_stat(intf, sent_invalid_commands);
2201 		return -EINVAL;
2202 	}
2203 
2204 	/* 11 for the header and 1 for the checksum. */
2205 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2206 		ipmi_inc_stat(intf, sent_invalid_commands);
2207 		return -EMSGSIZE;
2208 	}
2209 
2210 	lan_addr = (struct ipmi_lan_addr *) addr;
2211 	if (lan_addr->lun > 3) {
2212 		ipmi_inc_stat(intf, sent_invalid_commands);
2213 		return -EINVAL;
2214 	}
2215 
2216 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2217 
2218 	if (recv_msg->msg.netfn & 0x1) {
2219 		/*
2220 		 * It's a response, so use the user's sequence
2221 		 * from msgid.
2222 		 */
2223 		ipmi_inc_stat(intf, sent_lan_responses);
2224 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2225 			       msgid, source_lun);
2226 
2227 		/*
2228 		 * Save the receive message so we can use it
2229 		 * to deliver the response.
2230 		 */
2231 		smi_msg->user_data = recv_msg;
2232 	} else {
2233 		/* It's a command, so get a sequence for it. */
2234 		unsigned long flags;
2235 
2236 		spin_lock_irqsave(&intf->seq_lock, flags);
2237 
2238 		/*
2239 		 * Create a sequence number with a 1 second
2240 		 * timeout and 4 retries.
2241 		 */
2242 		rv = intf_next_seq(intf,
2243 				   recv_msg,
2244 				   retry_time_ms,
2245 				   retries,
2246 				   0,
2247 				   &ipmb_seq,
2248 				   &seqid);
2249 		if (rv)
2250 			/*
2251 			 * We have used up all the sequence numbers,
2252 			 * probably, so abort.
2253 			 */
2254 			goto out_err;
2255 
2256 		ipmi_inc_stat(intf, sent_lan_commands);
2257 
2258 		/*
2259 		 * Store the sequence number in the message,
2260 		 * so that when the send message response
2261 		 * comes back we can start the timer.
2262 		 */
2263 		format_lan_msg(smi_msg, msg, lan_addr,
2264 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2265 			       ipmb_seq, source_lun);
2266 
2267 		/*
2268 		 * Copy the message into the recv message data, so we
2269 		 * can retransmit it later if necessary.
2270 		 */
2271 		memcpy(recv_msg->msg_data, smi_msg->data,
2272 		       smi_msg->data_size);
2273 		recv_msg->msg.data = recv_msg->msg_data;
2274 		recv_msg->msg.data_len = smi_msg->data_size;
2275 
2276 		/*
2277 		 * We don't unlock until here, because we need
2278 		 * to copy the completed message into the
2279 		 * recv_msg before we release the lock.
2280 		 * Otherwise, race conditions may bite us.  I
2281 		 * know that's pretty paranoid, but I prefer
2282 		 * to be correct.
2283 		 */
2284 out_err:
2285 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2286 	}
2287 
2288 	return rv;
2289 }
2290 
2291 /*
2292  * Separate from ipmi_request so that the user does not have to be
2293  * supplied in certain circumstances (mainly at panic time).  If
2294  * messages are supplied, they will be freed, even if an error
2295  * occurs.
2296  */
2297 static int i_ipmi_request(struct ipmi_user     *user,
2298 			  struct ipmi_smi      *intf,
2299 			  struct ipmi_addr     *addr,
2300 			  long                 msgid,
2301 			  struct kernel_ipmi_msg *msg,
2302 			  void                 *user_msg_data,
2303 			  void                 *supplied_smi,
2304 			  struct ipmi_recv_msg *supplied_recv,
2305 			  int                  priority,
2306 			  unsigned char        source_address,
2307 			  unsigned char        source_lun,
2308 			  int                  retries,
2309 			  unsigned int         retry_time_ms)
2310 {
2311 	struct ipmi_smi_msg *smi_msg;
2312 	struct ipmi_recv_msg *recv_msg;
2313 	int rv = 0;
2314 
2315 	if (user) {
2316 		if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2317 			/* Decrement will happen at the end of the routine. */
2318 			rv = -EBUSY;
2319 			goto out;
2320 		}
2321 	}
2322 
2323 	if (supplied_recv)
2324 		recv_msg = supplied_recv;
2325 	else {
2326 		recv_msg = ipmi_alloc_recv_msg();
2327 		if (recv_msg == NULL) {
2328 			rv = -ENOMEM;
2329 			goto out;
2330 		}
2331 	}
2332 	recv_msg->user_msg_data = user_msg_data;
2333 
2334 	if (supplied_smi)
2335 		smi_msg = supplied_smi;
2336 	else {
2337 		smi_msg = ipmi_alloc_smi_msg();
2338 		if (smi_msg == NULL) {
2339 			if (!supplied_recv)
2340 				ipmi_free_recv_msg(recv_msg);
2341 			rv = -ENOMEM;
2342 			goto out;
2343 		}
2344 	}
2345 
2346 	rcu_read_lock();
2347 	if (intf->in_shutdown) {
2348 		rv = -ENODEV;
2349 		goto out_err;
2350 	}
2351 
2352 	recv_msg->user = user;
2353 	if (user)
2354 		/* The put happens when the message is freed. */
2355 		kref_get(&user->refcount);
2356 	recv_msg->msgid = msgid;
2357 	/*
2358 	 * Store the message to send in the receive message so timeout
2359 	 * responses can get the proper response data.
2360 	 */
2361 	recv_msg->msg = *msg;
2362 
2363 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2364 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2365 					recv_msg, retries, retry_time_ms);
2366 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2367 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2368 				     source_address, source_lun,
2369 				     retries, retry_time_ms);
2370 	} else if (is_ipmb_direct_addr(addr)) {
2371 		rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2372 					    recv_msg, source_lun);
2373 	} else if (is_lan_addr(addr)) {
2374 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2375 				    source_lun, retries, retry_time_ms);
2376 	} else {
2377 	    /* Unknown address type. */
2378 		ipmi_inc_stat(intf, sent_invalid_commands);
2379 		rv = -EINVAL;
2380 	}
2381 
2382 	if (rv) {
2383 out_err:
2384 		ipmi_free_smi_msg(smi_msg);
2385 		ipmi_free_recv_msg(recv_msg);
2386 	} else {
2387 		dev_dbg(intf->si_dev, "Send: %*ph\n",
2388 			smi_msg->data_size, smi_msg->data);
2389 
2390 		smi_send(intf, intf->handlers, smi_msg, priority);
2391 	}
2392 	rcu_read_unlock();
2393 
2394 out:
2395 	if (rv && user)
2396 		atomic_dec(&user->nr_msgs);
2397 	return rv;
2398 }
2399 
2400 static int check_addr(struct ipmi_smi  *intf,
2401 		      struct ipmi_addr *addr,
2402 		      unsigned char    *saddr,
2403 		      unsigned char    *lun)
2404 {
2405 	if (addr->channel >= IPMI_MAX_CHANNELS)
2406 		return -EINVAL;
2407 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2408 	*lun = intf->addrinfo[addr->channel].lun;
2409 	*saddr = intf->addrinfo[addr->channel].address;
2410 	return 0;
2411 }
2412 
2413 int ipmi_request_settime(struct ipmi_user *user,
2414 			 struct ipmi_addr *addr,
2415 			 long             msgid,
2416 			 struct kernel_ipmi_msg  *msg,
2417 			 void             *user_msg_data,
2418 			 int              priority,
2419 			 int              retries,
2420 			 unsigned int     retry_time_ms)
2421 {
2422 	unsigned char saddr = 0, lun = 0;
2423 	int rv, index;
2424 
2425 	if (!user)
2426 		return -EINVAL;
2427 
2428 	user = acquire_ipmi_user(user, &index);
2429 	if (!user)
2430 		return -ENODEV;
2431 
2432 	rv = check_addr(user->intf, addr, &saddr, &lun);
2433 	if (!rv)
2434 		rv = i_ipmi_request(user,
2435 				    user->intf,
2436 				    addr,
2437 				    msgid,
2438 				    msg,
2439 				    user_msg_data,
2440 				    NULL, NULL,
2441 				    priority,
2442 				    saddr,
2443 				    lun,
2444 				    retries,
2445 				    retry_time_ms);
2446 
2447 	release_ipmi_user(user, index);
2448 	return rv;
2449 }
2450 EXPORT_SYMBOL(ipmi_request_settime);
2451 
2452 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2453 			     struct ipmi_addr     *addr,
2454 			     long                 msgid,
2455 			     struct kernel_ipmi_msg *msg,
2456 			     void                 *user_msg_data,
2457 			     void                 *supplied_smi,
2458 			     struct ipmi_recv_msg *supplied_recv,
2459 			     int                  priority)
2460 {
2461 	unsigned char saddr = 0, lun = 0;
2462 	int rv, index;
2463 
2464 	if (!user)
2465 		return -EINVAL;
2466 
2467 	user = acquire_ipmi_user(user, &index);
2468 	if (!user)
2469 		return -ENODEV;
2470 
2471 	rv = check_addr(user->intf, addr, &saddr, &lun);
2472 	if (!rv)
2473 		rv = i_ipmi_request(user,
2474 				    user->intf,
2475 				    addr,
2476 				    msgid,
2477 				    msg,
2478 				    user_msg_data,
2479 				    supplied_smi,
2480 				    supplied_recv,
2481 				    priority,
2482 				    saddr,
2483 				    lun,
2484 				    -1, 0);
2485 
2486 	release_ipmi_user(user, index);
2487 	return rv;
2488 }
2489 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2490 
2491 static void bmc_device_id_handler(struct ipmi_smi *intf,
2492 				  struct ipmi_recv_msg *msg)
2493 {
2494 	int rv;
2495 
2496 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2497 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2498 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2499 		dev_warn(intf->si_dev,
2500 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2501 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2502 		return;
2503 	}
2504 
2505 	if (msg->msg.data[0]) {
2506 		dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2507 			 msg->msg.data[0]);
2508 		intf->bmc->dyn_id_set = 0;
2509 		goto out;
2510 	}
2511 
2512 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2513 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2514 	if (rv) {
2515 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2516 		/* record completion code when error */
2517 		intf->bmc->cc = msg->msg.data[0];
2518 		intf->bmc->dyn_id_set = 0;
2519 	} else {
2520 		/*
2521 		 * Make sure the id data is available before setting
2522 		 * dyn_id_set.
2523 		 */
2524 		smp_wmb();
2525 		intf->bmc->dyn_id_set = 1;
2526 	}
2527 out:
2528 	wake_up(&intf->waitq);
2529 }
2530 
2531 static int
2532 send_get_device_id_cmd(struct ipmi_smi *intf)
2533 {
2534 	struct ipmi_system_interface_addr si;
2535 	struct kernel_ipmi_msg msg;
2536 
2537 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2538 	si.channel = IPMI_BMC_CHANNEL;
2539 	si.lun = 0;
2540 
2541 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2542 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2543 	msg.data = NULL;
2544 	msg.data_len = 0;
2545 
2546 	return i_ipmi_request(NULL,
2547 			      intf,
2548 			      (struct ipmi_addr *) &si,
2549 			      0,
2550 			      &msg,
2551 			      intf,
2552 			      NULL,
2553 			      NULL,
2554 			      0,
2555 			      intf->addrinfo[0].address,
2556 			      intf->addrinfo[0].lun,
2557 			      -1, 0);
2558 }
2559 
2560 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2561 {
2562 	int rv;
2563 	unsigned int retry_count = 0;
2564 
2565 	intf->null_user_handler = bmc_device_id_handler;
2566 
2567 retry:
2568 	bmc->cc = 0;
2569 	bmc->dyn_id_set = 2;
2570 
2571 	rv = send_get_device_id_cmd(intf);
2572 	if (rv)
2573 		goto out_reset_handler;
2574 
2575 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2576 
2577 	if (!bmc->dyn_id_set) {
2578 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2579 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2580 			msleep(500);
2581 			dev_warn(intf->si_dev,
2582 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2583 			    bmc->cc);
2584 			goto retry;
2585 		}
2586 
2587 		rv = -EIO; /* Something went wrong in the fetch. */
2588 	}
2589 
2590 	/* dyn_id_set makes the id data available. */
2591 	smp_rmb();
2592 
2593 out_reset_handler:
2594 	intf->null_user_handler = NULL;
2595 
2596 	return rv;
2597 }
2598 
2599 /*
2600  * Fetch the device id for the bmc/interface.  You must pass in either
2601  * bmc or intf, this code will get the other one.  If the data has
2602  * been recently fetched, this will just use the cached data.  Otherwise
2603  * it will run a new fetch.
