1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 
60 static int initialized;
61 
62 #ifdef CONFIG_PROC_FS
63 static struct proc_dir_entry *proc_ipmi_root;
64 #endif /* CONFIG_PROC_FS */
65 
66 /* Remain in auto-maintenance mode for this amount of time (in ms). */
67 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
68 
69 #define MAX_EVENTS_IN_QUEUE	25
70 
71 /*
72  * Don't let a message sit in a queue forever, always time it with at lest
73  * the max message timer.  This is in milliseconds.
74  */
75 #define MAX_MSG_TIMEOUT		60000
76 
77 /* Call every ~1000 ms. */
78 #define IPMI_TIMEOUT_TIME	1000
79 
80 /* How many jiffies does it take to get to the timeout time. */
81 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
82 
83 /*
84  * Request events from the queue every second (this is the number of
85  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
86  * future, IPMI will add a way to know immediately if an event is in
87  * the queue and this silliness can go away.
88  */
89 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
90 
91 /*
92  * The main "user" data structure.
93  */
94 struct ipmi_user {
95 	struct list_head link;
96 
97 	/* Set to false when the user is destroyed. */
98 	bool valid;
99 
100 	struct kref refcount;
101 
102 	/* The upper layer that handles receive messages. */
103 	struct ipmi_user_hndl *handler;
104 	void             *handler_data;
105 
106 	/* The interface this user is bound to. */
107 	ipmi_smi_t intf;
108 
109 	/* Does this interface receive IPMI events? */
110 	bool gets_events;
111 };
112 
113 struct cmd_rcvr {
114 	struct list_head link;
115 
116 	ipmi_user_t   user;
117 	unsigned char netfn;
118 	unsigned char cmd;
119 	unsigned int  chans;
120 
121 	/*
122 	 * This is used to form a linked lised during mass deletion.
123 	 * Since this is in an RCU list, we cannot use the link above
124 	 * or change any data until the RCU period completes.  So we
125 	 * use this next variable during mass deletion so we can have
126 	 * a list and don't have to wait and restart the search on
127 	 * every individual deletion of a command.
128 	 */
129 	struct cmd_rcvr *next;
130 };
131 
132 struct seq_table {
133 	unsigned int         inuse : 1;
134 	unsigned int         broadcast : 1;
135 
136 	unsigned long        timeout;
137 	unsigned long        orig_timeout;
138 	unsigned int         retries_left;
139 
140 	/*
141 	 * To verify on an incoming send message response that this is
142 	 * the message that the response is for, we keep a sequence id
143 	 * and increment it every time we send a message.
144 	 */
145 	long                 seqid;
146 
147 	/*
148 	 * This is held so we can properly respond to the message on a
149 	 * timeout, and it is used to hold the temporary data for
150 	 * retransmission, too.
151 	 */
152 	struct ipmi_recv_msg *recv_msg;
153 };
154 
155 /*
156  * Store the information in a msgid (long) to allow us to find a
157  * sequence table entry from the msgid.
158  */
159 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
160 
161 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
162 	do {								\
163 		seq = ((msgid >> 26) & 0x3f);				\
164 		seqid = (msgid & 0x3fffff);				\
165 	} while (0)
166 
167 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
168 
169 struct ipmi_channel {
170 	unsigned char medium;
171 	unsigned char protocol;
172 
173 	/*
174 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
175 	 * but may be changed by the user.
176 	 */
177 	unsigned char address;
178 
179 	/*
180 	 * My LUN.  This should generally stay the SMS LUN, but just in
181 	 * case...
182 	 */
183 	unsigned char lun;
184 };
185 
186 #ifdef CONFIG_PROC_FS
187 struct ipmi_proc_entry {
188 	char                   *name;
189 	struct ipmi_proc_entry *next;
190 };
191 #endif
192 
193 struct bmc_device {
194 	struct platform_device *dev;
195 	struct ipmi_device_id  id;
196 	unsigned char          guid[16];
197 	int                    guid_set;
198 
199 	struct kref	       refcount;
200 
201 	/* bmc device attributes */
202 	struct device_attribute device_id_attr;
203 	struct device_attribute provides_dev_sdrs_attr;
204 	struct device_attribute revision_attr;
205 	struct device_attribute firmware_rev_attr;
206 	struct device_attribute version_attr;
207 	struct device_attribute add_dev_support_attr;
208 	struct device_attribute manufacturer_id_attr;
209 	struct device_attribute product_id_attr;
210 	struct device_attribute guid_attr;
211 	struct device_attribute aux_firmware_rev_attr;
212 };
213 
214 /*
215  * Various statistics for IPMI, these index stats[] in the ipmi_smi
216  * structure.
217  */
218 enum ipmi_stat_indexes {
219 	/* Commands we got from the user that were invalid. */
220 	IPMI_STAT_sent_invalid_commands = 0,
221 
222 	/* Commands we sent to the MC. */
223 	IPMI_STAT_sent_local_commands,
224 
225 	/* Responses from the MC that were delivered to a user. */
226 	IPMI_STAT_handled_local_responses,
227 
228 	/* Responses from the MC that were not delivered to a user. */
229 	IPMI_STAT_unhandled_local_responses,
230 
231 	/* Commands we sent out to the IPMB bus. */
232 	IPMI_STAT_sent_ipmb_commands,
233 
234 	/* Commands sent on the IPMB that had errors on the SEND CMD */
235 	IPMI_STAT_sent_ipmb_command_errs,
236 
237 	/* Each retransmit increments this count. */
238 	IPMI_STAT_retransmitted_ipmb_commands,
239 
240 	/*
241 	 * When a message times out (runs out of retransmits) this is
242 	 * incremented.
243 	 */
244 	IPMI_STAT_timed_out_ipmb_commands,
245 
246 	/*
247 	 * This is like above, but for broadcasts.  Broadcasts are
248 	 * *not* included in the above count (they are expected to
249 	 * time out).
250 	 */
251 	IPMI_STAT_timed_out_ipmb_broadcasts,
252 
253 	/* Responses I have sent to the IPMB bus. */
254 	IPMI_STAT_sent_ipmb_responses,
255 
256 	/* The response was delivered to the user. */
257 	IPMI_STAT_handled_ipmb_responses,
258 
259 	/* The response had invalid data in it. */
260 	IPMI_STAT_invalid_ipmb_responses,
261 
262 	/* The response didn't have anyone waiting for it. */
263 	IPMI_STAT_unhandled_ipmb_responses,
264 
265 	/* Commands we sent out to the IPMB bus. */
266 	IPMI_STAT_sent_lan_commands,
267 
268 	/* Commands sent on the IPMB that had errors on the SEND CMD */
269 	IPMI_STAT_sent_lan_command_errs,
270 
271 	/* Each retransmit increments this count. */
272 	IPMI_STAT_retransmitted_lan_commands,
273 
274 	/*
275 	 * When a message times out (runs out of retransmits) this is
276 	 * incremented.
277 	 */
278 	IPMI_STAT_timed_out_lan_commands,
279 
280 	/* Responses I have sent to the IPMB bus. */
281 	IPMI_STAT_sent_lan_responses,
282 
283 	/* The response was delivered to the user. */
284 	IPMI_STAT_handled_lan_responses,
285 
286 	/* The response had invalid data in it. */
287 	IPMI_STAT_invalid_lan_responses,
288 
289 	/* The response didn't have anyone waiting for it. */
290 	IPMI_STAT_unhandled_lan_responses,
291 
292 	/* The command was delivered to the user. */
293 	IPMI_STAT_handled_commands,
294 
295 	/* The command had invalid data in it. */
296 	IPMI_STAT_invalid_commands,
297 
298 	/* The command didn't have anyone waiting for it. */
299 	IPMI_STAT_unhandled_commands,
300 
301 	/* Invalid data in an event. */
302 	IPMI_STAT_invalid_events,
303 
304 	/* Events that were received with the proper format. */
305 	IPMI_STAT_events,
306 
307 	/* Retransmissions on IPMB that failed. */
308 	IPMI_STAT_dropped_rexmit_ipmb_commands,
309 
310 	/* Retransmissions on LAN that failed. */
311 	IPMI_STAT_dropped_rexmit_lan_commands,
312 
313 	/* This *must* remain last, add new values above this. */
314 	IPMI_NUM_STATS
315 };
316 
317 
318 #define IPMI_IPMB_NUM_SEQ	64
319 #define IPMI_MAX_CHANNELS       16
320 struct ipmi_smi {
321 	/* What interface number are we? */
322 	int intf_num;
323 
324 	struct kref refcount;
325 
326 	/* Used for a list of interfaces. */
327 	struct list_head link;
328 
329 	/*
330 	 * The list of upper layers that are using me.  seq_lock
331 	 * protects this.
332 	 */
333 	struct list_head users;
334 
335 	/* Information to supply to users. */
336 	unsigned char ipmi_version_major;
337 	unsigned char ipmi_version_minor;
338 
339 	/* Used for wake ups at startup. */
340 	wait_queue_head_t waitq;
341 
342 	struct bmc_device *bmc;
343 	char *my_dev_name;
344 	char *sysfs_name;
345 
346 	/*
347 	 * This is the lower-layer's sender routine.  Note that you
348 	 * must either be holding the ipmi_interfaces_mutex or be in
349 	 * an umpreemptible region to use this.  You must fetch the
350 	 * value into a local variable and make sure it is not NULL.
351 	 */
352 	struct ipmi_smi_handlers *handlers;
353 	void                     *send_info;
354 
355 #ifdef CONFIG_PROC_FS
356 	/* A list of proc entries for this interface. */
357 	struct mutex           proc_entry_lock;
358 	struct ipmi_proc_entry *proc_entries;
359 #endif
360 
361 	/* Driver-model device for the system interface. */
362 	struct device          *si_dev;
363 
364 	/*
365 	 * A table of sequence numbers for this interface.  We use the
366 	 * sequence numbers for IPMB messages that go out of the
367 	 * interface to match them up with their responses.  A routine
368 	 * is called periodically to time the items in this list.
369 	 */
370 	spinlock_t       seq_lock;
371 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
372 	int curr_seq;
373 
374 	/*
375 	 * Messages queued for delivery.  If delivery fails (out of memory
376 	 * for instance), They will stay in here to be processed later in a
377 	 * periodic timer interrupt.  The tasklet is for handling received
378 	 * messages directly from the handler.
379 	 */
380 	spinlock_t       waiting_msgs_lock;
381 	struct list_head waiting_msgs;
382 	atomic_t	 watchdog_pretimeouts_to_deliver;
383 	struct tasklet_struct recv_tasklet;
384 
385 	/*
386 	 * The list of command receivers that are registered for commands
387 	 * on this interface.
388 	 */
389 	struct mutex     cmd_rcvrs_mutex;
390 	struct list_head cmd_rcvrs;
391 
392 	/*
393 	 * Events that were queues because no one was there to receive
394 	 * them.
395 	 */
396 	spinlock_t       events_lock; /* For dealing with event stuff. */
397 	struct list_head waiting_events;
398 	unsigned int     waiting_events_count; /* How many events in queue? */
399 	char             delivering_events;
400 	char             event_msg_printed;
401 	atomic_t         event_waiters;
402 	unsigned int     ticks_to_req_ev;
403 	int              last_needs_timer;
404 
405 	/*
406 	 * The event receiver for my BMC, only really used at panic
407 	 * shutdown as a place to store this.
408 	 */
409 	unsigned char event_receiver;
410 	unsigned char event_receiver_lun;
411 	unsigned char local_sel_device;
412 	unsigned char local_event_generator;
413 
414 	/* For handling of maintenance mode. */
415 	int maintenance_mode;
416 	bool maintenance_mode_enable;
417 	int auto_maintenance_timeout;
418 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
419 
420 	/*
421 	 * A cheap hack, if this is non-null and a message to an
422 	 * interface comes in with a NULL user, call this routine with
423 	 * it.  Note that the message will still be freed by the
424 	 * caller.  This only works on the system interface.
425 	 */
426 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
427 
428 	/*
429 	 * When we are scanning the channels for an SMI, this will
430 	 * tell which channel we are scanning.
431 	 */
432 	int curr_channel;
433 
434 	/* Channel information */
435 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
436 
437 	/* Proc FS stuff. */
438 	struct proc_dir_entry *proc_dir;
439 	char                  proc_dir_name[10];
440 
441 	atomic_t stats[IPMI_NUM_STATS];
442 
443 	/*
444 	 * run_to_completion duplicate of smb_info, smi_info
445 	 * and ipmi_serial_info structures. Used to decrease numbers of
446 	 * parameters passed by "low" level IPMI code.
447 	 */
448 	int run_to_completion;
449 };
450 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
451 
452 /**
453  * The driver model view of the IPMI messaging driver.
454  */
455 static struct platform_driver ipmidriver = {
456 	.driver = {
457 		.name = "ipmi",
458 		.bus = &platform_bus_type
459 	}
460 };
461 static DEFINE_MUTEX(ipmidriver_mutex);
462 
463 static LIST_HEAD(ipmi_interfaces);
464 static DEFINE_MUTEX(ipmi_interfaces_mutex);
465 
466 /*
467  * List of watchers that want to know when smi's are added and deleted.
468  */
469 static LIST_HEAD(smi_watchers);
470 static DEFINE_MUTEX(smi_watchers_mutex);
471 
472 #define ipmi_inc_stat(intf, stat) \
473 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
474 #define ipmi_get_stat(intf, stat) \
475 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
476 
477 static int is_lan_addr(struct ipmi_addr *addr)
478 {
479 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
480 }
481 
482 static int is_ipmb_addr(struct ipmi_addr *addr)
483 {
484 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
485 }
486 
487 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
488 {
489 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
490 }
491 
492 static void free_recv_msg_list(struct list_head *q)
493 {
494 	struct ipmi_recv_msg *msg, *msg2;
495 
496 	list_for_each_entry_safe(msg, msg2, q, link) {
497 		list_del(&msg->link);
498 		ipmi_free_recv_msg(msg);
499 	}
500 }
501 
502 static void free_smi_msg_list(struct list_head *q)
503 {
504 	struct ipmi_smi_msg *msg, *msg2;
505 
506 	list_for_each_entry_safe(msg, msg2, q, link) {
507 		list_del(&msg->link);
508 		ipmi_free_smi_msg(msg);
509 	}
510 }
511 
512 static void clean_up_interface_data(ipmi_smi_t intf)
513 {
514 	int              i;
515 	struct cmd_rcvr  *rcvr, *rcvr2;
516 	struct list_head list;
517 
518 	tasklet_kill(&intf->recv_tasklet);
519 
520 	free_smi_msg_list(&intf->waiting_msgs);
521 	free_recv_msg_list(&intf->waiting_events);
522 
523 	/*
524 	 * Wholesale remove all the entries from the list in the
525 	 * interface and wait for RCU to know that none are in use.
526 	 */
527 	mutex_lock(&intf->cmd_rcvrs_mutex);
528 	INIT_LIST_HEAD(&list);
529 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
530 	mutex_unlock(&intf->cmd_rcvrs_mutex);
531 
532 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
533 		kfree(rcvr);
534 
535 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
536 		if ((intf->seq_table[i].inuse)
537 					&& (intf->seq_table[i].recv_msg))
538 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
539 	}
540 }
541 
542 static void intf_free(struct kref *ref)
543 {
544 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
545 
546 	clean_up_interface_data(intf);
547 	kfree(intf);
548 }
549 
550 struct watcher_entry {
551 	int              intf_num;
552 	ipmi_smi_t       intf;
553 	struct list_head link;
554 };
555 
556 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
557 {
558 	ipmi_smi_t intf;
559 	LIST_HEAD(to_deliver);
560 	struct watcher_entry *e, *e2;
561 
562 	mutex_lock(&smi_watchers_mutex);
563 
564 	mutex_lock(&ipmi_interfaces_mutex);
565 
566 	/* Build a list of things to deliver. */
567 	list_for_each_entry(intf, &ipmi_interfaces, link) {
568 		if (intf->intf_num == -1)
569 			continue;
570 		e = kmalloc(sizeof(*e), GFP_KERNEL);
571 		if (!e)
572 			goto out_err;
573 		kref_get(&intf->refcount);
574 		e->intf = intf;
575 		e->intf_num = intf->intf_num;
576 		list_add_tail(&e->link, &to_deliver);
577 	}
578 
579 	/* We will succeed, so add it to the list. */
580 	list_add(&watcher->link, &smi_watchers);
581 
582 	mutex_unlock(&ipmi_interfaces_mutex);
583 
584 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
585 		list_del(&e->link);
586 		watcher->new_smi(e->intf_num, e->intf->si_dev);
587 		kref_put(&e->intf->refcount, intf_free);
588 		kfree(e);
589 	}
590 
591 	mutex_unlock(&smi_watchers_mutex);
592 
593 	return 0;
594 
595  out_err:
596 	mutex_unlock(&ipmi_interfaces_mutex);
597 	mutex_unlock(&smi_watchers_mutex);
598 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
599 		list_del(&e->link);
600 		kref_put(&e->intf->refcount, intf_free);
601 		kfree(e);
602 	}
603 	return -ENOMEM;
604 }
605 EXPORT_SYMBOL(ipmi_smi_watcher_register);
606 
607 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
608 {
609 	mutex_lock(&smi_watchers_mutex);
610 	list_del(&(watcher->link));
611 	mutex_unlock(&smi_watchers_mutex);
612 	return 0;
613 }
614 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
615 
616 /*
617  * Must be called with smi_watchers_mutex held.
