1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 
37 #define IPMI_DRIVER_VERSION "39.2"
38 
39 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
40 static int ipmi_init_msghandler(void);
41 static void smi_recv_tasklet(unsigned long);
42 static void handle_new_recv_msgs(struct ipmi_smi *intf);
43 static void need_waiter(struct ipmi_smi *intf);
44 static int handle_one_recv_msg(struct ipmi_smi *intf,
45 			       struct ipmi_smi_msg *msg);
46 
47 #ifdef DEBUG
48 static void ipmi_debug_msg(const char *title, unsigned char *data,
49 			   unsigned int len)
50 {
51 	int i, pos;
52 	char buf[100];
53 
54 	pos = snprintf(buf, sizeof(buf), "%s: ", title);
55 	for (i = 0; i < len; i++)
56 		pos += snprintf(buf + pos, sizeof(buf) - pos,
57 				" %2.2x", data[i]);
58 	pr_debug("%s\n", buf);
59 }
60 #else
61 static void ipmi_debug_msg(const char *title, unsigned char *data,
62 			   unsigned int len)
63 { }
64 #endif
65 
66 static bool initialized;
67 static bool drvregistered;
68 
69 enum ipmi_panic_event_op {
70 	IPMI_SEND_PANIC_EVENT_NONE,
71 	IPMI_SEND_PANIC_EVENT,
72 	IPMI_SEND_PANIC_EVENT_STRING
73 };
74 #ifdef CONFIG_IPMI_PANIC_STRING
75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
76 #elif defined(CONFIG_IPMI_PANIC_EVENT)
77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
78 #else
79 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
80 #endif
81 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
82 
83 static int panic_op_write_handler(const char *val,
84 				  const struct kernel_param *kp)
85 {
86 	char valcp[16];
87 	char *s;
88 
89 	strncpy(valcp, val, 15);
90 	valcp[15] = '\0';
91 
92 	s = strstrip(valcp);
93 
94 	if (strcmp(s, "none") == 0)
95 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
96 	else if (strcmp(s, "event") == 0)
97 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
98 	else if (strcmp(s, "string") == 0)
99 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
100 	else
101 		return -EINVAL;
102 
103 	return 0;
104 }
105 
106 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
107 {
108 	switch (ipmi_send_panic_event) {
109 	case IPMI_SEND_PANIC_EVENT_NONE:
110 		strcpy(buffer, "none");
111 		break;
112 
113 	case IPMI_SEND_PANIC_EVENT:
114 		strcpy(buffer, "event");
115 		break;
116 
117 	case IPMI_SEND_PANIC_EVENT_STRING:
118 		strcpy(buffer, "string");
119 		break;
120 
121 	default:
122 		strcpy(buffer, "???");
123 		break;
124 	}
125 
126 	return strlen(buffer);
127 }
128 
129 static const struct kernel_param_ops panic_op_ops = {
130 	.set = panic_op_write_handler,
131 	.get = panic_op_read_handler
132 };
133 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
134 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
135 
136 
137 #define MAX_EVENTS_IN_QUEUE	25
138 
139 /* Remain in auto-maintenance mode for this amount of time (in ms). */
140 static unsigned long maintenance_mode_timeout_ms = 30000;
141 module_param(maintenance_mode_timeout_ms, ulong, 0644);
142 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
143 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
144 
145 /*
146  * Don't let a message sit in a queue forever, always time it with at lest
147  * the max message timer.  This is in milliseconds.
148  */
149 #define MAX_MSG_TIMEOUT		60000
150 
151 /*
152  * Timeout times below are in milliseconds, and are done off a 1
153  * second timer.  So setting the value to 1000 would mean anything
154  * between 0 and 1000ms.  So really the only reasonable minimum
155  * setting it 2000ms, which is between 1 and 2 seconds.
156  */
157 
158 /* The default timeout for message retries. */
159 static unsigned long default_retry_ms = 2000;
160 module_param(default_retry_ms, ulong, 0644);
161 MODULE_PARM_DESC(default_retry_ms,
162 		 "The time (milliseconds) between retry sends");
163 
164 /* The default timeout for maintenance mode message retries. */
165 static unsigned long default_maintenance_retry_ms = 3000;
166 module_param(default_maintenance_retry_ms, ulong, 0644);
167 MODULE_PARM_DESC(default_maintenance_retry_ms,
168 		 "The time (milliseconds) between retry sends in maintenance mode");
169 
170 /* The default maximum number of retries */
171 static unsigned int default_max_retries = 4;
172 module_param(default_max_retries, uint, 0644);
173 MODULE_PARM_DESC(default_max_retries,
174 		 "The time (milliseconds) between retry sends in maintenance mode");
175 
176 /* Call every ~1000 ms. */
177 #define IPMI_TIMEOUT_TIME	1000
178 
179 /* How many jiffies does it take to get to the timeout time. */
180 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
181 
182 /*
183  * Request events from the queue every second (this is the number of
184  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
185  * future, IPMI will add a way to know immediately if an event is in
186  * the queue and this silliness can go away.
187  */
188 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
189 
190 /* How long should we cache dynamic device IDs? */
191 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
192 
193 /*
194  * The main "user" data structure.
195  */
196 struct ipmi_user {
197 	struct list_head link;
198 
199 	/*
200 	 * Set to NULL when the user is destroyed, a pointer to myself
201 	 * so srcu_dereference can be used on it.
202 	 */
203 	struct ipmi_user *self;
204 	struct srcu_struct release_barrier;
205 
206 	struct kref refcount;
207 
208 	/* The upper layer that handles receive messages. */
209 	const struct ipmi_user_hndl *handler;
210 	void             *handler_data;
211 
212 	/* The interface this user is bound to. */
213 	struct ipmi_smi *intf;
214 
215 	/* Does this interface receive IPMI events? */
216 	bool gets_events;
217 };
218 
219 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
220 	__acquires(user->release_barrier)
221 {
222 	struct ipmi_user *ruser;
223 
224 	*index = srcu_read_lock(&user->release_barrier);
225 	ruser = srcu_dereference(user->self, &user->release_barrier);
226 	if (!ruser)
227 		srcu_read_unlock(&user->release_barrier, *index);
228 	return ruser;
229 }
230 
231 static void release_ipmi_user(struct ipmi_user *user, int index)
232 {
233 	srcu_read_unlock(&user->release_barrier, index);
234 }
235 
236 struct cmd_rcvr {
237 	struct list_head link;
238 
239 	struct ipmi_user *user;
240 	unsigned char netfn;
241 	unsigned char cmd;
242 	unsigned int  chans;
243 
244 	/*
245 	 * This is used to form a linked lised during mass deletion.
246 	 * Since this is in an RCU list, we cannot use the link above
247 	 * or change any data until the RCU period completes.  So we
248 	 * use this next variable during mass deletion so we can have
249 	 * a list and don't have to wait and restart the search on
250 	 * every individual deletion of a command.
251 	 */
252 	struct cmd_rcvr *next;
253 };
254 
255 struct seq_table {
256 	unsigned int         inuse : 1;
257 	unsigned int         broadcast : 1;
258 
259 	unsigned long        timeout;
260 	unsigned long        orig_timeout;
261 	unsigned int         retries_left;
262 
263 	/*
264 	 * To verify on an incoming send message response that this is
265 	 * the message that the response is for, we keep a sequence id
266 	 * and increment it every time we send a message.
267 	 */
268 	long                 seqid;
269 
270 	/*
271 	 * This is held so we can properly respond to the message on a
272 	 * timeout, and it is used to hold the temporary data for
273 	 * retransmission, too.
274 	 */
275 	struct ipmi_recv_msg *recv_msg;
276 };
277 
278 /*
279  * Store the information in a msgid (long) to allow us to find a
280  * sequence table entry from the msgid.
281  */
282 #define STORE_SEQ_IN_MSGID(seq, seqid) \
283 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
284 
285 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
286 	do {								\
287 		seq = (((msgid) >> 26) & 0x3f);				\
288 		seqid = ((msgid) & 0x3ffffff);				\
289 	} while (0)
290 
291 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
292 
293 #define IPMI_MAX_CHANNELS       16
294 struct ipmi_channel {
295 	unsigned char medium;
296 	unsigned char protocol;
297 };
298 
299 struct ipmi_channel_set {
300 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
301 };
302 
303 struct ipmi_my_addrinfo {
304 	/*
305 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
306 	 * but may be changed by the user.
307 	 */
308 	unsigned char address;
309 
310 	/*
311 	 * My LUN.  This should generally stay the SMS LUN, but just in
312 	 * case...
313 	 */
314 	unsigned char lun;
315 };
316 
317 /*
318  * Note that the product id, manufacturer id, guid, and device id are
319  * immutable in this structure, so dyn_mutex is not required for
320  * accessing those.  If those change on a BMC, a new BMC is allocated.
321  */
322 struct bmc_device {
323 	struct platform_device pdev;
324 	struct list_head       intfs; /* Interfaces on this BMC. */
325 	struct ipmi_device_id  id;
326 	struct ipmi_device_id  fetch_id;
327 	int                    dyn_id_set;
328 	unsigned long          dyn_id_expiry;
329 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
330 	guid_t                 guid;
331 	guid_t                 fetch_guid;
332 	int                    dyn_guid_set;
333 	struct kref	       usecount;
334 	struct work_struct     remove_work;
335 };
336 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
337 
338 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
339 			     struct ipmi_device_id *id,
340 			     bool *guid_set, guid_t *guid);
341 
342 /*
343  * Various statistics for IPMI, these index stats[] in the ipmi_smi
344  * structure.
345  */
346 enum ipmi_stat_indexes {
347 	/* Commands we got from the user that were invalid. */
348 	IPMI_STAT_sent_invalid_commands = 0,
349 
350 	/* Commands we sent to the MC. */
351 	IPMI_STAT_sent_local_commands,
352 
353 	/* Responses from the MC that were delivered to a user. */
354 	IPMI_STAT_handled_local_responses,
355 
356 	/* Responses from the MC that were not delivered to a user. */
357 	IPMI_STAT_unhandled_local_responses,
358 
359 	/* Commands we sent out to the IPMB bus. */
360 	IPMI_STAT_sent_ipmb_commands,
361 
362 	/* Commands sent on the IPMB that had errors on the SEND CMD */
363 	IPMI_STAT_sent_ipmb_command_errs,
364 
365 	/* Each retransmit increments this count. */
366 	IPMI_STAT_retransmitted_ipmb_commands,
367 
368 	/*
369 	 * When a message times out (runs out of retransmits) this is
370 	 * incremented.
371 	 */
372 	IPMI_STAT_timed_out_ipmb_commands,
373 
374 	/*
375 	 * This is like above, but for broadcasts.  Broadcasts are
376 	 * *not* included in the above count (they are expected to
377 	 * time out).
378 	 */
379 	IPMI_STAT_timed_out_ipmb_broadcasts,
380 
381 	/* Responses I have sent to the IPMB bus. */
382 	IPMI_STAT_sent_ipmb_responses,
383 
384 	/* The response was delivered to the user. */
385 	IPMI_STAT_handled_ipmb_responses,
386 
387 	/* The response had invalid data in it. */
388 	IPMI_STAT_invalid_ipmb_responses,
389 
390 	/* The response didn't have anyone waiting for it. */
391 	IPMI_STAT_unhandled_ipmb_responses,
392 
393 	/* Commands we sent out to the IPMB bus. */
394 	IPMI_STAT_sent_lan_commands,
395 
396 	/* Commands sent on the IPMB that had errors on the SEND CMD */
397 	IPMI_STAT_sent_lan_command_errs,
398 
399 	/* Each retransmit increments this count. */
400 	IPMI_STAT_retransmitted_lan_commands,
401 
402 	/*
403 	 * When a message times out (runs out of retransmits) this is
404 	 * incremented.
405 	 */
406 	IPMI_STAT_timed_out_lan_commands,
407 
408 	/* Responses I have sent to the IPMB bus. */
409 	IPMI_STAT_sent_lan_responses,
410 
411 	/* The response was delivered to the user. */
412 	IPMI_STAT_handled_lan_responses,
413 
414 	/* The response had invalid data in it. */
415 	IPMI_STAT_invalid_lan_responses,
416 
417 	/* The response didn't have anyone waiting for it. */
418 	IPMI_STAT_unhandled_lan_responses,
419 
420 	/* The command was delivered to the user. */
421 	IPMI_STAT_handled_commands,
422 
423 	/* The command had invalid data in it. */
424 	IPMI_STAT_invalid_commands,
425 
426 	/* The command didn't have anyone waiting for it. */
427 	IPMI_STAT_unhandled_commands,
428 
429 	/* Invalid data in an event. */
430 	IPMI_STAT_invalid_events,
431 
432 	/* Events that were received with the proper format. */
433 	IPMI_STAT_events,
434 
435 	/* Retransmissions on IPMB that failed. */
436 	IPMI_STAT_dropped_rexmit_ipmb_commands,
437 
438 	/* Retransmissions on LAN that failed. */
439 	IPMI_STAT_dropped_rexmit_lan_commands,
440 
441 	/* This *must* remain last, add new values above this. */
442 	IPMI_NUM_STATS
443 };
444 
445 
446 #define IPMI_IPMB_NUM_SEQ	64
447 struct ipmi_smi {
448 	/* What interface number are we? */
449 	int intf_num;
450 
451 	struct kref refcount;
452 
453 	/* Set when the interface is being unregistered. */
454 	bool in_shutdown;
455 
456 	/* Used for a list of interfaces. */
457 	struct list_head link;
458 
459 	/*
460 	 * The list of upper layers that are using me.  seq_lock write
461 	 * protects this.  Read protection is with srcu.
462 	 */
463 	struct list_head users;
464 	struct srcu_struct users_srcu;
465 
466 	/* Used for wake ups at startup. */
467 	wait_queue_head_t waitq;
468 
469 	/*
470 	 * Prevents the interface from being unregistered when the
471 	 * interface is used by being looked up through the BMC
472 	 * structure.
473 	 */
474 	struct mutex bmc_reg_mutex;
475 
476 	struct bmc_device tmp_bmc;
477 	struct bmc_device *bmc;
478 	bool bmc_registered;
479 	struct list_head bmc_link;
480 	char *my_dev_name;
481 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
482 	struct work_struct bmc_reg_work;
483 
484 	const struct ipmi_smi_handlers *handlers;
485 	void                     *send_info;
486 
487 	/* Driver-model device for the system interface. */
488 	struct device          *si_dev;
489 
490 	/*
491 	 * A table of sequence numbers for this interface.  We use the
492 	 * sequence numbers for IPMB messages that go out of the
493 	 * interface to match them up with their responses.  A routine
494 	 * is called periodically to time the items in this list.
495 	 */
496 	spinlock_t       seq_lock;
497 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
498 	int curr_seq;
499 
500 	/*
501 	 * Messages queued for delivery.  If delivery fails (out of memory
502 	 * for instance), They will stay in here to be processed later in a
503 	 * periodic timer interrupt.  The tasklet is for handling received
504 	 * messages directly from the handler.
505 	 */
506 	spinlock_t       waiting_rcv_msgs_lock;
507 	struct list_head waiting_rcv_msgs;
508 	atomic_t	 watchdog_pretimeouts_to_deliver;
509 	struct tasklet_struct recv_tasklet;
510 
511 	spinlock_t             xmit_msgs_lock;
512 	struct list_head       xmit_msgs;
513 	struct ipmi_smi_msg    *curr_msg;
514 	struct list_head       hp_xmit_msgs;
515 
516 	/*
517 	 * The list of command receivers that are registered for commands
518 	 * on this interface.
519 	 */
520 	struct mutex     cmd_rcvrs_mutex;
521 	struct list_head cmd_rcvrs;
522 
523 	/*
524 	 * Events that were queues because no one was there to receive
525 	 * them.
526 	 */
527 	spinlock_t       events_lock; /* For dealing with event stuff. */
528 	struct list_head waiting_events;
529 	unsigned int     waiting_events_count; /* How many events in queue? */
530 	char             delivering_events;
531 	char             event_msg_printed;
532 
533 	/* How many users are waiting for events? */
534 	atomic_t         event_waiters;
535 	unsigned int     ticks_to_req_ev;
536 
537 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
538 
539 	/* How many users are waiting for commands? */
540 	unsigned int     command_waiters;
541 
542 	/* How many users are waiting for watchdogs? */
543 	unsigned int     watchdog_waiters;
544 
545 	/* How many users are waiting for message responses? */
546 	unsigned int     response_waiters;
547 
548 	/*
549 	 * Tells what the lower layer has last been asked to watch for,
550 	 * messages and/or watchdogs.  Protected by watch_lock.
551 	 */
552 	unsigned int     last_watch_mask;
553 
554 	/*
555 	 * The event receiver for my BMC, only really used at panic
556 	 * shutdown as a place to store this.
557 	 */
558 	unsigned char event_receiver;
559 	unsigned char event_receiver_lun;
560 	unsigned char local_sel_device;
561 	unsigned char local_event_generator;
562 
563 	/* For handling of maintenance mode. */
564 	int maintenance_mode;
565 	bool maintenance_mode_enable;
566 	int auto_maintenance_timeout;
567 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
568 
569 	/*
570 	 * If we are doing maintenance on something on IPMB, extend
571 	 * the timeout time to avoid timeouts writing firmware and
572 	 * such.
573 	 */
574 	int ipmb_maintenance_mode_timeout;
575 
576 	/*
577 	 * A cheap hack, if this is non-null and a message to an
578 	 * interface comes in with a NULL user, call this routine with
579 	 * it.  Note that the message will still be freed by the
580 	 * caller.  This only works on the system interface.
581 	 *
582 	 * Protected by bmc_reg_mutex.
583 	 */
584 	void (*null_user_handler)(struct ipmi_smi *intf,
585 				  struct ipmi_recv_msg *msg);
586 
587 	/*
588 	 * When we are scanning the channels for an SMI, this will
589 	 * tell which channel we are scanning.