2604  *
2605  * Except for the first time this is called (in ipmi_add_smi()),
2606  * this will always return good data;
2607  */
2608 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2609 			       struct ipmi_device_id *id,
2610 			       bool *guid_set, guid_t *guid, int intf_num)
2611 {
2612 	int rv = 0;
2613 	int prev_dyn_id_set, prev_guid_set;
2614 	bool intf_set = intf != NULL;
2615 
2616 	if (!intf) {
2617 		mutex_lock(&bmc->dyn_mutex);
2618 retry_bmc_lock:
2619 		if (list_empty(&bmc->intfs)) {
2620 			mutex_unlock(&bmc->dyn_mutex);
2621 			return -ENOENT;
2622 		}
2623 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2624 					bmc_link);
2625 		kref_get(&intf->refcount);
2626 		mutex_unlock(&bmc->dyn_mutex);
2627 		mutex_lock(&intf->bmc_reg_mutex);
2628 		mutex_lock(&bmc->dyn_mutex);
2629 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2630 					     bmc_link)) {
2631 			mutex_unlock(&intf->bmc_reg_mutex);
2632 			kref_put(&intf->refcount, intf_free);
2633 			goto retry_bmc_lock;
2634 		}
2635 	} else {
2636 		mutex_lock(&intf->bmc_reg_mutex);
2637 		bmc = intf->bmc;
2638 		mutex_lock(&bmc->dyn_mutex);
2639 		kref_get(&intf->refcount);
2640 	}
2641 
2642 	/* If we have a valid and current ID, just return that. */
2643 	if (intf->in_bmc_register ||
2644 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2645 		goto out_noprocessing;
2646 
2647 	prev_guid_set = bmc->dyn_guid_set;
2648 	__get_guid(intf);
2649 
2650 	prev_dyn_id_set = bmc->dyn_id_set;
2651 	rv = __get_device_id(intf, bmc);
2652 	if (rv)
2653 		goto out;
2654 
2655 	/*
2656 	 * The guid, device id, manufacturer id, and product id should
2657 	 * not change on a BMC.  If it does we have to do some dancing.
2658 	 */
2659 	if (!intf->bmc_registered
2660 	    || (!prev_guid_set && bmc->dyn_guid_set)
2661 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2662 	    || (prev_guid_set && bmc->dyn_guid_set
2663 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2664 	    || bmc->id.device_id != bmc->fetch_id.device_id
2665 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2666 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2667 		struct ipmi_device_id id = bmc->fetch_id;
2668 		int guid_set = bmc->dyn_guid_set;
2669 		guid_t guid;
2670 
2671 		guid = bmc->fetch_guid;
2672 		mutex_unlock(&bmc->dyn_mutex);
2673 
2674 		__ipmi_bmc_unregister(intf);
2675 		/* Fill in the temporary BMC for good measure. */
2676 		intf->bmc->id = id;
2677 		intf->bmc->dyn_guid_set = guid_set;
2678 		intf->bmc->guid = guid;
2679 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2680 			need_waiter(intf); /* Retry later on an error. */
2681 		else
2682 			__scan_channels(intf, &id);
2683 
2684 
2685 		if (!intf_set) {
2686 			/*
2687 			 * We weren't given the interface on the
2688 			 * command line, so restart the operation on
2689 			 * the next interface for the BMC.
2690 			 */
2691 			mutex_unlock(&intf->bmc_reg_mutex);
2692 			mutex_lock(&bmc->dyn_mutex);
2693 			goto retry_bmc_lock;
2694 		}
2695 
2696 		/* We have a new BMC, set it up. */
2697 		bmc = intf->bmc;
2698 		mutex_lock(&bmc->dyn_mutex);
2699 		goto out_noprocessing;
2700 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2701 		/* Version info changes, scan the channels again. */
2702 		__scan_channels(intf, &bmc->fetch_id);
2703 
2704 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2705 
2706 out:
2707 	if (rv && prev_dyn_id_set) {
2708 		rv = 0; /* Ignore failures if we have previous data. */
2709 		bmc->dyn_id_set = prev_dyn_id_set;
2710 	}
2711 	if (!rv) {
2712 		bmc->id = bmc->fetch_id;
2713 		if (bmc->dyn_guid_set)
2714 			bmc->guid = bmc->fetch_guid;
2715 		else if (prev_guid_set)
2716 			/*
2717 			 * The guid used to be valid and it failed to fetch,
2718 			 * just use the cached value.
2719 			 */
2720 			bmc->dyn_guid_set = prev_guid_set;
2721 	}
2722 out_noprocessing:
2723 	if (!rv) {
2724 		if (id)
2725 			*id = bmc->id;
2726 
2727 		if (guid_set)
2728 			*guid_set = bmc->dyn_guid_set;
2729 
2730 		if (guid && bmc->dyn_guid_set)
2731 			*guid =  bmc->guid;
2732 	}
2733 
2734 	mutex_unlock(&bmc->dyn_mutex);
2735 	mutex_unlock(&intf->bmc_reg_mutex);
2736 
2737 	kref_put(&intf->refcount, intf_free);
2738 	return rv;
2739 }
2740 
2741 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2742 			     struct ipmi_device_id *id,
2743 			     bool *guid_set, guid_t *guid)
2744 {
2745 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2746 }
2747 
2748 static ssize_t device_id_show(struct device *dev,
2749 			      struct device_attribute *attr,
2750 			      char *buf)
2751 {
2752 	struct bmc_device *bmc = to_bmc_device(dev);
2753 	struct ipmi_device_id id;
2754 	int rv;
2755 
2756 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2757 	if (rv)
2758 		return rv;
2759 
2760 	return sysfs_emit(buf, "%u\n", id.device_id);
2761 }
2762 static DEVICE_ATTR_RO(device_id);
2763 
2764 static ssize_t provides_device_sdrs_show(struct device *dev,
2765 					 struct device_attribute *attr,
2766 					 char *buf)
2767 {
2768 	struct bmc_device *bmc = to_bmc_device(dev);
2769 	struct ipmi_device_id id;
2770 	int rv;
2771 
2772 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2773 	if (rv)
2774 		return rv;
2775 
2776 	return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2777 }
2778 static DEVICE_ATTR_RO(provides_device_sdrs);
2779 
2780 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2781 			     char *buf)
2782 {
2783 	struct bmc_device *bmc = to_bmc_device(dev);
2784 	struct ipmi_device_id id;
2785 	int rv;
2786 
2787 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2788 	if (rv)
2789 		return rv;
2790 
2791 	return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2792 }
2793 static DEVICE_ATTR_RO(revision);
2794 
2795 static ssize_t firmware_revision_show(struct device *dev,
2796 				      struct device_attribute *attr,
2797 				      char *buf)
2798 {
2799 	struct bmc_device *bmc = to_bmc_device(dev);
2800 	struct ipmi_device_id id;
2801 	int rv;
2802 
2803 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2804 	if (rv)
2805 		return rv;
2806 
2807 	return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2808 			id.firmware_revision_2);
2809 }
2810 static DEVICE_ATTR_RO(firmware_revision);
2811 
2812 static ssize_t ipmi_version_show(struct device *dev,
2813 				 struct device_attribute *attr,
2814 				 char *buf)
2815 {
2816 	struct bmc_device *bmc = to_bmc_device(dev);
2817 	struct ipmi_device_id id;
2818 	int rv;
2819 
2820 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2821 	if (rv)
2822 		return rv;
2823 
2824 	return sysfs_emit(buf, "%u.%u\n",
2825 			ipmi_version_major(&id),
2826 			ipmi_version_minor(&id));
2827 }
2828 static DEVICE_ATTR_RO(ipmi_version);
2829 
2830 static ssize_t add_dev_support_show(struct device *dev,
2831 				    struct device_attribute *attr,
2832 				    char *buf)
2833 {
2834 	struct bmc_device *bmc = to_bmc_device(dev);
2835 	struct ipmi_device_id id;
2836 	int rv;
2837 
2838 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2839 	if (rv)
2840 		return rv;
2841 
2842 	return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2843 }
2844 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2845 		   NULL);
2846 
2847 static ssize_t manufacturer_id_show(struct device *dev,
2848 				    struct device_attribute *attr,
2849 				    char *buf)
2850 {
2851 	struct bmc_device *bmc = to_bmc_device(dev);
2852 	struct ipmi_device_id id;
2853 	int rv;
2854 
2855 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2856 	if (rv)
2857 		return rv;
2858 
2859 	return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2860 }
2861 static DEVICE_ATTR_RO(manufacturer_id);
2862 
2863 static ssize_t product_id_show(struct device *dev,
2864 			       struct device_attribute *attr,
2865 			       char *buf)
2866 {
2867 	struct bmc_device *bmc = to_bmc_device(dev);
2868 	struct ipmi_device_id id;
2869 	int rv;
2870 
2871 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2872 	if (rv)
2873 		return rv;
2874 
2875 	return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2876 }
2877 static DEVICE_ATTR_RO(product_id);
2878 
2879 static ssize_t aux_firmware_rev_show(struct device *dev,
2880 				     struct device_attribute *attr,
2881 				     char *buf)
2882 {
2883 	struct bmc_device *bmc = to_bmc_device(dev);
2884 	struct ipmi_device_id id;
2885 	int rv;
2886 
2887 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2888 	if (rv)
2889 		return rv;
2890 
2891 	return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2892 			id.aux_firmware_revision[3],
2893 			id.aux_firmware_revision[2],
2894 			id.aux_firmware_revision[1],
2895 			id.aux_firmware_revision[0]);
2896 }
2897 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2898 
2899 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2900 			 char *buf)
2901 {
2902 	struct bmc_device *bmc = to_bmc_device(dev);
2903 	bool guid_set;
2904 	guid_t guid;
2905 	int rv;
2906 
2907 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2908 	if (rv)
2909 		return rv;
2910 	if (!guid_set)
2911 		return -ENOENT;
2912 
2913 	return sysfs_emit(buf, "%pUl\n", &guid);
2914 }
2915 static DEVICE_ATTR_RO(guid);
2916 
2917 static struct attribute *bmc_dev_attrs[] = {
2918 	&dev_attr_device_id.attr,
2919 	&dev_attr_provides_device_sdrs.attr,
2920 	&dev_attr_revision.attr,
2921 	&dev_attr_firmware_revision.attr,
2922 	&dev_attr_ipmi_version.attr,
2923 	&dev_attr_additional_device_support.attr,
2924 	&dev_attr_manufacturer_id.attr,
2925 	&dev_attr_product_id.attr,
2926 	&dev_attr_aux_firmware_revision.attr,
2927 	&dev_attr_guid.attr,
2928 	NULL
2929 };
2930 
2931 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2932 				       struct attribute *attr, int idx)
2933 {
2934 	struct device *dev = kobj_to_dev(kobj);
2935 	struct bmc_device *bmc = to_bmc_device(dev);
2936 	umode_t mode = attr->mode;
2937 	int rv;
2938 
2939 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2940 		struct ipmi_device_id id;
2941 
2942 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2943 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2944 	}
2945 	if (attr == &dev_attr_guid.attr) {
2946 		bool guid_set;
2947 
2948 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2949 		return (!rv && guid_set) ? mode : 0;
2950 	}
2951 	return mode;
2952 }
2953 
2954 static const struct attribute_group bmc_dev_attr_group = {
2955 	.attrs		= bmc_dev_attrs,
2956 	.is_visible	= bmc_dev_attr_is_visible,
2957 };
2958 
2959 static const struct attribute_group *bmc_dev_attr_groups[] = {
2960 	&bmc_dev_attr_group,
2961 	NULL
2962 };
2963 
2964 static const struct device_type bmc_device_type = {
2965 	.groups		= bmc_dev_attr_groups,
2966 };
2967 
2968 static int __find_bmc_guid(struct device *dev, const void *data)
2969 {
2970 	const guid_t *guid = data;
2971 	struct bmc_device *bmc;
2972 	int rv;
2973 
2974 	if (dev->type != &bmc_device_type)
2975 		return 0;
2976 
2977 	bmc = to_bmc_device(dev);
2978 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2979 	if (rv)
2980 		rv = kref_get_unless_zero(&bmc->usecount);
2981 	return rv;
2982 }
2983 
2984 /*
2985  * Returns with the bmc's usecount incremented, if it is non-NULL.
2986  */
2987 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2988 					     guid_t *guid)
2989 {
2990 	struct device *dev;
2991 	struct bmc_device *bmc = NULL;
2992 
2993 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2994 	if (dev) {
2995 		bmc = to_bmc_device(dev);
2996 		put_device(dev);
2997 	}
2998 	return bmc;
2999 }
3000 
3001 struct prod_dev_id {
3002 	unsigned int  product_id;
3003 	unsigned char device_id;
3004 };
3005 
3006 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
3007 {
3008 	const struct prod_dev_id *cid = data;
3009 	struct bmc_device *bmc;
3010 	int rv;
3011 
3012 	if (dev->type != &bmc_device_type)
3013 		return 0;
3014 
3015 	bmc = to_bmc_device(dev);
3016 	rv = (bmc->id.product_id == cid->product_id
3017 	      && bmc->id.device_id == cid->device_id);
3018 	if (rv)
3019 		rv = kref_get_unless_zero(&bmc->usecount);
3020 	return rv;
3021 }
3022 
3023 /*
3024  * Returns with the bmc's usecount incremented, if it is non-NULL.
3025  */
3026 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3027 	struct device_driver *drv,
3028 	unsigned int product_id, unsigned char device_id)
3029 {
3030 	struct prod_dev_id id = {
3031 		.product_id = product_id,
3032 		.device_id = device_id,
3033 	};
3034 	struct device *dev;
3035 	struct bmc_device *bmc = NULL;
3036 
3037 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3038 	if (dev) {
3039 		bmc = to_bmc_device(dev);
3040 		put_device(dev);
3041 	}
3042 	return bmc;
3043 }
3044 
3045 static DEFINE_IDA(ipmi_bmc_ida);
3046 
3047 static void
3048 release_bmc_device(struct device *dev)
3049 {
3050 	kfree(to_bmc_device(dev));
3051 }
3052 
3053 static void cleanup_bmc_work(struct work_struct *work)
3054 {
3055 	struct bmc_device *bmc = container_of(work, struct bmc_device,
3056 					      remove_work);
3057 	int id = bmc->pdev.id; /* Unregister overwrites id */
3058 
3059 	platform_device_unregister(&bmc->pdev);
3060 	ida_simple_remove(&ipmi_bmc_ida, id);
3061 }
3062 
3063 static void
3064 cleanup_bmc_device(struct kref *ref)
3065 {
3066 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3067 
3068 	/*
3069 	 * Remove the platform device in a work queue to avoid issues
3070 	 * with removing the device attributes while reading a device
3071 	 * attribute.
