1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <linux/poll.h> 37 #include <linux/sched.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/interrupt.h> 49 50 #define PFX "IPMI message handler: " 51 52 #define IPMI_DRIVER_VERSION "39.2" 53 54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 55 static int ipmi_init_msghandler(void); 56 static void smi_recv_tasklet(unsigned long); 57 static void handle_new_recv_msgs(ipmi_smi_t intf); 58 static void need_waiter(ipmi_smi_t intf); 59 60 static int initialized; 61 62 #ifdef CONFIG_PROC_FS 63 static struct proc_dir_entry *proc_ipmi_root; 64 #endif /* CONFIG_PROC_FS */ 65 66 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 67 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 68 69 #define MAX_EVENTS_IN_QUEUE 25 70 71 /* 72 * Don't let a message sit in a queue forever, always time it with at lest 73 * the max message timer. This is in milliseconds. 74 */ 75 #define MAX_MSG_TIMEOUT 60000 76 77 /* Call every ~1000 ms. */ 78 #define IPMI_TIMEOUT_TIME 1000 79 80 /* How many jiffies does it take to get to the timeout time. */ 81 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 82 83 /* 84 * Request events from the queue every second (this is the number of 85 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 86 * future, IPMI will add a way to know immediately if an event is in 87 * the queue and this silliness can go away. 88 */ 89 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 90 91 /* 92 * The main "user" data structure. 93 */ 94 struct ipmi_user { 95 struct list_head link; 96 97 /* Set to false when the user is destroyed. */ 98 bool valid; 99 100 struct kref refcount; 101 102 /* The upper layer that handles receive messages. */ 103 struct ipmi_user_hndl *handler; 104 void *handler_data; 105 106 /* The interface this user is bound to. */ 107 ipmi_smi_t intf; 108 109 /* Does this interface receive IPMI events? */ 110 bool gets_events; 111 }; 112 113 struct cmd_rcvr { 114 struct list_head link; 115 116 ipmi_user_t user; 117 unsigned char netfn; 118 unsigned char cmd; 119 unsigned int chans; 120 121 /* 122 * This is used to form a linked lised during mass deletion. 123 * Since this is in an RCU list, we cannot use the link above 124 * or change any data until the RCU period completes. So we 125 * use this next variable during mass deletion so we can have 126 * a list and don't have to wait and restart the search on 127 * every individual deletion of a command. 128 */ 129 struct cmd_rcvr *next; 130 }; 131 132 struct seq_table { 133 unsigned int inuse : 1; 134 unsigned int broadcast : 1; 135 136 unsigned long timeout; 137 unsigned long orig_timeout; 138 unsigned int retries_left; 139 140 /* 141 * To verify on an incoming send message response that this is 142 * the message that the response is for, we keep a sequence id 143 * and increment it every time we send a message. 144 */ 145 long seqid; 146 147 /* 148 * This is held so we can properly respond to the message on a 149 * timeout, and it is used to hold the temporary data for 150 * retransmission, too. 151 */ 152 struct ipmi_recv_msg *recv_msg; 153 }; 154 155 /* 156 * Store the information in a msgid (long) to allow us to find a 157 * sequence table entry from the msgid. 158 */ 159 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff)) 160 161 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 162 do { \ 163 seq = ((msgid >> 26) & 0x3f); \ 164 seqid = (msgid & 0x3fffff); \ 165 } while (0) 166 167 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff) 168 169 struct ipmi_channel { 170 unsigned char medium; 171 unsigned char protocol; 172 173 /* 174 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 175 * but may be changed by the user. 176 */ 177 unsigned char address; 178 179 /* 180 * My LUN. This should generally stay the SMS LUN, but just in 181 * case... 182 */ 183 unsigned char lun; 184 }; 185 186 #ifdef CONFIG_PROC_FS 187 struct ipmi_proc_entry { 188 char *name; 189 struct ipmi_proc_entry *next; 190 }; 191 #endif 192 193 struct bmc_device { 194 struct platform_device *dev; 195 struct ipmi_device_id id; 196 unsigned char guid[16]; 197 int guid_set; 198 199 struct kref refcount; 200 201 /* bmc device attributes */ 202 struct device_attribute device_id_attr; 203 struct device_attribute provides_dev_sdrs_attr; 204 struct device_attribute revision_attr; 205 struct device_attribute firmware_rev_attr; 206 struct device_attribute version_attr; 207 struct device_attribute add_dev_support_attr; 208 struct device_attribute manufacturer_id_attr; 209 struct device_attribute product_id_attr; 210 struct device_attribute guid_attr; 211 struct device_attribute aux_firmware_rev_attr; 212 }; 213 214 /* 215 * Various statistics for IPMI, these index stats[] in the ipmi_smi 216 * structure. 217 */ 218 enum ipmi_stat_indexes { 219 /* Commands we got from the user that were invalid. */ 220 IPMI_STAT_sent_invalid_commands = 0, 221 222 /* Commands we sent to the MC. */ 223 IPMI_STAT_sent_local_commands, 224 225 /* Responses from the MC that were delivered to a user. */ 226 IPMI_STAT_handled_local_responses, 227 228 /* Responses from the MC that were not delivered to a user. */ 229 IPMI_STAT_unhandled_local_responses, 230 231 /* Commands we sent out to the IPMB bus. */ 232 IPMI_STAT_sent_ipmb_commands, 233 234 /* Commands sent on the IPMB that had errors on the SEND CMD */ 235 IPMI_STAT_sent_ipmb_command_errs, 236 237 /* Each retransmit increments this count. */ 238 IPMI_STAT_retransmitted_ipmb_commands, 239 240 /* 241 * When a message times out (runs out of retransmits) this is 242 * incremented. 243 */ 244 IPMI_STAT_timed_out_ipmb_commands, 245 246 /* 247 * This is like above, but for broadcasts. Broadcasts are 248 * *not* included in the above count (they are expected to 249 * time out). 250 */ 251 IPMI_STAT_timed_out_ipmb_broadcasts, 252 253 /* Responses I have sent to the IPMB bus. */ 254 IPMI_STAT_sent_ipmb_responses, 255 256 /* The response was delivered to the user. */ 257 IPMI_STAT_handled_ipmb_responses, 258 259 /* The response had invalid data in it. */ 260 IPMI_STAT_invalid_ipmb_responses, 261 262 /* The response didn't have anyone waiting for it. */ 263 IPMI_STAT_unhandled_ipmb_responses, 264 265 /* Commands we sent out to the IPMB bus. */ 266 IPMI_STAT_sent_lan_commands, 267 268 /* Commands sent on the IPMB that had errors on the SEND CMD */ 269 IPMI_STAT_sent_lan_command_errs, 270 271 /* Each retransmit increments this count. */ 272 IPMI_STAT_retransmitted_lan_commands, 273 274 /* 275 * When a message times out (runs out of retransmits) this is 276 * incremented. 277 */ 278 IPMI_STAT_timed_out_lan_commands, 279 280 /* Responses I have sent to the IPMB bus. */ 281 IPMI_STAT_sent_lan_responses, 282 283 /* The response was delivered to the user. */ 284 IPMI_STAT_handled_lan_responses, 285 286 /* The response had invalid data in it. */ 287 IPMI_STAT_invalid_lan_responses, 288 289 /* The response didn't have anyone waiting for it. */ 290 IPMI_STAT_unhandled_lan_responses, 291 292 /* The command was delivered to the user. */ 293 IPMI_STAT_handled_commands, 294 295 /* The command had invalid data in it. */ 296 IPMI_STAT_invalid_commands, 297 298 /* The command didn't have anyone waiting for it. */ 299 IPMI_STAT_unhandled_commands, 300 301 /* Invalid data in an event. */ 302 IPMI_STAT_invalid_events, 303 304 /* Events that were received with the proper format. */ 305 IPMI_STAT_events, 306 307 /* Retransmissions on IPMB that failed. */ 308 IPMI_STAT_dropped_rexmit_ipmb_commands, 309 310 /* Retransmissions on LAN that failed. */ 311 IPMI_STAT_dropped_rexmit_lan_commands, 312 313 /* This *must* remain last, add new values above this. */ 314 IPMI_NUM_STATS 315 }; 316 317 318 #define IPMI_IPMB_NUM_SEQ 64 319 #define IPMI_MAX_CHANNELS 16 320 struct ipmi_smi { 321 /* What interface number are we? */ 322 int intf_num; 323 324 struct kref refcount; 325 326 /* Used for a list of interfaces. */ 327 struct list_head link; 328 329 /* 330 * The list of upper layers that are using me. seq_lock 331 * protects this. 332 */ 333 struct list_head users; 334 335 /* Information to supply to users. */ 336 unsigned char ipmi_version_major; 337 unsigned char ipmi_version_minor; 338 339 /* Used for wake ups at startup. */ 340 wait_queue_head_t waitq; 341 342 struct bmc_device *bmc; 343 char *my_dev_name; 344 char *sysfs_name; 345 346 /* 347 * This is the lower-layer's sender routine. Note that you 348 * must either be holding the ipmi_interfaces_mutex or be in 349 * an umpreemptible region to use this. You must fetch the 350 * value into a local variable and make sure it is not NULL. 351 */ 352 struct ipmi_smi_handlers *handlers; 353 void *send_info; 354 355 #ifdef CONFIG_PROC_FS 356 /* A list of proc entries for this interface. */ 357 struct mutex proc_entry_lock; 358 struct ipmi_proc_entry *proc_entries; 359 #endif 360 361 /* Driver-model device for the system interface. */ 362 struct device *si_dev; 363 364 /* 365 * A table of sequence numbers for this interface. We use the 366 * sequence numbers for IPMB messages that go out of the 367 * interface to match them up with their responses. A routine 368 * is called periodically to time the items in this list. 369 */ 370 spinlock_t seq_lock; 371 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 372 int curr_seq; 373 374 /* 375 * Messages queued for delivery. If delivery fails (out of memory 376 * for instance), They will stay in here to be processed later in a 377 * periodic timer interrupt. The tasklet is for handling received 378 * messages directly from the handler. 379 */ 380 spinlock_t waiting_msgs_lock; 381 struct list_head waiting_msgs; 382 atomic_t watchdog_pretimeouts_to_deliver; 383 struct tasklet_struct recv_tasklet; 384 385 /* 386 * The list of command receivers that are registered for commands 387 * on this interface. 388 */ 389 struct mutex cmd_rcvrs_mutex; 390 struct list_head cmd_rcvrs; 391 392 /* 393 * Events that were queues because no one was there to receive 394 * them. 395 */ 396 spinlock_t events_lock; /* For dealing with event stuff. */ 397 struct list_head waiting_events; 398 unsigned int waiting_events_count; /* How many events in queue? */ 399 char delivering_events; 400 char event_msg_printed; 401 atomic_t event_waiters; 402 unsigned int ticks_to_req_ev; 403 int last_needs_timer; 404 405 /* 406 * The event receiver for my BMC, only really used at panic 407 * shutdown as a place to store this. 408 */ 409 unsigned char event_receiver; 410 unsigned char event_receiver_lun; 411 unsigned char local_sel_device; 412 unsigned char local_event_generator; 413 414 /* For handling of maintenance mode. */ 415 int maintenance_mode; 416 bool maintenance_mode_enable; 417 int auto_maintenance_timeout; 418 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 419 420 /* 421 * A cheap hack, if this is non-null and a message to an 422 * interface comes in with a NULL user, call this routine with 423 * it. Note that the message will still be freed by the 424 * caller. This only works on the system interface. 425 */ 426 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 427 428 /* 429 * When we are scanning the channels for an SMI, this will 430 * tell which channel we are scanning. 431 */ 432 int curr_channel; 433 434 /* Channel information */ 435 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 436 437 /* Proc FS stuff. */ 438 struct proc_dir_entry *proc_dir; 439 char proc_dir_name[10]; 440 441 atomic_t stats[IPMI_NUM_STATS]; 442 443 /* 444 * run_to_completion duplicate of smb_info, smi_info 445 * and ipmi_serial_info structures. Used to decrease numbers of 446 * parameters passed by "low" level IPMI code. 447 */ 448 int run_to_completion; 449 }; 450 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 451 452 /** 453 * The driver model view of the IPMI messaging driver. 454 */ 455 static struct platform_driver ipmidriver = { 456 .driver = { 457 .name = "ipmi", 458 .bus = &platform_bus_type 459 } 460 }; 461 static DEFINE_MUTEX(ipmidriver_mutex); 462 463 static LIST_HEAD(ipmi_interfaces); 464 static DEFINE_MUTEX(ipmi_interfaces_mutex); 465 466 /* 467 * List of watchers that want to know when smi's are added and deleted. 468 */ 469 static LIST_HEAD(smi_watchers); 470 static DEFINE_MUTEX(smi_watchers_mutex); 471 472 #define ipmi_inc_stat(intf, stat) \ 473 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 474 #define ipmi_get_stat(intf, stat) \ 475 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 476 477 static int is_lan_addr(struct ipmi_addr *addr) 478 { 479 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 480 } 481 482 static int is_ipmb_addr(struct ipmi_addr *addr) 483 { 484 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 485 } 486 487 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 488 { 489 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 490 } 491 492 static void free_recv_msg_list(struct list_head *q) 493 { 494 struct ipmi_recv_msg *msg, *msg2; 495 496 list_for_each_entry_safe(msg, msg2, q, link) { 497 list_del(&msg->link); 498 ipmi_free_recv_msg(msg); 499 } 500 } 501 502 static void free_smi_msg_list(struct list_head *q) 503 { 504 struct ipmi_smi_msg *msg, *msg2; 505 506 list_for_each_entry_safe(msg, msg2, q, link) { 507 list_del(&msg->link); 508 ipmi_free_smi_msg(msg); 509 } 510 } 511 512 static void clean_up_interface_data(ipmi_smi_t intf) 513 { 514 int i; 515 struct cmd_rcvr *rcvr, *rcvr2; 516 struct list_head list; 517 518 tasklet_kill(&intf->recv_tasklet); 519 520 free_smi_msg_list(&intf->waiting_msgs); 521 free_recv_msg_list(&intf->waiting_events); 522 523 /* 524 * Wholesale remove all the entries from the list in the 525 * interface and wait for RCU to know that none are in use. 526 */ 527 mutex_lock(&intf->cmd_rcvrs_mutex); 528 INIT_LIST_HEAD(&list); 529 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 530 mutex_unlock(&intf->cmd_rcvrs_mutex); 531 532 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 533 kfree(rcvr); 534 535 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 536 if ((intf->seq_table[i].inuse) 537 && (intf->seq_table[i].recv_msg)) 538 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 539 } 540 } 541 542 static void intf_free(struct kref *ref) 543 { 544 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 545 546 clean_up_interface_data(intf); 547 kfree(intf); 548 } 549 550 struct watcher_entry { 551 int intf_num; 552 ipmi_smi_t intf; 553 struct list_head link; 554 }; 555 556 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 557 { 558 ipmi_smi_t intf; 559 LIST_HEAD(to_deliver); 560 struct watcher_entry *e, *e2; 561 562 mutex_lock(&smi_watchers_mutex); 563 564 mutex_lock(&ipmi_interfaces_mutex); 565 566 /* Build a list of things to deliver. */ 567 list_for_each_entry(intf, &ipmi_interfaces, link) { 568 if (intf->intf_num == -1) 569 continue; 570 e = kmalloc(sizeof(*e), GFP_KERNEL); 571 if (!e) 572 goto out_err; 573 kref_get(&intf->refcount); 574 e->intf = intf; 575 e->intf_num = intf->intf_num; 576 list_add_tail(&e->link, &to_deliver); 577 } 578 579 /* We will succeed, so add it to the list. */ 580 list_add(&watcher->link, &smi_watchers); 581 582 mutex_unlock(&ipmi_interfaces_mutex); 583 584 list_for_each_entry_safe(e, e2, &to_deliver, link) { 585 list_del(&e->link); 586 watcher->new_smi(e->intf_num, e->intf->si_dev); 587 kref_put(&e->intf->refcount, intf_free); 588 kfree(e); 589 } 590 591 mutex_unlock(&smi_watchers_mutex); 592 593 return 0; 594 595 out_err: 596 mutex_unlock(&ipmi_interfaces_mutex); 597 mutex_unlock(&smi_watchers_mutex); 598 list_for_each_entry_safe(e, e2, &to_deliver, link) { 599 list_del(&e->link); 600 kref_put(&e->intf->refcount, intf_free); 601 kfree(e); 602 } 603 return -ENOMEM; 604 } 605 EXPORT_SYMBOL(ipmi_smi_watcher_register); 606 607 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 608 { 609 mutex_lock(&smi_watchers_mutex); 610 list_del(&(watcher->link)); 611 mutex_unlock(&smi_watchers_mutex); 612 return 0; 613 } 614 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 615 616 /* 617 * Must be called with smi_watchers_mutex