590 	 */
591 	int curr_channel;
592 
593 	/* Channel information */
594 	struct ipmi_channel_set *channel_list;
595 	unsigned int curr_working_cset; /* First index into the following. */
596 	struct ipmi_channel_set wchannels[2];
597 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
598 	bool channels_ready;
599 
600 	atomic_t stats[IPMI_NUM_STATS];
601 
602 	/*
603 	 * run_to_completion duplicate of smb_info, smi_info
604 	 * and ipmi_serial_info structures. Used to decrease numbers of
605 	 * parameters passed by "low" level IPMI code.
606 	 */
607 	int run_to_completion;
608 };
609 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
610 
611 static void __get_guid(struct ipmi_smi *intf);
612 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
613 static int __ipmi_bmc_register(struct ipmi_smi *intf,
614 			       struct ipmi_device_id *id,
615 			       bool guid_set, guid_t *guid, int intf_num);
616 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
617 
618 
619 /**
620  * The driver model view of the IPMI messaging driver.
621  */
622 static struct platform_driver ipmidriver = {
623 	.driver = {
624 		.name = "ipmi",
625 		.bus = &platform_bus_type
626 	}
627 };
628 /*
629  * This mutex keeps us from adding the same BMC twice.
630  */
631 static DEFINE_MUTEX(ipmidriver_mutex);
632 
633 static LIST_HEAD(ipmi_interfaces);
634 static DEFINE_MUTEX(ipmi_interfaces_mutex);
635 struct srcu_struct ipmi_interfaces_srcu;
636 
637 /*
638  * List of watchers that want to know when smi's are added and deleted.
639  */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642 
643 #define ipmi_inc_stat(intf, stat) \
644 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647 
648 static const char * const addr_src_to_str[] = {
649 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650 	"device-tree", "platform"
651 };
652 
653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655 	if (src >= SI_LAST)
656 		src = 0; /* Invalid */
657 	return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660 
661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665 
666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670 
671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675 
676 static void free_recv_msg_list(struct list_head *q)
677 {
678 	struct ipmi_recv_msg *msg, *msg2;
679 
680 	list_for_each_entry_safe(msg, msg2, q, link) {
681 		list_del(&msg->link);
682 		ipmi_free_recv_msg(msg);
683 	}
684 }
685 
686 static void free_smi_msg_list(struct list_head *q)
687 {
688 	struct ipmi_smi_msg *msg, *msg2;
689 
690 	list_for_each_entry_safe(msg, msg2, q, link) {
691 		list_del(&msg->link);
692 		ipmi_free_smi_msg(msg);
693 	}
694 }
695 
696 static void clean_up_interface_data(struct ipmi_smi *intf)
697 {
698 	int              i;
699 	struct cmd_rcvr  *rcvr, *rcvr2;
700 	struct list_head list;
701 
702 	tasklet_kill(&intf->recv_tasklet);
703 
704 	free_smi_msg_list(&intf->waiting_rcv_msgs);
705 	free_recv_msg_list(&intf->waiting_events);
706 
707 	/*
708 	 * Wholesale remove all the entries from the list in the
709 	 * interface and wait for RCU to know that none are in use.
710 	 */
711 	mutex_lock(&intf->cmd_rcvrs_mutex);
712 	INIT_LIST_HEAD(&list);
713 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
714 	mutex_unlock(&intf->cmd_rcvrs_mutex);
715 
716 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
717 		kfree(rcvr);
718 
719 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
720 		if ((intf->seq_table[i].inuse)
721 					&& (intf->seq_table[i].recv_msg))
722 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
723 	}
724 }
725 
726 static void intf_free(struct kref *ref)
727 {
728 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
729 
730 	clean_up_interface_data(intf);
731 	kfree(intf);
732 }
733 
734 struct watcher_entry {
735 	int              intf_num;
736 	struct ipmi_smi  *intf;
737 	struct list_head link;
738 };
739 
740 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
741 {
742 	struct ipmi_smi *intf;
743 	int index, rv;
744 
745 	/*
746 	 * Make sure the driver is actually initialized, this handles
747 	 * problems with initialization order.
748 	 */
749 	rv = ipmi_init_msghandler();
750 	if (rv)
751 		return rv;
752 
753 	mutex_lock(&smi_watchers_mutex);
754 
755 	list_add(&watcher->link, &smi_watchers);
756 
757 	index = srcu_read_lock(&ipmi_interfaces_srcu);
758 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
759 		int intf_num = READ_ONCE(intf->intf_num);
760 
761 		if (intf_num == -1)
762 			continue;
763 		watcher->new_smi(intf_num, intf->si_dev);
764 	}
765 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
766 
767 	mutex_unlock(&smi_watchers_mutex);
768 
769 	return 0;
770 }
771 EXPORT_SYMBOL(ipmi_smi_watcher_register);
772 
773 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
774 {
775 	mutex_lock(&smi_watchers_mutex);
776 	list_del(&watcher->link);
777 	mutex_unlock(&smi_watchers_mutex);
778 	return 0;
779 }
780 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
781 
782 /*
783  * Must be called with smi_watchers_mutex held.
784  */
785 static void
786 call_smi_watchers(int i, struct device *dev)
787 {
788 	struct ipmi_smi_watcher *w;
789 
790 	mutex_lock(&smi_watchers_mutex);
791 	list_for_each_entry(w, &smi_watchers, link) {
792 		if (try_module_get(w->owner)) {
793 			w->new_smi(i, dev);
794 			module_put(w->owner);
795 		}
796 	}
797 	mutex_unlock(&smi_watchers_mutex);
798 }
799 
800 static int
801 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
802 {
803 	if (addr1->addr_type != addr2->addr_type)
804 		return 0;
805 
806 	if (addr1->channel != addr2->channel)
807 		return 0;
808 
809 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
810 		struct ipmi_system_interface_addr *smi_addr1
811 		    = (struct ipmi_system_interface_addr *) addr1;
812 		struct ipmi_system_interface_addr *smi_addr2
813 		    = (struct ipmi_system_interface_addr *) addr2;
814 		return (smi_addr1->lun == smi_addr2->lun);
815 	}
816 
817 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
818 		struct ipmi_ipmb_addr *ipmb_addr1
819 		    = (struct ipmi_ipmb_addr *) addr1;
820 		struct ipmi_ipmb_addr *ipmb_addr2
821 		    = (struct ipmi_ipmb_addr *) addr2;
822 
823 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
824 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
825 	}
826 
827 	if (is_lan_addr(addr1)) {
828 		struct ipmi_lan_addr *lan_addr1
829 			= (struct ipmi_lan_addr *) addr1;
830 		struct ipmi_lan_addr *lan_addr2
831 		    = (struct ipmi_lan_addr *) addr2;
832 
833 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
834 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
835 			&& (lan_addr1->session_handle
836 			    == lan_addr2->session_handle)
837 			&& (lan_addr1->lun == lan_addr2->lun));
838 	}
839 
840 	return 1;
841 }
842 
843 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
844 {
845 	if (len < sizeof(struct ipmi_system_interface_addr))
846 		return -EINVAL;
847 
848 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
849 		if (addr->channel != IPMI_BMC_CHANNEL)
850 			return -EINVAL;
851 		return 0;
852 	}
853 
854 	if ((addr->channel == IPMI_BMC_CHANNEL)
855 	    || (addr->channel >= IPMI_MAX_CHANNELS)
856 	    || (addr->channel < 0))
857 		return -EINVAL;
858 
859 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
860 		if (len < sizeof(struct ipmi_ipmb_addr))
861 			return -EINVAL;
862 		return 0;
863 	}
864 
865 	if (is_lan_addr(addr)) {
866 		if (len < sizeof(struct ipmi_lan_addr))
867 			return -EINVAL;
868 		return 0;
869 	}
870 
871 	return -EINVAL;
872 }
873 EXPORT_SYMBOL(ipmi_validate_addr);
874 
875 unsigned int ipmi_addr_length(int addr_type)
876 {
877 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
878 		return sizeof(struct ipmi_system_interface_addr);
879 
880 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
881 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
882 		return sizeof(struct ipmi_ipmb_addr);
883 
884 	if (addr_type == IPMI_LAN_ADDR_TYPE)
885 		return sizeof(struct ipmi_lan_addr);
886 
887 	return 0;
888 }
889 EXPORT_SYMBOL(ipmi_addr_length);
890 
891 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
892 {
893 	int rv = 0;
894 
895 	if (!msg->user) {
896 		/* Special handling for NULL users. */
897 		if (intf->null_user_handler) {
898 			intf->null_user_handler(intf, msg);
899 		} else {
900 			/* No handler, so give up. */
901 			rv = -EINVAL;
902 		}
903 		ipmi_free_recv_msg(msg);
904 	} else if (!oops_in_progress) {
905 		/*
906 		 * If we are running in the panic context, calling the
907 		 * receive handler doesn't much meaning and has a deadlock
908 		 * risk.  At this moment, simply skip it in that case.
909 		 */
910 		int index;
911 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
912 
913 		if (user) {
914 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
915 			release_ipmi_user(user, index);
916 		} else {
917 			/* User went away, give up. */
918 			ipmi_free_recv_msg(msg);
919 			rv = -EINVAL;
920 		}
921 	}
922 
923 	return rv;
924 }
925 
926 static void deliver_local_response(struct ipmi_smi *intf,
927 				   struct ipmi_recv_msg *msg)
928 {
929 	if (deliver_response(intf, msg))
930 		ipmi_inc_stat(intf, unhandled_local_responses);
931 	else
932 		ipmi_inc_stat(intf, handled_local_responses);
933 }
934 
935 static void deliver_err_response(struct ipmi_smi *intf,
936 				 struct ipmi_recv_msg *msg, int err)
937 {
938 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
939 	msg->msg_data[0] = err;
940 	msg->msg.netfn |= 1; /* Convert to a response. */
941 	msg->msg.data_len = 1;
942 	msg->msg.data = msg->msg_data;
943 	deliver_local_response(intf, msg);
944 }
945 
946 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
947 {
948 	unsigned long iflags;
949 
950 	if (!intf->handlers->set_need_watch)
951 		return;
952 
953 	spin_lock_irqsave(&intf->watch_lock, iflags);
954 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
955 		intf->response_waiters++;
956 
957 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
958 		intf->watchdog_waiters++;
959 
960 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
961 		intf->command_waiters++;
962 
963 	if ((intf->last_watch_mask & flags) != flags) {
964 		intf->last_watch_mask |= flags;
965 		intf->handlers->set_need_watch(intf->send_info,
966 					       intf->last_watch_mask);
967 	}
968 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
969 }
970 
971 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
972 {
973 	unsigned long iflags;
974 
975 	if (!intf->handlers->set_need_watch)
976 		return;
977 
978 	spin_lock_irqsave(&intf->watch_lock, iflags);
979 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
980 		intf->response_waiters--;
981 
982 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
983 		intf->watchdog_waiters--;
984 
985 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
986 		intf->command_waiters--;
987 
988 	flags = 0;
989 	if (intf->response_waiters)
990 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
991 	if (intf->watchdog_waiters)
992 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
993 	if (intf->command_waiters)
994 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
995 
996 	if (intf->last_watch_mask != flags) {
997 		intf->last_watch_mask = flags;
998 		intf->handlers->set_need_watch(intf->send_info,
999 					       intf->last_watch_mask);
1000 	}
1001 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1002 }
1003 
1004 /*
1005  * Find the next sequence number not being used and add the given
1006  * message with the given timeout to the sequence table.  This must be
1007  * called with the interface's seq_lock held.
1008  */
1009 static int intf_next_seq(struct ipmi_smi      *intf,
1010 			 struct ipmi_recv_msg *recv_msg,
1011 			 unsigned long        timeout,
1012 			 int                  retries,
1013 			 int                  broadcast,
1014 			 unsigned char        *seq,
1015 			 long                 *seqid)
1016 {
1017 	int          rv = 0;
1018 	unsigned int i;
1019 
1020 	if (timeout == 0)
1021 		timeout = default_retry_ms;
1022 	if (retries < 0)
1023 		retries = default_max_retries;
1024 
1025 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1026 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1027 		if (!intf->seq_table[i].inuse)
1028 			break;
1029 	}
1030 
1031 	if (!intf->seq_table[i].inuse) {
1032 		intf->seq_table[i].recv_msg = recv_msg;
1033 
1034 		/*
1035 		 * Start with the maximum timeout, when the send response
1036 		 * comes in we will start the real timer.
1037 		 */
1038 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1039 		intf->seq_table[i].orig_timeout = timeout;
1040 		intf->seq_table[i].retries_left = retries;
1041 		intf->seq_table[i].broadcast = broadcast;
1042 		intf->seq_table[i].inuse = 1;
1043 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1044 		*seq = i;
1045 		*seqid = intf->seq_table[i].seqid;
1046 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1047 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1048 		need_waiter(intf);
1049 	} else {
1050 		rv = -EAGAIN;
1051 	}
1052 
1053 	return rv;
1054 }
1055 
1056 /*
1057  * Return the receive message for the given sequence number and
1058  * release the sequence number so it can be reused.  Some other data
1059  * is passed in to be sure the message matches up correctly (to help
1060  * guard against message coming in after their timeout and the
1061  * sequence number being reused).
1062  */
1063 static int intf_find_seq(struct ipmi_smi      *intf,
1064 			 unsigned char        seq,
1065 			 short                channel,
1066 			 unsigned char        cmd,
1067 			 unsigned char        netfn,
1068 			 struct ipmi_addr     *addr,
1069 			 struct ipmi_recv_msg **recv_msg)
1070 {
1071 	int           rv = -ENODEV;
1072 	unsigned long flags;
1073 
1074 	if (seq >= IPMI_IPMB_NUM_SEQ)
1075 		return -EINVAL;
1076 
1077 	spin_lock_irqsave(&intf->seq_lock, flags);
1078 	if (intf->seq_table[seq].inuse) {
1079 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1080 
1081 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1082 				&& (msg->msg.netfn == netfn)
1083 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1084 			*recv_msg = msg;
1085 			intf->seq_table[seq].inuse = 0;
1086 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1087 			rv = 0;
1088 		}
1089 	}
1090 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1091 
1092 	return rv;
1093 }
1094 
1095 
1096 /* Start the timer for a specific sequence table entry. */
1097 static int intf_start_seq_timer(struct ipmi_smi *intf,
1098 				long       msgid)
1099 {
1100 	int           rv = -ENODEV;
1101 	unsigned long flags;
1102 	unsigned char seq;
1103 	unsigned long seqid;
1104 
1105 
1106 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1107 
1108 	spin_lock_irqsave(&intf->seq_lock, flags);
1109 	/*
1110 	 * We do this verification because the user can be deleted
1111 	 * while a message is outstanding.
1112 	 */
1113 	if ((intf->seq_table[seq].inuse)
1114 				&& (intf->seq_table[seq].seqid == seqid)) {
1115 		struct seq_table *ent = &intf->seq_table[seq];
1116 		ent->timeout = ent->orig_timeout;
1117 		rv = 0;
1118 	}
1119 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1120 
1121 	return rv;
1122 }
1123 
1124 /* Got an error for the send message for a specific sequence number. */
1125 static int intf_err_seq(struct ipmi_smi *intf,
1126 			long         msgid,
1127 			unsigned int err)
1128 {
1129 	int                  rv = -ENODEV;
1130 	unsigned long        flags;
1131 	unsigned char        seq;
1132 	unsigned long        seqid;
1133 	struct ipmi_recv_msg *msg = NULL;
1134 
1135 
1136 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1137 
1138 	spin_lock_irqsave(&intf->seq_lock, flags);
1139 	/*
1140 	 * We do this verification because the user can be deleted
1141 	 * while a message is outstanding.
1142 	 */
1143 	if ((intf->seq_table[seq].inuse)
1144 				&& (intf->seq_table[seq].seqid == seqid)) {
1145 		struct seq_table *ent = &intf->seq_table[seq];
1146 
1147 		ent->inuse = 0;
1148 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1149 		msg = ent->recv_msg;
1150 		rv = 0;
1151 	}
1152 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1153 
1154 	if (msg)
1155 		deliver_err_response(intf, msg, err);
1156 
1157 	return rv;
1158 }
1159 
1160 int ipmi_create_user(unsigned int          if_num,
1161 		     const struct ipmi_user_hndl *handler,
1162 		     void                  *handler_data,
1163 		     struct ipmi_user      **user)
1164 {
1165 	unsigned long flags;
1166 	struct ipmi_user *new_user;
1167 	int           rv, index;
1168 	struct ipmi_smi *intf;
1169 
1170 	/*
1171 	 * There is no module usecount here, because it's not
1172 	 * required.  Since this can only be used by and called from
1173 	 * other modules, they will implicitly use this module, and
1174 	 * thus this can't be removed unless the other modules are
1175 	 * removed.
1176 	 */
1177 
1178 	if (handler == NULL)
1179 		return -EINVAL;
1180 
1181 	/*
1182 	 * Make sure the driver is actually initialized, this handles
1183 	 * problems with initialization order.