3072 	 */
3073 	queue_work(remove_work_wq, &bmc->remove_work);
3074 }
3075 
3076 /*
3077  * Must be called with intf->bmc_reg_mutex held.
3078  */
3079 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3080 {
3081 	struct bmc_device *bmc = intf->bmc;
3082 
3083 	if (!intf->bmc_registered)
3084 		return;
3085 
3086 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3087 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3088 	kfree(intf->my_dev_name);
3089 	intf->my_dev_name = NULL;
3090 
3091 	mutex_lock(&bmc->dyn_mutex);
3092 	list_del(&intf->bmc_link);
3093 	mutex_unlock(&bmc->dyn_mutex);
3094 	intf->bmc = &intf->tmp_bmc;
3095 	kref_put(&bmc->usecount, cleanup_bmc_device);
3096 	intf->bmc_registered = false;
3097 }
3098 
3099 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3100 {
3101 	mutex_lock(&intf->bmc_reg_mutex);
3102 	__ipmi_bmc_unregister(intf);
3103 	mutex_unlock(&intf->bmc_reg_mutex);
3104 }
3105 
3106 /*
3107  * Must be called with intf->bmc_reg_mutex held.
3108  */
3109 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3110 			       struct ipmi_device_id *id,
3111 			       bool guid_set, guid_t *guid, int intf_num)
3112 {
3113 	int               rv;
3114 	struct bmc_device *bmc;
3115 	struct bmc_device *old_bmc;
3116 
3117 	/*
3118 	 * platform_device_register() can cause bmc_reg_mutex to
3119 	 * be claimed because of the is_visible functions of
3120 	 * the attributes.  Eliminate possible recursion and
3121 	 * release the lock.
3122 	 */
3123 	intf->in_bmc_register = true;
3124 	mutex_unlock(&intf->bmc_reg_mutex);
3125 
3126 	/*
3127 	 * Try to find if there is an bmc_device struct
3128 	 * representing the interfaced BMC already
3129 	 */
3130 	mutex_lock(&ipmidriver_mutex);
3131 	if (guid_set)
3132 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3133 	else
3134 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3135 						    id->product_id,
3136 						    id->device_id);
3137 
3138 	/*
3139 	 * If there is already an bmc_device, free the new one,
3140 	 * otherwise register the new BMC device
3141 	 */
3142 	if (old_bmc) {
3143 		bmc = old_bmc;
3144 		/*
3145 		 * Note: old_bmc already has usecount incremented by
3146 		 * the BMC find functions.
3147 		 */
3148 		intf->bmc = old_bmc;
3149 		mutex_lock(&bmc->dyn_mutex);
3150 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3151 		mutex_unlock(&bmc->dyn_mutex);
3152 
3153 		dev_info(intf->si_dev,
3154 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3155 			 bmc->id.manufacturer_id,
3156 			 bmc->id.product_id,
3157 			 bmc->id.device_id);
3158 	} else {
3159 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3160 		if (!bmc) {
3161 			rv = -ENOMEM;
3162 			goto out;
3163 		}
3164 		INIT_LIST_HEAD(&bmc->intfs);
3165 		mutex_init(&bmc->dyn_mutex);
3166 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3167 
3168 		bmc->id = *id;
3169 		bmc->dyn_id_set = 1;
3170 		bmc->dyn_guid_set = guid_set;
3171 		bmc->guid = *guid;
3172 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3173 
3174 		bmc->pdev.name = "ipmi_bmc";
3175 
3176 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3177 		if (rv < 0) {
3178 			kfree(bmc);
3179 			goto out;
3180 		}
3181 
3182 		bmc->pdev.dev.driver = &ipmidriver.driver;
3183 		bmc->pdev.id = rv;
3184 		bmc->pdev.dev.release = release_bmc_device;
3185 		bmc->pdev.dev.type = &bmc_device_type;
3186 		kref_init(&bmc->usecount);
3187 
3188 		intf->bmc = bmc;
3189 		mutex_lock(&bmc->dyn_mutex);
3190 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3191 		mutex_unlock(&bmc->dyn_mutex);
3192 
3193 		rv = platform_device_register(&bmc->pdev);
3194 		if (rv) {
3195 			dev_err(intf->si_dev,
3196 				"Unable to register bmc device: %d\n",
3197 				rv);
3198 			goto out_list_del;
3199 		}
3200 
3201 		dev_info(intf->si_dev,
3202 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3203 			 bmc->id.manufacturer_id,
3204 			 bmc->id.product_id,
3205 			 bmc->id.device_id);
3206 	}
3207 
3208 	/*
3209 	 * create symlink from system interface device to bmc device
3210 	 * and back.
3211 	 */
3212 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3213 	if (rv) {
3214 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3215 		goto out_put_bmc;
3216 	}
3217 
3218 	if (intf_num == -1)
3219 		intf_num = intf->intf_num;
3220 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3221 	if (!intf->my_dev_name) {
3222 		rv = -ENOMEM;
3223 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3224 			rv);
3225 		goto out_unlink1;
3226 	}
3227 
3228 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3229 			       intf->my_dev_name);
3230 	if (rv) {
3231 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3232 			rv);
3233 		goto out_free_my_dev_name;
3234 	}
3235 
3236 	intf->bmc_registered = true;
3237 
3238 out:
3239 	mutex_unlock(&ipmidriver_mutex);
3240 	mutex_lock(&intf->bmc_reg_mutex);
3241 	intf->in_bmc_register = false;
3242 	return rv;
3243 
3244 
3245 out_free_my_dev_name:
3246 	kfree(intf->my_dev_name);
3247 	intf->my_dev_name = NULL;
3248 
3249 out_unlink1:
3250 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3251 
3252 out_put_bmc:
3253 	mutex_lock(&bmc->dyn_mutex);
3254 	list_del(&intf->bmc_link);
3255 	mutex_unlock(&bmc->dyn_mutex);
3256 	intf->bmc = &intf->tmp_bmc;
3257 	kref_put(&bmc->usecount, cleanup_bmc_device);
3258 	goto out;
3259 
3260 out_list_del:
3261 	mutex_lock(&bmc->dyn_mutex);
3262 	list_del(&intf->bmc_link);
3263 	mutex_unlock(&bmc->dyn_mutex);
3264 	intf->bmc = &intf->tmp_bmc;
3265 	put_device(&bmc->pdev.dev);
3266 	goto out;
3267 }
3268 
3269 static int
3270 send_guid_cmd(struct ipmi_smi *intf, int chan)
3271 {
3272 	struct kernel_ipmi_msg            msg;
3273 	struct ipmi_system_interface_addr si;
3274 
3275 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3276 	si.channel = IPMI_BMC_CHANNEL;
3277 	si.lun = 0;
3278 
3279 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3280 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3281 	msg.data = NULL;
3282 	msg.data_len = 0;
3283 	return i_ipmi_request(NULL,
3284 			      intf,
3285 			      (struct ipmi_addr *) &si,
3286 			      0,
3287 			      &msg,
3288 			      intf,
3289 			      NULL,
3290 			      NULL,
3291 			      0,
3292 			      intf->addrinfo[0].address,
3293 			      intf->addrinfo[0].lun,
3294 			      -1, 0);
3295 }
3296 
3297 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3298 {
3299 	struct bmc_device *bmc = intf->bmc;
3300 
3301 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3302 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3303 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3304 		/* Not for me */
3305 		return;
3306 
3307 	if (msg->msg.data[0] != 0) {
3308 		/* Error from getting the GUID, the BMC doesn't have one. */
3309 		bmc->dyn_guid_set = 0;
3310 		goto out;
3311 	}
3312 
3313 	if (msg->msg.data_len < UUID_SIZE + 1) {
3314 		bmc->dyn_guid_set = 0;
3315 		dev_warn(intf->si_dev,
3316 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3317 			 msg->msg.data_len, UUID_SIZE + 1);
3318 		goto out;
3319 	}
3320 
3321 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3322 	/*
3323 	 * Make sure the guid data is available before setting
3324 	 * dyn_guid_set.
3325 	 */
3326 	smp_wmb();
3327 	bmc->dyn_guid_set = 1;
3328  out:
3329 	wake_up(&intf->waitq);
3330 }
3331 
3332 static void __get_guid(struct ipmi_smi *intf)
3333 {
3334 	int rv;
3335 	struct bmc_device *bmc = intf->bmc;
3336 
3337 	bmc->dyn_guid_set = 2;
3338 	intf->null_user_handler = guid_handler;
3339 	rv = send_guid_cmd(intf, 0);
3340 	if (rv)
3341 		/* Send failed, no GUID available. */
3342 		bmc->dyn_guid_set = 0;
3343 	else
3344 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3345 
3346 	/* dyn_guid_set makes the guid data available. */
3347 	smp_rmb();
3348 
3349 	intf->null_user_handler = NULL;
3350 }
3351 
3352 static int
3353 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3354 {
3355 	struct kernel_ipmi_msg            msg;
3356 	unsigned char                     data[1];
3357 	struct ipmi_system_interface_addr si;
3358 
3359 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3360 	si.channel = IPMI_BMC_CHANNEL;
3361 	si.lun = 0;
3362 
3363 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3364 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3365 	msg.data = data;
3366 	msg.data_len = 1;
3367 	data[0] = chan;
3368 	return i_ipmi_request(NULL,
3369 			      intf,
3370 			      (struct ipmi_addr *) &si,
3371 			      0,
3372 			      &msg,
3373 			      intf,
3374 			      NULL,
3375 			      NULL,
3376 			      0,
3377 			      intf->addrinfo[0].address,
3378 			      intf->addrinfo[0].lun,
3379 			      -1, 0);
3380 }
3381 
3382 static void
3383 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3384 {
3385 	int rv = 0;
3386 	int ch;
3387 	unsigned int set = intf->curr_working_cset;
3388 	struct ipmi_channel *chans;
3389 
3390 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3391 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3392 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3393 		/* It's the one we want */
3394 		if (msg->msg.data[0] != 0) {
3395 			/* Got an error from the channel, just go on. */
3396 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3397 				/*
3398 				 * If the MC does not support this
3399 				 * command, that is legal.  We just
3400 				 * assume it has one IPMB at channel
3401 				 * zero.
3402 				 */
3403 				intf->wchannels[set].c[0].medium
3404 					= IPMI_CHANNEL_MEDIUM_IPMB;
3405 				intf->wchannels[set].c[0].protocol
3406 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3407 
3408 				intf->channel_list = intf->wchannels + set;
3409 				intf->channels_ready = true;
3410 				wake_up(&intf->waitq);
3411 				goto out;
3412 			}
3413 			goto next_channel;
3414 		}
3415 		if (msg->msg.data_len < 4) {
3416 			/* Message not big enough, just go on. */
3417 			goto next_channel;
3418 		}
3419 		ch = intf->curr_channel;
3420 		chans = intf->wchannels[set].c;
3421 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3422 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3423 
3424  next_channel:
3425 		intf->curr_channel++;
3426 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3427 			intf->channel_list = intf->wchannels + set;
3428 			intf->channels_ready = true;
3429 			wake_up(&intf->waitq);
3430 		} else {
3431 			intf->channel_list = intf->wchannels + set;
3432 			intf->channels_ready = true;
3433 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3434 		}
3435 
3436 		if (rv) {
3437 			/* Got an error somehow, just give up. */
3438 			dev_warn(intf->si_dev,
3439 				 "Error sending channel information for channel %d: %d\n",
3440 				 intf->curr_channel, rv);
3441 
3442 			intf->channel_list = intf->wchannels + set;
3443 			intf->channels_ready = true;
3444 			wake_up(&intf->waitq);
3445 		}
3446 	}
3447  out:
3448 	return;
3449 }
3450 
3451 /*
3452  * Must be holding intf->bmc_reg_mutex to call this.
3453  */
3454 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3455 {
3456 	int rv;
3457 
3458 	if (ipmi_version_major(id) > 1
3459 			|| (ipmi_version_major(id) == 1
3460 			    && ipmi_version_minor(id) >= 5)) {
3461 		unsigned int set;
3462 
3463 		/*
3464 		 * Start scanning the channels to see what is
3465 		 * available.