618  */
619 static void
620 call_smi_watchers(int i, struct device *dev)
621 {
622 	struct ipmi_smi_watcher *w;
623 
624 	list_for_each_entry(w, &smi_watchers, link) {
625 		if (try_module_get(w->owner)) {
626 			w->new_smi(i, dev);
627 			module_put(w->owner);
628 		}
629 	}
630 }
631 
632 static int
633 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
634 {
635 	if (addr1->addr_type != addr2->addr_type)
636 		return 0;
637 
638 	if (addr1->channel != addr2->channel)
639 		return 0;
640 
641 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
642 		struct ipmi_system_interface_addr *smi_addr1
643 		    = (struct ipmi_system_interface_addr *) addr1;
644 		struct ipmi_system_interface_addr *smi_addr2
645 		    = (struct ipmi_system_interface_addr *) addr2;
646 		return (smi_addr1->lun == smi_addr2->lun);
647 	}
648 
649 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
650 		struct ipmi_ipmb_addr *ipmb_addr1
651 		    = (struct ipmi_ipmb_addr *) addr1;
652 		struct ipmi_ipmb_addr *ipmb_addr2
653 		    = (struct ipmi_ipmb_addr *) addr2;
654 
655 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
656 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
657 	}
658 
659 	if (is_lan_addr(addr1)) {
660 		struct ipmi_lan_addr *lan_addr1
661 			= (struct ipmi_lan_addr *) addr1;
662 		struct ipmi_lan_addr *lan_addr2
663 		    = (struct ipmi_lan_addr *) addr2;
664 
665 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
666 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
667 			&& (lan_addr1->session_handle
668 			    == lan_addr2->session_handle)
669 			&& (lan_addr1->lun == lan_addr2->lun));
670 	}
671 
672 	return 1;
673 }
674 
675 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
676 {
677 	if (len < sizeof(struct ipmi_system_interface_addr))
678 		return -EINVAL;
679 
680 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
681 		if (addr->channel != IPMI_BMC_CHANNEL)
682 			return -EINVAL;
683 		return 0;
684 	}
685 
686 	if ((addr->channel == IPMI_BMC_CHANNEL)
687 	    || (addr->channel >= IPMI_MAX_CHANNELS)
688 	    || (addr->channel < 0))
689 		return -EINVAL;
690 
691 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
692 		if (len < sizeof(struct ipmi_ipmb_addr))
693 			return -EINVAL;
694 		return 0;
695 	}
696 
697 	if (is_lan_addr(addr)) {
698 		if (len < sizeof(struct ipmi_lan_addr))
699 			return -EINVAL;
700 		return 0;
701 	}
702 
703 	return -EINVAL;
704 }
705 EXPORT_SYMBOL(ipmi_validate_addr);
706 
707 unsigned int ipmi_addr_length(int addr_type)
708 {
709 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
710 		return sizeof(struct ipmi_system_interface_addr);
711 
712 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
713 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
714 		return sizeof(struct ipmi_ipmb_addr);
715 
716 	if (addr_type == IPMI_LAN_ADDR_TYPE)
717 		return sizeof(struct ipmi_lan_addr);
718 
719 	return 0;
720 }
721 EXPORT_SYMBOL(ipmi_addr_length);
722 
723 static void deliver_response(struct ipmi_recv_msg *msg)
724 {
725 	if (!msg->user) {
726 		ipmi_smi_t    intf = msg->user_msg_data;
727 
728 		/* Special handling for NULL users. */
729 		if (intf->null_user_handler) {
730 			intf->null_user_handler(intf, msg);
731 			ipmi_inc_stat(intf, handled_local_responses);
732 		} else {
733 			/* No handler, so give up. */
734 			ipmi_inc_stat(intf, unhandled_local_responses);
735 		}
736 		ipmi_free_recv_msg(msg);
737 	} else {
738 		ipmi_user_t user = msg->user;
739 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
740 	}
741 }
742 
743 static void
744 deliver_err_response(struct ipmi_recv_msg *msg, int err)
745 {
746 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
747 	msg->msg_data[0] = err;
748 	msg->msg.netfn |= 1; /* Convert to a response. */
749 	msg->msg.data_len = 1;
750 	msg->msg.data = msg->msg_data;
751 	deliver_response(msg);
752 }
753 
754 /*
755  * Find the next sequence number not being used and add the given
756  * message with the given timeout to the sequence table.  This must be
757  * called with the interface's seq_lock held.
758  */
759 static int intf_next_seq(ipmi_smi_t           intf,
760 			 struct ipmi_recv_msg *recv_msg,
761 			 unsigned long        timeout,
762 			 int                  retries,
763 			 int                  broadcast,
764 			 unsigned char        *seq,
765 			 long                 *seqid)
766 {
767 	int          rv = 0;
768 	unsigned int i;
769 
770 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
771 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
772 		if (!intf->seq_table[i].inuse)
773 			break;
774 	}
775 
776 	if (!intf->seq_table[i].inuse) {
777 		intf->seq_table[i].recv_msg = recv_msg;
778 
779 		/*
780 		 * Start with the maximum timeout, when the send response
781 		 * comes in we will start the real timer.
782 		 */
783 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
784 		intf->seq_table[i].orig_timeout = timeout;
785 		intf->seq_table[i].retries_left = retries;
786 		intf->seq_table[i].broadcast = broadcast;
787 		intf->seq_table[i].inuse = 1;
788 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
789 		*seq = i;
790 		*seqid = intf->seq_table[i].seqid;
791 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
792 		need_waiter(intf);
793 	} else {
794 		rv = -EAGAIN;
795 	}
796 
797 	return rv;
798 }
799 
800 /*
801  * Return the receive message for the given sequence number and
802  * release the sequence number so it can be reused.  Some other data
803  * is passed in to be sure the message matches up correctly (to help
804  * guard against message coming in after their timeout and the
805  * sequence number being reused).
806  */
807 static int intf_find_seq(ipmi_smi_t           intf,
808 			 unsigned char        seq,
809 			 short                channel,
810 			 unsigned char        cmd,
811 			 unsigned char        netfn,
812 			 struct ipmi_addr     *addr,
813 			 struct ipmi_recv_msg **recv_msg)
814 {
815 	int           rv = -ENODEV;
816 	unsigned long flags;
817 
818 	if (seq >= IPMI_IPMB_NUM_SEQ)
819 		return -EINVAL;
820 
821 	spin_lock_irqsave(&(intf->seq_lock), flags);
822 	if (intf->seq_table[seq].inuse) {
823 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
824 
825 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
826 				&& (msg->msg.netfn == netfn)
827 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
828 			*recv_msg = msg;
829 			intf->seq_table[seq].inuse = 0;
830 			rv = 0;
831 		}
832 	}
833 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
834 
835 	return rv;
836 }
837 
838 
839 /* Start the timer for a specific sequence table entry. */
840 static int intf_start_seq_timer(ipmi_smi_t intf,
841 				long       msgid)
842 {
843 	int           rv = -ENODEV;
844 	unsigned long flags;
845 	unsigned char seq;
846 	unsigned long seqid;
847 
848 
849 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
850 
851 	spin_lock_irqsave(&(intf->seq_lock), flags);
852 	/*
853 	 * We do this verification because the user can be deleted
854 	 * while a message is outstanding.
855 	 */
856 	if ((intf->seq_table[seq].inuse)
857 				&& (intf->seq_table[seq].seqid == seqid)) {
858 		struct seq_table *ent = &(intf->seq_table[seq]);
859 		ent->timeout = ent->orig_timeout;
860 		rv = 0;
861 	}
862 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
863 
864 	return rv;
865 }
866 
867 /* Got an error for the send message for a specific sequence number. */
868 static int intf_err_seq(ipmi_smi_t   intf,
869 			long         msgid,
870 			unsigned int err)
871 {
872 	int                  rv = -ENODEV;
873 	unsigned long        flags;
874 	unsigned char        seq;
875 	unsigned long        seqid;
876 	struct ipmi_recv_msg *msg = NULL;
877 
878 
879 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
880 
881 	spin_lock_irqsave(&(intf->seq_lock), flags);
882 	/*
883 	 * We do this verification because the user can be deleted
884 	 * while a message is outstanding.
885 	 */
886 	if ((intf->seq_table[seq].inuse)
887 				&& (intf->seq_table[seq].seqid == seqid)) {
888 		struct seq_table *ent = &(intf->seq_table[seq]);
889 
890 		ent->inuse = 0;
891 		msg = ent->recv_msg;
892 		rv = 0;
893 	}
894 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
895 
896 	if (msg)
897 		deliver_err_response(msg, err);
898 
899 	return rv;
900 }
901 
902 
903 int ipmi_create_user(unsigned int          if_num,
904 		     struct ipmi_user_hndl *handler,
905 		     void                  *handler_data,
906 		     ipmi_user_t           *user)
907 {
908 	unsigned long flags;
909 	ipmi_user_t   new_user;
910 	int           rv = 0;
911 	ipmi_smi_t    intf;
912 
913 	/*
914 	 * There is no module usecount here, because it's not
915 	 * required.  Since this can only be used by and called from
916 	 * other modules, they will implicitly use this module, and
917 	 * thus this can't be removed unless the other modules are
918 	 * removed.
919 	 */
920 
921 	if (handler == NULL)
922 		return -EINVAL;
923 
924 	/*
925 	 * Make sure the driver is actually initialized, this handles
926 	 * problems with initialization order.
927 	 */
928 	if (!initialized) {
929 		rv = ipmi_init_msghandler();
930 		if (rv)
931 			return rv;
932 
933 		/*
934 		 * The init code doesn't return an error if it was turned
935 		 * off, but it won't initialize.  Check that.
936 		 */
937 		if (!initialized)
938 			return -ENODEV;
939 	}
940 
941 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
942 	if (!new_user)
943 		return -ENOMEM;
944 
945 	mutex_lock(&ipmi_interfaces_mutex);
946 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
947 		if (intf->intf_num == if_num)
948 			goto found;
949 	}
950 	/* Not found, return an error */
951 	rv = -EINVAL;
952 	goto out_kfree;
953 
954  found:
955 	/* Note that each existing user holds a refcount to the interface. */
956 	kref_get(&intf->refcount);
957 
958 	kref_init(&new_user->refcount);
959 	new_user->handler = handler;
960 	new_user->handler_data = handler_data;
961 	new_user->intf = intf;
962 	new_user->gets_events = false;
963 
964 	if (!try_module_get(intf->handlers->owner)) {
965 		rv = -ENODEV;
966 		goto out_kref;
967 	}
968 
969 	if (intf->handlers->inc_usecount) {
970 		rv = intf->handlers->inc_usecount(intf->send_info);
971 		if (rv) {
972 			module_put(intf->handlers->owner);
973 			goto out_kref;
974 		}
975 	}
976 
977 	/*
978 	 * Hold the lock so intf->handlers is guaranteed to be good
979 	 * until now
980 	 */
981 	mutex_unlock(&ipmi_interfaces_mutex);
982 
983 	new_user->valid = true;
984 	spin_lock_irqsave(&intf->seq_lock, flags);
985 	list_add_rcu(&new_user->link, &intf->users);
986 	spin_unlock_irqrestore(&intf->seq_lock, flags);
987 	if (handler->ipmi_watchdog_pretimeout) {
988 		/* User wants pretimeouts, so make sure to watch for them. */
989 		if (atomic_inc_return(&intf->event_waiters) == 1)
990 			need_waiter(intf);
991 	}
992 	*user = new_user;
993 	return 0;
994 
995 out_kref:
996 	kref_put(&intf->refcount, intf_free);
997 out_kfree:
998 	mutex_unlock(&ipmi_interfaces_mutex);
999 	kfree(new_user);
1000 	return rv;
1001 }
1002 EXPORT_SYMBOL(ipmi_create_user);
1003 
1004 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1005 {
1006 	int           rv = 0;
1007 	ipmi_smi_t    intf;
1008 	struct ipmi_smi_handlers *handlers;
1009 
1010 	mutex_lock(&ipmi_interfaces_mutex);
1011 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1012 		if (intf->intf_num == if_num)
1013 			goto found;
1014 	}
1015 	/* Not found, return an error */
1016 	rv = -EINVAL;
1017 	mutex_unlock(&ipmi_interfaces_mutex);
1018 	return rv;
1019 
1020 found:
1021 	handlers = intf->handlers;
1022 	rv = -ENOSYS;
1023 	if (handlers->get_smi_info)
1024 		rv = handlers->get_smi_info(intf->send_info, data);
1025 	mutex_unlock(&ipmi_interfaces_mutex);
1026 
1027 	return rv;
1028 }
1029 EXPORT_SYMBOL(ipmi_get_smi_info);
1030 
1031 static void free_user(struct kref *ref)
1032 {
1033 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1034 	kfree(user);
1035 }
1036 
1037 int ipmi_destroy_user(ipmi_user_t user)
1038 {
1039 	ipmi_smi_t       intf = user->intf;
1040 	int              i;
1041 	unsigned long    flags;
1042 	struct cmd_rcvr  *rcvr;
1043 	struct cmd_rcvr  *rcvrs = NULL;
1044 
1045 	user->valid = false;
1046 
1047 	if (user->handler->ipmi_watchdog_pretimeout)
1048 		atomic_dec(&intf->event_waiters);
1049 
1050 	if (user->gets_events)
1051 		atomic_dec(&intf->event_waiters);
1052 
1053 	/* Remove the user from the interface's sequence table. */
1054 	spin_lock_irqsave(&intf->seq_lock, flags);
1055 	list_del_rcu(&user->link);
1056 
1057 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1058 		if (intf->seq_table[i].inuse
1059 		    && (intf->seq_table[i].recv_msg->user == user)) {
1060 			intf->seq_table[i].inuse = 0;
1061 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1062 		}
1063 	}
1064 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1065 
1066 	/*
1067 	 * Remove the user from the command receiver's table.  First
1068 	 * we build a list of everything (not using the standard link,
1069 	 * since other things may be using it till we do
1070 	 * synchronize_rcu()) then free everything in that list.
1071 	 */
1072 	mutex_lock(&intf->cmd_rcvrs_mutex);
1073 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1074 		if (rcvr->user == user) {
1075 			list_del_rcu(&rcvr->link);
1076 			rcvr->next = rcvrs;
1077 			rcvrs = rcvr;
1078 		}
1079 	}
1080 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1081 	synchronize_rcu();
1082 	while (rcvrs) {
1083 		rcvr = rcvrs;
1084 		rcvrs = rcvr->next;
1085 		kfree(rcvr);
1086 	}
1087 
1088 	mutex_lock(&ipmi_interfaces_mutex);
1089 	if (intf->handlers) {
1090 		module_put(intf->handlers->owner);
1091 		if (intf->handlers->dec_usecount)
1092 			intf->handlers->dec_usecount(intf->send_info);
1093 	}
1094 	mutex_unlock(&ipmi_interfaces_mutex);
1095 
1096 	kref_put(&intf->refcount, intf_free);
1097 
1098 	kref_put(&user->refcount, free_user);
1099 
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL(ipmi_destroy_user);
1103 
1104 void ipmi_get_version(ipmi_user_t   user,
1105 		      unsigned char *major,
1106 		      unsigned char *minor)
1107 {
1108 	*major = user->intf->ipmi_version_major;
1109 	*minor = user->intf->ipmi_version_minor;
1110 }
1111 EXPORT_SYMBOL(ipmi_get_version);
1112 
1113 int ipmi_set_my_address(ipmi_user_t   user,
1114 			unsigned int  channel,
1115 			unsigned char address)
1116 {
1117 	if (channel >= IPMI_MAX_CHANNELS)
1118 		return -EINVAL;
1119 	user->intf->channels[channel].address = address;
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL(ipmi_set_my_address);
1123 
1124 int ipmi_get_my_address(ipmi_user_t   user,
1125 			unsigned int  channel,
1126 			unsigned char *address)
1127 {
1128 	if (channel >= IPMI_MAX_CHANNELS)
1129 		return -EINVAL;
1130 	*address = user->intf->channels[channel].address;
1131 	return 0;
1132 }
1133 EXPORT_SYMBOL(ipmi_get_my_address);
1134 
1135 int ipmi_set_my_LUN(ipmi_user_t   user,
1136 		    unsigned int  channel,
1137 		    unsigned char LUN)
1138 {
1139 	if (channel >= IPMI_MAX_CHANNELS)
1140 		return -EINVAL;
1141 	user->intf->channels[channel].lun = LUN & 0x3;
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL(ipmi_set_my_LUN);
1145 
1146 int ipmi_get_my_LUN(ipmi_user_t   user,
1147 		    unsigned int  channel,
1148 		    unsigned char *address)
1149 {
1150 	if (channel >= IPMI_MAX_CHANNELS)
1151 		return -EINVAL;
1152 	*address = user->intf->channels[channel].lun;
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL(ipmi_get_my_LUN);
1156 
1157 int ipmi_get_maintenance_mode(ipmi_user_t user)
1158 {
1159 	int           mode;
1160 	unsigned long flags;
1161 
1162 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1163 	mode = user->intf->maintenance_mode;
1164 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1165 
1166 	return mode;
1167 }
1168 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1169 
1170 static void maintenance_mode_update(ipmi_smi_t intf)
1171 {
1172 	if (intf->handlers->set_maintenance_mode)
1173 		intf->handlers->set_maintenance_mode(
1174 			intf->send_info, intf->maintenance_mode_enable);
1175 }
1176 
1177 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1178 {
1179 	int           rv = 0;
1180 	unsigned long flags;
1181 	ipmi_smi_t    intf = user->intf;
1182 
1183 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1184 	if (intf->maintenance_mode != mode) {
1185 		switch (mode) {
1186 		case IPMI_MAINTENANCE_MODE_AUTO:
1187 			intf->maintenance_mode_enable
1188 				= (intf->auto_maintenance_timeout > 0);
1189 			break;
1190 
1191 		case IPMI_MAINTENANCE_MODE_OFF:
1192 			intf->maintenance_mode_enable = false;
1193 			break;
1194 
1195 		case IPMI_MAINTENANCE_MODE_ON:
1196 			intf->maintenance_mode_enable = true;
1197 			break;
1198 
1199 		default:
1200 			rv = -EINVAL;
1201 			goto out_unlock;
1202 		}
1203 		intf->maintenance_mode = mode;
1204 
1205 		maintenance_mode_update(intf);
1206 	}
1207  out_unlock:
1208 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1209 
1210 	return rv;
1211 }
1212 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1213 
1214 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1215 {
1216 	unsigned long        flags;
1217 	ipmi_smi_t           intf = user->intf;
1218 	struct ipmi_recv_msg *msg, *msg2;
1219 	struct list_head     msgs;
1220 
1221 	INIT_LIST_HEAD(&msgs);
1222 
1223 	spin_lock_irqsave(&intf->events_lock, flags);
1224 	if (user->gets_events == val)
1225 		goto out;
1226 
1227 	user->gets_events = val;
1228 
1229 	if (val) {
1230 		if (atomic_inc_return(&intf->event_waiters) == 1)
1231 			need_waiter(intf);
1232 	} else {
1233 		atomic_dec(&intf->event_waiters);
1234 	}
1235 
1236 	if (intf->delivering_events)
1237 		/*
1238 		 * Another thread is delivering events for this, so
1239 		 * let it handle any new events.
