xref: /openbmc/linux/drivers/char/ipmi/ipmi_msghandler.c (revision c0ecca6604b80e438b032578634c6e133c7028f6)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 
49 static bool initialized;
50 static bool drvregistered;
51 
52 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
53 enum ipmi_panic_event_op {
54 	IPMI_SEND_PANIC_EVENT_NONE,
55 	IPMI_SEND_PANIC_EVENT,
56 	IPMI_SEND_PANIC_EVENT_STRING,
57 	IPMI_SEND_PANIC_EVENT_MAX
58 };
59 
60 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
61 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
62 
63 #ifdef CONFIG_IPMI_PANIC_STRING
64 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
65 #elif defined(CONFIG_IPMI_PANIC_EVENT)
66 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
67 #else
68 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
69 #endif
70 
71 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
72 
73 static int panic_op_write_handler(const char *val,
74 				  const struct kernel_param *kp)
75 {
76 	char valcp[16];
77 	int e;
78 
79 	strscpy(valcp, val, sizeof(valcp));
80 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
81 	if (e < 0)
82 		return e;
83 
84 	ipmi_send_panic_event = e;
85 	return 0;
86 }
87 
88 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
89 {
90 	const char *event_str;
91 
92 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
93 		event_str = "???";
94 	else
95 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
96 
97 	return sprintf(buffer, "%s\n", event_str);
98 }
99 
100 static const struct kernel_param_ops panic_op_ops = {
101 	.set = panic_op_write_handler,
102 	.get = panic_op_read_handler
103 };
104 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
105 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
106 
107 
108 #define MAX_EVENTS_IN_QUEUE	25
109 
110 /* Remain in auto-maintenance mode for this amount of time (in ms). */
111 static unsigned long maintenance_mode_timeout_ms = 30000;
112 module_param(maintenance_mode_timeout_ms, ulong, 0644);
113 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
114 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
115 
116 /*
117  * Don't let a message sit in a queue forever, always time it with at lest
118  * the max message timer.  This is in milliseconds.
119  */
120 #define MAX_MSG_TIMEOUT		60000
121 
122 /*
123  * Timeout times below are in milliseconds, and are done off a 1
124  * second timer.  So setting the value to 1000 would mean anything
125  * between 0 and 1000ms.  So really the only reasonable minimum
126  * setting it 2000ms, which is between 1 and 2 seconds.
127  */
128 
129 /* The default timeout for message retries. */
130 static unsigned long default_retry_ms = 2000;
131 module_param(default_retry_ms, ulong, 0644);
132 MODULE_PARM_DESC(default_retry_ms,
133 		 "The time (milliseconds) between retry sends");
134 
135 /* The default timeout for maintenance mode message retries. */
136 static unsigned long default_maintenance_retry_ms = 3000;
137 module_param(default_maintenance_retry_ms, ulong, 0644);
138 MODULE_PARM_DESC(default_maintenance_retry_ms,
139 		 "The time (milliseconds) between retry sends in maintenance mode");
140 
141 /* The default maximum number of retries */
142 static unsigned int default_max_retries = 4;
143 module_param(default_max_retries, uint, 0644);
144 MODULE_PARM_DESC(default_max_retries,
145 		 "The time (milliseconds) between retry sends in maintenance mode");
146 
147 /* Call every ~1000 ms. */
148 #define IPMI_TIMEOUT_TIME	1000
149 
150 /* How many jiffies does it take to get to the timeout time. */
151 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
152 
153 /*
154  * Request events from the queue every second (this is the number of
155  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
156  * future, IPMI will add a way to know immediately if an event is in
157  * the queue and this silliness can go away.
158  */
159 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
160 
161 /* How long should we cache dynamic device IDs? */
162 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
163 
164 /*
165  * The main "user" data structure.
166  */
167 struct ipmi_user {
168 	struct list_head link;
169 
170 	/*
171 	 * Set to NULL when the user is destroyed, a pointer to myself
172 	 * so srcu_dereference can be used on it.
173 	 */
174 	struct ipmi_user *self;
175 	struct srcu_struct release_barrier;
176 
177 	struct kref refcount;
178 
179 	/* The upper layer that handles receive messages. */
180 	const struct ipmi_user_hndl *handler;
181 	void             *handler_data;
182 
183 	/* The interface this user is bound to. */
184 	struct ipmi_smi *intf;
185 
186 	/* Does this interface receive IPMI events? */
187 	bool gets_events;
188 
189 	/* Free must run in process context for RCU cleanup. */
190 	struct work_struct remove_work;
191 };
192 
193 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
194 	__acquires(user->release_barrier)
195 {
196 	struct ipmi_user *ruser;
197 
198 	*index = srcu_read_lock(&user->release_barrier);
199 	ruser = srcu_dereference(user->self, &user->release_barrier);
200 	if (!ruser)
201 		srcu_read_unlock(&user->release_barrier, *index);
202 	return ruser;
203 }
204 
205 static void release_ipmi_user(struct ipmi_user *user, int index)
206 {
207 	srcu_read_unlock(&user->release_barrier, index);
208 }
209 
210 struct cmd_rcvr {
211 	struct list_head link;
212 
213 	struct ipmi_user *user;
214 	unsigned char netfn;
215 	unsigned char cmd;
216 	unsigned int  chans;
217 
218 	/*
219 	 * This is used to form a linked lised during mass deletion.
220 	 * Since this is in an RCU list, we cannot use the link above
221 	 * or change any data until the RCU period completes.  So we
222 	 * use this next variable during mass deletion so we can have
223 	 * a list and don't have to wait and restart the search on
224 	 * every individual deletion of a command.
225 	 */
226 	struct cmd_rcvr *next;
227 };
228 
229 struct seq_table {
230 	unsigned int         inuse : 1;
231 	unsigned int         broadcast : 1;
232 
233 	unsigned long        timeout;
234 	unsigned long        orig_timeout;
235 	unsigned int         retries_left;
236 
237 	/*
238 	 * To verify on an incoming send message response that this is
239 	 * the message that the response is for, we keep a sequence id
240 	 * and increment it every time we send a message.
241 	 */
242 	long                 seqid;
243 
244 	/*
245 	 * This is held so we can properly respond to the message on a
246 	 * timeout, and it is used to hold the temporary data for
247 	 * retransmission, too.
248 	 */
249 	struct ipmi_recv_msg *recv_msg;
250 };
251 
252 /*
253  * Store the information in a msgid (long) to allow us to find a
254  * sequence table entry from the msgid.
255  */
256 #define STORE_SEQ_IN_MSGID(seq, seqid) \
257 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
258 
259 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
260 	do {								\
261 		seq = (((msgid) >> 26) & 0x3f);				\
262 		seqid = ((msgid) & 0x3ffffff);				\
263 	} while (0)
264 
265 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
266 
267 #define IPMI_MAX_CHANNELS       16
268 struct ipmi_channel {
269 	unsigned char medium;
270 	unsigned char protocol;
271 };
272 
273 struct ipmi_channel_set {
274 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
275 };
276 
277 struct ipmi_my_addrinfo {
278 	/*
279 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
280 	 * but may be changed by the user.
281 	 */
282 	unsigned char address;
283 
284 	/*
285 	 * My LUN.  This should generally stay the SMS LUN, but just in
286 	 * case...
287 	 */
288 	unsigned char lun;
289 };
290 
291 /*
292  * Note that the product id, manufacturer id, guid, and device id are
293  * immutable in this structure, so dyn_mutex is not required for
294  * accessing those.  If those change on a BMC, a new BMC is allocated.
295  */
296 struct bmc_device {
297 	struct platform_device pdev;
298 	struct list_head       intfs; /* Interfaces on this BMC. */
299 	struct ipmi_device_id  id;
300 	struct ipmi_device_id  fetch_id;
301 	int                    dyn_id_set;
302 	unsigned long          dyn_id_expiry;
303 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
304 	guid_t                 guid;
305 	guid_t                 fetch_guid;
306 	int                    dyn_guid_set;
307 	struct kref	       usecount;
308 	struct work_struct     remove_work;
309 	unsigned char	       cc; /* completion code */
310 };
311 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
312 
313 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
314 			     struct ipmi_device_id *id,
315 			     bool *guid_set, guid_t *guid);
316 
317 /*
318  * Various statistics for IPMI, these index stats[] in the ipmi_smi
319  * structure.
320  */
321 enum ipmi_stat_indexes {
322 	/* Commands we got from the user that were invalid. */
323 	IPMI_STAT_sent_invalid_commands = 0,
324 
325 	/* Commands we sent to the MC. */
326 	IPMI_STAT_sent_local_commands,
327 
328 	/* Responses from the MC that were delivered to a user. */
329 	IPMI_STAT_handled_local_responses,
330 
331 	/* Responses from the MC that were not delivered to a user. */
332 	IPMI_STAT_unhandled_local_responses,
333 
334 	/* Commands we sent out to the IPMB bus. */
335 	IPMI_STAT_sent_ipmb_commands,
336 
337 	/* Commands sent on the IPMB that had errors on the SEND CMD */
338 	IPMI_STAT_sent_ipmb_command_errs,
339 
340 	/* Each retransmit increments this count. */
341 	IPMI_STAT_retransmitted_ipmb_commands,
342 
343 	/*
344 	 * When a message times out (runs out of retransmits) this is
345 	 * incremented.
346 	 */
347 	IPMI_STAT_timed_out_ipmb_commands,
348 
349 	/*
350 	 * This is like above, but for broadcasts.  Broadcasts are
351 	 * *not* included in the above count (they are expected to
352 	 * time out).
353 	 */
354 	IPMI_STAT_timed_out_ipmb_broadcasts,
355 
356 	/* Responses I have sent to the IPMB bus. */
357 	IPMI_STAT_sent_ipmb_responses,
358 
359 	/* The response was delivered to the user. */
360 	IPMI_STAT_handled_ipmb_responses,
361 
362 	/* The response had invalid data in it. */
363 	IPMI_STAT_invalid_ipmb_responses,
364 
365 	/* The response didn't have anyone waiting for it. */
366 	IPMI_STAT_unhandled_ipmb_responses,
367 
368 	/* Commands we sent out to the IPMB bus. */
369 	IPMI_STAT_sent_lan_commands,
370 
371 	/* Commands sent on the IPMB that had errors on the SEND CMD */
372 	IPMI_STAT_sent_lan_command_errs,
373 
374 	/* Each retransmit increments this count. */
375 	IPMI_STAT_retransmitted_lan_commands,
376 
377 	/*
378 	 * When a message times out (runs out of retransmits) this is
379 	 * incremented.
380 	 */
381 	IPMI_STAT_timed_out_lan_commands,
382 
383 	/* Responses I have sent to the IPMB bus. */
384 	IPMI_STAT_sent_lan_responses,
385 
386 	/* The response was delivered to the user. */
387 	IPMI_STAT_handled_lan_responses,
388 
389 	/* The response had invalid data in it. */
390 	IPMI_STAT_invalid_lan_responses,
391 
392 	/* The response didn't have anyone waiting for it. */
393 	IPMI_STAT_unhandled_lan_responses,
394 
395 	/* The command was delivered to the user. */
396 	IPMI_STAT_handled_commands,
397 
398 	/* The command had invalid data in it. */
399 	IPMI_STAT_invalid_commands,
400 
401 	/* The command didn't have anyone waiting for it. */
402 	IPMI_STAT_unhandled_commands,
403 
404 	/* Invalid data in an event. */
405 	IPMI_STAT_invalid_events,
406 
407 	/* Events that were received with the proper format. */
408 	IPMI_STAT_events,
409 
410 	/* Retransmissions on IPMB that failed. */
411 	IPMI_STAT_dropped_rexmit_ipmb_commands,
412 
413 	/* Retransmissions on LAN that failed. */
414 	IPMI_STAT_dropped_rexmit_lan_commands,
415 
416 	/* This *must* remain last, add new values above this. */
417 	IPMI_NUM_STATS
418 };
419 
420 
421 #define IPMI_IPMB_NUM_SEQ	64
422 struct ipmi_smi {
423 	struct module *owner;
424 
425 	/* What interface number are we? */
426 	int intf_num;
427 
428 	struct kref refcount;
429 
430 	/* Set when the interface is being unregistered. */
431 	bool in_shutdown;
432 
433 	/* Used for a list of interfaces. */
434 	struct list_head link;
435 
436 	/*
437 	 * The list of upper layers that are using me.  seq_lock write
438 	 * protects this.  Read protection is with srcu.
439 	 */
440 	struct list_head users;
441 	struct srcu_struct users_srcu;
442 
443 	/* Used for wake ups at startup. */
444 	wait_queue_head_t waitq;
445 
446 	/*
447 	 * Prevents the interface from being unregistered when the
448 	 * interface is used by being looked up through the BMC
449 	 * structure.
450 	 */
451 	struct mutex bmc_reg_mutex;
452 
453 	struct bmc_device tmp_bmc;
454 	struct bmc_device *bmc;
455 	bool bmc_registered;
456 	struct list_head bmc_link;
457 	char *my_dev_name;
458 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
459 	struct work_struct bmc_reg_work;
460 
461 	const struct ipmi_smi_handlers *handlers;
462 	void                     *send_info;
463 
464 	/* Driver-model device for the system interface. */
465 	struct device          *si_dev;
466 
467 	/*
468 	 * A table of sequence numbers for this interface.  We use the
469 	 * sequence numbers for IPMB messages that go out of the
470 	 * interface to match them up with their responses.  A routine
471 	 * is called periodically to time the items in this list.
472 	 */
473 	spinlock_t       seq_lock;
474 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
475 	int curr_seq;
476 
477 	/*
478 	 * Messages queued for delivery.  If delivery fails (out of memory
479 	 * for instance), They will stay in here to be processed later in a
480 	 * periodic timer interrupt.  The tasklet is for handling received
481 	 * messages directly from the handler.
482 	 */
483 	spinlock_t       waiting_rcv_msgs_lock;
484 	struct list_head waiting_rcv_msgs;
485 	atomic_t	 watchdog_pretimeouts_to_deliver;
486 	struct tasklet_struct recv_tasklet;
487 
488 	spinlock_t             xmit_msgs_lock;
489 	struct list_head       xmit_msgs;
490 	struct ipmi_smi_msg    *curr_msg;
491 	struct list_head       hp_xmit_msgs;
492 
493 	/*
494 	 * The list of command receivers that are registered for commands
495 	 * on this interface.
496 	 */
497 	struct mutex     cmd_rcvrs_mutex;
498 	struct list_head cmd_rcvrs;
499 
500 	/*
501 	 * Events that were queues because no one was there to receive
502 	 * them.
503 	 */
504 	spinlock_t       events_lock; /* For dealing with event stuff. */
505 	struct list_head waiting_events;
506 	unsigned int     waiting_events_count; /* How many events in queue? */
507 	char             delivering_events;
508 	char             event_msg_printed;
509 
510 	/* How many users are waiting for events? */
511 	atomic_t         event_waiters;
512 	unsigned int     ticks_to_req_ev;
513 
514 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
515 
516 	/* How many users are waiting for commands? */
517 	unsigned int     command_waiters;
518 
519 	/* How many users are waiting for watchdogs? */
520 	unsigned int     watchdog_waiters;
521 
522 	/* How many users are waiting for message responses? */
523 	unsigned int     response_waiters;
524 
525 	/*
526 	 * Tells what the lower layer has last been asked to watch for,
527 	 * messages and/or watchdogs.  Protected by watch_lock.
528 	 */
529 	unsigned int     last_watch_mask;
530 
531 	/*
532 	 * The event receiver for my BMC, only really used at panic
533 	 * shutdown as a place to store this.
534 	 */
535 	unsigned char event_receiver;
536 	unsigned char event_receiver_lun;
537 	unsigned char local_sel_device;
538 	unsigned char local_event_generator;
539 
540 	/* For handling of maintenance mode. */
541 	int maintenance_mode;
542 	bool maintenance_mode_enable;
543 	int auto_maintenance_timeout;
544 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
545 
546 	/*
547 	 * If we are doing maintenance on something on IPMB, extend
548 	 * the timeout time to avoid timeouts writing firmware and
549 	 * such.
550 	 */
551 	int ipmb_maintenance_mode_timeout;
552 
553 	/*
554 	 * A cheap hack, if this is non-null and a message to an
555 	 * interface comes in with a NULL user, call this routine with
556 	 * it.  Note that the message will still be freed by the
557 	 * caller.  This only works on the system interface.
558 	 *
559 	 * Protected by bmc_reg_mutex.
560 	 */
561 	void (*null_user_handler)(struct ipmi_smi *intf,
562 				  struct ipmi_recv_msg *msg);
563 
564 	/*
565 	 * When we are scanning the channels for an SMI, this will
566 	 * tell which channel we are scanning.
567 	 */
568 	int curr_channel;
569 
570 	/* Channel information */
571 	struct ipmi_channel_set *channel_list;
572 	unsigned int curr_working_cset; /* First index into the following. */
573 	struct ipmi_channel_set wchannels[2];
574 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
575 	bool channels_ready;
576 
577 	atomic_t stats[IPMI_NUM_STATS];
578 
579 	/*
580 	 * run_to_completion duplicate of smb_info, smi_info
581 	 * and ipmi_serial_info structures. Used to decrease numbers of
582 	 * parameters passed by "low" level IPMI code.
583 	 */
584 	int run_to_completion;
585 };
586 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
587 
588 static void __get_guid(struct ipmi_smi *intf);
589 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
590 static int __ipmi_bmc_register(struct ipmi_smi *intf,
591 			       struct ipmi_device_id *id,
592 			       bool guid_set, guid_t *guid, int intf_num);
593 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
594 
595 
596 /**
597  * The driver model view of the IPMI messaging driver.
598  */
599 static struct platform_driver ipmidriver = {
600 	.driver = {
601 		.name = "ipmi",
602 		.bus = &platform_bus_type
603 	}
604 };
605 /*
606  * This mutex keeps us from adding the same BMC twice.
607  */
608 static DEFINE_MUTEX(ipmidriver_mutex);
609 
610 static LIST_HEAD(ipmi_interfaces);
611 static DEFINE_MUTEX(ipmi_interfaces_mutex);
612 #define ipmi_interfaces_mutex_held() \
613 	lockdep_is_held(&ipmi_interfaces_mutex)
614 static struct srcu_struct ipmi_interfaces_srcu;
615 
616 /*
617  * List of watchers that want to know when smi's are added and deleted.
618  */
619 static LIST_HEAD(smi_watchers);
620 static DEFINE_MUTEX(smi_watchers_mutex);
621 
622 #define ipmi_inc_stat(intf, stat) \
623 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
624 #define ipmi_get_stat(intf, stat) \
625 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
626 
627 static const char * const addr_src_to_str[] = {
628 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
629 	"device-tree", "platform"
630 };
631 
632 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
633 {
634 	if (src >= SI_LAST)
635 		src = 0; /* Invalid */
636 	return addr_src_to_str[src];
637 }
638 EXPORT_SYMBOL(ipmi_addr_src_to_str);
639 
640 static int is_lan_addr(struct ipmi_addr *addr)
641 {
642 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
643 }
644 
645 static int is_ipmb_addr(struct ipmi_addr *addr)
646 {
647 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
648 }
649 
650 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
651 {
652 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
653 }
654 
655 static void free_recv_msg_list(struct list_head *q)
656 {
657 	struct ipmi_recv_msg *msg, *msg2;
658 
659 	list_for_each_entry_safe(msg, msg2, q, link) {
660 		list_del(&msg->link);
661 		ipmi_free_recv_msg(msg);
662 	}
663 }
664 
665 static void free_smi_msg_list(struct list_head *q)
666 {
667 	struct ipmi_smi_msg *msg, *msg2;
668 
669 	list_for_each_entry_safe(msg, msg2, q, link) {
670 		list_del(&msg->link);
671 		ipmi_free_smi_msg(msg);
672 	}
673 }
674 
675 static void clean_up_interface_data(struct ipmi_smi *intf)
676 {
677 	int              i;
678 	struct cmd_rcvr  *rcvr, *rcvr2;
679 	struct list_head list;
680 
681 	tasklet_kill(&intf->recv_tasklet);
682 
683 	free_smi_msg_list(&intf->waiting_rcv_msgs);
684 	free_recv_msg_list(&intf->waiting_events);
685 
686 	/*
687 	 * Wholesale remove all the entries from the list in the
688 	 * interface and wait for RCU to know that none are in use.