3466 		 */
3467 		set = !intf->curr_working_cset;
3468 		intf->curr_working_cset = set;
3469 		memset(&intf->wchannels[set], 0,
3470 		       sizeof(struct ipmi_channel_set));
3471 
3472 		intf->null_user_handler = channel_handler;
3473 		intf->curr_channel = 0;
3474 		rv = send_channel_info_cmd(intf, 0);
3475 		if (rv) {
3476 			dev_warn(intf->si_dev,
3477 				 "Error sending channel information for channel 0, %d\n",
3478 				 rv);
3479 			intf->null_user_handler = NULL;
3480 			return -EIO;
3481 		}
3482 
3483 		/* Wait for the channel info to be read. */
3484 		wait_event(intf->waitq, intf->channels_ready);
3485 		intf->null_user_handler = NULL;
3486 	} else {
3487 		unsigned int set = intf->curr_working_cset;
3488 
3489 		/* Assume a single IPMB channel at zero. */
3490 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3491 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3492 		intf->channel_list = intf->wchannels + set;
3493 		intf->channels_ready = true;
3494 	}
3495 
3496 	return 0;
3497 }
3498 
3499 static void ipmi_poll(struct ipmi_smi *intf)
3500 {
3501 	if (intf->handlers->poll)
3502 		intf->handlers->poll(intf->send_info);
3503 	/* In case something came in */
3504 	handle_new_recv_msgs(intf);
3505 }
3506 
3507 void ipmi_poll_interface(struct ipmi_user *user)
3508 {
3509 	ipmi_poll(user->intf);
3510 }
3511 EXPORT_SYMBOL(ipmi_poll_interface);
3512 
3513 static ssize_t nr_users_show(struct device *dev,
3514 			     struct device_attribute *attr,
3515 			     char *buf)
3516 {
3517 	struct ipmi_smi *intf = container_of(attr,
3518 			 struct ipmi_smi, nr_users_devattr);
3519 
3520 	return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3521 }
3522 static DEVICE_ATTR_RO(nr_users);
3523 
3524 static ssize_t nr_msgs_show(struct device *dev,
3525 			    struct device_attribute *attr,
3526 			    char *buf)
3527 {
3528 	struct ipmi_smi *intf = container_of(attr,
3529 			 struct ipmi_smi, nr_msgs_devattr);
3530 	struct ipmi_user *user;
3531 	int index;
3532 	unsigned int count = 0;
3533 
3534 	index = srcu_read_lock(&intf->users_srcu);
3535 	list_for_each_entry_rcu(user, &intf->users, link)
3536 		count += atomic_read(&user->nr_msgs);
3537 	srcu_read_unlock(&intf->users_srcu, index);
3538 
3539 	return sysfs_emit(buf, "%u\n", count);
3540 }
3541 static DEVICE_ATTR_RO(nr_msgs);
3542 
3543 static void redo_bmc_reg(struct work_struct *work)
3544 {
3545 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3546 					     bmc_reg_work);
3547 
3548 	if (!intf->in_shutdown)
3549 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3550 
3551 	kref_put(&intf->refcount, intf_free);
3552 }
3553 
3554 int ipmi_add_smi(struct module         *owner,
3555 		 const struct ipmi_smi_handlers *handlers,
3556 		 void		       *send_info,
3557 		 struct device         *si_dev,
3558 		 unsigned char         slave_addr)
3559 {
3560 	int              i, j;
3561 	int              rv;
3562 	struct ipmi_smi *intf, *tintf;
3563 	struct list_head *link;
3564 	struct ipmi_device_id id;
3565 
3566 	/*
3567 	 * Make sure the driver is actually initialized, this handles
3568 	 * problems with initialization order.
3569 	 */
3570 	rv = ipmi_init_msghandler();
3571 	if (rv)
3572 		return rv;
3573 
3574 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3575 	if (!intf)
3576 		return -ENOMEM;
3577 
3578 	rv = init_srcu_struct(&intf->users_srcu);
3579 	if (rv) {
3580 		kfree(intf);
3581 		return rv;
3582 	}
3583 
3584 	intf->owner = owner;
3585 	intf->bmc = &intf->tmp_bmc;
3586 	INIT_LIST_HEAD(&intf->bmc->intfs);
3587 	mutex_init(&intf->bmc->dyn_mutex);
3588 	INIT_LIST_HEAD(&intf->bmc_link);
3589 	mutex_init(&intf->bmc_reg_mutex);
3590 	intf->intf_num = -1; /* Mark it invalid for now. */
3591 	kref_init(&intf->refcount);
3592 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3593 	intf->si_dev = si_dev;
3594 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3595 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3596 		intf->addrinfo[j].lun = 2;
3597 	}
3598 	if (slave_addr != 0)
3599 		intf->addrinfo[0].address = slave_addr;
3600 	INIT_LIST_HEAD(&intf->users);
3601 	atomic_set(&intf->nr_users, 0);
3602 	intf->handlers = handlers;
3603 	intf->send_info = send_info;
3604 	spin_lock_init(&intf->seq_lock);
3605 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3606 		intf->seq_table[j].inuse = 0;
3607 		intf->seq_table[j].seqid = 0;
3608 	}
3609 	intf->curr_seq = 0;
3610 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3611 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3612 	tasklet_setup(&intf->recv_tasklet,
3613 		     smi_recv_tasklet);
3614 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3615 	spin_lock_init(&intf->xmit_msgs_lock);
3616 	INIT_LIST_HEAD(&intf->xmit_msgs);
3617 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3618 	spin_lock_init(&intf->events_lock);
3619 	spin_lock_init(&intf->watch_lock);
3620 	atomic_set(&intf->event_waiters, 0);
3621 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3622 	INIT_LIST_HEAD(&intf->waiting_events);
3623 	intf->waiting_events_count = 0;
3624 	mutex_init(&intf->cmd_rcvrs_mutex);
3625 	spin_lock_init(&intf->maintenance_mode_lock);
3626 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3627 	init_waitqueue_head(&intf->waitq);
3628 	for (i = 0; i < IPMI_NUM_STATS; i++)
3629 		atomic_set(&intf->stats[i], 0);
3630 
3631 	mutex_lock(&ipmi_interfaces_mutex);
3632 	/* Look for a hole in the numbers. */
3633 	i = 0;
3634 	link = &ipmi_interfaces;
3635 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3636 				ipmi_interfaces_mutex_held()) {
3637 		if (tintf->intf_num != i) {
3638 			link = &tintf->link;
3639 			break;
3640 		}
3641 		i++;
3642 	}
3643 	/* Add the new interface in numeric order. */
3644 	if (i == 0)
3645 		list_add_rcu(&intf->link, &ipmi_interfaces);
3646 	else
3647 		list_add_tail_rcu(&intf->link, link);
3648 
3649 	rv = handlers->start_processing(send_info, intf);
3650 	if (rv)
3651 		goto out_err;
3652 
3653 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3654 	if (rv) {
3655 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3656 		goto out_err_started;
3657 	}
3658 
3659 	mutex_lock(&intf->bmc_reg_mutex);
3660 	rv = __scan_channels(intf, &id);
3661 	mutex_unlock(&intf->bmc_reg_mutex);
3662 	if (rv)
3663 		goto out_err_bmc_reg;
3664 
3665 	intf->nr_users_devattr = dev_attr_nr_users;
3666 	sysfs_attr_init(&intf->nr_users_devattr.attr);
3667 	rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3668 	if (rv)
3669 		goto out_err_bmc_reg;
3670 
3671 	intf->nr_msgs_devattr = dev_attr_nr_msgs;
3672 	sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3673 	rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3674 	if (rv) {
3675 		device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3676 		goto out_err_bmc_reg;
3677 	}
3678 
3679 	/*
3680 	 * Keep memory order straight for RCU readers.  Make
3681 	 * sure everything else is committed to memory before
3682 	 * setting intf_num to mark the interface valid.
3683 	 */
3684 	smp_wmb();
3685 	intf->intf_num = i;
3686 	mutex_unlock(&ipmi_interfaces_mutex);
3687 
3688 	/* After this point the interface is legal to use. */
3689 	call_smi_watchers(i, intf->si_dev);
3690 
3691 	return 0;
3692 
3693  out_err_bmc_reg:
3694 	ipmi_bmc_unregister(intf);
3695  out_err_started:
3696 	if (intf->handlers->shutdown)
3697 		intf->handlers->shutdown(intf->send_info);
3698  out_err:
3699 	list_del_rcu(&intf->link);
3700 	mutex_unlock(&ipmi_interfaces_mutex);
3701 	synchronize_srcu(&ipmi_interfaces_srcu);
3702 	cleanup_srcu_struct(&intf->users_srcu);
3703 	kref_put(&intf->refcount, intf_free);
3704 
3705 	return rv;
3706 }
3707 EXPORT_SYMBOL(ipmi_add_smi);
3708 
3709 static void deliver_smi_err_response(struct ipmi_smi *intf,
3710 				     struct ipmi_smi_msg *msg,
3711 				     unsigned char err)
3712 {
3713 	msg->rsp[0] = msg->data[0] | 4;
3714 	msg->rsp[1] = msg->data[1];
3715 	msg->rsp[2] = err;
3716 	msg->rsp_size = 3;
3717 	/* It's an error, so it will never requeue, no need to check return. */
3718 	handle_one_recv_msg(intf, msg);
3719 }
3720 
3721 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3722 {
3723 	int              i;
3724 	struct seq_table *ent;
3725 	struct ipmi_smi_msg *msg;
3726 	struct list_head *entry;
3727 	struct list_head tmplist;
3728 
3729 	/* Clear out our transmit queues and hold the messages. */
3730 	INIT_LIST_HEAD(&tmplist);
3731 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3732 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3733 
3734 	/* Current message first, to preserve order */
3735 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3736 		/* Wait for the message to clear out. */
3737 		schedule_timeout(1);
3738 	}
3739 
3740 	/* No need for locks, the interface is down. */
3741 
3742 	/*
3743 	 * Return errors for all pending messages in queue and in the
3744 	 * tables waiting for remote responses.
3745 	 */
3746 	while (!list_empty(&tmplist)) {
3747 		entry = tmplist.next;
3748 		list_del(entry);
3749 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3750 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3751 	}
3752 
3753 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3754 		ent = &intf->seq_table[i];
3755 		if (!ent->inuse)
3756 			continue;
3757 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3758 	}
3759 }
3760 
3761 void ipmi_unregister_smi(struct ipmi_smi *intf)
3762 {
3763 	struct ipmi_smi_watcher *w;
3764 	int intf_num, index;
3765 
3766 	if (!intf)
3767 		return;
3768 	intf_num = intf->intf_num;
3769 	mutex_lock(&ipmi_interfaces_mutex);
3770 	intf->intf_num = -1;
3771 	intf->in_shutdown = true;
3772 	list_del_rcu(&intf->link);
3773 	mutex_unlock(&ipmi_interfaces_mutex);
3774 	synchronize_srcu(&ipmi_interfaces_srcu);
3775 
3776 	/* At this point no users can be added to the interface. */
3777 
3778 	device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3779 	device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3780 
3781 	/*
3782 	 * Call all the watcher interfaces to tell them that
3783 	 * an interface is going away.
3784 	 */
3785 	mutex_lock(&smi_watchers_mutex);
3786 	list_for_each_entry(w, &smi_watchers, link)
3787 		w->smi_gone(intf_num);
3788 	mutex_unlock(&smi_watchers_mutex);
3789 
3790 	index = srcu_read_lock(&intf->users_srcu);
3791 	while (!list_empty(&intf->users)) {
3792 		struct ipmi_user *user =
3793 			container_of(list_next_rcu(&intf->users),
3794 				     struct ipmi_user, link);
3795 
3796 		_ipmi_destroy_user(user);
3797 	}
3798 	srcu_read_unlock(&intf->users_srcu, index);
3799 
3800 	if (intf->handlers->shutdown)
3801 		intf->handlers->shutdown(intf->send_info);
3802 
3803 	cleanup_smi_msgs(intf);
3804 
3805 	ipmi_bmc_unregister(intf);
3806 
3807 	cleanup_srcu_struct(&intf->users_srcu);
3808 	kref_put(&intf->refcount, intf_free);
3809 }
3810 EXPORT_SYMBOL(ipmi_unregister_smi);
3811 
3812 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3813 				   struct ipmi_smi_msg *msg)
3814 {
3815 	struct ipmi_ipmb_addr ipmb_addr;
3816 	struct ipmi_recv_msg  *recv_msg;
3817 
3818 	/*
3819 	 * This is 11, not 10, because the response must contain a
3820 	 * completion code.
3821 	 */
3822 	if (msg->rsp_size < 11) {
3823 		/* Message not big enough, just ignore it. */
3824 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3825 		return 0;
3826 	}
3827 
3828 	if (msg->rsp[2] != 0) {
3829 		/* An error getting the response, just ignore it. */
3830 		return 0;
3831 	}
3832 
3833 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3834 	ipmb_addr.slave_addr = msg->rsp[6];
3835 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3836 	ipmb_addr.lun = msg->rsp[7] & 3;
3837 
3838 	/*
3839 	 * It's a response from a remote entity.  Look up the sequence
3840 	 * number and handle the response.
3841 	 */
3842 	if (intf_find_seq(intf,
3843 			  msg->rsp[7] >> 2,
3844 			  msg->rsp[3] & 0x0f,
3845 			  msg->rsp[8],
3846 			  (msg->rsp[4] >> 2) & (~1),
3847 			  (struct ipmi_addr *) &ipmb_addr,
3848 			  &recv_msg)) {
3849 		/*
3850 		 * We were unable to find the sequence number,
3851 		 * so just nuke the message.
3852 		 */
3853 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3854 		return 0;
3855 	}
3856 
3857 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3858 	/*
3859 	 * The other fields matched, so no need to set them, except
3860 	 * for netfn, which needs to be the response that was
3861 	 * returned, not the request value.