1240 		 */
1241 		goto out;
1242 
1243 	/* Deliver any queued events. */
1244 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1245 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1246 			list_move_tail(&msg->link, &msgs);
1247 		intf->waiting_events_count = 0;
1248 		if (intf->event_msg_printed) {
1249 			printk(KERN_WARNING PFX "Event queue no longer"
1250 			       " full\n");
1251 			intf->event_msg_printed = 0;
1252 		}
1253 
1254 		intf->delivering_events = 1;
1255 		spin_unlock_irqrestore(&intf->events_lock, flags);
1256 
1257 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1258 			msg->user = user;
1259 			kref_get(&user->refcount);
1260 			deliver_response(msg);
1261 		}
1262 
1263 		spin_lock_irqsave(&intf->events_lock, flags);
1264 		intf->delivering_events = 0;
1265 	}
1266 
1267  out:
1268 	spin_unlock_irqrestore(&intf->events_lock, flags);
1269 
1270 	return 0;
1271 }
1272 EXPORT_SYMBOL(ipmi_set_gets_events);
1273 
1274 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1275 				      unsigned char netfn,
1276 				      unsigned char cmd,
1277 				      unsigned char chan)
1278 {
1279 	struct cmd_rcvr *rcvr;
1280 
1281 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1282 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1283 					&& (rcvr->chans & (1 << chan)))
1284 			return rcvr;
1285 	}
1286 	return NULL;
1287 }
1288 
1289 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1290 				 unsigned char netfn,
1291 				 unsigned char cmd,
1292 				 unsigned int  chans)
1293 {
1294 	struct cmd_rcvr *rcvr;
1295 
1296 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1297 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1298 					&& (rcvr->chans & chans))
1299 			return 0;
1300 	}
1301 	return 1;
1302 }
1303 
1304 int ipmi_register_for_cmd(ipmi_user_t   user,
1305 			  unsigned char netfn,
1306 			  unsigned char cmd,
1307 			  unsigned int  chans)
1308 {
1309 	ipmi_smi_t      intf = user->intf;
1310 	struct cmd_rcvr *rcvr;
1311 	int             rv = 0;
1312 
1313 
1314 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1315 	if (!rcvr)
1316 		return -ENOMEM;
1317 	rcvr->cmd = cmd;
1318 	rcvr->netfn = netfn;
1319 	rcvr->chans = chans;
1320 	rcvr->user = user;
1321 
1322 	mutex_lock(&intf->cmd_rcvrs_mutex);
1323 	/* Make sure the command/netfn is not already registered. */
1324 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1325 		rv = -EBUSY;
1326 		goto out_unlock;
1327 	}
1328 
1329 	if (atomic_inc_return(&intf->event_waiters) == 1)
1330 		need_waiter(intf);
1331 
1332 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1333 
1334  out_unlock:
1335 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1336 	if (rv)
1337 		kfree(rcvr);
1338 
1339 	return rv;
1340 }
1341 EXPORT_SYMBOL(ipmi_register_for_cmd);
1342 
1343 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1344 			    unsigned char netfn,
1345 			    unsigned char cmd,
1346 			    unsigned int  chans)
1347 {
1348 	ipmi_smi_t      intf = user->intf;
1349 	struct cmd_rcvr *rcvr;
1350 	struct cmd_rcvr *rcvrs = NULL;
1351 	int i, rv = -ENOENT;
1352 
1353 	mutex_lock(&intf->cmd_rcvrs_mutex);
1354 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1355 		if (((1 << i) & chans) == 0)
1356 			continue;
1357 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1358 		if (rcvr == NULL)
1359 			continue;
1360 		if (rcvr->user == user) {
1361 			rv = 0;
1362 			rcvr->chans &= ~chans;
1363 			if (rcvr->chans == 0) {
1364 				list_del_rcu(&rcvr->link);
1365 				rcvr->next = rcvrs;
1366 				rcvrs = rcvr;
1367 			}
1368 		}
1369 	}
1370 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1371 	synchronize_rcu();
1372 	while (rcvrs) {
1373 		atomic_dec(&intf->event_waiters);
1374 		rcvr = rcvrs;
1375 		rcvrs = rcvr->next;
1376 		kfree(rcvr);
1377 	}
1378 	return rv;
1379 }
1380 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1381 
1382 static unsigned char
1383 ipmb_checksum(unsigned char *data, int size)
1384 {
1385 	unsigned char csum = 0;
1386 
1387 	for (; size > 0; size--, data++)
1388 		csum += *data;
1389 
1390 	return -csum;
1391 }
1392 
1393 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1394 				   struct kernel_ipmi_msg *msg,
1395 				   struct ipmi_ipmb_addr *ipmb_addr,
1396 				   long                  msgid,
1397 				   unsigned char         ipmb_seq,
1398 				   int                   broadcast,
1399 				   unsigned char         source_address,
1400 				   unsigned char         source_lun)
1401 {
1402 	int i = broadcast;
1403 
1404 	/* Format the IPMB header data. */
1405 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1406 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1407 	smi_msg->data[2] = ipmb_addr->channel;
1408 	if (broadcast)
1409 		smi_msg->data[3] = 0;
1410 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1411 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1412 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1413 	smi_msg->data[i+6] = source_address;
1414 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1415 	smi_msg->data[i+8] = msg->cmd;
1416 
1417 	/* Now tack on the data to the message. */
1418 	if (msg->data_len > 0)
1419 		memcpy(&(smi_msg->data[i+9]), msg->data,
1420 		       msg->data_len);
1421 	smi_msg->data_size = msg->data_len + 9;
1422 
1423 	/* Now calculate the checksum and tack it on. */
1424 	smi_msg->data[i+smi_msg->data_size]
1425 		= ipmb_checksum(&(smi_msg->data[i+6]),
1426 				smi_msg->data_size-6);
1427 
1428 	/*
1429 	 * Add on the checksum size and the offset from the
1430 	 * broadcast.
1431 	 */
1432 	smi_msg->data_size += 1 + i;
1433 
1434 	smi_msg->msgid = msgid;
1435 }
1436 
1437 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1438 				  struct kernel_ipmi_msg *msg,
1439 				  struct ipmi_lan_addr  *lan_addr,
1440 				  long                  msgid,
1441 				  unsigned char         ipmb_seq,
1442 				  unsigned char         source_lun)
1443 {
1444 	/* Format the IPMB header data. */
1445 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1446 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1447 	smi_msg->data[2] = lan_addr->channel;
1448 	smi_msg->data[3] = lan_addr->session_handle;
1449 	smi_msg->data[4] = lan_addr->remote_SWID;
1450 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1451 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1452 	smi_msg->data[7] = lan_addr->local_SWID;
1453 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1454 	smi_msg->data[9] = msg->cmd;
1455 
1456 	/* Now tack on the data to the message. */
1457 	if (msg->data_len > 0)
1458 		memcpy(&(smi_msg->data[10]), msg->data,
1459 		       msg->data_len);
1460 	smi_msg->data_size = msg->data_len + 10;
1461 
1462 	/* Now calculate the checksum and tack it on. */
1463 	smi_msg->data[smi_msg->data_size]
1464 		= ipmb_checksum(&(smi_msg->data[7]),
1465 				smi_msg->data_size-7);
1466 
1467 	/*
1468 	 * Add on the checksum size and the offset from the
1469 	 * broadcast.
1470 	 */
1471 	smi_msg->data_size += 1;
1472 
1473 	smi_msg->msgid = msgid;
1474 }
1475 
1476 /*
1477  * Separate from ipmi_request so that the user does not have to be
1478  * supplied in certain circumstances (mainly at panic time).  If
1479  * messages are supplied, they will be freed, even if an error
1480  * occurs.
1481  */
1482 static int i_ipmi_request(ipmi_user_t          user,
1483 			  ipmi_smi_t           intf,
1484 			  struct ipmi_addr     *addr,
1485 			  long                 msgid,
1486 			  struct kernel_ipmi_msg *msg,
1487 			  void                 *user_msg_data,
1488 			  void                 *supplied_smi,
1489 			  struct ipmi_recv_msg *supplied_recv,
1490 			  int                  priority,
1491 			  unsigned char        source_address,
1492 			  unsigned char        source_lun,
1493 			  int                  retries,
1494 			  unsigned int         retry_time_ms)
1495 {
1496 	int                      rv = 0;
1497 	struct ipmi_smi_msg      *smi_msg;
1498 	struct ipmi_recv_msg     *recv_msg;
1499 	unsigned long            flags;
1500 	struct ipmi_smi_handlers *handlers;
1501 
1502 
1503 	if (supplied_recv)
1504 		recv_msg = supplied_recv;
1505 	else {
1506 		recv_msg = ipmi_alloc_recv_msg();
1507 		if (recv_msg == NULL)
1508 			return -ENOMEM;
1509 	}
1510 	recv_msg->user_msg_data = user_msg_data;
1511 
1512 	if (supplied_smi)
1513 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1514 	else {
1515 		smi_msg = ipmi_alloc_smi_msg();
1516 		if (smi_msg == NULL) {
1517 			ipmi_free_recv_msg(recv_msg);
1518 			return -ENOMEM;
1519 		}
1520 	}
1521 
1522 	rcu_read_lock();
1523 	handlers = intf->handlers;
1524 	if (!handlers) {
1525 		rv = -ENODEV;
1526 		goto out_err;
1527 	}
1528 
1529 	recv_msg->user = user;
1530 	if (user)
1531 		kref_get(&user->refcount);
1532 	recv_msg->msgid = msgid;
1533 	/*
1534 	 * Store the message to send in the receive message so timeout
1535 	 * responses can get the proper response data.
1536 	 */
1537 	recv_msg->msg = *msg;
1538 
1539 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1540 		struct ipmi_system_interface_addr *smi_addr;
1541 
1542 		if (msg->netfn & 1) {
1543 			/* Responses are not allowed to the SMI. */
1544 			rv = -EINVAL;
1545 			goto out_err;
1546 		}
1547 
1548 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1549 		if (smi_addr->lun > 3) {
1550 			ipmi_inc_stat(intf, sent_invalid_commands);
1551 			rv = -EINVAL;
1552 			goto out_err;
1553 		}
1554 
1555 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1556 
1557 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1558 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1559 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1560 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1561 			/*
1562 			 * We don't let the user do these, since we manage
1563 			 * the sequence numbers.
1564 			 */
1565 			ipmi_inc_stat(intf, sent_invalid_commands);
1566 			rv = -EINVAL;
1567 			goto out_err;
1568 		}
1569 
1570 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1571 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1572 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1573 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1574 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1575 			intf->auto_maintenance_timeout
1576 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1577 			if (!intf->maintenance_mode
1578 			    && !intf->maintenance_mode_enable) {
1579 				intf->maintenance_mode_enable = true;
1580 				maintenance_mode_update(intf);
1581 			}
1582 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1583 					       flags);
1584 		}
1585 
1586 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1587 			ipmi_inc_stat(intf, sent_invalid_commands);
1588 			rv = -EMSGSIZE;
1589 			goto out_err;
1590 		}
1591 
1592 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1593 		smi_msg->data[1] = msg->cmd;
1594 		smi_msg->msgid = msgid;
1595 		smi_msg->user_data = recv_msg;
1596 		if (msg->data_len > 0)
1597 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1598 		smi_msg->data_size = msg->data_len + 2;
1599 		ipmi_inc_stat(intf, sent_local_commands);
1600 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1601 		struct ipmi_ipmb_addr *ipmb_addr;
1602 		unsigned char         ipmb_seq;
1603 		long                  seqid;
1604 		int                   broadcast = 0;
1605 
1606 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1607 			ipmi_inc_stat(intf, sent_invalid_commands);
1608 			rv = -EINVAL;
1609 			goto out_err;
1610 		}
1611 
1612 		if (intf->channels[addr->channel].medium
1613 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1614 			ipmi_inc_stat(intf, sent_invalid_commands);
1615 			rv = -EINVAL;
1616 			goto out_err;
1617 		}
1618 
1619 		if (retries < 0) {
1620 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1621 			retries = 0; /* Don't retry broadcasts. */
1622 		    else
1623 			retries = 4;
1624 		}
1625 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1626 		    /*
1627 		     * Broadcasts add a zero at the beginning of the
1628 		     * message, but otherwise is the same as an IPMB
1629 		     * address.
1630 		     */
1631 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1632 		    broadcast = 1;
1633 		}
1634 
1635 
1636 		/* Default to 1 second retries. */
1637 		if (retry_time_ms == 0)
1638 		    retry_time_ms = 1000;
1639 
1640 		/*
1641 		 * 9 for the header and 1 for the checksum, plus
1642 		 * possibly one for the broadcast.
1643 		 */
1644 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1645 			ipmi_inc_stat(intf, sent_invalid_commands);
1646 			rv = -EMSGSIZE;
1647 			goto out_err;
1648 		}
1649 
1650 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1651 		if (ipmb_addr->lun > 3) {
1652 			ipmi_inc_stat(intf, sent_invalid_commands);
1653 			rv = -EINVAL;
1654 			goto out_err;
1655 		}
1656 
1657 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1658 
1659 		if (recv_msg->msg.netfn & 0x1) {
1660 			/*
1661 			 * It's a response, so use the user's sequence
1662 			 * from msgid.
1663 			 */
1664 			ipmi_inc_stat(intf, sent_ipmb_responses);
1665 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1666 					msgid, broadcast,
1667 					source_address, source_lun);
1668 
1669 			/*
1670 			 * Save the receive message so we can use it
1671 			 * to deliver the response.
1672 			 */
1673 			smi_msg->user_data = recv_msg;
1674 		} else {
1675 			/* It's a command, so get a sequence for it. */
1676 
1677 			spin_lock_irqsave(&(intf->seq_lock), flags);
1678 
1679 			/*
1680 			 * Create a sequence number with a 1 second
1681 			 * timeout and 4 retries.
1682 			 */
1683 			rv = intf_next_seq(intf,
1684 					   recv_msg,
1685 					   retry_time_ms,
1686 					   retries,
1687 					   broadcast,
1688 					   &ipmb_seq,
1689 					   &seqid);
1690 			if (rv) {
1691 				/*
1692 				 * We have used up all the sequence numbers,
1693 				 * probably, so abort.
1694 				 */
1695 				spin_unlock_irqrestore(&(intf->seq_lock),
1696 						       flags);
1697 				goto out_err;
1698 			}
1699 
1700 			ipmi_inc_stat(intf, sent_ipmb_commands);
1701 
1702 			/*
1703 			 * Store the sequence number in the message,
1704 			 * so that when the send message response
1705 			 * comes back we can start the timer.
1706 			 */
1707 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1708 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1709 					ipmb_seq, broadcast,
1710 					source_address, source_lun);
1711 
1712 			/*
1713 			 * Copy the message into the recv message data, so we
1714 			 * can retransmit it later if necessary.
1715 			 */
1716 			memcpy(recv_msg->msg_data, smi_msg->data,
1717 			       smi_msg->data_size);
1718 			recv_msg->msg.data = recv_msg->msg_data;
1719 			recv_msg->msg.data_len = smi_msg->data_size;
1720 
1721 			/*
1722 			 * We don't unlock until here, because we need
1723 			 * to copy the completed message into the
1724 			 * recv_msg before we release the lock.
1725 			 * Otherwise, race conditions may bite us.  I
1726 			 * know that's pretty paranoid, but I prefer
1727 			 * to be correct.
1728 			 */
1729 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1730 		}
1731 	} else if (is_lan_addr(addr)) {
1732 		struct ipmi_lan_addr  *lan_addr;
1733 		unsigned char         ipmb_seq;
1734 		long                  seqid;
1735 
1736 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1737 			ipmi_inc_stat(intf, sent_invalid_commands);
1738 			rv = -EINVAL;
1739 			goto out_err;
1740 		}
1741 
1742 		if ((intf->channels[addr->channel].medium
1743 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1744 		    && (intf->channels[addr->channel].medium
1745 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1746 			ipmi_inc_stat(intf, sent_invalid_commands);
1747 			rv = -EINVAL;
1748 			goto out_err;
1749 		}
1750 
1751 		retries = 4;
1752 
1753 		/* Default to 1 second retries. */
1754 		if (retry_time_ms == 0)
1755 		    retry_time_ms = 1000;
1756 
1757 		/* 11 for the header and 1 for the checksum. */
1758 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1759 			ipmi_inc_stat(intf, sent_invalid_commands);
1760 			rv = -EMSGSIZE;
1761 			goto out_err;
1762 		}
1763 
1764 		lan_addr = (struct ipmi_lan_addr *) addr;
1765 		if (lan_addr->lun > 3) {
1766 			ipmi_inc_stat(intf, sent_invalid_commands);
1767 			rv = -EINVAL;
1768 			goto out_err;
1769 		}
1770 
1771 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1772 
1773 		if (recv_msg->msg.netfn & 0x1) {
1774 			/*
1775 			 * It's a response, so use the user's sequence
1776 			 * from msgid.
1777 			 */
1778 			ipmi_inc_stat(intf, sent_lan_responses);
1779 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1780 				       msgid, source_lun);
1781 
1782 			/*
1783 			 * Save the receive message so we can use it
1784 			 * to deliver the response.
1785 			 */
1786 			smi_msg->user_data = recv_msg;
1787 		} else {
1788 			/* It's a command, so get a sequence for it. */
1789 
1790 			spin_lock_irqsave(&(intf->seq_lock), flags);
1791 
1792 			/*
1793 			 * Create a sequence number with a 1 second
1794 			 * timeout and 4 retries.
1795 			 */
1796 			rv = intf_next_seq(intf,
1797 					   recv_msg,
1798 					   retry_time_ms,
1799 					   retries,
1800 					   0,
1801 					   &ipmb_seq,
1802 					   &seqid);
1803 			if (rv) {
1804 				/*
1805 				 * We have used up all the sequence numbers,
1806 				 * probably, so abort.
1807 				 */
1808 				spin_unlock_irqrestore(&(intf->seq_lock),
1809 						       flags);
1810 				goto out_err;
1811 			}
1812 
1813 			ipmi_inc_stat(intf, sent_lan_commands);
1814 
1815 			/*
1816 			 * Store the sequence number in the message,
1817 			 * so that when the send message response
1818 			 * comes back we can start the timer.