1184 	 */
1185 	rv = ipmi_init_msghandler();
1186 	if (rv)
1187 		return rv;
1188 
1189 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1190 	if (!new_user)
1191 		return -ENOMEM;
1192 
1193 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1194 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1195 		if (intf->intf_num == if_num)
1196 			goto found;
1197 	}
1198 	/* Not found, return an error */
1199 	rv = -EINVAL;
1200 	goto out_kfree;
1201 
1202  found:
1203 	rv = init_srcu_struct(&new_user->release_barrier);
1204 	if (rv)
1205 		goto out_kfree;
1206 
1207 	/* Note that each existing user holds a refcount to the interface. */
1208 	kref_get(&intf->refcount);
1209 
1210 	kref_init(&new_user->refcount);
1211 	new_user->handler = handler;
1212 	new_user->handler_data = handler_data;
1213 	new_user->intf = intf;
1214 	new_user->gets_events = false;
1215 
1216 	rcu_assign_pointer(new_user->self, new_user);
1217 	spin_lock_irqsave(&intf->seq_lock, flags);
1218 	list_add_rcu(&new_user->link, &intf->users);
1219 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1220 	if (handler->ipmi_watchdog_pretimeout)
1221 		/* User wants pretimeouts, so make sure to watch for them. */
1222 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1223 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1224 	*user = new_user;
1225 	return 0;
1226 
1227 out_kfree:
1228 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1229 	kfree(new_user);
1230 	return rv;
1231 }
1232 EXPORT_SYMBOL(ipmi_create_user);
1233 
1234 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1235 {
1236 	int rv, index;
1237 	struct ipmi_smi *intf;
1238 
1239 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1240 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1241 		if (intf->intf_num == if_num)
1242 			goto found;
1243 	}
1244 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1245 
1246 	/* Not found, return an error */
1247 	return -EINVAL;
1248 
1249 found:
1250 	if (!intf->handlers->get_smi_info)
1251 		rv = -ENOTTY;
1252 	else
1253 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1254 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1255 
1256 	return rv;
1257 }
1258 EXPORT_SYMBOL(ipmi_get_smi_info);
1259 
1260 static void free_user(struct kref *ref)
1261 {
1262 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1263 	cleanup_srcu_struct(&user->release_barrier);
1264 	kfree(user);
1265 }
1266 
1267 static void _ipmi_destroy_user(struct ipmi_user *user)
1268 {
1269 	struct ipmi_smi  *intf = user->intf;
1270 	int              i;
1271 	unsigned long    flags;
1272 	struct cmd_rcvr  *rcvr;
1273 	struct cmd_rcvr  *rcvrs = NULL;
1274 
1275 	if (!acquire_ipmi_user(user, &i)) {
1276 		/*
1277 		 * The user has already been cleaned up, just make sure
1278 		 * nothing is using it and return.
1279 		 */
1280 		synchronize_srcu(&user->release_barrier);
1281 		return;
1282 	}
1283 
1284 	rcu_assign_pointer(user->self, NULL);
1285 	release_ipmi_user(user, i);
1286 
1287 	synchronize_srcu(&user->release_barrier);
1288 
1289 	if (user->handler->shutdown)
1290 		user->handler->shutdown(user->handler_data);
1291 
1292 	if (user->handler->ipmi_watchdog_pretimeout)
1293 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1294 
1295 	if (user->gets_events)
1296 		atomic_dec(&intf->event_waiters);
1297 
1298 	/* Remove the user from the interface's sequence table. */
1299 	spin_lock_irqsave(&intf->seq_lock, flags);
1300 	list_del_rcu(&user->link);
1301 
1302 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1303 		if (intf->seq_table[i].inuse
1304 		    && (intf->seq_table[i].recv_msg->user == user)) {
1305 			intf->seq_table[i].inuse = 0;
1306 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1307 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1308 		}
1309 	}
1310 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1311 
1312 	/*
1313 	 * Remove the user from the command receiver's table.  First
1314 	 * we build a list of everything (not using the standard link,
1315 	 * since other things may be using it till we do
1316 	 * synchronize_srcu()) then free everything in that list.
1317 	 */
1318 	mutex_lock(&intf->cmd_rcvrs_mutex);
1319 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1320 		if (rcvr->user == user) {
1321 			list_del_rcu(&rcvr->link);
1322 			rcvr->next = rcvrs;
1323 			rcvrs = rcvr;
1324 		}
1325 	}
1326 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1327 	synchronize_rcu();
1328 	while (rcvrs) {
1329 		rcvr = rcvrs;
1330 		rcvrs = rcvr->next;
1331 		kfree(rcvr);
1332 	}
1333 
1334 	kref_put(&intf->refcount, intf_free);
1335 }
1336 
1337 int ipmi_destroy_user(struct ipmi_user *user)
1338 {
1339 	_ipmi_destroy_user(user);
1340 
1341 	kref_put(&user->refcount, free_user);
1342 
1343 	return 0;
1344 }
1345 EXPORT_SYMBOL(ipmi_destroy_user);
1346 
1347 int ipmi_get_version(struct ipmi_user *user,
1348 		     unsigned char *major,
1349 		     unsigned char *minor)
1350 {
1351 	struct ipmi_device_id id;
1352 	int rv, index;
1353 
1354 	user = acquire_ipmi_user(user, &index);
1355 	if (!user)
1356 		return -ENODEV;
1357 
1358 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1359 	if (!rv) {
1360 		*major = ipmi_version_major(&id);
1361 		*minor = ipmi_version_minor(&id);
1362 	}
1363 	release_ipmi_user(user, index);
1364 
1365 	return rv;
1366 }
1367 EXPORT_SYMBOL(ipmi_get_version);
1368 
1369 int ipmi_set_my_address(struct ipmi_user *user,
1370 			unsigned int  channel,
1371 			unsigned char address)
1372 {
1373 	int index, rv = 0;
1374 
1375 	user = acquire_ipmi_user(user, &index);
1376 	if (!user)
1377 		return -ENODEV;
1378 
1379 	if (channel >= IPMI_MAX_CHANNELS) {
1380 		rv = -EINVAL;
1381 	} else {
1382 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1383 		user->intf->addrinfo[channel].address = address;
1384 	}
1385 	release_ipmi_user(user, index);
1386 
1387 	return rv;
1388 }
1389 EXPORT_SYMBOL(ipmi_set_my_address);
1390 
1391 int ipmi_get_my_address(struct ipmi_user *user,
1392 			unsigned int  channel,
1393 			unsigned char *address)
1394 {
1395 	int index, rv = 0;
1396 
1397 	user = acquire_ipmi_user(user, &index);
1398 	if (!user)
1399 		return -ENODEV;
1400 
1401 	if (channel >= IPMI_MAX_CHANNELS) {
1402 		rv = -EINVAL;
1403 	} else {
1404 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1405 		*address = user->intf->addrinfo[channel].address;
1406 	}
1407 	release_ipmi_user(user, index);
1408 
1409 	return rv;
1410 }
1411 EXPORT_SYMBOL(ipmi_get_my_address);
1412 
1413 int ipmi_set_my_LUN(struct ipmi_user *user,
1414 		    unsigned int  channel,
1415 		    unsigned char LUN)
1416 {
1417 	int index, rv = 0;
1418 
1419 	user = acquire_ipmi_user(user, &index);
1420 	if (!user)
1421 		return -ENODEV;
1422 
1423 	if (channel >= IPMI_MAX_CHANNELS) {
1424 		rv = -EINVAL;
1425 	} else {
1426 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1427 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1428 	}
1429 	release_ipmi_user(user, index);
1430 
1431 	return rv;
1432 }
1433 EXPORT_SYMBOL(ipmi_set_my_LUN);
1434 
1435 int ipmi_get_my_LUN(struct ipmi_user *user,
1436 		    unsigned int  channel,
1437 		    unsigned char *address)
1438 {
1439 	int index, rv = 0;
1440 
1441 	user = acquire_ipmi_user(user, &index);
1442 	if (!user)
1443 		return -ENODEV;
1444 
1445 	if (channel >= IPMI_MAX_CHANNELS) {
1446 		rv = -EINVAL;
1447 	} else {
1448 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1449 		*address = user->intf->addrinfo[channel].lun;
1450 	}
1451 	release_ipmi_user(user, index);
1452 
1453 	return rv;
1454 }
1455 EXPORT_SYMBOL(ipmi_get_my_LUN);
1456 
1457 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1458 {
1459 	int mode, index;
1460 	unsigned long flags;
1461 
1462 	user = acquire_ipmi_user(user, &index);
1463 	if (!user)
1464 		return -ENODEV;
1465 
1466 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1467 	mode = user->intf->maintenance_mode;
1468 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1469 	release_ipmi_user(user, index);
1470 
1471 	return mode;
1472 }
1473 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1474 
1475 static void maintenance_mode_update(struct ipmi_smi *intf)
1476 {
1477 	if (intf->handlers->set_maintenance_mode)
1478 		intf->handlers->set_maintenance_mode(
1479 			intf->send_info, intf->maintenance_mode_enable);
1480 }
1481 
1482 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1483 {
1484 	int rv = 0, index;
1485 	unsigned long flags;
1486 	struct ipmi_smi *intf = user->intf;
1487 
1488 	user = acquire_ipmi_user(user, &index);
1489 	if (!user)
1490 		return -ENODEV;
1491 
1492 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1493 	if (intf->maintenance_mode != mode) {
1494 		switch (mode) {
1495 		case IPMI_MAINTENANCE_MODE_AUTO:
1496 			intf->maintenance_mode_enable
1497 				= (intf->auto_maintenance_timeout > 0);
1498 			break;
1499 
1500 		case IPMI_MAINTENANCE_MODE_OFF:
1501 			intf->maintenance_mode_enable = false;
1502 			break;
1503 
1504 		case IPMI_MAINTENANCE_MODE_ON:
1505 			intf->maintenance_mode_enable = true;
1506 			break;
1507 
1508 		default:
1509 			rv = -EINVAL;
1510 			goto out_unlock;
1511 		}
1512 		intf->maintenance_mode = mode;
1513 
1514 		maintenance_mode_update(intf);
1515 	}
1516  out_unlock:
1517 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1518 	release_ipmi_user(user, index);
1519 
1520 	return rv;
1521 }
1522 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1523 
1524 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1525 {
1526 	unsigned long        flags;
1527 	struct ipmi_smi      *intf = user->intf;
1528 	struct ipmi_recv_msg *msg, *msg2;
1529 	struct list_head     msgs;
1530 	int index;
1531 
1532 	user = acquire_ipmi_user(user, &index);
1533 	if (!user)
1534 		return -ENODEV;
1535 
1536 	INIT_LIST_HEAD(&msgs);
1537 
1538 	spin_lock_irqsave(&intf->events_lock, flags);
1539 	if (user->gets_events == val)
1540 		goto out;
1541 
1542 	user->gets_events = val;
1543 
1544 	if (val) {
1545 		if (atomic_inc_return(&intf->event_waiters) == 1)
1546 			need_waiter(intf);
1547 	} else {
1548 		atomic_dec(&intf->event_waiters);
1549 	}
1550 
1551 	if (intf->delivering_events)
1552 		/*
1553 		 * Another thread is delivering events for this, so
1554 		 * let it handle any new events.
1555 		 */
1556 		goto out;
1557 
1558 	/* Deliver any queued events. */
1559 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1560 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1561 			list_move_tail(&msg->link, &msgs);
1562 		intf->waiting_events_count = 0;
1563 		if (intf->event_msg_printed) {
1564 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1565 			intf->event_msg_printed = 0;
1566 		}
1567 
1568 		intf->delivering_events = 1;
1569 		spin_unlock_irqrestore(&intf->events_lock, flags);
1570 
1571 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1572 			msg->user = user;
1573 			kref_get(&user->refcount);
1574 			deliver_local_response(intf, msg);
1575 		}
1576 
1577 		spin_lock_irqsave(&intf->events_lock, flags);
1578 		intf->delivering_events = 0;
1579 	}
1580 
1581  out:
1582 	spin_unlock_irqrestore(&intf->events_lock, flags);
1583 	release_ipmi_user(user, index);
1584 
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL(ipmi_set_gets_events);
1588 
1589 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1590 				      unsigned char netfn,
1591 				      unsigned char cmd,
1592 				      unsigned char chan)
1593 {
1594 	struct cmd_rcvr *rcvr;
1595 
1596 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1597 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1598 					&& (rcvr->chans & (1 << chan)))
1599 			return rcvr;
1600 	}
1601 	return NULL;
1602 }
1603 
1604 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1605 				 unsigned char netfn,
1606 				 unsigned char cmd,
1607 				 unsigned int  chans)
1608 {
1609 	struct cmd_rcvr *rcvr;
1610 
1611 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1612 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1613 					&& (rcvr->chans & chans))
1614 			return 0;
1615 	}
1616 	return 1;
1617 }
1618 
1619 int ipmi_register_for_cmd(struct ipmi_user *user,
1620 			  unsigned char netfn,
1621 			  unsigned char cmd,
1622 			  unsigned int  chans)
1623 {
1624 	struct ipmi_smi *intf = user->intf;
1625 	struct cmd_rcvr *rcvr;
1626 	int rv = 0, index;
1627 
1628 	user = acquire_ipmi_user(user, &index);
1629 	if (!user)
1630 		return -ENODEV;
1631 
1632 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1633 	if (!rcvr) {
1634 		rv = -ENOMEM;
1635 		goto out_release;
1636 	}
1637 	rcvr->cmd = cmd;
1638 	rcvr->netfn = netfn;
1639 	rcvr->chans = chans;
1640 	rcvr->user = user;
1641 
1642 	mutex_lock(&intf->cmd_rcvrs_mutex);
1643 	/* Make sure the command/netfn is not already registered. */
1644 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1645 		rv = -EBUSY;
1646 		goto out_unlock;
1647 	}
1648 
1649 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1650 
1651 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1652 
1653 out_unlock:
1654 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1655 	if (rv)
1656 		kfree(rcvr);
1657 out_release:
1658 	release_ipmi_user(user, index);
1659 
1660 	return rv;
1661 }
1662 EXPORT_SYMBOL(ipmi_register_for_cmd);
1663 
1664 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1665 			    unsigned char netfn,
1666 			    unsigned char cmd,
1667 			    unsigned int  chans)
1668 {
1669 	struct ipmi_smi *intf = user->intf;
1670 	struct cmd_rcvr *rcvr;
1671 	struct cmd_rcvr *rcvrs = NULL;
1672 	int i, rv = -ENOENT, index;
1673 
1674 	user = acquire_ipmi_user(user, &index);
1675 	if (!user)
1676 		return -ENODEV;
1677 
1678 	mutex_lock(&intf->cmd_rcvrs_mutex);
1679 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1680 		if (((1 << i) & chans) == 0)
1681 			continue;
1682 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1683 		if (rcvr == NULL)
1684 			continue;
1685 		if (rcvr->user == user) {
1686 			rv = 0;
1687 			rcvr->chans &= ~chans;
1688 			if (rcvr->chans == 0) {
1689 				list_del_rcu(&rcvr->link);
1690 				rcvr->next = rcvrs;
1691 				rcvrs = rcvr;
1692 			}
1693 		}
1694 	}
1695 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1696 	synchronize_rcu();
1697 	release_ipmi_user(user, index);
1698 	while (rcvrs) {
1699 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1700 		rcvr = rcvrs;
1701 		rcvrs = rcvr->next;
1702 		kfree(rcvr);
1703 	}
1704 
1705 	return rv;
1706 }
1707 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1708 
1709 static unsigned char
1710 ipmb_checksum(unsigned char *data, int size)
1711 {
1712 	unsigned char csum = 0;
1713 
1714 	for (; size > 0; size--, data++)
1715 		csum += *data;
1716 
1717 	return -csum;
1718 }
1719 
1720 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1721 				   struct kernel_ipmi_msg *msg,
1722 				   struct ipmi_ipmb_addr *ipmb_addr,
1723 				   long                  msgid,
1724 				   unsigned char         ipmb_seq,
1725 				   int                   broadcast,
1726 				   unsigned char         source_address,
1727 				   unsigned char         source_lun)
1728 {
1729 	int i = broadcast;
1730 
1731 	/* Format the IPMB header data. */
1732 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1733 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1734 	smi_msg->data[2] = ipmb_addr->channel;
1735 	if (broadcast)
1736 		smi_msg->data[3] = 0;
1737 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1738 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1739 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1740 	smi_msg->data[i+6] = source_address;
1741 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1742 	smi_msg->data[i+8] = msg->cmd;
1743 
1744 	/* Now tack on the data to the message. */
1745 	if (msg->data_len > 0)
1746 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1747 	smi_msg->data_size = msg->data_len + 9;
1748 
1749 	/* Now calculate the checksum and tack it on. */
1750 	smi_msg->data[i+smi_msg->data_size]
1751 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1752 
1753 	/*
1754 	 * Add on the checksum size and the offset from the
1755 	 * broadcast.
1756 	 */
1757 	smi_msg->data_size += 1 + i;
1758 
1759 	smi_msg->msgid = msgid;
1760 }
1761 
1762 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1763 				  struct kernel_ipmi_msg *msg,
1764 				  struct ipmi_lan_addr  *lan_addr,
1765 				  long                  msgid,
1766 				  unsigned char         ipmb_seq,
1767 				  unsigned char         source_lun)
1768 {
1769 	/* Format the IPMB header data. */
1770 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1771 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1772 	smi_msg->data[2] = lan_addr->channel;
1773 	smi_msg->data[3] = lan_addr->session_handle;
1774 	smi_msg->data[4] = lan_addr->remote_SWID;
1775 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1776 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1777 	smi_msg->data[7] = lan_addr->local_SWID;
1778 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1779 	smi_msg->data[9] = msg->cmd;
1780 
1781 	/* Now tack on the data to the message. */
1782 	if (msg->data_len > 0)
1783 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1784 	smi_msg->data_size = msg->data_len + 10;
1785 
1786 	/* Now calculate the checksum and tack it on. */
1787 	smi_msg->data[smi_msg->data_size]
1788 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1789 
1790 	/*
1791 	 * Add on the checksum size and the offset from the
1792 	 * broadcast.
1793 	 */
1794 	smi_msg->data_size += 1;
1795 
1796 	smi_msg->msgid = msgid;
1797 }
1798 
1799 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1800 					     struct ipmi_smi_msg *smi_msg,
1801 					     int priority)
1802 {
1803 	if (intf->curr_msg) {
1804 		if (priority > 0)
1805 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1806 		else
1807 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1808 		smi_msg = NULL;
1809 	} else {
1810 		intf->curr_msg = smi_msg;
1811 	}
1812 
1813 	return smi_msg;
1814 }
1815 
1816 static void smi_send(struct ipmi_smi *intf,
1817 		     const struct ipmi_smi_handlers *handlers,
1818 		     struct ipmi_smi_msg *smi_msg, int priority)
1819 {
1820 	int run_to_completion = intf->run_to_completion;
1821 	unsigned long flags = 0;
1822 
1823 	if (!run_to_completion)
1824 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1825 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1826 
1827 	if (!run_to_completion)
1828 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1829 
1830 	if (smi_msg)
1831 		handlers->sender(intf->send_info, smi_msg);
1832 }
1833 
1834 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1835 {
1836 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1837 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1838 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1839 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1840 }
1841 
1842 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1843 			      struct ipmi_addr       *addr,
1844 			      long                   msgid,
1845 			      struct kernel_ipmi_msg *msg,
1846 			      struct ipmi_smi_msg    *smi_msg,
1847 			      struct ipmi_recv_msg   *recv_msg,
1848 			      int                    retries,
1849 			      unsigned int           retry_time_ms)
1850 {
1851 	struct ipmi_system_interface_addr *smi_addr;
1852 
1853 	if (msg->netfn & 1)
1854 		/* Responses are not allowed to the SMI. */
1855 		return -EINVAL;
1856 
1857 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1858 	if (smi_addr->lun > 3) {
1859 		ipmi_inc_stat(intf, sent_invalid_commands);
1860 		return -EINVAL;
1861 	}
1862 
1863 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1864 
1865 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1866 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1867 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1868 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1869 		/*
1870 		 * We don't let the user do these, since we manage
1871 		 * the sequence numbers.