3862 	 */
3863 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3864 	recv_msg->msg.data = recv_msg->msg_data;
3865 	recv_msg->msg.data_len = msg->rsp_size - 10;
3866 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3867 	if (deliver_response(intf, recv_msg))
3868 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3869 	else
3870 		ipmi_inc_stat(intf, handled_ipmb_responses);
3871 
3872 	return 0;
3873 }
3874 
3875 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3876 				   struct ipmi_smi_msg *msg)
3877 {
3878 	struct cmd_rcvr          *rcvr;
3879 	int                      rv = 0;
3880 	unsigned char            netfn;
3881 	unsigned char            cmd;
3882 	unsigned char            chan;
3883 	struct ipmi_user         *user = NULL;
3884 	struct ipmi_ipmb_addr    *ipmb_addr;
3885 	struct ipmi_recv_msg     *recv_msg;
3886 
3887 	if (msg->rsp_size < 10) {
3888 		/* Message not big enough, just ignore it. */
3889 		ipmi_inc_stat(intf, invalid_commands);
3890 		return 0;
3891 	}
3892 
3893 	if (msg->rsp[2] != 0) {
3894 		/* An error getting the response, just ignore it. */
3895 		return 0;
3896 	}
3897 
3898 	netfn = msg->rsp[4] >> 2;
3899 	cmd = msg->rsp[8];
3900 	chan = msg->rsp[3] & 0xf;
3901 
3902 	rcu_read_lock();
3903 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3904 	if (rcvr) {
3905 		user = rcvr->user;
3906 		kref_get(&user->refcount);
3907 	} else
3908 		user = NULL;
3909 	rcu_read_unlock();
3910 
3911 	if (user == NULL) {
3912 		/* We didn't find a user, deliver an error response. */
3913 		ipmi_inc_stat(intf, unhandled_commands);
3914 
3915 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3916 		msg->data[1] = IPMI_SEND_MSG_CMD;
3917 		msg->data[2] = msg->rsp[3];
3918 		msg->data[3] = msg->rsp[6];
3919 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3920 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3921 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3922 		/* rqseq/lun */
3923 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3924 		msg->data[8] = msg->rsp[8]; /* cmd */
3925 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3926 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3927 		msg->data_size = 11;
3928 
3929 		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3930 			msg->data_size, msg->data);
3931 
3932 		rcu_read_lock();
3933 		if (!intf->in_shutdown) {
3934 			smi_send(intf, intf->handlers, msg, 0);
3935 			/*
3936 			 * We used the message, so return the value
3937 			 * that causes it to not be freed or
3938 			 * queued.
3939 			 */
3940 			rv = -1;
3941 		}
3942 		rcu_read_unlock();
3943 	} else {
3944 		recv_msg = ipmi_alloc_recv_msg();
3945 		if (!recv_msg) {
3946 			/*
3947 			 * We couldn't allocate memory for the
3948 			 * message, so requeue it for handling
3949 			 * later.
3950 			 */
3951 			rv = 1;
3952 			kref_put(&user->refcount, free_user);
3953 		} else {
3954 			/* Extract the source address from the data. */
3955 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3956 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3957 			ipmb_addr->slave_addr = msg->rsp[6];
3958 			ipmb_addr->lun = msg->rsp[7] & 3;
3959 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3960 
3961 			/*
3962 			 * Extract the rest of the message information
3963 			 * from the IPMB header.
3964 			 */
3965 			recv_msg->user = user;
3966 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3967 			recv_msg->msgid = msg->rsp[7] >> 2;
3968 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3969 			recv_msg->msg.cmd = msg->rsp[8];
3970 			recv_msg->msg.data = recv_msg->msg_data;
3971 
3972 			/*
3973 			 * We chop off 10, not 9 bytes because the checksum
3974 			 * at the end also needs to be removed.
3975 			 */
3976 			recv_msg->msg.data_len = msg->rsp_size - 10;
3977 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3978 			       msg->rsp_size - 10);
3979 			if (deliver_response(intf, recv_msg))
3980 				ipmi_inc_stat(intf, unhandled_commands);
3981 			else
3982 				ipmi_inc_stat(intf, handled_commands);
3983 		}
3984 	}
3985 
3986 	return rv;
3987 }
3988 
3989 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3990 				      struct ipmi_smi_msg *msg)
3991 {
3992 	struct cmd_rcvr          *rcvr;
3993 	int                      rv = 0;
3994 	struct ipmi_user         *user = NULL;
3995 	struct ipmi_ipmb_direct_addr *daddr;
3996 	struct ipmi_recv_msg     *recv_msg;
3997 	unsigned char netfn = msg->rsp[0] >> 2;
3998 	unsigned char cmd = msg->rsp[3];
3999 
4000 	rcu_read_lock();
4001 	/* We always use channel 0 for direct messages. */
4002 	rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
4003 	if (rcvr) {
4004 		user = rcvr->user;
4005 		kref_get(&user->refcount);
4006 	} else
4007 		user = NULL;
4008 	rcu_read_unlock();
4009 
4010 	if (user == NULL) {
4011 		/* We didn't find a user, deliver an error response. */
4012 		ipmi_inc_stat(intf, unhandled_commands);
4013 
4014 		msg->data[0] = (netfn + 1) << 2;
4015 		msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4016 		msg->data[1] = msg->rsp[1]; /* Addr */
4017 		msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4018 		msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4019 		msg->data[3] = cmd;
4020 		msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4021 		msg->data_size = 5;
4022 
4023 		rcu_read_lock();
4024 		if (!intf->in_shutdown) {
4025 			smi_send(intf, intf->handlers, msg, 0);
4026 			/*
4027 			 * We used the message, so return the value
4028 			 * that causes it to not be freed or
4029 			 * queued.
4030 			 */
4031 			rv = -1;
4032 		}
4033 		rcu_read_unlock();
4034 	} else {
4035 		recv_msg = ipmi_alloc_recv_msg();
4036 		if (!recv_msg) {
4037 			/*
4038 			 * We couldn't allocate memory for the
4039 			 * message, so requeue it for handling
4040 			 * later.
4041 			 */
4042 			rv = 1;
4043 			kref_put(&user->refcount, free_user);
4044 		} else {
4045 			/* Extract the source address from the data. */
4046 			daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4047 			daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4048 			daddr->channel = 0;
4049 			daddr->slave_addr = msg->rsp[1];
4050 			daddr->rs_lun = msg->rsp[0] & 3;
4051 			daddr->rq_lun = msg->rsp[2] & 3;
4052 
4053 			/*
4054 			 * Extract the rest of the message information
4055 			 * from the IPMB header.
4056 			 */
4057 			recv_msg->user = user;
4058 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4059 			recv_msg->msgid = (msg->rsp[2] >> 2);
4060 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4061 			recv_msg->msg.cmd = msg->rsp[3];
4062 			recv_msg->msg.data = recv_msg->msg_data;
4063 
4064 			recv_msg->msg.data_len = msg->rsp_size - 4;
4065 			memcpy(recv_msg->msg_data, msg->rsp + 4,
4066 			       msg->rsp_size - 4);
4067 			if (deliver_response(intf, recv_msg))
4068 				ipmi_inc_stat(intf, unhandled_commands);
4069 			else
4070 				ipmi_inc_stat(intf, handled_commands);
4071 		}
4072 	}
4073 
4074 	return rv;
4075 }
4076 
4077 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4078 				      struct ipmi_smi_msg *msg)
4079 {
4080 	struct ipmi_recv_msg *recv_msg;
4081 	struct ipmi_ipmb_direct_addr *daddr;
4082 
4083 	recv_msg = msg->user_data;
4084 	if (recv_msg == NULL) {
4085 		dev_warn(intf->si_dev,
4086 			 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4087 		return 0;
4088 	}
4089 
4090 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4091 	recv_msg->msgid = msg->msgid;
4092 	daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4093 	daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4094 	daddr->channel = 0;
4095 	daddr->slave_addr = msg->rsp[1];
4096 	daddr->rq_lun = msg->rsp[0] & 3;
4097 	daddr->rs_lun = msg->rsp[2] & 3;
4098 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4099 	recv_msg->msg.cmd = msg->rsp[3];
4100 	memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4101 	recv_msg->msg.data = recv_msg->msg_data;
4102 	recv_msg->msg.data_len = msg->rsp_size - 4;
4103 	deliver_local_response(intf, recv_msg);
4104 
4105 	return 0;
4106 }
4107 
4108 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4109 				  struct ipmi_smi_msg *msg)
4110 {
4111 	struct ipmi_lan_addr  lan_addr;
4112 	struct ipmi_recv_msg  *recv_msg;
4113 
4114 
4115 	/*
4116 	 * This is 13, not 12, because the response must contain a
4117 	 * completion code.
4118 	 */
4119 	if (msg->rsp_size < 13) {
4120 		/* Message not big enough, just ignore it. */
4121 		ipmi_inc_stat(intf, invalid_lan_responses);
4122 		return 0;
4123 	}
4124 
4125 	if (msg->rsp[2] != 0) {
4126 		/* An error getting the response, just ignore it. */
4127 		return 0;
4128 	}
4129 
4130 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4131 	lan_addr.session_handle = msg->rsp[4];
4132 	lan_addr.remote_SWID = msg->rsp[8];
4133 	lan_addr.local_SWID = msg->rsp[5];
4134 	lan_addr.channel = msg->rsp[3] & 0x0f;
4135 	lan_addr.privilege = msg->rsp[3] >> 4;
4136 	lan_addr.lun = msg->rsp[9] & 3;
4137 
4138 	/*
4139 	 * It's a response from a remote entity.  Look up the sequence
4140 	 * number and handle the response.
4141 	 */
4142 	if (intf_find_seq(intf,
4143 			  msg->rsp[9] >> 2,
4144 			  msg->rsp[3] & 0x0f,
4145 			  msg->rsp[10],
4146 			  (msg->rsp[6] >> 2) & (~1),
4147 			  (struct ipmi_addr *) &lan_addr,
4148 			  &recv_msg)) {
4149 		/*
4150 		 * We were unable to find the sequence number,
4151 		 * so just nuke the message.
4152 		 */
4153 		ipmi_inc_stat(intf, unhandled_lan_responses);
4154 		return 0;
4155 	}
4156 
4157 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4158 	/*
4159 	 * The other fields matched, so no need to set them, except
4160 	 * for netfn, which needs to be the response that was
4161 	 * returned, not the request value.
4162 	 */
4163 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
4164 	recv_msg->msg.data = recv_msg->msg_data;
4165 	recv_msg->msg.data_len = msg->rsp_size - 12;
4166 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4167 	if (deliver_response(intf, recv_msg))
4168 		ipmi_inc_stat(intf, unhandled_lan_responses);
4169 	else
4170 		ipmi_inc_stat(intf, handled_lan_responses);
4171 
4172 	return 0;
4173 }
4174 
4175 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4176 				  struct ipmi_smi_msg *msg)
4177 {
4178 	struct cmd_rcvr          *rcvr;
4179 	int                      rv = 0;
4180 	unsigned char            netfn;
4181 	unsigned char            cmd;
4182 	unsigned char            chan;
4183 	struct ipmi_user         *user = NULL;
4184 	struct ipmi_lan_addr     *lan_addr;
4185 	struct ipmi_recv_msg     *recv_msg;
4186 
4187 	if (msg->rsp_size < 12) {
4188 		/* Message not big enough, just ignore it. */
4189 		ipmi_inc_stat(intf, invalid_commands);
4190 		return 0;
4191 	}
4192 
4193 	if (msg->rsp[2] != 0) {
4194 		/* An error getting the response, just ignore it. */
4195 		return 0;
4196 	}
4197 
4198 	netfn = msg->rsp[6] >> 2;
4199 	cmd = msg->rsp[10];
4200 	chan = msg->rsp[3] & 0xf;
4201 
4202 	rcu_read_lock();
4203 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4204 	if (rcvr) {
4205 		user = rcvr->user;
4206 		kref_get(&user->refcount);
4207 	} else
4208 		user = NULL;
4209 	rcu_read_unlock();
4210 
4211 	if (user == NULL) {
4212 		/* We didn't find a user, just give up. */
4213 		ipmi_inc_stat(intf, unhandled_commands);
4214 
4215 		/*
4216 		 * Don't do anything with these messages, just allow
4217 		 * them to be freed.
4218 		 */
4219 		rv = 0;
4220 	} else {
4221 		recv_msg = ipmi_alloc_recv_msg();
4222 		if (!recv_msg) {
4223 			/*
4224 			 * We couldn't allocate memory for the
4225 			 * message, so requeue it for handling later.
4226 			 */
4227 			rv = 1;
4228 			kref_put(&user->refcount, free_user);
4229 		} else {
4230 			/* Extract the source address from the data. */
4231 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4232 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4233 			lan_addr->session_handle = msg->rsp[4];
4234 			lan_addr->remote_SWID = msg->rsp[8];
4235 			lan_addr->local_SWID = msg->rsp[5];
4236 			lan_addr->lun = msg->rsp[9] & 3;
4237 			lan_addr->channel = msg->rsp[3] & 0xf;
4238 			lan_addr->privilege = msg->rsp[3] >> 4;
4239 
4240 			/*
4241 			 * Extract the rest of the message information
4242 			 * from the IPMB header.
4243 			 */
4244 			recv_msg->user = user;
4245 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4246 			recv_msg->msgid = msg->rsp[9] >> 2;
4247 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
4248 			recv_msg->msg.cmd = msg->rsp[10];
4249 			recv_msg->msg.data = recv_msg->msg_data;
4250 
4251 			/*
4252 			 * We chop off 12, not 11 bytes because the checksum
4253 			 * at the end also needs to be removed.
4254 			 */
4255 			recv_msg->msg.data_len = msg->rsp_size - 12;
4256 			memcpy(recv_msg->msg_data, &msg->rsp[11],
4257 			       msg->rsp_size - 12);
4258 			if (deliver_response(intf, recv_msg))
4259 				ipmi_inc_stat(intf, unhandled_commands);
4260 			else
4261 				ipmi_inc_stat(intf, handled_commands);
4262 		}
4263 	}
4264 
4265 	return rv;
4266 }
4267 
4268 /*
4269  * This routine will handle "Get Message" command responses with
4270  * channels that use an OEM Medium. The message format belongs to
4271  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
4272  * Chapter 22, sections 22.6 and 22.24 for more details.