1819 			 */
1820 			format_lan_msg(smi_msg, msg, lan_addr,
1821 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1822 				       ipmb_seq, source_lun);
1823 
1824 			/*
1825 			 * Copy the message into the recv message data, so we
1826 			 * can retransmit it later if necessary.
1827 			 */
1828 			memcpy(recv_msg->msg_data, smi_msg->data,
1829 			       smi_msg->data_size);
1830 			recv_msg->msg.data = recv_msg->msg_data;
1831 			recv_msg->msg.data_len = smi_msg->data_size;
1832 
1833 			/*
1834 			 * We don't unlock until here, because we need
1835 			 * to copy the completed message into the
1836 			 * recv_msg before we release the lock.
1837 			 * Otherwise, race conditions may bite us.  I
1838 			 * know that's pretty paranoid, but I prefer
1839 			 * to be correct.
1840 			 */
1841 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1842 		}
1843 	} else {
1844 	    /* Unknown address type. */
1845 		ipmi_inc_stat(intf, sent_invalid_commands);
1846 		rv = -EINVAL;
1847 		goto out_err;
1848 	}
1849 
1850 #ifdef DEBUG_MSGING
1851 	{
1852 		int m;
1853 		for (m = 0; m < smi_msg->data_size; m++)
1854 			printk(" %2.2x", smi_msg->data[m]);
1855 		printk("\n");
1856 	}
1857 #endif
1858 
1859 	handlers->sender(intf->send_info, smi_msg, priority);
1860 	rcu_read_unlock();
1861 
1862 	return 0;
1863 
1864  out_err:
1865 	rcu_read_unlock();
1866 	ipmi_free_smi_msg(smi_msg);
1867 	ipmi_free_recv_msg(recv_msg);
1868 	return rv;
1869 }
1870 
1871 static int check_addr(ipmi_smi_t       intf,
1872 		      struct ipmi_addr *addr,
1873 		      unsigned char    *saddr,
1874 		      unsigned char    *lun)
1875 {
1876 	if (addr->channel >= IPMI_MAX_CHANNELS)
1877 		return -EINVAL;
1878 	*lun = intf->channels[addr->channel].lun;
1879 	*saddr = intf->channels[addr->channel].address;
1880 	return 0;
1881 }
1882 
1883 int ipmi_request_settime(ipmi_user_t      user,
1884 			 struct ipmi_addr *addr,
1885 			 long             msgid,
1886 			 struct kernel_ipmi_msg  *msg,
1887 			 void             *user_msg_data,
1888 			 int              priority,
1889 			 int              retries,
1890 			 unsigned int     retry_time_ms)
1891 {
1892 	unsigned char saddr = 0, lun = 0;
1893 	int           rv;
1894 
1895 	if (!user)
1896 		return -EINVAL;
1897 	rv = check_addr(user->intf, addr, &saddr, &lun);
1898 	if (rv)
1899 		return rv;
1900 	return i_ipmi_request(user,
1901 			      user->intf,
1902 			      addr,
1903 			      msgid,
1904 			      msg,
1905 			      user_msg_data,
1906 			      NULL, NULL,
1907 			      priority,
1908 			      saddr,
1909 			      lun,
1910 			      retries,
1911 			      retry_time_ms);
1912 }
1913 EXPORT_SYMBOL(ipmi_request_settime);
1914 
1915 int ipmi_request_supply_msgs(ipmi_user_t          user,
1916 			     struct ipmi_addr     *addr,
1917 			     long                 msgid,
1918 			     struct kernel_ipmi_msg *msg,
1919 			     void                 *user_msg_data,
1920 			     void                 *supplied_smi,
1921 			     struct ipmi_recv_msg *supplied_recv,
1922 			     int                  priority)
1923 {
1924 	unsigned char saddr = 0, lun = 0;
1925 	int           rv;
1926 
1927 	if (!user)
1928 		return -EINVAL;
1929 	rv = check_addr(user->intf, addr, &saddr, &lun);
1930 	if (rv)
1931 		return rv;
1932 	return i_ipmi_request(user,
1933 			      user->intf,
1934 			      addr,
1935 			      msgid,
1936 			      msg,
1937 			      user_msg_data,
1938 			      supplied_smi,
1939 			      supplied_recv,
1940 			      priority,
1941 			      saddr,
1942 			      lun,
1943 			      -1, 0);
1944 }
1945 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1946 
1947 #ifdef CONFIG_PROC_FS
1948 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1949 {
1950 	ipmi_smi_t intf = m->private;
1951 	int        i;
1952 
1953 	seq_printf(m, "%x", intf->channels[0].address);
1954 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1955 		seq_printf(m, " %x", intf->channels[i].address);
1956 	return seq_putc(m, '\n');
1957 }
1958 
1959 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
1960 {
1961 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
1962 }
1963 
1964 static const struct file_operations smi_ipmb_proc_ops = {
1965 	.open		= smi_ipmb_proc_open,
1966 	.read		= seq_read,
1967 	.llseek		= seq_lseek,
1968 	.release	= single_release,
1969 };
1970 
1971 static int smi_version_proc_show(struct seq_file *m, void *v)
1972 {
1973 	ipmi_smi_t intf = m->private;
1974 
1975 	return seq_printf(m, "%u.%u\n",
1976 		       ipmi_version_major(&intf->bmc->id),
1977 		       ipmi_version_minor(&intf->bmc->id));
1978 }
1979 
1980 static int smi_version_proc_open(struct inode *inode, struct file *file)
1981 {
1982 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
1983 }
1984 
1985 static const struct file_operations smi_version_proc_ops = {
1986 	.open		= smi_version_proc_open,
1987 	.read		= seq_read,
1988 	.llseek		= seq_lseek,
1989 	.release	= single_release,
1990 };
1991 
1992 static int smi_stats_proc_show(struct seq_file *m, void *v)
1993 {
1994 	ipmi_smi_t intf = m->private;
1995 
1996 	seq_printf(m, "sent_invalid_commands:       %u\n",
1997 		       ipmi_get_stat(intf, sent_invalid_commands));
1998 	seq_printf(m, "sent_local_commands:         %u\n",
1999 		       ipmi_get_stat(intf, sent_local_commands));
2000 	seq_printf(m, "handled_local_responses:     %u\n",
2001 		       ipmi_get_stat(intf, handled_local_responses));
2002 	seq_printf(m, "unhandled_local_responses:   %u\n",
2003 		       ipmi_get_stat(intf, unhandled_local_responses));
2004 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2005 		       ipmi_get_stat(intf, sent_ipmb_commands));
2006 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2007 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2008 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2009 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2010 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2011 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2012 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2013 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2014 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2015 		       ipmi_get_stat(intf, sent_ipmb_responses));
2016 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2017 		       ipmi_get_stat(intf, handled_ipmb_responses));
2018 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2019 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2020 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2021 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2022 	seq_printf(m, "sent_lan_commands:           %u\n",
2023 		       ipmi_get_stat(intf, sent_lan_commands));
2024 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2025 		       ipmi_get_stat(intf, sent_lan_command_errs));
2026 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2027 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2028 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2029 		       ipmi_get_stat(intf, timed_out_lan_commands));
2030 	seq_printf(m, "sent_lan_responses:          %u\n",
2031 		       ipmi_get_stat(intf, sent_lan_responses));
2032 	seq_printf(m, "handled_lan_responses:       %u\n",
2033 		       ipmi_get_stat(intf, handled_lan_responses));
2034 	seq_printf(m, "invalid_lan_responses:       %u\n",
2035 		       ipmi_get_stat(intf, invalid_lan_responses));
2036 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2037 		       ipmi_get_stat(intf, unhandled_lan_responses));
2038 	seq_printf(m, "handled_commands:            %u\n",
2039 		       ipmi_get_stat(intf, handled_commands));
2040 	seq_printf(m, "invalid_commands:            %u\n",
2041 		       ipmi_get_stat(intf, invalid_commands));
2042 	seq_printf(m, "unhandled_commands:          %u\n",
2043 		       ipmi_get_stat(intf, unhandled_commands));
2044 	seq_printf(m, "invalid_events:              %u\n",
2045 		       ipmi_get_stat(intf, invalid_events));
2046 	seq_printf(m, "events:                      %u\n",
2047 		       ipmi_get_stat(intf, events));
2048 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2049 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2050 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2051 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2052 	return 0;
2053 }
2054 
2055 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2056 {
2057 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2058 }
2059 
2060 static const struct file_operations smi_stats_proc_ops = {
2061 	.open		= smi_stats_proc_open,
2062 	.read		= seq_read,
2063 	.llseek		= seq_lseek,
2064 	.release	= single_release,
2065 };
2066 #endif /* CONFIG_PROC_FS */
2067 
2068 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2069 			    const struct file_operations *proc_ops,
2070 			    void *data)
2071 {
2072 	int                    rv = 0;
2073 #ifdef CONFIG_PROC_FS
2074 	struct proc_dir_entry  *file;
2075 	struct ipmi_proc_entry *entry;
2076 
2077 	/* Create a list element. */
2078 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2079 	if (!entry)
2080 		return -ENOMEM;
2081 	entry->name = kstrdup(name, GFP_KERNEL);
2082 	if (!entry->name) {
2083 		kfree(entry);
2084 		return -ENOMEM;
2085 	}
2086 
2087 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2088 	if (!file) {
2089 		kfree(entry->name);
2090 		kfree(entry);
2091 		rv = -ENOMEM;
2092 	} else {
2093 		mutex_lock(&smi->proc_entry_lock);
2094 		/* Stick it on the list. */
2095 		entry->next = smi->proc_entries;
2096 		smi->proc_entries = entry;
2097 		mutex_unlock(&smi->proc_entry_lock);
2098 	}
2099 #endif /* CONFIG_PROC_FS */
2100 
2101 	return rv;
2102 }
2103 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2104 
2105 static int add_proc_entries(ipmi_smi_t smi, int num)
2106 {
2107 	int rv = 0;
2108 
2109 #ifdef CONFIG_PROC_FS
2110 	sprintf(smi->proc_dir_name, "%d", num);
2111 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2112 	if (!smi->proc_dir)
2113 		rv = -ENOMEM;
2114 
2115 	if (rv == 0)
2116 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2117 					     &smi_stats_proc_ops,
2118 					     smi);
2119 
2120 	if (rv == 0)
2121 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2122 					     &smi_ipmb_proc_ops,
2123 					     smi);
2124 
2125 	if (rv == 0)
2126 		rv = ipmi_smi_add_proc_entry(smi, "version",
2127 					     &smi_version_proc_ops,
2128 					     smi);
2129 #endif /* CONFIG_PROC_FS */
2130 
2131 	return rv;
2132 }
2133 
2134 static void remove_proc_entries(ipmi_smi_t smi)
2135 {
2136 #ifdef CONFIG_PROC_FS
2137 	struct ipmi_proc_entry *entry;
2138 
2139 	mutex_lock(&smi->proc_entry_lock);
2140 	while (smi->proc_entries) {
2141 		entry = smi->proc_entries;
2142 		smi->proc_entries = entry->next;
2143 
2144 		remove_proc_entry(entry->name, smi->proc_dir);
2145 		kfree(entry->name);
2146 		kfree(entry);
2147 	}
2148 	mutex_unlock(&smi->proc_entry_lock);
2149 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2150 #endif /* CONFIG_PROC_FS */
2151 }
2152 
2153 static int __find_bmc_guid(struct device *dev, void *data)
2154 {
2155 	unsigned char *id = data;
2156 	struct bmc_device *bmc = dev_get_drvdata(dev);
2157 	return memcmp(bmc->guid, id, 16) == 0;
2158 }
2159 
2160 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2161 					     unsigned char *guid)
2162 {
2163 	struct device *dev;
2164 
2165 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2166 	if (dev)
2167 		return dev_get_drvdata(dev);
2168 	else
2169 		return NULL;
2170 }
2171 
2172 struct prod_dev_id {
2173 	unsigned int  product_id;
2174 	unsigned char device_id;
2175 };
2176 
2177 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2178 {
2179 	struct prod_dev_id *id = data;
2180 	struct bmc_device *bmc = dev_get_drvdata(dev);
2181 
2182 	return (bmc->id.product_id == id->product_id
2183 		&& bmc->id.device_id == id->device_id);
2184 }
2185 
2186 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2187 	struct device_driver *drv,
2188 	unsigned int product_id, unsigned char device_id)
2189 {
2190 	struct prod_dev_id id = {
2191 		.product_id = product_id,
2192 		.device_id = device_id,
2193 	};
2194 	struct device *dev;
2195 
2196 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2197 	if (dev)
2198 		return dev_get_drvdata(dev);
2199 	else
2200 		return NULL;
2201 }
2202 
2203 static ssize_t device_id_show(struct device *dev,
2204 			      struct device_attribute *attr,
2205 			      char *buf)
2206 {
2207 	struct bmc_device *bmc = dev_get_drvdata(dev);
2208 
2209 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2210 }
2211 
2212 static ssize_t provides_dev_sdrs_show(struct device *dev,
2213 				      struct device_attribute *attr,
2214 				      char *buf)
2215 {
2216 	struct bmc_device *bmc = dev_get_drvdata(dev);
2217 
2218 	return snprintf(buf, 10, "%u\n",
2219 			(bmc->id.device_revision & 0x80) >> 7);
2220 }
2221 
2222 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2223 			     char *buf)
2224 {
2225 	struct bmc_device *bmc = dev_get_drvdata(dev);
2226 
2227 	return snprintf(buf, 20, "%u\n",
2228 			bmc->id.device_revision & 0x0F);
2229 }
2230 
2231 static ssize_t firmware_rev_show(struct device *dev,
2232 				 struct device_attribute *attr,
2233 				 char *buf)
2234 {
2235 	struct bmc_device *bmc = dev_get_drvdata(dev);
2236 
2237 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2238 			bmc->id.firmware_revision_2);
2239 }
2240 
2241 static ssize_t ipmi_version_show(struct device *dev,
2242 				 struct device_attribute *attr,
2243 				 char *buf)
2244 {
2245 	struct bmc_device *bmc = dev_get_drvdata(dev);
2246 
2247 	return snprintf(buf, 20, "%u.%u\n",
2248 			ipmi_version_major(&bmc->id),
2249 			ipmi_version_minor(&bmc->id));
2250 }
2251 
2252 static ssize_t add_dev_support_show(struct device *dev,
2253 				    struct device_attribute *attr,
2254 				    char *buf)
2255 {
2256 	struct bmc_device *bmc = dev_get_drvdata(dev);
2257 
2258 	return snprintf(buf, 10, "0x%02x\n",
2259 			bmc->id.additional_device_support);
2260 }
2261 
2262 static ssize_t manufacturer_id_show(struct device *dev,
2263 				    struct device_attribute *attr,
2264 				    char *buf)
2265 {
2266 	struct bmc_device *bmc = dev_get_drvdata(dev);
2267 
2268 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2269 }
2270 
2271 static ssize_t product_id_show(struct device *dev,
2272 			       struct device_attribute *attr,
2273 			       char *buf)
2274 {
2275 	struct bmc_device *bmc = dev_get_drvdata(dev);
2276 
2277 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2278 }
2279 
2280 static ssize_t aux_firmware_rev_show(struct device *dev,
2281 				     struct device_attribute *attr,
2282 				     char *buf)
2283 {
2284 	struct bmc_device *bmc = dev_get_drvdata(dev);
2285 
2286 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2287 			bmc->id.aux_firmware_revision[3],
2288 			bmc->id.aux_firmware_revision[2],
2289 			bmc->id.aux_firmware_revision[1],
2290 			bmc->id.aux_firmware_revision[0]);
2291 }
2292 
2293 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2294 			 char *buf)
2295 {
2296 	struct bmc_device *bmc = dev_get_drvdata(dev);
2297 
2298 	return snprintf(buf, 100, "%Lx%Lx\n",
2299 			(long long) bmc->guid[0],
2300 			(long long) bmc->guid[8]);
2301 }
2302 
2303 static void remove_files(struct bmc_device *bmc)
2304 {
2305 	if (!bmc->dev)
2306 		return;
2307 
2308 	device_remove_file(&bmc->dev->dev,
2309 			   &bmc->device_id_attr);
2310 	device_remove_file(&bmc->dev->dev,
2311 			   &bmc->provides_dev_sdrs_attr);
2312 	device_remove_file(&bmc->dev->dev,
2313 			   &bmc->revision_attr);
2314 	device_remove_file(&bmc->dev->dev,
2315 			   &bmc->firmware_rev_attr);
2316 	device_remove_file(&bmc->dev->dev,
2317 			   &bmc->version_attr);
2318 	device_remove_file(&bmc->dev->dev,
2319 			   &bmc->add_dev_support_attr);
2320 	device_remove_file(&bmc->dev->dev,
2321 			   &bmc->manufacturer_id_attr);
2322 	device_remove_file(&bmc->dev->dev,
2323 			   &bmc->product_id_attr);
2324 
2325 	if (bmc->id.aux_firmware_revision_set)
2326 		device_remove_file(&bmc->dev->dev,
2327 				   &bmc->aux_firmware_rev_attr);
2328 	if (bmc->guid_set)
2329 		device_remove_file(&bmc->dev->dev,
2330 				   &bmc->guid_attr);
2331 }
2332 
2333 static void
2334 cleanup_bmc_device(struct kref *ref)
2335 {
2336 	struct bmc_device *bmc;
2337 
2338 	bmc = container_of(ref, struct bmc_device, refcount);
2339 
2340 	remove_files(bmc);
2341 	platform_device_unregister(bmc->dev);
2342 	kfree(bmc);
2343 }
2344 
2345 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2346 {
2347 	struct bmc_device *bmc = intf->bmc;
2348 
2349 	if (intf->sysfs_name) {
2350 		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2351 		kfree(intf->sysfs_name);
2352 		intf->sysfs_name = NULL;
2353 	}
2354 	if (intf->my_dev_name) {
2355 		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2356 		kfree(intf->my_dev_name);
2357 		intf->my_dev_name = NULL;
2358 	}
2359 
2360 	mutex_lock(&ipmidriver_mutex);
2361 	kref_put(&bmc->refcount, cleanup_bmc_device);
2362 	intf->bmc = NULL;
2363 	mutex_unlock(&ipmidriver_mutex);
2364 }
2365 
2366 static int create_files(struct bmc_device *bmc)
2367 {
2368 	int err;
2369 
2370 	bmc->device_id_attr.attr.name = "device_id";
2371 	bmc->device_id_attr.attr.mode = S_IRUGO;
2372 	bmc->device_id_attr.show = device_id_show;
2373 	sysfs_attr_init(&bmc->device_id_attr.attr);
2374 
2375 	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2376 	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2377 	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2378 	sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr);
2379 
2380 	bmc->revision_attr.attr.name = "revision";
2381 	bmc->revision_attr.attr.mode = S_IRUGO;
2382 	bmc->revision_attr.show = revision_show;