689 	 */
690 	mutex_lock(&intf->cmd_rcvrs_mutex);
691 	INIT_LIST_HEAD(&list);
692 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
693 	mutex_unlock(&intf->cmd_rcvrs_mutex);
694 
695 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
696 		kfree(rcvr);
697 
698 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
699 		if ((intf->seq_table[i].inuse)
700 					&& (intf->seq_table[i].recv_msg))
701 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
702 	}
703 }
704 
705 static void intf_free(struct kref *ref)
706 {
707 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
708 
709 	clean_up_interface_data(intf);
710 	kfree(intf);
711 }
712 
713 struct watcher_entry {
714 	int              intf_num;
715 	struct ipmi_smi  *intf;
716 	struct list_head link;
717 };
718 
719 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
720 {
721 	struct ipmi_smi *intf;
722 	int index, rv;
723 
724 	/*
725 	 * Make sure the driver is actually initialized, this handles
726 	 * problems with initialization order.
727 	 */
728 	rv = ipmi_init_msghandler();
729 	if (rv)
730 		return rv;
731 
732 	mutex_lock(&smi_watchers_mutex);
733 
734 	list_add(&watcher->link, &smi_watchers);
735 
736 	index = srcu_read_lock(&ipmi_interfaces_srcu);
737 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
738 			lockdep_is_held(&smi_watchers_mutex)) {
739 		int intf_num = READ_ONCE(intf->intf_num);
740 
741 		if (intf_num == -1)
742 			continue;
743 		watcher->new_smi(intf_num, intf->si_dev);
744 	}
745 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
746 
747 	mutex_unlock(&smi_watchers_mutex);
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL(ipmi_smi_watcher_register);
752 
753 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
754 {
755 	mutex_lock(&smi_watchers_mutex);
756 	list_del(&watcher->link);
757 	mutex_unlock(&smi_watchers_mutex);
758 	return 0;
759 }
760 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
761 
762 /*
763  * Must be called with smi_watchers_mutex held.
764  */
765 static void
766 call_smi_watchers(int i, struct device *dev)
767 {
768 	struct ipmi_smi_watcher *w;
769 
770 	mutex_lock(&smi_watchers_mutex);
771 	list_for_each_entry(w, &smi_watchers, link) {
772 		if (try_module_get(w->owner)) {
773 			w->new_smi(i, dev);
774 			module_put(w->owner);
775 		}
776 	}
777 	mutex_unlock(&smi_watchers_mutex);
778 }
779 
780 static int
781 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
782 {
783 	if (addr1->addr_type != addr2->addr_type)
784 		return 0;
785 
786 	if (addr1->channel != addr2->channel)
787 		return 0;
788 
789 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
790 		struct ipmi_system_interface_addr *smi_addr1
791 		    = (struct ipmi_system_interface_addr *) addr1;
792 		struct ipmi_system_interface_addr *smi_addr2
793 		    = (struct ipmi_system_interface_addr *) addr2;
794 		return (smi_addr1->lun == smi_addr2->lun);
795 	}
796 
797 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
798 		struct ipmi_ipmb_addr *ipmb_addr1
799 		    = (struct ipmi_ipmb_addr *) addr1;
800 		struct ipmi_ipmb_addr *ipmb_addr2
801 		    = (struct ipmi_ipmb_addr *) addr2;
802 
803 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
804 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
805 	}
806 
807 	if (is_lan_addr(addr1)) {
808 		struct ipmi_lan_addr *lan_addr1
809 			= (struct ipmi_lan_addr *) addr1;
810 		struct ipmi_lan_addr *lan_addr2
811 		    = (struct ipmi_lan_addr *) addr2;
812 
813 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
814 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
815 			&& (lan_addr1->session_handle
816 			    == lan_addr2->session_handle)
817 			&& (lan_addr1->lun == lan_addr2->lun));
818 	}
819 
820 	return 1;
821 }
822 
823 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
824 {
825 	if (len < sizeof(struct ipmi_system_interface_addr))
826 		return -EINVAL;
827 
828 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
829 		if (addr->channel != IPMI_BMC_CHANNEL)
830 			return -EINVAL;
831 		return 0;
832 	}
833 
834 	if ((addr->channel == IPMI_BMC_CHANNEL)
835 	    || (addr->channel >= IPMI_MAX_CHANNELS)
836 	    || (addr->channel < 0))
837 		return -EINVAL;
838 
839 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
840 		if (len < sizeof(struct ipmi_ipmb_addr))
841 			return -EINVAL;
842 		return 0;
843 	}
844 
845 	if (is_lan_addr(addr)) {
846 		if (len < sizeof(struct ipmi_lan_addr))
847 			return -EINVAL;
848 		return 0;
849 	}
850 
851 	return -EINVAL;
852 }
853 EXPORT_SYMBOL(ipmi_validate_addr);
854 
855 unsigned int ipmi_addr_length(int addr_type)
856 {
857 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
858 		return sizeof(struct ipmi_system_interface_addr);
859 
860 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
861 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
862 		return sizeof(struct ipmi_ipmb_addr);
863 
864 	if (addr_type == IPMI_LAN_ADDR_TYPE)
865 		return sizeof(struct ipmi_lan_addr);
866 
867 	return 0;
868 }
869 EXPORT_SYMBOL(ipmi_addr_length);
870 
871 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
872 {
873 	int rv = 0;
874 
875 	if (!msg->user) {
876 		/* Special handling for NULL users. */
877 		if (intf->null_user_handler) {
878 			intf->null_user_handler(intf, msg);
879 		} else {
880 			/* No handler, so give up. */
881 			rv = -EINVAL;
882 		}
883 		ipmi_free_recv_msg(msg);
884 	} else if (oops_in_progress) {
885 		/*
886 		 * If we are running in the panic context, calling the
887 		 * receive handler doesn't much meaning and has a deadlock
888 		 * risk.  At this moment, simply skip it in that case.
889 		 */
890 		ipmi_free_recv_msg(msg);
891 	} else {
892 		int index;
893 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
894 
895 		if (user) {
896 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
897 			release_ipmi_user(user, index);
898 		} else {
899 			/* User went away, give up. */
900 			ipmi_free_recv_msg(msg);
901 			rv = -EINVAL;
902 		}
903 	}
904 
905 	return rv;
906 }
907 
908 static void deliver_local_response(struct ipmi_smi *intf,
909 				   struct ipmi_recv_msg *msg)
910 {
911 	if (deliver_response(intf, msg))
912 		ipmi_inc_stat(intf, unhandled_local_responses);
913 	else
914 		ipmi_inc_stat(intf, handled_local_responses);
915 }
916 
917 static void deliver_err_response(struct ipmi_smi *intf,
918 				 struct ipmi_recv_msg *msg, int err)
919 {
920 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
921 	msg->msg_data[0] = err;
922 	msg->msg.netfn |= 1; /* Convert to a response. */
923 	msg->msg.data_len = 1;
924 	msg->msg.data = msg->msg_data;
925 	deliver_local_response(intf, msg);
926 }
927 
928 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
929 {
930 	unsigned long iflags;
931 
932 	if (!intf->handlers->set_need_watch)
933 		return;
934 
935 	spin_lock_irqsave(&intf->watch_lock, iflags);
936 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
937 		intf->response_waiters++;
938 
939 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
940 		intf->watchdog_waiters++;
941 
942 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
943 		intf->command_waiters++;
944 
945 	if ((intf->last_watch_mask & flags) != flags) {
946 		intf->last_watch_mask |= flags;
947 		intf->handlers->set_need_watch(intf->send_info,
948 					       intf->last_watch_mask);
949 	}
950 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
951 }
952 
953 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
954 {
955 	unsigned long iflags;
956 
957 	if (!intf->handlers->set_need_watch)
958 		return;
959 
960 	spin_lock_irqsave(&intf->watch_lock, iflags);
961 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
962 		intf->response_waiters--;
963 
964 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
965 		intf->watchdog_waiters--;
966 
967 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
968 		intf->command_waiters--;
969 
970 	flags = 0;
971 	if (intf->response_waiters)
972 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
973 	if (intf->watchdog_waiters)
974 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
975 	if (intf->command_waiters)
976 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
977 
978 	if (intf->last_watch_mask != flags) {
979 		intf->last_watch_mask = flags;
980 		intf->handlers->set_need_watch(intf->send_info,
981 					       intf->last_watch_mask);
982 	}
983 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
984 }
985 
986 /*
987  * Find the next sequence number not being used and add the given
988  * message with the given timeout to the sequence table.  This must be
989  * called with the interface's seq_lock held.
990  */
991 static int intf_next_seq(struct ipmi_smi      *intf,
992 			 struct ipmi_recv_msg *recv_msg,
993 			 unsigned long        timeout,
994 			 int                  retries,
995 			 int                  broadcast,
996 			 unsigned char        *seq,
997 			 long                 *seqid)
998 {
999 	int          rv = 0;
1000 	unsigned int i;
1001 
1002 	if (timeout == 0)
1003 		timeout = default_retry_ms;
1004 	if (retries < 0)
1005 		retries = default_max_retries;
1006 
1007 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1008 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1009 		if (!intf->seq_table[i].inuse)
1010 			break;
1011 	}
1012 
1013 	if (!intf->seq_table[i].inuse) {
1014 		intf->seq_table[i].recv_msg = recv_msg;
1015 
1016 		/*
1017 		 * Start with the maximum timeout, when the send response
1018 		 * comes in we will start the real timer.
1019 		 */
1020 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1021 		intf->seq_table[i].orig_timeout = timeout;
1022 		intf->seq_table[i].retries_left = retries;
1023 		intf->seq_table[i].broadcast = broadcast;
1024 		intf->seq_table[i].inuse = 1;
1025 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1026 		*seq = i;
1027 		*seqid = intf->seq_table[i].seqid;
1028 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1029 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1030 		need_waiter(intf);
1031 	} else {
1032 		rv = -EAGAIN;
1033 	}
1034 
1035 	return rv;
1036 }
1037 
1038 /*
1039  * Return the receive message for the given sequence number and
1040  * release the sequence number so it can be reused.  Some other data
1041  * is passed in to be sure the message matches up correctly (to help
1042  * guard against message coming in after their timeout and the
1043  * sequence number being reused).
1044  */
1045 static int intf_find_seq(struct ipmi_smi      *intf,
1046 			 unsigned char        seq,
1047 			 short                channel,
1048 			 unsigned char        cmd,
1049 			 unsigned char        netfn,
1050 			 struct ipmi_addr     *addr,
1051 			 struct ipmi_recv_msg **recv_msg)
1052 {
1053 	int           rv = -ENODEV;
1054 	unsigned long flags;
1055 
1056 	if (seq >= IPMI_IPMB_NUM_SEQ)
1057 		return -EINVAL;
1058 
1059 	spin_lock_irqsave(&intf->seq_lock, flags);
1060 	if (intf->seq_table[seq].inuse) {
1061 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1062 
1063 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1064 				&& (msg->msg.netfn == netfn)
1065 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1066 			*recv_msg = msg;
1067 			intf->seq_table[seq].inuse = 0;
1068 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1069 			rv = 0;
1070 		}
1071 	}
1072 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1073 
1074 	return rv;
1075 }
1076 
1077 
1078 /* Start the timer for a specific sequence table entry. */
1079 static int intf_start_seq_timer(struct ipmi_smi *intf,
1080 				long       msgid)
1081 {
1082 	int           rv = -ENODEV;
1083 	unsigned long flags;
1084 	unsigned char seq;
1085 	unsigned long seqid;
1086 
1087 
1088 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1089 
1090 	spin_lock_irqsave(&intf->seq_lock, flags);
1091 	/*
1092 	 * We do this verification because the user can be deleted
1093 	 * while a message is outstanding.
1094 	 */
1095 	if ((intf->seq_table[seq].inuse)
1096 				&& (intf->seq_table[seq].seqid == seqid)) {
1097 		struct seq_table *ent = &intf->seq_table[seq];
1098 		ent->timeout = ent->orig_timeout;
1099 		rv = 0;
1100 	}
1101 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1102 
1103 	return rv;
1104 }
1105 
1106 /* Got an error for the send message for a specific sequence number. */
1107 static int intf_err_seq(struct ipmi_smi *intf,
1108 			long         msgid,
1109 			unsigned int err)
1110 {
1111 	int                  rv = -ENODEV;
1112 	unsigned long        flags;
1113 	unsigned char        seq;
1114 	unsigned long        seqid;
1115 	struct ipmi_recv_msg *msg = NULL;
1116 
1117 
1118 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1119 
1120 	spin_lock_irqsave(&intf->seq_lock, flags);
1121 	/*
1122 	 * We do this verification because the user can be deleted
1123 	 * while a message is outstanding.
1124 	 */
1125 	if ((intf->seq_table[seq].inuse)
1126 				&& (intf->seq_table[seq].seqid == seqid)) {
1127 		struct seq_table *ent = &intf->seq_table[seq];
1128 
1129 		ent->inuse = 0;
1130 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1131 		msg = ent->recv_msg;
1132 		rv = 0;
1133 	}
1134 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1135 
1136 	if (msg)
1137 		deliver_err_response(intf, msg, err);
1138 
1139 	return rv;
1140 }
1141 
1142 static void free_user_work(struct work_struct *work)
1143 {
1144 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1145 					      remove_work);
1146 
1147 	cleanup_srcu_struct(&user->release_barrier);
1148 	vfree(user);
1149 }
1150 
1151 int ipmi_create_user(unsigned int          if_num,
1152 		     const struct ipmi_user_hndl *handler,
1153 		     void                  *handler_data,
1154 		     struct ipmi_user      **user)
1155 {
1156 	unsigned long flags;
1157 	struct ipmi_user *new_user;
1158 	int           rv, index;
1159 	struct ipmi_smi *intf;
1160 
1161 	/*
1162 	 * There is no module usecount here, because it's not
1163 	 * required.  Since this can only be used by and called from
1164 	 * other modules, they will implicitly use this module, and
1165 	 * thus this can't be removed unless the other modules are
1166 	 * removed.
1167 	 */
1168 
1169 	if (handler == NULL)
1170 		return -EINVAL;
1171 
1172 	/*
1173 	 * Make sure the driver is actually initialized, this handles
1174 	 * problems with initialization order.
1175 	 */
1176 	rv = ipmi_init_msghandler();
1177 	if (rv)
1178 		return rv;
1179 
1180 	new_user = vzalloc(sizeof(*new_user));
1181 	if (!new_user)
1182 		return -ENOMEM;
1183 
1184 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1185 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1186 		if (intf->intf_num == if_num)
1187 			goto found;
1188 	}
1189 	/* Not found, return an error */
1190 	rv = -EINVAL;
1191 	goto out_kfree;
1192 
1193  found:
1194 	INIT_WORK(&new_user->remove_work, free_user_work);
1195 
1196 	rv = init_srcu_struct(&new_user->release_barrier);
1197 	if (rv)
1198 		goto out_kfree;
1199 
1200 	if (!try_module_get(intf->owner)) {
1201 		rv = -ENODEV;
1202 		goto out_kfree;
1203 	}
1204 
1205 	/* Note that each existing user holds a refcount to the interface. */
1206 	kref_get(&intf->refcount);
1207 
1208 	kref_init(&new_user->refcount);
1209 	new_user->handler = handler;
1210 	new_user->handler_data = handler_data;
1211 	new_user->intf = intf;
1212 	new_user->gets_events = false;
1213 
1214 	rcu_assign_pointer(new_user->self, new_user);
1215 	spin_lock_irqsave(&intf->seq_lock, flags);
1216 	list_add_rcu(&new_user->link, &intf->users);
1217 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1218 	if (handler->ipmi_watchdog_pretimeout)
1219 		/* User wants pretimeouts, so make sure to watch for them. */
1220 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1221 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1222 	*user = new_user;
1223 	return 0;
1224 
1225 out_kfree:
1226 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1227 	vfree(new_user);
1228 	return rv;
1229 }
1230 EXPORT_SYMBOL(ipmi_create_user);
1231 
1232 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1233 {
1234 	int rv, index;
1235 	struct ipmi_smi *intf;
1236 
1237 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1238 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1239 		if (intf->intf_num == if_num)
1240 			goto found;
1241 	}
1242 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1243 
1244 	/* Not found, return an error */
1245 	return -EINVAL;
1246 
1247 found:
1248 	if (!intf->handlers->get_smi_info)
1249 		rv = -ENOTTY;
1250 	else
1251 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1252 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1253 
1254 	return rv;
1255 }
1256 EXPORT_SYMBOL(ipmi_get_smi_info);
1257 
1258 static void free_user(struct kref *ref)
1259 {
1260 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1261 
1262 	/* SRCU cleanup must happen in task context. */
1263 	schedule_work(&user->remove_work);
1264 }
1265 
1266 static void _ipmi_destroy_user(struct ipmi_user *user)
1267 {
1268 	struct ipmi_smi  *intf = user->intf;
1269 	int              i;
1270 	unsigned long    flags;
1271 	struct cmd_rcvr  *rcvr;
1272 	struct cmd_rcvr  *rcvrs = NULL;
1273 
1274 	if (!acquire_ipmi_user(user, &i)) {
1275 		/*
1276 		 * The user has already been cleaned up, just make sure
1277 		 * nothing is using it and return.
1278 		 */
1279 		synchronize_srcu(&user->release_barrier);
1280 		return;
1281 	}
1282 
1283 	rcu_assign_pointer(user->self, NULL);
1284 	release_ipmi_user(user, i);
1285 
1286 	synchronize_srcu(&user->release_barrier);
1287 
1288 	if (user->handler->shutdown)
1289 		user->handler->shutdown(user->handler_data);
1290 
1291 	if (user->handler->ipmi_watchdog_pretimeout)
1292 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1293 
1294 	if (user->gets_events)
1295 		atomic_dec(&intf->event_waiters);
1296 
1297 	/* Remove the user from the interface's sequence table. */
1298 	spin_lock_irqsave(&intf->seq_lock, flags);
1299 	list_del_rcu(&user->link);
1300 
1301 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1302 		if (intf->seq_table[i].inuse
1303 		    && (intf->seq_table[i].recv_msg->user == user)) {
1304 			intf->seq_table[i].inuse = 0;
1305 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1306 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1307 		}
1308 	}
1309 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1310 
1311 	/*
1312 	 * Remove the user from the command receiver's table.  First
1313 	 * we build a list of everything (not using the standard link,
1314 	 * since other things may be using it till we do
1315 	 * synchronize_srcu()) then free everything in that list.