held. 618 */ 619 static void 620 call_smi_watchers(int i, struct device *dev) 621 { 622 struct ipmi_smi_watcher *w; 623 624 list_for_each_entry(w, &smi_watchers, link) { 625 if (try_module_get(w->owner)) { 626 w->new_smi(i, dev); 627 module_put(w->owner); 628 } 629 } 630 } 631 632 static int 633 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 634 { 635 if (addr1->addr_type != addr2->addr_type) 636 return 0; 637 638 if (addr1->channel != addr2->channel) 639 return 0; 640 641 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 642 struct ipmi_system_interface_addr *smi_addr1 643 = (struct ipmi_system_interface_addr *) addr1; 644 struct ipmi_system_interface_addr *smi_addr2 645 = (struct ipmi_system_interface_addr *) addr2; 646 return (smi_addr1->lun == smi_addr2->lun); 647 } 648 649 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 650 struct ipmi_ipmb_addr *ipmb_addr1 651 = (struct ipmi_ipmb_addr *) addr1; 652 struct ipmi_ipmb_addr *ipmb_addr2 653 = (struct ipmi_ipmb_addr *) addr2; 654 655 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 656 && (ipmb_addr1->lun == ipmb_addr2->lun)); 657 } 658 659 if (is_lan_addr(addr1)) { 660 struct ipmi_lan_addr *lan_addr1 661 = (struct ipmi_lan_addr *) addr1; 662 struct ipmi_lan_addr *lan_addr2 663 = (struct ipmi_lan_addr *) addr2; 664 665 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 666 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 667 && (lan_addr1->session_handle 668 == lan_addr2->session_handle) 669 && (lan_addr1->lun == lan_addr2->lun)); 670 } 671 672 return 1; 673 } 674 675 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 676 { 677 if (len < sizeof(struct ipmi_system_interface_addr)) 678 return -EINVAL; 679 680 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 681 if (addr->channel != IPMI_BMC_CHANNEL) 682 return -EINVAL; 683 return 0; 684 } 685 686 if ((addr->channel == IPMI_BMC_CHANNEL) 687 || (addr->channel >= IPMI_MAX_CHANNELS) 688 || (addr->channel < 0)) 689 return -EINVAL; 690 691 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 692 if (len < sizeof(struct ipmi_ipmb_addr)) 693 return -EINVAL; 694 return 0; 695 } 696 697 if (is_lan_addr(addr)) { 698 if (len < sizeof(struct ipmi_lan_addr)) 699 return -EINVAL; 700 return 0; 701 } 702 703 return -EINVAL; 704 } 705 EXPORT_SYMBOL(ipmi_validate_addr); 706 707 unsigned int ipmi_addr_length(int addr_type) 708 { 709 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 710 return sizeof(struct ipmi_system_interface_addr); 711 712 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 713 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 714 return sizeof(struct ipmi_ipmb_addr); 715 716 if (addr_type == IPMI_LAN_ADDR_TYPE) 717 return sizeof(struct ipmi_lan_addr); 718 719 return 0; 720 } 721 EXPORT_SYMBOL(ipmi_addr_length); 722 723 static void deliver_response(struct ipmi_recv_msg *msg) 724 { 725 if (!msg->user) { 726 ipmi_smi_t intf = msg->user_msg_data; 727 728 /* Special handling for NULL users. */ 729 if (intf->null_user_handler) { 730 intf->null_user_handler(intf, msg); 731 ipmi_inc_stat(intf, handled_local_responses); 732 } else { 733 /* No handler, so give up. */ 734 ipmi_inc_stat(intf, unhandled_local_responses); 735 } 736 ipmi_free_recv_msg(msg); 737 } else { 738 ipmi_user_t user = msg->user; 739 user->handler->ipmi_recv_hndl(msg, user->handler_data); 740 } 741 } 742 743 static void 744 deliver_err_response(struct ipmi_recv_msg *msg, int err) 745 { 746 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 747 msg->msg_data[0] = err; 748 msg->msg.netfn |= 1; /* Convert to a response. */ 749 msg->msg.data_len = 1; 750 msg->msg.data = msg->msg_data; 751 deliver_response(msg); 752 } 753 754 /* 755 * Find the next sequence number not being used and add the given 756 * message with the given timeout to the sequence table. This must be 757 * called with the interface's seq_lock held. 758 */ 759 static int intf_next_seq(ipmi_smi_t intf, 760 struct ipmi_recv_msg *recv_msg, 761 unsigned long timeout, 762 int retries, 763 int broadcast, 764 unsigned char *seq, 765 long *seqid) 766 { 767 int rv = 0; 768 unsigned int i; 769 770 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 771 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 772 if (!intf->seq_table[i].inuse) 773 break; 774 } 775 776 if (!intf->seq_table[i].inuse) { 777 intf->seq_table[i].recv_msg = recv_msg; 778 779 /* 780 * Start with the maximum timeout, when the send response 781 * comes in we will start the real timer. 782 */ 783 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 784 intf->seq_table[i].orig_timeout = timeout; 785 intf->seq_table[i].retries_left = retries; 786 intf->seq_table[i].broadcast = broadcast; 787 intf->seq_table[i].inuse = 1; 788 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 789 *seq = i; 790 *seqid = intf->seq_table[i].seqid; 791 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 792 need_waiter(intf); 793 } else { 794 rv = -EAGAIN; 795 } 796 797 return rv; 798 } 799 800 /* 801 * Return the receive message for the given sequence number and 802 * release the sequence number so it can be reused. Some other data 803 * is passed in to be sure the message matches up correctly (to help 804 * guard against message coming in after their timeout and the 805 * sequence number being reused). 806 */ 807 static int intf_find_seq(ipmi_smi_t intf, 808 unsigned char seq, 809 short channel, 810 unsigned char cmd, 811 unsigned char netfn, 812 struct ipmi_addr *addr, 813 struct ipmi_recv_msg **recv_msg) 814 { 815 int rv = -ENODEV; 816 unsigned long flags; 817 818 if (seq >= IPMI_IPMB_NUM_SEQ) 819 return -EINVAL; 820 821 spin_lock_irqsave(&(intf->seq_lock), flags); 822 if (intf->seq_table[seq].inuse) { 823 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 824 825 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 826 && (msg->msg.netfn == netfn) 827 && (ipmi_addr_equal(addr, &(msg->addr)))) { 828 *recv_msg = msg; 829 intf->seq_table[seq].inuse = 0; 830 rv = 0; 831 } 832 } 833 spin_unlock_irqrestore(&(intf->seq_lock), flags); 834 835 return rv; 836 } 837 838 839 /* Start the timer for a specific sequence table entry. */ 840 static int intf_start_seq_timer(ipmi_smi_t intf, 841 long msgid) 842 { 843 int rv = -ENODEV; 844 unsigned long flags; 845 unsigned char seq; 846 unsigned long seqid; 847 848 849 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 850 851 spin_lock_irqsave(&(intf->seq_lock), flags); 852 /* 853 * We do this verification because the user can be deleted 854 * while a message is outstanding. 855 */ 856 if ((intf->seq_table[seq].inuse) 857 && (intf->seq_table[seq].seqid == seqid)) { 858 struct seq_table *ent = &(intf->seq_table[seq]); 859 ent->timeout = ent->orig_timeout; 860 rv = 0; 861 } 862 spin_unlock_irqrestore(&(intf->seq_lock), flags); 863 864 return rv; 865 } 866 867 /* Got an error for the send message for a specific sequence number. */ 868 static int intf_err_seq(ipmi_smi_t intf, 869 long msgid, 870 unsigned int err) 871 { 872 int rv = -ENODEV; 873 unsigned long flags; 874 unsigned char seq; 875 unsigned long seqid; 876 struct ipmi_recv_msg *msg = NULL; 877 878 879 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 880 881 spin_lock_irqsave(&(intf->seq_lock), flags); 882 /* 883 * We do this verification because the user can be deleted 884 * while a message is outstanding. 885 */ 886 if ((intf->seq_table[seq].inuse) 887 && (intf->seq_table[seq].seqid == seqid)) { 888 struct seq_table *ent = &(intf->seq_table[seq]); 889 890 ent->inuse = 0; 891 msg = ent->recv_msg; 892 rv = 0; 893 } 894 spin_unlock_irqrestore(&(intf->seq_lock), flags); 895 896 if (msg) 897 deliver_err_response(msg, err); 898 899 return rv; 900 } 901 902 903 int ipmi_create_user(unsigned int if_num, 904 struct ipmi_user_hndl *handler, 905 void *handler_data, 906 ipmi_user_t *user) 907 { 908 unsigned long flags; 909 ipmi_user_t new_user; 910 int rv = 0; 911 ipmi_smi_t intf; 912 913 /* 914 * There is no module usecount here, because it's not 915 * required. Since this can only be used by and called from 916 * other modules, they will implicitly use this module, and 917 * thus this can't be removed unless the other modules are 918 * removed. 919 */ 920 921 if (handler == NULL) 922 return -EINVAL; 923 924 /* 925 * Make sure the driver is actually initialized, this handles 926 * problems with initialization order. 927 */ 928 if (!initialized) { 929 rv = ipmi_init_msghandler(); 930 if (rv) 931 return rv; 932 933 /* 934 * The init code doesn't return an error if it was turned 935 * off, but it won't initialize. Check that. 936 */ 937 if (!initialized) 938 return -ENODEV; 939 } 940 941 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 942 if (!new_user) 943 return -ENOMEM; 944 945 mutex_lock(&ipmi_interfaces_mutex); 946 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 947 if (intf->intf_num == if_num) 948 goto found; 949 } 950 /* Not found, return an error */ 951 rv = -EINVAL; 952 goto out_kfree; 953 954 found: 955 /* Note that each existing user holds a refcount to the interface. */ 956 kref_get(&intf->refcount); 957 958 kref_init(&new_user->refcount); 959 new_user->handler = handler; 960 new_user->handler_data = handler_data; 961 new_user->intf = intf; 962 new_user->gets_events = false; 963 964 if (!try_module_get(intf->handlers->owner)) { 965 rv = -ENODEV; 966 goto out_kref; 967 } 968 969 if (intf->handlers->inc_usecount) { 970 rv = intf->handlers->inc_usecount(intf->send_info); 971 if (rv) { 972 module_put(intf->handlers->owner); 973 goto out_kref; 974 } 975 } 976 977 /* 978 * Hold the lock so intf->handlers is guaranteed to be good 979 * until now 980 */ 981 mutex_unlock(&ipmi_interfaces_mutex); 982 983 new_user->valid = true; 984 spin_lock_irqsave(&intf->seq_lock, flags); 985 list_add_rcu(&new_user->link, &intf->users); 986 spin_unlock_irqrestore(&intf->seq_lock, flags); 987 if (handler->ipmi_watchdog_pretimeout) { 988 /* User wants pretimeouts, so make sure to watch for them. */ 989 if (atomic_inc_return(&intf->event_waiters) == 1) 990 need_waiter(intf); 991 } 992 *user = new_user; 993 return 0; 994 995 out_kref: 996 kref_put(&intf->refcount, intf_free); 997 out_kfree: 998 mutex_unlock(&ipmi_interfaces_mutex); 999 kfree(new_user); 1000 return rv; 1001 } 1002 EXPORT_SYMBOL(ipmi_create_user); 1003 1004 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1005 { 1006 int rv = 0; 1007 ipmi_smi_t intf; 1008 struct ipmi_smi_handlers *handlers; 1009 1010 mutex_lock(&ipmi_interfaces_mutex); 1011 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1012 if (intf->intf_num == if_num) 1013 goto found; 1014 } 1015 /* Not found, return an error */ 1016 rv = -EINVAL; 1017 mutex_unlock(&ipmi_interfaces_mutex); 1018 return rv; 1019 1020 found: 1021 handlers = intf->handlers; 1022 rv = -ENOSYS; 1023 if (handlers->get_smi_info) 1024 rv = handlers->get_smi_info(intf->send_info, data); 1025 mutex_unlock(&ipmi_interfaces_mutex); 1026 1027 return rv; 1028 } 1029 EXPORT_SYMBOL(ipmi_get_smi_info); 1030 1031 static void free_user(struct kref *ref) 1032 { 1033 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 1034 kfree(user); 1035 } 1036 1037 int ipmi_destroy_user(ipmi_user_t user) 1038 { 1039 ipmi_smi_t intf = user->intf; 1040 int i; 1041 unsigned long flags; 1042 struct cmd_rcvr *rcvr; 1043 struct cmd_rcvr *rcvrs = NULL; 1044 1045 user->valid = false; 1046 1047 if (user->handler->ipmi_watchdog_pretimeout) 1048 atomic_dec(&intf->event_waiters); 1049 1050 if (user->gets_events) 1051 atomic_dec(&intf->event_waiters); 1052 1053 /* Remove the user from the interface's sequence table. */ 1054 spin_lock_irqsave(&intf->seq_lock, flags); 1055 list_del_rcu(&user->link); 1056 1057 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1058 if (intf->seq_table[i].inuse 1059 && (intf->seq_table[i].recv_msg->user == user)) { 1060 intf->seq_table[i].inuse = 0; 1061 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1062 } 1063 } 1064 spin_unlock_irqrestore(&intf->seq_lock, flags); 1065 1066 /* 1067 * Remove the user from the command receiver's table. First 1068 * we build a list of everything (not using the standard link, 1069 * since other things may be using it till we do 1070 * synchronize_rcu()) then free everything in that list. 1071 */ 1072 mutex_lock(&intf->cmd_rcvrs_mutex); 1073 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1074 if (rcvr->user == user) { 1075 list_del_rcu(&rcvr->link); 1076 rcvr->next = rcvrs; 1077 rcvrs = rcvr; 1078 } 1079 } 1080 mutex_unlock(&intf->cmd_rcvrs_mutex); 1081 synchronize_rcu(); 1082 while (rcvrs) { 1083 rcvr = rcvrs; 1084 rcvrs = rcvr->next; 1085 kfree(rcvr); 1086 } 1087 1088 mutex_lock(&ipmi_interfaces_mutex); 1089 if (intf->handlers) { 1090 module_put(intf->handlers->owner); 1091 if (intf->handlers->dec_usecount) 1092 intf->handlers->dec_usecount(intf->send_info); 1093 } 1094 mutex_unlock(&ipmi_interfaces_mutex); 1095 1096 kref_put(&intf->refcount, intf_free); 1097 1098 kref_put(&user->refcount, free_user); 1099 1100 return 0; 1101 } 1102 EXPORT_SYMBOL(ipmi_destroy_user); 1103 1104 void ipmi_get_version(ipmi_user_t user, 1105 unsigned char *major, 1106 unsigned char *minor) 1107 { 1108 *major = user->intf->ipmi_version_major; 1109 *minor = user->intf->ipmi_version_minor; 1110 } 1111 EXPORT_SYMBOL(ipmi_get_version); 1112 1113 int ipmi_set_my_address(ipmi_user_t user, 1114 unsigned int channel, 1115 unsigned char address) 1116 { 1117 if (channel >= IPMI_MAX_CHANNELS) 1118 return -EINVAL; 1119 user->intf->channels[channel].address = address; 1120 return 0; 1121 } 1122 EXPORT_SYMBOL(ipmi_set_my_address); 1123 1124 int ipmi_get_my_address(ipmi_user_t user, 1125 unsigned int channel, 1126 unsigned char *address) 1127 { 1128 if (channel >= IPMI_MAX_CHANNELS) 1129 return -EINVAL; 1130 *address = user->intf->channels[channel].address; 1131 return 0; 1132 } 1133 EXPORT_SYMBOL(ipmi_get_my_address); 1134 1135 int ipmi_set_my_LUN(ipmi_user_t user, 1136 unsigned int channel, 1137 unsigned char LUN) 1138 { 1139 if (channel >= IPMI_MAX_CHANNELS) 1140 return -EINVAL; 1141 user->intf->channels[channel].lun = LUN & 0x3; 1142 return 0; 1143 } 1144 EXPORT_SYMBOL(ipmi_set_my_LUN); 1145 1146 int ipmi_get_my_LUN(ipmi_user_t user, 1147 unsigned int channel, 1148 unsigned char *address) 1149 { 1150 if (channel >= IPMI_MAX_CHANNELS) 1151 return -EINVAL; 1152 *address = user->intf->channels[channel].lun; 1153 return 0; 1154 } 1155 EXPORT_SYMBOL(ipmi_get_my_LUN); 1156 1157 int ipmi_get_maintenance_mode(ipmi_user_t user) 1158 { 1159 int mode; 1160 unsigned long flags; 1161 1162 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1163 mode = user->intf->maintenance_mode; 1164 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1165 1166 return mode; 1167 } 1168 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1169 1170 static void maintenance_mode_update(ipmi_smi_t intf) 1171 { 1172 if (intf->handlers->set_maintenance_mode) 1173 intf->handlers->set_maintenance_mode( 1174 intf->send_info, intf->maintenance_mode_enable); 1175 } 1176 1177 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1178 { 1179 int rv = 0; 1180 unsigned long flags; 1181 ipmi_smi_t intf = user->intf; 1182 1183 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1184 if (intf->maintenance_mode != mode) { 1185 switch (mode) { 1186 case IPMI_MAINTENANCE_MODE_AUTO: 1187 intf->maintenance_mode_enable 1188 = (intf->auto_maintenance_timeout > 0); 1189 break; 1190 1191 case IPMI_MAINTENANCE_MODE_OFF: 1192 intf->maintenance_mode_enable = false; 1193 break; 1194 1195 case IPMI_MAINTENANCE_MODE_ON: 1196 intf->maintenance_mode_enable = true; 1197 break; 1198 1199 default: 1200 rv = -EINVAL; 1201 goto out_unlock; 1202 } 1203 intf->maintenance_mode = mode; 1204 1205 maintenance_mode_update(intf); 1206 } 1207 out_unlock: 1208 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1209 1210 return rv; 1211 } 1212 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1213 1214 int ipmi_set_gets_events(ipmi_user_t user, bool val) 1215 { 1216 unsigned long flags; 1217 ipmi_smi_t intf = user->intf; 1218 struct ipmi_recv_msg *msg, *msg2; 1219 struct list_head msgs; 1220 1221 INIT_LIST_HEAD(&msgs); 1222 1223 spin_lock_irqsave(&intf->events_lock, flags); 1224 if (user->gets_events == val) 1225 goto out; 1226 1227 user->gets_events = val; 1228 1229 if (val) { 1230 if (atomic_inc_return(&intf->event_waiters) == 1) 1231 need_waiter(intf); 1232 } else { 1233 atomic_dec(&intf->event_waiters); 1234 } 1235 1236 if (intf->delivering_events) 1237 /* 1238 * Another thread is delivering events for this, so 1239 * let it handle any new events. 