1872 		 */
1873 		ipmi_inc_stat(intf, sent_invalid_commands);
1874 		return -EINVAL;
1875 	}
1876 
1877 	if (is_maintenance_mode_cmd(msg)) {
1878 		unsigned long flags;
1879 
1880 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1881 		intf->auto_maintenance_timeout
1882 			= maintenance_mode_timeout_ms;
1883 		if (!intf->maintenance_mode
1884 		    && !intf->maintenance_mode_enable) {
1885 			intf->maintenance_mode_enable = true;
1886 			maintenance_mode_update(intf);
1887 		}
1888 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1889 				       flags);
1890 	}
1891 
1892 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1893 		ipmi_inc_stat(intf, sent_invalid_commands);
1894 		return -EMSGSIZE;
1895 	}
1896 
1897 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1898 	smi_msg->data[1] = msg->cmd;
1899 	smi_msg->msgid = msgid;
1900 	smi_msg->user_data = recv_msg;
1901 	if (msg->data_len > 0)
1902 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1903 	smi_msg->data_size = msg->data_len + 2;
1904 	ipmi_inc_stat(intf, sent_local_commands);
1905 
1906 	return 0;
1907 }
1908 
1909 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1910 			   struct ipmi_addr       *addr,
1911 			   long                   msgid,
1912 			   struct kernel_ipmi_msg *msg,
1913 			   struct ipmi_smi_msg    *smi_msg,
1914 			   struct ipmi_recv_msg   *recv_msg,
1915 			   unsigned char          source_address,
1916 			   unsigned char          source_lun,
1917 			   int                    retries,
1918 			   unsigned int           retry_time_ms)
1919 {
1920 	struct ipmi_ipmb_addr *ipmb_addr;
1921 	unsigned char ipmb_seq;
1922 	long seqid;
1923 	int broadcast = 0;
1924 	struct ipmi_channel *chans;
1925 	int rv = 0;
1926 
1927 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1928 		ipmi_inc_stat(intf, sent_invalid_commands);
1929 		return -EINVAL;
1930 	}
1931 
1932 	chans = READ_ONCE(intf->channel_list)->c;
1933 
1934 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1935 		ipmi_inc_stat(intf, sent_invalid_commands);
1936 		return -EINVAL;
1937 	}
1938 
1939 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1940 		/*
1941 		 * Broadcasts add a zero at the beginning of the
1942 		 * message, but otherwise is the same as an IPMB
1943 		 * address.
1944 		 */
1945 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1946 		broadcast = 1;
1947 		retries = 0; /* Don't retry broadcasts. */
1948 	}
1949 
1950 	/*
1951 	 * 9 for the header and 1 for the checksum, plus
1952 	 * possibly one for the broadcast.
1953 	 */
1954 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1955 		ipmi_inc_stat(intf, sent_invalid_commands);
1956 		return -EMSGSIZE;
1957 	}
1958 
1959 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1960 	if (ipmb_addr->lun > 3) {
1961 		ipmi_inc_stat(intf, sent_invalid_commands);
1962 		return -EINVAL;
1963 	}
1964 
1965 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1966 
1967 	if (recv_msg->msg.netfn & 0x1) {
1968 		/*
1969 		 * It's a response, so use the user's sequence
1970 		 * from msgid.
1971 		 */
1972 		ipmi_inc_stat(intf, sent_ipmb_responses);
1973 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1974 				msgid, broadcast,
1975 				source_address, source_lun);
1976 
1977 		/*
1978 		 * Save the receive message so we can use it
1979 		 * to deliver the response.
1980 		 */
1981 		smi_msg->user_data = recv_msg;
1982 	} else {
1983 		/* It's a command, so get a sequence for it. */
1984 		unsigned long flags;
1985 
1986 		spin_lock_irqsave(&intf->seq_lock, flags);
1987 
1988 		if (is_maintenance_mode_cmd(msg))
1989 			intf->ipmb_maintenance_mode_timeout =
1990 				maintenance_mode_timeout_ms;
1991 
1992 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
1993 			/* Different default in maintenance mode */
1994 			retry_time_ms = default_maintenance_retry_ms;
1995 
1996 		/*
1997 		 * Create a sequence number with a 1 second
1998 		 * timeout and 4 retries.
1999 		 */
2000 		rv = intf_next_seq(intf,
2001 				   recv_msg,
2002 				   retry_time_ms,
2003 				   retries,
2004 				   broadcast,
2005 				   &ipmb_seq,
2006 				   &seqid);
2007 		if (rv)
2008 			/*
2009 			 * We have used up all the sequence numbers,
2010 			 * probably, so abort.
2011 			 */
2012 			goto out_err;
2013 
2014 		ipmi_inc_stat(intf, sent_ipmb_commands);
2015 
2016 		/*
2017 		 * Store the sequence number in the message,
2018 		 * so that when the send message response
2019 		 * comes back we can start the timer.
2020 		 */
2021 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2022 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2023 				ipmb_seq, broadcast,
2024 				source_address, source_lun);
2025 
2026 		/*
2027 		 * Copy the message into the recv message data, so we
2028 		 * can retransmit it later if necessary.
2029 		 */
2030 		memcpy(recv_msg->msg_data, smi_msg->data,
2031 		       smi_msg->data_size);
2032 		recv_msg->msg.data = recv_msg->msg_data;
2033 		recv_msg->msg.data_len = smi_msg->data_size;
2034 
2035 		/*
2036 		 * We don't unlock until here, because we need
2037 		 * to copy the completed message into the
2038 		 * recv_msg before we release the lock.
2039 		 * Otherwise, race conditions may bite us.  I
2040 		 * know that's pretty paranoid, but I prefer
2041 		 * to be correct.
2042 		 */
2043 out_err:
2044 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2045 	}
2046 
2047 	return rv;
2048 }
2049 
2050 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2051 			  struct ipmi_addr       *addr,
2052 			  long                   msgid,
2053 			  struct kernel_ipmi_msg *msg,
2054 			  struct ipmi_smi_msg    *smi_msg,
2055 			  struct ipmi_recv_msg   *recv_msg,
2056 			  unsigned char          source_lun,
2057 			  int                    retries,
2058 			  unsigned int           retry_time_ms)
2059 {
2060 	struct ipmi_lan_addr  *lan_addr;
2061 	unsigned char ipmb_seq;
2062 	long seqid;
2063 	struct ipmi_channel *chans;
2064 	int rv = 0;
2065 
2066 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2067 		ipmi_inc_stat(intf, sent_invalid_commands);
2068 		return -EINVAL;
2069 	}
2070 
2071 	chans = READ_ONCE(intf->channel_list)->c;
2072 
2073 	if ((chans[addr->channel].medium
2074 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2075 			&& (chans[addr->channel].medium
2076 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2077 		ipmi_inc_stat(intf, sent_invalid_commands);
2078 		return -EINVAL;
2079 	}
2080 
2081 	/* 11 for the header and 1 for the checksum. */
2082 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2083 		ipmi_inc_stat(intf, sent_invalid_commands);
2084 		return -EMSGSIZE;
2085 	}
2086 
2087 	lan_addr = (struct ipmi_lan_addr *) addr;
2088 	if (lan_addr->lun > 3) {
2089 		ipmi_inc_stat(intf, sent_invalid_commands);
2090 		return -EINVAL;
2091 	}
2092 
2093 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2094 
2095 	if (recv_msg->msg.netfn & 0x1) {
2096 		/*
2097 		 * It's a response, so use the user's sequence
2098 		 * from msgid.
2099 		 */
2100 		ipmi_inc_stat(intf, sent_lan_responses);
2101 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2102 			       msgid, source_lun);
2103 
2104 		/*
2105 		 * Save the receive message so we can use it
2106 		 * to deliver the response.
2107 		 */
2108 		smi_msg->user_data = recv_msg;
2109 	} else {
2110 		/* It's a command, so get a sequence for it. */
2111 		unsigned long flags;
2112 
2113 		spin_lock_irqsave(&intf->seq_lock, flags);
2114 
2115 		/*
2116 		 * Create a sequence number with a 1 second
2117 		 * timeout and 4 retries.
2118 		 */
2119 		rv = intf_next_seq(intf,
2120 				   recv_msg,
2121 				   retry_time_ms,
2122 				   retries,
2123 				   0,
2124 				   &ipmb_seq,
2125 				   &seqid);
2126 		if (rv)
2127 			/*
2128 			 * We have used up all the sequence numbers,
2129 			 * probably, so abort.
2130 			 */
2131 			goto out_err;
2132 
2133 		ipmi_inc_stat(intf, sent_lan_commands);
2134 
2135 		/*
2136 		 * Store the sequence number in the message,
2137 		 * so that when the send message response
2138 		 * comes back we can start the timer.
2139 		 */
2140 		format_lan_msg(smi_msg, msg, lan_addr,
2141 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2142 			       ipmb_seq, source_lun);
2143 
2144 		/*
2145 		 * Copy the message into the recv message data, so we
2146 		 * can retransmit it later if necessary.
2147 		 */
2148 		memcpy(recv_msg->msg_data, smi_msg->data,
2149 		       smi_msg->data_size);
2150 		recv_msg->msg.data = recv_msg->msg_data;
2151 		recv_msg->msg.data_len = smi_msg->data_size;
2152 
2153 		/*
2154 		 * We don't unlock until here, because we need
2155 		 * to copy the completed message into the
2156 		 * recv_msg before we release the lock.
2157 		 * Otherwise, race conditions may bite us.  I
2158 		 * know that's pretty paranoid, but I prefer
2159 		 * to be correct.
2160 		 */
2161 out_err:
2162 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2163 	}
2164 
2165 	return rv;
2166 }
2167 
2168 /*
2169  * Separate from ipmi_request so that the user does not have to be
2170  * supplied in certain circumstances (mainly at panic time).  If
2171  * messages are supplied, they will be freed, even if an error
2172  * occurs.
2173  */
2174 static int i_ipmi_request(struct ipmi_user     *user,
2175 			  struct ipmi_smi      *intf,
2176 			  struct ipmi_addr     *addr,
2177 			  long                 msgid,
2178 			  struct kernel_ipmi_msg *msg,
2179 			  void                 *user_msg_data,
2180 			  void                 *supplied_smi,
2181 			  struct ipmi_recv_msg *supplied_recv,
2182 			  int                  priority,
2183 			  unsigned char        source_address,
2184 			  unsigned char        source_lun,
2185 			  int                  retries,
2186 			  unsigned int         retry_time_ms)
2187 {
2188 	struct ipmi_smi_msg *smi_msg;
2189 	struct ipmi_recv_msg *recv_msg;
2190 	int rv = 0;
2191 
2192 	if (supplied_recv)
2193 		recv_msg = supplied_recv;
2194 	else {
2195 		recv_msg = ipmi_alloc_recv_msg();
2196 		if (recv_msg == NULL) {
2197 			rv = -ENOMEM;
2198 			goto out;
2199 		}
2200 	}
2201 	recv_msg->user_msg_data = user_msg_data;
2202 
2203 	if (supplied_smi)
2204 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2205 	else {
2206 		smi_msg = ipmi_alloc_smi_msg();
2207 		if (smi_msg == NULL) {
2208 			ipmi_free_recv_msg(recv_msg);
2209 			rv = -ENOMEM;
2210 			goto out;
2211 		}
2212 	}
2213 
2214 	rcu_read_lock();
2215 	if (intf->in_shutdown) {
2216 		rv = -ENODEV;
2217 		goto out_err;
2218 	}
2219 
2220 	recv_msg->user = user;
2221 	if (user)
2222 		/* The put happens when the message is freed. */
2223 		kref_get(&user->refcount);
2224 	recv_msg->msgid = msgid;
2225 	/*
2226 	 * Store the message to send in the receive message so timeout
2227 	 * responses can get the proper response data.
2228 	 */
2229 	recv_msg->msg = *msg;
2230 
2231 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2232 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2233 					recv_msg, retries, retry_time_ms);
2234 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2235 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2236 				     source_address, source_lun,
2237 				     retries, retry_time_ms);
2238 	} else if (is_lan_addr(addr)) {
2239 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2240 				    source_lun, retries, retry_time_ms);
2241 	} else {
2242 	    /* Unknown address type. */
2243 		ipmi_inc_stat(intf, sent_invalid_commands);
2244 		rv = -EINVAL;
2245 	}
2246 
2247 	if (rv) {
2248 out_err:
2249 		ipmi_free_smi_msg(smi_msg);
2250 		ipmi_free_recv_msg(recv_msg);
2251 	} else {
2252 		ipmi_debug_msg("Send", smi_msg->data, smi_msg->data_size);
2253 
2254 		smi_send(intf, intf->handlers, smi_msg, priority);
2255 	}
2256 	rcu_read_unlock();
2257 
2258 out:
2259 	return rv;
2260 }
2261 
2262 static int check_addr(struct ipmi_smi  *intf,
2263 		      struct ipmi_addr *addr,
2264 		      unsigned char    *saddr,
2265 		      unsigned char    *lun)
2266 {
2267 	if (addr->channel >= IPMI_MAX_CHANNELS)
2268 		return -EINVAL;
2269 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2270 	*lun = intf->addrinfo[addr->channel].lun;
2271 	*saddr = intf->addrinfo[addr->channel].address;
2272 	return 0;
2273 }
2274 
2275 int ipmi_request_settime(struct ipmi_user *user,
2276 			 struct ipmi_addr *addr,
2277 			 long             msgid,
2278 			 struct kernel_ipmi_msg  *msg,
2279 			 void             *user_msg_data,
2280 			 int              priority,
2281 			 int              retries,
2282 			 unsigned int     retry_time_ms)
2283 {
2284 	unsigned char saddr = 0, lun = 0;
2285 	int rv, index;
2286 
2287 	if (!user)
2288 		return -EINVAL;
2289 
2290 	user = acquire_ipmi_user(user, &index);
2291 	if (!user)
2292 		return -ENODEV;
2293 
2294 	rv = check_addr(user->intf, addr, &saddr, &lun);
2295 	if (!rv)
2296 		rv = i_ipmi_request(user,
2297 				    user->intf,
2298 				    addr,
2299 				    msgid,
2300 				    msg,
2301 				    user_msg_data,
2302 				    NULL, NULL,
2303 				    priority,
2304 				    saddr,
2305 				    lun,
2306 				    retries,
2307 				    retry_time_ms);
2308 
2309 	release_ipmi_user(user, index);
2310 	return rv;
2311 }
2312 EXPORT_SYMBOL(ipmi_request_settime);
2313 
2314 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2315 			     struct ipmi_addr     *addr,
2316 			     long                 msgid,
2317 			     struct kernel_ipmi_msg *msg,
2318 			     void                 *user_msg_data,
2319 			     void                 *supplied_smi,
2320 			     struct ipmi_recv_msg *supplied_recv,
2321 			     int                  priority)
2322 {
2323 	unsigned char saddr = 0, lun = 0;
2324 	int rv, index;
2325 
2326 	if (!user)
2327 		return -EINVAL;
2328 
2329 	user = acquire_ipmi_user(user, &index);
2330 	if (!user)
2331 		return -ENODEV;
2332 
2333 	rv = check_addr(user->intf, addr, &saddr, &lun);
2334 	if (!rv)
2335 		rv = i_ipmi_request(user,
2336 				    user->intf,
2337 				    addr,
2338 				    msgid,
2339 				    msg,
2340 				    user_msg_data,
2341 				    supplied_smi,
2342 				    supplied_recv,
2343 				    priority,
2344 				    saddr,
2345 				    lun,
2346 				    -1, 0);
2347 
2348 	release_ipmi_user(user, index);
2349 	return rv;
2350 }
2351 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2352 
2353 static void bmc_device_id_handler(struct ipmi_smi *intf,
2354 				  struct ipmi_recv_msg *msg)
2355 {
2356 	int rv;
2357 
2358 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2359 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2360 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2361 		dev_warn(intf->si_dev,
2362 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2363 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2364 		return;
2365 	}
2366 
2367 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2368 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2369 	if (rv) {
2370 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2371 		intf->bmc->dyn_id_set = 0;
2372 	} else {
2373 		/*
2374 		 * Make sure the id data is available before setting
2375 		 * dyn_id_set.
2376 		 */
2377 		smp_wmb();
2378 		intf->bmc->dyn_id_set = 1;
2379 	}
2380 
2381 	wake_up(&intf->waitq);
2382 }
2383 
2384 static int
2385 send_get_device_id_cmd(struct ipmi_smi *intf)
2386 {
2387 	struct ipmi_system_interface_addr si;
2388 	struct kernel_ipmi_msg msg;
2389 
2390 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2391 	si.channel = IPMI_BMC_CHANNEL;
2392 	si.lun = 0;
2393 
2394 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2395 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2396 	msg.data = NULL;
2397 	msg.data_len = 0;
2398 
2399 	return i_ipmi_request(NULL,
2400 			      intf,
2401 			      (struct ipmi_addr *) &si,
2402 			      0,
2403 			      &msg,
2404 			      intf,
2405 			      NULL,
2406 			      NULL,
2407 			      0,
2408 			      intf->addrinfo[0].address,
2409 			      intf->addrinfo[0].lun,
2410 			      -1, 0);
2411 }
2412 
2413 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2414 {
2415 	int rv;
2416 
2417 	bmc->dyn_id_set = 2;
2418 
2419 	intf->null_user_handler = bmc_device_id_handler;
2420 
2421 	rv = send_get_device_id_cmd(intf);
2422 	if (rv)
2423 		return rv;
2424 
2425 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2426 
2427 	if (!bmc->dyn_id_set)
2428 		rv = -EIO; /* Something went wrong in the fetch. */
2429 
2430 	/* dyn_id_set makes the id data available. */
2431 	smp_rmb();
2432 
2433 	intf->null_user_handler = NULL;
2434 
2435 	return rv;
2436 }
2437 
2438 /*
2439  * Fetch the device id for the bmc/interface.  You must pass in either
2440  * bmc or intf, this code will get the other one.  If the data has
2441  * been recently fetched, this will just use the cached data.  Otherwise
2442  * it will run a new fetch.