1316 	 */
1317 	mutex_lock(&intf->cmd_rcvrs_mutex);
1318 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1319 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1320 		if (rcvr->user == user) {
1321 			list_del_rcu(&rcvr->link);
1322 			rcvr->next = rcvrs;
1323 			rcvrs = rcvr;
1324 		}
1325 	}
1326 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1327 	synchronize_rcu();
1328 	while (rcvrs) {
1329 		rcvr = rcvrs;
1330 		rcvrs = rcvr->next;
1331 		kfree(rcvr);
1332 	}
1333 
1334 	kref_put(&intf->refcount, intf_free);
1335 	module_put(intf->owner);
1336 }
1337 
1338 int ipmi_destroy_user(struct ipmi_user *user)
1339 {
1340 	_ipmi_destroy_user(user);
1341 
1342 	kref_put(&user->refcount, free_user);
1343 
1344 	return 0;
1345 }
1346 EXPORT_SYMBOL(ipmi_destroy_user);
1347 
1348 int ipmi_get_version(struct ipmi_user *user,
1349 		     unsigned char *major,
1350 		     unsigned char *minor)
1351 {
1352 	struct ipmi_device_id id;
1353 	int rv, index;
1354 
1355 	user = acquire_ipmi_user(user, &index);
1356 	if (!user)
1357 		return -ENODEV;
1358 
1359 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1360 	if (!rv) {
1361 		*major = ipmi_version_major(&id);
1362 		*minor = ipmi_version_minor(&id);
1363 	}
1364 	release_ipmi_user(user, index);
1365 
1366 	return rv;
1367 }
1368 EXPORT_SYMBOL(ipmi_get_version);
1369 
1370 int ipmi_set_my_address(struct ipmi_user *user,
1371 			unsigned int  channel,
1372 			unsigned char address)
1373 {
1374 	int index, rv = 0;
1375 
1376 	user = acquire_ipmi_user(user, &index);
1377 	if (!user)
1378 		return -ENODEV;
1379 
1380 	if (channel >= IPMI_MAX_CHANNELS) {
1381 		rv = -EINVAL;
1382 	} else {
1383 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1384 		user->intf->addrinfo[channel].address = address;
1385 	}
1386 	release_ipmi_user(user, index);
1387 
1388 	return rv;
1389 }
1390 EXPORT_SYMBOL(ipmi_set_my_address);
1391 
1392 int ipmi_get_my_address(struct ipmi_user *user,
1393 			unsigned int  channel,
1394 			unsigned char *address)
1395 {
1396 	int index, rv = 0;
1397 
1398 	user = acquire_ipmi_user(user, &index);
1399 	if (!user)
1400 		return -ENODEV;
1401 
1402 	if (channel >= IPMI_MAX_CHANNELS) {
1403 		rv = -EINVAL;
1404 	} else {
1405 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1406 		*address = user->intf->addrinfo[channel].address;
1407 	}
1408 	release_ipmi_user(user, index);
1409 
1410 	return rv;
1411 }
1412 EXPORT_SYMBOL(ipmi_get_my_address);
1413 
1414 int ipmi_set_my_LUN(struct ipmi_user *user,
1415 		    unsigned int  channel,
1416 		    unsigned char LUN)
1417 {
1418 	int index, rv = 0;
1419 
1420 	user = acquire_ipmi_user(user, &index);
1421 	if (!user)
1422 		return -ENODEV;
1423 
1424 	if (channel >= IPMI_MAX_CHANNELS) {
1425 		rv = -EINVAL;
1426 	} else {
1427 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1428 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1429 	}
1430 	release_ipmi_user(user, index);
1431 
1432 	return rv;
1433 }
1434 EXPORT_SYMBOL(ipmi_set_my_LUN);
1435 
1436 int ipmi_get_my_LUN(struct ipmi_user *user,
1437 		    unsigned int  channel,
1438 		    unsigned char *address)
1439 {
1440 	int index, rv = 0;
1441 
1442 	user = acquire_ipmi_user(user, &index);
1443 	if (!user)
1444 		return -ENODEV;
1445 
1446 	if (channel >= IPMI_MAX_CHANNELS) {
1447 		rv = -EINVAL;
1448 	} else {
1449 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1450 		*address = user->intf->addrinfo[channel].lun;
1451 	}
1452 	release_ipmi_user(user, index);
1453 
1454 	return rv;
1455 }
1456 EXPORT_SYMBOL(ipmi_get_my_LUN);
1457 
1458 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1459 {
1460 	int mode, index;
1461 	unsigned long flags;
1462 
1463 	user = acquire_ipmi_user(user, &index);
1464 	if (!user)
1465 		return -ENODEV;
1466 
1467 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1468 	mode = user->intf->maintenance_mode;
1469 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1470 	release_ipmi_user(user, index);
1471 
1472 	return mode;
1473 }
1474 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1475 
1476 static void maintenance_mode_update(struct ipmi_smi *intf)
1477 {
1478 	if (intf->handlers->set_maintenance_mode)
1479 		intf->handlers->set_maintenance_mode(
1480 			intf->send_info, intf->maintenance_mode_enable);
1481 }
1482 
1483 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1484 {
1485 	int rv = 0, index;
1486 	unsigned long flags;
1487 	struct ipmi_smi *intf = user->intf;
1488 
1489 	user = acquire_ipmi_user(user, &index);
1490 	if (!user)
1491 		return -ENODEV;
1492 
1493 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1494 	if (intf->maintenance_mode != mode) {
1495 		switch (mode) {
1496 		case IPMI_MAINTENANCE_MODE_AUTO:
1497 			intf->maintenance_mode_enable
1498 				= (intf->auto_maintenance_timeout > 0);
1499 			break;
1500 
1501 		case IPMI_MAINTENANCE_MODE_OFF:
1502 			intf->maintenance_mode_enable = false;
1503 			break;
1504 
1505 		case IPMI_MAINTENANCE_MODE_ON:
1506 			intf->maintenance_mode_enable = true;
1507 			break;
1508 
1509 		default:
1510 			rv = -EINVAL;
1511 			goto out_unlock;
1512 		}
1513 		intf->maintenance_mode = mode;
1514 
1515 		maintenance_mode_update(intf);
1516 	}
1517  out_unlock:
1518 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1519 	release_ipmi_user(user, index);
1520 
1521 	return rv;
1522 }
1523 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1524 
1525 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1526 {
1527 	unsigned long        flags;
1528 	struct ipmi_smi      *intf = user->intf;
1529 	struct ipmi_recv_msg *msg, *msg2;
1530 	struct list_head     msgs;
1531 	int index;
1532 
1533 	user = acquire_ipmi_user(user, &index);
1534 	if (!user)
1535 		return -ENODEV;
1536 
1537 	INIT_LIST_HEAD(&msgs);
1538 
1539 	spin_lock_irqsave(&intf->events_lock, flags);
1540 	if (user->gets_events == val)
1541 		goto out;
1542 
1543 	user->gets_events = val;
1544 
1545 	if (val) {
1546 		if (atomic_inc_return(&intf->event_waiters) == 1)
1547 			need_waiter(intf);
1548 	} else {
1549 		atomic_dec(&intf->event_waiters);
1550 	}
1551 
1552 	if (intf->delivering_events)
1553 		/*
1554 		 * Another thread is delivering events for this, so
1555 		 * let it handle any new events.
1556 		 */
1557 		goto out;
1558 
1559 	/* Deliver any queued events. */
1560 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1561 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1562 			list_move_tail(&msg->link, &msgs);
1563 		intf->waiting_events_count = 0;
1564 		if (intf->event_msg_printed) {
1565 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1566 			intf->event_msg_printed = 0;
1567 		}
1568 
1569 		intf->delivering_events = 1;
1570 		spin_unlock_irqrestore(&intf->events_lock, flags);
1571 
1572 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1573 			msg->user = user;
1574 			kref_get(&user->refcount);
1575 			deliver_local_response(intf, msg);
1576 		}
1577 
1578 		spin_lock_irqsave(&intf->events_lock, flags);
1579 		intf->delivering_events = 0;
1580 	}
1581 
1582  out:
1583 	spin_unlock_irqrestore(&intf->events_lock, flags);
1584 	release_ipmi_user(user, index);
1585 
1586 	return 0;
1587 }
1588 EXPORT_SYMBOL(ipmi_set_gets_events);
1589 
1590 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1591 				      unsigned char netfn,
1592 				      unsigned char cmd,
1593 				      unsigned char chan)
1594 {
1595 	struct cmd_rcvr *rcvr;
1596 
1597 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1598 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1599 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1600 					&& (rcvr->chans & (1 << chan)))
1601 			return rcvr;
1602 	}
1603 	return NULL;
1604 }
1605 
1606 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1607 				 unsigned char netfn,
1608 				 unsigned char cmd,
1609 				 unsigned int  chans)
1610 {
1611 	struct cmd_rcvr *rcvr;
1612 
1613 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1614 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1615 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1616 					&& (rcvr->chans & chans))
1617 			return 0;
1618 	}
1619 	return 1;
1620 }
1621 
1622 int ipmi_register_for_cmd(struct ipmi_user *user,
1623 			  unsigned char netfn,
1624 			  unsigned char cmd,
1625 			  unsigned int  chans)
1626 {
1627 	struct ipmi_smi *intf = user->intf;
1628 	struct cmd_rcvr *rcvr;
1629 	int rv = 0, index;
1630 
1631 	user = acquire_ipmi_user(user, &index);
1632 	if (!user)
1633 		return -ENODEV;
1634 
1635 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1636 	if (!rcvr) {
1637 		rv = -ENOMEM;
1638 		goto out_release;
1639 	}
1640 	rcvr->cmd = cmd;
1641 	rcvr->netfn = netfn;
1642 	rcvr->chans = chans;
1643 	rcvr->user = user;
1644 
1645 	mutex_lock(&intf->cmd_rcvrs_mutex);
1646 	/* Make sure the command/netfn is not already registered. */
1647 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1648 		rv = -EBUSY;
1649 		goto out_unlock;
1650 	}
1651 
1652 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1653 
1654 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1655 
1656 out_unlock:
1657 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1658 	if (rv)
1659 		kfree(rcvr);
1660 out_release:
1661 	release_ipmi_user(user, index);
1662 
1663 	return rv;
1664 }
1665 EXPORT_SYMBOL(ipmi_register_for_cmd);
1666 
1667 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1668 			    unsigned char netfn,
1669 			    unsigned char cmd,
1670 			    unsigned int  chans)
1671 {
1672 	struct ipmi_smi *intf = user->intf;
1673 	struct cmd_rcvr *rcvr;
1674 	struct cmd_rcvr *rcvrs = NULL;
1675 	int i, rv = -ENOENT, index;
1676 
1677 	user = acquire_ipmi_user(user, &index);
1678 	if (!user)
1679 		return -ENODEV;
1680 
1681 	mutex_lock(&intf->cmd_rcvrs_mutex);
1682 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1683 		if (((1 << i) & chans) == 0)
1684 			continue;
1685 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1686 		if (rcvr == NULL)
1687 			continue;
1688 		if (rcvr->user == user) {
1689 			rv = 0;
1690 			rcvr->chans &= ~chans;
1691 			if (rcvr->chans == 0) {
1692 				list_del_rcu(&rcvr->link);
1693 				rcvr->next = rcvrs;
1694 				rcvrs = rcvr;
1695 			}
1696 		}
1697 	}
1698 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1699 	synchronize_rcu();
1700 	release_ipmi_user(user, index);
1701 	while (rcvrs) {
1702 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1703 		rcvr = rcvrs;
1704 		rcvrs = rcvr->next;
1705 		kfree(rcvr);
1706 	}
1707 
1708 	return rv;
1709 }
1710 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1711 
1712 static unsigned char
1713 ipmb_checksum(unsigned char *data, int size)
1714 {
1715 	unsigned char csum = 0;
1716 
1717 	for (; size > 0; size--, data++)
1718 		csum += *data;
1719 
1720 	return -csum;
1721 }
1722 
1723 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1724 				   struct kernel_ipmi_msg *msg,
1725 				   struct ipmi_ipmb_addr *ipmb_addr,
1726 				   long                  msgid,
1727 				   unsigned char         ipmb_seq,
1728 				   int                   broadcast,
1729 				   unsigned char         source_address,
1730 				   unsigned char         source_lun)
1731 {
1732 	int i = broadcast;
1733 
1734 	/* Format the IPMB header data. */
1735 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1736 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1737 	smi_msg->data[2] = ipmb_addr->channel;
1738 	if (broadcast)
1739 		smi_msg->data[3] = 0;
1740 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1741 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1742 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1743 	smi_msg->data[i+6] = source_address;
1744 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1745 	smi_msg->data[i+8] = msg->cmd;
1746 
1747 	/* Now tack on the data to the message. */
1748 	if (msg->data_len > 0)
1749 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1750 	smi_msg->data_size = msg->data_len + 9;
1751 
1752 	/* Now calculate the checksum and tack it on. */
1753 	smi_msg->data[i+smi_msg->data_size]
1754 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1755 
1756 	/*
1757 	 * Add on the checksum size and the offset from the
1758 	 * broadcast.
1759 	 */
1760 	smi_msg->data_size += 1 + i;
1761 
1762 	smi_msg->msgid = msgid;
1763 }
1764 
1765 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1766 				  struct kernel_ipmi_msg *msg,
1767 				  struct ipmi_lan_addr  *lan_addr,
1768 				  long                  msgid,
1769 				  unsigned char         ipmb_seq,
1770 				  unsigned char         source_lun)
1771 {
1772 	/* Format the IPMB header data. */
1773 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1774 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1775 	smi_msg->data[2] = lan_addr->channel;
1776 	smi_msg->data[3] = lan_addr->session_handle;
1777 	smi_msg->data[4] = lan_addr->remote_SWID;
1778 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1779 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1780 	smi_msg->data[7] = lan_addr->local_SWID;
1781 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1782 	smi_msg->data[9] = msg->cmd;
1783 
1784 	/* Now tack on the data to the message. */
1785 	if (msg->data_len > 0)
1786 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1787 	smi_msg->data_size = msg->data_len + 10;
1788 
1789 	/* Now calculate the checksum and tack it on. */
1790 	smi_msg->data[smi_msg->data_size]
1791 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1792 
1793 	/*
1794 	 * Add on the checksum size and the offset from the
1795 	 * broadcast.
1796 	 */
1797 	smi_msg->data_size += 1;
1798 
1799 	smi_msg->msgid = msgid;
1800 }
1801 
1802 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1803 					     struct ipmi_smi_msg *smi_msg,
1804 					     int priority)
1805 {
1806 	if (intf->curr_msg) {
1807 		if (priority > 0)
1808 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1809 		else
1810 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1811 		smi_msg = NULL;
1812 	} else {
1813 		intf->curr_msg = smi_msg;
1814 	}
1815 
1816 	return smi_msg;
1817 }
1818 
1819 static void smi_send(struct ipmi_smi *intf,
1820 		     const struct ipmi_smi_handlers *handlers,
1821 		     struct ipmi_smi_msg *smi_msg, int priority)
1822 {
1823 	int run_to_completion = intf->run_to_completion;
1824 	unsigned long flags = 0;
1825 
1826 	if (!run_to_completion)
1827 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1828 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1829 
1830 	if (!run_to_completion)
1831 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1832 
1833 	if (smi_msg)
1834 		handlers->sender(intf->send_info, smi_msg);
1835 }
1836 
1837 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1838 {
1839 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1840 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1841 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1842 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1843 }
1844 
1845 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1846 			      struct ipmi_addr       *addr,
1847 			      long                   msgid,
1848 			      struct kernel_ipmi_msg *msg,
1849 			      struct ipmi_smi_msg    *smi_msg,
1850 			      struct ipmi_recv_msg   *recv_msg,
1851 			      int                    retries,
1852 			      unsigned int           retry_time_ms)
1853 {
1854 	struct ipmi_system_interface_addr *smi_addr;
1855 
1856 	if (msg->netfn & 1)
1857 		/* Responses are not allowed to the SMI. */
1858 		return -EINVAL;
1859 
1860 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1861 	if (smi_addr->lun > 3) {
1862 		ipmi_inc_stat(intf, sent_invalid_commands);
1863 		return -EINVAL;
1864 	}
1865 
1866 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1867 
1868 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1869 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1870 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1871 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1872 		/*
1873 		 * We don't let the user do these, since we manage
1874 		 * the sequence numbers.
1875 		 */
1876 		ipmi_inc_stat(intf, sent_invalid_commands);
1877 		return -EINVAL;
1878 	}
1879 
1880 	if (is_maintenance_mode_cmd(msg)) {
1881 		unsigned long flags;
1882 
1883 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1884 		intf->auto_maintenance_timeout
1885 			= maintenance_mode_timeout_ms;
1886 		if (!intf->maintenance_mode
1887 		    && !intf->maintenance_mode_enable) {
1888 			intf->maintenance_mode_enable = true;
1889 			maintenance_mode_update(intf);
1890 		}
1891 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1892 				       flags);
1893 	}
1894 
1895 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1896 		ipmi_inc_stat(intf, sent_invalid_commands);
1897 		return -EMSGSIZE;
1898 	}
1899 
1900 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1901 	smi_msg->data[1] = msg->cmd;
1902 	smi_msg->msgid = msgid;
1903 	smi_msg->user_data = recv_msg;
1904 	if (msg->data_len > 0)
1905 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1906 	smi_msg->data_size = msg->data_len + 2;
1907 	ipmi_inc_stat(intf, sent_local_commands);
1908 
1909 	return 0;
1910 }
1911 
1912 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1913 			   struct ipmi_addr       *addr,
1914 			   long                   msgid,
1915 			   struct kernel_ipmi_msg *msg,
1916 			   struct ipmi_smi_msg    *smi_msg,
1917 			   struct ipmi_recv_msg   *recv_msg,
1918 			   unsigned char          source_address,
1919 			   unsigned char          source_lun,
1920 			   int                    retries,
1921 			   unsigned int           retry_time_ms)
1922 {
1923 	struct ipmi_ipmb_addr *ipmb_addr;
1924 	unsigned char ipmb_seq;
1925 	long seqid;
1926 	int broadcast = 0;
1927 	struct ipmi_channel *chans;
1928 	int rv = 0;
1929 
1930 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1931 		ipmi_inc_stat(intf, sent_invalid_commands);
1932 		return -EINVAL;
1933 	}
1934 
1935 	chans = READ_ONCE(intf->channel_list)->c;
1936 
1937 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1938 		ipmi_inc_stat(intf, sent_invalid_commands);
1939 		return -EINVAL;
1940 	}
1941 
1942 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1943 		/*
1944 		 * Broadcasts add a zero at the beginning of the
1945 		 * message, but otherwise is the same as an IPMB
1946 		 * address.
1947 		 */
1948 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1949 		broadcast = 1;
1950 		retries = 0; /* Don't retry broadcasts. */
1951 	}
1952 
1953 	/*
1954 	 * 9 for the header and 1 for the checksum, plus
1955 	 * possibly one for the broadcast.
1956 	 */
1957 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1958 		ipmi_inc_stat(intf, sent_invalid_commands);
1959 		return -EMSGSIZE;
1960 	}
1961 
1962 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1963 	if (ipmb_addr->lun > 3) {
1964 		ipmi_inc_stat(intf, sent_invalid_commands);
1965 		return -EINVAL;
1966 	}
1967 
1968 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1969 
1970 	if (recv_msg->msg.netfn & 0x1) {
1971 		/*
1972 		 * It's a response, so use the user's sequence
1973 		 * from msgid.
1974 		 */
1975 		ipmi_inc_stat(intf, sent_ipmb_responses);
1976 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1977 				msgid, broadcast,
1978 				source_address, source_lun);
1979 
1980 		/*
1981 		 * Save the receive message so we can use it
1982 		 * to deliver the response.
1983 		 */
1984 		smi_msg->user_data = recv_msg;
1985 	} else {
1986 		/* It's a command, so get a sequence for it. */
1987 		unsigned long flags;
1988 
1989 		spin_lock_irqsave(&intf->seq_lock, flags);
1990 
1991 		if (is_maintenance_mode_cmd(msg))
1992 			intf->ipmb_maintenance_mode_timeout =
1993 				maintenance_mode_timeout_ms;
1994 
1995 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
1996 			/* Different default in maintenance mode */
1997 			retry_time_ms = default_maintenance_retry_ms;
1998 
1999 		/*
2000 		 * Create a sequence number with a 1 second
2001 		 * timeout and 4 retries.
2002 		 */
2003 		rv = intf_next_seq(intf,
2004 				   recv_msg,
2005 				   retry_time_ms,
2006 				   retries,
2007 				   broadcast,
2008 				   &ipmb_seq,
2009 				   &seqid);
2010 		if (rv)
2011 			/*
2012 			 * We have used up all the sequence numbers,
2013 			 * probably, so abort.
2014 			 */
2015 			goto out_err;
2016 
2017 		ipmi_inc_stat(intf, sent_ipmb_commands);
2018 
2019 		/*
2020 		 * Store the sequence number in the message,
2021 		 * so that when the send message response
2022 		 * comes back we can start the timer.
2023 		 */
2024 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2025 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2026 				ipmb_seq, broadcast,
2027 				source_address, source_lun);
2028 
2029 		/*
2030 		 * Copy the message into the recv message data, so we
2031 		 * can retransmit it later if necessary.