1240 */ 1241 goto out; 1242 1243 /* Deliver any queued events. */ 1244 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1245 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1246 list_move_tail(&msg->link, &msgs); 1247 intf->waiting_events_count = 0; 1248 if (intf->event_msg_printed) { 1249 printk(KERN_WARNING PFX "Event queue no longer" 1250 " full\n"); 1251 intf->event_msg_printed = 0; 1252 } 1253 1254 intf->delivering_events = 1; 1255 spin_unlock_irqrestore(&intf->events_lock, flags); 1256 1257 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1258 msg->user = user; 1259 kref_get(&user->refcount); 1260 deliver_response(msg); 1261 } 1262 1263 spin_lock_irqsave(&intf->events_lock, flags); 1264 intf->delivering_events = 0; 1265 } 1266 1267 out: 1268 spin_unlock_irqrestore(&intf->events_lock, flags); 1269 1270 return 0; 1271 } 1272 EXPORT_SYMBOL(ipmi_set_gets_events); 1273 1274 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1275 unsigned char netfn, 1276 unsigned char cmd, 1277 unsigned char chan) 1278 { 1279 struct cmd_rcvr *rcvr; 1280 1281 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1282 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1283 && (rcvr->chans & (1 << chan))) 1284 return rcvr; 1285 } 1286 return NULL; 1287 } 1288 1289 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1290 unsigned char netfn, 1291 unsigned char cmd, 1292 unsigned int chans) 1293 { 1294 struct cmd_rcvr *rcvr; 1295 1296 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1297 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1298 && (rcvr->chans & chans)) 1299 return 0; 1300 } 1301 return 1; 1302 } 1303 1304 int ipmi_register_for_cmd(ipmi_user_t user, 1305 unsigned char netfn, 1306 unsigned char cmd, 1307 unsigned int chans) 1308 { 1309 ipmi_smi_t intf = user->intf; 1310 struct cmd_rcvr *rcvr; 1311 int rv = 0; 1312 1313 1314 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1315 if (!rcvr) 1316 return -ENOMEM; 1317 rcvr->cmd = cmd; 1318 rcvr->netfn = netfn; 1319 rcvr->chans = chans; 1320 rcvr->user = user; 1321 1322 mutex_lock(&intf->cmd_rcvrs_mutex); 1323 /* Make sure the command/netfn is not already registered. */ 1324 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1325 rv = -EBUSY; 1326 goto out_unlock; 1327 } 1328 1329 if (atomic_inc_return(&intf->event_waiters) == 1) 1330 need_waiter(intf); 1331 1332 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1333 1334 out_unlock: 1335 mutex_unlock(&intf->cmd_rcvrs_mutex); 1336 if (rv) 1337 kfree(rcvr); 1338 1339 return rv; 1340 } 1341 EXPORT_SYMBOL(ipmi_register_for_cmd); 1342 1343 int ipmi_unregister_for_cmd(ipmi_user_t user, 1344 unsigned char netfn, 1345 unsigned char cmd, 1346 unsigned int chans) 1347 { 1348 ipmi_smi_t intf = user->intf; 1349 struct cmd_rcvr *rcvr; 1350 struct cmd_rcvr *rcvrs = NULL; 1351 int i, rv = -ENOENT; 1352 1353 mutex_lock(&intf->cmd_rcvrs_mutex); 1354 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1355 if (((1 << i) & chans) == 0) 1356 continue; 1357 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1358 if (rcvr == NULL) 1359 continue; 1360 if (rcvr->user == user) { 1361 rv = 0; 1362 rcvr->chans &= ~chans; 1363 if (rcvr->chans == 0) { 1364 list_del_rcu(&rcvr->link); 1365 rcvr->next = rcvrs; 1366 rcvrs = rcvr; 1367 } 1368 } 1369 } 1370 mutex_unlock(&intf->cmd_rcvrs_mutex); 1371 synchronize_rcu(); 1372 while (rcvrs) { 1373 atomic_dec(&intf->event_waiters); 1374 rcvr = rcvrs; 1375 rcvrs = rcvr->next; 1376 kfree(rcvr); 1377 } 1378 return rv; 1379 } 1380 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1381 1382 static unsigned char 1383 ipmb_checksum(unsigned char *data, int size) 1384 { 1385 unsigned char csum = 0; 1386 1387 for (; size > 0; size--, data++) 1388 csum += *data; 1389 1390 return -csum; 1391 } 1392 1393 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1394 struct kernel_ipmi_msg *msg, 1395 struct ipmi_ipmb_addr *ipmb_addr, 1396 long msgid, 1397 unsigned char ipmb_seq, 1398 int broadcast, 1399 unsigned char source_address, 1400 unsigned char source_lun) 1401 { 1402 int i = broadcast; 1403 1404 /* Format the IPMB header data. */ 1405 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1406 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1407 smi_msg->data[2] = ipmb_addr->channel; 1408 if (broadcast) 1409 smi_msg->data[3] = 0; 1410 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1411 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1412 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1413 smi_msg->data[i+6] = source_address; 1414 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1415 smi_msg->data[i+8] = msg->cmd; 1416 1417 /* Now tack on the data to the message. */ 1418 if (msg->data_len > 0) 1419 memcpy(&(smi_msg->data[i+9]), msg->data, 1420 msg->data_len); 1421 smi_msg->data_size = msg->data_len + 9; 1422 1423 /* Now calculate the checksum and tack it on. */ 1424 smi_msg->data[i+smi_msg->data_size] 1425 = ipmb_checksum(&(smi_msg->data[i+6]), 1426 smi_msg->data_size-6); 1427 1428 /* 1429 * Add on the checksum size and the offset from the 1430 * broadcast. 1431 */ 1432 smi_msg->data_size += 1 + i; 1433 1434 smi_msg->msgid = msgid; 1435 } 1436 1437 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1438 struct kernel_ipmi_msg *msg, 1439 struct ipmi_lan_addr *lan_addr, 1440 long msgid, 1441 unsigned char ipmb_seq, 1442 unsigned char source_lun) 1443 { 1444 /* Format the IPMB header data. */ 1445 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1446 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1447 smi_msg->data[2] = lan_addr->channel; 1448 smi_msg->data[3] = lan_addr->session_handle; 1449 smi_msg->data[4] = lan_addr->remote_SWID; 1450 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1451 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1452 smi_msg->data[7] = lan_addr->local_SWID; 1453 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1454 smi_msg->data[9] = msg->cmd; 1455 1456 /* Now tack on the data to the message. */ 1457 if (msg->data_len > 0) 1458 memcpy(&(smi_msg->data[10]), msg->data, 1459 msg->data_len); 1460 smi_msg->data_size = msg->data_len + 10; 1461 1462 /* Now calculate the checksum and tack it on. */ 1463 smi_msg->data[smi_msg->data_size] 1464 = ipmb_checksum(&(smi_msg->data[7]), 1465 smi_msg->data_size-7); 1466 1467 /* 1468 * Add on the checksum size and the offset from the 1469 * broadcast. 1470 */ 1471 smi_msg->data_size += 1; 1472 1473 smi_msg->msgid = msgid; 1474 } 1475 1476 /* 1477 * Separate from ipmi_request so that the user does not have to be 1478 * supplied in certain circumstances (mainly at panic time). If 1479 * messages are supplied, they will be freed, even if an error 1480 * occurs. 1481 */ 1482 static int i_ipmi_request(ipmi_user_t user, 1483 ipmi_smi_t intf, 1484 struct ipmi_addr *addr, 1485 long msgid, 1486 struct kernel_ipmi_msg *msg, 1487 void *user_msg_data, 1488 void *supplied_smi, 1489 struct ipmi_recv_msg *supplied_recv, 1490 int priority, 1491 unsigned char source_address, 1492 unsigned char source_lun, 1493 int retries, 1494 unsigned int retry_time_ms) 1495 { 1496 int rv = 0; 1497 struct ipmi_smi_msg *smi_msg; 1498 struct ipmi_recv_msg *recv_msg; 1499 unsigned long flags; 1500 struct ipmi_smi_handlers *handlers; 1501 1502 1503 if (supplied_recv) 1504 recv_msg = supplied_recv; 1505 else { 1506 recv_msg = ipmi_alloc_recv_msg(); 1507 if (recv_msg == NULL) 1508 return -ENOMEM; 1509 } 1510 recv_msg->user_msg_data = user_msg_data; 1511 1512 if (supplied_smi) 1513 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1514 else { 1515 smi_msg = ipmi_alloc_smi_msg(); 1516 if (smi_msg == NULL) { 1517 ipmi_free_recv_msg(recv_msg); 1518 return -ENOMEM; 1519 } 1520 } 1521 1522 rcu_read_lock(); 1523 handlers = intf->handlers; 1524 if (!handlers) { 1525 rv = -ENODEV; 1526 goto out_err; 1527 } 1528 1529 recv_msg->user = user; 1530 if (user) 1531 kref_get(&user->refcount); 1532 recv_msg->msgid = msgid; 1533 /* 1534 * Store the message to send in the receive message so timeout 1535 * responses can get the proper response data. 1536 */ 1537 recv_msg->msg = *msg; 1538 1539 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1540 struct ipmi_system_interface_addr *smi_addr; 1541 1542 if (msg->netfn & 1) { 1543 /* Responses are not allowed to the SMI. */ 1544 rv = -EINVAL; 1545 goto out_err; 1546 } 1547 1548 smi_addr = (struct ipmi_system_interface_addr *) addr; 1549 if (smi_addr->lun > 3) { 1550 ipmi_inc_stat(intf, sent_invalid_commands); 1551 rv = -EINVAL; 1552 goto out_err; 1553 } 1554 1555 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1556 1557 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1558 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1559 || (msg->cmd == IPMI_GET_MSG_CMD) 1560 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1561 /* 1562 * We don't let the user do these, since we manage 1563 * the sequence numbers. 1564 */ 1565 ipmi_inc_stat(intf, sent_invalid_commands); 1566 rv = -EINVAL; 1567 goto out_err; 1568 } 1569 1570 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1571 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1572 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1573 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1574 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1575 intf->auto_maintenance_timeout 1576 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1577 if (!intf->maintenance_mode 1578 && !intf->maintenance_mode_enable) { 1579 intf->maintenance_mode_enable = true; 1580 maintenance_mode_update(intf); 1581 } 1582 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1583 flags); 1584 } 1585 1586 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1587 ipmi_inc_stat(intf, sent_invalid_commands); 1588 rv = -EMSGSIZE; 1589 goto out_err; 1590 } 1591 1592 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1593 smi_msg->data[1] = msg->cmd; 1594 smi_msg->msgid = msgid; 1595 smi_msg->user_data = recv_msg; 1596 if (msg->data_len > 0) 1597 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1598 smi_msg->data_size = msg->data_len + 2; 1599 ipmi_inc_stat(intf, sent_local_commands); 1600 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1601 struct ipmi_ipmb_addr *ipmb_addr; 1602 unsigned char ipmb_seq; 1603 long seqid; 1604 int broadcast = 0; 1605 1606 if (addr->channel >= IPMI_MAX_CHANNELS) { 1607 ipmi_inc_stat(intf, sent_invalid_commands); 1608 rv = -EINVAL; 1609 goto out_err; 1610 } 1611 1612 if (intf->channels[addr->channel].medium 1613 != IPMI_CHANNEL_MEDIUM_IPMB) { 1614 ipmi_inc_stat(intf, sent_invalid_commands); 1615 rv = -EINVAL; 1616 goto out_err; 1617 } 1618 1619 if (retries < 0) { 1620 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1621 retries = 0; /* Don't retry broadcasts. */ 1622 else 1623 retries = 4; 1624 } 1625 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1626 /* 1627 * Broadcasts add a zero at the beginning of the 1628 * message, but otherwise is the same as an IPMB 1629 * address. 1630 */ 1631 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1632 broadcast = 1; 1633 } 1634 1635 1636 /* Default to 1 second retries. */ 1637 if (retry_time_ms == 0) 1638 retry_time_ms = 1000; 1639 1640 /* 1641 * 9 for the header and 1 for the checksum, plus 1642 * possibly one for the broadcast. 1643 */ 1644 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1645 ipmi_inc_stat(intf, sent_invalid_commands); 1646 rv = -EMSGSIZE; 1647 goto out_err; 1648 } 1649 1650 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1651 if (ipmb_addr->lun > 3) { 1652 ipmi_inc_stat(intf, sent_invalid_commands); 1653 rv = -EINVAL; 1654 goto out_err; 1655 } 1656 1657 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1658 1659 if (recv_msg->msg.netfn & 0x1) { 1660 /* 1661 * It's a response, so use the user's sequence 1662 * from msgid. 1663 */ 1664 ipmi_inc_stat(intf, sent_ipmb_responses); 1665 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1666 msgid, broadcast, 1667 source_address, source_lun); 1668 1669 /* 1670 * Save the receive message so we can use it 1671 * to deliver the response. 1672 */ 1673 smi_msg->user_data = recv_msg; 1674 } else { 1675 /* It's a command, so get a sequence for it. */ 1676 1677 spin_lock_irqsave(&(intf->seq_lock), flags); 1678 1679 /* 1680 * Create a sequence number with a 1 second 1681 * timeout and 4 retries. 1682 */ 1683 rv = intf_next_seq(intf, 1684 recv_msg, 1685 retry_time_ms, 1686 retries, 1687 broadcast, 1688 &ipmb_seq, 1689 &seqid); 1690 if (rv) { 1691 /* 1692 * We have used up all the sequence numbers, 1693 * probably, so abort. 1694 */ 1695 spin_unlock_irqrestore(&(intf->seq_lock), 1696 flags); 1697 goto out_err; 1698 } 1699 1700 ipmi_inc_stat(intf, sent_ipmb_commands); 1701 1702 /* 1703 * Store the sequence number in the message, 1704 * so that when the send message response 1705 * comes back we can start the timer. 1706 */ 1707 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1708 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1709 ipmb_seq, broadcast, 1710 source_address, source_lun); 1711 1712 /* 1713 * Copy the message into the recv message data, so we 1714 * can retransmit it later if necessary. 1715 */ 1716 memcpy(recv_msg->msg_data, smi_msg->data, 1717 smi_msg->data_size); 1718 recv_msg->msg.data = recv_msg->msg_data; 1719 recv_msg->msg.data_len = smi_msg->data_size; 1720 1721 /* 1722 * We don't unlock until here, because we need 1723 * to copy the completed message into the 1724 * recv_msg before we release the lock. 1725 * Otherwise, race conditions may bite us. I 1726 * know that's pretty paranoid, but I prefer 1727 * to be correct. 1728 */ 1729 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1730 } 1731 } else if (is_lan_addr(addr)) { 1732 struct ipmi_lan_addr *lan_addr; 1733 unsigned char ipmb_seq; 1734 long seqid; 1735 1736 if (addr->channel >= IPMI_MAX_CHANNELS) { 1737 ipmi_inc_stat(intf, sent_invalid_commands); 1738 rv = -EINVAL; 1739 goto out_err; 1740 } 1741 1742 if ((intf->channels[addr->channel].medium 1743 != IPMI_CHANNEL_MEDIUM_8023LAN) 1744 && (intf->channels[addr->channel].medium 1745 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1746 ipmi_inc_stat(intf, sent_invalid_commands); 1747 rv = -EINVAL; 1748 goto out_err; 1749 } 1750 1751 retries = 4; 1752 1753 /* Default to 1 second retries. */ 1754 if (retry_time_ms == 0) 1755 retry_time_ms = 1000; 1756 1757 /* 11 for the header and 1 for the checksum. */ 1758 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1759 ipmi_inc_stat(intf, sent_invalid_commands); 1760 rv = -EMSGSIZE; 1761 goto out_err; 1762 } 1763 1764 lan_addr = (struct ipmi_lan_addr *) addr; 1765 if (lan_addr->lun > 3) { 1766 ipmi_inc_stat(intf, sent_invalid_commands); 1767 rv = -EINVAL; 1768 goto out_err; 1769 } 1770 1771 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1772 1773 if (recv_msg->msg.netfn & 0x1) { 1774 /* 1775 * It's a response, so use the user's sequence 1776 * from msgid. 1777 */ 1778 ipmi_inc_stat(intf, sent_lan_responses); 1779 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1780 msgid, source_lun); 1781 1782 /* 1783 * Save the receive message so we can use it 1784 * to deliver the response. 1785 */ 1786 smi_msg->user_data = recv_msg; 1787 } else { 1788 /* It's a command, so get a sequence for it. */ 1789 1790 spin_lock_irqsave(&(intf->seq_lock), flags); 1791 1792 /* 1793 * Create a sequence number with a 1 second 1794 * timeout and 4 retries. 1795 */ 1796 rv = intf_next_seq(intf, 1797 recv_msg, 1798 retry_time_ms, 1799 retries, 1800 0, 1801 &ipmb_seq, 1802 &seqid); 1803 if (rv) { 1804 /* 1805 * We have used up all the sequence numbers, 1806 * probably, so abort. 