2443  *
2444  * Except for the first time this is called (in ipmi_register_smi()),
2445  * this will always return good data;
2446  */
2447 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2448 			       struct ipmi_device_id *id,
2449 			       bool *guid_set, guid_t *guid, int intf_num)
2450 {
2451 	int rv = 0;
2452 	int prev_dyn_id_set, prev_guid_set;
2453 	bool intf_set = intf != NULL;
2454 
2455 	if (!intf) {
2456 		mutex_lock(&bmc->dyn_mutex);
2457 retry_bmc_lock:
2458 		if (list_empty(&bmc->intfs)) {
2459 			mutex_unlock(&bmc->dyn_mutex);
2460 			return -ENOENT;
2461 		}
2462 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2463 					bmc_link);
2464 		kref_get(&intf->refcount);
2465 		mutex_unlock(&bmc->dyn_mutex);
2466 		mutex_lock(&intf->bmc_reg_mutex);
2467 		mutex_lock(&bmc->dyn_mutex);
2468 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2469 					     bmc_link)) {
2470 			mutex_unlock(&intf->bmc_reg_mutex);
2471 			kref_put(&intf->refcount, intf_free);
2472 			goto retry_bmc_lock;
2473 		}
2474 	} else {
2475 		mutex_lock(&intf->bmc_reg_mutex);
2476 		bmc = intf->bmc;
2477 		mutex_lock(&bmc->dyn_mutex);
2478 		kref_get(&intf->refcount);
2479 	}
2480 
2481 	/* If we have a valid and current ID, just return that. */
2482 	if (intf->in_bmc_register ||
2483 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2484 		goto out_noprocessing;
2485 
2486 	prev_guid_set = bmc->dyn_guid_set;
2487 	__get_guid(intf);
2488 
2489 	prev_dyn_id_set = bmc->dyn_id_set;
2490 	rv = __get_device_id(intf, bmc);
2491 	if (rv)
2492 		goto out;
2493 
2494 	/*
2495 	 * The guid, device id, manufacturer id, and product id should
2496 	 * not change on a BMC.  If it does we have to do some dancing.
2497 	 */
2498 	if (!intf->bmc_registered
2499 	    || (!prev_guid_set && bmc->dyn_guid_set)
2500 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2501 	    || (prev_guid_set && bmc->dyn_guid_set
2502 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2503 	    || bmc->id.device_id != bmc->fetch_id.device_id
2504 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2505 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2506 		struct ipmi_device_id id = bmc->fetch_id;
2507 		int guid_set = bmc->dyn_guid_set;
2508 		guid_t guid;
2509 
2510 		guid = bmc->fetch_guid;
2511 		mutex_unlock(&bmc->dyn_mutex);
2512 
2513 		__ipmi_bmc_unregister(intf);
2514 		/* Fill in the temporary BMC for good measure. */
2515 		intf->bmc->id = id;
2516 		intf->bmc->dyn_guid_set = guid_set;
2517 		intf->bmc->guid = guid;
2518 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2519 			need_waiter(intf); /* Retry later on an error. */
2520 		else
2521 			__scan_channels(intf, &id);
2522 
2523 
2524 		if (!intf_set) {
2525 			/*
2526 			 * We weren't given the interface on the
2527 			 * command line, so restart the operation on
2528 			 * the next interface for the BMC.
2529 			 */
2530 			mutex_unlock(&intf->bmc_reg_mutex);
2531 			mutex_lock(&bmc->dyn_mutex);
2532 			goto retry_bmc_lock;
2533 		}
2534 
2535 		/* We have a new BMC, set it up. */
2536 		bmc = intf->bmc;
2537 		mutex_lock(&bmc->dyn_mutex);
2538 		goto out_noprocessing;
2539 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2540 		/* Version info changes, scan the channels again. */
2541 		__scan_channels(intf, &bmc->fetch_id);
2542 
2543 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2544 
2545 out:
2546 	if (rv && prev_dyn_id_set) {
2547 		rv = 0; /* Ignore failures if we have previous data. */
2548 		bmc->dyn_id_set = prev_dyn_id_set;
2549 	}
2550 	if (!rv) {
2551 		bmc->id = bmc->fetch_id;
2552 		if (bmc->dyn_guid_set)
2553 			bmc->guid = bmc->fetch_guid;
2554 		else if (prev_guid_set)
2555 			/*
2556 			 * The guid used to be valid and it failed to fetch,
2557 			 * just use the cached value.
2558 			 */
2559 			bmc->dyn_guid_set = prev_guid_set;
2560 	}
2561 out_noprocessing:
2562 	if (!rv) {
2563 		if (id)
2564 			*id = bmc->id;
2565 
2566 		if (guid_set)
2567 			*guid_set = bmc->dyn_guid_set;
2568 
2569 		if (guid && bmc->dyn_guid_set)
2570 			*guid =  bmc->guid;
2571 	}
2572 
2573 	mutex_unlock(&bmc->dyn_mutex);
2574 	mutex_unlock(&intf->bmc_reg_mutex);
2575 
2576 	kref_put(&intf->refcount, intf_free);
2577 	return rv;
2578 }
2579 
2580 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2581 			     struct ipmi_device_id *id,
2582 			     bool *guid_set, guid_t *guid)
2583 {
2584 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2585 }
2586 
2587 static ssize_t device_id_show(struct device *dev,
2588 			      struct device_attribute *attr,
2589 			      char *buf)
2590 {
2591 	struct bmc_device *bmc = to_bmc_device(dev);
2592 	struct ipmi_device_id id;
2593 	int rv;
2594 
2595 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2596 	if (rv)
2597 		return rv;
2598 
2599 	return snprintf(buf, 10, "%u\n", id.device_id);
2600 }
2601 static DEVICE_ATTR_RO(device_id);
2602 
2603 static ssize_t provides_device_sdrs_show(struct device *dev,
2604 					 struct device_attribute *attr,
2605 					 char *buf)
2606 {
2607 	struct bmc_device *bmc = to_bmc_device(dev);
2608 	struct ipmi_device_id id;
2609 	int rv;
2610 
2611 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2612 	if (rv)
2613 		return rv;
2614 
2615 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2616 }
2617 static DEVICE_ATTR_RO(provides_device_sdrs);
2618 
2619 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2620 			     char *buf)
2621 {
2622 	struct bmc_device *bmc = to_bmc_device(dev);
2623 	struct ipmi_device_id id;
2624 	int rv;
2625 
2626 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2627 	if (rv)
2628 		return rv;
2629 
2630 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2631 }
2632 static DEVICE_ATTR_RO(revision);
2633 
2634 static ssize_t firmware_revision_show(struct device *dev,
2635 				      struct device_attribute *attr,
2636 				      char *buf)
2637 {
2638 	struct bmc_device *bmc = to_bmc_device(dev);
2639 	struct ipmi_device_id id;
2640 	int rv;
2641 
2642 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2643 	if (rv)
2644 		return rv;
2645 
2646 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2647 			id.firmware_revision_2);
2648 }
2649 static DEVICE_ATTR_RO(firmware_revision);
2650 
2651 static ssize_t ipmi_version_show(struct device *dev,
2652 				 struct device_attribute *attr,
2653 				 char *buf)
2654 {
2655 	struct bmc_device *bmc = to_bmc_device(dev);
2656 	struct ipmi_device_id id;
2657 	int rv;
2658 
2659 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2660 	if (rv)
2661 		return rv;
2662 
2663 	return snprintf(buf, 20, "%u.%u\n",
2664 			ipmi_version_major(&id),
2665 			ipmi_version_minor(&id));
2666 }
2667 static DEVICE_ATTR_RO(ipmi_version);
2668 
2669 static ssize_t add_dev_support_show(struct device *dev,
2670 				    struct device_attribute *attr,
2671 				    char *buf)
2672 {
2673 	struct bmc_device *bmc = to_bmc_device(dev);
2674 	struct ipmi_device_id id;
2675 	int rv;
2676 
2677 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2678 	if (rv)
2679 		return rv;
2680 
2681 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2682 }
2683 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2684 		   NULL);
2685 
2686 static ssize_t manufacturer_id_show(struct device *dev,
2687 				    struct device_attribute *attr,
2688 				    char *buf)
2689 {
2690 	struct bmc_device *bmc = to_bmc_device(dev);
2691 	struct ipmi_device_id id;
2692 	int rv;
2693 
2694 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2695 	if (rv)
2696 		return rv;
2697 
2698 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2699 }
2700 static DEVICE_ATTR_RO(manufacturer_id);
2701 
2702 static ssize_t product_id_show(struct device *dev,
2703 			       struct device_attribute *attr,
2704 			       char *buf)
2705 {
2706 	struct bmc_device *bmc = to_bmc_device(dev);
2707 	struct ipmi_device_id id;
2708 	int rv;
2709 
2710 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2711 	if (rv)
2712 		return rv;
2713 
2714 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2715 }
2716 static DEVICE_ATTR_RO(product_id);
2717 
2718 static ssize_t aux_firmware_rev_show(struct device *dev,
2719 				     struct device_attribute *attr,
2720 				     char *buf)
2721 {
2722 	struct bmc_device *bmc = to_bmc_device(dev);
2723 	struct ipmi_device_id id;
2724 	int rv;
2725 
2726 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2727 	if (rv)
2728 		return rv;
2729 
2730 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2731 			id.aux_firmware_revision[3],
2732 			id.aux_firmware_revision[2],
2733 			id.aux_firmware_revision[1],
2734 			id.aux_firmware_revision[0]);
2735 }
2736 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2737 
2738 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2739 			 char *buf)
2740 {
2741 	struct bmc_device *bmc = to_bmc_device(dev);
2742 	bool guid_set;
2743 	guid_t guid;
2744 	int rv;
2745 
2746 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2747 	if (rv)
2748 		return rv;
2749 	if (!guid_set)
2750 		return -ENOENT;
2751 
2752 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2753 }
2754 static DEVICE_ATTR_RO(guid);
2755 
2756 static struct attribute *bmc_dev_attrs[] = {
2757 	&dev_attr_device_id.attr,
2758 	&dev_attr_provides_device_sdrs.attr,
2759 	&dev_attr_revision.attr,
2760 	&dev_attr_firmware_revision.attr,
2761 	&dev_attr_ipmi_version.attr,
2762 	&dev_attr_additional_device_support.attr,
2763 	&dev_attr_manufacturer_id.attr,
2764 	&dev_attr_product_id.attr,
2765 	&dev_attr_aux_firmware_revision.attr,
2766 	&dev_attr_guid.attr,
2767 	NULL
2768 };
2769 
2770 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2771 				       struct attribute *attr, int idx)
2772 {
2773 	struct device *dev = kobj_to_dev(kobj);
2774 	struct bmc_device *bmc = to_bmc_device(dev);
2775 	umode_t mode = attr->mode;
2776 	int rv;
2777 
2778 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2779 		struct ipmi_device_id id;
2780 
2781 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2782 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2783 	}
2784 	if (attr == &dev_attr_guid.attr) {
2785 		bool guid_set;
2786 
2787 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2788 		return (!rv && guid_set) ? mode : 0;
2789 	}
2790 	return mode;
2791 }
2792 
2793 static const struct attribute_group bmc_dev_attr_group = {
2794 	.attrs		= bmc_dev_attrs,
2795 	.is_visible	= bmc_dev_attr_is_visible,
2796 };
2797 
2798 static const struct attribute_group *bmc_dev_attr_groups[] = {
2799 	&bmc_dev_attr_group,
2800 	NULL
2801 };
2802 
2803 static const struct device_type bmc_device_type = {
2804 	.groups		= bmc_dev_attr_groups,
2805 };
2806 
2807 static int __find_bmc_guid(struct device *dev, void *data)
2808 {
2809 	guid_t *guid = data;
2810 	struct bmc_device *bmc;
2811 	int rv;
2812 
2813 	if (dev->type != &bmc_device_type)
2814 		return 0;
2815 
2816 	bmc = to_bmc_device(dev);
2817 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2818 	if (rv)
2819 		rv = kref_get_unless_zero(&bmc->usecount);
2820 	return rv;
2821 }
2822 
2823 /*
2824  * Returns with the bmc's usecount incremented, if it is non-NULL.
2825  */
2826 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2827 					     guid_t *guid)
2828 {
2829 	struct device *dev;
2830 	struct bmc_device *bmc = NULL;
2831 
2832 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2833 	if (dev) {
2834 		bmc = to_bmc_device(dev);
2835 		put_device(dev);
2836 	}
2837 	return bmc;
2838 }
2839 
2840 struct prod_dev_id {
2841 	unsigned int  product_id;
2842 	unsigned char device_id;
2843 };
2844 
2845 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2846 {
2847 	struct prod_dev_id *cid = data;
2848 	struct bmc_device *bmc;
2849 	int rv;
2850 
2851 	if (dev->type != &bmc_device_type)
2852 		return 0;
2853 
2854 	bmc = to_bmc_device(dev);
2855 	rv = (bmc->id.product_id == cid->product_id
2856 	      && bmc->id.device_id == cid->device_id);
2857 	if (rv)
2858 		rv = kref_get_unless_zero(&bmc->usecount);
2859 	return rv;
2860 }
2861 
2862 /*
2863  * Returns with the bmc's usecount incremented, if it is non-NULL.
2864  */
2865 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2866 	struct device_driver *drv,
2867 	unsigned int product_id, unsigned char device_id)
2868 {
2869 	struct prod_dev_id id = {
2870 		.product_id = product_id,
2871 		.device_id = device_id,
2872 	};
2873 	struct device *dev;
2874 	struct bmc_device *bmc = NULL;
2875 
2876 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2877 	if (dev) {
2878 		bmc = to_bmc_device(dev);
2879 		put_device(dev);
2880 	}
2881 	return bmc;
2882 }
2883 
2884 static DEFINE_IDA(ipmi_bmc_ida);
2885 
2886 static void
2887 release_bmc_device(struct device *dev)
2888 {
2889 	kfree(to_bmc_device(dev));
2890 }
2891 
2892 static void cleanup_bmc_work(struct work_struct *work)
2893 {
2894 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2895 					      remove_work);
2896 	int id = bmc->pdev.id; /* Unregister overwrites id */
2897 
2898 	platform_device_unregister(&bmc->pdev);
2899 	ida_simple_remove(&ipmi_bmc_ida, id);
2900 }
2901 
2902 static void
2903 cleanup_bmc_device(struct kref *ref)
2904 {
2905 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2906 
2907 	/*
2908 	 * Remove the platform device in a work queue to avoid issues
2909 	 * with removing the device attributes while reading a device
2910 	 * attribute.
2911 	 */
2912 	schedule_work(&bmc->remove_work);
2913 }
2914 
2915 /*
2916  * Must be called with intf->bmc_reg_mutex held.
2917  */
2918 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2919 {
2920 	struct bmc_device *bmc = intf->bmc;
2921 
2922 	if (!intf->bmc_registered)
2923 		return;
2924 
2925 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2926 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2927 	kfree(intf->my_dev_name);
2928 	intf->my_dev_name = NULL;
2929 
2930 	mutex_lock(&bmc->dyn_mutex);
2931 	list_del(&intf->bmc_link);
2932 	mutex_unlock(&bmc->dyn_mutex);
2933 	intf->bmc = &intf->tmp_bmc;
2934 	kref_put(&bmc->usecount, cleanup_bmc_device);
2935 	intf->bmc_registered = false;
2936 }
2937 
2938 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2939 {
2940 	mutex_lock(&intf->bmc_reg_mutex);
2941 	__ipmi_bmc_unregister(intf);
2942 	mutex_unlock(&intf->bmc_reg_mutex);
2943 }
2944 
2945 /*
2946  * Must be called with intf->bmc_reg_mutex held.
2947  */
2948 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2949 			       struct ipmi_device_id *id,
2950 			       bool guid_set, guid_t *guid, int intf_num)
2951 {
2952 	int               rv;
2953 	struct bmc_device *bmc;
2954 	struct bmc_device *old_bmc;
2955 
2956 	/*
2957 	 * platform_device_register() can cause bmc_reg_mutex to
2958 	 * be claimed because of the is_visible functions of
2959 	 * the attributes.  Eliminate possible recursion and
2960 	 * release the lock.
2961 	 */
2962 	intf->in_bmc_register = true;
2963 	mutex_unlock(&intf->bmc_reg_mutex);
2964 
2965 	/*
2966 	 * Try to find if there is an bmc_device struct
2967 	 * representing the interfaced BMC already
2968 	 */
2969 	mutex_lock(&ipmidriver_mutex);
2970 	if (guid_set)
2971 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2972 	else
2973 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2974 						    id->product_id,
2975 						    id->device_id);
2976 
2977 	/*
2978 	 * If there is already an bmc_device, free the new one,
2979 	 * otherwise register the new BMC device
2980 	 */
2981 	if (old_bmc) {
2982 		bmc = old_bmc;
2983 		/*
2984 		 * Note: old_bmc already has usecount incremented by
2985 		 * the BMC find functions.