2032 		 */
2033 		memcpy(recv_msg->msg_data, smi_msg->data,
2034 		       smi_msg->data_size);
2035 		recv_msg->msg.data = recv_msg->msg_data;
2036 		recv_msg->msg.data_len = smi_msg->data_size;
2037 
2038 		/*
2039 		 * We don't unlock until here, because we need
2040 		 * to copy the completed message into the
2041 		 * recv_msg before we release the lock.
2042 		 * Otherwise, race conditions may bite us.  I
2043 		 * know that's pretty paranoid, but I prefer
2044 		 * to be correct.
2045 		 */
2046 out_err:
2047 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2048 	}
2049 
2050 	return rv;
2051 }
2052 
2053 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2054 			  struct ipmi_addr       *addr,
2055 			  long                   msgid,
2056 			  struct kernel_ipmi_msg *msg,
2057 			  struct ipmi_smi_msg    *smi_msg,
2058 			  struct ipmi_recv_msg   *recv_msg,
2059 			  unsigned char          source_lun,
2060 			  int                    retries,
2061 			  unsigned int           retry_time_ms)
2062 {
2063 	struct ipmi_lan_addr  *lan_addr;
2064 	unsigned char ipmb_seq;
2065 	long seqid;
2066 	struct ipmi_channel *chans;
2067 	int rv = 0;
2068 
2069 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2070 		ipmi_inc_stat(intf, sent_invalid_commands);
2071 		return -EINVAL;
2072 	}
2073 
2074 	chans = READ_ONCE(intf->channel_list)->c;
2075 
2076 	if ((chans[addr->channel].medium
2077 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2078 			&& (chans[addr->channel].medium
2079 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2080 		ipmi_inc_stat(intf, sent_invalid_commands);
2081 		return -EINVAL;
2082 	}
2083 
2084 	/* 11 for the header and 1 for the checksum. */
2085 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2086 		ipmi_inc_stat(intf, sent_invalid_commands);
2087 		return -EMSGSIZE;
2088 	}
2089 
2090 	lan_addr = (struct ipmi_lan_addr *) addr;
2091 	if (lan_addr->lun > 3) {
2092 		ipmi_inc_stat(intf, sent_invalid_commands);
2093 		return -EINVAL;
2094 	}
2095 
2096 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2097 
2098 	if (recv_msg->msg.netfn & 0x1) {
2099 		/*
2100 		 * It's a response, so use the user's sequence
2101 		 * from msgid.
2102 		 */
2103 		ipmi_inc_stat(intf, sent_lan_responses);
2104 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2105 			       msgid, source_lun);
2106 
2107 		/*
2108 		 * Save the receive message so we can use it
2109 		 * to deliver the response.
2110 		 */
2111 		smi_msg->user_data = recv_msg;
2112 	} else {
2113 		/* It's a command, so get a sequence for it. */
2114 		unsigned long flags;
2115 
2116 		spin_lock_irqsave(&intf->seq_lock, flags);
2117 
2118 		/*
2119 		 * Create a sequence number with a 1 second
2120 		 * timeout and 4 retries.
2121 		 */
2122 		rv = intf_next_seq(intf,
2123 				   recv_msg,
2124 				   retry_time_ms,
2125 				   retries,
2126 				   0,
2127 				   &ipmb_seq,
2128 				   &seqid);
2129 		if (rv)
2130 			/*
2131 			 * We have used up all the sequence numbers,
2132 			 * probably, so abort.
2133 			 */
2134 			goto out_err;
2135 
2136 		ipmi_inc_stat(intf, sent_lan_commands);
2137 
2138 		/*
2139 		 * Store the sequence number in the message,
2140 		 * so that when the send message response
2141 		 * comes back we can start the timer.
2142 		 */
2143 		format_lan_msg(smi_msg, msg, lan_addr,
2144 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2145 			       ipmb_seq, source_lun);
2146 
2147 		/*
2148 		 * Copy the message into the recv message data, so we
2149 		 * can retransmit it later if necessary.
2150 		 */
2151 		memcpy(recv_msg->msg_data, smi_msg->data,
2152 		       smi_msg->data_size);
2153 		recv_msg->msg.data = recv_msg->msg_data;
2154 		recv_msg->msg.data_len = smi_msg->data_size;
2155 
2156 		/*
2157 		 * We don't unlock until here, because we need
2158 		 * to copy the completed message into the
2159 		 * recv_msg before we release the lock.
2160 		 * Otherwise, race conditions may bite us.  I
2161 		 * know that's pretty paranoid, but I prefer
2162 		 * to be correct.
2163 		 */
2164 out_err:
2165 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2166 	}
2167 
2168 	return rv;
2169 }
2170 
2171 /*
2172  * Separate from ipmi_request so that the user does not have to be
2173  * supplied in certain circumstances (mainly at panic time).  If
2174  * messages are supplied, they will be freed, even if an error
2175  * occurs.
2176  */
2177 static int i_ipmi_request(struct ipmi_user     *user,
2178 			  struct ipmi_smi      *intf,
2179 			  struct ipmi_addr     *addr,
2180 			  long                 msgid,
2181 			  struct kernel_ipmi_msg *msg,
2182 			  void                 *user_msg_data,
2183 			  void                 *supplied_smi,
2184 			  struct ipmi_recv_msg *supplied_recv,
2185 			  int                  priority,
2186 			  unsigned char        source_address,
2187 			  unsigned char        source_lun,
2188 			  int                  retries,
2189 			  unsigned int         retry_time_ms)
2190 {
2191 	struct ipmi_smi_msg *smi_msg;
2192 	struct ipmi_recv_msg *recv_msg;
2193 	int rv = 0;
2194 
2195 	if (supplied_recv)
2196 		recv_msg = supplied_recv;
2197 	else {
2198 		recv_msg = ipmi_alloc_recv_msg();
2199 		if (recv_msg == NULL) {
2200 			rv = -ENOMEM;
2201 			goto out;
2202 		}
2203 	}
2204 	recv_msg->user_msg_data = user_msg_data;
2205 
2206 	if (supplied_smi)
2207 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2208 	else {
2209 		smi_msg = ipmi_alloc_smi_msg();
2210 		if (smi_msg == NULL) {
2211 			if (!supplied_recv)
2212 				ipmi_free_recv_msg(recv_msg);
2213 			rv = -ENOMEM;
2214 			goto out;
2215 		}
2216 	}
2217 
2218 	rcu_read_lock();
2219 	if (intf->in_shutdown) {
2220 		rv = -ENODEV;
2221 		goto out_err;
2222 	}
2223 
2224 	recv_msg->user = user;
2225 	if (user)
2226 		/* The put happens when the message is freed. */
2227 		kref_get(&user->refcount);
2228 	recv_msg->msgid = msgid;
2229 	/*
2230 	 * Store the message to send in the receive message so timeout
2231 	 * responses can get the proper response data.
2232 	 */
2233 	recv_msg->msg = *msg;
2234 
2235 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2236 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2237 					recv_msg, retries, retry_time_ms);
2238 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2239 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2240 				     source_address, source_lun,
2241 				     retries, retry_time_ms);
2242 	} else if (is_lan_addr(addr)) {
2243 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2244 				    source_lun, retries, retry_time_ms);
2245 	} else {
2246 	    /* Unknown address type. */
2247 		ipmi_inc_stat(intf, sent_invalid_commands);
2248 		rv = -EINVAL;
2249 	}
2250 
2251 	if (rv) {
2252 out_err:
2253 		ipmi_free_smi_msg(smi_msg);
2254 		ipmi_free_recv_msg(recv_msg);
2255 	} else {
2256 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2257 
2258 		smi_send(intf, intf->handlers, smi_msg, priority);
2259 	}
2260 	rcu_read_unlock();
2261 
2262 out:
2263 	return rv;
2264 }
2265 
2266 static int check_addr(struct ipmi_smi  *intf,
2267 		      struct ipmi_addr *addr,
2268 		      unsigned char    *saddr,
2269 		      unsigned char    *lun)
2270 {
2271 	if (addr->channel >= IPMI_MAX_CHANNELS)
2272 		return -EINVAL;
2273 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2274 	*lun = intf->addrinfo[addr->channel].lun;
2275 	*saddr = intf->addrinfo[addr->channel].address;
2276 	return 0;
2277 }
2278 
2279 int ipmi_request_settime(struct ipmi_user *user,
2280 			 struct ipmi_addr *addr,
2281 			 long             msgid,
2282 			 struct kernel_ipmi_msg  *msg,
2283 			 void             *user_msg_data,
2284 			 int              priority,
2285 			 int              retries,
2286 			 unsigned int     retry_time_ms)
2287 {
2288 	unsigned char saddr = 0, lun = 0;
2289 	int rv, index;
2290 
2291 	if (!user)
2292 		return -EINVAL;
2293 
2294 	user = acquire_ipmi_user(user, &index);
2295 	if (!user)
2296 		return -ENODEV;
2297 
2298 	rv = check_addr(user->intf, addr, &saddr, &lun);
2299 	if (!rv)
2300 		rv = i_ipmi_request(user,
2301 				    user->intf,
2302 				    addr,
2303 				    msgid,
2304 				    msg,
2305 				    user_msg_data,
2306 				    NULL, NULL,
2307 				    priority,
2308 				    saddr,
2309 				    lun,
2310 				    retries,
2311 				    retry_time_ms);
2312 
2313 	release_ipmi_user(user, index);
2314 	return rv;
2315 }
2316 EXPORT_SYMBOL(ipmi_request_settime);
2317 
2318 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2319 			     struct ipmi_addr     *addr,
2320 			     long                 msgid,
2321 			     struct kernel_ipmi_msg *msg,
2322 			     void                 *user_msg_data,
2323 			     void                 *supplied_smi,
2324 			     struct ipmi_recv_msg *supplied_recv,
2325 			     int                  priority)
2326 {
2327 	unsigned char saddr = 0, lun = 0;
2328 	int rv, index;
2329 
2330 	if (!user)
2331 		return -EINVAL;
2332 
2333 	user = acquire_ipmi_user(user, &index);
2334 	if (!user)
2335 		return -ENODEV;
2336 
2337 	rv = check_addr(user->intf, addr, &saddr, &lun);
2338 	if (!rv)
2339 		rv = i_ipmi_request(user,
2340 				    user->intf,
2341 				    addr,
2342 				    msgid,
2343 				    msg,
2344 				    user_msg_data,
2345 				    supplied_smi,
2346 				    supplied_recv,
2347 				    priority,
2348 				    saddr,
2349 				    lun,
2350 				    -1, 0);
2351 
2352 	release_ipmi_user(user, index);
2353 	return rv;
2354 }
2355 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2356 
2357 static void bmc_device_id_handler(struct ipmi_smi *intf,
2358 				  struct ipmi_recv_msg *msg)
2359 {
2360 	int rv;
2361 
2362 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2363 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2364 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2365 		dev_warn(intf->si_dev,
2366 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2367 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2368 		return;
2369 	}
2370 
2371 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2372 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2373 	if (rv) {
2374 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2375 		/* record completion code when error */
2376 		intf->bmc->cc = msg->msg.data[0];
2377 		intf->bmc->dyn_id_set = 0;
2378 	} else {
2379 		/*
2380 		 * Make sure the id data is available before setting
2381 		 * dyn_id_set.
2382 		 */
2383 		smp_wmb();
2384 		intf->bmc->dyn_id_set = 1;
2385 	}
2386 
2387 	wake_up(&intf->waitq);
2388 }
2389 
2390 static int
2391 send_get_device_id_cmd(struct ipmi_smi *intf)
2392 {
2393 	struct ipmi_system_interface_addr si;
2394 	struct kernel_ipmi_msg msg;
2395 
2396 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2397 	si.channel = IPMI_BMC_CHANNEL;
2398 	si.lun = 0;
2399 
2400 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2401 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2402 	msg.data = NULL;
2403 	msg.data_len = 0;
2404 
2405 	return i_ipmi_request(NULL,
2406 			      intf,
2407 			      (struct ipmi_addr *) &si,
2408 			      0,
2409 			      &msg,
2410 			      intf,
2411 			      NULL,
2412 			      NULL,
2413 			      0,
2414 			      intf->addrinfo[0].address,
2415 			      intf->addrinfo[0].lun,
2416 			      -1, 0);
2417 }
2418 
2419 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2420 {
2421 	int rv;
2422 	unsigned int retry_count = 0;
2423 
2424 	intf->null_user_handler = bmc_device_id_handler;
2425 
2426 retry:
2427 	bmc->cc = 0;
2428 	bmc->dyn_id_set = 2;
2429 
2430 	rv = send_get_device_id_cmd(intf);
2431 	if (rv)
2432 		goto out_reset_handler;
2433 
2434 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2435 
2436 	if (!bmc->dyn_id_set) {
2437 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2438 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2439 			msleep(500);
2440 			dev_warn(intf->si_dev,
2441 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2442 			    bmc->cc);
2443 			goto retry;
2444 		}
2445 
2446 		rv = -EIO; /* Something went wrong in the fetch. */
2447 	}
2448 
2449 	/* dyn_id_set makes the id data available. */
2450 	smp_rmb();
2451 
2452 out_reset_handler:
2453 	intf->null_user_handler = NULL;
2454 
2455 	return rv;
2456 }
2457 
2458 /*
2459  * Fetch the device id for the bmc/interface.  You must pass in either
2460  * bmc or intf, this code will get the other one.  If the data has
2461  * been recently fetched, this will just use the cached data.  Otherwise
2462  * it will run a new fetch.
2463  *
2464  * Except for the first time this is called (in ipmi_add_smi()),
2465  * this will always return good data;
2466  */
2467 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2468 			       struct ipmi_device_id *id,
2469 			       bool *guid_set, guid_t *guid, int intf_num)
2470 {
2471 	int rv = 0;
2472 	int prev_dyn_id_set, prev_guid_set;
2473 	bool intf_set = intf != NULL;
2474 
2475 	if (!intf) {
2476 		mutex_lock(&bmc->dyn_mutex);
2477 retry_bmc_lock:
2478 		if (list_empty(&bmc->intfs)) {
2479 			mutex_unlock(&bmc->dyn_mutex);
2480 			return -ENOENT;
2481 		}
2482 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2483 					bmc_link);
2484 		kref_get(&intf->refcount);
2485 		mutex_unlock(&bmc->dyn_mutex);
2486 		mutex_lock(&intf->bmc_reg_mutex);
2487 		mutex_lock(&bmc->dyn_mutex);
2488 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2489 					     bmc_link)) {
2490 			mutex_unlock(&intf->bmc_reg_mutex);
2491 			kref_put(&intf->refcount, intf_free);
2492 			goto retry_bmc_lock;
2493 		}
2494 	} else {
2495 		mutex_lock(&intf->bmc_reg_mutex);
2496 		bmc = intf->bmc;
2497 		mutex_lock(&bmc->dyn_mutex);
2498 		kref_get(&intf->refcount);
2499 	}
2500 
2501 	/* If we have a valid and current ID, just return that. */
2502 	if (intf->in_bmc_register ||
2503 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2504 		goto out_noprocessing;
2505 
2506 	prev_guid_set = bmc->dyn_guid_set;
2507 	__get_guid(intf);
2508 
2509 	prev_dyn_id_set = bmc->dyn_id_set;
2510 	rv = __get_device_id(intf, bmc);
2511 	if (rv)
2512 		goto out;
2513 
2514 	/*
2515 	 * The guid, device id, manufacturer id, and product id should
2516 	 * not change on a BMC.  If it does we have to do some dancing.
2517 	 */
2518 	if (!intf->bmc_registered
2519 	    || (!prev_guid_set && bmc->dyn_guid_set)
2520 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2521 	    || (prev_guid_set && bmc->dyn_guid_set
2522 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2523 	    || bmc->id.device_id != bmc->fetch_id.device_id
2524 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2525 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2526 		struct ipmi_device_id id = bmc->fetch_id;
2527 		int guid_set = bmc->dyn_guid_set;
2528 		guid_t guid;
2529 
2530 		guid = bmc->fetch_guid;
2531 		mutex_unlock(&bmc->dyn_mutex);
2532 
2533 		__ipmi_bmc_unregister(intf);
2534 		/* Fill in the temporary BMC for good measure. */
2535 		intf->bmc->id = id;
2536 		intf->bmc->dyn_guid_set = guid_set;
2537 		intf->bmc->guid = guid;
2538 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2539 			need_waiter(intf); /* Retry later on an error. */
2540 		else
2541 			__scan_channels(intf, &id);
2542 
2543 
2544 		if (!intf_set) {
2545 			/*
2546 			 * We weren't given the interface on the
2547 			 * command line, so restart the operation on
2548 			 * the next interface for the BMC.
2549 			 */
2550 			mutex_unlock(&intf->bmc_reg_mutex);
2551 			mutex_lock(&bmc->dyn_mutex);
2552 			goto retry_bmc_lock;
2553 		}
2554 
2555 		/* We have a new BMC, set it up. */
2556 		bmc = intf->bmc;
2557 		mutex_lock(&bmc->dyn_mutex);
2558 		goto out_noprocessing;
2559 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2560 		/* Version info changes, scan the channels again. */
2561 		__scan_channels(intf, &bmc->fetch_id);
2562 
2563 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2564 
2565 out:
2566 	if (rv && prev_dyn_id_set) {
2567 		rv = 0; /* Ignore failures if we have previous data. */
2568 		bmc->dyn_id_set = prev_dyn_id_set;
2569 	}
2570 	if (!rv) {
2571 		bmc->id = bmc->fetch_id;
2572 		if (bmc->dyn_guid_set)
2573 			bmc->guid = bmc->fetch_guid;
2574 		else if (prev_guid_set)
2575 			/*
2576 			 * The guid used to be valid and it failed to fetch,
2577 			 * just use the cached value.