4273  */
4274 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4275 				  struct ipmi_smi_msg *msg)
4276 {
4277 	struct cmd_rcvr       *rcvr;
4278 	int                   rv = 0;
4279 	unsigned char         netfn;
4280 	unsigned char         cmd;
4281 	unsigned char         chan;
4282 	struct ipmi_user *user = NULL;
4283 	struct ipmi_system_interface_addr *smi_addr;
4284 	struct ipmi_recv_msg  *recv_msg;
4285 
4286 	/*
4287 	 * We expect the OEM SW to perform error checking
4288 	 * so we just do some basic sanity checks
4289 	 */
4290 	if (msg->rsp_size < 4) {
4291 		/* Message not big enough, just ignore it. */
4292 		ipmi_inc_stat(intf, invalid_commands);
4293 		return 0;
4294 	}
4295 
4296 	if (msg->rsp[2] != 0) {
4297 		/* An error getting the response, just ignore it. */
4298 		return 0;
4299 	}
4300 
4301 	/*
4302 	 * This is an OEM Message so the OEM needs to know how
4303 	 * handle the message. We do no interpretation.
4304 	 */
4305 	netfn = msg->rsp[0] >> 2;
4306 	cmd = msg->rsp[1];
4307 	chan = msg->rsp[3] & 0xf;
4308 
4309 	rcu_read_lock();
4310 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4311 	if (rcvr) {
4312 		user = rcvr->user;
4313 		kref_get(&user->refcount);
4314 	} else
4315 		user = NULL;
4316 	rcu_read_unlock();
4317 
4318 	if (user == NULL) {
4319 		/* We didn't find a user, just give up. */
4320 		ipmi_inc_stat(intf, unhandled_commands);
4321 
4322 		/*
4323 		 * Don't do anything with these messages, just allow
4324 		 * them to be freed.
4325 		 */
4326 
4327 		rv = 0;
4328 	} else {
4329 		recv_msg = ipmi_alloc_recv_msg();
4330 		if (!recv_msg) {
4331 			/*
4332 			 * We couldn't allocate memory for the
4333 			 * message, so requeue it for handling
4334 			 * later.
4335 			 */
4336 			rv = 1;
4337 			kref_put(&user->refcount, free_user);
4338 		} else {
4339 			/*
4340 			 * OEM Messages are expected to be delivered via
4341 			 * the system interface to SMS software.  We might
4342 			 * need to visit this again depending on OEM
4343 			 * requirements
4344 			 */
4345 			smi_addr = ((struct ipmi_system_interface_addr *)
4346 				    &recv_msg->addr);
4347 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4348 			smi_addr->channel = IPMI_BMC_CHANNEL;
4349 			smi_addr->lun = msg->rsp[0] & 3;
4350 
4351 			recv_msg->user = user;
4352 			recv_msg->user_msg_data = NULL;
4353 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4354 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4355 			recv_msg->msg.cmd = msg->rsp[1];
4356 			recv_msg->msg.data = recv_msg->msg_data;
4357 
4358 			/*
4359 			 * The message starts at byte 4 which follows the
4360 			 * the Channel Byte in the "GET MESSAGE" command
4361 			 */
4362 			recv_msg->msg.data_len = msg->rsp_size - 4;
4363 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4364 			       msg->rsp_size - 4);
4365 			if (deliver_response(intf, recv_msg))
4366 				ipmi_inc_stat(intf, unhandled_commands);
4367 			else
4368 				ipmi_inc_stat(intf, handled_commands);
4369 		}
4370 	}
4371 
4372 	return rv;
4373 }
4374 
4375 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4376 				     struct ipmi_smi_msg  *msg)
4377 {
4378 	struct ipmi_system_interface_addr *smi_addr;
4379 
4380 	recv_msg->msgid = 0;
4381 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4382 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4383 	smi_addr->channel = IPMI_BMC_CHANNEL;
4384 	smi_addr->lun = msg->rsp[0] & 3;
4385 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4386 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4387 	recv_msg->msg.cmd = msg->rsp[1];
4388 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4389 	recv_msg->msg.data = recv_msg->msg_data;
4390 	recv_msg->msg.data_len = msg->rsp_size - 3;
4391 }
4392 
4393 static int handle_read_event_rsp(struct ipmi_smi *intf,
4394 				 struct ipmi_smi_msg *msg)
4395 {
4396 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4397 	struct list_head     msgs;
4398 	struct ipmi_user     *user;
4399 	int rv = 0, deliver_count = 0, index;
4400 	unsigned long        flags;
4401 
4402 	if (msg->rsp_size < 19) {
4403 		/* Message is too small to be an IPMB event. */
4404 		ipmi_inc_stat(intf, invalid_events);
4405 		return 0;
4406 	}
4407 
4408 	if (msg->rsp[2] != 0) {
4409 		/* An error getting the event, just ignore it. */
4410 		return 0;
4411 	}
4412 
4413 	INIT_LIST_HEAD(&msgs);
4414 
4415 	spin_lock_irqsave(&intf->events_lock, flags);
4416 
4417 	ipmi_inc_stat(intf, events);
4418 
4419 	/*
4420 	 * Allocate and fill in one message for every user that is
4421 	 * getting events.
4422 	 */
4423 	index = srcu_read_lock(&intf->users_srcu);
4424 	list_for_each_entry_rcu(user, &intf->users, link) {
4425 		if (!user->gets_events)
4426 			continue;
4427 
4428 		recv_msg = ipmi_alloc_recv_msg();
4429 		if (!recv_msg) {
4430 			rcu_read_unlock();
4431 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4432 						 link) {
4433 				list_del(&recv_msg->link);
4434 				ipmi_free_recv_msg(recv_msg);
4435 			}
4436 			/*
4437 			 * We couldn't allocate memory for the
4438 			 * message, so requeue it for handling
4439 			 * later.
4440 			 */
4441 			rv = 1;
4442 			goto out;
4443 		}
4444 
4445 		deliver_count++;
4446 
4447 		copy_event_into_recv_msg(recv_msg, msg);
4448 		recv_msg->user = user;
4449 		kref_get(&user->refcount);
4450 		list_add_tail(&recv_msg->link, &msgs);
4451 	}
4452 	srcu_read_unlock(&intf->users_srcu, index);
4453 
4454 	if (deliver_count) {
4455 		/* Now deliver all the messages. */
4456 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4457 			list_del(&recv_msg->link);
4458 			deliver_local_response(intf, recv_msg);
4459 		}
4460 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4461 		/*
4462 		 * No one to receive the message, put it in queue if there's
4463 		 * not already too many things in the queue.
4464 		 */
4465 		recv_msg = ipmi_alloc_recv_msg();
4466 		if (!recv_msg) {
4467 			/*
4468 			 * We couldn't allocate memory for the
4469 			 * message, so requeue it for handling
4470 			 * later.
4471 			 */
4472 			rv = 1;
4473 			goto out;
4474 		}
4475 
4476 		copy_event_into_recv_msg(recv_msg, msg);
4477 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4478 		intf->waiting_events_count++;
4479 	} else if (!intf->event_msg_printed) {
4480 		/*
4481 		 * There's too many things in the queue, discard this
4482 		 * message.
4483 		 */
4484 		dev_warn(intf->si_dev,
4485 			 "Event queue full, discarding incoming events\n");
4486 		intf->event_msg_printed = 1;
4487 	}
4488 
4489  out:
4490 	spin_unlock_irqrestore(&intf->events_lock, flags);
4491 
4492 	return rv;
4493 }
4494 
4495 static int handle_bmc_rsp(struct ipmi_smi *intf,
4496 			  struct ipmi_smi_msg *msg)
4497 {
4498 	struct ipmi_recv_msg *recv_msg;
4499 	struct ipmi_system_interface_addr *smi_addr;
4500 
4501 	recv_msg = msg->user_data;
4502 	if (recv_msg == NULL) {
4503 		dev_warn(intf->si_dev,
4504 			 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4505 		return 0;
4506 	}
4507 
4508 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4509 	recv_msg->msgid = msg->msgid;
4510 	smi_addr = ((struct ipmi_system_interface_addr *)
4511 		    &recv_msg->addr);
4512 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4513 	smi_addr->channel = IPMI_BMC_CHANNEL;
4514 	smi_addr->lun = msg->rsp[0] & 3;
4515 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4516 	recv_msg->msg.cmd = msg->rsp[1];
4517 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4518 	recv_msg->msg.data = recv_msg->msg_data;
4519 	recv_msg->msg.data_len = msg->rsp_size - 2;
4520 	deliver_local_response(intf, recv_msg);
4521 
4522 	return 0;
4523 }
4524 
4525 /*
4526  * Handle a received message.  Return 1 if the message should be requeued,
4527  * 0 if the message should be freed, or -1 if the message should not
4528  * be freed or requeued.
4529  */
4530 static int handle_one_recv_msg(struct ipmi_smi *intf,
4531 			       struct ipmi_smi_msg *msg)
4532 {
4533 	int requeue = 0;
4534 	int chan;
4535 	unsigned char cc;
4536 	bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4537 
4538 	dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4539 
4540 	if (msg->rsp_size < 2) {
4541 		/* Message is too small to be correct. */
4542 		dev_warn(intf->si_dev,
4543 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4544 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4545 
4546 return_unspecified:
4547 		/* Generate an error response for the message. */
4548 		msg->rsp[0] = msg->data[0] | (1 << 2);
4549 		msg->rsp[1] = msg->data[1];
4550 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4551 		msg->rsp_size = 3;
4552 	} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4553 		/* commands must have at least 4 bytes, responses 5. */
4554 		if (is_cmd && (msg->rsp_size < 4)) {
4555 			ipmi_inc_stat(intf, invalid_commands);
4556 			goto out;
4557 		}
4558 		if (!is_cmd && (msg->rsp_size < 5)) {
4559 			ipmi_inc_stat(intf, invalid_ipmb_responses);
4560 			/* Construct a valid error response. */
4561 			msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4562 			msg->rsp[0] |= (1 << 2); /* Make it a response */
4563 			msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4564 			msg->rsp[1] = msg->data[1]; /* Addr */
4565 			msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4566 			msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4567 			msg->rsp[3] = msg->data[3]; /* Cmd */
4568 			msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4569 			msg->rsp_size = 5;
4570 		}
4571 	} else if ((msg->data_size >= 2)
4572 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4573 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4574 	    && (msg->user_data == NULL)) {
4575 
4576 		if (intf->in_shutdown)
4577 			goto out;
4578 
4579 		/*
4580 		 * This is the local response to a command send, start
4581 		 * the timer for these.  The user_data will not be
4582 		 * NULL if this is a response send, and we will let
4583 		 * response sends just go through.
4584 		 */
4585 
4586 		/*
4587 		 * Check for errors, if we get certain errors (ones
4588 		 * that mean basically we can try again later), we
4589 		 * ignore them and start the timer.  Otherwise we
4590 		 * report the error immediately.
4591 		 */
4592 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4593 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4594 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4595 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4596 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4597 			int ch = msg->rsp[3] & 0xf;
4598 			struct ipmi_channel *chans;
4599 
4600 			/* Got an error sending the message, handle it. */
4601 
4602 			chans = READ_ONCE(intf->channel_list)->c;
4603 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4604 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4605 				ipmi_inc_stat(intf, sent_lan_command_errs);
4606 			else
4607 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4608 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4609 		} else
4610 			/* The message was sent, start the timer. */
4611 			intf_start_seq_timer(intf, msg->msgid);
4612 		requeue = 0;
4613 		goto out;
4614 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4615 		   || (msg->rsp[1] != msg->data[1])) {
4616 		/*
4617 		 * The NetFN and Command in the response is not even
4618 		 * marginally correct.
4619 		 */
4620 		dev_warn(intf->si_dev,
4621 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4622 			 (msg->data[0] >> 2) | 1, msg->data[1],
4623 			 msg->rsp[0] >> 2, msg->rsp[1]);
4624 
4625 		goto return_unspecified;
4626 	}
4627 
4628 	if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4629 		if ((msg->data[0] >> 2) & 1) {
4630 			/* It's a response to a sent response. */
4631 			chan = 0;
4632 			cc = msg->rsp[4];
4633 			goto process_response_response;
4634 		}
4635 		if (is_cmd)
4636 			requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4637 		else
4638 			requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4639 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4640 		   && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4641 		   && (msg->user_data != NULL)) {
4642 		/*
4643 		 * It's a response to a response we sent.  For this we
4644 		 * deliver a send message response to the user.
4645 		 */
4646 		struct ipmi_recv_msg *recv_msg;
4647 
4648 		chan = msg->data[2] & 0x0f;
4649 		if (chan >= IPMI_MAX_CHANNELS)
4650 			/* Invalid channel number */
4651 			goto out;
4652 		cc = msg->rsp[2];
4653 
4654 process_response_response:
4655 		recv_msg = msg->user_data;
4656 
4657 		requeue = 0;
4658 		if (!recv_msg)
4659 			goto out;
4660 
4661 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4662 		recv_msg->msg.data = recv_msg->msg_data;
4663 		recv_msg->msg_data[0] = cc;
4664 		recv_msg->msg.data_len = 1;
4665 		deliver_local_response(intf, recv_msg);
4666 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4667 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4668 		struct ipmi_channel   *chans;
4669 
4670 		/* It's from the receive queue. */
4671 		chan = msg->rsp[3] & 0xf;
4672 		if (chan >= IPMI_MAX_CHANNELS) {
4673 			/* Invalid channel number */
4674 			requeue = 0;
4675 			goto out;
4676 		}
4677 
4678 		/*
4679 		 * We need to make sure the channels have been initialized.
4680 		 * The channel_handler routine will set the "curr_channel"
4681 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4682 		 * channels for this interface have been initialized.