2383 	sysfs_attr_init(&bmc->revision_attr.attr);
2384 
2385 	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2386 	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2387 	bmc->firmware_rev_attr.show = firmware_rev_show;
2388 	sysfs_attr_init(&bmc->firmware_rev_attr.attr);
2389 
2390 	bmc->version_attr.attr.name = "ipmi_version";
2391 	bmc->version_attr.attr.mode = S_IRUGO;
2392 	bmc->version_attr.show = ipmi_version_show;
2393 	sysfs_attr_init(&bmc->version_attr.attr);
2394 
2395 	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2396 	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2397 	bmc->add_dev_support_attr.show = add_dev_support_show;
2398 	sysfs_attr_init(&bmc->add_dev_support_attr.attr);
2399 
2400 	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2401 	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2402 	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2403 	sysfs_attr_init(&bmc->manufacturer_id_attr.attr);
2404 
2405 	bmc->product_id_attr.attr.name = "product_id";
2406 	bmc->product_id_attr.attr.mode = S_IRUGO;
2407 	bmc->product_id_attr.show = product_id_show;
2408 	sysfs_attr_init(&bmc->product_id_attr.attr);
2409 
2410 	bmc->guid_attr.attr.name = "guid";
2411 	bmc->guid_attr.attr.mode = S_IRUGO;
2412 	bmc->guid_attr.show = guid_show;
2413 	sysfs_attr_init(&bmc->guid_attr.attr);
2414 
2415 	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2416 	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2417 	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2418 	sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr);
2419 
2420 	err = device_create_file(&bmc->dev->dev,
2421 			   &bmc->device_id_attr);
2422 	if (err)
2423 		goto out;
2424 	err = device_create_file(&bmc->dev->dev,
2425 			   &bmc->provides_dev_sdrs_attr);
2426 	if (err)
2427 		goto out_devid;
2428 	err = device_create_file(&bmc->dev->dev,
2429 			   &bmc->revision_attr);
2430 	if (err)
2431 		goto out_sdrs;
2432 	err = device_create_file(&bmc->dev->dev,
2433 			   &bmc->firmware_rev_attr);
2434 	if (err)
2435 		goto out_rev;
2436 	err = device_create_file(&bmc->dev->dev,
2437 			   &bmc->version_attr);
2438 	if (err)
2439 		goto out_firm;
2440 	err = device_create_file(&bmc->dev->dev,
2441 			   &bmc->add_dev_support_attr);
2442 	if (err)
2443 		goto out_version;
2444 	err = device_create_file(&bmc->dev->dev,
2445 			   &bmc->manufacturer_id_attr);
2446 	if (err)
2447 		goto out_add_dev;
2448 	err = device_create_file(&bmc->dev->dev,
2449 			   &bmc->product_id_attr);
2450 	if (err)
2451 		goto out_manu;
2452 	if (bmc->id.aux_firmware_revision_set) {
2453 		err = device_create_file(&bmc->dev->dev,
2454 				   &bmc->aux_firmware_rev_attr);
2455 		if (err)
2456 			goto out_prod_id;
2457 	}
2458 	if (bmc->guid_set) {
2459 		err = device_create_file(&bmc->dev->dev,
2460 				   &bmc->guid_attr);
2461 		if (err)
2462 			goto out_aux_firm;
2463 	}
2464 
2465 	return 0;
2466 
2467 out_aux_firm:
2468 	if (bmc->id.aux_firmware_revision_set)
2469 		device_remove_file(&bmc->dev->dev,
2470 				   &bmc->aux_firmware_rev_attr);
2471 out_prod_id:
2472 	device_remove_file(&bmc->dev->dev,
2473 			   &bmc->product_id_attr);
2474 out_manu:
2475 	device_remove_file(&bmc->dev->dev,
2476 			   &bmc->manufacturer_id_attr);
2477 out_add_dev:
2478 	device_remove_file(&bmc->dev->dev,
2479 			   &bmc->add_dev_support_attr);
2480 out_version:
2481 	device_remove_file(&bmc->dev->dev,
2482 			   &bmc->version_attr);
2483 out_firm:
2484 	device_remove_file(&bmc->dev->dev,
2485 			   &bmc->firmware_rev_attr);
2486 out_rev:
2487 	device_remove_file(&bmc->dev->dev,
2488 			   &bmc->revision_attr);
2489 out_sdrs:
2490 	device_remove_file(&bmc->dev->dev,
2491 			   &bmc->provides_dev_sdrs_attr);
2492 out_devid:
2493 	device_remove_file(&bmc->dev->dev,
2494 			   &bmc->device_id_attr);
2495 out:
2496 	return err;
2497 }
2498 
2499 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2500 			     const char *sysfs_name)
2501 {
2502 	int               rv;
2503 	struct bmc_device *bmc = intf->bmc;
2504 	struct bmc_device *old_bmc;
2505 	int               size;
2506 	char              dummy[1];
2507 
2508 	mutex_lock(&ipmidriver_mutex);
2509 
2510 	/*
2511 	 * Try to find if there is an bmc_device struct
2512 	 * representing the interfaced BMC already
2513 	 */
2514 	if (bmc->guid_set)
2515 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2516 	else
2517 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2518 						    bmc->id.product_id,
2519 						    bmc->id.device_id);
2520 
2521 	/*
2522 	 * If there is already an bmc_device, free the new one,
2523 	 * otherwise register the new BMC device
2524 	 */
2525 	if (old_bmc) {
2526 		kfree(bmc);
2527 		intf->bmc = old_bmc;
2528 		bmc = old_bmc;
2529 
2530 		kref_get(&bmc->refcount);
2531 		mutex_unlock(&ipmidriver_mutex);
2532 
2533 		printk(KERN_INFO
2534 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2535 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2536 		       bmc->id.manufacturer_id,
2537 		       bmc->id.product_id,
2538 		       bmc->id.device_id);
2539 	} else {
2540 		char name[14];
2541 		unsigned char orig_dev_id = bmc->id.device_id;
2542 		int warn_printed = 0;
2543 
2544 		snprintf(name, sizeof(name),
2545 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2546 
2547 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2548 						 bmc->id.product_id,
2549 						 bmc->id.device_id)) {
2550 			if (!warn_printed) {
2551 				printk(KERN_WARNING PFX
2552 				       "This machine has two different BMCs"
2553 				       " with the same product id and device"
2554 				       " id.  This is an error in the"
2555 				       " firmware, but incrementing the"
2556 				       " device id to work around the problem."
2557 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2558 				       bmc->id.product_id, bmc->id.device_id);
2559 				warn_printed = 1;
2560 			}
2561 			bmc->id.device_id++; /* Wraps at 255 */
2562 			if (bmc->id.device_id == orig_dev_id) {
2563 				printk(KERN_ERR PFX
2564 				       "Out of device ids!\n");
2565 				break;
2566 			}
2567 		}
2568 
2569 		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2570 		if (!bmc->dev) {
2571 			mutex_unlock(&ipmidriver_mutex);
2572 			printk(KERN_ERR
2573 			       "ipmi_msghandler:"
2574 			       " Unable to allocate platform device\n");
2575 			return -ENOMEM;
2576 		}
2577 		bmc->dev->dev.driver = &ipmidriver.driver;
2578 		dev_set_drvdata(&bmc->dev->dev, bmc);
2579 		kref_init(&bmc->refcount);
2580 
2581 		rv = platform_device_add(bmc->dev);
2582 		mutex_unlock(&ipmidriver_mutex);
2583 		if (rv) {
2584 			platform_device_put(bmc->dev);
2585 			bmc->dev = NULL;
2586 			printk(KERN_ERR
2587 			       "ipmi_msghandler:"
2588 			       " Unable to register bmc device: %d\n",
2589 			       rv);
2590 			/*
2591 			 * Don't go to out_err, you can only do that if
2592 			 * the device is registered already.
2593 			 */
2594 			return rv;
2595 		}
2596 
2597 		rv = create_files(bmc);
2598 		if (rv) {
2599 			mutex_lock(&ipmidriver_mutex);
2600 			platform_device_unregister(bmc->dev);
2601 			mutex_unlock(&ipmidriver_mutex);
2602 
2603 			return rv;
2604 		}
2605 
2606 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2607 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2608 			 bmc->id.manufacturer_id,
2609 			 bmc->id.product_id,
2610 			 bmc->id.device_id);
2611 	}
2612 
2613 	/*
2614 	 * create symlink from system interface device to bmc device
2615 	 * and back.
2616 	 */
2617 	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2618 	if (!intf->sysfs_name) {
2619 		rv = -ENOMEM;
2620 		printk(KERN_ERR
2621 		       "ipmi_msghandler: allocate link to BMC: %d\n",
2622 		       rv);
2623 		goto out_err;
2624 	}
2625 
2626 	rv = sysfs_create_link(&intf->si_dev->kobj,
2627 			       &bmc->dev->dev.kobj, intf->sysfs_name);
2628 	if (rv) {
2629 		kfree(intf->sysfs_name);
2630 		intf->sysfs_name = NULL;
2631 		printk(KERN_ERR
2632 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2633 		       rv);
2634 		goto out_err;
2635 	}
2636 
2637 	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2638 	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2639 	if (!intf->my_dev_name) {
2640 		kfree(intf->sysfs_name);
2641 		intf->sysfs_name = NULL;
2642 		rv = -ENOMEM;
2643 		printk(KERN_ERR
2644 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2645 		       rv);
2646 		goto out_err;
2647 	}
2648 	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2649 
2650 	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2651 			       intf->my_dev_name);
2652 	if (rv) {
2653 		kfree(intf->sysfs_name);
2654 		intf->sysfs_name = NULL;
2655 		kfree(intf->my_dev_name);
2656 		intf->my_dev_name = NULL;
2657 		printk(KERN_ERR
2658 		       "ipmi_msghandler:"
2659 		       " Unable to create symlink to bmc: %d\n",
2660 		       rv);
2661 		goto out_err;
2662 	}
2663 
2664 	return 0;
2665 
2666 out_err:
2667 	ipmi_bmc_unregister(intf);
2668 	return rv;
2669 }
2670 
2671 static int
2672 send_guid_cmd(ipmi_smi_t intf, int chan)
2673 {
2674 	struct kernel_ipmi_msg            msg;
2675 	struct ipmi_system_interface_addr si;
2676 
2677 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2678 	si.channel = IPMI_BMC_CHANNEL;
2679 	si.lun = 0;
2680 
2681 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2682 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2683 	msg.data = NULL;
2684 	msg.data_len = 0;
2685 	return i_ipmi_request(NULL,
2686 			      intf,
2687 			      (struct ipmi_addr *) &si,
2688 			      0,
2689 			      &msg,
2690 			      intf,
2691 			      NULL,
2692 			      NULL,
2693 			      0,
2694 			      intf->channels[0].address,
2695 			      intf->channels[0].lun,
2696 			      -1, 0);
2697 }
2698 
2699 static void
2700 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2701 {
2702 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2703 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2704 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2705 		/* Not for me */
2706 		return;
2707 
2708 	if (msg->msg.data[0] != 0) {
2709 		/* Error from getting the GUID, the BMC doesn't have one. */
2710 		intf->bmc->guid_set = 0;
2711 		goto out;
2712 	}
2713 
2714 	if (msg->msg.data_len < 17) {
2715 		intf->bmc->guid_set = 0;
2716 		printk(KERN_WARNING PFX
2717 		       "guid_handler: The GUID response from the BMC was too"
2718 		       " short, it was %d but should have been 17.  Assuming"
2719 		       " GUID is not available.\n",
2720 		       msg->msg.data_len);
2721 		goto out;
2722 	}
2723 
2724 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2725 	intf->bmc->guid_set = 1;
2726  out:
2727 	wake_up(&intf->waitq);
2728 }
2729 
2730 static void
2731 get_guid(ipmi_smi_t intf)
2732 {
2733 	int rv;
2734 
2735 	intf->bmc->guid_set = 0x2;
2736 	intf->null_user_handler = guid_handler;
2737 	rv = send_guid_cmd(intf, 0);
2738 	if (rv)
2739 		/* Send failed, no GUID available. */
2740 		intf->bmc->guid_set = 0;
2741 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2742 	intf->null_user_handler = NULL;
2743 }
2744 
2745 static int
2746 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2747 {
2748 	struct kernel_ipmi_msg            msg;
2749 	unsigned char                     data[1];
2750 	struct ipmi_system_interface_addr si;
2751 
2752 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2753 	si.channel = IPMI_BMC_CHANNEL;
2754 	si.lun = 0;
2755 
2756 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2757 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2758 	msg.data = data;
2759 	msg.data_len = 1;
2760 	data[0] = chan;
2761 	return i_ipmi_request(NULL,
2762 			      intf,
2763 			      (struct ipmi_addr *) &si,
2764 			      0,
2765 			      &msg,
2766 			      intf,
2767 			      NULL,
2768 			      NULL,
2769 			      0,
2770 			      intf->channels[0].address,
2771 			      intf->channels[0].lun,
2772 			      -1, 0);
2773 }
2774 
2775 static void
2776 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2777 {
2778 	int rv = 0;
2779 	int chan;
2780 
2781 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2782 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2783 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2784 		/* It's the one we want */
2785 		if (msg->msg.data[0] != 0) {
2786 			/* Got an error from the channel, just go on. */
2787 
2788 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2789 				/*
2790 				 * If the MC does not support this
2791 				 * command, that is legal.  We just
2792 				 * assume it has one IPMB at channel
2793 				 * zero.
2794 				 */
2795 				intf->channels[0].medium
2796 					= IPMI_CHANNEL_MEDIUM_IPMB;
2797 				intf->channels[0].protocol
2798 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2799 				rv = -ENOSYS;
2800 
2801 				intf->curr_channel = IPMI_MAX_CHANNELS;
2802 				wake_up(&intf->waitq);
2803 				goto out;
2804 			}
2805 			goto next_channel;
2806 		}
2807 		if (msg->msg.data_len < 4) {
2808 			/* Message not big enough, just go on. */
2809 			goto next_channel;
2810 		}
2811 		chan = intf->curr_channel;
2812 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2813 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2814 
2815  next_channel:
2816 		intf->curr_channel++;
2817 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2818 			wake_up(&intf->waitq);
2819 		else
2820 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2821 
2822 		if (rv) {
2823 			/* Got an error somehow, just give up. */
2824 			intf->curr_channel = IPMI_MAX_CHANNELS;
2825 			wake_up(&intf->waitq);
2826 
2827 			printk(KERN_WARNING PFX
2828 			       "Error sending channel information: %d\n",
2829 			       rv);
2830 		}
2831 	}
2832  out:
2833 	return;
2834 }
2835 
2836 static void ipmi_poll(ipmi_smi_t intf)
2837 {
2838 	if (intf->handlers->poll)
2839 		intf->handlers->poll(intf->send_info);
2840 	/* In case something came in */
2841 	handle_new_recv_msgs(intf);
2842 }
2843 
2844 void ipmi_poll_interface(ipmi_user_t user)
2845 {
2846 	ipmi_poll(user->intf);
2847 }
2848 EXPORT_SYMBOL(ipmi_poll_interface);
2849 
2850 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2851 		      void		       *send_info,
2852 		      struct ipmi_device_id    *device_id,
2853 		      struct device            *si_dev,
2854 		      const char               *sysfs_name,
2855 		      unsigned char            slave_addr)
2856 {
2857 	int              i, j;
2858 	int              rv;
2859 	ipmi_smi_t       intf;
2860 	ipmi_smi_t       tintf;
2861 	struct list_head *link;
2862 
2863 	/*
2864 	 * Make sure the driver is actually initialized, this handles
2865 	 * problems with initialization order.
2866 	 */
2867 	if (!initialized) {
2868 		rv = ipmi_init_msghandler();
2869 		if (rv)
2870 			return rv;
2871 		/*
2872 		 * The init code doesn't return an error if it was turned
2873 		 * off, but it won't initialize.  Check that.
2874 		 */
2875 		if (!initialized)
2876 			return -ENODEV;
2877 	}
2878 
2879 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2880 	if (!intf)
2881 		return -ENOMEM;
2882 
2883 	intf->ipmi_version_major = ipmi_version_major(device_id);
2884 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2885 
2886 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2887 	if (!intf->bmc) {
2888 		kfree(intf);
2889 		return -ENOMEM;
2890 	}
2891 	intf->intf_num = -1; /* Mark it invalid for now. */
2892 	kref_init(&intf->refcount);
2893 	intf->bmc->id = *device_id;
2894 	intf->si_dev = si_dev;
2895 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2896 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2897 		intf->channels[j].lun = 2;
2898 	}
2899 	if (slave_addr != 0)
2900 		intf->channels[0].address = slave_addr;
2901 	INIT_LIST_HEAD(&intf->users);
2902 	intf->handlers = handlers;
2903 	intf->send_info = send_info;
2904 	spin_lock_init(&intf->seq_lock);
2905 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2906 		intf->seq_table[j].inuse = 0;
2907 		intf->seq_table[j].seqid = 0;
2908 	}
2909 	intf->curr_seq = 0;
2910 #ifdef CONFIG_PROC_FS
2911 	mutex_init(&intf->proc_entry_lock);
2912 #endif
2913 	spin_lock_init(&intf->waiting_msgs_lock);
2914 	INIT_LIST_HEAD(&intf->waiting_msgs);
2915 	tasklet_init(&intf->recv_tasklet,
2916 		     smi_recv_tasklet,
2917 		     (unsigned long) intf);
2918 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2919 	spin_lock_init(&intf->events_lock);
2920 	atomic_set(&intf->event_waiters, 0);
2921 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2922 	INIT_LIST_HEAD(&intf->waiting_events);
2923 	intf->waiting_events_count = 0;
2924 	mutex_init(&intf->cmd_rcvrs_mutex);
2925 	spin_lock_init(&intf->maintenance_mode_lock);
2926 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2927 	init_waitqueue_head(&intf->waitq);
2928 	for (i = 0; i < IPMI_NUM_STATS; i++)
2929 		atomic_set(&intf->stats[i], 0);
2930 
2931 	intf->proc_dir = NULL;
2932 
2933 	mutex_lock(&smi_watchers_mutex);
2934 	mutex_lock(&ipmi_interfaces_mutex);
2935 	/* Look for a hole in the numbers. */
2936 	i = 0;
2937 	link = &ipmi_interfaces;
2938 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2939 		if (tintf->intf_num != i) {
2940 			link = &tintf->link;
2941 			break;
2942 		}
2943 		i++;
2944 	}
2945 	/* Add the new interface in numeric order. */
2946 	if (i == 0)
2947 		list_add_rcu(&intf->link, &ipmi_interfaces);
2948 	else
2949 		list_add_tail_rcu(&intf->link, link);
2950 
2951 	rv = handlers->start_processing(send_info, intf);
2952 	if (rv)
2953 		goto out;
2954 
2955 	get_guid(intf);
2956 
2957 	if ((intf->ipmi_version_major > 1)
2958 			|| ((intf->ipmi_version_major == 1)
2959 			    && (intf->ipmi_version_minor >= 5))) {
2960 		/*
2961 		 * Start scanning the channels to see what is
2962 		 * available.