2578 			 */
2579 			bmc->dyn_guid_set = prev_guid_set;
2580 	}
2581 out_noprocessing:
2582 	if (!rv) {
2583 		if (id)
2584 			*id = bmc->id;
2585 
2586 		if (guid_set)
2587 			*guid_set = bmc->dyn_guid_set;
2588 
2589 		if (guid && bmc->dyn_guid_set)
2590 			*guid =  bmc->guid;
2591 	}
2592 
2593 	mutex_unlock(&bmc->dyn_mutex);
2594 	mutex_unlock(&intf->bmc_reg_mutex);
2595 
2596 	kref_put(&intf->refcount, intf_free);
2597 	return rv;
2598 }
2599 
2600 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2601 			     struct ipmi_device_id *id,
2602 			     bool *guid_set, guid_t *guid)
2603 {
2604 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2605 }
2606 
2607 static ssize_t device_id_show(struct device *dev,
2608 			      struct device_attribute *attr,
2609 			      char *buf)
2610 {
2611 	struct bmc_device *bmc = to_bmc_device(dev);
2612 	struct ipmi_device_id id;
2613 	int rv;
2614 
2615 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2616 	if (rv)
2617 		return rv;
2618 
2619 	return snprintf(buf, 10, "%u\n", id.device_id);
2620 }
2621 static DEVICE_ATTR_RO(device_id);
2622 
2623 static ssize_t provides_device_sdrs_show(struct device *dev,
2624 					 struct device_attribute *attr,
2625 					 char *buf)
2626 {
2627 	struct bmc_device *bmc = to_bmc_device(dev);
2628 	struct ipmi_device_id id;
2629 	int rv;
2630 
2631 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2632 	if (rv)
2633 		return rv;
2634 
2635 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2636 }
2637 static DEVICE_ATTR_RO(provides_device_sdrs);
2638 
2639 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2640 			     char *buf)
2641 {
2642 	struct bmc_device *bmc = to_bmc_device(dev);
2643 	struct ipmi_device_id id;
2644 	int rv;
2645 
2646 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2647 	if (rv)
2648 		return rv;
2649 
2650 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2651 }
2652 static DEVICE_ATTR_RO(revision);
2653 
2654 static ssize_t firmware_revision_show(struct device *dev,
2655 				      struct device_attribute *attr,
2656 				      char *buf)
2657 {
2658 	struct bmc_device *bmc = to_bmc_device(dev);
2659 	struct ipmi_device_id id;
2660 	int rv;
2661 
2662 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2663 	if (rv)
2664 		return rv;
2665 
2666 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2667 			id.firmware_revision_2);
2668 }
2669 static DEVICE_ATTR_RO(firmware_revision);
2670 
2671 static ssize_t ipmi_version_show(struct device *dev,
2672 				 struct device_attribute *attr,
2673 				 char *buf)
2674 {
2675 	struct bmc_device *bmc = to_bmc_device(dev);
2676 	struct ipmi_device_id id;
2677 	int rv;
2678 
2679 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2680 	if (rv)
2681 		return rv;
2682 
2683 	return snprintf(buf, 20, "%u.%u\n",
2684 			ipmi_version_major(&id),
2685 			ipmi_version_minor(&id));
2686 }
2687 static DEVICE_ATTR_RO(ipmi_version);
2688 
2689 static ssize_t add_dev_support_show(struct device *dev,
2690 				    struct device_attribute *attr,
2691 				    char *buf)
2692 {
2693 	struct bmc_device *bmc = to_bmc_device(dev);
2694 	struct ipmi_device_id id;
2695 	int rv;
2696 
2697 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2698 	if (rv)
2699 		return rv;
2700 
2701 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2702 }
2703 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2704 		   NULL);
2705 
2706 static ssize_t manufacturer_id_show(struct device *dev,
2707 				    struct device_attribute *attr,
2708 				    char *buf)
2709 {
2710 	struct bmc_device *bmc = to_bmc_device(dev);
2711 	struct ipmi_device_id id;
2712 	int rv;
2713 
2714 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2715 	if (rv)
2716 		return rv;
2717 
2718 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2719 }
2720 static DEVICE_ATTR_RO(manufacturer_id);
2721 
2722 static ssize_t product_id_show(struct device *dev,
2723 			       struct device_attribute *attr,
2724 			       char *buf)
2725 {
2726 	struct bmc_device *bmc = to_bmc_device(dev);
2727 	struct ipmi_device_id id;
2728 	int rv;
2729 
2730 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2731 	if (rv)
2732 		return rv;
2733 
2734 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2735 }
2736 static DEVICE_ATTR_RO(product_id);
2737 
2738 static ssize_t aux_firmware_rev_show(struct device *dev,
2739 				     struct device_attribute *attr,
2740 				     char *buf)
2741 {
2742 	struct bmc_device *bmc = to_bmc_device(dev);
2743 	struct ipmi_device_id id;
2744 	int rv;
2745 
2746 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2747 	if (rv)
2748 		return rv;
2749 
2750 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2751 			id.aux_firmware_revision[3],
2752 			id.aux_firmware_revision[2],
2753 			id.aux_firmware_revision[1],
2754 			id.aux_firmware_revision[0]);
2755 }
2756 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2757 
2758 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2759 			 char *buf)
2760 {
2761 	struct bmc_device *bmc = to_bmc_device(dev);
2762 	bool guid_set;
2763 	guid_t guid;
2764 	int rv;
2765 
2766 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2767 	if (rv)
2768 		return rv;
2769 	if (!guid_set)
2770 		return -ENOENT;
2771 
2772 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2773 }
2774 static DEVICE_ATTR_RO(guid);
2775 
2776 static struct attribute *bmc_dev_attrs[] = {
2777 	&dev_attr_device_id.attr,
2778 	&dev_attr_provides_device_sdrs.attr,
2779 	&dev_attr_revision.attr,
2780 	&dev_attr_firmware_revision.attr,
2781 	&dev_attr_ipmi_version.attr,
2782 	&dev_attr_additional_device_support.attr,
2783 	&dev_attr_manufacturer_id.attr,
2784 	&dev_attr_product_id.attr,
2785 	&dev_attr_aux_firmware_revision.attr,
2786 	&dev_attr_guid.attr,
2787 	NULL
2788 };
2789 
2790 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2791 				       struct attribute *attr, int idx)
2792 {
2793 	struct device *dev = kobj_to_dev(kobj);
2794 	struct bmc_device *bmc = to_bmc_device(dev);
2795 	umode_t mode = attr->mode;
2796 	int rv;
2797 
2798 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2799 		struct ipmi_device_id id;
2800 
2801 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2802 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2803 	}
2804 	if (attr == &dev_attr_guid.attr) {
2805 		bool guid_set;
2806 
2807 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2808 		return (!rv && guid_set) ? mode : 0;
2809 	}
2810 	return mode;
2811 }
2812 
2813 static const struct attribute_group bmc_dev_attr_group = {
2814 	.attrs		= bmc_dev_attrs,
2815 	.is_visible	= bmc_dev_attr_is_visible,
2816 };
2817 
2818 static const struct attribute_group *bmc_dev_attr_groups[] = {
2819 	&bmc_dev_attr_group,
2820 	NULL
2821 };
2822 
2823 static const struct device_type bmc_device_type = {
2824 	.groups		= bmc_dev_attr_groups,
2825 };
2826 
2827 static int __find_bmc_guid(struct device *dev, const void *data)
2828 {
2829 	const guid_t *guid = data;
2830 	struct bmc_device *bmc;
2831 	int rv;
2832 
2833 	if (dev->type != &bmc_device_type)
2834 		return 0;
2835 
2836 	bmc = to_bmc_device(dev);
2837 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2838 	if (rv)
2839 		rv = kref_get_unless_zero(&bmc->usecount);
2840 	return rv;
2841 }
2842 
2843 /*
2844  * Returns with the bmc's usecount incremented, if it is non-NULL.
2845  */
2846 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2847 					     guid_t *guid)
2848 {
2849 	struct device *dev;
2850 	struct bmc_device *bmc = NULL;
2851 
2852 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2853 	if (dev) {
2854 		bmc = to_bmc_device(dev);
2855 		put_device(dev);
2856 	}
2857 	return bmc;
2858 }
2859 
2860 struct prod_dev_id {
2861 	unsigned int  product_id;
2862 	unsigned char device_id;
2863 };
2864 
2865 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2866 {
2867 	const struct prod_dev_id *cid = data;
2868 	struct bmc_device *bmc;
2869 	int rv;
2870 
2871 	if (dev->type != &bmc_device_type)
2872 		return 0;
2873 
2874 	bmc = to_bmc_device(dev);
2875 	rv = (bmc->id.product_id == cid->product_id
2876 	      && bmc->id.device_id == cid->device_id);
2877 	if (rv)
2878 		rv = kref_get_unless_zero(&bmc->usecount);
2879 	return rv;
2880 }
2881 
2882 /*
2883  * Returns with the bmc's usecount incremented, if it is non-NULL.
2884  */
2885 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2886 	struct device_driver *drv,
2887 	unsigned int product_id, unsigned char device_id)
2888 {
2889 	struct prod_dev_id id = {
2890 		.product_id = product_id,
2891 		.device_id = device_id,
2892 	};
2893 	struct device *dev;
2894 	struct bmc_device *bmc = NULL;
2895 
2896 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2897 	if (dev) {
2898 		bmc = to_bmc_device(dev);
2899 		put_device(dev);
2900 	}
2901 	return bmc;
2902 }
2903 
2904 static DEFINE_IDA(ipmi_bmc_ida);
2905 
2906 static void
2907 release_bmc_device(struct device *dev)
2908 {
2909 	kfree(to_bmc_device(dev));
2910 }
2911 
2912 static void cleanup_bmc_work(struct work_struct *work)
2913 {
2914 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2915 					      remove_work);
2916 	int id = bmc->pdev.id; /* Unregister overwrites id */
2917 
2918 	platform_device_unregister(&bmc->pdev);
2919 	ida_simple_remove(&ipmi_bmc_ida, id);
2920 }
2921 
2922 static void
2923 cleanup_bmc_device(struct kref *ref)
2924 {
2925 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2926 
2927 	/*
2928 	 * Remove the platform device in a work queue to avoid issues
2929 	 * with removing the device attributes while reading a device
2930 	 * attribute.
2931 	 */
2932 	schedule_work(&bmc->remove_work);
2933 }
2934 
2935 /*
2936  * Must be called with intf->bmc_reg_mutex held.
2937  */
2938 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2939 {
2940 	struct bmc_device *bmc = intf->bmc;
2941 
2942 	if (!intf->bmc_registered)
2943 		return;
2944 
2945 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2946 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2947 	kfree(intf->my_dev_name);
2948 	intf->my_dev_name = NULL;
2949 
2950 	mutex_lock(&bmc->dyn_mutex);
2951 	list_del(&intf->bmc_link);
2952 	mutex_unlock(&bmc->dyn_mutex);
2953 	intf->bmc = &intf->tmp_bmc;
2954 	kref_put(&bmc->usecount, cleanup_bmc_device);
2955 	intf->bmc_registered = false;
2956 }
2957 
2958 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2959 {
2960 	mutex_lock(&intf->bmc_reg_mutex);
2961 	__ipmi_bmc_unregister(intf);
2962 	mutex_unlock(&intf->bmc_reg_mutex);
2963 }
2964 
2965 /*
2966  * Must be called with intf->bmc_reg_mutex held.
2967  */
2968 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2969 			       struct ipmi_device_id *id,
2970 			       bool guid_set, guid_t *guid, int intf_num)
2971 {
2972 	int               rv;
2973 	struct bmc_device *bmc;
2974 	struct bmc_device *old_bmc;
2975 
2976 	/*
2977 	 * platform_device_register() can cause bmc_reg_mutex to
2978 	 * be claimed because of the is_visible functions of
2979 	 * the attributes.  Eliminate possible recursion and
2980 	 * release the lock.
2981 	 */
2982 	intf->in_bmc_register = true;
2983 	mutex_unlock(&intf->bmc_reg_mutex);
2984 
2985 	/*
2986 	 * Try to find if there is an bmc_device struct
2987 	 * representing the interfaced BMC already
2988 	 */
2989 	mutex_lock(&ipmidriver_mutex);
2990 	if (guid_set)
2991 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2992 	else
2993 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2994 						    id->product_id,
2995 						    id->device_id);
2996 
2997 	/*
2998 	 * If there is already an bmc_device, free the new one,
2999 	 * otherwise register the new BMC device
3000 	 */
3001 	if (old_bmc) {
3002 		bmc = old_bmc;
3003 		/*
3004 		 * Note: old_bmc already has usecount incremented by
3005 		 * the BMC find functions.
3006 		 */
3007 		intf->bmc = old_bmc;
3008 		mutex_lock(&bmc->dyn_mutex);
3009 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3010 		mutex_unlock(&bmc->dyn_mutex);
3011 
3012 		dev_info(intf->si_dev,
3013 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3014 			 bmc->id.manufacturer_id,
3015 			 bmc->id.product_id,
3016 			 bmc->id.device_id);
3017 	} else {
3018 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3019 		if (!bmc) {
3020 			rv = -ENOMEM;
3021 			goto out;
3022 		}
3023 		INIT_LIST_HEAD(&bmc->intfs);
3024 		mutex_init(&bmc->dyn_mutex);
3025 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3026 
3027 		bmc->id = *id;
3028 		bmc->dyn_id_set = 1;
3029 		bmc->dyn_guid_set = guid_set;
3030 		bmc->guid = *guid;
3031 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3032 
3033 		bmc->pdev.name = "ipmi_bmc";
3034 
3035 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3036 		if (rv < 0) {
3037 			kfree(bmc);
3038 			goto out;
3039 		}
3040 
3041 		bmc->pdev.dev.driver = &ipmidriver.driver;
3042 		bmc->pdev.id = rv;
3043 		bmc->pdev.dev.release = release_bmc_device;
3044 		bmc->pdev.dev.type = &bmc_device_type;
3045 		kref_init(&bmc->usecount);
3046 
3047 		intf->bmc = bmc;
3048 		mutex_lock(&bmc->dyn_mutex);
3049 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3050 		mutex_unlock(&bmc->dyn_mutex);
3051 
3052 		rv = platform_device_register(&bmc->pdev);
3053 		if (rv) {
3054 			dev_err(intf->si_dev,
3055 				"Unable to register bmc device: %d\n",
3056 				rv);
3057 			goto out_list_del;
3058 		}
3059 
3060 		dev_info(intf->si_dev,
3061 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3062 			 bmc->id.manufacturer_id,
3063 			 bmc->id.product_id,
3064 			 bmc->id.device_id);
3065 	}
3066 
3067 	/*
3068 	 * create symlink from system interface device to bmc device
3069 	 * and back.
3070 	 */
3071 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3072 	if (rv) {
3073 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3074 		goto out_put_bmc;
3075 	}
3076 
3077 	if (intf_num == -1)
3078 		intf_num = intf->intf_num;
3079 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3080 	if (!intf->my_dev_name) {
3081 		rv = -ENOMEM;
3082 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3083 			rv);
3084 		goto out_unlink1;
3085 	}
3086 
3087 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3088 			       intf->my_dev_name);
3089 	if (rv) {
3090 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3091 			rv);
3092 		goto out_free_my_dev_name;
3093 	}
3094 
3095 	intf->bmc_registered = true;
3096 
3097 out:
3098 	mutex_unlock(&ipmidriver_mutex);
3099 	mutex_lock(&intf->bmc_reg_mutex);
3100 	intf->in_bmc_register = false;
3101 	return rv;
3102 
3103 
3104 out_free_my_dev_name:
3105 	kfree(intf->my_dev_name);
3106 	intf->my_dev_name = NULL;
3107 
3108 out_unlink1:
3109 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3110 
3111 out_put_bmc:
3112 	mutex_lock(&bmc->dyn_mutex);
3113 	list_del(&intf->bmc_link);
3114 	mutex_unlock(&bmc->dyn_mutex);
3115 	intf->bmc = &intf->tmp_bmc;
3116 	kref_put(&bmc->usecount, cleanup_bmc_device);
3117 	goto out;
3118 
3119 out_list_del:
3120 	mutex_lock(&bmc->dyn_mutex);
3121 	list_del(&intf->bmc_link);
3122 	mutex_unlock(&bmc->dyn_mutex);
3123 	intf->bmc = &intf->tmp_bmc;
3124 	put_device(&bmc->pdev.dev);
3125 	goto out;
3126 }
3127 
3128 static int
3129 send_guid_cmd(struct ipmi_smi *intf, int chan)
3130 {
3131 	struct kernel_ipmi_msg            msg;
3132 	struct ipmi_system_interface_addr si;
3133 
3134 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3135 	si.channel = IPMI_BMC_CHANNEL;
3136 	si.lun = 0;
3137 
3138 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3139 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3140 	msg.data = NULL;
3141 	msg.data_len = 0;
3142 	return i_ipmi_request(NULL,
3143 			      intf,
3144 			      (struct ipmi_addr *) &si,
3145 			      0,
3146 			      &msg,
3147 			      intf,
3148 			      NULL,
3149 			      NULL,
3150 			      0,
3151 			      intf->addrinfo[0].address,
3152 			      intf->addrinfo[0].lun,
3153 			      -1, 0);
3154 }
3155 
3156 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3157 {
3158 	struct bmc_device *bmc = intf->bmc;
3159 
3160 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3161 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3162 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3163 		/* Not for me */
3164 		return;
3165 
3166 	if (msg->msg.data[0] != 0) {
3167 		/* Error from getting the GUID, the BMC doesn't have one. */
3168 		bmc->dyn_guid_set = 0;
3169 		goto out;
3170 	}
3171 
3172 	if (msg->msg.data_len < UUID_SIZE + 1) {
3173 		bmc->dyn_guid_set = 0;
3174 		dev_warn(intf->si_dev,
3175 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3176 			 msg->msg.data_len, UUID_SIZE + 1);
3177 		goto out;
3178 	}
3179 
3180 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3181 	/*
3182 	 * Make sure the guid data is available before setting
3183 	 * dyn_guid_set.
3184 	 */
3185 	smp_wmb();
3186 	bmc->dyn_guid_set = 1;
3187  out:
3188 	wake_up(&intf->waitq);
3189 }
3190 
3191 static void __get_guid(struct ipmi_smi *intf)
3192 {
3193 	int rv;
3194 	struct bmc_device *bmc = intf->bmc;
3195 
3196 	bmc->dyn_guid_set = 2;
3197 	intf->null_user_handler = guid_handler;
3198 	rv = send_guid_cmd(intf, 0);
3199 	if (rv)
3200 		/* Send failed, no GUID available. */
3201 		bmc->dyn_guid_set = 0;
3202 	else
3203 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3204 
3205 	/* dyn_guid_set makes the guid data available. */
3206 	smp_rmb();
3207 
3208 	intf->null_user_handler = NULL;
3209 }
3210 
3211 static int
3212 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3213 {
3214 	struct kernel_ipmi_msg            msg;
3215 	unsigned char                     data[1];
3216 	struct ipmi_system_interface_addr si;
3217 
3218 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3219 	si.channel = IPMI_BMC_CHANNEL;
3220 	si.lun = 0;
3221 
3222 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3223 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3224 	msg.data = data;
3225 	msg.data_len = 1;
3226 	data[0] = chan;
3227 	return i_ipmi_request(NULL,
3228 			      intf,
3229 			      (struct ipmi_addr *) &si,
3230 			      0,
3231 			      &msg,
3232 			      intf,
3233 			      NULL,
3234 			      NULL,
3235 			      0,
3236 			      intf->addrinfo[0].address,
3237 			      intf->addrinfo[0].lun,
3238 			      -1, 0);
3239 }
3240 
3241 static void
3242 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3243 {
3244 	int rv = 0;
3245 	int ch;
3246 	unsigned int set = intf->curr_working_cset;
3247 	struct ipmi_channel *chans;
3248 
3249 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3250 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3251 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3252 		/* It's the one we want */
3253 		if (msg->msg.data[0] != 0) {
3254 			/* Got an error from the channel, just go on. */
3255 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3256 				/*
3257 				 * If the MC does not support this
3258 				 * command, that is legal.  We just
3259 				 * assume it has one IPMB at channel
3260 				 * zero.
3261 				 */
3262 				intf->wchannels[set].c[0].medium
3263 					= IPMI_CHANNEL_MEDIUM_IPMB;
3264 				intf->wchannels[set].c[0].protocol
3265 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3266 
3267 				intf->channel_list = intf->wchannels + set;
3268 				intf->channels_ready = true;
3269 				wake_up(&intf->waitq);
3270 				goto out;
3271 			}
3272 			goto next_channel;
3273 		}
3274 		if (msg->msg.data_len < 4) {
3275 			/* Message not big enough, just go on. */
3276 			goto next_channel;
3277 		}
3278 		ch = intf->curr_channel;
3279 		chans = intf->wchannels[set].c;
3280 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3281 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3282 
3283  next_channel:
3284 		intf->curr_channel++;
3285 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3286 			intf->channel_list = intf->wchannels + set;
3287 			intf->channels_ready = true;
3288 			wake_up(&intf->waitq);
3289 		} else {
3290 			intf->channel_list = intf->wchannels + set;
3291 			intf->channels_ready = true;
3292 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3293 		}
3294 
3295 		if (rv) {
3296 			/* Got an error somehow, just give up. */
3297 			dev_warn(intf->si_dev,
3298 				 "Error sending channel information for channel %d: %d\n",
3299 				 intf->curr_channel, rv);
3300 
3301 			intf->channel_list = intf->wchannels + set;
3302 			intf->channels_ready = true;
3303 			wake_up(&intf->waitq);
3304 		}
3305 	}
3306  out:
3307 	return;
3308 }
3309 
3310 /*
3311  * Must be holding intf->bmc_reg_mutex to call this.
3312  */
3313 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3314 {
3315 	int rv;
3316 
3317 	if (ipmi_version_major(id) > 1
3318 			|| (ipmi_version_major(id) == 1
3319 			    && ipmi_version_minor(id) >= 5)) {
3320 		unsigned int set;
3321 
3322 		/*
3323 		 * Start scanning the channels to see what is
3324 		 * available.