1807 */ 1808 spin_unlock_irqrestore(&(intf->seq_lock), 1809 flags); 1810 goto out_err; 1811 } 1812 1813 ipmi_inc_stat(intf, sent_lan_commands); 1814 1815 /* 1816 * Store the sequence number in the message, 1817 * so that when the send message response 1818 * comes back we can start the timer. 1819 */ 1820 format_lan_msg(smi_msg, msg, lan_addr, 1821 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1822 ipmb_seq, source_lun); 1823 1824 /* 1825 * Copy the message into the recv message data, so we 1826 * can retransmit it later if necessary. 1827 */ 1828 memcpy(recv_msg->msg_data, smi_msg->data, 1829 smi_msg->data_size); 1830 recv_msg->msg.data = recv_msg->msg_data; 1831 recv_msg->msg.data_len = smi_msg->data_size; 1832 1833 /* 1834 * We don't unlock until here, because we need 1835 * to copy the completed message into the 1836 * recv_msg before we release the lock. 1837 * Otherwise, race conditions may bite us. I 1838 * know that's pretty paranoid, but I prefer 1839 * to be correct. 1840 */ 1841 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1842 } 1843 } else { 1844 /* Unknown address type. */ 1845 ipmi_inc_stat(intf, sent_invalid_commands); 1846 rv = -EINVAL; 1847 goto out_err; 1848 } 1849 1850 #ifdef DEBUG_MSGING 1851 { 1852 int m; 1853 for (m = 0; m < smi_msg->data_size; m++) 1854 printk(" %2.2x", smi_msg->data[m]); 1855 printk("\n"); 1856 } 1857 #endif 1858 1859 handlers->sender(intf->send_info, smi_msg, priority); 1860 rcu_read_unlock(); 1861 1862 return 0; 1863 1864 out_err: 1865 rcu_read_unlock(); 1866 ipmi_free_smi_msg(smi_msg); 1867 ipmi_free_recv_msg(recv_msg); 1868 return rv; 1869 } 1870 1871 static int check_addr(ipmi_smi_t intf, 1872 struct ipmi_addr *addr, 1873 unsigned char *saddr, 1874 unsigned char *lun) 1875 { 1876 if (addr->channel >= IPMI_MAX_CHANNELS) 1877 return -EINVAL; 1878 *lun = intf->channels[addr->channel].lun; 1879 *saddr = intf->channels[addr->channel].address; 1880 return 0; 1881 } 1882 1883 int ipmi_request_settime(ipmi_user_t user, 1884 struct ipmi_addr *addr, 1885 long msgid, 1886 struct kernel_ipmi_msg *msg, 1887 void *user_msg_data, 1888 int priority, 1889 int retries, 1890 unsigned int retry_time_ms) 1891 { 1892 unsigned char saddr = 0, lun = 0; 1893 int rv; 1894 1895 if (!user) 1896 return -EINVAL; 1897 rv = check_addr(user->intf, addr, &saddr, &lun); 1898 if (rv) 1899 return rv; 1900 return i_ipmi_request(user, 1901 user->intf, 1902 addr, 1903 msgid, 1904 msg, 1905 user_msg_data, 1906 NULL, NULL, 1907 priority, 1908 saddr, 1909 lun, 1910 retries, 1911 retry_time_ms); 1912 } 1913 EXPORT_SYMBOL(ipmi_request_settime); 1914 1915 int ipmi_request_supply_msgs(ipmi_user_t user, 1916 struct ipmi_addr *addr, 1917 long msgid, 1918 struct kernel_ipmi_msg *msg, 1919 void *user_msg_data, 1920 void *supplied_smi, 1921 struct ipmi_recv_msg *supplied_recv, 1922 int priority) 1923 { 1924 unsigned char saddr = 0, lun = 0; 1925 int rv; 1926 1927 if (!user) 1928 return -EINVAL; 1929 rv = check_addr(user->intf, addr, &saddr, &lun); 1930 if (rv) 1931 return rv; 1932 return i_ipmi_request(user, 1933 user->intf, 1934 addr, 1935 msgid, 1936 msg, 1937 user_msg_data, 1938 supplied_smi, 1939 supplied_recv, 1940 priority, 1941 saddr, 1942 lun, 1943 -1, 0); 1944 } 1945 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1946 1947 #ifdef CONFIG_PROC_FS 1948 static int smi_ipmb_proc_show(struct seq_file *m, void *v) 1949 { 1950 ipmi_smi_t intf = m->private; 1951 int i; 1952 1953 seq_printf(m, "%x", intf->channels[0].address); 1954 for (i = 1; i < IPMI_MAX_CHANNELS; i++) 1955 seq_printf(m, " %x", intf->channels[i].address); 1956 return seq_putc(m, '\n'); 1957 } 1958 1959 static int smi_ipmb_proc_open(struct inode *inode, struct file *file) 1960 { 1961 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode)); 1962 } 1963 1964 static const struct file_operations smi_ipmb_proc_ops = { 1965 .open = smi_ipmb_proc_open, 1966 .read = seq_read, 1967 .llseek = seq_lseek, 1968 .release = single_release, 1969 }; 1970 1971 static int smi_version_proc_show(struct seq_file *m, void *v) 1972 { 1973 ipmi_smi_t intf = m->private; 1974 1975 return seq_printf(m, "%u.%u\n", 1976 ipmi_version_major(&intf->bmc->id), 1977 ipmi_version_minor(&intf->bmc->id)); 1978 } 1979 1980 static int smi_version_proc_open(struct inode *inode, struct file *file) 1981 { 1982 return single_open(file, smi_version_proc_show, PDE_DATA(inode)); 1983 } 1984 1985 static const struct file_operations smi_version_proc_ops = { 1986 .open = smi_version_proc_open, 1987 .read = seq_read, 1988 .llseek = seq_lseek, 1989 .release = single_release, 1990 }; 1991 1992 static int smi_stats_proc_show(struct seq_file *m, void *v) 1993 { 1994 ipmi_smi_t intf = m->private; 1995 1996 seq_printf(m, "sent_invalid_commands: %u\n", 1997 ipmi_get_stat(intf, sent_invalid_commands)); 1998 seq_printf(m, "sent_local_commands: %u\n", 1999 ipmi_get_stat(intf, sent_local_commands)); 2000 seq_printf(m, "handled_local_responses: %u\n", 2001 ipmi_get_stat(intf, handled_local_responses)); 2002 seq_printf(m, "unhandled_local_responses: %u\n", 2003 ipmi_get_stat(intf, unhandled_local_responses)); 2004 seq_printf(m, "sent_ipmb_commands: %u\n", 2005 ipmi_get_stat(intf, sent_ipmb_commands)); 2006 seq_printf(m, "sent_ipmb_command_errs: %u\n", 2007 ipmi_get_stat(intf, sent_ipmb_command_errs)); 2008 seq_printf(m, "retransmitted_ipmb_commands: %u\n", 2009 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 2010 seq_printf(m, "timed_out_ipmb_commands: %u\n", 2011 ipmi_get_stat(intf, timed_out_ipmb_commands)); 2012 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n", 2013 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 2014 seq_printf(m, "sent_ipmb_responses: %u\n", 2015 ipmi_get_stat(intf, sent_ipmb_responses)); 2016 seq_printf(m, "handled_ipmb_responses: %u\n", 2017 ipmi_get_stat(intf, handled_ipmb_responses)); 2018 seq_printf(m, "invalid_ipmb_responses: %u\n", 2019 ipmi_get_stat(intf, invalid_ipmb_responses)); 2020 seq_printf(m, "unhandled_ipmb_responses: %u\n", 2021 ipmi_get_stat(intf, unhandled_ipmb_responses)); 2022 seq_printf(m, "sent_lan_commands: %u\n", 2023 ipmi_get_stat(intf, sent_lan_commands)); 2024 seq_printf(m, "sent_lan_command_errs: %u\n", 2025 ipmi_get_stat(intf, sent_lan_command_errs)); 2026 seq_printf(m, "retransmitted_lan_commands: %u\n", 2027 ipmi_get_stat(intf, retransmitted_lan_commands)); 2028 seq_printf(m, "timed_out_lan_commands: %u\n", 2029 ipmi_get_stat(intf, timed_out_lan_commands)); 2030 seq_printf(m, "sent_lan_responses: %u\n", 2031 ipmi_get_stat(intf, sent_lan_responses)); 2032 seq_printf(m, "handled_lan_responses: %u\n", 2033 ipmi_get_stat(intf, handled_lan_responses)); 2034 seq_printf(m, "invalid_lan_responses: %u\n", 2035 ipmi_get_stat(intf, invalid_lan_responses)); 2036 seq_printf(m, "unhandled_lan_responses: %u\n", 2037 ipmi_get_stat(intf, unhandled_lan_responses)); 2038 seq_printf(m, "handled_commands: %u\n", 2039 ipmi_get_stat(intf, handled_commands)); 2040 seq_printf(m, "invalid_commands: %u\n", 2041 ipmi_get_stat(intf, invalid_commands)); 2042 seq_printf(m, "unhandled_commands: %u\n", 2043 ipmi_get_stat(intf, unhandled_commands)); 2044 seq_printf(m, "invalid_events: %u\n", 2045 ipmi_get_stat(intf, invalid_events)); 2046 seq_printf(m, "events: %u\n", 2047 ipmi_get_stat(intf, events)); 2048 seq_printf(m, "failed rexmit LAN msgs: %u\n", 2049 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 2050 seq_printf(m, "failed rexmit IPMB msgs: %u\n", 2051 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 2052 return 0; 2053 } 2054 2055 static int smi_stats_proc_open(struct inode *inode, struct file *file) 2056 { 2057 return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); 2058 } 2059 2060 static const struct file_operations smi_stats_proc_ops = { 2061 .open = smi_stats_proc_open, 2062 .read = seq_read, 2063 .llseek = seq_lseek, 2064 .release = single_release, 2065 }; 2066 #endif /* CONFIG_PROC_FS */ 2067 2068 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 2069 const struct file_operations *proc_ops, 2070 void *data) 2071 { 2072 int rv = 0; 2073 #ifdef CONFIG_PROC_FS 2074 struct proc_dir_entry *file; 2075 struct ipmi_proc_entry *entry; 2076 2077 /* Create a list element. */ 2078 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2079 if (!entry) 2080 return -ENOMEM; 2081 entry->name = kstrdup(name, GFP_KERNEL); 2082 if (!entry->name) { 2083 kfree(entry); 2084 return -ENOMEM; 2085 } 2086 2087 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data); 2088 if (!file) { 2089 kfree(entry->name); 2090 kfree(entry); 2091 rv = -ENOMEM; 2092 } else { 2093 mutex_lock(&smi->proc_entry_lock); 2094 /* Stick it on the list. */ 2095 entry->next = smi->proc_entries; 2096 smi->proc_entries = entry; 2097 mutex_unlock(&smi->proc_entry_lock); 2098 } 2099 #endif /* CONFIG_PROC_FS */ 2100 2101 return rv; 2102 } 2103 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2104 2105 static int add_proc_entries(ipmi_smi_t smi, int num) 2106 { 2107 int rv = 0; 2108 2109 #ifdef CONFIG_PROC_FS 2110 sprintf(smi->proc_dir_name, "%d", num); 2111 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2112 if (!smi->proc_dir) 2113 rv = -ENOMEM; 2114 2115 if (rv == 0) 2116 rv = ipmi_smi_add_proc_entry(smi, "stats", 2117 &smi_stats_proc_ops, 2118 smi); 2119 2120 if (rv == 0) 2121 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2122 &smi_ipmb_proc_ops, 2123 smi); 2124 2125 if (rv == 0) 2126 rv = ipmi_smi_add_proc_entry(smi, "version", 2127 &smi_version_proc_ops, 2128 smi); 2129 #endif /* CONFIG_PROC_FS */ 2130 2131 return rv; 2132 } 2133 2134 static void remove_proc_entries(ipmi_smi_t smi) 2135 { 2136 #ifdef CONFIG_PROC_FS 2137 struct ipmi_proc_entry *entry; 2138 2139 mutex_lock(&smi->proc_entry_lock); 2140 while (smi->proc_entries) { 2141 entry = smi->proc_entries; 2142 smi->proc_entries = entry->next; 2143 2144 remove_proc_entry(entry->name, smi->proc_dir); 2145 kfree(entry->name); 2146 kfree(entry); 2147 } 2148 mutex_unlock(&smi->proc_entry_lock); 2149 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2150 #endif /* CONFIG_PROC_FS */ 2151 } 2152 2153 static int __find_bmc_guid(struct device *dev, void *data) 2154 { 2155 unsigned char *id = data; 2156 struct bmc_device *bmc = dev_get_drvdata(dev); 2157 return memcmp(bmc->guid, id, 16) == 0; 2158 } 2159 2160 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2161 unsigned char *guid) 2162 { 2163 struct device *dev; 2164 2165 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2166 if (dev) 2167 return dev_get_drvdata(dev); 2168 else 2169 return NULL; 2170 } 2171 2172 struct prod_dev_id { 2173 unsigned int product_id; 2174 unsigned char device_id; 2175 }; 2176 2177 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2178 { 2179 struct prod_dev_id *id = data; 2180 struct bmc_device *bmc = dev_get_drvdata(dev); 2181 2182 return (bmc->id.product_id == id->product_id 2183 && bmc->id.device_id == id->device_id); 2184 } 2185 2186 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2187 struct device_driver *drv, 2188 unsigned int product_id, unsigned char device_id) 2189 { 2190 struct prod_dev_id id = { 2191 .product_id = product_id, 2192 .device_id = device_id, 2193 }; 2194 struct device *dev; 2195 2196 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2197 if (dev) 2198 return dev_get_drvdata(dev); 2199 else 2200 return NULL; 2201 } 2202 2203 static ssize_t device_id_show(struct device *dev, 2204 struct device_attribute *attr, 2205 char *buf) 2206 { 2207 struct bmc_device *bmc = dev_get_drvdata(dev); 2208 2209 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2210 } 2211 2212 static ssize_t provides_dev_sdrs_show(struct device *dev, 2213 struct device_attribute *attr, 2214 char *buf) 2215 { 2216 struct bmc_device *bmc = dev_get_drvdata(dev); 2217 2218 return snprintf(buf, 10, "%u\n", 2219 (bmc->id.device_revision & 0x80) >> 7); 2220 } 2221 2222 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2223 char *buf) 2224 { 2225 struct bmc_device *bmc = dev_get_drvdata(dev); 2226 2227 return snprintf(buf, 20, "%u\n", 2228 bmc->id.device_revision & 0x0F); 2229 } 2230 2231 static ssize_t firmware_rev_show(struct device *dev, 2232 struct device_attribute *attr, 2233 char *buf) 2234 { 2235 struct bmc_device *bmc = dev_get_drvdata(dev); 2236 2237 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2238 bmc->id.firmware_revision_2); 2239 } 2240 2241 static ssize_t ipmi_version_show(struct device *dev, 2242 struct device_attribute *attr, 2243 char *buf) 2244 { 2245 struct bmc_device *bmc = dev_get_drvdata(dev); 2246 2247 return snprintf(buf, 20, "%u.%u\n", 2248 ipmi_version_major(&bmc->id), 2249 ipmi_version_minor(&bmc->id)); 2250 } 2251 2252 static ssize_t add_dev_support_show(struct device *dev, 2253 struct device_attribute *attr, 2254 char *buf) 2255 { 2256 struct bmc_device *bmc = dev_get_drvdata(dev); 2257 2258 return snprintf(buf, 10, "0x%02x\n", 2259 bmc->id.additional_device_support); 2260 } 2261 2262 static ssize_t manufacturer_id_show(struct device *dev, 2263 struct device_attribute *attr, 2264 char *buf) 2265 { 2266 struct bmc_device *bmc = dev_get_drvdata(dev); 2267 2268 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2269 } 2270 2271 static ssize_t product_id_show(struct device *dev, 2272 struct device_attribute *attr, 2273 char *buf) 2274 { 2275 struct bmc_device *bmc = dev_get_drvdata(dev); 2276 2277 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2278 } 2279 2280 static ssize_t aux_firmware_rev_show(struct device *dev, 2281 struct device_attribute *attr, 2282 char *buf) 2283 { 2284 struct bmc_device *bmc = dev_get_drvdata(dev); 2285 2286 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2287 bmc->id.aux_firmware_revision[3], 2288 bmc->id.aux_firmware_revision[2], 2289 bmc->id.aux_firmware_revision[1], 2290 bmc->id.aux_firmware_revision[0]); 2291 } 2292 2293 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2294 char *buf) 2295 { 2296 struct bmc_device *bmc = dev_get_drvdata(dev); 2297 2298 return snprintf(buf, 100, "%Lx%Lx\n", 2299 (long long) bmc->guid[0], 2300 (long long) bmc->guid[8]); 2301 } 2302 2303 static void remove_files(struct bmc_device *bmc) 2304 { 2305 if (!bmc->dev) 2306 return; 2307 2308 device_remove_file(&bmc->dev->dev, 2309 &bmc->device_id_attr); 2310 device_remove_file(&bmc->dev->dev, 2311 &bmc->provides_dev_sdrs_attr); 2312 device_remove_file(&bmc->dev->dev, 2313 &bmc->revision_attr); 2314 device_remove_file(&bmc->dev->dev, 2315 &bmc->firmware_rev_attr); 2316 device_remove_file(&bmc->dev->dev, 2317 &bmc->version_attr); 2318 device_remove_file(&bmc->dev->dev, 2319 &bmc->add_dev_support_attr); 2320 device_remove_file(&bmc->dev->dev, 2321 &bmc->manufacturer_id_attr); 2322 device_remove_file(&bmc->dev->dev, 2323 &bmc->product_id_attr); 2324 2325 if (bmc->id.aux_firmware_revision_set) 2326 device_remove_file(&bmc->dev->dev, 2327 &bmc->aux_firmware_rev_attr); 2328 if (bmc->guid_set) 2329 device_remove_file(&bmc->dev->dev, 2330 &bmc->guid_attr); 2331 } 2332 2333 static void 2334 cleanup_bmc_device(struct kref *ref) 2335 { 2336 struct bmc_device *bmc; 2337 2338 bmc = container_of(ref, struct bmc_device, refcount); 2339 2340 remove_files(bmc); 2341 platform_device_unregister(bmc->dev); 2342 kfree(bmc); 2343 } 2344 2345 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2346 { 2347 struct bmc_device *bmc = intf->bmc; 2348 2349 if (intf->sysfs_name) { 2350 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name); 2351 kfree(intf->sysfs_name); 2352 intf->sysfs_name = NULL; 2353 } 2354 if (intf->my_dev_name) { 2355 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name); 2356 kfree(intf->my_dev_name); 2357 intf->my_dev_name = NULL; 2358 } 2359 2360 mutex_lock(&ipmidriver_mutex); 2361 kref_put(&bmc->refcount, cleanup_bmc_device); 2362 intf->bmc = NULL; 2363 mutex_unlock(&ipmidriver_mutex); 2364 } 2365 2366 static int create_files(struct bmc_device *bmc) 2367 { 2368 int err; 2369 2370 bmc->device_id_attr.attr.name = "device_id"; 2371 bmc->device_id_attr.attr.mode = S_IRUGO; 2372 bmc->device_id_attr.show = device_id_show; 2373 sysfs_attr_init(&bmc->device_id_attr.attr); 2374 2375 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs"; 2376 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO; 2377 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show; 2378 sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr); 2379 2380 bmc->revision_attr.attr.name = "revision"; 2381 bmc->revision_attr.attr.mode = S_IRUGO; 2382 bmc->revision_attr.show = revision_show; 2383 sysfs_attr_init(&bmc->revision_attr.attr); 2384 2385 bmc->firmware_rev_attr.attr.name = "firmware_revision"; 2386 bmc->firmware_rev_attr.attr.mode = S_IRUGO; 2387 bmc->firmware_rev_attr.show = firmware_rev_show; 2388 sysfs_attr_init(&bmc->firmware_rev_attr.attr); 2389 2390 bmc->version_attr.attr.name = "ipmi_version"; 2391 bmc->version_attr.attr.mode = S_IRUGO; 2392 bmc->version_attr.show = ipmi_version_show; 2393 sysfs_attr_init(&bmc->version_attr.attr); 2394 2395 bmc->add_dev_support_attr.attr.name = "additional_device_support"; 2396 bmc->add_dev_support_attr.attr.mode = S_IRUGO; 2397 bmc->add_dev_support_attr.show = add_dev_support_show; 2398 sysfs_attr_init(&bmc->add_dev_support_attr.attr); 2399 2400 bmc->manufacturer_id_attr.attr.name = "manufacturer_id"; 2401 bmc->manufacturer_id_attr.attr.mode = S_IRUGO; 2402 bmc->manufacturer_id_attr.show = manufacturer_id_show; 2403 sysfs_attr_init(&bmc->manufacturer_id_attr.attr); 2404 2405 bmc->product_id_attr.attr.name = "product_id"; 2406 bmc->product_id_attr.attr.mode = S_IRUGO; 2407 bmc->product_id_attr.show = product_id_show; 2408 sysfs_attr_init(&bmc->product_id_attr.attr); 2409 2410 bmc->guid_attr.attr.name = "guid"; 2411 bmc->guid_attr.attr.mode = S_IRUGO; 2412 bmc->guid_attr.show = guid_show; 2413 sysfs_attr_init(&bmc->guid_attr.attr); 2414 2415 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision"; 2416 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO; 2417 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show; 2418 sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr); 2419 2420 err = device_create_file(&bmc->dev->dev, 2421 &bmc->device_id_attr); 2422 if (err) 2423 goto out; 2424 err = device_create_file(&bmc->dev->dev, 2425 &bmc->provides_dev_sdrs_attr); 2426 if (err) 2427 goto out_devid; 2428 err = device_create_file(&bmc->dev->dev, 2429 &bmc->revision_attr); 2430 if (err) 2431 goto out_sdrs; 2432 err = device_create_file(&bmc->dev->dev, 2433 &bmc->firmware_rev_attr); 2434 if (err) 2435 goto out_rev; 2436 err = device_create_file(&bmc->dev->dev, 2437 &bmc->version_attr); 2438 if (err) 2439 goto out_firm; 2440 err = device_create_file(&bmc->dev->dev, 2441 &bmc->add_dev_support_attr); 2442 if (err) 2443 goto out_version; 2444 err = device_create_file(&bmc->dev->dev, 2445 &bmc->manufacturer_id_attr); 2446 if (err) 2447 goto out_add_dev; 2448 err = device_create_file(&bmc->dev->dev, 2449 &bmc->product_id_attr); 2450 if (err) 2451 goto out_manu; 2452 if (bmc->id.aux_firmware_revision_set) { 2453 err = device_create_file(&bmc->dev->dev, 2454 &bmc->aux_firmware_rev_attr); 2455 if (err) 2456 goto out_prod_id; 2457 } 2458 if (bmc->guid_set) { 2459 err = device_create_file(&bmc->dev->dev, 2460 &bmc->guid_attr); 2461 if (err) 2462 goto out_aux_firm; 2463 } 2464 2465 return 0; 2466 2467 out_aux_firm: 2468 if (bmc->id.aux_firmware_revision_set) 2469 device_remove_file(&bmc->dev->dev, 2470 &bmc->aux_firmware_rev_attr); 2471 out_prod_id: 2472 device_remove_file(&bmc->dev->dev, 2473 &bmc->product_id_attr); 2474 out_manu: 2475 device_remove_file(&bmc->dev->dev, 2476 &bmc->manufacturer_id_attr); 2477 out_add_dev: 2478 device_remove_file(&bmc->dev->dev, 2479 &bmc->add_dev_support_attr); 2480 out_version: 2481 device_remove_file(&bmc->dev->dev, 2482 &bmc->version_attr); 2483 out_firm: 2484 device_remove_file(&bmc->dev->dev, 2485 &bmc->firmware_rev_attr); 2486 out_rev: 2487 device_remove_file(&bmc->dev->dev, 2488 &bmc->revision_attr); 2489 out_sdrs: 2490 device_remove_file(&bmc->dev->dev, 2491 &bmc->provides_dev_sdrs_attr); 2492 out_devid: 2493 device_remove_file(&bmc->dev->dev, 2494 &bmc->device_id_attr); 2495 out: 2496 return err; 2497 } 2498 2499 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum, 2500 const char *sysfs_name) 2501 { 2502 int rv; 2503 struct bmc_device *bmc = intf->bmc; 2504 struct bmc_device *old_bmc; 2505 int size; 2506 char dummy[1]; 2507 2508 mutex_lock(&ipmidriver_mutex); 2509 2510 /* 2511 * Try to find if there is an bmc_device struct 2512 * representing the interfaced BMC already 2513 */ 2514 if (bmc->guid_set) 2515 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2516 else 2517 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2518 bmc->id.product_id, 2519 bmc->id.device_id); 2520 2521 /* 2522 * If there is already an bmc_device, free the new one, 2523 * otherwise register the new BMC device 2524 */ 2525 if (old_bmc) { 2526 kfree(bmc); 2527 intf->bmc = old_bmc; 2528 bmc = old_bmc; 2529 2530 kref_get(&bmc->refcount); 2531 mutex_unlock(&ipmidriver_mutex); 2532 2533 printk(KERN_INFO 2534 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2535 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2536 bmc->id.manufacturer_id, 2537 bmc->id.product_id, 2538 bmc->id.device_id); 2539 } else { 2540 char name[14]; 2541 unsigned char orig_dev_id = bmc->id.device_id; 2542 int warn_printed = 0; 2543 2544 snprintf(name, sizeof(name), 2545 "ipmi_bmc.%4.4x", bmc->id.product_id); 2546 2547 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2548 bmc->id.product_id, 2549 bmc->id.device_id)) { 2550 if (!warn_printed) { 2551 printk(KERN_WARNING PFX 2552 "This machine has two different BMCs" 2553 " with the same product id and device" 2554 " id. This is an error in the" 2555 " firmware, but incrementing the" 2556 " device id to work around the problem." 2557 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2558 bmc->id.product_id, bmc->id.device_id); 2559 warn_printed = 1; 2560 } 2561 bmc->id.device_id++; /* Wraps at 255 */ 2562 if (bmc->id.device_id == orig_dev_id) { 2563 printk(KERN_ERR PFX 2564 "Out of device ids!\n"); 2565 break; 2566 } 2567 } 2568 2569 bmc->dev = platform_device_alloc(name, bmc->id.device_id); 2570 if (!bmc->dev) { 2571 mutex_unlock(&ipmidriver_mutex); 2572 printk(KERN_ERR 2573 "ipmi_msghandler:" 2574 " Unable to allocate platform device\n"); 2575 return -ENOMEM; 2576 } 2577 bmc->dev->dev.driver = &ipmidriver.driver; 2578 dev_set_drvdata(&bmc->dev->dev, bmc); 2579 kref_init(&bmc->refcount); 2580 2581 rv = platform_device_add(bmc->dev); 2582 mutex_unlock(&ipmidriver_mutex); 2583 if (rv) { 2584 platform_device_put(bmc->dev); 2585 bmc->dev = NULL; 2586 printk(KERN_ERR 2587 "ipmi_msghandler:" 2588 " Unable to register bmc device: %d\n", 2589 rv); 2590 /* 2591 * Don't go to out_err, you can only do that if 2592 * the device is registered already. 2593 */ 2594 return rv; 2595 } 2596 2597 rv = create_files(bmc); 2598 if (rv) { 2599 mutex_lock(&ipmidriver_mutex); 2600 platform_device_unregister(bmc->dev); 2601 mutex_unlock(&ipmidriver_mutex); 2602 2603 return rv; 2604 } 2605 2606 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, " 2607 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2608 bmc->id.manufacturer_id, 2609 bmc->id.product_id, 2610 bmc->id.device_id); 2611 } 2612 2613 /* 2614 * create symlink from system interface device to bmc device 2615 * and back. 2616 */ 2617 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL); 2618 if (!intf->sysfs_name) { 2619 rv = -ENOMEM; 2620 printk(KERN_ERR 2621 "ipmi_msghandler: allocate link to BMC: %d\n", 2622 rv); 2623 goto out_err; 2624 } 2625 2626 rv = sysfs_create_link(&intf->si_dev->kobj, 2627 &bmc->dev->dev.kobj, intf->sysfs_name); 2628 if (rv) { 2629 kfree(intf->sysfs_name); 2630 intf->sysfs_name = NULL; 2631 printk(KERN_ERR 2632 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2633 rv); 2634 goto out_err; 2635 } 2636 2637 size = snprintf(dummy, 0, "ipmi%d", ifnum); 2638 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL); 2639 if (!intf->my_dev_name) { 2640 kfree(intf->sysfs_name); 2641 intf->sysfs_name = NULL; 2642 rv = -ENOMEM; 2643 printk(KERN_ERR 2644 "ipmi_msghandler: allocate link from BMC: %d\n", 2645 rv); 2646 goto out_err; 2647 } 2648 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum); 2649 2650 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj, 2651 intf->my_dev_name); 2652 if (rv) { 2653 kfree(intf->sysfs_name); 2654 intf->sysfs_name = NULL; 2655 kfree(intf->my_dev_name); 2656 intf->my_dev_name = NULL; 2657 printk(KERN_ERR 2658 "ipmi_msghandler:" 2659 " Unable to create symlink to bmc: %d\n", 2660 rv); 2661 goto out_err; 2662 } 2663 2664 return 0; 2665 2666 out_err: 2667 ipmi_bmc_unregister(intf); 2668 return rv; 2669 } 2670 2671 static int 2672 send_guid_cmd(ipmi_smi_t intf, int chan) 2673 { 2674 struct kernel_ipmi_msg msg; 2675 struct ipmi_system_interface_addr si; 2676 2677 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2678 si.channel = IPMI_BMC_CHANNEL; 2679 si.lun = 0; 2680 2681 msg.netfn = IPMI_NETFN_APP_REQUEST; 2682 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2683 msg.data = NULL; 2684 msg.data_len = 0; 2685 return i_ipmi_request(NULL, 2686 intf, 2687 (struct ipmi_addr *) &si, 2688 0, 2689 &msg, 2690 intf, 2691 NULL, 2692 NULL, 2693 0, 2694 intf->channels[0].address, 2695 intf->channels[0].lun, 2696 -1, 0); 2697 } 2698 2699 static void 2700 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2701 { 2702 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2703 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2704 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2705 /* Not for me */ 2706 return; 2707 2708 if (msg->msg.data[0] != 0) { 2709 /* Error from getting the GUID, the BMC doesn't have one. */ 2710 intf->bmc->guid_set = 0; 2711 goto out; 2712 } 2713 2714 if (msg->msg.data_len < 17) { 2715 intf->bmc->guid_set = 0; 2716 printk(KERN_WARNING PFX 2717 "guid_handler: The GUID response from the BMC was too" 2718 " short, it was %d but should have been 17. Assuming" 2719 " GUID is not available.\n", 2720 msg->msg.data_len); 2721 goto out; 2722 } 2723 2724 memcpy(intf->bmc->guid, msg->msg.data, 16); 2725 intf->bmc->guid_set = 1; 2726 out: 2727 wake_up(&intf->waitq); 2728 } 2729 2730 static void 2731 get_guid(ipmi_smi_t intf) 2732 { 2733 int rv; 2734 2735 intf->bmc->guid_set = 0x2; 2736 intf->null_user_handler = guid_handler; 2737 rv = send_guid_cmd(intf, 0); 2738 if (rv) 2739 /* Send failed, no GUID available. */ 2740 intf->bmc->guid_set = 0; 2741 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2742 intf->null_user_handler = NULL; 2743 } 2744 2745 static int 2746 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2747 { 2748 struct kernel_ipmi_msg msg; 2749 unsigned char data[1]; 2750 struct ipmi_system_interface_addr si; 2751 2752 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2753 si.channel = IPMI_BMC_CHANNEL; 2754 si.lun = 0; 2755 2756 msg.netfn = IPMI_NETFN_APP_REQUEST; 2757 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2758 msg.data = data; 2759 msg.data_len = 1; 2760 data[0] = chan; 2761 return i_ipmi_request(NULL, 2762 intf, 2763 (struct ipmi_addr *) &si, 2764 0, 2765 &msg, 2766 intf, 2767 NULL, 2768 NULL, 2769 0, 2770 intf->channels[0].address, 2771 intf->channels[0].lun, 2772 -1, 0); 2773 } 2774 2775 static void 2776 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2777 { 2778 int rv = 0; 2779 int chan; 2780 2781 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2782 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2783 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2784 /* It's the one we want */ 2785 if (msg->msg.data[0] != 0) { 2786 /* Got an error from the channel, just go on. */ 2787 2788 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2789 /* 2790 * If the MC does not support this 2791 * command, that is legal. We just 2792 * assume it has one IPMB at channel 2793 * zero. 2794 */ 2795 intf->channels[0].medium 2796 = IPMI_CHANNEL_MEDIUM_IPMB; 2797 intf->channels[0].protocol 2798 = IPMI_CHANNEL_PROTOCOL_IPMB; 2799 rv = -ENOSYS; 2800 2801 intf->curr_channel = IPMI_MAX_CHANNELS; 2802 wake_up(&intf->waitq); 2803 goto out; 2804 } 2805 goto next_channel; 2806 } 2807 if (msg->msg.data_len < 4) { 2808 /* Message not big enough, just go on. */ 2809 goto next_channel; 2810 } 2811 chan = intf->curr_channel; 2812 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2813 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2814 2815 next_channel: 2816 intf->curr_channel++; 2817 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2818 wake_up(&intf->waitq); 2819 else 2820 rv = send_channel_info_cmd(intf, intf->curr_channel); 2821 2822 if (rv) { 2823 /* Got an error somehow, just give up. */ 2824 intf->curr_channel = IPMI_MAX_CHANNELS; 2825 wake_up(&intf->waitq); 2826 2827 printk(KERN_WARNING PFX 2828 "Error sending channel information: %d\n", 2829 rv); 2830 } 2831 } 2832 out: 2833 return; 2834 } 2835 2836 static void ipmi_poll(ipmi_smi_t intf) 2837 { 2838 if (intf->handlers->poll) 2839 intf->handlers->poll(intf->send_info); 2840 /* In case something came in */ 2841 handle_new_recv_msgs(intf); 2842 } 2843 2844 void ipmi_poll_interface(ipmi_user_t user) 2845 { 2846 ipmi_poll(user->intf); 2847 } 2848 EXPORT_SYMBOL(ipmi_poll_interface); 2849 2850 int ipmi_register_smi(struct ipmi_smi_handlers *handlers, 2851 void *send_info, 2852 struct ipmi_device_id *device_id, 2853 struct device *si_dev, 2854 const char *sysfs_name, 2855 unsigned char slave_addr) 2856 { 2857 int i, j; 2858 int rv; 2859 ipmi_smi_t intf; 2860 ipmi_smi_t tintf; 2861 struct list_head *link; 2862 2863 /* 2864 * Make sure the driver is actually initialized, this handles 2865 * problems with initialization order. 2866 */ 2867 if (!initialized) { 2868 rv = ipmi_init_msghandler(); 2869 if (rv) 2870 return rv; 2871 /* 2872 * The init code doesn't return an error if it was turned 2873 * off, but it won't initialize. Check that. 2874 */ 2875 if (!initialized) 2876 return -ENODEV; 2877 } 2878 2879 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2880 if (!intf) 2881 return -ENOMEM; 2882 2883 intf->ipmi_version_major = ipmi_version_major(device_id); 2884 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2885 2886 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2887 if (!intf->bmc) { 2888 kfree(intf); 2889 return -ENOMEM; 2890 } 2891 intf->intf_num = -1; /* Mark it invalid for now. */ 2892 kref_init(&intf->refcount); 2893 intf->bmc->id = *device_id; 2894 intf->si_dev = si_dev; 2895 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2896 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2897 intf->channels[j].lun = 2; 2898 } 2899 if (slave_addr != 0) 2900 intf->channels[0].address = slave_addr; 2901 INIT_LIST_HEAD(&intf->users); 2902 intf->handlers = handlers; 2903 intf->send_info = send_info; 2904 spin_lock_init(&intf->seq_lock); 2905 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2906 intf->seq_table[j].inuse = 0; 2907 intf->seq_table[j].seqid = 0; 2908 } 2909 intf->curr_seq = 0; 2910 #ifdef CONFIG_PROC_FS 2911 mutex_init(&intf->proc_entry_lock); 2912 #endif 2913 spin_lock_init(&intf->waiting_msgs_lock); 2914 INIT_LIST_HEAD(&intf->waiting_msgs); 2915 tasklet_init(&intf->recv_tasklet, 2916 smi_recv_tasklet, 2917 (unsigned long) intf); 2918 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 2919 spin_lock_init(&intf->events_lock); 2920 atomic_set(&intf->event_waiters, 0); 2921 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 2922 INIT_LIST_HEAD(&intf->waiting_events); 2923 intf->waiting_events_count = 0; 2924 mutex_init(&intf->cmd_rcvrs_mutex); 2925 spin_lock_init(&intf->maintenance_mode_lock); 2926 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2927 init_waitqueue_head(&intf->waitq); 2928 for (i = 0; i < IPMI_NUM_STATS; i++) 2929 atomic_set(&intf->stats[i], 0); 2930 2931 intf->proc_dir = NULL; 2932 2933 mutex_lock(&smi_watchers_mutex); 2934 mutex_lock(&ipmi_interfaces_mutex); 2935 /* Look for a hole in the numbers. */ 2936 i = 0; 2937 link = &ipmi_interfaces; 2938 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2939 if (tintf->intf_num != i) { 2940 link = &tintf->link; 2941 break; 2942 } 2943 i++; 2944 } 2945 /* Add the new interface in numeric order. */ 2946 if (i == 0) 2947 list_add_rcu(&intf->link, &ipmi_interfaces); 2948 else 2949 list_add_tail_rcu(&intf->link, link); 2950 2951 rv = handlers->start_processing(send_info, intf); 2952 if (rv) 2953 goto out; 2954 2955 get_guid(intf); 2956 2957 if ((intf->ipmi_version_major > 1) 2958 || ((intf->ipmi_version_major == 1) 2959 && (intf->ipmi_version_minor >= 5))) { 2960 /* 2961 * Start scanning the channels to see what is 2962 * available. 