4683 		 */
4684 		if (!intf->channels_ready) {
4685 			requeue = 0; /* Throw the message away */
4686 			goto out;
4687 		}
4688 
4689 		chans = READ_ONCE(intf->channel_list)->c;
4690 
4691 		switch (chans[chan].medium) {
4692 		case IPMI_CHANNEL_MEDIUM_IPMB:
4693 			if (msg->rsp[4] & 0x04) {
4694 				/*
4695 				 * It's a response, so find the
4696 				 * requesting message and send it up.
4697 				 */
4698 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4699 			} else {
4700 				/*
4701 				 * It's a command to the SMS from some other
4702 				 * entity.  Handle that.
4703 				 */
4704 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4705 			}
4706 			break;
4707 
4708 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4709 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4710 			if (msg->rsp[6] & 0x04) {
4711 				/*
4712 				 * It's a response, so find the
4713 				 * requesting message and send it up.
4714 				 */
4715 				requeue = handle_lan_get_msg_rsp(intf, msg);
4716 			} else {
4717 				/*
4718 				 * It's a command to the SMS from some other
4719 				 * entity.  Handle that.
4720 				 */
4721 				requeue = handle_lan_get_msg_cmd(intf, msg);
4722 			}
4723 			break;
4724 
4725 		default:
4726 			/* Check for OEM Channels.  Clients had better
4727 			   register for these commands. */
4728 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4729 			    && (chans[chan].medium
4730 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4731 				requeue = handle_oem_get_msg_cmd(intf, msg);
4732 			} else {
4733 				/*
4734 				 * We don't handle the channel type, so just
4735 				 * free the message.
4736 				 */
4737 				requeue = 0;
4738 			}
4739 		}
4740 
4741 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4742 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4743 		/* It's an asynchronous event. */
4744 		requeue = handle_read_event_rsp(intf, msg);
4745 	} else {
4746 		/* It's a response from the local BMC. */
4747 		requeue = handle_bmc_rsp(intf, msg);
4748 	}
4749 
4750  out:
4751 	return requeue;
4752 }
4753 
4754 /*
4755  * If there are messages in the queue or pretimeouts, handle them.
4756  */
4757 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4758 {
4759 	struct ipmi_smi_msg  *smi_msg;
4760 	unsigned long        flags = 0;
4761 	int                  rv;
4762 	int                  run_to_completion = intf->run_to_completion;
4763 
4764 	/* See if any waiting messages need to be processed. */
4765 	if (!run_to_completion)
4766 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4767 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4768 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4769 				     struct ipmi_smi_msg, link);
4770 		list_del(&smi_msg->link);
4771 		if (!run_to_completion)
4772 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4773 					       flags);
4774 		rv = handle_one_recv_msg(intf, smi_msg);
4775 		if (!run_to_completion)
4776 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4777 		if (rv > 0) {
4778 			/*
4779 			 * To preserve message order, quit if we
4780 			 * can't handle a message.  Add the message
4781 			 * back at the head, this is safe because this
4782 			 * tasklet is the only thing that pulls the
4783 			 * messages.
4784 			 */
4785 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4786 			break;
4787 		} else {
4788 			if (rv == 0)
4789 				/* Message handled */
4790 				ipmi_free_smi_msg(smi_msg);
4791 			/* If rv < 0, fatal error, del but don't free. */
4792 		}
4793 	}
4794 	if (!run_to_completion)
4795 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4796 
4797 	/*
4798 	 * If the pretimout count is non-zero, decrement one from it and
4799 	 * deliver pretimeouts to all the users.
4800 	 */
4801 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4802 		struct ipmi_user *user;
4803 		int index;
4804 
4805 		index = srcu_read_lock(&intf->users_srcu);
4806 		list_for_each_entry_rcu(user, &intf->users, link) {
4807 			if (user->handler->ipmi_watchdog_pretimeout)
4808 				user->handler->ipmi_watchdog_pretimeout(
4809 					user->handler_data);
4810 		}
4811 		srcu_read_unlock(&intf->users_srcu, index);
4812 	}
4813 }
4814 
4815 static void smi_recv_tasklet(struct tasklet_struct *t)
4816 {
4817 	unsigned long flags = 0; /* keep us warning-free. */
4818 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4819 	int run_to_completion = intf->run_to_completion;
4820 	struct ipmi_smi_msg *newmsg = NULL;
4821 
4822 	/*
4823 	 * Start the next message if available.
4824 	 *
4825 	 * Do this here, not in the actual receiver, because we may deadlock
4826 	 * because the lower layer is allowed to hold locks while calling
4827 	 * message delivery.
4828 	 */
4829 
4830 	rcu_read_lock();
4831 
4832 	if (!run_to_completion)
4833 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4834 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4835 		struct list_head *entry = NULL;
4836 
4837 		/* Pick the high priority queue first. */
4838 		if (!list_empty(&intf->hp_xmit_msgs))
4839 			entry = intf->hp_xmit_msgs.next;
4840 		else if (!list_empty(&intf->xmit_msgs))
4841 			entry = intf->xmit_msgs.next;
4842 
4843 		if (entry) {
4844 			list_del(entry);
4845 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4846 			intf->curr_msg = newmsg;
4847 		}
4848 	}
4849 
4850 	if (!run_to_completion)
4851 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4852 	if (newmsg)
4853 		intf->handlers->sender(intf->send_info, newmsg);
4854 
4855 	rcu_read_unlock();
4856 
4857 	handle_new_recv_msgs(intf);
4858 }
4859 
4860 /* Handle a new message from the lower layer. */
4861 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4862 			   struct ipmi_smi_msg *msg)
4863 {
4864 	unsigned long flags = 0; /* keep us warning-free. */
4865 	int run_to_completion = intf->run_to_completion;
4866 
4867 	/*
4868 	 * To preserve message order, we keep a queue and deliver from
4869 	 * a tasklet.
4870 	 */
4871 	if (!run_to_completion)
4872 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4873 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4874 	if (!run_to_completion)
4875 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4876 				       flags);
4877 
4878 	if (!run_to_completion)
4879 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4880 	/*
4881 	 * We can get an asynchronous event or receive message in addition
4882 	 * to commands we send.
4883 	 */
4884 	if (msg == intf->curr_msg)
4885 		intf->curr_msg = NULL;
4886 	if (!run_to_completion)
4887 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4888 
4889 	if (run_to_completion)
4890 		smi_recv_tasklet(&intf->recv_tasklet);
4891 	else
4892 		tasklet_schedule(&intf->recv_tasklet);
4893 }
4894 EXPORT_SYMBOL(ipmi_smi_msg_received);
4895 
4896 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4897 {
4898 	if (intf->in_shutdown)
4899 		return;
4900 
4901 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4902 	tasklet_schedule(&intf->recv_tasklet);
4903 }
4904 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4905 
4906 static struct ipmi_smi_msg *
4907 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4908 		  unsigned char seq, long seqid)
4909 {
4910 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4911 	if (!smi_msg)
4912 		/*
4913 		 * If we can't allocate the message, then just return, we
4914 		 * get 4 retries, so this should be ok.
4915 		 */
4916 		return NULL;
4917 
4918 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4919 	smi_msg->data_size = recv_msg->msg.data_len;
4920 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4921 
4922 	dev_dbg(intf->si_dev, "Resend: %*ph\n",
4923 		smi_msg->data_size, smi_msg->data);
4924 
4925 	return smi_msg;
4926 }
4927 
4928 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4929 			      struct list_head *timeouts,
4930 			      unsigned long timeout_period,
4931 			      int slot, unsigned long *flags,
4932 			      bool *need_timer)
4933 {
4934 	struct ipmi_recv_msg *msg;
4935 
4936 	if (intf->in_shutdown)
4937 		return;
4938 
4939 	if (!ent->inuse)
4940 		return;
4941 
4942 	if (timeout_period < ent->timeout) {
4943 		ent->timeout -= timeout_period;
4944 		*need_timer = true;
4945 		return;
4946 	}
4947 
4948 	if (ent->retries_left == 0) {
4949 		/* The message has used all its retries. */
4950 		ent->inuse = 0;
4951 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4952 		msg = ent->recv_msg;
4953 		list_add_tail(&msg->link, timeouts);
4954 		if (ent->broadcast)
4955 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4956 		else if (is_lan_addr(&ent->recv_msg->addr))
4957 			ipmi_inc_stat(intf, timed_out_lan_commands);
4958 		else
4959 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4960 	} else {
4961 		struct ipmi_smi_msg *smi_msg;
4962 		/* More retries, send again. */
4963 
4964 		*need_timer = true;
4965 
4966 		/*
4967 		 * Start with the max timer, set to normal timer after
4968 		 * the message is sent.
4969 		 */
4970 		ent->timeout = MAX_MSG_TIMEOUT;
4971 		ent->retries_left--;
4972 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4973 					    ent->seqid);
4974 		if (!smi_msg) {
4975 			if (is_lan_addr(&ent->recv_msg->addr))
4976 				ipmi_inc_stat(intf,
4977 					      dropped_rexmit_lan_commands);
4978 			else
4979 				ipmi_inc_stat(intf,
4980 					      dropped_rexmit_ipmb_commands);
4981 			return;
4982 		}
4983 
4984 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4985 
4986 		/*
4987 		 * Send the new message.  We send with a zero
4988 		 * priority.  It timed out, I doubt time is that
4989 		 * critical now, and high priority messages are really
4990 		 * only for messages to the local MC, which don't get
4991 		 * resent.
4992 		 */
4993 		if (intf->handlers) {
4994 			if (is_lan_addr(&ent->recv_msg->addr))
4995 				ipmi_inc_stat(intf,
4996 					      retransmitted_lan_commands);
4997 			else
4998 				ipmi_inc_stat(intf,
4999 					      retransmitted_ipmb_commands);
5000 
5001 			smi_send(intf, intf->handlers, smi_msg, 0);
5002 		} else
5003 			ipmi_free_smi_msg(smi_msg);
5004 
5005 		spin_lock_irqsave(&intf->seq_lock, *flags);
5006 	}
5007 }
5008 
5009 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5010 				 unsigned long timeout_period)
5011 {
5012 	struct list_head     timeouts;
5013 	struct ipmi_recv_msg *msg, *msg2;
5014 	unsigned long        flags;
5015 	int                  i;
5016 	bool                 need_timer = false;
5017 
5018 	if (!intf->bmc_registered) {
5019 		kref_get(&intf->refcount);
5020 		if (!schedule_work(&intf->bmc_reg_work)) {
5021 			kref_put(&intf->refcount, intf_free);
5022 			need_timer = true;
5023 		}
5024 	}
5025 
5026 	/*
5027 	 * Go through the seq table and find any messages that
5028 	 * have timed out, putting them in the timeouts
5029 	 * list.
5030 	 */
5031 	INIT_LIST_HEAD(&timeouts);
5032 	spin_lock_irqsave(&intf->seq_lock, flags);
5033 	if (intf->ipmb_maintenance_mode_timeout) {
5034 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5035 			intf->ipmb_maintenance_mode_timeout = 0;
5036 		else
5037 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
5038 	}
5039 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5040 		check_msg_timeout(intf, &intf->seq_table[i],
5041 				  &timeouts, timeout_period, i,
5042 				  &flags, &need_timer);
5043 	spin_unlock_irqrestore(&intf->seq_lock, flags);
5044 
5045 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
5046 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5047 
5048 	/*
5049 	 * Maintenance mode handling.  Check the timeout
5050 	 * optimistically before we claim the lock.  It may
5051 	 * mean a timeout gets missed occasionally, but that
5052 	 * only means the timeout gets extended by one period
5053 	 * in that case.  No big deal, and it avoids the lock
5054 	 * most of the time.