2963 		 */
2964 		intf->null_user_handler = channel_handler;
2965 		intf->curr_channel = 0;
2966 		rv = send_channel_info_cmd(intf, 0);
2967 		if (rv)
2968 			goto out;
2969 
2970 		/* Wait for the channel info to be read. */
2971 		wait_event(intf->waitq,
2972 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2973 		intf->null_user_handler = NULL;
2974 	} else {
2975 		/* Assume a single IPMB channel at zero. */
2976 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2977 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2978 		intf->curr_channel = IPMI_MAX_CHANNELS;
2979 	}
2980 
2981 	if (rv == 0)
2982 		rv = add_proc_entries(intf, i);
2983 
2984 	rv = ipmi_bmc_register(intf, i, sysfs_name);
2985 
2986  out:
2987 	if (rv) {
2988 		if (intf->proc_dir)
2989 			remove_proc_entries(intf);
2990 		intf->handlers = NULL;
2991 		list_del_rcu(&intf->link);
2992 		mutex_unlock(&ipmi_interfaces_mutex);
2993 		mutex_unlock(&smi_watchers_mutex);
2994 		synchronize_rcu();
2995 		kref_put(&intf->refcount, intf_free);
2996 	} else {
2997 		/*
2998 		 * Keep memory order straight for RCU readers.  Make
2999 		 * sure everything else is committed to memory before
3000 		 * setting intf_num to mark the interface valid.
3001 		 */
3002 		smp_wmb();
3003 		intf->intf_num = i;
3004 		mutex_unlock(&ipmi_interfaces_mutex);
3005 		/* After this point the interface is legal to use. */
3006 		call_smi_watchers(i, intf->si_dev);
3007 		mutex_unlock(&smi_watchers_mutex);
3008 	}
3009 
3010 	return rv;
3011 }
3012 EXPORT_SYMBOL(ipmi_register_smi);
3013 
3014 static void cleanup_smi_msgs(ipmi_smi_t intf)
3015 {
3016 	int              i;
3017 	struct seq_table *ent;
3018 
3019 	/* No need for locks, the interface is down. */
3020 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3021 		ent = &(intf->seq_table[i]);
3022 		if (!ent->inuse)
3023 			continue;
3024 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3025 	}
3026 }
3027 
3028 int ipmi_unregister_smi(ipmi_smi_t intf)
3029 {
3030 	struct ipmi_smi_watcher *w;
3031 	int    intf_num = intf->intf_num;
3032 
3033 	ipmi_bmc_unregister(intf);
3034 
3035 	mutex_lock(&smi_watchers_mutex);
3036 	mutex_lock(&ipmi_interfaces_mutex);
3037 	intf->intf_num = -1;
3038 	intf->handlers = NULL;
3039 	list_del_rcu(&intf->link);
3040 	mutex_unlock(&ipmi_interfaces_mutex);
3041 	synchronize_rcu();
3042 
3043 	cleanup_smi_msgs(intf);
3044 
3045 	remove_proc_entries(intf);
3046 
3047 	/*
3048 	 * Call all the watcher interfaces to tell them that
3049 	 * an interface is gone.
3050 	 */
3051 	list_for_each_entry(w, &smi_watchers, link)
3052 		w->smi_gone(intf_num);
3053 	mutex_unlock(&smi_watchers_mutex);
3054 
3055 	kref_put(&intf->refcount, intf_free);
3056 	return 0;
3057 }
3058 EXPORT_SYMBOL(ipmi_unregister_smi);
3059 
3060 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3061 				   struct ipmi_smi_msg *msg)
3062 {
3063 	struct ipmi_ipmb_addr ipmb_addr;
3064 	struct ipmi_recv_msg  *recv_msg;
3065 
3066 	/*
3067 	 * This is 11, not 10, because the response must contain a
3068 	 * completion code.
3069 	 */
3070 	if (msg->rsp_size < 11) {
3071 		/* Message not big enough, just ignore it. */
3072 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3073 		return 0;
3074 	}
3075 
3076 	if (msg->rsp[2] != 0) {
3077 		/* An error getting the response, just ignore it. */
3078 		return 0;
3079 	}
3080 
3081 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3082 	ipmb_addr.slave_addr = msg->rsp[6];
3083 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3084 	ipmb_addr.lun = msg->rsp[7] & 3;
3085 
3086 	/*
3087 	 * It's a response from a remote entity.  Look up the sequence
3088 	 * number and handle the response.
3089 	 */
3090 	if (intf_find_seq(intf,
3091 			  msg->rsp[7] >> 2,
3092 			  msg->rsp[3] & 0x0f,
3093 			  msg->rsp[8],
3094 			  (msg->rsp[4] >> 2) & (~1),
3095 			  (struct ipmi_addr *) &(ipmb_addr),
3096 			  &recv_msg)) {
3097 		/*
3098 		 * We were unable to find the sequence number,
3099 		 * so just nuke the message.
3100 		 */
3101 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3102 		return 0;
3103 	}
3104 
3105 	memcpy(recv_msg->msg_data,
3106 	       &(msg->rsp[9]),
3107 	       msg->rsp_size - 9);
3108 	/*
3109 	 * The other fields matched, so no need to set them, except
3110 	 * for netfn, which needs to be the response that was
3111 	 * returned, not the request value.
3112 	 */
3113 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3114 	recv_msg->msg.data = recv_msg->msg_data;
3115 	recv_msg->msg.data_len = msg->rsp_size - 10;
3116 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3117 	ipmi_inc_stat(intf, handled_ipmb_responses);
3118 	deliver_response(recv_msg);
3119 
3120 	return 0;
3121 }
3122 
3123 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3124 				   struct ipmi_smi_msg *msg)
3125 {
3126 	struct cmd_rcvr          *rcvr;
3127 	int                      rv = 0;
3128 	unsigned char            netfn;
3129 	unsigned char            cmd;
3130 	unsigned char            chan;
3131 	ipmi_user_t              user = NULL;
3132 	struct ipmi_ipmb_addr    *ipmb_addr;
3133 	struct ipmi_recv_msg     *recv_msg;
3134 	struct ipmi_smi_handlers *handlers;
3135 
3136 	if (msg->rsp_size < 10) {
3137 		/* Message not big enough, just ignore it. */
3138 		ipmi_inc_stat(intf, invalid_commands);
3139 		return 0;
3140 	}
3141 
3142 	if (msg->rsp[2] != 0) {
3143 		/* An error getting the response, just ignore it. */
3144 		return 0;
3145 	}
3146 
3147 	netfn = msg->rsp[4] >> 2;
3148 	cmd = msg->rsp[8];
3149 	chan = msg->rsp[3] & 0xf;
3150 
3151 	rcu_read_lock();
3152 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3153 	if (rcvr) {
3154 		user = rcvr->user;
3155 		kref_get(&user->refcount);
3156 	} else
3157 		user = NULL;
3158 	rcu_read_unlock();
3159 
3160 	if (user == NULL) {
3161 		/* We didn't find a user, deliver an error response. */
3162 		ipmi_inc_stat(intf, unhandled_commands);
3163 
3164 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3165 		msg->data[1] = IPMI_SEND_MSG_CMD;
3166 		msg->data[2] = msg->rsp[3];
3167 		msg->data[3] = msg->rsp[6];
3168 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3169 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3170 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3171 		/* rqseq/lun */
3172 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3173 		msg->data[8] = msg->rsp[8]; /* cmd */
3174 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3175 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3176 		msg->data_size = 11;
3177 
3178 #ifdef DEBUG_MSGING
3179 	{
3180 		int m;
3181 		printk("Invalid command:");
3182 		for (m = 0; m < msg->data_size; m++)
3183 			printk(" %2.2x", msg->data[m]);
3184 		printk("\n");
3185 	}
3186 #endif
3187 		rcu_read_lock();
3188 		handlers = intf->handlers;
3189 		if (handlers) {
3190 			handlers->sender(intf->send_info, msg, 0);
3191 			/*
3192 			 * We used the message, so return the value
3193 			 * that causes it to not be freed or
3194 			 * queued.
3195 			 */
3196 			rv = -1;
3197 		}
3198 		rcu_read_unlock();
3199 	} else {
3200 		/* Deliver the message to the user. */
3201 		ipmi_inc_stat(intf, handled_commands);
3202 
3203 		recv_msg = ipmi_alloc_recv_msg();
3204 		if (!recv_msg) {
3205 			/*
3206 			 * We couldn't allocate memory for the
3207 			 * message, so requeue it for handling
3208 			 * later.
3209 			 */
3210 			rv = 1;
3211 			kref_put(&user->refcount, free_user);
3212 		} else {
3213 			/* Extract the source address from the data. */
3214 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3215 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3216 			ipmb_addr->slave_addr = msg->rsp[6];
3217 			ipmb_addr->lun = msg->rsp[7] & 3;
3218 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3219 
3220 			/*
3221 			 * Extract the rest of the message information
3222 			 * from the IPMB header.
3223 			 */
3224 			recv_msg->user = user;
3225 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3226 			recv_msg->msgid = msg->rsp[7] >> 2;
3227 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3228 			recv_msg->msg.cmd = msg->rsp[8];
3229 			recv_msg->msg.data = recv_msg->msg_data;
3230 
3231 			/*
3232 			 * We chop off 10, not 9 bytes because the checksum
3233 			 * at the end also needs to be removed.
3234 			 */
3235 			recv_msg->msg.data_len = msg->rsp_size - 10;
3236 			memcpy(recv_msg->msg_data,
3237 			       &(msg->rsp[9]),
3238 			       msg->rsp_size - 10);
3239 			deliver_response(recv_msg);
3240 		}
3241 	}
3242 
3243 	return rv;
3244 }
3245 
3246 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3247 				  struct ipmi_smi_msg *msg)
3248 {
3249 	struct ipmi_lan_addr  lan_addr;
3250 	struct ipmi_recv_msg  *recv_msg;
3251 
3252 
3253 	/*
3254 	 * This is 13, not 12, because the response must contain a
3255 	 * completion code.
3256 	 */
3257 	if (msg->rsp_size < 13) {
3258 		/* Message not big enough, just ignore it. */
3259 		ipmi_inc_stat(intf, invalid_lan_responses);
3260 		return 0;
3261 	}
3262 
3263 	if (msg->rsp[2] != 0) {
3264 		/* An error getting the response, just ignore it. */
3265 		return 0;
3266 	}
3267 
3268 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3269 	lan_addr.session_handle = msg->rsp[4];
3270 	lan_addr.remote_SWID = msg->rsp[8];
3271 	lan_addr.local_SWID = msg->rsp[5];
3272 	lan_addr.channel = msg->rsp[3] & 0x0f;
3273 	lan_addr.privilege = msg->rsp[3] >> 4;
3274 	lan_addr.lun = msg->rsp[9] & 3;
3275 
3276 	/*
3277 	 * It's a response from a remote entity.  Look up the sequence
3278 	 * number and handle the response.
3279 	 */
3280 	if (intf_find_seq(intf,
3281 			  msg->rsp[9] >> 2,
3282 			  msg->rsp[3] & 0x0f,
3283 			  msg->rsp[10],
3284 			  (msg->rsp[6] >> 2) & (~1),
3285 			  (struct ipmi_addr *) &(lan_addr),
3286 			  &recv_msg)) {
3287 		/*
3288 		 * We were unable to find the sequence number,
3289 		 * so just nuke the message.
3290 		 */
3291 		ipmi_inc_stat(intf, unhandled_lan_responses);
3292 		return 0;
3293 	}
3294 
3295 	memcpy(recv_msg->msg_data,
3296 	       &(msg->rsp[11]),
3297 	       msg->rsp_size - 11);
3298 	/*
3299 	 * The other fields matched, so no need to set them, except
3300 	 * for netfn, which needs to be the response that was
3301 	 * returned, not the request value.
3302 	 */
3303 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3304 	recv_msg->msg.data = recv_msg->msg_data;
3305 	recv_msg->msg.data_len = msg->rsp_size - 12;
3306 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3307 	ipmi_inc_stat(intf, handled_lan_responses);
3308 	deliver_response(recv_msg);
3309 
3310 	return 0;
3311 }
3312 
3313 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3314 				  struct ipmi_smi_msg *msg)
3315 {
3316 	struct cmd_rcvr          *rcvr;
3317 	int                      rv = 0;
3318 	unsigned char            netfn;
3319 	unsigned char            cmd;
3320 	unsigned char            chan;
3321 	ipmi_user_t              user = NULL;
3322 	struct ipmi_lan_addr     *lan_addr;
3323 	struct ipmi_recv_msg     *recv_msg;
3324 
3325 	if (msg->rsp_size < 12) {
3326 		/* Message not big enough, just ignore it. */
3327 		ipmi_inc_stat(intf, invalid_commands);
3328 		return 0;
3329 	}
3330 
3331 	if (msg->rsp[2] != 0) {
3332 		/* An error getting the response, just ignore it. */
3333 		return 0;
3334 	}
3335 
3336 	netfn = msg->rsp[6] >> 2;
3337 	cmd = msg->rsp[10];
3338 	chan = msg->rsp[3] & 0xf;
3339 
3340 	rcu_read_lock();
3341 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3342 	if (rcvr) {
3343 		user = rcvr->user;
3344 		kref_get(&user->refcount);
3345 	} else
3346 		user = NULL;
3347 	rcu_read_unlock();
3348 
3349 	if (user == NULL) {
3350 		/* We didn't find a user, just give up. */
3351 		ipmi_inc_stat(intf, unhandled_commands);
3352 
3353 		/*
3354 		 * Don't do anything with these messages, just allow
3355 		 * them to be freed.
3356 		 */
3357 		rv = 0;
3358 	} else {
3359 		/* Deliver the message to the user. */
3360 		ipmi_inc_stat(intf, handled_commands);
3361 
3362 		recv_msg = ipmi_alloc_recv_msg();
3363 		if (!recv_msg) {
3364 			/*
3365 			 * We couldn't allocate memory for the
3366 			 * message, so requeue it for handling later.
3367 			 */
3368 			rv = 1;
3369 			kref_put(&user->refcount, free_user);
3370 		} else {
3371 			/* Extract the source address from the data. */
3372 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3373 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3374 			lan_addr->session_handle = msg->rsp[4];
3375 			lan_addr->remote_SWID = msg->rsp[8];
3376 			lan_addr->local_SWID = msg->rsp[5];
3377 			lan_addr->lun = msg->rsp[9] & 3;
3378 			lan_addr->channel = msg->rsp[3] & 0xf;
3379 			lan_addr->privilege = msg->rsp[3] >> 4;
3380 
3381 			/*
3382 			 * Extract the rest of the message information
3383 			 * from the IPMB header.
3384 			 */
3385 			recv_msg->user = user;
3386 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3387 			recv_msg->msgid = msg->rsp[9] >> 2;
3388 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3389 			recv_msg->msg.cmd = msg->rsp[10];
3390 			recv_msg->msg.data = recv_msg->msg_data;
3391 
3392 			/*
3393 			 * We chop off 12, not 11 bytes because the checksum
3394 			 * at the end also needs to be removed.
3395 			 */
3396 			recv_msg->msg.data_len = msg->rsp_size - 12;
3397 			memcpy(recv_msg->msg_data,
3398 			       &(msg->rsp[11]),
3399 			       msg->rsp_size - 12);
3400 			deliver_response(recv_msg);
3401 		}
3402 	}
3403 
3404 	return rv;
3405 }
3406 
3407 /*
3408  * This routine will handle "Get Message" command responses with
3409  * channels that use an OEM Medium. The message format belongs to
3410  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3411  * Chapter 22, sections 22.6 and 22.24 for more details.
3412  */
3413 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3414 				  struct ipmi_smi_msg *msg)
3415 {
3416 	struct cmd_rcvr       *rcvr;
3417 	int                   rv = 0;
3418 	unsigned char         netfn;
3419 	unsigned char         cmd;
3420 	unsigned char         chan;
3421 	ipmi_user_t           user = NULL;
3422 	struct ipmi_system_interface_addr *smi_addr;
3423 	struct ipmi_recv_msg  *recv_msg;
3424 
3425 	/*
3426 	 * We expect the OEM SW to perform error checking
3427 	 * so we just do some basic sanity checks
3428 	 */
3429 	if (msg->rsp_size < 4) {
3430 		/* Message not big enough, just ignore it. */
3431 		ipmi_inc_stat(intf, invalid_commands);
3432 		return 0;
3433 	}
3434 
3435 	if (msg->rsp[2] != 0) {
3436 		/* An error getting the response, just ignore it. */
3437 		return 0;
3438 	}
3439 
3440 	/*
3441 	 * This is an OEM Message so the OEM needs to know how
3442 	 * handle the message. We do no interpretation.