3325 		 */
3326 		set = !intf->curr_working_cset;
3327 		intf->curr_working_cset = set;
3328 		memset(&intf->wchannels[set], 0,
3329 		       sizeof(struct ipmi_channel_set));
3330 
3331 		intf->null_user_handler = channel_handler;
3332 		intf->curr_channel = 0;
3333 		rv = send_channel_info_cmd(intf, 0);
3334 		if (rv) {
3335 			dev_warn(intf->si_dev,
3336 				 "Error sending channel information for channel 0, %d\n",
3337 				 rv);
3338 			intf->null_user_handler = NULL;
3339 			return -EIO;
3340 		}
3341 
3342 		/* Wait for the channel info to be read. */
3343 		wait_event(intf->waitq, intf->channels_ready);
3344 		intf->null_user_handler = NULL;
3345 	} else {
3346 		unsigned int set = intf->curr_working_cset;
3347 
3348 		/* Assume a single IPMB channel at zero. */
3349 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3350 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3351 		intf->channel_list = intf->wchannels + set;
3352 		intf->channels_ready = true;
3353 	}
3354 
3355 	return 0;
3356 }
3357 
3358 static void ipmi_poll(struct ipmi_smi *intf)
3359 {
3360 	if (intf->handlers->poll)
3361 		intf->handlers->poll(intf->send_info);
3362 	/* In case something came in */
3363 	handle_new_recv_msgs(intf);
3364 }
3365 
3366 void ipmi_poll_interface(struct ipmi_user *user)
3367 {
3368 	ipmi_poll(user->intf);
3369 }
3370 EXPORT_SYMBOL(ipmi_poll_interface);
3371 
3372 static void redo_bmc_reg(struct work_struct *work)
3373 {
3374 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3375 					     bmc_reg_work);
3376 
3377 	if (!intf->in_shutdown)
3378 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3379 
3380 	kref_put(&intf->refcount, intf_free);
3381 }
3382 
3383 int ipmi_add_smi(struct module         *owner,
3384 		 const struct ipmi_smi_handlers *handlers,
3385 		 void		       *send_info,
3386 		 struct device         *si_dev,
3387 		 unsigned char         slave_addr)
3388 {
3389 	int              i, j;
3390 	int              rv;
3391 	struct ipmi_smi *intf, *tintf;
3392 	struct list_head *link;
3393 	struct ipmi_device_id id;
3394 
3395 	/*
3396 	 * Make sure the driver is actually initialized, this handles
3397 	 * problems with initialization order.
3398 	 */
3399 	rv = ipmi_init_msghandler();
3400 	if (rv)
3401 		return rv;
3402 
3403 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3404 	if (!intf)
3405 		return -ENOMEM;
3406 
3407 	rv = init_srcu_struct(&intf->users_srcu);
3408 	if (rv) {
3409 		kfree(intf);
3410 		return rv;
3411 	}
3412 
3413 	intf->owner = owner;
3414 	intf->bmc = &intf->tmp_bmc;
3415 	INIT_LIST_HEAD(&intf->bmc->intfs);
3416 	mutex_init(&intf->bmc->dyn_mutex);
3417 	INIT_LIST_HEAD(&intf->bmc_link);
3418 	mutex_init(&intf->bmc_reg_mutex);
3419 	intf->intf_num = -1; /* Mark it invalid for now. */
3420 	kref_init(&intf->refcount);
3421 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3422 	intf->si_dev = si_dev;
3423 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3424 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3425 		intf->addrinfo[j].lun = 2;
3426 	}
3427 	if (slave_addr != 0)
3428 		intf->addrinfo[0].address = slave_addr;
3429 	INIT_LIST_HEAD(&intf->users);
3430 	intf->handlers = handlers;
3431 	intf->send_info = send_info;
3432 	spin_lock_init(&intf->seq_lock);
3433 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3434 		intf->seq_table[j].inuse = 0;
3435 		intf->seq_table[j].seqid = 0;
3436 	}
3437 	intf->curr_seq = 0;
3438 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3439 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3440 	tasklet_setup(&intf->recv_tasklet,
3441 		     smi_recv_tasklet);
3442 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3443 	spin_lock_init(&intf->xmit_msgs_lock);
3444 	INIT_LIST_HEAD(&intf->xmit_msgs);
3445 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3446 	spin_lock_init(&intf->events_lock);
3447 	spin_lock_init(&intf->watch_lock);
3448 	atomic_set(&intf->event_waiters, 0);
3449 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3450 	INIT_LIST_HEAD(&intf->waiting_events);
3451 	intf->waiting_events_count = 0;
3452 	mutex_init(&intf->cmd_rcvrs_mutex);
3453 	spin_lock_init(&intf->maintenance_mode_lock);
3454 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3455 	init_waitqueue_head(&intf->waitq);
3456 	for (i = 0; i < IPMI_NUM_STATS; i++)
3457 		atomic_set(&intf->stats[i], 0);
3458 
3459 	mutex_lock(&ipmi_interfaces_mutex);
3460 	/* Look for a hole in the numbers. */
3461 	i = 0;
3462 	link = &ipmi_interfaces;
3463 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3464 				ipmi_interfaces_mutex_held()) {
3465 		if (tintf->intf_num != i) {
3466 			link = &tintf->link;
3467 			break;
3468 		}
3469 		i++;
3470 	}
3471 	/* Add the new interface in numeric order. */
3472 	if (i == 0)
3473 		list_add_rcu(&intf->link, &ipmi_interfaces);
3474 	else
3475 		list_add_tail_rcu(&intf->link, link);
3476 
3477 	rv = handlers->start_processing(send_info, intf);
3478 	if (rv)
3479 		goto out_err;
3480 
3481 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3482 	if (rv) {
3483 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3484 		goto out_err_started;
3485 	}
3486 
3487 	mutex_lock(&intf->bmc_reg_mutex);
3488 	rv = __scan_channels(intf, &id);
3489 	mutex_unlock(&intf->bmc_reg_mutex);
3490 	if (rv)
3491 		goto out_err_bmc_reg;
3492 
3493 	/*
3494 	 * Keep memory order straight for RCU readers.  Make
3495 	 * sure everything else is committed to memory before
3496 	 * setting intf_num to mark the interface valid.
3497 	 */
3498 	smp_wmb();
3499 	intf->intf_num = i;
3500 	mutex_unlock(&ipmi_interfaces_mutex);
3501 
3502 	/* After this point the interface is legal to use. */
3503 	call_smi_watchers(i, intf->si_dev);
3504 
3505 	return 0;
3506 
3507  out_err_bmc_reg:
3508 	ipmi_bmc_unregister(intf);
3509  out_err_started:
3510 	if (intf->handlers->shutdown)
3511 		intf->handlers->shutdown(intf->send_info);
3512  out_err:
3513 	list_del_rcu(&intf->link);
3514 	mutex_unlock(&ipmi_interfaces_mutex);
3515 	synchronize_srcu(&ipmi_interfaces_srcu);
3516 	cleanup_srcu_struct(&intf->users_srcu);
3517 	kref_put(&intf->refcount, intf_free);
3518 
3519 	return rv;
3520 }
3521 EXPORT_SYMBOL(ipmi_add_smi);
3522 
3523 static void deliver_smi_err_response(struct ipmi_smi *intf,
3524 				     struct ipmi_smi_msg *msg,
3525 				     unsigned char err)
3526 {
3527 	msg->rsp[0] = msg->data[0] | 4;
3528 	msg->rsp[1] = msg->data[1];
3529 	msg->rsp[2] = err;
3530 	msg->rsp_size = 3;
3531 	/* It's an error, so it will never requeue, no need to check return. */
3532 	handle_one_recv_msg(intf, msg);
3533 }
3534 
3535 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3536 {
3537 	int              i;
3538 	struct seq_table *ent;
3539 	struct ipmi_smi_msg *msg;
3540 	struct list_head *entry;
3541 	struct list_head tmplist;
3542 
3543 	/* Clear out our transmit queues and hold the messages. */
3544 	INIT_LIST_HEAD(&tmplist);
3545 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3546 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3547 
3548 	/* Current message first, to preserve order */
3549 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3550 		/* Wait for the message to clear out. */
3551 		schedule_timeout(1);
3552 	}
3553 
3554 	/* No need for locks, the interface is down. */
3555 
3556 	/*
3557 	 * Return errors for all pending messages in queue and in the
3558 	 * tables waiting for remote responses.
3559 	 */
3560 	while (!list_empty(&tmplist)) {
3561 		entry = tmplist.next;
3562 		list_del(entry);
3563 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3564 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3565 	}
3566 
3567 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3568 		ent = &intf->seq_table[i];
3569 		if (!ent->inuse)
3570 			continue;
3571 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3572 	}
3573 }
3574 
3575 void ipmi_unregister_smi(struct ipmi_smi *intf)
3576 {
3577 	struct ipmi_smi_watcher *w;
3578 	int intf_num = intf->intf_num, index;
3579 
3580 	mutex_lock(&ipmi_interfaces_mutex);
3581 	intf->intf_num = -1;
3582 	intf->in_shutdown = true;
3583 	list_del_rcu(&intf->link);
3584 	mutex_unlock(&ipmi_interfaces_mutex);
3585 	synchronize_srcu(&ipmi_interfaces_srcu);
3586 
3587 	/* At this point no users can be added to the interface. */
3588 
3589 	/*
3590 	 * Call all the watcher interfaces to tell them that
3591 	 * an interface is going away.
3592 	 */
3593 	mutex_lock(&smi_watchers_mutex);
3594 	list_for_each_entry(w, &smi_watchers, link)
3595 		w->smi_gone(intf_num);
3596 	mutex_unlock(&smi_watchers_mutex);
3597 
3598 	index = srcu_read_lock(&intf->users_srcu);
3599 	while (!list_empty(&intf->users)) {
3600 		struct ipmi_user *user =
3601 			container_of(list_next_rcu(&intf->users),
3602 				     struct ipmi_user, link);
3603 
3604 		_ipmi_destroy_user(user);
3605 	}
3606 	srcu_read_unlock(&intf->users_srcu, index);
3607 
3608 	if (intf->handlers->shutdown)
3609 		intf->handlers->shutdown(intf->send_info);
3610 
3611 	cleanup_smi_msgs(intf);
3612 
3613 	ipmi_bmc_unregister(intf);
3614 
3615 	cleanup_srcu_struct(&intf->users_srcu);
3616 	kref_put(&intf->refcount, intf_free);
3617 }
3618 EXPORT_SYMBOL(ipmi_unregister_smi);
3619 
3620 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3621 				   struct ipmi_smi_msg *msg)
3622 {
3623 	struct ipmi_ipmb_addr ipmb_addr;
3624 	struct ipmi_recv_msg  *recv_msg;
3625 
3626 	/*
3627 	 * This is 11, not 10, because the response must contain a
3628 	 * completion code.
3629 	 */
3630 	if (msg->rsp_size < 11) {
3631 		/* Message not big enough, just ignore it. */
3632 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3633 		return 0;
3634 	}
3635 
3636 	if (msg->rsp[2] != 0) {
3637 		/* An error getting the response, just ignore it. */
3638 		return 0;
3639 	}
3640 
3641 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3642 	ipmb_addr.slave_addr = msg->rsp[6];
3643 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3644 	ipmb_addr.lun = msg->rsp[7] & 3;
3645 
3646 	/*
3647 	 * It's a response from a remote entity.  Look up the sequence
3648 	 * number and handle the response.
3649 	 */
3650 	if (intf_find_seq(intf,
3651 			  msg->rsp[7] >> 2,
3652 			  msg->rsp[3] & 0x0f,
3653 			  msg->rsp[8],
3654 			  (msg->rsp[4] >> 2) & (~1),
3655 			  (struct ipmi_addr *) &ipmb_addr,
3656 			  &recv_msg)) {
3657 		/*
3658 		 * We were unable to find the sequence number,
3659 		 * so just nuke the message.
3660 		 */
3661 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3662 		return 0;
3663 	}
3664 
3665 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3666 	/*
3667 	 * The other fields matched, so no need to set them, except
3668 	 * for netfn, which needs to be the response that was
3669 	 * returned, not the request value.
3670 	 */
3671 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3672 	recv_msg->msg.data = recv_msg->msg_data;
3673 	recv_msg->msg.data_len = msg->rsp_size - 10;
3674 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3675 	if (deliver_response(intf, recv_msg))
3676 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3677 	else
3678 		ipmi_inc_stat(intf, handled_ipmb_responses);
3679 
3680 	return 0;
3681 }
3682 
3683 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3684 				   struct ipmi_smi_msg *msg)
3685 {
3686 	struct cmd_rcvr          *rcvr;
3687 	int                      rv = 0;
3688 	unsigned char            netfn;
3689 	unsigned char            cmd;
3690 	unsigned char            chan;
3691 	struct ipmi_user         *user = NULL;
3692 	struct ipmi_ipmb_addr    *ipmb_addr;
3693 	struct ipmi_recv_msg     *recv_msg;
3694 
3695 	if (msg->rsp_size < 10) {
3696 		/* Message not big enough, just ignore it. */
3697 		ipmi_inc_stat(intf, invalid_commands);
3698 		return 0;
3699 	}
3700 
3701 	if (msg->rsp[2] != 0) {
3702 		/* An error getting the response, just ignore it. */
3703 		return 0;
3704 	}
3705 
3706 	netfn = msg->rsp[4] >> 2;
3707 	cmd = msg->rsp[8];
3708 	chan = msg->rsp[3] & 0xf;
3709 
3710 	rcu_read_lock();
3711 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3712 	if (rcvr) {
3713 		user = rcvr->user;
3714 		kref_get(&user->refcount);
3715 	} else
3716 		user = NULL;
3717 	rcu_read_unlock();
3718 
3719 	if (user == NULL) {
3720 		/* We didn't find a user, deliver an error response. */
3721 		ipmi_inc_stat(intf, unhandled_commands);
3722 
3723 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3724 		msg->data[1] = IPMI_SEND_MSG_CMD;
3725 		msg->data[2] = msg->rsp[3];
3726 		msg->data[3] = msg->rsp[6];
3727 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3728 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3729 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3730 		/* rqseq/lun */
3731 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3732 		msg->data[8] = msg->rsp[8]; /* cmd */
3733 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3734 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3735 		msg->data_size = 11;
3736 
3737 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3738 
3739 		rcu_read_lock();
3740 		if (!intf->in_shutdown) {
3741 			smi_send(intf, intf->handlers, msg, 0);
3742 			/*
3743 			 * We used the message, so return the value
3744 			 * that causes it to not be freed or
3745 			 * queued.
3746 			 */
3747 			rv = -1;
3748 		}
3749 		rcu_read_unlock();
3750 	} else {
3751 		recv_msg = ipmi_alloc_recv_msg();
3752 		if (!recv_msg) {
3753 			/*
3754 			 * We couldn't allocate memory for the
3755 			 * message, so requeue it for handling
3756 			 * later.
3757 			 */
3758 			rv = 1;
3759 			kref_put(&user->refcount, free_user);
3760 		} else {
3761 			/* Extract the source address from the data. */
3762 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3763 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3764 			ipmb_addr->slave_addr = msg->rsp[6];
3765 			ipmb_addr->lun = msg->rsp[7] & 3;
3766 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3767 
3768 			/*
3769 			 * Extract the rest of the message information
3770 			 * from the IPMB header.
3771 			 */
3772 			recv_msg->user = user;
3773 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3774 			recv_msg->msgid = msg->rsp[7] >> 2;
3775 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3776 			recv_msg->msg.cmd = msg->rsp[8];
3777 			recv_msg->msg.data = recv_msg->msg_data;
3778 
3779 			/*
3780 			 * We chop off 10, not 9 bytes because the checksum
3781 			 * at the end also needs to be removed.
3782 			 */
3783 			recv_msg->msg.data_len = msg->rsp_size - 10;
3784 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3785 			       msg->rsp_size - 10);
3786 			if (deliver_response(intf, recv_msg))
3787 				ipmi_inc_stat(intf, unhandled_commands);
3788 			else
3789 				ipmi_inc_stat(intf, handled_commands);
3790 		}
3791 	}
3792 
3793 	return rv;
3794 }
3795 
3796 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3797 				  struct ipmi_smi_msg *msg)
3798 {
3799 	struct ipmi_lan_addr  lan_addr;
3800 	struct ipmi_recv_msg  *recv_msg;
3801 
3802 
3803 	/*
3804 	 * This is 13, not 12, because the response must contain a
3805 	 * completion code.
3806 	 */
3807 	if (msg->rsp_size < 13) {
3808 		/* Message not big enough, just ignore it. */
3809 		ipmi_inc_stat(intf, invalid_lan_responses);
3810 		return 0;
3811 	}
3812 
3813 	if (msg->rsp[2] != 0) {
3814 		/* An error getting the response, just ignore it. */
3815 		return 0;
3816 	}
3817 
3818 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3819 	lan_addr.session_handle = msg->rsp[4];
3820 	lan_addr.remote_SWID = msg->rsp[8];
3821 	lan_addr.local_SWID = msg->rsp[5];
3822 	lan_addr.channel = msg->rsp[3] & 0x0f;
3823 	lan_addr.privilege = msg->rsp[3] >> 4;
3824 	lan_addr.lun = msg->rsp[9] & 3;
3825 
3826 	/*
3827 	 * It's a response from a remote entity.  Look up the sequence
3828 	 * number and handle the response.
3829 	 */
3830 	if (intf_find_seq(intf,
3831 			  msg->rsp[9] >> 2,
3832 			  msg->rsp[3] & 0x0f,
3833 			  msg->rsp[10],
3834 			  (msg->rsp[6] >> 2) & (~1),
3835 			  (struct ipmi_addr *) &lan_addr,
3836 			  &recv_msg)) {
3837 		/*
3838 		 * We were unable to find the sequence number,
3839 		 * so just nuke the message.
3840 		 */
3841 		ipmi_inc_stat(intf, unhandled_lan_responses);
3842 		return 0;
3843 	}
3844 
3845 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3846 	/*
3847 	 * The other fields matched, so no need to set them, except
3848 	 * for netfn, which needs to be the response that was
3849 	 * returned, not the request value.
3850 	 */
3851 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3852 	recv_msg->msg.data = recv_msg->msg_data;
3853 	recv_msg->msg.data_len = msg->rsp_size - 12;
3854 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3855 	if (deliver_response(intf, recv_msg))
3856 		ipmi_inc_stat(intf, unhandled_lan_responses);
3857 	else
3858 		ipmi_inc_stat(intf, handled_lan_responses);
3859 
3860 	return 0;
3861 }
3862 
3863 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3864 				  struct ipmi_smi_msg *msg)
3865 {
3866 	struct cmd_rcvr          *rcvr;
3867 	int                      rv = 0;
3868 	unsigned char            netfn;
3869 	unsigned char            cmd;
3870 	unsigned char            chan;
3871 	struct ipmi_user         *user = NULL;
3872 	struct ipmi_lan_addr     *lan_addr;
3873 	struct ipmi_recv_msg     *recv_msg;
3874 
3875 	if (msg->rsp_size < 12) {
3876 		/* Message not big enough, just ignore it. */
3877 		ipmi_inc_stat(intf, invalid_commands);
3878 		return 0;
3879 	}
3880 
3881 	if (msg->rsp[2] != 0) {
3882 		/* An error getting the response, just ignore it. */
3883 		return 0;
3884 	}
3885 
3886 	netfn = msg->rsp[6] >> 2;
3887 	cmd = msg->rsp[10];
3888 	chan = msg->rsp[3] & 0xf;
3889 
3890 	rcu_read_lock();
3891 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3892 	if (rcvr) {
3893 		user = rcvr->user;
3894 		kref_get(&user->refcount);
3895 	} else
3896 		user = NULL;
3897 	rcu_read_unlock();
3898 
3899 	if (user == NULL) {
3900 		/* We didn't find a user, just give up. */
3901 		ipmi_inc_stat(intf, unhandled_commands);
3902 
3903 		/*
3904 		 * Don't do anything with these messages, just allow
3905 		 * them to be freed.
3906 		 */
3907 		rv = 0;
3908 	} else {
3909 		recv_msg = ipmi_alloc_recv_msg();
3910 		if (!recv_msg) {
3911 			/*
3912 			 * We couldn't allocate memory for the
3913 			 * message, so requeue it for handling later.