2986 		 */
2987 		intf->bmc = old_bmc;
2988 		mutex_lock(&bmc->dyn_mutex);
2989 		list_add_tail(&intf->bmc_link, &bmc->intfs);
2990 		mutex_unlock(&bmc->dyn_mutex);
2991 
2992 		dev_info(intf->si_dev,
2993 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2994 			 bmc->id.manufacturer_id,
2995 			 bmc->id.product_id,
2996 			 bmc->id.device_id);
2997 	} else {
2998 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
2999 		if (!bmc) {
3000 			rv = -ENOMEM;
3001 			goto out;
3002 		}
3003 		INIT_LIST_HEAD(&bmc->intfs);
3004 		mutex_init(&bmc->dyn_mutex);
3005 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3006 
3007 		bmc->id = *id;
3008 		bmc->dyn_id_set = 1;
3009 		bmc->dyn_guid_set = guid_set;
3010 		bmc->guid = *guid;
3011 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3012 
3013 		bmc->pdev.name = "ipmi_bmc";
3014 
3015 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3016 		if (rv < 0)
3017 			goto out;
3018 		bmc->pdev.dev.driver = &ipmidriver.driver;
3019 		bmc->pdev.id = rv;
3020 		bmc->pdev.dev.release = release_bmc_device;
3021 		bmc->pdev.dev.type = &bmc_device_type;
3022 		kref_init(&bmc->usecount);
3023 
3024 		intf->bmc = bmc;
3025 		mutex_lock(&bmc->dyn_mutex);
3026 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3027 		mutex_unlock(&bmc->dyn_mutex);
3028 
3029 		rv = platform_device_register(&bmc->pdev);
3030 		if (rv) {
3031 			dev_err(intf->si_dev,
3032 				"Unable to register bmc device: %d\n",
3033 				rv);
3034 			goto out_list_del;
3035 		}
3036 
3037 		dev_info(intf->si_dev,
3038 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3039 			 bmc->id.manufacturer_id,
3040 			 bmc->id.product_id,
3041 			 bmc->id.device_id);
3042 	}
3043 
3044 	/*
3045 	 * create symlink from system interface device to bmc device
3046 	 * and back.
3047 	 */
3048 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3049 	if (rv) {
3050 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3051 		goto out_put_bmc;
3052 	}
3053 
3054 	if (intf_num == -1)
3055 		intf_num = intf->intf_num;
3056 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3057 	if (!intf->my_dev_name) {
3058 		rv = -ENOMEM;
3059 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3060 			rv);
3061 		goto out_unlink1;
3062 	}
3063 
3064 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3065 			       intf->my_dev_name);
3066 	if (rv) {
3067 		kfree(intf->my_dev_name);
3068 		intf->my_dev_name = NULL;
3069 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3070 			rv);
3071 		goto out_free_my_dev_name;
3072 	}
3073 
3074 	intf->bmc_registered = true;
3075 
3076 out:
3077 	mutex_unlock(&ipmidriver_mutex);
3078 	mutex_lock(&intf->bmc_reg_mutex);
3079 	intf->in_bmc_register = false;
3080 	return rv;
3081 
3082 
3083 out_free_my_dev_name:
3084 	kfree(intf->my_dev_name);
3085 	intf->my_dev_name = NULL;
3086 
3087 out_unlink1:
3088 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3089 
3090 out_put_bmc:
3091 	mutex_lock(&bmc->dyn_mutex);
3092 	list_del(&intf->bmc_link);
3093 	mutex_unlock(&bmc->dyn_mutex);
3094 	intf->bmc = &intf->tmp_bmc;
3095 	kref_put(&bmc->usecount, cleanup_bmc_device);
3096 	goto out;
3097 
3098 out_list_del:
3099 	mutex_lock(&bmc->dyn_mutex);
3100 	list_del(&intf->bmc_link);
3101 	mutex_unlock(&bmc->dyn_mutex);
3102 	intf->bmc = &intf->tmp_bmc;
3103 	put_device(&bmc->pdev.dev);
3104 	goto out;
3105 }
3106 
3107 static int
3108 send_guid_cmd(struct ipmi_smi *intf, int chan)
3109 {
3110 	struct kernel_ipmi_msg            msg;
3111 	struct ipmi_system_interface_addr si;
3112 
3113 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3114 	si.channel = IPMI_BMC_CHANNEL;
3115 	si.lun = 0;
3116 
3117 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3118 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3119 	msg.data = NULL;
3120 	msg.data_len = 0;
3121 	return i_ipmi_request(NULL,
3122 			      intf,
3123 			      (struct ipmi_addr *) &si,
3124 			      0,
3125 			      &msg,
3126 			      intf,
3127 			      NULL,
3128 			      NULL,
3129 			      0,
3130 			      intf->addrinfo[0].address,
3131 			      intf->addrinfo[0].lun,
3132 			      -1, 0);
3133 }
3134 
3135 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3136 {
3137 	struct bmc_device *bmc = intf->bmc;
3138 
3139 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3140 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3141 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3142 		/* Not for me */
3143 		return;
3144 
3145 	if (msg->msg.data[0] != 0) {
3146 		/* Error from getting the GUID, the BMC doesn't have one. */
3147 		bmc->dyn_guid_set = 0;
3148 		goto out;
3149 	}
3150 
3151 	if (msg->msg.data_len < UUID_SIZE + 1) {
3152 		bmc->dyn_guid_set = 0;
3153 		dev_warn(intf->si_dev,
3154 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3155 			 msg->msg.data_len, UUID_SIZE + 1);
3156 		goto out;
3157 	}
3158 
3159 	guid_copy(&bmc->fetch_guid, (guid_t *)(msg->msg.data + 1));
3160 	/*
3161 	 * Make sure the guid data is available before setting
3162 	 * dyn_guid_set.
3163 	 */
3164 	smp_wmb();
3165 	bmc->dyn_guid_set = 1;
3166  out:
3167 	wake_up(&intf->waitq);
3168 }
3169 
3170 static void __get_guid(struct ipmi_smi *intf)
3171 {
3172 	int rv;
3173 	struct bmc_device *bmc = intf->bmc;
3174 
3175 	bmc->dyn_guid_set = 2;
3176 	intf->null_user_handler = guid_handler;
3177 	rv = send_guid_cmd(intf, 0);
3178 	if (rv)
3179 		/* Send failed, no GUID available. */
3180 		bmc->dyn_guid_set = 0;
3181 
3182 	wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3183 
3184 	/* dyn_guid_set makes the guid data available. */
3185 	smp_rmb();
3186 
3187 	intf->null_user_handler = NULL;
3188 }
3189 
3190 static int
3191 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3192 {
3193 	struct kernel_ipmi_msg            msg;
3194 	unsigned char                     data[1];
3195 	struct ipmi_system_interface_addr si;
3196 
3197 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3198 	si.channel = IPMI_BMC_CHANNEL;
3199 	si.lun = 0;
3200 
3201 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3202 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3203 	msg.data = data;
3204 	msg.data_len = 1;
3205 	data[0] = chan;
3206 	return i_ipmi_request(NULL,
3207 			      intf,
3208 			      (struct ipmi_addr *) &si,
3209 			      0,
3210 			      &msg,
3211 			      intf,
3212 			      NULL,
3213 			      NULL,
3214 			      0,
3215 			      intf->addrinfo[0].address,
3216 			      intf->addrinfo[0].lun,
3217 			      -1, 0);
3218 }
3219 
3220 static void
3221 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3222 {
3223 	int rv = 0;
3224 	int ch;
3225 	unsigned int set = intf->curr_working_cset;
3226 	struct ipmi_channel *chans;
3227 
3228 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3229 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3230 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3231 		/* It's the one we want */
3232 		if (msg->msg.data[0] != 0) {
3233 			/* Got an error from the channel, just go on. */
3234 
3235 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3236 				/*
3237 				 * If the MC does not support this
3238 				 * command, that is legal.  We just
3239 				 * assume it has one IPMB at channel
3240 				 * zero.
3241 				 */
3242 				intf->wchannels[set].c[0].medium
3243 					= IPMI_CHANNEL_MEDIUM_IPMB;
3244 				intf->wchannels[set].c[0].protocol
3245 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3246 
3247 				intf->channel_list = intf->wchannels + set;
3248 				intf->channels_ready = true;
3249 				wake_up(&intf->waitq);
3250 				goto out;
3251 			}
3252 			goto next_channel;
3253 		}
3254 		if (msg->msg.data_len < 4) {
3255 			/* Message not big enough, just go on. */
3256 			goto next_channel;
3257 		}
3258 		ch = intf->curr_channel;
3259 		chans = intf->wchannels[set].c;
3260 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3261 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3262 
3263  next_channel:
3264 		intf->curr_channel++;
3265 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3266 			intf->channel_list = intf->wchannels + set;
3267 			intf->channels_ready = true;
3268 			wake_up(&intf->waitq);
3269 		} else {
3270 			intf->channel_list = intf->wchannels + set;
3271 			intf->channels_ready = true;
3272 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3273 		}
3274 
3275 		if (rv) {
3276 			/* Got an error somehow, just give up. */
3277 			dev_warn(intf->si_dev,
3278 				 "Error sending channel information for channel %d: %d\n",
3279 				 intf->curr_channel, rv);
3280 
3281 			intf->channel_list = intf->wchannels + set;
3282 			intf->channels_ready = true;
3283 			wake_up(&intf->waitq);
3284 		}
3285 	}
3286  out:
3287 	return;
3288 }
3289 
3290 /*
3291  * Must be holding intf->bmc_reg_mutex to call this.
3292  */
3293 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3294 {
3295 	int rv;
3296 
3297 	if (ipmi_version_major(id) > 1
3298 			|| (ipmi_version_major(id) == 1
3299 			    && ipmi_version_minor(id) >= 5)) {
3300 		unsigned int set;
3301 
3302 		/*
3303 		 * Start scanning the channels to see what is
3304 		 * available.
3305 		 */
3306 		set = !intf->curr_working_cset;
3307 		intf->curr_working_cset = set;
3308 		memset(&intf->wchannels[set], 0,
3309 		       sizeof(struct ipmi_channel_set));
3310 
3311 		intf->null_user_handler = channel_handler;
3312 		intf->curr_channel = 0;
3313 		rv = send_channel_info_cmd(intf, 0);
3314 		if (rv) {
3315 			dev_warn(intf->si_dev,
3316 				 "Error sending channel information for channel 0, %d\n",
3317 				 rv);
3318 			return -EIO;
3319 		}
3320 
3321 		/* Wait for the channel info to be read. */
3322 		wait_event(intf->waitq, intf->channels_ready);
3323 		intf->null_user_handler = NULL;
3324 	} else {
3325 		unsigned int set = intf->curr_working_cset;
3326 
3327 		/* Assume a single IPMB channel at zero. */
3328 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3329 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3330 		intf->channel_list = intf->wchannels + set;
3331 		intf->channels_ready = true;
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 static void ipmi_poll(struct ipmi_smi *intf)
3338 {
3339 	if (intf->handlers->poll)
3340 		intf->handlers->poll(intf->send_info);
3341 	/* In case something came in */
3342 	handle_new_recv_msgs(intf);
3343 }
3344 
3345 void ipmi_poll_interface(struct ipmi_user *user)
3346 {
3347 	ipmi_poll(user->intf);
3348 }
3349 EXPORT_SYMBOL(ipmi_poll_interface);
3350 
3351 static void redo_bmc_reg(struct work_struct *work)
3352 {
3353 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3354 					     bmc_reg_work);
3355 
3356 	if (!intf->in_shutdown)
3357 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3358 
3359 	kref_put(&intf->refcount, intf_free);
3360 }
3361 
3362 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
3363 		      void		       *send_info,
3364 		      struct device            *si_dev,
3365 		      unsigned char            slave_addr)
3366 {
3367 	int              i, j;
3368 	int              rv;
3369 	struct ipmi_smi *intf, *tintf;
3370 	struct list_head *link;
3371 	struct ipmi_device_id id;
3372 
3373 	/*
3374 	 * Make sure the driver is actually initialized, this handles
3375 	 * problems with initialization order.
3376 	 */
3377 	rv = ipmi_init_msghandler();
3378 	if (rv)
3379 		return rv;
3380 
3381 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3382 	if (!intf)
3383 		return -ENOMEM;
3384 
3385 	rv = init_srcu_struct(&intf->users_srcu);
3386 	if (rv) {
3387 		kfree(intf);
3388 		return rv;
3389 	}
3390 
3391 
3392 	intf->bmc = &intf->tmp_bmc;
3393 	INIT_LIST_HEAD(&intf->bmc->intfs);
3394 	mutex_init(&intf->bmc->dyn_mutex);
3395 	INIT_LIST_HEAD(&intf->bmc_link);
3396 	mutex_init(&intf->bmc_reg_mutex);
3397 	intf->intf_num = -1; /* Mark it invalid for now. */
3398 	kref_init(&intf->refcount);
3399 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3400 	intf->si_dev = si_dev;
3401 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3402 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3403 		intf->addrinfo[j].lun = 2;
3404 	}
3405 	if (slave_addr != 0)
3406 		intf->addrinfo[0].address = slave_addr;
3407 	INIT_LIST_HEAD(&intf->users);
3408 	intf->handlers = handlers;
3409 	intf->send_info = send_info;
3410 	spin_lock_init(&intf->seq_lock);
3411 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3412 		intf->seq_table[j].inuse = 0;
3413 		intf->seq_table[j].seqid = 0;
3414 	}
3415 	intf->curr_seq = 0;
3416 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3417 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3418 	tasklet_init(&intf->recv_tasklet,
3419 		     smi_recv_tasklet,
3420 		     (unsigned long) intf);
3421 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3422 	spin_lock_init(&intf->xmit_msgs_lock);
3423 	INIT_LIST_HEAD(&intf->xmit_msgs);
3424 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3425 	spin_lock_init(&intf->events_lock);
3426 	spin_lock_init(&intf->watch_lock);
3427 	atomic_set(&intf->event_waiters, 0);
3428 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3429 	INIT_LIST_HEAD(&intf->waiting_events);
3430 	intf->waiting_events_count = 0;
3431 	mutex_init(&intf->cmd_rcvrs_mutex);
3432 	spin_lock_init(&intf->maintenance_mode_lock);
3433 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3434 	init_waitqueue_head(&intf->waitq);
3435 	for (i = 0; i < IPMI_NUM_STATS; i++)
3436 		atomic_set(&intf->stats[i], 0);
3437 
3438 	mutex_lock(&ipmi_interfaces_mutex);
3439 	/* Look for a hole in the numbers. */
3440 	i = 0;
3441 	link = &ipmi_interfaces;
3442 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
3443 		if (tintf->intf_num != i) {
3444 			link = &tintf->link;
3445 			break;
3446 		}
3447 		i++;
3448 	}
3449 	/* Add the new interface in numeric order. */
3450 	if (i == 0)
3451 		list_add_rcu(&intf->link, &ipmi_interfaces);
3452 	else
3453 		list_add_tail_rcu(&intf->link, link);
3454 
3455 	rv = handlers->start_processing(send_info, intf);
3456 	if (rv)
3457 		goto out_err;
3458 
3459 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3460 	if (rv) {
3461 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3462 		goto out_err_started;
3463 	}
3464 
3465 	mutex_lock(&intf->bmc_reg_mutex);
3466 	rv = __scan_channels(intf, &id);
3467 	mutex_unlock(&intf->bmc_reg_mutex);
3468 	if (rv)
3469 		goto out_err_bmc_reg;
3470 
3471 	/*
3472 	 * Keep memory order straight for RCU readers.  Make
3473 	 * sure everything else is committed to memory before
3474 	 * setting intf_num to mark the interface valid.
3475 	 */
3476 	smp_wmb();
3477 	intf->intf_num = i;
3478 	mutex_unlock(&ipmi_interfaces_mutex);
3479 
3480 	/* After this point the interface is legal to use. */
3481 	call_smi_watchers(i, intf->si_dev);
3482 
3483 	return 0;
3484 
3485  out_err_bmc_reg:
3486 	ipmi_bmc_unregister(intf);
3487  out_err_started:
3488 	if (intf->handlers->shutdown)
3489 		intf->handlers->shutdown(intf->send_info);
3490  out_err:
3491 	list_del_rcu(&intf->link);
3492 	mutex_unlock(&ipmi_interfaces_mutex);
3493 	synchronize_srcu(&ipmi_interfaces_srcu);
3494 	cleanup_srcu_struct(&intf->users_srcu);
3495 	kref_put(&intf->refcount, intf_free);
3496 
3497 	return rv;
3498 }
3499 EXPORT_SYMBOL(ipmi_register_smi);
3500 
3501 static void deliver_smi_err_response(struct ipmi_smi *intf,
3502 				     struct ipmi_smi_msg *msg,
3503 				     unsigned char err)
3504 {
3505 	msg->rsp[0] = msg->data[0] | 4;
3506 	msg->rsp[1] = msg->data[1];
3507 	msg->rsp[2] = err;
3508 	msg->rsp_size = 3;
3509 	/* It's an error, so it will never requeue, no need to check return. */
3510 	handle_one_recv_msg(intf, msg);
3511 }
3512 
3513 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3514 {
3515 	int              i;
3516 	struct seq_table *ent;
3517 	struct ipmi_smi_msg *msg;
3518 	struct list_head *entry;
3519 	struct list_head tmplist;
3520 
3521 	/* Clear out our transmit queues and hold the messages. */
3522 	INIT_LIST_HEAD(&tmplist);
3523 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3524 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3525 
3526 	/* Current message first, to preserve order */
3527 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3528 		/* Wait for the message to clear out. */
3529 		schedule_timeout(1);
3530 	}
3531 
3532 	/* No need for locks, the interface is down. */
3533 
3534 	/*
3535 	 * Return errors for all pending messages in queue and in the
3536 	 * tables waiting for remote responses.
3537 	 */
3538 	while (!list_empty(&tmplist)) {
3539 		entry = tmplist.next;
3540 		list_del(entry);
3541 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3542 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3543 	}
3544 
3545 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3546 		ent = &intf->seq_table[i];
3547 		if (!ent->inuse)
3548 			continue;
3549 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3550 	}
3551 }
3552 
3553 void ipmi_unregister_smi(struct ipmi_smi *intf)
3554 {
3555 	struct ipmi_smi_watcher *w;
3556 	int intf_num = intf->intf_num, index;
3557 
3558 	mutex_lock(&ipmi_interfaces_mutex);
3559 	intf->intf_num = -1;
3560 	intf->in_shutdown = true;
3561 	list_del_rcu(&intf->link);
3562 	mutex_unlock(&ipmi_interfaces_mutex);
3563 	synchronize_srcu(&ipmi_interfaces_srcu);
3564 
3565 	/* At this point no users can be added to the interface. */
3566 
3567 	/*
3568 	 * Call all the watcher interfaces to tell them that
3569 	 * an interface is going away.