2963 */ 2964 intf->null_user_handler = channel_handler; 2965 intf->curr_channel = 0; 2966 rv = send_channel_info_cmd(intf, 0); 2967 if (rv) 2968 goto out; 2969 2970 /* Wait for the channel info to be read. */ 2971 wait_event(intf->waitq, 2972 intf->curr_channel >= IPMI_MAX_CHANNELS); 2973 intf->null_user_handler = NULL; 2974 } else { 2975 /* Assume a single IPMB channel at zero. */ 2976 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2977 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2978 intf->curr_channel = IPMI_MAX_CHANNELS; 2979 } 2980 2981 if (rv == 0) 2982 rv = add_proc_entries(intf, i); 2983 2984 rv = ipmi_bmc_register(intf, i, sysfs_name); 2985 2986 out: 2987 if (rv) { 2988 if (intf->proc_dir) 2989 remove_proc_entries(intf); 2990 intf->handlers = NULL; 2991 list_del_rcu(&intf->link); 2992 mutex_unlock(&ipmi_interfaces_mutex); 2993 mutex_unlock(&smi_watchers_mutex); 2994 synchronize_rcu(); 2995 kref_put(&intf->refcount, intf_free); 2996 } else { 2997 /* 2998 * Keep memory order straight for RCU readers. Make 2999 * sure everything else is committed to memory before 3000 * setting intf_num to mark the interface valid. 3001 */ 3002 smp_wmb(); 3003 intf->intf_num = i; 3004 mutex_unlock(&ipmi_interfaces_mutex); 3005 /* After this point the interface is legal to use. */ 3006 call_smi_watchers(i, intf->si_dev); 3007 mutex_unlock(&smi_watchers_mutex); 3008 } 3009 3010 return rv; 3011 } 3012 EXPORT_SYMBOL(ipmi_register_smi); 3013 3014 static void cleanup_smi_msgs(ipmi_smi_t intf) 3015 { 3016 int i; 3017 struct seq_table *ent; 3018 3019 /* No need for locks, the interface is down. */ 3020 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 3021 ent = &(intf->seq_table[i]); 3022 if (!ent->inuse) 3023 continue; 3024 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 3025 } 3026 } 3027 3028 int ipmi_unregister_smi(ipmi_smi_t intf) 3029 { 3030 struct ipmi_smi_watcher *w; 3031 int intf_num = intf->intf_num; 3032 3033 ipmi_bmc_unregister(intf); 3034 3035 mutex_lock(&smi_watchers_mutex); 3036 mutex_lock(&ipmi_interfaces_mutex); 3037 intf->intf_num = -1; 3038 intf->handlers = NULL; 3039 list_del_rcu(&intf->link); 3040 mutex_unlock(&ipmi_interfaces_mutex); 3041 synchronize_rcu(); 3042 3043 cleanup_smi_msgs(intf); 3044 3045 remove_proc_entries(intf); 3046 3047 /* 3048 * Call all the watcher interfaces to tell them that 3049 * an interface is gone. 3050 */ 3051 list_for_each_entry(w, &smi_watchers, link) 3052 w->smi_gone(intf_num); 3053 mutex_unlock(&smi_watchers_mutex); 3054 3055 kref_put(&intf->refcount, intf_free); 3056 return 0; 3057 } 3058 EXPORT_SYMBOL(ipmi_unregister_smi); 3059 3060 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 3061 struct ipmi_smi_msg *msg) 3062 { 3063 struct ipmi_ipmb_addr ipmb_addr; 3064 struct ipmi_recv_msg *recv_msg; 3065 3066 /* 3067 * This is 11, not 10, because the response must contain a 3068 * completion code. 3069 */ 3070 if (msg->rsp_size < 11) { 3071 /* Message not big enough, just ignore it. */ 3072 ipmi_inc_stat(intf, invalid_ipmb_responses); 3073 return 0; 3074 } 3075 3076 if (msg->rsp[2] != 0) { 3077 /* An error getting the response, just ignore it. */ 3078 return 0; 3079 } 3080 3081 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3082 ipmb_addr.slave_addr = msg->rsp[6]; 3083 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3084 ipmb_addr.lun = msg->rsp[7] & 3; 3085 3086 /* 3087 * It's a response from a remote entity. Look up the sequence 3088 * number and handle the response. 3089 */ 3090 if (intf_find_seq(intf, 3091 msg->rsp[7] >> 2, 3092 msg->rsp[3] & 0x0f, 3093 msg->rsp[8], 3094 (msg->rsp[4] >> 2) & (~1), 3095 (struct ipmi_addr *) &(ipmb_addr), 3096 &recv_msg)) { 3097 /* 3098 * We were unable to find the sequence number, 3099 * so just nuke the message. 3100 */ 3101 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3102 return 0; 3103 } 3104 3105 memcpy(recv_msg->msg_data, 3106 &(msg->rsp[9]), 3107 msg->rsp_size - 9); 3108 /* 3109 * The other fields matched, so no need to set them, except 3110 * for netfn, which needs to be the response that was 3111 * returned, not the request value. 3112 */ 3113 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3114 recv_msg->msg.data = recv_msg->msg_data; 3115 recv_msg->msg.data_len = msg->rsp_size - 10; 3116 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3117 ipmi_inc_stat(intf, handled_ipmb_responses); 3118 deliver_response(recv_msg); 3119 3120 return 0; 3121 } 3122 3123 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3124 struct ipmi_smi_msg *msg) 3125 { 3126 struct cmd_rcvr *rcvr; 3127 int rv = 0; 3128 unsigned char netfn; 3129 unsigned char cmd; 3130 unsigned char chan; 3131 ipmi_user_t user = NULL; 3132 struct ipmi_ipmb_addr *ipmb_addr; 3133 struct ipmi_recv_msg *recv_msg; 3134 struct ipmi_smi_handlers *handlers; 3135 3136 if (msg->rsp_size < 10) { 3137 /* Message not big enough, just ignore it. */ 3138 ipmi_inc_stat(intf, invalid_commands); 3139 return 0; 3140 } 3141 3142 if (msg->rsp[2] != 0) { 3143 /* An error getting the response, just ignore it. */ 3144 return 0; 3145 } 3146 3147 netfn = msg->rsp[4] >> 2; 3148 cmd = msg->rsp[8]; 3149 chan = msg->rsp[3] & 0xf; 3150 3151 rcu_read_lock(); 3152 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3153 if (rcvr) { 3154 user = rcvr->user; 3155 kref_get(&user->refcount); 3156 } else 3157 user = NULL; 3158 rcu_read_unlock(); 3159 3160 if (user == NULL) { 3161 /* We didn't find a user, deliver an error response. */ 3162 ipmi_inc_stat(intf, unhandled_commands); 3163 3164 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3165 msg->data[1] = IPMI_SEND_MSG_CMD; 3166 msg->data[2] = msg->rsp[3]; 3167 msg->data[3] = msg->rsp[6]; 3168 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3169 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3170 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3171 /* rqseq/lun */ 3172 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3173 msg->data[8] = msg->rsp[8]; /* cmd */ 3174 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3175 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3176 msg->data_size = 11; 3177 3178 #ifdef DEBUG_MSGING 3179 { 3180 int m; 3181 printk("Invalid command:"); 3182 for (m = 0; m < msg->data_size; m++) 3183 printk(" %2.2x", msg->data[m]); 3184 printk("\n"); 3185 } 3186 #endif 3187 rcu_read_lock(); 3188 handlers = intf->handlers; 3189 if (handlers) { 3190 handlers->sender(intf->send_info, msg, 0); 3191 /* 3192 * We used the message, so return the value 3193 * that causes it to not be freed or 3194 * queued. 3195 */ 3196 rv = -1; 3197 } 3198 rcu_read_unlock(); 3199 } else { 3200 /* Deliver the message to the user. */ 3201 ipmi_inc_stat(intf, handled_commands); 3202 3203 recv_msg = ipmi_alloc_recv_msg(); 3204 if (!recv_msg) { 3205 /* 3206 * We couldn't allocate memory for the 3207 * message, so requeue it for handling 3208 * later. 3209 */ 3210 rv = 1; 3211 kref_put(&user->refcount, free_user); 3212 } else { 3213 /* Extract the source address from the data. */ 3214 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3215 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3216 ipmb_addr->slave_addr = msg->rsp[6]; 3217 ipmb_addr->lun = msg->rsp[7] & 3; 3218 ipmb_addr->channel = msg->rsp[3] & 0xf; 3219 3220 /* 3221 * Extract the rest of the message information 3222 * from the IPMB header. 3223 */ 3224 recv_msg->user = user; 3225 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3226 recv_msg->msgid = msg->rsp[7] >> 2; 3227 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3228 recv_msg->msg.cmd = msg->rsp[8]; 3229 recv_msg->msg.data = recv_msg->msg_data; 3230 3231 /* 3232 * We chop off 10, not 9 bytes because the checksum 3233 * at the end also needs to be removed. 3234 */ 3235 recv_msg->msg.data_len = msg->rsp_size - 10; 3236 memcpy(recv_msg->msg_data, 3237 &(msg->rsp[9]), 3238 msg->rsp_size - 10); 3239 deliver_response(recv_msg); 3240 } 3241 } 3242 3243 return rv; 3244 } 3245 3246 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3247 struct ipmi_smi_msg *msg) 3248 { 3249 struct ipmi_lan_addr lan_addr; 3250 struct ipmi_recv_msg *recv_msg; 3251 3252 3253 /* 3254 * This is 13, not 12, because the response must contain a 3255 * completion code. 3256 */ 3257 if (msg->rsp_size < 13) { 3258 /* Message not big enough, just ignore it. */ 3259 ipmi_inc_stat(intf, invalid_lan_responses); 3260 return 0; 3261 } 3262 3263 if (msg->rsp[2] != 0) { 3264 /* An error getting the response, just ignore it. */ 3265 return 0; 3266 } 3267 3268 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3269 lan_addr.session_handle = msg->rsp[4]; 3270 lan_addr.remote_SWID = msg->rsp[8]; 3271 lan_addr.local_SWID = msg->rsp[5]; 3272 lan_addr.channel = msg->rsp[3] & 0x0f; 3273 lan_addr.privilege = msg->rsp[3] >> 4; 3274 lan_addr.lun = msg->rsp[9] & 3; 3275 3276 /* 3277 * It's a response from a remote entity. Look up the sequence 3278 * number and handle the response. 3279 */ 3280 if (intf_find_seq(intf, 3281 msg->rsp[9] >> 2, 3282 msg->rsp[3] & 0x0f, 3283 msg->rsp[10], 3284 (msg->rsp[6] >> 2) & (~1), 3285 (struct ipmi_addr *) &(lan_addr), 3286 &recv_msg)) { 3287 /* 3288 * We were unable to find the sequence number, 3289 * so just nuke the message. 3290 */ 3291 ipmi_inc_stat(intf, unhandled_lan_responses); 3292 return 0; 3293 } 3294 3295 memcpy(recv_msg->msg_data, 3296 &(msg->rsp[11]), 3297 msg->rsp_size - 11); 3298 /* 3299 * The other fields matched, so no need to set them, except 3300 * for netfn, which needs to be the response that was 3301 * returned, not the request value. 3302 */ 3303 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3304 recv_msg->msg.data = recv_msg->msg_data; 3305 recv_msg->msg.data_len = msg->rsp_size - 12; 3306 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3307 ipmi_inc_stat(intf, handled_lan_responses); 3308 deliver_response(recv_msg); 3309 3310 return 0; 3311 } 3312 3313 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3314 struct ipmi_smi_msg *msg) 3315 { 3316 struct cmd_rcvr *rcvr; 3317 int rv = 0; 3318 unsigned char netfn; 3319 unsigned char cmd; 3320 unsigned char chan; 3321 ipmi_user_t user = NULL; 3322 struct ipmi_lan_addr *lan_addr; 3323 struct ipmi_recv_msg *recv_msg; 3324 3325 if (msg->rsp_size < 12) { 3326 /* Message not big enough, just ignore it. */ 3327 ipmi_inc_stat(intf, invalid_commands); 3328 return 0; 3329 } 3330 3331 if (msg->rsp[2] != 0) { 3332 /* An error getting the response, just ignore it. */ 3333 return 0; 3334 } 3335 3336 netfn = msg->rsp[6] >> 2; 3337 cmd = msg->rsp[10]; 3338 chan = msg->rsp[3] & 0xf; 3339 3340 rcu_read_lock(); 3341 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3342 if (rcvr) { 3343 user = rcvr->user; 3344 kref_get(&user->refcount); 3345 } else 3346 user = NULL; 3347 rcu_read_unlock(); 3348 3349 if (user == NULL) { 3350 /* We didn't find a user, just give up. */ 3351 ipmi_inc_stat(intf, unhandled_commands); 3352 3353 /* 3354 * Don't do anything with these messages, just allow 3355 * them to be freed. 3356 */ 3357 rv = 0; 3358 } else { 3359 /* Deliver the message to the user. */ 3360 ipmi_inc_stat(intf, handled_commands); 3361 3362 recv_msg = ipmi_alloc_recv_msg(); 3363 if (!recv_msg) { 3364 /* 3365 * We couldn't allocate memory for the 3366 * message, so requeue it for handling later. 3367 */ 3368 rv = 1; 3369 kref_put(&user->refcount, free_user); 3370 } else { 3371 /* Extract the source address from the data. */ 3372 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3373 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3374 lan_addr->session_handle = msg->rsp[4]; 3375 lan_addr->remote_SWID = msg->rsp[8]; 3376 lan_addr->local_SWID = msg->rsp[5]; 3377 lan_addr->lun = msg->rsp[9] & 3; 3378 lan_addr->channel = msg->rsp[3] & 0xf; 3379 lan_addr->privilege = msg->rsp[3] >> 4; 3380 3381 /* 3382 * Extract the rest of the message information 3383 * from the IPMB header. 3384 */ 3385 recv_msg->user = user; 3386 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3387 recv_msg->msgid = msg->rsp[9] >> 2; 3388 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3389 recv_msg->msg.cmd = msg->rsp[10]; 3390 recv_msg->msg.data = recv_msg->msg_data; 3391 3392 /* 3393 * We chop off 12, not 11 bytes because the checksum 3394 * at the end also needs to be removed. 3395 */ 3396 recv_msg->msg.data_len = msg->rsp_size - 12; 3397 memcpy(recv_msg->msg_data, 3398 &(msg->rsp[11]), 3399 msg->rsp_size - 12); 3400 deliver_response(recv_msg); 3401 } 3402 } 3403 3404 return rv; 3405 } 3406 3407 /* 3408 * This routine will handle "Get Message" command responses with 3409 * channels that use an OEM Medium. The message format belongs to 3410 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3411 * Chapter 22, sections 22.6 and 22.24 for more details. 3412 */ 3413 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3414 struct ipmi_smi_msg *msg) 3415 { 3416 struct cmd_rcvr *rcvr; 3417 int rv = 0; 3418 unsigned char netfn; 3419 unsigned char cmd; 3420 unsigned char chan; 3421 ipmi_user_t user = NULL; 3422 struct ipmi_system_interface_addr *smi_addr; 3423 struct ipmi_recv_msg *recv_msg; 3424 3425 /* 3426 * We expect the OEM SW to perform error checking 3427 * so we just do some basic sanity checks 3428 */ 3429 if (msg->rsp_size < 4) { 3430 /* Message not big enough, just ignore it. */ 3431 ipmi_inc_stat(intf, invalid_commands); 3432 return 0; 3433 } 3434 3435 if (msg->rsp[2] != 0) { 3436 /* An error getting the response, just ignore it. */ 3437 return 0; 3438 } 3439 3440 /* 3441 * This is an OEM Message so the OEM needs to know how 3442 * handle the message. We do no interpretation. 3443 */ 3444 netfn = msg->rsp[0] >> 2; 3445 cmd = msg->rsp[1]; 3446 chan = msg->rsp[3] & 0xf; 3447 3448 rcu_read_lock(); 3449 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3450 if (rcvr) { 3451 user = rcvr->user; 3452 kref_get(&user->refcount); 3453 } else 3454 user = NULL; 3455 rcu_read_unlock(); 3456 3457 if (user == NULL) { 3458 /* We didn't find a user, just give up. */ 3459 ipmi_inc_stat(intf, unhandled_commands); 3460 3461 /* 3462 * Don't do anything with these messages, just allow 3463 * them to be freed. 3464 */ 3465 3466 rv = 0; 3467 } else { 3468 /* Deliver the message to the user. */ 3469 ipmi_inc_stat(intf, handled_commands); 3470 3471 recv_msg = ipmi_alloc_recv_msg(); 3472 if (!recv_msg) { 3473 /* 3474 * We couldn't allocate memory for the 3475 * message, so requeue it for handling 3476 * later. 