3914 			 */
3915 			rv = 1;
3916 			kref_put(&user->refcount, free_user);
3917 		} else {
3918 			/* Extract the source address from the data. */
3919 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3920 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3921 			lan_addr->session_handle = msg->rsp[4];
3922 			lan_addr->remote_SWID = msg->rsp[8];
3923 			lan_addr->local_SWID = msg->rsp[5];
3924 			lan_addr->lun = msg->rsp[9] & 3;
3925 			lan_addr->channel = msg->rsp[3] & 0xf;
3926 			lan_addr->privilege = msg->rsp[3] >> 4;
3927 
3928 			/*
3929 			 * Extract the rest of the message information
3930 			 * from the IPMB header.
3931 			 */
3932 			recv_msg->user = user;
3933 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3934 			recv_msg->msgid = msg->rsp[9] >> 2;
3935 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3936 			recv_msg->msg.cmd = msg->rsp[10];
3937 			recv_msg->msg.data = recv_msg->msg_data;
3938 
3939 			/*
3940 			 * We chop off 12, not 11 bytes because the checksum
3941 			 * at the end also needs to be removed.
3942 			 */
3943 			recv_msg->msg.data_len = msg->rsp_size - 12;
3944 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3945 			       msg->rsp_size - 12);
3946 			if (deliver_response(intf, recv_msg))
3947 				ipmi_inc_stat(intf, unhandled_commands);
3948 			else
3949 				ipmi_inc_stat(intf, handled_commands);
3950 		}
3951 	}
3952 
3953 	return rv;
3954 }
3955 
3956 /*
3957  * This routine will handle "Get Message" command responses with
3958  * channels that use an OEM Medium. The message format belongs to
3959  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3960  * Chapter 22, sections 22.6 and 22.24 for more details.
3961  */
3962 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3963 				  struct ipmi_smi_msg *msg)
3964 {
3965 	struct cmd_rcvr       *rcvr;
3966 	int                   rv = 0;
3967 	unsigned char         netfn;
3968 	unsigned char         cmd;
3969 	unsigned char         chan;
3970 	struct ipmi_user *user = NULL;
3971 	struct ipmi_system_interface_addr *smi_addr;
3972 	struct ipmi_recv_msg  *recv_msg;
3973 
3974 	/*
3975 	 * We expect the OEM SW to perform error checking
3976 	 * so we just do some basic sanity checks
3977 	 */
3978 	if (msg->rsp_size < 4) {
3979 		/* Message not big enough, just ignore it. */
3980 		ipmi_inc_stat(intf, invalid_commands);
3981 		return 0;
3982 	}
3983 
3984 	if (msg->rsp[2] != 0) {
3985 		/* An error getting the response, just ignore it. */
3986 		return 0;
3987 	}
3988 
3989 	/*
3990 	 * This is an OEM Message so the OEM needs to know how
3991 	 * handle the message. We do no interpretation.
3992 	 */
3993 	netfn = msg->rsp[0] >> 2;
3994 	cmd = msg->rsp[1];
3995 	chan = msg->rsp[3] & 0xf;
3996 
3997 	rcu_read_lock();
3998 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3999 	if (rcvr) {
4000 		user = rcvr->user;
4001 		kref_get(&user->refcount);
4002 	} else
4003 		user = NULL;
4004 	rcu_read_unlock();
4005 
4006 	if (user == NULL) {
4007 		/* We didn't find a user, just give up. */
4008 		ipmi_inc_stat(intf, unhandled_commands);
4009 
4010 		/*
4011 		 * Don't do anything with these messages, just allow
4012 		 * them to be freed.
4013 		 */
4014 
4015 		rv = 0;
4016 	} else {
4017 		recv_msg = ipmi_alloc_recv_msg();
4018 		if (!recv_msg) {
4019 			/*
4020 			 * We couldn't allocate memory for the
4021 			 * message, so requeue it for handling
4022 			 * later.
4023 			 */
4024 			rv = 1;
4025 			kref_put(&user->refcount, free_user);
4026 		} else {
4027 			/*
4028 			 * OEM Messages are expected to be delivered via
4029 			 * the system interface to SMS software.  We might
4030 			 * need to visit this again depending on OEM
4031 			 * requirements
4032 			 */
4033 			smi_addr = ((struct ipmi_system_interface_addr *)
4034 				    &recv_msg->addr);
4035 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4036 			smi_addr->channel = IPMI_BMC_CHANNEL;
4037 			smi_addr->lun = msg->rsp[0] & 3;
4038 
4039 			recv_msg->user = user;
4040 			recv_msg->user_msg_data = NULL;
4041 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4042 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4043 			recv_msg->msg.cmd = msg->rsp[1];
4044 			recv_msg->msg.data = recv_msg->msg_data;
4045 
4046 			/*
4047 			 * The message starts at byte 4 which follows the
4048 			 * the Channel Byte in the "GET MESSAGE" command
4049 			 */
4050 			recv_msg->msg.data_len = msg->rsp_size - 4;
4051 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4052 			       msg->rsp_size - 4);
4053 			if (deliver_response(intf, recv_msg))
4054 				ipmi_inc_stat(intf, unhandled_commands);
4055 			else
4056 				ipmi_inc_stat(intf, handled_commands);
4057 		}
4058 	}
4059 
4060 	return rv;
4061 }
4062 
4063 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4064 				     struct ipmi_smi_msg  *msg)
4065 {
4066 	struct ipmi_system_interface_addr *smi_addr;
4067 
4068 	recv_msg->msgid = 0;
4069 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4070 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4071 	smi_addr->channel = IPMI_BMC_CHANNEL;
4072 	smi_addr->lun = msg->rsp[0] & 3;
4073 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4074 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4075 	recv_msg->msg.cmd = msg->rsp[1];
4076 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4077 	recv_msg->msg.data = recv_msg->msg_data;
4078 	recv_msg->msg.data_len = msg->rsp_size - 3;
4079 }
4080 
4081 static int handle_read_event_rsp(struct ipmi_smi *intf,
4082 				 struct ipmi_smi_msg *msg)
4083 {
4084 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4085 	struct list_head     msgs;
4086 	struct ipmi_user     *user;
4087 	int rv = 0, deliver_count = 0, index;
4088 	unsigned long        flags;
4089 
4090 	if (msg->rsp_size < 19) {
4091 		/* Message is too small to be an IPMB event. */
4092 		ipmi_inc_stat(intf, invalid_events);
4093 		return 0;
4094 	}
4095 
4096 	if (msg->rsp[2] != 0) {
4097 		/* An error getting the event, just ignore it. */
4098 		return 0;
4099 	}
4100 
4101 	INIT_LIST_HEAD(&msgs);
4102 
4103 	spin_lock_irqsave(&intf->events_lock, flags);
4104 
4105 	ipmi_inc_stat(intf, events);
4106 
4107 	/*
4108 	 * Allocate and fill in one message for every user that is
4109 	 * getting events.
4110 	 */
4111 	index = srcu_read_lock(&intf->users_srcu);
4112 	list_for_each_entry_rcu(user, &intf->users, link) {
4113 		if (!user->gets_events)
4114 			continue;
4115 
4116 		recv_msg = ipmi_alloc_recv_msg();
4117 		if (!recv_msg) {
4118 			rcu_read_unlock();
4119 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4120 						 link) {
4121 				list_del(&recv_msg->link);
4122 				ipmi_free_recv_msg(recv_msg);
4123 			}
4124 			/*
4125 			 * We couldn't allocate memory for the
4126 			 * message, so requeue it for handling
4127 			 * later.
4128 			 */
4129 			rv = 1;
4130 			goto out;
4131 		}
4132 
4133 		deliver_count++;
4134 
4135 		copy_event_into_recv_msg(recv_msg, msg);
4136 		recv_msg->user = user;
4137 		kref_get(&user->refcount);
4138 		list_add_tail(&recv_msg->link, &msgs);
4139 	}
4140 	srcu_read_unlock(&intf->users_srcu, index);
4141 
4142 	if (deliver_count) {
4143 		/* Now deliver all the messages. */
4144 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4145 			list_del(&recv_msg->link);
4146 			deliver_local_response(intf, recv_msg);
4147 		}
4148 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4149 		/*
4150 		 * No one to receive the message, put it in queue if there's
4151 		 * not already too many things in the queue.
4152 		 */
4153 		recv_msg = ipmi_alloc_recv_msg();
4154 		if (!recv_msg) {
4155 			/*
4156 			 * We couldn't allocate memory for the
4157 			 * message, so requeue it for handling
4158 			 * later.
4159 			 */
4160 			rv = 1;
4161 			goto out;
4162 		}
4163 
4164 		copy_event_into_recv_msg(recv_msg, msg);
4165 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4166 		intf->waiting_events_count++;
4167 	} else if (!intf->event_msg_printed) {
4168 		/*
4169 		 * There's too many things in the queue, discard this
4170 		 * message.
4171 		 */
4172 		dev_warn(intf->si_dev,
4173 			 "Event queue full, discarding incoming events\n");
4174 		intf->event_msg_printed = 1;
4175 	}
4176 
4177  out:
4178 	spin_unlock_irqrestore(&intf->events_lock, flags);
4179 
4180 	return rv;
4181 }
4182 
4183 static int handle_bmc_rsp(struct ipmi_smi *intf,
4184 			  struct ipmi_smi_msg *msg)
4185 {
4186 	struct ipmi_recv_msg *recv_msg;
4187 	struct ipmi_system_interface_addr *smi_addr;
4188 
4189 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4190 	if (recv_msg == NULL) {
4191 		dev_warn(intf->si_dev,
4192 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4193 		return 0;
4194 	}
4195 
4196 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4197 	recv_msg->msgid = msg->msgid;
4198 	smi_addr = ((struct ipmi_system_interface_addr *)
4199 		    &recv_msg->addr);
4200 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4201 	smi_addr->channel = IPMI_BMC_CHANNEL;
4202 	smi_addr->lun = msg->rsp[0] & 3;
4203 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4204 	recv_msg->msg.cmd = msg->rsp[1];
4205 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4206 	recv_msg->msg.data = recv_msg->msg_data;
4207 	recv_msg->msg.data_len = msg->rsp_size - 2;
4208 	deliver_local_response(intf, recv_msg);
4209 
4210 	return 0;
4211 }
4212 
4213 /*
4214  * Handle a received message.  Return 1 if the message should be requeued,
4215  * 0 if the message should be freed, or -1 if the message should not
4216  * be freed or requeued.
4217  */
4218 static int handle_one_recv_msg(struct ipmi_smi *intf,
4219 			       struct ipmi_smi_msg *msg)
4220 {
4221 	int requeue;
4222 	int chan;
4223 
4224 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4225 
4226 	if ((msg->data_size >= 2)
4227 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4228 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4229 	    && (msg->user_data == NULL)) {
4230 
4231 		if (intf->in_shutdown)
4232 			goto free_msg;
4233 
4234 		/*
4235 		 * This is the local response to a command send, start
4236 		 * the timer for these.  The user_data will not be
4237 		 * NULL if this is a response send, and we will let
4238 		 * response sends just go through.
4239 		 */
4240 
4241 		/*
4242 		 * Check for errors, if we get certain errors (ones
4243 		 * that mean basically we can try again later), we
4244 		 * ignore them and start the timer.  Otherwise we
4245 		 * report the error immediately.
4246 		 */
4247 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4248 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4249 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4250 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4251 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4252 			int ch = msg->rsp[3] & 0xf;
4253 			struct ipmi_channel *chans;
4254 
4255 			/* Got an error sending the message, handle it. */
4256 
4257 			chans = READ_ONCE(intf->channel_list)->c;
4258 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4259 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4260 				ipmi_inc_stat(intf, sent_lan_command_errs);
4261 			else
4262 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4263 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4264 		} else
4265 			/* The message was sent, start the timer. */
4266 			intf_start_seq_timer(intf, msg->msgid);
4267 free_msg:
4268 		requeue = 0;
4269 		goto out;
4270 
4271 	} else if (msg->rsp_size < 2) {
4272 		/* Message is too small to be correct. */
4273 		dev_warn(intf->si_dev,
4274 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4275 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4276 
4277 		/* Generate an error response for the message. */
4278 		msg->rsp[0] = msg->data[0] | (1 << 2);
4279 		msg->rsp[1] = msg->data[1];
4280 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4281 		msg->rsp_size = 3;
4282 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4283 		   || (msg->rsp[1] != msg->data[1])) {
4284 		/*
4285 		 * The NetFN and Command in the response is not even
4286 		 * marginally correct.
4287 		 */
4288 		dev_warn(intf->si_dev,
4289 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4290 			 (msg->data[0] >> 2) | 1, msg->data[1],
4291 			 msg->rsp[0] >> 2, msg->rsp[1]);
4292 
4293 		/* Generate an error response for the message. */
4294 		msg->rsp[0] = msg->data[0] | (1 << 2);
4295 		msg->rsp[1] = msg->data[1];
4296 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4297 		msg->rsp_size = 3;
4298 	}
4299 
4300 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4301 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4302 	    && (msg->user_data != NULL)) {
4303 		/*
4304 		 * It's a response to a response we sent.  For this we
4305 		 * deliver a send message response to the user.
4306 		 */
4307 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4308 
4309 		requeue = 0;
4310 		if (msg->rsp_size < 2)
4311 			/* Message is too small to be correct. */
4312 			goto out;
4313 
4314 		chan = msg->data[2] & 0x0f;
4315 		if (chan >= IPMI_MAX_CHANNELS)
4316 			/* Invalid channel number */
4317 			goto out;
4318 
4319 		if (!recv_msg)
4320 			goto out;
4321 
4322 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4323 		recv_msg->msg.data = recv_msg->msg_data;
4324 		recv_msg->msg.data_len = 1;
4325 		recv_msg->msg_data[0] = msg->rsp[2];
4326 		deliver_local_response(intf, recv_msg);
4327 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4328 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4329 		struct ipmi_channel   *chans;
4330 
4331 		/* It's from the receive queue. */
4332 		chan = msg->rsp[3] & 0xf;
4333 		if (chan >= IPMI_MAX_CHANNELS) {
4334 			/* Invalid channel number */
4335 			requeue = 0;
4336 			goto out;
4337 		}
4338 
4339 		/*
4340 		 * We need to make sure the channels have been initialized.
4341 		 * The channel_handler routine will set the "curr_channel"
4342 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4343 		 * channels for this interface have been initialized.
4344 		 */
4345 		if (!intf->channels_ready) {
4346 			requeue = 0; /* Throw the message away */
4347 			goto out;
4348 		}
4349 
4350 		chans = READ_ONCE(intf->channel_list)->c;
4351 
4352 		switch (chans[chan].medium) {
4353 		case IPMI_CHANNEL_MEDIUM_IPMB:
4354 			if (msg->rsp[4] & 0x04) {
4355 				/*
4356 				 * It's a response, so find the
4357 				 * requesting message and send it up.
4358 				 */
4359 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4360 			} else {
4361 				/*
4362 				 * It's a command to the SMS from some other
4363 				 * entity.  Handle that.
4364 				 */
4365 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4366 			}
4367 			break;
4368 
4369 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4370 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4371 			if (msg->rsp[6] & 0x04) {
4372 				/*
4373 				 * It's a response, so find the
4374 				 * requesting message and send it up.
4375 				 */
4376 				requeue = handle_lan_get_msg_rsp(intf, msg);
4377 			} else {
4378 				/*
4379 				 * It's a command to the SMS from some other
4380 				 * entity.  Handle that.
4381 				 */
4382 				requeue = handle_lan_get_msg_cmd(intf, msg);
4383 			}
4384 			break;
4385 
4386 		default:
4387 			/* Check for OEM Channels.  Clients had better
4388 			   register for these commands. */
4389 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4390 			    && (chans[chan].medium
4391 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4392 				requeue = handle_oem_get_msg_cmd(intf, msg);
4393 			} else {
4394 				/*
4395 				 * We don't handle the channel type, so just
4396 				 * free the message.
4397 				 */
4398 				requeue = 0;
4399 			}
4400 		}
4401 
4402 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4403 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4404 		/* It's an asynchronous event. */
4405 		requeue = handle_read_event_rsp(intf, msg);
4406 	} else {
4407 		/* It's a response from the local BMC. */
4408 		requeue = handle_bmc_rsp(intf, msg);
4409 	}
4410 
4411  out:
4412 	return requeue;
4413 }
4414 
4415 /*
4416  * If there are messages in the queue or pretimeouts, handle them.
4417  */
4418 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4419 {
4420 	struct ipmi_smi_msg  *smi_msg;
4421 	unsigned long        flags = 0;
4422 	int                  rv;
4423 	int                  run_to_completion = intf->run_to_completion;
4424 
4425 	/* See if any waiting messages need to be processed. */
4426 	if (!run_to_completion)
4427 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4428 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4429 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4430 				     struct ipmi_smi_msg, link);
4431 		list_del(&smi_msg->link);
4432 		if (!run_to_completion)
4433 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4434 					       flags);
4435 		rv = handle_one_recv_msg(intf, smi_msg);
4436 		if (!run_to_completion)
4437 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4438 		if (rv > 0) {
4439 			/*
4440 			 * To preserve message order, quit if we
4441 			 * can't handle a message.  Add the message
4442 			 * back at the head, this is safe because this
4443 			 * tasklet is the only thing that pulls the
4444 			 * messages.
4445 			 */
4446 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4447 			break;
4448 		} else {
4449 			if (rv == 0)
4450 				/* Message handled */
4451 				ipmi_free_smi_msg(smi_msg);
4452 			/* If rv < 0, fatal error, del but don't free. */
4453 		}
4454 	}
4455 	if (!run_to_completion)
4456 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4457 
4458 	/*
4459 	 * If the pretimout count is non-zero, decrement one from it and
4460 	 * deliver pretimeouts to all the users.
4461 	 */
4462 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4463 		struct ipmi_user *user;
4464 		int index;
4465 
4466 		index = srcu_read_lock(&intf->users_srcu);
4467 		list_for_each_entry_rcu(user, &intf->users, link) {
4468 			if (user->handler->ipmi_watchdog_pretimeout)
4469 				user->handler->ipmi_watchdog_pretimeout(
4470 					user->handler_data);
4471 		}
4472 		srcu_read_unlock(&intf->users_srcu, index);
4473 	}
4474 }
4475 
4476 static void smi_recv_tasklet(struct tasklet_struct *t)
4477 {
4478 	unsigned long flags = 0; /* keep us warning-free. */
4479 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4480 	int run_to_completion = intf->run_to_completion;
4481 	struct ipmi_smi_msg *newmsg = NULL;
4482 
4483 	/*
4484 	 * Start the next message if available.
4485 	 *
4486 	 * Do this here, not in the actual receiver, because we may deadlock
4487 	 * because the lower layer is allowed to hold locks while calling
4488 	 * message delivery.
4489 	 */
4490 
4491 	rcu_read_lock();
4492 
4493 	if (!run_to_completion)
4494 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4495 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4496 		struct list_head *entry = NULL;
4497 
4498 		/* Pick the high priority queue first. */
4499 		if (!list_empty(&intf->hp_xmit_msgs))
4500 			entry = intf->hp_xmit_msgs.next;
4501 		else if (!list_empty(&intf->xmit_msgs))
4502 			entry = intf->xmit_msgs.next;
4503 
4504 		if (entry) {
4505 			list_del(entry);
4506 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4507 			intf->curr_msg = newmsg;
4508 		}
4509 	}
4510 
4511 	if (!run_to_completion)
4512 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4513 	if (newmsg)
4514 		intf->handlers->sender(intf->send_info, newmsg);
4515 
4516 	rcu_read_unlock();
4517 
4518 	handle_new_recv_msgs(intf);
4519 }
4520 
4521 /* Handle a new message from the lower layer. */
4522 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4523 			   struct ipmi_smi_msg *msg)
4524 {
4525 	unsigned long flags = 0; /* keep us warning-free. */
4526 	int run_to_completion = intf->run_to_completion;
4527 
4528 	/*
4529 	 * To preserve message order, we keep a queue and deliver from
4530 	 * a tasklet.
4531 	 */
4532 	if (!run_to_completion)
4533 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4534 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4535 	if (!run_to_completion)
4536 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4537 				       flags);
4538 
4539 	if (!run_to_completion)
4540 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4541 	/*
4542 	 * We can get an asynchronous event or receive message in addition
4543 	 * to commands we send.