3570 	 */
3571 	mutex_lock(&smi_watchers_mutex);
3572 	list_for_each_entry(w, &smi_watchers, link)
3573 		w->smi_gone(intf_num);
3574 	mutex_unlock(&smi_watchers_mutex);
3575 
3576 	index = srcu_read_lock(&intf->users_srcu);
3577 	while (!list_empty(&intf->users)) {
3578 		struct ipmi_user *user =
3579 			container_of(list_next_rcu(&intf->users),
3580 				     struct ipmi_user, link);
3581 
3582 		_ipmi_destroy_user(user);
3583 	}
3584 	srcu_read_unlock(&intf->users_srcu, index);
3585 
3586 	if (intf->handlers->shutdown)
3587 		intf->handlers->shutdown(intf->send_info);
3588 
3589 	cleanup_smi_msgs(intf);
3590 
3591 	ipmi_bmc_unregister(intf);
3592 
3593 	cleanup_srcu_struct(&intf->users_srcu);
3594 	kref_put(&intf->refcount, intf_free);
3595 }
3596 EXPORT_SYMBOL(ipmi_unregister_smi);
3597 
3598 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3599 				   struct ipmi_smi_msg *msg)
3600 {
3601 	struct ipmi_ipmb_addr ipmb_addr;
3602 	struct ipmi_recv_msg  *recv_msg;
3603 
3604 	/*
3605 	 * This is 11, not 10, because the response must contain a
3606 	 * completion code.
3607 	 */
3608 	if (msg->rsp_size < 11) {
3609 		/* Message not big enough, just ignore it. */
3610 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3611 		return 0;
3612 	}
3613 
3614 	if (msg->rsp[2] != 0) {
3615 		/* An error getting the response, just ignore it. */
3616 		return 0;
3617 	}
3618 
3619 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3620 	ipmb_addr.slave_addr = msg->rsp[6];
3621 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3622 	ipmb_addr.lun = msg->rsp[7] & 3;
3623 
3624 	/*
3625 	 * It's a response from a remote entity.  Look up the sequence
3626 	 * number and handle the response.
3627 	 */
3628 	if (intf_find_seq(intf,
3629 			  msg->rsp[7] >> 2,
3630 			  msg->rsp[3] & 0x0f,
3631 			  msg->rsp[8],
3632 			  (msg->rsp[4] >> 2) & (~1),
3633 			  (struct ipmi_addr *) &ipmb_addr,
3634 			  &recv_msg)) {
3635 		/*
3636 		 * We were unable to find the sequence number,
3637 		 * so just nuke the message.
3638 		 */
3639 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3640 		return 0;
3641 	}
3642 
3643 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3644 	/*
3645 	 * The other fields matched, so no need to set them, except
3646 	 * for netfn, which needs to be the response that was
3647 	 * returned, not the request value.
3648 	 */
3649 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3650 	recv_msg->msg.data = recv_msg->msg_data;
3651 	recv_msg->msg.data_len = msg->rsp_size - 10;
3652 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3653 	if (deliver_response(intf, recv_msg))
3654 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3655 	else
3656 		ipmi_inc_stat(intf, handled_ipmb_responses);
3657 
3658 	return 0;
3659 }
3660 
3661 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3662 				   struct ipmi_smi_msg *msg)
3663 {
3664 	struct cmd_rcvr          *rcvr;
3665 	int                      rv = 0;
3666 	unsigned char            netfn;
3667 	unsigned char            cmd;
3668 	unsigned char            chan;
3669 	struct ipmi_user         *user = NULL;
3670 	struct ipmi_ipmb_addr    *ipmb_addr;
3671 	struct ipmi_recv_msg     *recv_msg;
3672 
3673 	if (msg->rsp_size < 10) {
3674 		/* Message not big enough, just ignore it. */
3675 		ipmi_inc_stat(intf, invalid_commands);
3676 		return 0;
3677 	}
3678 
3679 	if (msg->rsp[2] != 0) {
3680 		/* An error getting the response, just ignore it. */
3681 		return 0;
3682 	}
3683 
3684 	netfn = msg->rsp[4] >> 2;
3685 	cmd = msg->rsp[8];
3686 	chan = msg->rsp[3] & 0xf;
3687 
3688 	rcu_read_lock();
3689 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3690 	if (rcvr) {
3691 		user = rcvr->user;
3692 		kref_get(&user->refcount);
3693 	} else
3694 		user = NULL;
3695 	rcu_read_unlock();
3696 
3697 	if (user == NULL) {
3698 		/* We didn't find a user, deliver an error response. */
3699 		ipmi_inc_stat(intf, unhandled_commands);
3700 
3701 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3702 		msg->data[1] = IPMI_SEND_MSG_CMD;
3703 		msg->data[2] = msg->rsp[3];
3704 		msg->data[3] = msg->rsp[6];
3705 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3706 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3707 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3708 		/* rqseq/lun */
3709 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3710 		msg->data[8] = msg->rsp[8]; /* cmd */
3711 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3712 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3713 		msg->data_size = 11;
3714 
3715 		ipmi_debug_msg("Invalid command:", msg->data, msg->data_size);
3716 
3717 		rcu_read_lock();
3718 		if (!intf->in_shutdown) {
3719 			smi_send(intf, intf->handlers, msg, 0);
3720 			/*
3721 			 * We used the message, so return the value
3722 			 * that causes it to not be freed or
3723 			 * queued.
3724 			 */
3725 			rv = -1;
3726 		}
3727 		rcu_read_unlock();
3728 	} else {
3729 		recv_msg = ipmi_alloc_recv_msg();
3730 		if (!recv_msg) {
3731 			/*
3732 			 * We couldn't allocate memory for the
3733 			 * message, so requeue it for handling
3734 			 * later.
3735 			 */
3736 			rv = 1;
3737 			kref_put(&user->refcount, free_user);
3738 		} else {
3739 			/* Extract the source address from the data. */
3740 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3741 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3742 			ipmb_addr->slave_addr = msg->rsp[6];
3743 			ipmb_addr->lun = msg->rsp[7] & 3;
3744 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3745 
3746 			/*
3747 			 * Extract the rest of the message information
3748 			 * from the IPMB header.
3749 			 */
3750 			recv_msg->user = user;
3751 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3752 			recv_msg->msgid = msg->rsp[7] >> 2;
3753 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3754 			recv_msg->msg.cmd = msg->rsp[8];
3755 			recv_msg->msg.data = recv_msg->msg_data;
3756 
3757 			/*
3758 			 * We chop off 10, not 9 bytes because the checksum
3759 			 * at the end also needs to be removed.
3760 			 */
3761 			recv_msg->msg.data_len = msg->rsp_size - 10;
3762 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3763 			       msg->rsp_size - 10);
3764 			if (deliver_response(intf, recv_msg))
3765 				ipmi_inc_stat(intf, unhandled_commands);
3766 			else
3767 				ipmi_inc_stat(intf, handled_commands);
3768 		}
3769 	}
3770 
3771 	return rv;
3772 }
3773 
3774 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3775 				  struct ipmi_smi_msg *msg)
3776 {
3777 	struct ipmi_lan_addr  lan_addr;
3778 	struct ipmi_recv_msg  *recv_msg;
3779 
3780 
3781 	/*
3782 	 * This is 13, not 12, because the response must contain a
3783 	 * completion code.
3784 	 */
3785 	if (msg->rsp_size < 13) {
3786 		/* Message not big enough, just ignore it. */
3787 		ipmi_inc_stat(intf, invalid_lan_responses);
3788 		return 0;
3789 	}
3790 
3791 	if (msg->rsp[2] != 0) {
3792 		/* An error getting the response, just ignore it. */
3793 		return 0;
3794 	}
3795 
3796 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3797 	lan_addr.session_handle = msg->rsp[4];
3798 	lan_addr.remote_SWID = msg->rsp[8];
3799 	lan_addr.local_SWID = msg->rsp[5];
3800 	lan_addr.channel = msg->rsp[3] & 0x0f;
3801 	lan_addr.privilege = msg->rsp[3] >> 4;
3802 	lan_addr.lun = msg->rsp[9] & 3;
3803 
3804 	/*
3805 	 * It's a response from a remote entity.  Look up the sequence
3806 	 * number and handle the response.
3807 	 */
3808 	if (intf_find_seq(intf,
3809 			  msg->rsp[9] >> 2,
3810 			  msg->rsp[3] & 0x0f,
3811 			  msg->rsp[10],
3812 			  (msg->rsp[6] >> 2) & (~1),
3813 			  (struct ipmi_addr *) &lan_addr,
3814 			  &recv_msg)) {
3815 		/*
3816 		 * We were unable to find the sequence number,
3817 		 * so just nuke the message.
3818 		 */
3819 		ipmi_inc_stat(intf, unhandled_lan_responses);
3820 		return 0;
3821 	}
3822 
3823 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3824 	/*
3825 	 * The other fields matched, so no need to set them, except
3826 	 * for netfn, which needs to be the response that was
3827 	 * returned, not the request value.
3828 	 */
3829 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3830 	recv_msg->msg.data = recv_msg->msg_data;
3831 	recv_msg->msg.data_len = msg->rsp_size - 12;
3832 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3833 	if (deliver_response(intf, recv_msg))
3834 		ipmi_inc_stat(intf, unhandled_lan_responses);
3835 	else
3836 		ipmi_inc_stat(intf, handled_lan_responses);
3837 
3838 	return 0;
3839 }
3840 
3841 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3842 				  struct ipmi_smi_msg *msg)
3843 {
3844 	struct cmd_rcvr          *rcvr;
3845 	int                      rv = 0;
3846 	unsigned char            netfn;
3847 	unsigned char            cmd;
3848 	unsigned char            chan;
3849 	struct ipmi_user         *user = NULL;
3850 	struct ipmi_lan_addr     *lan_addr;
3851 	struct ipmi_recv_msg     *recv_msg;
3852 
3853 	if (msg->rsp_size < 12) {
3854 		/* Message not big enough, just ignore it. */
3855 		ipmi_inc_stat(intf, invalid_commands);
3856 		return 0;
3857 	}
3858 
3859 	if (msg->rsp[2] != 0) {
3860 		/* An error getting the response, just ignore it. */
3861 		return 0;
3862 	}
3863 
3864 	netfn = msg->rsp[6] >> 2;
3865 	cmd = msg->rsp[10];
3866 	chan = msg->rsp[3] & 0xf;
3867 
3868 	rcu_read_lock();
3869 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3870 	if (rcvr) {
3871 		user = rcvr->user;
3872 		kref_get(&user->refcount);
3873 	} else
3874 		user = NULL;
3875 	rcu_read_unlock();
3876 
3877 	if (user == NULL) {
3878 		/* We didn't find a user, just give up. */
3879 		ipmi_inc_stat(intf, unhandled_commands);
3880 
3881 		/*
3882 		 * Don't do anything with these messages, just allow
3883 		 * them to be freed.
3884 		 */
3885 		rv = 0;
3886 	} else {
3887 		recv_msg = ipmi_alloc_recv_msg();
3888 		if (!recv_msg) {
3889 			/*
3890 			 * We couldn't allocate memory for the
3891 			 * message, so requeue it for handling later.
3892 			 */
3893 			rv = 1;
3894 			kref_put(&user->refcount, free_user);
3895 		} else {
3896 			/* Extract the source address from the data. */
3897 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3898 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3899 			lan_addr->session_handle = msg->rsp[4];
3900 			lan_addr->remote_SWID = msg->rsp[8];
3901 			lan_addr->local_SWID = msg->rsp[5];
3902 			lan_addr->lun = msg->rsp[9] & 3;
3903 			lan_addr->channel = msg->rsp[3] & 0xf;
3904 			lan_addr->privilege = msg->rsp[3] >> 4;
3905 
3906 			/*
3907 			 * Extract the rest of the message information
3908 			 * from the IPMB header.
3909 			 */
3910 			recv_msg->user = user;
3911 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3912 			recv_msg->msgid = msg->rsp[9] >> 2;
3913 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3914 			recv_msg->msg.cmd = msg->rsp[10];
3915 			recv_msg->msg.data = recv_msg->msg_data;
3916 
3917 			/*
3918 			 * We chop off 12, not 11 bytes because the checksum
3919 			 * at the end also needs to be removed.
3920 			 */
3921 			recv_msg->msg.data_len = msg->rsp_size - 12;
3922 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3923 			       msg->rsp_size - 12);
3924 			if (deliver_response(intf, recv_msg))
3925 				ipmi_inc_stat(intf, unhandled_commands);
3926 			else
3927 				ipmi_inc_stat(intf, handled_commands);
3928 		}
3929 	}
3930 
3931 	return rv;
3932 }
3933 
3934 /*
3935  * This routine will handle "Get Message" command responses with
3936  * channels that use an OEM Medium. The message format belongs to
3937  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3938  * Chapter 22, sections 22.6 and 22.24 for more details.
3939  */
3940 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3941 				  struct ipmi_smi_msg *msg)
3942 {
3943 	struct cmd_rcvr       *rcvr;
3944 	int                   rv = 0;
3945 	unsigned char         netfn;
3946 	unsigned char         cmd;
3947 	unsigned char         chan;
3948 	struct ipmi_user *user = NULL;
3949 	struct ipmi_system_interface_addr *smi_addr;
3950 	struct ipmi_recv_msg  *recv_msg;
3951 
3952 	/*
3953 	 * We expect the OEM SW to perform error checking
3954 	 * so we just do some basic sanity checks
3955 	 */
3956 	if (msg->rsp_size < 4) {
3957 		/* Message not big enough, just ignore it. */
3958 		ipmi_inc_stat(intf, invalid_commands);
3959 		return 0;
3960 	}
3961 
3962 	if (msg->rsp[2] != 0) {
3963 		/* An error getting the response, just ignore it. */
3964 		return 0;
3965 	}
3966 
3967 	/*
3968 	 * This is an OEM Message so the OEM needs to know how
3969 	 * handle the message. We do no interpretation.
3970 	 */
3971 	netfn = msg->rsp[0] >> 2;
3972 	cmd = msg->rsp[1];
3973 	chan = msg->rsp[3] & 0xf;
3974 
3975 	rcu_read_lock();
3976 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3977 	if (rcvr) {
3978 		user = rcvr->user;
3979 		kref_get(&user->refcount);
3980 	} else
3981 		user = NULL;
3982 	rcu_read_unlock();
3983 
3984 	if (user == NULL) {
3985 		/* We didn't find a user, just give up. */
3986 		ipmi_inc_stat(intf, unhandled_commands);
3987 
3988 		/*
3989 		 * Don't do anything with these messages, just allow
3990 		 * them to be freed.
3991 		 */
3992 
3993 		rv = 0;
3994 	} else {
3995 		recv_msg = ipmi_alloc_recv_msg();
3996 		if (!recv_msg) {
3997 			/*
3998 			 * We couldn't allocate memory for the
3999 			 * message, so requeue it for handling
4000 			 * later.
4001 			 */
4002 			rv = 1;
4003 			kref_put(&user->refcount, free_user);
4004 		} else {
4005 			/*
4006 			 * OEM Messages are expected to be delivered via
4007 			 * the system interface to SMS software.  We might
4008 			 * need to visit this again depending on OEM
4009 			 * requirements
4010 			 */
4011 			smi_addr = ((struct ipmi_system_interface_addr *)
4012 				    &recv_msg->addr);
4013 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4014 			smi_addr->channel = IPMI_BMC_CHANNEL;
4015 			smi_addr->lun = msg->rsp[0] & 3;
4016 
4017 			recv_msg->user = user;
4018 			recv_msg->user_msg_data = NULL;
4019 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4020 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4021 			recv_msg->msg.cmd = msg->rsp[1];
4022 			recv_msg->msg.data = recv_msg->msg_data;
4023 
4024 			/*
4025 			 * The message starts at byte 4 which follows the
4026 			 * the Channel Byte in the "GET MESSAGE" command
4027 			 */
4028 			recv_msg->msg.data_len = msg->rsp_size - 4;
4029 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4030 			       msg->rsp_size - 4);
4031 			if (deliver_response(intf, recv_msg))
4032 				ipmi_inc_stat(intf, unhandled_commands);
4033 			else
4034 				ipmi_inc_stat(intf, handled_commands);
4035 		}
4036 	}
4037 
4038 	return rv;
4039 }
4040 
4041 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4042 				     struct ipmi_smi_msg  *msg)
4043 {
4044 	struct ipmi_system_interface_addr *smi_addr;
4045 
4046 	recv_msg->msgid = 0;
4047 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4048 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4049 	smi_addr->channel = IPMI_BMC_CHANNEL;
4050 	smi_addr->lun = msg->rsp[0] & 3;
4051 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4052 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4053 	recv_msg->msg.cmd = msg->rsp[1];
4054 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4055 	recv_msg->msg.data = recv_msg->msg_data;
4056 	recv_msg->msg.data_len = msg->rsp_size - 3;
4057 }
4058 
4059 static int handle_read_event_rsp(struct ipmi_smi *intf,
4060 				 struct ipmi_smi_msg *msg)
4061 {
4062 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4063 	struct list_head     msgs;
4064 	struct ipmi_user     *user;
4065 	int rv = 0, deliver_count = 0, index;
4066 	unsigned long        flags;
4067 
4068 	if (msg->rsp_size < 19) {
4069 		/* Message is too small to be an IPMB event. */
4070 		ipmi_inc_stat(intf, invalid_events);
4071 		return 0;
4072 	}
4073 
4074 	if (msg->rsp[2] != 0) {
4075 		/* An error getting the event, just ignore it. */
4076 		return 0;
4077 	}
4078 
4079 	INIT_LIST_HEAD(&msgs);
4080 
4081 	spin_lock_irqsave(&intf->events_lock, flags);
4082 
4083 	ipmi_inc_stat(intf, events);
4084 
4085 	/*
4086 	 * Allocate and fill in one message for every user that is
4087 	 * getting events.