3443 	 */
3444 	netfn = msg->rsp[0] >> 2;
3445 	cmd = msg->rsp[1];
3446 	chan = msg->rsp[3] & 0xf;
3447 
3448 	rcu_read_lock();
3449 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3450 	if (rcvr) {
3451 		user = rcvr->user;
3452 		kref_get(&user->refcount);
3453 	} else
3454 		user = NULL;
3455 	rcu_read_unlock();
3456 
3457 	if (user == NULL) {
3458 		/* We didn't find a user, just give up. */
3459 		ipmi_inc_stat(intf, unhandled_commands);
3460 
3461 		/*
3462 		 * Don't do anything with these messages, just allow
3463 		 * them to be freed.
3464 		 */
3465 
3466 		rv = 0;
3467 	} else {
3468 		/* Deliver the message to the user. */
3469 		ipmi_inc_stat(intf, handled_commands);
3470 
3471 		recv_msg = ipmi_alloc_recv_msg();
3472 		if (!recv_msg) {
3473 			/*
3474 			 * We couldn't allocate memory for the
3475 			 * message, so requeue it for handling
3476 			 * later.
3477 			 */
3478 			rv = 1;
3479 			kref_put(&user->refcount, free_user);
3480 		} else {
3481 			/*
3482 			 * OEM Messages are expected to be delivered via
3483 			 * the system interface to SMS software.  We might
3484 			 * need to visit this again depending on OEM
3485 			 * requirements
3486 			 */
3487 			smi_addr = ((struct ipmi_system_interface_addr *)
3488 				    &(recv_msg->addr));
3489 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3490 			smi_addr->channel = IPMI_BMC_CHANNEL;
3491 			smi_addr->lun = msg->rsp[0] & 3;
3492 
3493 			recv_msg->user = user;
3494 			recv_msg->user_msg_data = NULL;
3495 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3496 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3497 			recv_msg->msg.cmd = msg->rsp[1];
3498 			recv_msg->msg.data = recv_msg->msg_data;
3499 
3500 			/*
3501 			 * The message starts at byte 4 which follows the
3502 			 * the Channel Byte in the "GET MESSAGE" command
3503 			 */
3504 			recv_msg->msg.data_len = msg->rsp_size - 4;
3505 			memcpy(recv_msg->msg_data,
3506 			       &(msg->rsp[4]),
3507 			       msg->rsp_size - 4);
3508 			deliver_response(recv_msg);
3509 		}
3510 	}
3511 
3512 	return rv;
3513 }
3514 
3515 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3516 				     struct ipmi_smi_msg  *msg)
3517 {
3518 	struct ipmi_system_interface_addr *smi_addr;
3519 
3520 	recv_msg->msgid = 0;
3521 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3522 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3523 	smi_addr->channel = IPMI_BMC_CHANNEL;
3524 	smi_addr->lun = msg->rsp[0] & 3;
3525 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3526 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3527 	recv_msg->msg.cmd = msg->rsp[1];
3528 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3529 	recv_msg->msg.data = recv_msg->msg_data;
3530 	recv_msg->msg.data_len = msg->rsp_size - 3;
3531 }
3532 
3533 static int handle_read_event_rsp(ipmi_smi_t          intf,
3534 				 struct ipmi_smi_msg *msg)
3535 {
3536 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3537 	struct list_head     msgs;
3538 	ipmi_user_t          user;
3539 	int                  rv = 0;
3540 	int                  deliver_count = 0;
3541 	unsigned long        flags;
3542 
3543 	if (msg->rsp_size < 19) {
3544 		/* Message is too small to be an IPMB event. */
3545 		ipmi_inc_stat(intf, invalid_events);
3546 		return 0;
3547 	}
3548 
3549 	if (msg->rsp[2] != 0) {
3550 		/* An error getting the event, just ignore it. */
3551 		return 0;
3552 	}
3553 
3554 	INIT_LIST_HEAD(&msgs);
3555 
3556 	spin_lock_irqsave(&intf->events_lock, flags);
3557 
3558 	ipmi_inc_stat(intf, events);
3559 
3560 	/*
3561 	 * Allocate and fill in one message for every user that is
3562 	 * getting events.
3563 	 */
3564 	rcu_read_lock();
3565 	list_for_each_entry_rcu(user, &intf->users, link) {
3566 		if (!user->gets_events)
3567 			continue;
3568 
3569 		recv_msg = ipmi_alloc_recv_msg();
3570 		if (!recv_msg) {
3571 			rcu_read_unlock();
3572 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3573 						 link) {
3574 				list_del(&recv_msg->link);
3575 				ipmi_free_recv_msg(recv_msg);
3576 			}
3577 			/*
3578 			 * We couldn't allocate memory for the
3579 			 * message, so requeue it for handling
3580 			 * later.
3581 			 */
3582 			rv = 1;
3583 			goto out;
3584 		}
3585 
3586 		deliver_count++;
3587 
3588 		copy_event_into_recv_msg(recv_msg, msg);
3589 		recv_msg->user = user;
3590 		kref_get(&user->refcount);
3591 		list_add_tail(&(recv_msg->link), &msgs);
3592 	}
3593 	rcu_read_unlock();
3594 
3595 	if (deliver_count) {
3596 		/* Now deliver all the messages. */
3597 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3598 			list_del(&recv_msg->link);
3599 			deliver_response(recv_msg);
3600 		}
3601 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3602 		/*
3603 		 * No one to receive the message, put it in queue if there's
3604 		 * not already too many things in the queue.
3605 		 */
3606 		recv_msg = ipmi_alloc_recv_msg();
3607 		if (!recv_msg) {
3608 			/*
3609 			 * We couldn't allocate memory for the
3610 			 * message, so requeue it for handling
3611 			 * later.
3612 			 */
3613 			rv = 1;
3614 			goto out;
3615 		}
3616 
3617 		copy_event_into_recv_msg(recv_msg, msg);
3618 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3619 		intf->waiting_events_count++;
3620 	} else if (!intf->event_msg_printed) {
3621 		/*
3622 		 * There's too many things in the queue, discard this
3623 		 * message.
3624 		 */
3625 		printk(KERN_WARNING PFX "Event queue full, discarding"
3626 		       " incoming events\n");
3627 		intf->event_msg_printed = 1;
3628 	}
3629 
3630  out:
3631 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3632 
3633 	return rv;
3634 }
3635 
3636 static int handle_bmc_rsp(ipmi_smi_t          intf,
3637 			  struct ipmi_smi_msg *msg)
3638 {
3639 	struct ipmi_recv_msg *recv_msg;
3640 	struct ipmi_user     *user;
3641 
3642 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3643 	if (recv_msg == NULL) {
3644 		printk(KERN_WARNING
3645 		       "IPMI message received with no owner. This\n"
3646 		       "could be because of a malformed message, or\n"
3647 		       "because of a hardware error.  Contact your\n"
3648 		       "hardware vender for assistance\n");
3649 		return 0;
3650 	}
3651 
3652 	user = recv_msg->user;
3653 	/* Make sure the user still exists. */
3654 	if (user && !user->valid) {
3655 		/* The user for the message went away, so give up. */
3656 		ipmi_inc_stat(intf, unhandled_local_responses);
3657 		ipmi_free_recv_msg(recv_msg);
3658 	} else {
3659 		struct ipmi_system_interface_addr *smi_addr;
3660 
3661 		ipmi_inc_stat(intf, handled_local_responses);
3662 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3663 		recv_msg->msgid = msg->msgid;
3664 		smi_addr = ((struct ipmi_system_interface_addr *)
3665 			    &(recv_msg->addr));
3666 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3667 		smi_addr->channel = IPMI_BMC_CHANNEL;
3668 		smi_addr->lun = msg->rsp[0] & 3;
3669 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3670 		recv_msg->msg.cmd = msg->rsp[1];
3671 		memcpy(recv_msg->msg_data,
3672 		       &(msg->rsp[2]),
3673 		       msg->rsp_size - 2);
3674 		recv_msg->msg.data = recv_msg->msg_data;
3675 		recv_msg->msg.data_len = msg->rsp_size - 2;
3676 		deliver_response(recv_msg);
3677 	}
3678 
3679 	return 0;
3680 }
3681 
3682 /*
3683  * Handle a received message.  Return 1 if the message should be requeued,
3684  * 0 if the message should be freed, or -1 if the message should not
3685  * be freed or requeued.
3686  */
3687 static int handle_one_recv_msg(ipmi_smi_t          intf,
3688 			       struct ipmi_smi_msg *msg)
3689 {
3690 	int requeue;
3691 	int chan;
3692 
3693 #ifdef DEBUG_MSGING
3694 	int m;
3695 	printk("Recv:");
3696 	for (m = 0; m < msg->rsp_size; m++)
3697 		printk(" %2.2x", msg->rsp[m]);
3698 	printk("\n");
3699 #endif
3700 	if (msg->rsp_size < 2) {
3701 		/* Message is too small to be correct. */
3702 		printk(KERN_WARNING PFX "BMC returned to small a message"
3703 		       " for netfn %x cmd %x, got %d bytes\n",
3704 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3705 
3706 		/* Generate an error response for the message. */
3707 		msg->rsp[0] = msg->data[0] | (1 << 2);
3708 		msg->rsp[1] = msg->data[1];
3709 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3710 		msg->rsp_size = 3;
3711 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3712 		   || (msg->rsp[1] != msg->data[1])) {
3713 		/*
3714 		 * The NetFN and Command in the response is not even
3715 		 * marginally correct.
3716 		 */
3717 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3718 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3719 		       (msg->data[0] >> 2) | 1, msg->data[1],
3720 		       msg->rsp[0] >> 2, msg->rsp[1]);
3721 
3722 		/* Generate an error response for the message. */
3723 		msg->rsp[0] = msg->data[0] | (1 << 2);
3724 		msg->rsp[1] = msg->data[1];
3725 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3726 		msg->rsp_size = 3;
3727 	}
3728 
3729 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3730 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3731 	    && (msg->user_data != NULL)) {
3732 		/*
3733 		 * It's a response to a response we sent.  For this we
3734 		 * deliver a send message response to the user.
3735 		 */
3736 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3737 
3738 		requeue = 0;
3739 		if (msg->rsp_size < 2)
3740 			/* Message is too small to be correct. */
3741 			goto out;
3742 
3743 		chan = msg->data[2] & 0x0f;
3744 		if (chan >= IPMI_MAX_CHANNELS)
3745 			/* Invalid channel number */
3746 			goto out;
3747 
3748 		if (!recv_msg)
3749 			goto out;
3750 
3751 		/* Make sure the user still exists. */
3752 		if (!recv_msg->user || !recv_msg->user->valid)
3753 			goto out;
3754 
3755 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3756 		recv_msg->msg.data = recv_msg->msg_data;
3757 		recv_msg->msg.data_len = 1;
3758 		recv_msg->msg_data[0] = msg->rsp[2];
3759 		deliver_response(recv_msg);
3760 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3761 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3762 		/* It's from the receive queue. */
3763 		chan = msg->rsp[3] & 0xf;
3764 		if (chan >= IPMI_MAX_CHANNELS) {
3765 			/* Invalid channel number */
3766 			requeue = 0;
3767 			goto out;
3768 		}
3769 
3770 		/*
3771 		 * We need to make sure the channels have been initialized.
3772 		 * The channel_handler routine will set the "curr_channel"
3773 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3774 		 * channels for this interface have been initialized.
3775 		 */
3776 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3777 			requeue = 0; /* Throw the message away */
3778 			goto out;
3779 		}
3780 
3781 		switch (intf->channels[chan].medium) {
3782 		case IPMI_CHANNEL_MEDIUM_IPMB:
3783 			if (msg->rsp[4] & 0x04) {
3784 				/*
3785 				 * It's a response, so find the
3786 				 * requesting message and send it up.
3787 				 */
3788 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3789 			} else {
3790 				/*
3791 				 * It's a command to the SMS from some other
3792 				 * entity.  Handle that.
3793 				 */
3794 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3795 			}
3796 			break;
3797 
3798 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3799 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3800 			if (msg->rsp[6] & 0x04) {
3801 				/*
3802 				 * It's a response, so find the
3803 				 * requesting message and send it up.
3804 				 */
3805 				requeue = handle_lan_get_msg_rsp(intf, msg);
3806 			} else {
3807 				/*
3808 				 * It's a command to the SMS from some other
3809 				 * entity.  Handle that.
3810 				 */
3811 				requeue = handle_lan_get_msg_cmd(intf, msg);
3812 			}
3813 			break;
3814 
3815 		default:
3816 			/* Check for OEM Channels.  Clients had better
3817 			   register for these commands. */
3818 			if ((intf->channels[chan].medium
3819 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3820 			    && (intf->channels[chan].medium
3821 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3822 				requeue = handle_oem_get_msg_cmd(intf, msg);
3823 			} else {
3824 				/*
3825 				 * We don't handle the channel type, so just
3826 				 * free the message.
3827 				 */
3828 				requeue = 0;
3829 			}
3830 		}
3831 
3832 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3833 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3834 		/* It's an asynchronous event. */
3835 		requeue = handle_read_event_rsp(intf, msg);
3836 	} else {
3837 		/* It's a response from the local BMC. */
3838 		requeue = handle_bmc_rsp(intf, msg);
3839 	}
3840 
3841  out:
3842 	return requeue;
3843 }
3844 
3845 /*
3846  * If there are messages in the queue or pretimeouts, handle them.
3847  */
3848 static void handle_new_recv_msgs(ipmi_smi_t intf)
3849 {
3850 	struct ipmi_smi_msg  *smi_msg;
3851 	unsigned long        flags = 0;
3852 	int                  rv;
3853 	int                  run_to_completion = intf->run_to_completion;
3854 
3855 	/* See if any waiting messages need to be processed. */
3856 	if (!run_to_completion)
3857 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3858 	while (!list_empty(&intf->waiting_msgs)) {
3859 		smi_msg = list_entry(intf->waiting_msgs.next,
3860 				     struct ipmi_smi_msg, link);
3861 		list_del(&smi_msg->link);
3862 		if (!run_to_completion)
3863 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3864 		rv = handle_one_recv_msg(intf, smi_msg);
3865 		if (!run_to_completion)
3866 			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3867 		if (rv == 0) {
3868 			/* Message handled */
3869 			ipmi_free_smi_msg(smi_msg);
3870 		} else if (rv < 0) {
3871 			/* Fatal error on the message, del but don't free. */
3872 		} else {
3873 			/*
3874 			 * To preserve message order, quit if we
3875 			 * can't handle a message.
3876 			 */
3877 			list_add(&smi_msg->link, &intf->waiting_msgs);
3878 			break;
3879 		}
3880 	}
3881 	if (!run_to_completion)
3882 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3883 
3884 	/*
3885 	 * If the pretimout count is non-zero, decrement one from it and
3886 	 * deliver pretimeouts to all the users.
3887 	 */
3888 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3889 		ipmi_user_t user;
3890 
3891 		rcu_read_lock();
3892 		list_for_each_entry_rcu(user, &intf->users, link) {
3893 			if (user->handler->ipmi_watchdog_pretimeout)
3894 				user->handler->ipmi_watchdog_pretimeout(
3895 					user->handler_data);
3896 		}
3897 		rcu_read_unlock();
3898 	}
3899 }
3900 
3901 static void smi_recv_tasklet(unsigned long val)
3902 {
3903 	handle_new_recv_msgs((ipmi_smi_t) val);
3904 }
3905 
3906 /* Handle a new message from the lower layer. */
3907 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3908 			   struct ipmi_smi_msg *msg)
3909 {
3910 	unsigned long flags = 0; /* keep us warning-free. */
3911 	int           run_to_completion;
3912 
3913 
3914 	if ((msg->data_size >= 2)
3915 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3916 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3917 	    && (msg->user_data == NULL)) {
3918 		/*
3919 		 * This is the local response to a command send, start
3920 		 * the timer for these.  The user_data will not be
3921 		 * NULL if this is a response send, and we will let
3922 		 * response sends just go through.
3923 		 */
3924 
3925 		/*
3926 		 * Check for errors, if we get certain errors (ones
3927 		 * that mean basically we can try again later), we
3928 		 * ignore them and start the timer.  Otherwise we
3929 		 * report the error immediately.
3930 		 */
3931 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3932 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3933 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3934 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3935 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3936 			int chan = msg->rsp[3] & 0xf;
3937 
3938 			/* Got an error sending the message, handle it. */
3939 			if (chan >= IPMI_MAX_CHANNELS)
3940 				; /* This shouldn't happen */
3941 			else if ((intf->channels[chan].medium
3942 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3943 				 || (intf->channels[chan].medium
3944 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3945 				ipmi_inc_stat(intf, sent_lan_command_errs);
3946 			else
3947 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3948 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3949 		} else
3950 			/* The message was sent, start the timer. */
3951 			intf_start_seq_timer(intf, msg->msgid);
3952 
3953 		ipmi_free_smi_msg(msg);
3954 		goto out;
3955 	}
3956 
3957 	/*
3958 	 * To preserve message order, if the list is not empty, we
3959 	 * tack this message onto the end of the list.
3960 	 */
3961 	run_to_completion = intf->run_to_completion;
3962 	if (!run_to_completion)
3963 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3964 	list_add_tail(&msg->link, &intf->waiting_msgs);
3965 	if (!run_to_completion)
3966 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3967 
3968 	tasklet_schedule(&intf->recv_tasklet);
3969  out:
3970 	return;
3971 }
3972 EXPORT_SYMBOL(ipmi_smi_msg_received);
3973 
3974 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3975 {
3976 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3977 	tasklet_schedule(&intf->recv_tasklet);
3978 }
3979 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3980 
3981 static struct ipmi_smi_msg *
3982 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3983 		  unsigned char seq, long seqid)
3984 {
3985 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3986 	if (!smi_msg)
3987 		/*
3988 		 * If we can't allocate the message, then just return, we
3989 		 * get 4 retries, so this should be ok.