4544 	 */
4545 	if (msg == intf->curr_msg)
4546 		intf->curr_msg = NULL;
4547 	if (!run_to_completion)
4548 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4549 
4550 	if (run_to_completion)
4551 		smi_recv_tasklet(&intf->recv_tasklet);
4552 	else
4553 		tasklet_schedule(&intf->recv_tasklet);
4554 }
4555 EXPORT_SYMBOL(ipmi_smi_msg_received);
4556 
4557 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4558 {
4559 	if (intf->in_shutdown)
4560 		return;
4561 
4562 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4563 	tasklet_schedule(&intf->recv_tasklet);
4564 }
4565 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4566 
4567 static struct ipmi_smi_msg *
4568 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4569 		  unsigned char seq, long seqid)
4570 {
4571 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4572 	if (!smi_msg)
4573 		/*
4574 		 * If we can't allocate the message, then just return, we
4575 		 * get 4 retries, so this should be ok.
4576 		 */
4577 		return NULL;
4578 
4579 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4580 	smi_msg->data_size = recv_msg->msg.data_len;
4581 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4582 
4583 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4584 
4585 	return smi_msg;
4586 }
4587 
4588 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4589 			      struct list_head *timeouts,
4590 			      unsigned long timeout_period,
4591 			      int slot, unsigned long *flags,
4592 			      bool *need_timer)
4593 {
4594 	struct ipmi_recv_msg *msg;
4595 
4596 	if (intf->in_shutdown)
4597 		return;
4598 
4599 	if (!ent->inuse)
4600 		return;
4601 
4602 	if (timeout_period < ent->timeout) {
4603 		ent->timeout -= timeout_period;
4604 		*need_timer = true;
4605 		return;
4606 	}
4607 
4608 	if (ent->retries_left == 0) {
4609 		/* The message has used all its retries. */
4610 		ent->inuse = 0;
4611 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4612 		msg = ent->recv_msg;
4613 		list_add_tail(&msg->link, timeouts);
4614 		if (ent->broadcast)
4615 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4616 		else if (is_lan_addr(&ent->recv_msg->addr))
4617 			ipmi_inc_stat(intf, timed_out_lan_commands);
4618 		else
4619 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4620 	} else {
4621 		struct ipmi_smi_msg *smi_msg;
4622 		/* More retries, send again. */
4623 
4624 		*need_timer = true;
4625 
4626 		/*
4627 		 * Start with the max timer, set to normal timer after
4628 		 * the message is sent.
4629 		 */
4630 		ent->timeout = MAX_MSG_TIMEOUT;
4631 		ent->retries_left--;
4632 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4633 					    ent->seqid);
4634 		if (!smi_msg) {
4635 			if (is_lan_addr(&ent->recv_msg->addr))
4636 				ipmi_inc_stat(intf,
4637 					      dropped_rexmit_lan_commands);
4638 			else
4639 				ipmi_inc_stat(intf,
4640 					      dropped_rexmit_ipmb_commands);
4641 			return;
4642 		}
4643 
4644 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4645 
4646 		/*
4647 		 * Send the new message.  We send with a zero
4648 		 * priority.  It timed out, I doubt time is that
4649 		 * critical now, and high priority messages are really
4650 		 * only for messages to the local MC, which don't get
4651 		 * resent.
4652 		 */
4653 		if (intf->handlers) {
4654 			if (is_lan_addr(&ent->recv_msg->addr))
4655 				ipmi_inc_stat(intf,
4656 					      retransmitted_lan_commands);
4657 			else
4658 				ipmi_inc_stat(intf,
4659 					      retransmitted_ipmb_commands);
4660 
4661 			smi_send(intf, intf->handlers, smi_msg, 0);
4662 		} else
4663 			ipmi_free_smi_msg(smi_msg);
4664 
4665 		spin_lock_irqsave(&intf->seq_lock, *flags);
4666 	}
4667 }
4668 
4669 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4670 				 unsigned long timeout_period)
4671 {
4672 	struct list_head     timeouts;
4673 	struct ipmi_recv_msg *msg, *msg2;
4674 	unsigned long        flags;
4675 	int                  i;
4676 	bool                 need_timer = false;
4677 
4678 	if (!intf->bmc_registered) {
4679 		kref_get(&intf->refcount);
4680 		if (!schedule_work(&intf->bmc_reg_work)) {
4681 			kref_put(&intf->refcount, intf_free);
4682 			need_timer = true;
4683 		}
4684 	}
4685 
4686 	/*
4687 	 * Go through the seq table and find any messages that
4688 	 * have timed out, putting them in the timeouts
4689 	 * list.
4690 	 */
4691 	INIT_LIST_HEAD(&timeouts);
4692 	spin_lock_irqsave(&intf->seq_lock, flags);
4693 	if (intf->ipmb_maintenance_mode_timeout) {
4694 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4695 			intf->ipmb_maintenance_mode_timeout = 0;
4696 		else
4697 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4698 	}
4699 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4700 		check_msg_timeout(intf, &intf->seq_table[i],
4701 				  &timeouts, timeout_period, i,
4702 				  &flags, &need_timer);
4703 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4704 
4705 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4706 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4707 
4708 	/*
4709 	 * Maintenance mode handling.  Check the timeout
4710 	 * optimistically before we claim the lock.  It may
4711 	 * mean a timeout gets missed occasionally, but that
4712 	 * only means the timeout gets extended by one period
4713 	 * in that case.  No big deal, and it avoids the lock
4714 	 * most of the time.
4715 	 */
4716 	if (intf->auto_maintenance_timeout > 0) {
4717 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4718 		if (intf->auto_maintenance_timeout > 0) {
4719 			intf->auto_maintenance_timeout
4720 				-= timeout_period;
4721 			if (!intf->maintenance_mode
4722 			    && (intf->auto_maintenance_timeout <= 0)) {
4723 				intf->maintenance_mode_enable = false;
4724 				maintenance_mode_update(intf);
4725 			}
4726 		}
4727 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4728 				       flags);
4729 	}
4730 
4731 	tasklet_schedule(&intf->recv_tasklet);
4732 
4733 	return need_timer;
4734 }
4735 
4736 static void ipmi_request_event(struct ipmi_smi *intf)
4737 {
4738 	/* No event requests when in maintenance mode. */
4739 	if (intf->maintenance_mode_enable)
4740 		return;
4741 
4742 	if (!intf->in_shutdown)
4743 		intf->handlers->request_events(intf->send_info);
4744 }
4745 
4746 static struct timer_list ipmi_timer;
4747 
4748 static atomic_t stop_operation;
4749 
4750 static void ipmi_timeout(struct timer_list *unused)
4751 {
4752 	struct ipmi_smi *intf;
4753 	bool need_timer = false;
4754 	int index;
4755 
4756 	if (atomic_read(&stop_operation))
4757 		return;
4758 
4759 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4760 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4761 		if (atomic_read(&intf->event_waiters)) {
4762 			intf->ticks_to_req_ev--;
4763 			if (intf->ticks_to_req_ev == 0) {
4764 				ipmi_request_event(intf);
4765 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4766 			}
4767 			need_timer = true;
4768 		}
4769 
4770 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4771 	}
4772 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4773 
4774 	if (need_timer)
4775 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4776 }
4777 
4778 static void need_waiter(struct ipmi_smi *intf)
4779 {
4780 	/* Racy, but worst case we start the timer twice. */
4781 	if (!timer_pending(&ipmi_timer))
4782 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4783 }
4784 
4785 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4786 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4787 
4788 static void free_smi_msg(struct ipmi_smi_msg *msg)
4789 {
4790 	atomic_dec(&smi_msg_inuse_count);
4791 	kfree(msg);
4792 }
4793 
4794 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4795 {
4796 	struct ipmi_smi_msg *rv;
4797 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4798 	if (rv) {
4799 		rv->done = free_smi_msg;
4800 		rv->user_data = NULL;
4801 		atomic_inc(&smi_msg_inuse_count);
4802 	}
4803 	return rv;
4804 }
4805 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4806 
4807 static void free_recv_msg(struct ipmi_recv_msg *msg)
4808 {
4809 	atomic_dec(&recv_msg_inuse_count);
4810 	kfree(msg);
4811 }
4812 
4813 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4814 {
4815 	struct ipmi_recv_msg *rv;
4816 
4817 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4818 	if (rv) {
4819 		rv->user = NULL;
4820 		rv->done = free_recv_msg;
4821 		atomic_inc(&recv_msg_inuse_count);
4822 	}
4823 	return rv;
4824 }
4825 
4826 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4827 {
4828 	if (msg->user)
4829 		kref_put(&msg->user->refcount, free_user);
4830 	msg->done(msg);
4831 }
4832 EXPORT_SYMBOL(ipmi_free_recv_msg);
4833 
4834 static atomic_t panic_done_count = ATOMIC_INIT(0);
4835 
4836 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4837 {
4838 	atomic_dec(&panic_done_count);
4839 }
4840 
4841 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4842 {
4843 	atomic_dec(&panic_done_count);
4844 }
4845 
4846 /*
4847  * Inside a panic, send a message and wait for a response.
4848  */
4849 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4850 					struct ipmi_addr *addr,
4851 					struct kernel_ipmi_msg *msg)
4852 {
4853 	struct ipmi_smi_msg  smi_msg;
4854 	struct ipmi_recv_msg recv_msg;
4855 	int rv;
4856 
4857 	smi_msg.done = dummy_smi_done_handler;
4858 	recv_msg.done = dummy_recv_done_handler;
4859 	atomic_add(2, &panic_done_count);
4860 	rv = i_ipmi_request(NULL,
4861 			    intf,
4862 			    addr,
4863 			    0,
4864 			    msg,
4865 			    intf,
4866 			    &smi_msg,
4867 			    &recv_msg,
4868 			    0,
4869 			    intf->addrinfo[0].address,
4870 			    intf->addrinfo[0].lun,
4871 			    0, 1); /* Don't retry, and don't wait. */
4872 	if (rv)
4873 		atomic_sub(2, &panic_done_count);
4874 	else if (intf->handlers->flush_messages)
4875 		intf->handlers->flush_messages(intf->send_info);
4876 
4877 	while (atomic_read(&panic_done_count) != 0)
4878 		ipmi_poll(intf);
4879 }
4880 
4881 static void event_receiver_fetcher(struct ipmi_smi *intf,
4882 				   struct ipmi_recv_msg *msg)
4883 {
4884 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4885 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4886 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4887 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4888 		/* A get event receiver command, save it. */
4889 		intf->event_receiver = msg->msg.data[1];
4890 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4891 	}
4892 }
4893 
4894 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4895 {
4896 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4897 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4898 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4899 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4900 		/*
4901 		 * A get device id command, save if we are an event
4902 		 * receiver or generator.
4903 		 */
4904 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4905 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4906 	}
4907 }
4908 
4909 static void send_panic_events(struct ipmi_smi *intf, char *str)
4910 {
4911 	struct kernel_ipmi_msg msg;
4912 	unsigned char data[16];
4913 	struct ipmi_system_interface_addr *si;
4914 	struct ipmi_addr addr;
4915 	char *p = str;
4916 	struct ipmi_ipmb_addr *ipmb;
4917 	int j;
4918 
4919 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4920 		return;
4921 
4922 	si = (struct ipmi_system_interface_addr *) &addr;
4923 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4924 	si->channel = IPMI_BMC_CHANNEL;
4925 	si->lun = 0;
4926 
4927 	/* Fill in an event telling that we have failed. */
4928 	msg.netfn = 0x04; /* Sensor or Event. */
4929 	msg.cmd = 2; /* Platform event command. */
4930 	msg.data = data;
4931 	msg.data_len = 8;
4932 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4933 	data[1] = 0x03; /* This is for IPMI 1.0. */
4934 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4935 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4936 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4937 
4938 	/*
4939 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4940 	 * to make the panic events more useful.
4941 	 */
4942 	if (str) {
4943 		data[3] = str[0];
4944 		data[6] = str[1];
4945 		data[7] = str[2];
4946 	}
4947 
4948 	/* Send the event announcing the panic. */
4949 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4950 
4951 	/*
4952 	 * On every interface, dump a bunch of OEM event holding the
4953 	 * string.
4954 	 */
4955 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4956 		return;
4957 
4958 	/*
4959 	 * intf_num is used as an marker to tell if the
4960 	 * interface is valid.  Thus we need a read barrier to
4961 	 * make sure data fetched before checking intf_num
4962 	 * won't be used.
4963 	 */
4964 	smp_rmb();
4965 
4966 	/*
4967 	 * First job here is to figure out where to send the
4968 	 * OEM events.  There's no way in IPMI to send OEM
4969 	 * events using an event send command, so we have to
4970 	 * find the SEL to put them in and stick them in
4971 	 * there.
4972 	 */
4973 
4974 	/* Get capabilities from the get device id. */
4975 	intf->local_sel_device = 0;
4976 	intf->local_event_generator = 0;
4977 	intf->event_receiver = 0;
4978 
4979 	/* Request the device info from the local MC. */
4980 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4981 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4982 	msg.data = NULL;
4983 	msg.data_len = 0;
4984 	intf->null_user_handler = device_id_fetcher;
4985 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4986 
4987 	if (intf->local_event_generator) {
4988 		/* Request the event receiver from the local MC. */
4989 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4990 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4991 		msg.data = NULL;
4992 		msg.data_len = 0;
4993 		intf->null_user_handler = event_receiver_fetcher;
4994 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4995 	}
4996 	intf->null_user_handler = NULL;
4997 
4998 	/*
4999 	 * Validate the event receiver.  The low bit must not
5000 	 * be 1 (it must be a valid IPMB address), it cannot
5001 	 * be zero, and it must not be my address.
5002 	 */
5003 	if (((intf->event_receiver & 1) == 0)
5004 	    && (intf->event_receiver != 0)
5005 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5006 		/*
5007 		 * The event receiver is valid, send an IPMB
5008 		 * message.
5009 		 */
5010 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5011 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5012 		ipmb->channel = 0; /* FIXME - is this right? */
5013 		ipmb->lun = intf->event_receiver_lun;
5014 		ipmb->slave_addr = intf->event_receiver;
5015 	} else if (intf->local_sel_device) {
5016 		/*
5017 		 * The event receiver was not valid (or was
5018 		 * me), but I am an SEL device, just dump it
5019 		 * in my SEL.
5020 		 */
5021 		si = (struct ipmi_system_interface_addr *) &addr;
5022 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5023 		si->channel = IPMI_BMC_CHANNEL;
5024 		si->lun = 0;
5025 	} else
5026 		return; /* No where to send the event. */
5027 
5028 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5029 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5030 	msg.data = data;
5031 	msg.data_len = 16;
5032 
5033 	j = 0;
5034 	while (*p) {
5035 		int size = strlen(p);
5036 
5037 		if (size > 11)
5038 			size = 11;
5039 		data[0] = 0;
5040 		data[1] = 0;
5041 		data[2] = 0xf0; /* OEM event without timestamp. */
5042 		data[3] = intf->addrinfo[0].address;
5043 		data[4] = j++; /* sequence # */
5044 		/*
5045 		 * Always give 11 bytes, so strncpy will fill
5046 		 * it with zeroes for me.
5047 		 */
5048 		strncpy(data+5, p, 11);
5049 		p += size;
5050 
5051 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5052 	}
5053 }
5054 
5055 static int has_panicked;
5056 
5057 static int panic_event(struct notifier_block *this,
5058 		       unsigned long         event,
5059 		       void                  *ptr)
5060 {
5061 	struct ipmi_smi *intf;
5062 	struct ipmi_user *user;
5063 
5064 	if (has_panicked)
5065 		return NOTIFY_DONE;
5066 	has_panicked = 1;
5067 
5068 	/* For every registered interface, set it to run to completion. */
5069 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5070 		if (!intf->handlers || intf->intf_num == -1)
5071 			/* Interface is not ready. */
5072 			continue;
5073 
5074 		if (!intf->handlers->poll)
5075 			continue;
5076 
5077 		/*
5078 		 * If we were interrupted while locking xmit_msgs_lock or
5079 		 * waiting_rcv_msgs_lock, the corresponding list may be
5080 		 * corrupted.  In this case, drop items on the list for
5081 		 * the safety.
5082 		 */
5083 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5084 			INIT_LIST_HEAD(&intf->xmit_msgs);
5085 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5086 		} else
5087 			spin_unlock(&intf->xmit_msgs_lock);
5088 
5089 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5090 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5091 		else
5092 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5093 
5094 		intf->run_to_completion = 1;
5095 		if (intf->handlers->set_run_to_completion)
5096 			intf->handlers->set_run_to_completion(intf->send_info,
5097 							      1);
5098 
5099 		list_for_each_entry_rcu(user, &intf->users, link) {
5100 			if (user->handler->ipmi_panic_handler)
5101 				user->handler->ipmi_panic_handler(
5102 					user->handler_data);
5103 		}
5104 
5105 		send_panic_events(intf, ptr);
5106 	}
5107 
5108 	return NOTIFY_DONE;
5109 }
5110 
5111 /* Must be called with ipmi_interfaces_mutex held. */
5112 static int ipmi_register_driver(void)
5113 {
5114 	int rv;
5115 
5116 	if (drvregistered)
5117 		return 0;
5118 
5119 	rv = driver_register(&ipmidriver.driver);
5120 	if (rv)
5121 		pr_err("Could not register IPMI driver\n");
5122 	else
5123 		drvregistered = true;
5124 	return rv;
5125 }
5126 
5127 static struct notifier_block panic_block = {
5128 	.notifier_call	= panic_event,
5129 	.next		= NULL,
5130 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5131 };
5132 
5133 static int ipmi_init_msghandler(void)
5134 {
5135 	int rv;
5136 
5137 	mutex_lock(&ipmi_interfaces_mutex);
5138 	rv = ipmi_register_driver();
5139 	if (rv)
5140 		goto out;
5141 	if (initialized)
5142 		goto out;
5143 
5144 	init_srcu_struct(&ipmi_interfaces_srcu);
5145 
5146 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5147 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5148 
5149 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5150 
5151 	initialized = true;
5152 
5153 out:
5154 	mutex_unlock(&ipmi_interfaces_mutex);
5155 	return rv;
5156 }
5157 
5158 static int __init ipmi_init_msghandler_mod(void)
5159 {
5160 	int rv;
5161 
5162 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5163 
5164 	mutex_lock(&ipmi_interfaces_mutex);
5165 	rv = ipmi_register_driver();
5166 	mutex_unlock(&ipmi_interfaces_mutex);
5167 
5168 	return rv;
5169 }
5170 
5171 static void __exit cleanup_ipmi(void)
5172 {
5173 	int count;
5174 
5175 	if (initialized) {
5176 		atomic_notifier_chain_unregister(&panic_notifier_list,
5177 						 &panic_block);
5178 
5179 		/*
5180 		 * This can't be called if any interfaces exist, so no worry
5181 		 * about shutting down the interfaces.
5182 		 */
5183 
5184 		/*
5185 		 * Tell the timer to stop, then wait for it to stop.  This
5186 		 * avoids problems with race conditions removing the timer
5187 		 * here.
5188 		 */
5189 		atomic_set(&stop_operation, 1);
5190 		del_timer_sync(&ipmi_timer);
5191 
5192 		initialized = false;
5193 
5194 		/* Check for buffer leaks. */
5195 		count = atomic_read(&smi_msg_inuse_count);
5196 		if (count != 0)
5197 			pr_warn("SMI message count %d at exit\n", count);
5198 		count = atomic_read(&recv_msg_inuse_count);
5199 		if (count != 0)
5200 			pr_warn("recv message count %d at exit\n", count);
5201 
5202 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5203 	}
5204 	if (drvregistered)
5205 		driver_unregister(&ipmidriver.driver);
5206 }
5207 module_exit(cleanup_ipmi);
5208 
5209 module_init(ipmi_init_msghandler_mod);
5210 MODULE_LICENSE("GPL");
5211 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5212 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5213 MODULE_VERSION(IPMI_DRIVER_VERSION);
5214 MODULE_SOFTDEP("post: ipmi_devintf");
5215