5055 	 */
5056 	if (intf->auto_maintenance_timeout > 0) {
5057 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5058 		if (intf->auto_maintenance_timeout > 0) {
5059 			intf->auto_maintenance_timeout
5060 				-= timeout_period;
5061 			if (!intf->maintenance_mode
5062 			    && (intf->auto_maintenance_timeout <= 0)) {
5063 				intf->maintenance_mode_enable = false;
5064 				maintenance_mode_update(intf);
5065 			}
5066 		}
5067 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5068 				       flags);
5069 	}
5070 
5071 	tasklet_schedule(&intf->recv_tasklet);
5072 
5073 	return need_timer;
5074 }
5075 
5076 static void ipmi_request_event(struct ipmi_smi *intf)
5077 {
5078 	/* No event requests when in maintenance mode. */
5079 	if (intf->maintenance_mode_enable)
5080 		return;
5081 
5082 	if (!intf->in_shutdown)
5083 		intf->handlers->request_events(intf->send_info);
5084 }
5085 
5086 static struct timer_list ipmi_timer;
5087 
5088 static atomic_t stop_operation;
5089 
5090 static void ipmi_timeout(struct timer_list *unused)
5091 {
5092 	struct ipmi_smi *intf;
5093 	bool need_timer = false;
5094 	int index;
5095 
5096 	if (atomic_read(&stop_operation))
5097 		return;
5098 
5099 	index = srcu_read_lock(&ipmi_interfaces_srcu);
5100 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5101 		if (atomic_read(&intf->event_waiters)) {
5102 			intf->ticks_to_req_ev--;
5103 			if (intf->ticks_to_req_ev == 0) {
5104 				ipmi_request_event(intf);
5105 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5106 			}
5107 			need_timer = true;
5108 		}
5109 
5110 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5111 	}
5112 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
5113 
5114 	if (need_timer)
5115 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5116 }
5117 
5118 static void need_waiter(struct ipmi_smi *intf)
5119 {
5120 	/* Racy, but worst case we start the timer twice. */
5121 	if (!timer_pending(&ipmi_timer))
5122 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5123 }
5124 
5125 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5126 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5127 
5128 static void free_smi_msg(struct ipmi_smi_msg *msg)
5129 {
5130 	atomic_dec(&smi_msg_inuse_count);
5131 	/* Try to keep as much stuff out of the panic path as possible. */
5132 	if (!oops_in_progress)
5133 		kfree(msg);
5134 }
5135 
5136 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5137 {
5138 	struct ipmi_smi_msg *rv;
5139 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5140 	if (rv) {
5141 		rv->done = free_smi_msg;
5142 		rv->user_data = NULL;
5143 		rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5144 		atomic_inc(&smi_msg_inuse_count);
5145 	}
5146 	return rv;
5147 }
5148 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5149 
5150 static void free_recv_msg(struct ipmi_recv_msg *msg)
5151 {
5152 	atomic_dec(&recv_msg_inuse_count);
5153 	/* Try to keep as much stuff out of the panic path as possible. */
5154 	if (!oops_in_progress)
5155 		kfree(msg);
5156 }
5157 
5158 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5159 {
5160 	struct ipmi_recv_msg *rv;
5161 
5162 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5163 	if (rv) {
5164 		rv->user = NULL;
5165 		rv->done = free_recv_msg;
5166 		atomic_inc(&recv_msg_inuse_count);
5167 	}
5168 	return rv;
5169 }
5170 
5171 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5172 {
5173 	if (msg->user && !oops_in_progress)
5174 		kref_put(&msg->user->refcount, free_user);
5175 	msg->done(msg);
5176 }
5177 EXPORT_SYMBOL(ipmi_free_recv_msg);
5178 
5179 static atomic_t panic_done_count = ATOMIC_INIT(0);
5180 
5181 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5182 {
5183 	atomic_dec(&panic_done_count);
5184 }
5185 
5186 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5187 {
5188 	atomic_dec(&panic_done_count);
5189 }
5190 
5191 /*
5192  * Inside a panic, send a message and wait for a response.
5193  */
5194 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5195 					struct ipmi_addr *addr,
5196 					struct kernel_ipmi_msg *msg)
5197 {
5198 	struct ipmi_smi_msg  smi_msg;
5199 	struct ipmi_recv_msg recv_msg;
5200 	int rv;
5201 
5202 	smi_msg.done = dummy_smi_done_handler;
5203 	recv_msg.done = dummy_recv_done_handler;
5204 	atomic_add(2, &panic_done_count);
5205 	rv = i_ipmi_request(NULL,
5206 			    intf,
5207 			    addr,
5208 			    0,
5209 			    msg,
5210 			    intf,
5211 			    &smi_msg,
5212 			    &recv_msg,
5213 			    0,
5214 			    intf->addrinfo[0].address,
5215 			    intf->addrinfo[0].lun,
5216 			    0, 1); /* Don't retry, and don't wait. */
5217 	if (rv)
5218 		atomic_sub(2, &panic_done_count);
5219 	else if (intf->handlers->flush_messages)
5220 		intf->handlers->flush_messages(intf->send_info);
5221 
5222 	while (atomic_read(&panic_done_count) != 0)
5223 		ipmi_poll(intf);
5224 }
5225 
5226 static void event_receiver_fetcher(struct ipmi_smi *intf,
5227 				   struct ipmi_recv_msg *msg)
5228 {
5229 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5230 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5231 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5232 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5233 		/* A get event receiver command, save it. */
5234 		intf->event_receiver = msg->msg.data[1];
5235 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5236 	}
5237 }
5238 
5239 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5240 {
5241 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5242 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5243 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5244 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5245 		/*
5246 		 * A get device id command, save if we are an event
5247 		 * receiver or generator.
5248 		 */
5249 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5250 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5251 	}
5252 }
5253 
5254 static void send_panic_events(struct ipmi_smi *intf, char *str)
5255 {
5256 	struct kernel_ipmi_msg msg;
5257 	unsigned char data[16];
5258 	struct ipmi_system_interface_addr *si;
5259 	struct ipmi_addr addr;
5260 	char *p = str;
5261 	struct ipmi_ipmb_addr *ipmb;
5262 	int j;
5263 
5264 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5265 		return;
5266 
5267 	si = (struct ipmi_system_interface_addr *) &addr;
5268 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5269 	si->channel = IPMI_BMC_CHANNEL;
5270 	si->lun = 0;
5271 
5272 	/* Fill in an event telling that we have failed. */
5273 	msg.netfn = 0x04; /* Sensor or Event. */
5274 	msg.cmd = 2; /* Platform event command. */
5275 	msg.data = data;
5276 	msg.data_len = 8;
5277 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5278 	data[1] = 0x03; /* This is for IPMI 1.0. */
5279 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5280 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5281 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5282 
5283 	/*
5284 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
5285 	 * to make the panic events more useful.
5286 	 */
5287 	if (str) {
5288 		data[3] = str[0];
5289 		data[6] = str[1];
5290 		data[7] = str[2];
5291 	}
5292 
5293 	/* Send the event announcing the panic. */
5294 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5295 
5296 	/*
5297 	 * On every interface, dump a bunch of OEM event holding the
5298 	 * string.
5299 	 */
5300 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5301 		return;
5302 
5303 	/*
5304 	 * intf_num is used as an marker to tell if the
5305 	 * interface is valid.  Thus we need a read barrier to
5306 	 * make sure data fetched before checking intf_num
5307 	 * won't be used.
5308 	 */
5309 	smp_rmb();
5310 
5311 	/*
5312 	 * First job here is to figure out where to send the
5313 	 * OEM events.  There's no way in IPMI to send OEM
5314 	 * events using an event send command, so we have to
5315 	 * find the SEL to put them in and stick them in
5316 	 * there.
5317 	 */
5318 
5319 	/* Get capabilities from the get device id. */
5320 	intf->local_sel_device = 0;
5321 	intf->local_event_generator = 0;
5322 	intf->event_receiver = 0;
5323 
5324 	/* Request the device info from the local MC. */
5325 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5326 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5327 	msg.data = NULL;
5328 	msg.data_len = 0;
5329 	intf->null_user_handler = device_id_fetcher;
5330 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5331 
5332 	if (intf->local_event_generator) {
5333 		/* Request the event receiver from the local MC. */
5334 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5335 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5336 		msg.data = NULL;
5337 		msg.data_len = 0;
5338 		intf->null_user_handler = event_receiver_fetcher;
5339 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5340 	}
5341 	intf->null_user_handler = NULL;
5342 
5343 	/*
5344 	 * Validate the event receiver.  The low bit must not
5345 	 * be 1 (it must be a valid IPMB address), it cannot
5346 	 * be zero, and it must not be my address.
5347 	 */
5348 	if (((intf->event_receiver & 1) == 0)
5349 	    && (intf->event_receiver != 0)
5350 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5351 		/*
5352 		 * The event receiver is valid, send an IPMB
5353 		 * message.
5354 		 */
5355 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5356 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5357 		ipmb->channel = 0; /* FIXME - is this right? */
5358 		ipmb->lun = intf->event_receiver_lun;
5359 		ipmb->slave_addr = intf->event_receiver;
5360 	} else if (intf->local_sel_device) {
5361 		/*
5362 		 * The event receiver was not valid (or was
5363 		 * me), but I am an SEL device, just dump it
5364 		 * in my SEL.
5365 		 */
5366 		si = (struct ipmi_system_interface_addr *) &addr;
5367 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5368 		si->channel = IPMI_BMC_CHANNEL;
5369 		si->lun = 0;
5370 	} else
5371 		return; /* No where to send the event. */
5372 
5373 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5374 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5375 	msg.data = data;
5376 	msg.data_len = 16;
5377 
5378 	j = 0;
5379 	while (*p) {
5380 		int size = strlen(p);
5381 
5382 		if (size > 11)
5383 			size = 11;
5384 		data[0] = 0;
5385 		data[1] = 0;
5386 		data[2] = 0xf0; /* OEM event without timestamp. */
5387 		data[3] = intf->addrinfo[0].address;
5388 		data[4] = j++; /* sequence # */
5389 		/*
5390 		 * Always give 11 bytes, so strncpy will fill
5391 		 * it with zeroes for me.
5392 		 */
5393 		strncpy(data+5, p, 11);
5394 		p += size;
5395 
5396 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5397 	}
5398 }
5399 
5400 static int has_panicked;
5401 
5402 static int panic_event(struct notifier_block *this,
5403 		       unsigned long         event,
5404 		       void                  *ptr)
5405 {
5406 	struct ipmi_smi *intf;
5407 	struct ipmi_user *user;
5408 
5409 	if (has_panicked)
5410 		return NOTIFY_DONE;
5411 	has_panicked = 1;
5412 
5413 	/* For every registered interface, set it to run to completion. */
5414 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5415 		if (!intf->handlers || intf->intf_num == -1)
5416 			/* Interface is not ready. */
5417 			continue;
5418 
5419 		if (!intf->handlers->poll)
5420 			continue;
5421 
5422 		/*
5423 		 * If we were interrupted while locking xmit_msgs_lock or
5424 		 * waiting_rcv_msgs_lock, the corresponding list may be
5425 		 * corrupted.  In this case, drop items on the list for
5426 		 * the safety.
5427 		 */
5428 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5429 			INIT_LIST_HEAD(&intf->xmit_msgs);
5430 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5431 		} else
5432 			spin_unlock(&intf->xmit_msgs_lock);
5433 
5434 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5435 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5436 		else
5437 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5438 
5439 		intf->run_to_completion = 1;
5440 		if (intf->handlers->set_run_to_completion)
5441 			intf->handlers->set_run_to_completion(intf->send_info,
5442 							      1);
5443 
5444 		list_for_each_entry_rcu(user, &intf->users, link) {
5445 			if (user->handler->ipmi_panic_handler)
5446 				user->handler->ipmi_panic_handler(
5447 					user->handler_data);
5448 		}
5449 
5450 		send_panic_events(intf, ptr);
5451 	}
5452 
5453 	return NOTIFY_DONE;
5454 }
5455 
5456 /* Must be called with ipmi_interfaces_mutex held. */
5457 static int ipmi_register_driver(void)
5458 {
5459 	int rv;
5460 
5461 	if (drvregistered)
5462 		return 0;
5463 
5464 	rv = driver_register(&ipmidriver.driver);
5465 	if (rv)
5466 		pr_err("Could not register IPMI driver\n");
5467 	else
5468 		drvregistered = true;
5469 	return rv;
5470 }
5471 
5472 static struct notifier_block panic_block = {
5473 	.notifier_call	= panic_event,
5474 	.next		= NULL,
5475 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5476 };
5477 
5478 static int ipmi_init_msghandler(void)
5479 {
5480 	int rv;
5481 
5482 	mutex_lock(&ipmi_interfaces_mutex);
5483 	rv = ipmi_register_driver();
5484 	if (rv)
5485 		goto out;
5486 	if (initialized)
5487 		goto out;
5488 
5489 	rv = init_srcu_struct(&ipmi_interfaces_srcu);
5490 	if (rv)
5491 		goto out;
5492 
5493 	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5494 	if (!remove_work_wq) {
5495 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5496 		rv = -ENOMEM;
5497 		goto out_wq;
5498 	}
5499 
5500 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5501 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5502 
5503 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5504 
5505 	initialized = true;
5506 
5507 out_wq:
5508 	if (rv)
5509 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5510 out:
5511 	mutex_unlock(&ipmi_interfaces_mutex);
5512 	return rv;
5513 }
5514 
5515 static int __init ipmi_init_msghandler_mod(void)
5516 {
5517 	int rv;
5518 
5519 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5520 
5521 	mutex_lock(&ipmi_interfaces_mutex);
5522 	rv = ipmi_register_driver();
5523 	mutex_unlock(&ipmi_interfaces_mutex);
5524 
5525 	return rv;
5526 }
5527 
5528 static void __exit cleanup_ipmi(void)
5529 {
5530 	int count;
5531 
5532 	if (initialized) {
5533 		destroy_workqueue(remove_work_wq);
5534 
5535 		atomic_notifier_chain_unregister(&panic_notifier_list,
5536 						 &panic_block);
5537 
5538 		/*
5539 		 * This can't be called if any interfaces exist, so no worry
5540 		 * about shutting down the interfaces.
5541 		 */
5542 
5543 		/*
5544 		 * Tell the timer to stop, then wait for it to stop.  This
5545 		 * avoids problems with race conditions removing the timer
5546 		 * here.
5547 		 */
5548 		atomic_set(&stop_operation, 1);
5549 		del_timer_sync(&ipmi_timer);
5550 
5551 		initialized = false;
5552 
5553 		/* Check for buffer leaks. */
5554 		count = atomic_read(&smi_msg_inuse_count);
5555 		if (count != 0)
5556 			pr_warn("SMI message count %d at exit\n", count);
5557 		count = atomic_read(&recv_msg_inuse_count);
5558 		if (count != 0)
5559 			pr_warn("recv message count %d at exit\n", count);
5560 
5561 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5562 	}
5563 	if (drvregistered)
5564 		driver_unregister(&ipmidriver.driver);
5565 }
5566 module_exit(cleanup_ipmi);
5567 
5568 module_init(ipmi_init_msghandler_mod);
5569 MODULE_LICENSE("GPL");
5570 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5571 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5572 MODULE_VERSION(IPMI_DRIVER_VERSION);
5573 MODULE_SOFTDEP("post: ipmi_devintf");
5574