3477 */ 3478 rv = 1; 3479 kref_put(&user->refcount, free_user); 3480 } else { 3481 /* 3482 * OEM Messages are expected to be delivered via 3483 * the system interface to SMS software. We might 3484 * need to visit this again depending on OEM 3485 * requirements 3486 */ 3487 smi_addr = ((struct ipmi_system_interface_addr *) 3488 &(recv_msg->addr)); 3489 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3490 smi_addr->channel = IPMI_BMC_CHANNEL; 3491 smi_addr->lun = msg->rsp[0] & 3; 3492 3493 recv_msg->user = user; 3494 recv_msg->user_msg_data = NULL; 3495 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3496 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3497 recv_msg->msg.cmd = msg->rsp[1]; 3498 recv_msg->msg.data = recv_msg->msg_data; 3499 3500 /* 3501 * The message starts at byte 4 which follows the 3502 * the Channel Byte in the "GET MESSAGE" command 3503 */ 3504 recv_msg->msg.data_len = msg->rsp_size - 4; 3505 memcpy(recv_msg->msg_data, 3506 &(msg->rsp[4]), 3507 msg->rsp_size - 4); 3508 deliver_response(recv_msg); 3509 } 3510 } 3511 3512 return rv; 3513 } 3514 3515 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3516 struct ipmi_smi_msg *msg) 3517 { 3518 struct ipmi_system_interface_addr *smi_addr; 3519 3520 recv_msg->msgid = 0; 3521 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3522 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3523 smi_addr->channel = IPMI_BMC_CHANNEL; 3524 smi_addr->lun = msg->rsp[0] & 3; 3525 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3526 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3527 recv_msg->msg.cmd = msg->rsp[1]; 3528 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3529 recv_msg->msg.data = recv_msg->msg_data; 3530 recv_msg->msg.data_len = msg->rsp_size - 3; 3531 } 3532 3533 static int handle_read_event_rsp(ipmi_smi_t intf, 3534 struct ipmi_smi_msg *msg) 3535 { 3536 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3537 struct list_head msgs; 3538 ipmi_user_t user; 3539 int rv = 0; 3540 int deliver_count = 0; 3541 unsigned long flags; 3542 3543 if (msg->rsp_size < 19) { 3544 /* Message is too small to be an IPMB event. */ 3545 ipmi_inc_stat(intf, invalid_events); 3546 return 0; 3547 } 3548 3549 if (msg->rsp[2] != 0) { 3550 /* An error getting the event, just ignore it. */ 3551 return 0; 3552 } 3553 3554 INIT_LIST_HEAD(&msgs); 3555 3556 spin_lock_irqsave(&intf->events_lock, flags); 3557 3558 ipmi_inc_stat(intf, events); 3559 3560 /* 3561 * Allocate and fill in one message for every user that is 3562 * getting events. 3563 */ 3564 rcu_read_lock(); 3565 list_for_each_entry_rcu(user, &intf->users, link) { 3566 if (!user->gets_events) 3567 continue; 3568 3569 recv_msg = ipmi_alloc_recv_msg(); 3570 if (!recv_msg) { 3571 rcu_read_unlock(); 3572 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3573 link) { 3574 list_del(&recv_msg->link); 3575 ipmi_free_recv_msg(recv_msg); 3576 } 3577 /* 3578 * We couldn't allocate memory for the 3579 * message, so requeue it for handling 3580 * later. 3581 */ 3582 rv = 1; 3583 goto out; 3584 } 3585 3586 deliver_count++; 3587 3588 copy_event_into_recv_msg(recv_msg, msg); 3589 recv_msg->user = user; 3590 kref_get(&user->refcount); 3591 list_add_tail(&(recv_msg->link), &msgs); 3592 } 3593 rcu_read_unlock(); 3594 3595 if (deliver_count) { 3596 /* Now deliver all the messages. */ 3597 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3598 list_del(&recv_msg->link); 3599 deliver_response(recv_msg); 3600 } 3601 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3602 /* 3603 * No one to receive the message, put it in queue if there's 3604 * not already too many things in the queue. 3605 */ 3606 recv_msg = ipmi_alloc_recv_msg(); 3607 if (!recv_msg) { 3608 /* 3609 * We couldn't allocate memory for the 3610 * message, so requeue it for handling 3611 * later. 3612 */ 3613 rv = 1; 3614 goto out; 3615 } 3616 3617 copy_event_into_recv_msg(recv_msg, msg); 3618 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3619 intf->waiting_events_count++; 3620 } else if (!intf->event_msg_printed) { 3621 /* 3622 * There's too many things in the queue, discard this 3623 * message. 3624 */ 3625 printk(KERN_WARNING PFX "Event queue full, discarding" 3626 " incoming events\n"); 3627 intf->event_msg_printed = 1; 3628 } 3629 3630 out: 3631 spin_unlock_irqrestore(&(intf->events_lock), flags); 3632 3633 return rv; 3634 } 3635 3636 static int handle_bmc_rsp(ipmi_smi_t intf, 3637 struct ipmi_smi_msg *msg) 3638 { 3639 struct ipmi_recv_msg *recv_msg; 3640 struct ipmi_user *user; 3641 3642 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3643 if (recv_msg == NULL) { 3644 printk(KERN_WARNING 3645 "IPMI message received with no owner. This\n" 3646 "could be because of a malformed message, or\n" 3647 "because of a hardware error. Contact your\n" 3648 "hardware vender for assistance\n"); 3649 return 0; 3650 } 3651 3652 user = recv_msg->user; 3653 /* Make sure the user still exists. */ 3654 if (user && !user->valid) { 3655 /* The user for the message went away, so give up. */ 3656 ipmi_inc_stat(intf, unhandled_local_responses); 3657 ipmi_free_recv_msg(recv_msg); 3658 } else { 3659 struct ipmi_system_interface_addr *smi_addr; 3660 3661 ipmi_inc_stat(intf, handled_local_responses); 3662 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3663 recv_msg->msgid = msg->msgid; 3664 smi_addr = ((struct ipmi_system_interface_addr *) 3665 &(recv_msg->addr)); 3666 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3667 smi_addr->channel = IPMI_BMC_CHANNEL; 3668 smi_addr->lun = msg->rsp[0] & 3; 3669 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3670 recv_msg->msg.cmd = msg->rsp[1]; 3671 memcpy(recv_msg->msg_data, 3672 &(msg->rsp[2]), 3673 msg->rsp_size - 2); 3674 recv_msg->msg.data = recv_msg->msg_data; 3675 recv_msg->msg.data_len = msg->rsp_size - 2; 3676 deliver_response(recv_msg); 3677 } 3678 3679 return 0; 3680 } 3681 3682 /* 3683 * Handle a received message. Return 1 if the message should be requeued, 3684 * 0 if the message should be freed, or -1 if the message should not 3685 * be freed or requeued. 3686 */ 3687 static int handle_one_recv_msg(ipmi_smi_t intf, 3688 struct ipmi_smi_msg *msg) 3689 { 3690 int requeue; 3691 int chan; 3692 3693 #ifdef DEBUG_MSGING 3694 int m; 3695 printk("Recv:"); 3696 for (m = 0; m < msg->rsp_size; m++) 3697 printk(" %2.2x", msg->rsp[m]); 3698 printk("\n"); 3699 #endif 3700 if (msg->rsp_size < 2) { 3701 /* Message is too small to be correct. */ 3702 printk(KERN_WARNING PFX "BMC returned to small a message" 3703 " for netfn %x cmd %x, got %d bytes\n", 3704 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3705 3706 /* Generate an error response for the message. */ 3707 msg->rsp[0] = msg->data[0] | (1 << 2); 3708 msg->rsp[1] = msg->data[1]; 3709 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3710 msg->rsp_size = 3; 3711 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3712 || (msg->rsp[1] != msg->data[1])) { 3713 /* 3714 * The NetFN and Command in the response is not even 3715 * marginally correct. 3716 */ 3717 printk(KERN_WARNING PFX "BMC returned incorrect response," 3718 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3719 (msg->data[0] >> 2) | 1, msg->data[1], 3720 msg->rsp[0] >> 2, msg->rsp[1]); 3721 3722 /* Generate an error response for the message. */ 3723 msg->rsp[0] = msg->data[0] | (1 << 2); 3724 msg->rsp[1] = msg->data[1]; 3725 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3726 msg->rsp_size = 3; 3727 } 3728 3729 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3730 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3731 && (msg->user_data != NULL)) { 3732 /* 3733 * It's a response to a response we sent. For this we 3734 * deliver a send message response to the user. 3735 */ 3736 struct ipmi_recv_msg *recv_msg = msg->user_data; 3737 3738 requeue = 0; 3739 if (msg->rsp_size < 2) 3740 /* Message is too small to be correct. */ 3741 goto out; 3742 3743 chan = msg->data[2] & 0x0f; 3744 if (chan >= IPMI_MAX_CHANNELS) 3745 /* Invalid channel number */ 3746 goto out; 3747 3748 if (!recv_msg) 3749 goto out; 3750 3751 /* Make sure the user still exists. */ 3752 if (!recv_msg->user || !recv_msg->user->valid) 3753 goto out; 3754 3755 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3756 recv_msg->msg.data = recv_msg->msg_data; 3757 recv_msg->msg.data_len = 1; 3758 recv_msg->msg_data[0] = msg->rsp[2]; 3759 deliver_response(recv_msg); 3760 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3761 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3762 /* It's from the receive queue. */ 3763 chan = msg->rsp[3] & 0xf; 3764 if (chan >= IPMI_MAX_CHANNELS) { 3765 /* Invalid channel number */ 3766 requeue = 0; 3767 goto out; 3768 } 3769 3770 /* 3771 * We need to make sure the channels have been initialized. 3772 * The channel_handler routine will set the "curr_channel" 3773 * equal to or greater than IPMI_MAX_CHANNELS when all the 3774 * channels for this interface have been initialized. 3775 */ 3776 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3777 requeue = 0; /* Throw the message away */ 3778 goto out; 3779 } 3780 3781 switch (intf->channels[chan].medium) { 3782 case IPMI_CHANNEL_MEDIUM_IPMB: 3783 if (msg->rsp[4] & 0x04) { 3784 /* 3785 * It's a response, so find the 3786 * requesting message and send it up. 3787 */ 3788 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3789 } else { 3790 /* 3791 * It's a command to the SMS from some other 3792 * entity. Handle that. 3793 */ 3794 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3795 } 3796 break; 3797 3798 case IPMI_CHANNEL_MEDIUM_8023LAN: 3799 case IPMI_CHANNEL_MEDIUM_ASYNC: 3800 if (msg->rsp[6] & 0x04) { 3801 /* 3802 * It's a response, so find the 3803 * requesting message and send it up. 3804 */ 3805 requeue = handle_lan_get_msg_rsp(intf, msg); 3806 } else { 3807 /* 3808 * It's a command to the SMS from some other 3809 * entity. Handle that. 3810 */ 3811 requeue = handle_lan_get_msg_cmd(intf, msg); 3812 } 3813 break; 3814 3815 default: 3816 /* Check for OEM Channels. Clients had better 3817 register for these commands. */ 3818 if ((intf->channels[chan].medium 3819 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3820 && (intf->channels[chan].medium 3821 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3822 requeue = handle_oem_get_msg_cmd(intf, msg); 3823 } else { 3824 /* 3825 * We don't handle the channel type, so just 3826 * free the message. 3827 */ 3828 requeue = 0; 3829 } 3830 } 3831 3832 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3833 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3834 /* It's an asynchronous event. */ 3835 requeue = handle_read_event_rsp(intf, msg); 3836 } else { 3837 /* It's a response from the local BMC. */ 3838 requeue = handle_bmc_rsp(intf, msg); 3839 } 3840 3841 out: 3842 return requeue; 3843 } 3844 3845 /* 3846 * If there are messages in the queue or pretimeouts, handle them. 3847 */ 3848 static void handle_new_recv_msgs(ipmi_smi_t intf) 3849 { 3850 struct ipmi_smi_msg *smi_msg; 3851 unsigned long flags = 0; 3852 int rv; 3853 int run_to_completion = intf->run_to_completion; 3854 3855 /* See if any waiting messages need to be processed. */ 3856 if (!run_to_completion) 3857 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3858 while (!list_empty(&intf->waiting_msgs)) { 3859 smi_msg = list_entry(intf->waiting_msgs.next, 3860 struct ipmi_smi_msg, link); 3861 list_del(&smi_msg->link); 3862 if (!run_to_completion) 3863 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3864 rv = handle_one_recv_msg(intf, smi_msg); 3865 if (!run_to_completion) 3866 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3867 if (rv == 0) { 3868 /* Message handled */ 3869 ipmi_free_smi_msg(smi_msg); 3870 } else if (rv < 0) { 3871 /* Fatal error on the message, del but don't free. */ 3872 } else { 3873 /* 3874 * To preserve message order, quit if we 3875 * can't handle a message. 3876 */ 3877 list_add(&smi_msg->link, &intf->waiting_msgs); 3878 break; 3879 } 3880 } 3881 if (!run_to_completion) 3882 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3883 3884 /* 3885 * If the pretimout count is non-zero, decrement one from it and 3886 * deliver pretimeouts to all the users. 3887 */ 3888 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 3889 ipmi_user_t user; 3890 3891 rcu_read_lock(); 3892 list_for_each_entry_rcu(user, &intf->users, link) { 3893 if (user->handler->ipmi_watchdog_pretimeout) 3894 user->handler->ipmi_watchdog_pretimeout( 3895 user->handler_data); 3896 } 3897 rcu_read_unlock(); 3898 } 3899 } 3900 3901 static void smi_recv_tasklet(unsigned long val) 3902 { 3903 handle_new_recv_msgs((ipmi_smi_t) val); 3904 } 3905 3906 /* Handle a new message from the lower layer. */ 3907 void ipmi_smi_msg_received(ipmi_smi_t intf, 3908 struct ipmi_smi_msg *msg) 3909 { 3910 unsigned long flags = 0; /* keep us warning-free. */ 3911 int run_to_completion; 3912 3913 3914 if ((msg->data_size >= 2) 3915 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3916 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3917 && (msg->user_data == NULL)) { 3918 /* 3919 * This is the local response to a command send, start 3920 * the timer for these. The user_data will not be 3921 * NULL if this is a response send, and we will let 3922 * response sends just go through. 3923 */ 3924 3925 /* 3926 * Check for errors, if we get certain errors (ones 3927 * that mean basically we can try again later), we 3928 * ignore them and start the timer. Otherwise we 3929 * report the error immediately. 3930 */ 3931 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3932 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3933 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3934 && (msg->rsp[2] != IPMI_BUS_ERR) 3935 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3936 int chan = msg->rsp[3] & 0xf; 3937 3938 /* Got an error sending the message, handle it. */ 3939 if (chan >= IPMI_MAX_CHANNELS) 3940 ; /* This shouldn't happen */ 3941 else if ((intf->channels[chan].medium 3942 == IPMI_CHANNEL_MEDIUM_8023LAN) 3943 || (intf->channels[chan].medium 3944 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3945 ipmi_inc_stat(intf, sent_lan_command_errs); 3946 else 3947 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3948 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3949 } else 3950 /* The message was sent, start the timer. */ 3951 intf_start_seq_timer(intf, msg->msgid); 3952 3953 ipmi_free_smi_msg(msg); 3954 goto out; 3955 } 3956 3957 /* 3958 * To preserve message order, if the list is not empty, we 3959 * tack this message onto the end of the list. 3960 */ 3961 run_to_completion = intf->run_to_completion; 3962 if (!run_to_completion) 3963 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3964 list_add_tail(&msg->link, &intf->waiting_msgs); 3965 if (!run_to_completion) 3966 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3967 3968 tasklet_schedule(&intf->recv_tasklet); 3969 out: 3970 return; 3971 } 3972 EXPORT_SYMBOL(ipmi_smi_msg_received); 3973 3974 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3975 { 3976 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 3977 tasklet_schedule(&intf->recv_tasklet); 3978 } 3979 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3980 3981 static struct ipmi_smi_msg * 3982 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 3983 unsigned char seq, long seqid) 3984 { 3985 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 3986 if (!smi_msg) 3987 /* 3988 * If we can't allocate the message, then just return, we 3989 * get 4 retries, so this should be ok. 3990 */ 3991 return NULL; 3992 3993 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 3994 smi_msg->data_size = recv_msg->msg.data_len; 3995 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 3996 3997 #ifdef DEBUG_MSGING 3998 { 3999 int m; 4000 printk("Resend: "); 4001 for (m = 0; m < smi_msg->data_size; m++) 4002 printk(" %2.2x", smi_msg->data[m]); 4003 printk("\n"); 4004 } 4005 #endif 4006 return smi_msg; 4007 } 4008 4009 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 4010 struct list_head *timeouts, long timeout_period, 4011 int slot, unsigned long *flags, 4012 unsigned int *waiting_msgs) 4013 { 4014 struct ipmi_recv_msg *msg; 4015 struct ipmi_smi_handlers *handlers; 4016 4017 if (intf->intf_num == -1) 4018 return; 4019 4020 if (!ent->inuse) 4021 return; 4022 4023 ent->timeout -= timeout_period; 4024 if (ent->timeout > 0) { 4025 (*waiting_msgs)++; 4026 return; 4027 } 4028 4029 if (ent->retries_left == 0) { 4030 /* The message has used all its retries. */ 4031 ent->inuse = 0; 4032 msg = ent->recv_msg; 4033 list_add_tail(&msg->link, timeouts); 4034 if (ent->broadcast) 4035 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4036 else if (is_lan_addr(&ent->recv_msg->addr)) 4037 ipmi_inc_stat(intf, timed_out_lan_commands); 4038 else 4039 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4040 } else { 4041 struct ipmi_smi_msg *smi_msg; 4042 /* More retries, send again. */ 4043 4044 (*waiting_msgs)++; 4045 4046 /* 4047 * Start with the max timer, set to normal timer after 4048 * the message is sent. 4049 */ 4050 ent->timeout = MAX_MSG_TIMEOUT; 4051 ent->retries_left--; 4052 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4053 ent->seqid); 4054 if (!smi_msg) { 4055 if (is_lan_addr(&ent->recv_msg->addr)) 4056 ipmi_inc_stat(intf, 4057 dropped_rexmit_lan_commands); 4058 else 4059 ipmi_inc_stat(intf, 4060 dropped_rexmit_ipmb_commands); 4061 return; 4062 } 4063 4064 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4065 4066 /* 4067 * Send the new message. We send with a zero 4068 * priority. It timed out, I doubt time is that 4069 * critical now, and high priority messages are really 4070 * only for messages to the local MC, which don't get 4071 * resent. 