3990 		 */
3991 		return NULL;
3992 
3993 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3994 	smi_msg->data_size = recv_msg->msg.data_len;
3995 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3996 
3997 #ifdef DEBUG_MSGING
3998 	{
3999 		int m;
4000 		printk("Resend: ");
4001 		for (m = 0; m < smi_msg->data_size; m++)
4002 			printk(" %2.2x", smi_msg->data[m]);
4003 		printk("\n");
4004 	}
4005 #endif
4006 	return smi_msg;
4007 }
4008 
4009 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4010 			      struct list_head *timeouts, long timeout_period,
4011 			      int slot, unsigned long *flags,
4012 			      unsigned int *waiting_msgs)
4013 {
4014 	struct ipmi_recv_msg     *msg;
4015 	struct ipmi_smi_handlers *handlers;
4016 
4017 	if (intf->intf_num == -1)
4018 		return;
4019 
4020 	if (!ent->inuse)
4021 		return;
4022 
4023 	ent->timeout -= timeout_period;
4024 	if (ent->timeout > 0) {
4025 		(*waiting_msgs)++;
4026 		return;
4027 	}
4028 
4029 	if (ent->retries_left == 0) {
4030 		/* The message has used all its retries. */
4031 		ent->inuse = 0;
4032 		msg = ent->recv_msg;
4033 		list_add_tail(&msg->link, timeouts);
4034 		if (ent->broadcast)
4035 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4036 		else if (is_lan_addr(&ent->recv_msg->addr))
4037 			ipmi_inc_stat(intf, timed_out_lan_commands);
4038 		else
4039 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4040 	} else {
4041 		struct ipmi_smi_msg *smi_msg;
4042 		/* More retries, send again. */
4043 
4044 		(*waiting_msgs)++;
4045 
4046 		/*
4047 		 * Start with the max timer, set to normal timer after
4048 		 * the message is sent.
4049 		 */
4050 		ent->timeout = MAX_MSG_TIMEOUT;
4051 		ent->retries_left--;
4052 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4053 					    ent->seqid);
4054 		if (!smi_msg) {
4055 			if (is_lan_addr(&ent->recv_msg->addr))
4056 				ipmi_inc_stat(intf,
4057 					      dropped_rexmit_lan_commands);
4058 			else
4059 				ipmi_inc_stat(intf,
4060 					      dropped_rexmit_ipmb_commands);
4061 			return;
4062 		}
4063 
4064 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4065 
4066 		/*
4067 		 * Send the new message.  We send with a zero
4068 		 * priority.  It timed out, I doubt time is that
4069 		 * critical now, and high priority messages are really
4070 		 * only for messages to the local MC, which don't get
4071 		 * resent.
4072 		 */
4073 		handlers = intf->handlers;
4074 		if (handlers) {
4075 			if (is_lan_addr(&ent->recv_msg->addr))
4076 				ipmi_inc_stat(intf,
4077 					      retransmitted_lan_commands);
4078 			else
4079 				ipmi_inc_stat(intf,
4080 					      retransmitted_ipmb_commands);
4081 
4082 			intf->handlers->sender(intf->send_info,
4083 					       smi_msg, 0);
4084 		} else
4085 			ipmi_free_smi_msg(smi_msg);
4086 
4087 		spin_lock_irqsave(&intf->seq_lock, *flags);
4088 	}
4089 }
4090 
4091 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4092 {
4093 	struct list_head     timeouts;
4094 	struct ipmi_recv_msg *msg, *msg2;
4095 	unsigned long        flags;
4096 	int                  i;
4097 	unsigned int         waiting_msgs = 0;
4098 
4099 	/*
4100 	 * Go through the seq table and find any messages that
4101 	 * have timed out, putting them in the timeouts
4102 	 * list.
4103 	 */
4104 	INIT_LIST_HEAD(&timeouts);
4105 	spin_lock_irqsave(&intf->seq_lock, flags);
4106 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4107 		check_msg_timeout(intf, &(intf->seq_table[i]),
4108 				  &timeouts, timeout_period, i,
4109 				  &flags, &waiting_msgs);
4110 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4111 
4112 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4113 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4114 
4115 	/*
4116 	 * Maintenance mode handling.  Check the timeout
4117 	 * optimistically before we claim the lock.  It may
4118 	 * mean a timeout gets missed occasionally, but that
4119 	 * only means the timeout gets extended by one period
4120 	 * in that case.  No big deal, and it avoids the lock
4121 	 * most of the time.
4122 	 */
4123 	if (intf->auto_maintenance_timeout > 0) {
4124 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4125 		if (intf->auto_maintenance_timeout > 0) {
4126 			intf->auto_maintenance_timeout
4127 				-= timeout_period;
4128 			if (!intf->maintenance_mode
4129 			    && (intf->auto_maintenance_timeout <= 0)) {
4130 				intf->maintenance_mode_enable = false;
4131 				maintenance_mode_update(intf);
4132 			}
4133 		}
4134 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4135 				       flags);
4136 	}
4137 
4138 	tasklet_schedule(&intf->recv_tasklet);
4139 
4140 	return waiting_msgs;
4141 }
4142 
4143 static void ipmi_request_event(ipmi_smi_t intf)
4144 {
4145 	struct ipmi_smi_handlers *handlers;
4146 
4147 	/* No event requests when in maintenance mode. */
4148 	if (intf->maintenance_mode_enable)
4149 		return;
4150 
4151 	handlers = intf->handlers;
4152 	if (handlers)
4153 		handlers->request_events(intf->send_info);
4154 }
4155 
4156 static struct timer_list ipmi_timer;
4157 
4158 static atomic_t stop_operation;
4159 
4160 static void ipmi_timeout(unsigned long data)
4161 {
4162 	ipmi_smi_t intf;
4163 	int nt = 0;
4164 
4165 	if (atomic_read(&stop_operation))
4166 		return;
4167 
4168 	rcu_read_lock();
4169 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4170 		int lnt = 0;
4171 
4172 		if (atomic_read(&intf->event_waiters)) {
4173 			intf->ticks_to_req_ev--;
4174 			if (intf->ticks_to_req_ev == 0) {
4175 				ipmi_request_event(intf);
4176 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4177 			}
4178 			lnt++;
4179 		}
4180 
4181 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4182 
4183 		lnt = !!lnt;
4184 		if (lnt != intf->last_needs_timer &&
4185 					intf->handlers->set_need_watch)
4186 			intf->handlers->set_need_watch(intf->send_info, lnt);
4187 		intf->last_needs_timer = lnt;
4188 
4189 		nt += lnt;
4190 	}
4191 	rcu_read_unlock();
4192 
4193 	if (nt)
4194 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4195 }
4196 
4197 static void need_waiter(ipmi_smi_t intf)
4198 {
4199 	/* Racy, but worst case we start the timer twice. */
4200 	if (!timer_pending(&ipmi_timer))
4201 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4202 }
4203 
4204 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4205 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4206 
4207 /* FIXME - convert these to slabs. */
4208 static void free_smi_msg(struct ipmi_smi_msg *msg)
4209 {
4210 	atomic_dec(&smi_msg_inuse_count);
4211 	kfree(msg);
4212 }
4213 
4214 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4215 {
4216 	struct ipmi_smi_msg *rv;
4217 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4218 	if (rv) {
4219 		rv->done = free_smi_msg;
4220 		rv->user_data = NULL;
4221 		atomic_inc(&smi_msg_inuse_count);
4222 	}
4223 	return rv;
4224 }
4225 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4226 
4227 static void free_recv_msg(struct ipmi_recv_msg *msg)
4228 {
4229 	atomic_dec(&recv_msg_inuse_count);
4230 	kfree(msg);
4231 }
4232 
4233 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4234 {
4235 	struct ipmi_recv_msg *rv;
4236 
4237 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4238 	if (rv) {
4239 		rv->user = NULL;
4240 		rv->done = free_recv_msg;
4241 		atomic_inc(&recv_msg_inuse_count);
4242 	}
4243 	return rv;
4244 }
4245 
4246 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4247 {
4248 	if (msg->user)
4249 		kref_put(&msg->user->refcount, free_user);
4250 	msg->done(msg);
4251 }
4252 EXPORT_SYMBOL(ipmi_free_recv_msg);
4253 
4254 #ifdef CONFIG_IPMI_PANIC_EVENT
4255 
4256 static atomic_t panic_done_count = ATOMIC_INIT(0);
4257 
4258 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4259 {
4260 	atomic_dec(&panic_done_count);
4261 }
4262 
4263 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4264 {
4265 	atomic_dec(&panic_done_count);
4266 }
4267 
4268 /*
4269  * Inside a panic, send a message and wait for a response.
4270  */
4271 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4272 					struct ipmi_addr     *addr,
4273 					struct kernel_ipmi_msg *msg)
4274 {
4275 	struct ipmi_smi_msg  smi_msg;
4276 	struct ipmi_recv_msg recv_msg;
4277 	int rv;
4278 
4279 	smi_msg.done = dummy_smi_done_handler;
4280 	recv_msg.done = dummy_recv_done_handler;
4281 	atomic_add(2, &panic_done_count);
4282 	rv = i_ipmi_request(NULL,
4283 			    intf,
4284 			    addr,
4285 			    0,
4286 			    msg,
4287 			    intf,
4288 			    &smi_msg,
4289 			    &recv_msg,
4290 			    0,
4291 			    intf->channels[0].address,
4292 			    intf->channels[0].lun,
4293 			    0, 1); /* Don't retry, and don't wait. */
4294 	if (rv)
4295 		atomic_sub(2, &panic_done_count);
4296 	while (atomic_read(&panic_done_count) != 0)
4297 		ipmi_poll(intf);
4298 }
4299 
4300 #ifdef CONFIG_IPMI_PANIC_STRING
4301 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4302 {
4303 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4304 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4305 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4306 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4307 		/* A get event receiver command, save it. */
4308 		intf->event_receiver = msg->msg.data[1];
4309 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4310 	}
4311 }
4312 
4313 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4314 {
4315 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4316 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4317 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4318 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4319 		/*
4320 		 * A get device id command, save if we are an event
4321 		 * receiver or generator.
4322 		 */
4323 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4324 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4325 	}
4326 }
4327 #endif
4328 
4329 static void send_panic_events(char *str)
4330 {
4331 	struct kernel_ipmi_msg            msg;
4332 	ipmi_smi_t                        intf;
4333 	unsigned char                     data[16];
4334 	struct ipmi_system_interface_addr *si;
4335 	struct ipmi_addr                  addr;
4336 
4337 	si = (struct ipmi_system_interface_addr *) &addr;
4338 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4339 	si->channel = IPMI_BMC_CHANNEL;
4340 	si->lun = 0;
4341 
4342 	/* Fill in an event telling that we have failed. */
4343 	msg.netfn = 0x04; /* Sensor or Event. */
4344 	msg.cmd = 2; /* Platform event command. */
4345 	msg.data = data;
4346 	msg.data_len = 8;
4347 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4348 	data[1] = 0x03; /* This is for IPMI 1.0. */
4349 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4350 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4351 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4352 
4353 	/*
4354 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4355 	 * to make the panic events more useful.
4356 	 */
4357 	if (str) {
4358 		data[3] = str[0];
4359 		data[6] = str[1];
4360 		data[7] = str[2];
4361 	}
4362 
4363 	/* For every registered interface, send the event. */
4364 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4365 		if (!intf->handlers)
4366 			/* Interface is not ready. */
4367 			continue;
4368 
4369 		intf->run_to_completion = 1;
4370 		/* Send the event announcing the panic. */
4371 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4372 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4373 	}
4374 
4375 #ifdef CONFIG_IPMI_PANIC_STRING
4376 	/*
4377 	 * On every interface, dump a bunch of OEM event holding the
4378 	 * string.
4379 	 */
4380 	if (!str)
4381 		return;
4382 
4383 	/* For every registered interface, send the event. */
4384 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4385 		char                  *p = str;
4386 		struct ipmi_ipmb_addr *ipmb;
4387 		int                   j;
4388 
4389 		if (intf->intf_num == -1)
4390 			/* Interface was not ready yet. */
4391 			continue;
4392 
4393 		/*
4394 		 * intf_num is used as an marker to tell if the
4395 		 * interface is valid.  Thus we need a read barrier to
4396 		 * make sure data fetched before checking intf_num
4397 		 * won't be used.
4398 		 */
4399 		smp_rmb();
4400 
4401 		/*
4402 		 * First job here is to figure out where to send the
4403 		 * OEM events.  There's no way in IPMI to send OEM
4404 		 * events using an event send command, so we have to
4405 		 * find the SEL to put them in and stick them in
4406 		 * there.
4407 		 */
4408 
4409 		/* Get capabilities from the get device id. */
4410 		intf->local_sel_device = 0;
4411 		intf->local_event_generator = 0;
4412 		intf->event_receiver = 0;
4413 
4414 		/* Request the device info from the local MC. */
4415 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4416 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4417 		msg.data = NULL;
4418 		msg.data_len = 0;
4419 		intf->null_user_handler = device_id_fetcher;
4420 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4421 
4422 		if (intf->local_event_generator) {
4423 			/* Request the event receiver from the local MC. */
4424 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4425 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4426 			msg.data = NULL;
4427 			msg.data_len = 0;
4428 			intf->null_user_handler = event_receiver_fetcher;
4429 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4430 		}
4431 		intf->null_user_handler = NULL;
4432 
4433 		/*
4434 		 * Validate the event receiver.  The low bit must not
4435 		 * be 1 (it must be a valid IPMB address), it cannot
4436 		 * be zero, and it must not be my address.
4437 		 */
4438 		if (((intf->event_receiver & 1) == 0)
4439 		    && (intf->event_receiver != 0)
4440 		    && (intf->event_receiver != intf->channels[0].address)) {
4441 			/*
4442 			 * The event receiver is valid, send an IPMB
4443 			 * message.
4444 			 */
4445 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4446 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4447 			ipmb->channel = 0; /* FIXME - is this right? */
4448 			ipmb->lun = intf->event_receiver_lun;
4449 			ipmb->slave_addr = intf->event_receiver;
4450 		} else if (intf->local_sel_device) {
4451 			/*
4452 			 * The event receiver was not valid (or was
4453 			 * me), but I am an SEL device, just dump it
4454 			 * in my SEL.
4455 			 */
4456 			si = (struct ipmi_system_interface_addr *) &addr;
4457 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4458 			si->channel = IPMI_BMC_CHANNEL;
4459 			si->lun = 0;
4460 		} else
4461 			continue; /* No where to send the event. */
4462 
4463 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4464 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4465 		msg.data = data;
4466 		msg.data_len = 16;
4467 
4468 		j = 0;
4469 		while (*p) {
4470 			int size = strlen(p);
4471 
4472 			if (size > 11)
4473 				size = 11;
4474 			data[0] = 0;
4475 			data[1] = 0;
4476 			data[2] = 0xf0; /* OEM event without timestamp. */
4477 			data[3] = intf->channels[0].address;
4478 			data[4] = j++; /* sequence # */
4479 			/*
4480 			 * Always give 11 bytes, so strncpy will fill
4481 			 * it with zeroes for me.
4482 			 */
4483 			strncpy(data+5, p, 11);
4484 			p += size;
4485 
4486 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4487 		}
4488 	}
4489 #endif /* CONFIG_IPMI_PANIC_STRING */
4490 }
4491 #endif /* CONFIG_IPMI_PANIC_EVENT */
4492 
4493 static int has_panicked;
4494 
4495 static int panic_event(struct notifier_block *this,
4496 		       unsigned long         event,
4497 		       void                  *ptr)
4498 {
4499 	ipmi_smi_t intf;
4500 
4501 	if (has_panicked)
4502 		return NOTIFY_DONE;
4503 	has_panicked = 1;
4504 
4505 	/* For every registered interface, set it to run to completion. */
4506 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4507 		if (!intf->handlers)
4508 			/* Interface is not ready. */
4509 			continue;
4510 
4511 		intf->run_to_completion = 1;
4512 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4513 	}
4514 
4515 #ifdef CONFIG_IPMI_PANIC_EVENT
4516 	send_panic_events(ptr);
4517 #endif
4518 
4519 	return NOTIFY_DONE;
4520 }
4521 
4522 static struct notifier_block panic_block = {
4523 	.notifier_call	= panic_event,
4524 	.next		= NULL,
4525 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4526 };
4527 
4528 static int ipmi_init_msghandler(void)
4529 {
4530 	int rv;
4531 
4532 	if (initialized)
4533 		return 0;
4534 
4535 	rv = driver_register(&ipmidriver.driver);
4536 	if (rv) {
4537 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4538 		return rv;
4539 	}
4540 
4541 	printk(KERN_INFO "ipmi message handler version "
4542 	       IPMI_DRIVER_VERSION "\n");
4543 
4544 #ifdef CONFIG_PROC_FS
4545 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4546 	if (!proc_ipmi_root) {
4547 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4548 	    return -ENOMEM;
4549 	}
4550 
4551 #endif /* CONFIG_PROC_FS */
4552 
4553 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4554 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4555 
4556 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4557 
4558 	initialized = 1;
4559 
4560 	return 0;
4561 }
4562 
4563 static int __init ipmi_init_msghandler_mod(void)
4564 {
4565 	ipmi_init_msghandler();
4566 	return 0;
4567 }
4568 
4569 static void __exit cleanup_ipmi(void)
4570 {
4571 	int count;
4572 
4573 	if (!initialized)
4574 		return;
4575 
4576 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4577 
4578 	/*
4579 	 * This can't be called if any interfaces exist, so no worry
4580 	 * about shutting down the interfaces.
4581 	 */
4582 
4583 	/*
4584 	 * Tell the timer to stop, then wait for it to stop.  This
4585 	 * avoids problems with race conditions removing the timer
4586 	 * here.
4587 	 */
4588 	atomic_inc(&stop_operation);
4589 	del_timer_sync(&ipmi_timer);
4590 
4591 #ifdef CONFIG_PROC_FS
4592 	proc_remove(proc_ipmi_root);
4593 #endif /* CONFIG_PROC_FS */
4594 
4595 	driver_unregister(&ipmidriver.driver);
4596 
4597 	initialized = 0;
4598 
4599 	/* Check for buffer leaks. */
4600 	count = atomic_read(&smi_msg_inuse_count);
4601 	if (count != 0)
4602 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4603 		       count);
4604 	count = atomic_read(&recv_msg_inuse_count);
4605 	if (count != 0)
4606 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4607 		       count);
4608 }
4609 module_exit(cleanup_ipmi);
4610 
4611 module_init(ipmi_init_msghandler_mod);
4612 MODULE_LICENSE("GPL");
4613 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4614 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4615 		   " interface.");
4616 MODULE_VERSION(IPMI_DRIVER_VERSION);
4617