4072 */ 4073 handlers = intf->handlers; 4074 if (handlers) { 4075 if (is_lan_addr(&ent->recv_msg->addr)) 4076 ipmi_inc_stat(intf, 4077 retransmitted_lan_commands); 4078 else 4079 ipmi_inc_stat(intf, 4080 retransmitted_ipmb_commands); 4081 4082 intf->handlers->sender(intf->send_info, 4083 smi_msg, 0); 4084 } else 4085 ipmi_free_smi_msg(smi_msg); 4086 4087 spin_lock_irqsave(&intf->seq_lock, *flags); 4088 } 4089 } 4090 4091 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period) 4092 { 4093 struct list_head timeouts; 4094 struct ipmi_recv_msg *msg, *msg2; 4095 unsigned long flags; 4096 int i; 4097 unsigned int waiting_msgs = 0; 4098 4099 /* 4100 * Go through the seq table and find any messages that 4101 * have timed out, putting them in the timeouts 4102 * list. 4103 */ 4104 INIT_LIST_HEAD(&timeouts); 4105 spin_lock_irqsave(&intf->seq_lock, flags); 4106 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4107 check_msg_timeout(intf, &(intf->seq_table[i]), 4108 &timeouts, timeout_period, i, 4109 &flags, &waiting_msgs); 4110 spin_unlock_irqrestore(&intf->seq_lock, flags); 4111 4112 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4113 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 4114 4115 /* 4116 * Maintenance mode handling. Check the timeout 4117 * optimistically before we claim the lock. It may 4118 * mean a timeout gets missed occasionally, but that 4119 * only means the timeout gets extended by one period 4120 * in that case. No big deal, and it avoids the lock 4121 * most of the time. 4122 */ 4123 if (intf->auto_maintenance_timeout > 0) { 4124 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4125 if (intf->auto_maintenance_timeout > 0) { 4126 intf->auto_maintenance_timeout 4127 -= timeout_period; 4128 if (!intf->maintenance_mode 4129 && (intf->auto_maintenance_timeout <= 0)) { 4130 intf->maintenance_mode_enable = false; 4131 maintenance_mode_update(intf); 4132 } 4133 } 4134 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4135 flags); 4136 } 4137 4138 tasklet_schedule(&intf->recv_tasklet); 4139 4140 return waiting_msgs; 4141 } 4142 4143 static void ipmi_request_event(ipmi_smi_t intf) 4144 { 4145 struct ipmi_smi_handlers *handlers; 4146 4147 /* No event requests when in maintenance mode. */ 4148 if (intf->maintenance_mode_enable) 4149 return; 4150 4151 handlers = intf->handlers; 4152 if (handlers) 4153 handlers->request_events(intf->send_info); 4154 } 4155 4156 static struct timer_list ipmi_timer; 4157 4158 static atomic_t stop_operation; 4159 4160 static void ipmi_timeout(unsigned long data) 4161 { 4162 ipmi_smi_t intf; 4163 int nt = 0; 4164 4165 if (atomic_read(&stop_operation)) 4166 return; 4167 4168 rcu_read_lock(); 4169 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4170 int lnt = 0; 4171 4172 if (atomic_read(&intf->event_waiters)) { 4173 intf->ticks_to_req_ev--; 4174 if (intf->ticks_to_req_ev == 0) { 4175 ipmi_request_event(intf); 4176 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4177 } 4178 lnt++; 4179 } 4180 4181 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 4182 4183 lnt = !!lnt; 4184 if (lnt != intf->last_needs_timer && 4185 intf->handlers->set_need_watch) 4186 intf->handlers->set_need_watch(intf->send_info, lnt); 4187 intf->last_needs_timer = lnt; 4188 4189 nt += lnt; 4190 } 4191 rcu_read_unlock(); 4192 4193 if (nt) 4194 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4195 } 4196 4197 static void need_waiter(ipmi_smi_t intf) 4198 { 4199 /* Racy, but worst case we start the timer twice. */ 4200 if (!timer_pending(&ipmi_timer)) 4201 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4202 } 4203 4204 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4205 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4206 4207 /* FIXME - convert these to slabs. */ 4208 static void free_smi_msg(struct ipmi_smi_msg *msg) 4209 { 4210 atomic_dec(&smi_msg_inuse_count); 4211 kfree(msg); 4212 } 4213 4214 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4215 { 4216 struct ipmi_smi_msg *rv; 4217 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4218 if (rv) { 4219 rv->done = free_smi_msg; 4220 rv->user_data = NULL; 4221 atomic_inc(&smi_msg_inuse_count); 4222 } 4223 return rv; 4224 } 4225 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4226 4227 static void free_recv_msg(struct ipmi_recv_msg *msg) 4228 { 4229 atomic_dec(&recv_msg_inuse_count); 4230 kfree(msg); 4231 } 4232 4233 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4234 { 4235 struct ipmi_recv_msg *rv; 4236 4237 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4238 if (rv) { 4239 rv->user = NULL; 4240 rv->done = free_recv_msg; 4241 atomic_inc(&recv_msg_inuse_count); 4242 } 4243 return rv; 4244 } 4245 4246 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4247 { 4248 if (msg->user) 4249 kref_put(&msg->user->refcount, free_user); 4250 msg->done(msg); 4251 } 4252 EXPORT_SYMBOL(ipmi_free_recv_msg); 4253 4254 #ifdef CONFIG_IPMI_PANIC_EVENT 4255 4256 static atomic_t panic_done_count = ATOMIC_INIT(0); 4257 4258 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4259 { 4260 atomic_dec(&panic_done_count); 4261 } 4262 4263 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4264 { 4265 atomic_dec(&panic_done_count); 4266 } 4267 4268 /* 4269 * Inside a panic, send a message and wait for a response. 4270 */ 4271 static void ipmi_panic_request_and_wait(ipmi_smi_t intf, 4272 struct ipmi_addr *addr, 4273 struct kernel_ipmi_msg *msg) 4274 { 4275 struct ipmi_smi_msg smi_msg; 4276 struct ipmi_recv_msg recv_msg; 4277 int rv; 4278 4279 smi_msg.done = dummy_smi_done_handler; 4280 recv_msg.done = dummy_recv_done_handler; 4281 atomic_add(2, &panic_done_count); 4282 rv = i_ipmi_request(NULL, 4283 intf, 4284 addr, 4285 0, 4286 msg, 4287 intf, 4288 &smi_msg, 4289 &recv_msg, 4290 0, 4291 intf->channels[0].address, 4292 intf->channels[0].lun, 4293 0, 1); /* Don't retry, and don't wait. */ 4294 if (rv) 4295 atomic_sub(2, &panic_done_count); 4296 while (atomic_read(&panic_done_count) != 0) 4297 ipmi_poll(intf); 4298 } 4299 4300 #ifdef CONFIG_IPMI_PANIC_STRING 4301 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4302 { 4303 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4304 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4305 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4306 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4307 /* A get event receiver command, save it. */ 4308 intf->event_receiver = msg->msg.data[1]; 4309 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4310 } 4311 } 4312 4313 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4314 { 4315 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4316 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4317 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4318 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4319 /* 4320 * A get device id command, save if we are an event 4321 * receiver or generator. 4322 */ 4323 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4324 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4325 } 4326 } 4327 #endif 4328 4329 static void send_panic_events(char *str) 4330 { 4331 struct kernel_ipmi_msg msg; 4332 ipmi_smi_t intf; 4333 unsigned char data[16]; 4334 struct ipmi_system_interface_addr *si; 4335 struct ipmi_addr addr; 4336 4337 si = (struct ipmi_system_interface_addr *) &addr; 4338 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4339 si->channel = IPMI_BMC_CHANNEL; 4340 si->lun = 0; 4341 4342 /* Fill in an event telling that we have failed. */ 4343 msg.netfn = 0x04; /* Sensor or Event. */ 4344 msg.cmd = 2; /* Platform event command. */ 4345 msg.data = data; 4346 msg.data_len = 8; 4347 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4348 data[1] = 0x03; /* This is for IPMI 1.0. */ 4349 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4350 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4351 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4352 4353 /* 4354 * Put a few breadcrumbs in. Hopefully later we can add more things 4355 * to make the panic events more useful. 4356 */ 4357 if (str) { 4358 data[3] = str[0]; 4359 data[6] = str[1]; 4360 data[7] = str[2]; 4361 } 4362 4363 /* For every registered interface, send the event. */ 4364 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4365 if (!intf->handlers) 4366 /* Interface is not ready. */ 4367 continue; 4368 4369 intf->run_to_completion = 1; 4370 /* Send the event announcing the panic. */ 4371 intf->handlers->set_run_to_completion(intf->send_info, 1); 4372 ipmi_panic_request_and_wait(intf, &addr, &msg); 4373 } 4374 4375 #ifdef CONFIG_IPMI_PANIC_STRING 4376 /* 4377 * On every interface, dump a bunch of OEM event holding the 4378 * string. 4379 */ 4380 if (!str) 4381 return; 4382 4383 /* For every registered interface, send the event. */ 4384 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4385 char *p = str; 4386 struct ipmi_ipmb_addr *ipmb; 4387 int j; 4388 4389 if (intf->intf_num == -1) 4390 /* Interface was not ready yet. */ 4391 continue; 4392 4393 /* 4394 * intf_num is used as an marker to tell if the 4395 * interface is valid. Thus we need a read barrier to 4396 * make sure data fetched before checking intf_num 4397 * won't be used. 4398 */ 4399 smp_rmb(); 4400 4401 /* 4402 * First job here is to figure out where to send the 4403 * OEM events. There's no way in IPMI to send OEM 4404 * events using an event send command, so we have to 4405 * find the SEL to put them in and stick them in 4406 * there. 4407 */ 4408 4409 /* Get capabilities from the get device id. */ 4410 intf->local_sel_device = 0; 4411 intf->local_event_generator = 0; 4412 intf->event_receiver = 0; 4413 4414 /* Request the device info from the local MC. */ 4415 msg.netfn = IPMI_NETFN_APP_REQUEST; 4416 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4417 msg.data = NULL; 4418 msg.data_len = 0; 4419 intf->null_user_handler = device_id_fetcher; 4420 ipmi_panic_request_and_wait(intf, &addr, &msg); 4421 4422 if (intf->local_event_generator) { 4423 /* Request the event receiver from the local MC. */ 4424 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4425 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4426 msg.data = NULL; 4427 msg.data_len = 0; 4428 intf->null_user_handler = event_receiver_fetcher; 4429 ipmi_panic_request_and_wait(intf, &addr, &msg); 4430 } 4431 intf->null_user_handler = NULL; 4432 4433 /* 4434 * Validate the event receiver. The low bit must not 4435 * be 1 (it must be a valid IPMB address), it cannot 4436 * be zero, and it must not be my address. 4437 */ 4438 if (((intf->event_receiver & 1) == 0) 4439 && (intf->event_receiver != 0) 4440 && (intf->event_receiver != intf->channels[0].address)) { 4441 /* 4442 * The event receiver is valid, send an IPMB 4443 * message. 4444 */ 4445 ipmb = (struct ipmi_ipmb_addr *) &addr; 4446 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4447 ipmb->channel = 0; /* FIXME - is this right? */ 4448 ipmb->lun = intf->event_receiver_lun; 4449 ipmb->slave_addr = intf->event_receiver; 4450 } else if (intf->local_sel_device) { 4451 /* 4452 * The event receiver was not valid (or was 4453 * me), but I am an SEL device, just dump it 4454 * in my SEL. 4455 */ 4456 si = (struct ipmi_system_interface_addr *) &addr; 4457 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4458 si->channel = IPMI_BMC_CHANNEL; 4459 si->lun = 0; 4460 } else 4461 continue; /* No where to send the event. */ 4462 4463 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4464 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4465 msg.data = data; 4466 msg.data_len = 16; 4467 4468 j = 0; 4469 while (*p) { 4470 int size = strlen(p); 4471 4472 if (size > 11) 4473 size = 11; 4474 data[0] = 0; 4475 data[1] = 0; 4476 data[2] = 0xf0; /* OEM event without timestamp. */ 4477 data[3] = intf->channels[0].address; 4478 data[4] = j++; /* sequence # */ 4479 /* 4480 * Always give 11 bytes, so strncpy will fill 4481 * it with zeroes for me. 4482 */ 4483 strncpy(data+5, p, 11); 4484 p += size; 4485 4486 ipmi_panic_request_and_wait(intf, &addr, &msg); 4487 } 4488 } 4489 #endif /* CONFIG_IPMI_PANIC_STRING */ 4490 } 4491 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4492 4493 static int has_panicked; 4494 4495 static int panic_event(struct notifier_block *this, 4496 unsigned long event, 4497 void *ptr) 4498 { 4499 ipmi_smi_t intf; 4500 4501 if (has_panicked) 4502 return NOTIFY_DONE; 4503 has_panicked = 1; 4504 4505 /* For every registered interface, set it to run to completion. */ 4506 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4507 if (!intf->handlers) 4508 /* Interface is not ready. */ 4509 continue; 4510 4511 intf->run_to_completion = 1; 4512 intf->handlers->set_run_to_completion(intf->send_info, 1); 4513 } 4514 4515 #ifdef CONFIG_IPMI_PANIC_EVENT 4516 send_panic_events(ptr); 4517 #endif 4518 4519 return NOTIFY_DONE; 4520 } 4521 4522 static struct notifier_block panic_block = { 4523 .notifier_call = panic_event, 4524 .next = NULL, 4525 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4526 }; 4527 4528 static int ipmi_init_msghandler(void) 4529 { 4530 int rv; 4531 4532 if (initialized) 4533 return 0; 4534 4535 rv = driver_register(&ipmidriver.driver); 4536 if (rv) { 4537 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4538 return rv; 4539 } 4540 4541 printk(KERN_INFO "ipmi message handler version " 4542 IPMI_DRIVER_VERSION "\n"); 4543 4544 #ifdef CONFIG_PROC_FS 4545 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4546 if (!proc_ipmi_root) { 4547 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4548 return -ENOMEM; 4549 } 4550 4551 #endif /* CONFIG_PROC_FS */ 4552 4553 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4554 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4555 4556 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4557 4558 initialized = 1; 4559 4560 return 0; 4561 } 4562 4563 static int __init ipmi_init_msghandler_mod(void) 4564 { 4565 ipmi_init_msghandler(); 4566 return 0; 4567 } 4568 4569 static void __exit cleanup_ipmi(void) 4570 { 4571 int count; 4572 4573 if (!initialized) 4574 return; 4575 4576 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4577 4578 /* 4579 * This can't be called if any interfaces exist, so no worry 4580 * about shutting down the interfaces. 4581 */ 4582 4583 /* 4584 * Tell the timer to stop, then wait for it to stop. This 4585 * avoids problems with race conditions removing the timer 4586 * here. 4587 */ 4588 atomic_inc(&stop_operation); 4589 del_timer_sync(&ipmi_timer); 4590 4591 #ifdef CONFIG_PROC_FS 4592 proc_remove(proc_ipmi_root); 4593 #endif /* CONFIG_PROC_FS */ 4594 4595 driver_unregister(&ipmidriver.driver); 4596 4597 initialized = 0; 4598 4599 /* Check for buffer leaks. */ 4600 count = atomic_read(&smi_msg_inuse_count); 4601 if (count != 0) 4602 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4603 count); 4604 count = atomic_read(&recv_msg_inuse_count); 4605 if (count != 0) 4606 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4607 count); 4608 } 4609 module_exit(cleanup_ipmi); 4610 4611 module_init(ipmi_init_msghandler_mod); 4612 MODULE_LICENSE("GPL"); 4613 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4614 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4615 " interface."); 4616 MODULE_VERSION(IPMI_DRIVER_VERSION); 4617