4088 	 */
4089 	index = srcu_read_lock(&intf->users_srcu);
4090 	list_for_each_entry_rcu(user, &intf->users, link) {
4091 		if (!user->gets_events)
4092 			continue;
4093 
4094 		recv_msg = ipmi_alloc_recv_msg();
4095 		if (!recv_msg) {
4096 			rcu_read_unlock();
4097 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4098 						 link) {
4099 				list_del(&recv_msg->link);
4100 				ipmi_free_recv_msg(recv_msg);
4101 			}
4102 			/*
4103 			 * We couldn't allocate memory for the
4104 			 * message, so requeue it for handling
4105 			 * later.
4106 			 */
4107 			rv = 1;
4108 			goto out;
4109 		}
4110 
4111 		deliver_count++;
4112 
4113 		copy_event_into_recv_msg(recv_msg, msg);
4114 		recv_msg->user = user;
4115 		kref_get(&user->refcount);
4116 		list_add_tail(&recv_msg->link, &msgs);
4117 	}
4118 	srcu_read_unlock(&intf->users_srcu, index);
4119 
4120 	if (deliver_count) {
4121 		/* Now deliver all the messages. */
4122 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4123 			list_del(&recv_msg->link);
4124 			deliver_local_response(intf, recv_msg);
4125 		}
4126 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4127 		/*
4128 		 * No one to receive the message, put it in queue if there's
4129 		 * not already too many things in the queue.
4130 		 */
4131 		recv_msg = ipmi_alloc_recv_msg();
4132 		if (!recv_msg) {
4133 			/*
4134 			 * We couldn't allocate memory for the
4135 			 * message, so requeue it for handling
4136 			 * later.
4137 			 */
4138 			rv = 1;
4139 			goto out;
4140 		}
4141 
4142 		copy_event_into_recv_msg(recv_msg, msg);
4143 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4144 		intf->waiting_events_count++;
4145 	} else if (!intf->event_msg_printed) {
4146 		/*
4147 		 * There's too many things in the queue, discard this
4148 		 * message.
4149 		 */
4150 		dev_warn(intf->si_dev,
4151 			 "Event queue full, discarding incoming events\n");
4152 		intf->event_msg_printed = 1;
4153 	}
4154 
4155  out:
4156 	spin_unlock_irqrestore(&intf->events_lock, flags);
4157 
4158 	return rv;
4159 }
4160 
4161 static int handle_bmc_rsp(struct ipmi_smi *intf,
4162 			  struct ipmi_smi_msg *msg)
4163 {
4164 	struct ipmi_recv_msg *recv_msg;
4165 	struct ipmi_system_interface_addr *smi_addr;
4166 
4167 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4168 	if (recv_msg == NULL) {
4169 		dev_warn(intf->si_dev,
4170 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4171 		return 0;
4172 	}
4173 
4174 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4175 	recv_msg->msgid = msg->msgid;
4176 	smi_addr = ((struct ipmi_system_interface_addr *)
4177 		    &recv_msg->addr);
4178 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4179 	smi_addr->channel = IPMI_BMC_CHANNEL;
4180 	smi_addr->lun = msg->rsp[0] & 3;
4181 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4182 	recv_msg->msg.cmd = msg->rsp[1];
4183 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4184 	recv_msg->msg.data = recv_msg->msg_data;
4185 	recv_msg->msg.data_len = msg->rsp_size - 2;
4186 	deliver_local_response(intf, recv_msg);
4187 
4188 	return 0;
4189 }
4190 
4191 /*
4192  * Handle a received message.  Return 1 if the message should be requeued,
4193  * 0 if the message should be freed, or -1 if the message should not
4194  * be freed or requeued.
4195  */
4196 static int handle_one_recv_msg(struct ipmi_smi *intf,
4197 			       struct ipmi_smi_msg *msg)
4198 {
4199 	int requeue;
4200 	int chan;
4201 
4202 	ipmi_debug_msg("Recv:", msg->rsp, msg->rsp_size);
4203 	if (msg->rsp_size < 2) {
4204 		/* Message is too small to be correct. */
4205 		dev_warn(intf->si_dev,
4206 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4207 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4208 
4209 		/* Generate an error response for the message. */
4210 		msg->rsp[0] = msg->data[0] | (1 << 2);
4211 		msg->rsp[1] = msg->data[1];
4212 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4213 		msg->rsp_size = 3;
4214 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4215 		   || (msg->rsp[1] != msg->data[1])) {
4216 		/*
4217 		 * The NetFN and Command in the response is not even
4218 		 * marginally correct.
4219 		 */
4220 		dev_warn(intf->si_dev,
4221 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4222 			 (msg->data[0] >> 2) | 1, msg->data[1],
4223 			 msg->rsp[0] >> 2, msg->rsp[1]);
4224 
4225 		/* Generate an error response for the message. */
4226 		msg->rsp[0] = msg->data[0] | (1 << 2);
4227 		msg->rsp[1] = msg->data[1];
4228 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4229 		msg->rsp_size = 3;
4230 	}
4231 
4232 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4233 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4234 	    && (msg->user_data != NULL)) {
4235 		/*
4236 		 * It's a response to a response we sent.  For this we
4237 		 * deliver a send message response to the user.
4238 		 */
4239 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4240 
4241 		requeue = 0;
4242 		if (msg->rsp_size < 2)
4243 			/* Message is too small to be correct. */
4244 			goto out;
4245 
4246 		chan = msg->data[2] & 0x0f;
4247 		if (chan >= IPMI_MAX_CHANNELS)
4248 			/* Invalid channel number */
4249 			goto out;
4250 
4251 		if (!recv_msg)
4252 			goto out;
4253 
4254 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4255 		recv_msg->msg.data = recv_msg->msg_data;
4256 		recv_msg->msg.data_len = 1;
4257 		recv_msg->msg_data[0] = msg->rsp[2];
4258 		deliver_local_response(intf, recv_msg);
4259 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4260 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4261 		struct ipmi_channel   *chans;
4262 
4263 		/* It's from the receive queue. */
4264 		chan = msg->rsp[3] & 0xf;
4265 		if (chan >= IPMI_MAX_CHANNELS) {
4266 			/* Invalid channel number */
4267 			requeue = 0;
4268 			goto out;
4269 		}
4270 
4271 		/*
4272 		 * We need to make sure the channels have been initialized.
4273 		 * The channel_handler routine will set the "curr_channel"
4274 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4275 		 * channels for this interface have been initialized.
4276 		 */
4277 		if (!intf->channels_ready) {
4278 			requeue = 0; /* Throw the message away */
4279 			goto out;
4280 		}
4281 
4282 		chans = READ_ONCE(intf->channel_list)->c;
4283 
4284 		switch (chans[chan].medium) {
4285 		case IPMI_CHANNEL_MEDIUM_IPMB:
4286 			if (msg->rsp[4] & 0x04) {
4287 				/*
4288 				 * It's a response, so find the
4289 				 * requesting message and send it up.
4290 				 */
4291 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4292 			} else {
4293 				/*
4294 				 * It's a command to the SMS from some other
4295 				 * entity.  Handle that.
4296 				 */
4297 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4298 			}
4299 			break;
4300 
4301 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4302 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4303 			if (msg->rsp[6] & 0x04) {
4304 				/*
4305 				 * It's a response, so find the
4306 				 * requesting message and send it up.
4307 				 */
4308 				requeue = handle_lan_get_msg_rsp(intf, msg);
4309 			} else {
4310 				/*
4311 				 * It's a command to the SMS from some other
4312 				 * entity.  Handle that.
4313 				 */
4314 				requeue = handle_lan_get_msg_cmd(intf, msg);
4315 			}
4316 			break;
4317 
4318 		default:
4319 			/* Check for OEM Channels.  Clients had better
4320 			   register for these commands. */
4321 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4322 			    && (chans[chan].medium
4323 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4324 				requeue = handle_oem_get_msg_cmd(intf, msg);
4325 			} else {
4326 				/*
4327 				 * We don't handle the channel type, so just
4328 				 * free the message.
4329 				 */
4330 				requeue = 0;
4331 			}
4332 		}
4333 
4334 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4335 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4336 		/* It's an asynchronous event. */
4337 		requeue = handle_read_event_rsp(intf, msg);
4338 	} else {
4339 		/* It's a response from the local BMC. */
4340 		requeue = handle_bmc_rsp(intf, msg);
4341 	}
4342 
4343  out:
4344 	return requeue;
4345 }
4346 
4347 /*
4348  * If there are messages in the queue or pretimeouts, handle them.
4349  */
4350 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4351 {
4352 	struct ipmi_smi_msg  *smi_msg;
4353 	unsigned long        flags = 0;
4354 	int                  rv;
4355 	int                  run_to_completion = intf->run_to_completion;
4356 
4357 	/* See if any waiting messages need to be processed. */
4358 	if (!run_to_completion)
4359 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4360 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4361 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4362 				     struct ipmi_smi_msg, link);
4363 		list_del(&smi_msg->link);
4364 		if (!run_to_completion)
4365 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4366 					       flags);
4367 		rv = handle_one_recv_msg(intf, smi_msg);
4368 		if (!run_to_completion)
4369 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4370 		if (rv > 0) {
4371 			/*
4372 			 * To preserve message order, quit if we
4373 			 * can't handle a message.  Add the message
4374 			 * back at the head, this is safe because this
4375 			 * tasklet is the only thing that pulls the
4376 			 * messages.
4377 			 */
4378 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4379 			break;
4380 		} else {
4381 			if (rv == 0)
4382 				/* Message handled */
4383 				ipmi_free_smi_msg(smi_msg);
4384 			/* If rv < 0, fatal error, del but don't free. */
4385 		}
4386 	}
4387 	if (!run_to_completion)
4388 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4389 
4390 	/*
4391 	 * If the pretimout count is non-zero, decrement one from it and
4392 	 * deliver pretimeouts to all the users.
4393 	 */
4394 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4395 		struct ipmi_user *user;
4396 		int index;
4397 
4398 		index = srcu_read_lock(&intf->users_srcu);
4399 		list_for_each_entry_rcu(user, &intf->users, link) {
4400 			if (user->handler->ipmi_watchdog_pretimeout)
4401 				user->handler->ipmi_watchdog_pretimeout(
4402 					user->handler_data);
4403 		}
4404 		srcu_read_unlock(&intf->users_srcu, index);
4405 	}
4406 }
4407 
4408 static void smi_recv_tasklet(unsigned long val)
4409 {
4410 	unsigned long flags = 0; /* keep us warning-free. */
4411 	struct ipmi_smi *intf = (struct ipmi_smi *) val;
4412 	int run_to_completion = intf->run_to_completion;
4413 	struct ipmi_smi_msg *newmsg = NULL;
4414 
4415 	/*
4416 	 * Start the next message if available.
4417 	 *
4418 	 * Do this here, not in the actual receiver, because we may deadlock
4419 	 * because the lower layer is allowed to hold locks while calling
4420 	 * message delivery.
4421 	 */
4422 
4423 	rcu_read_lock();
4424 
4425 	if (!run_to_completion)
4426 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4427 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4428 		struct list_head *entry = NULL;
4429 
4430 		/* Pick the high priority queue first. */
4431 		if (!list_empty(&intf->hp_xmit_msgs))
4432 			entry = intf->hp_xmit_msgs.next;
4433 		else if (!list_empty(&intf->xmit_msgs))
4434 			entry = intf->xmit_msgs.next;
4435 
4436 		if (entry) {
4437 			list_del(entry);
4438 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4439 			intf->curr_msg = newmsg;
4440 		}
4441 	}
4442 
4443 	if (!run_to_completion)
4444 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4445 	if (newmsg)
4446 		intf->handlers->sender(intf->send_info, newmsg);
4447 
4448 	rcu_read_unlock();
4449 
4450 	handle_new_recv_msgs(intf);
4451 }
4452 
4453 /* Handle a new message from the lower layer. */
4454 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4455 			   struct ipmi_smi_msg *msg)
4456 {
4457 	unsigned long flags = 0; /* keep us warning-free. */
4458 	int run_to_completion = intf->run_to_completion;
4459 
4460 	if ((msg->data_size >= 2)
4461 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4462 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4463 	    && (msg->user_data == NULL)) {
4464 
4465 		if (intf->in_shutdown)
4466 			goto free_msg;
4467 
4468 		/*
4469 		 * This is the local response to a command send, start
4470 		 * the timer for these.  The user_data will not be
4471 		 * NULL if this is a response send, and we will let
4472 		 * response sends just go through.
4473 		 */
4474 
4475 		/*
4476 		 * Check for errors, if we get certain errors (ones
4477 		 * that mean basically we can try again later), we
4478 		 * ignore them and start the timer.  Otherwise we
4479 		 * report the error immediately.
4480 		 */
4481 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4482 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4483 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4484 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4485 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4486 			int ch = msg->rsp[3] & 0xf;
4487 			struct ipmi_channel *chans;
4488 
4489 			/* Got an error sending the message, handle it. */
4490 
4491 			chans = READ_ONCE(intf->channel_list)->c;
4492 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4493 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4494 				ipmi_inc_stat(intf, sent_lan_command_errs);
4495 			else
4496 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4497 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4498 		} else
4499 			/* The message was sent, start the timer. */
4500 			intf_start_seq_timer(intf, msg->msgid);
4501 
4502 free_msg:
4503 		ipmi_free_smi_msg(msg);
4504 	} else {
4505 		/*
4506 		 * To preserve message order, we keep a queue and deliver from
4507 		 * a tasklet.
4508 		 */
4509 		if (!run_to_completion)
4510 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4511 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4512 		if (!run_to_completion)
4513 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4514 					       flags);
4515 	}
4516 
4517 	if (!run_to_completion)
4518 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4519 	/*
4520 	 * We can get an asynchronous event or receive message in addition
4521 	 * to commands we send.
4522 	 */
4523 	if (msg == intf->curr_msg)
4524 		intf->curr_msg = NULL;
4525 	if (!run_to_completion)
4526 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4527 
4528 	if (run_to_completion)
4529 		smi_recv_tasklet((unsigned long) intf);
4530 	else
4531 		tasklet_schedule(&intf->recv_tasklet);
4532 }
4533 EXPORT_SYMBOL(ipmi_smi_msg_received);
4534 
4535 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4536 {
4537 	if (intf->in_shutdown)
4538 		return;
4539 
4540 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4541 	tasklet_schedule(&intf->recv_tasklet);
4542 }
4543 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4544 
4545 static struct ipmi_smi_msg *
4546 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4547 		  unsigned char seq, long seqid)
4548 {
4549 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4550 	if (!smi_msg)
4551 		/*
4552 		 * If we can't allocate the message, then just return, we
4553 		 * get 4 retries, so this should be ok.
4554 		 */
4555 		return NULL;
4556 
4557 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4558 	smi_msg->data_size = recv_msg->msg.data_len;
4559 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4560 
4561 	ipmi_debug_msg("Resend: ", smi_msg->data, smi_msg->data_size);
4562 
4563 	return smi_msg;
4564 }
4565 
4566 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4567 			      struct list_head *timeouts,
4568 			      unsigned long timeout_period,
4569 			      int slot, unsigned long *flags,
4570 			      bool *need_timer)
4571 {
4572 	struct ipmi_recv_msg *msg;
4573 
4574 	if (intf->in_shutdown)
4575 		return;
4576 
4577 	if (!ent->inuse)
4578 		return;
4579 
4580 	if (timeout_period < ent->timeout) {
4581 		ent->timeout -= timeout_period;
4582 		*need_timer = true;
4583 		return;
4584 	}
4585 
4586 	if (ent->retries_left == 0) {
4587 		/* The message has used all its retries. */
4588 		ent->inuse = 0;
4589 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4590 		msg = ent->recv_msg;
4591 		list_add_tail(&msg->link, timeouts);
4592 		if (ent->broadcast)
4593 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4594 		else if (is_lan_addr(&ent->recv_msg->addr))
4595 			ipmi_inc_stat(intf, timed_out_lan_commands);
4596 		else
4597 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4598 	} else {
4599 		struct ipmi_smi_msg *smi_msg;
4600 		/* More retries, send again. */
4601 
4602 		*need_timer = true;
4603 
4604 		/*
4605 		 * Start with the max timer, set to normal timer after
4606 		 * the message is sent.
4607 		 */
4608 		ent->timeout = MAX_MSG_TIMEOUT;
4609 		ent->retries_left--;
4610 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4611 					    ent->seqid);
4612 		if (!smi_msg) {
4613 			if (is_lan_addr(&ent->recv_msg->addr))
4614 				ipmi_inc_stat(intf,
4615 					      dropped_rexmit_lan_commands);
4616 			else
4617 				ipmi_inc_stat(intf,
4618 					      dropped_rexmit_ipmb_commands);
4619 			return;
4620 		}
4621 
4622 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4623 
4624 		/*
4625 		 * Send the new message.  We send with a zero
4626 		 * priority.  It timed out, I doubt time is that
4627 		 * critical now, and high priority messages are really
4628 		 * only for messages to the local MC, which don't get
4629 		 * resent.
4630 		 */
4631 		if (intf->handlers) {
4632 			if (is_lan_addr(&ent->recv_msg->addr))
4633 				ipmi_inc_stat(intf,
4634 					      retransmitted_lan_commands);
4635 			else
4636 				ipmi_inc_stat(intf,
4637 					      retransmitted_ipmb_commands);
4638 
4639 			smi_send(intf, intf->handlers, smi_msg, 0);
4640 		} else
4641 			ipmi_free_smi_msg(smi_msg);
4642 
4643 		spin_lock_irqsave(&intf->seq_lock, *flags);
4644 	}
4645 }
4646 
4647 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4648 				 unsigned long timeout_period)
4649 {
4650 	struct list_head     timeouts;
4651 	struct ipmi_recv_msg *msg, *msg2;
4652 	unsigned long        flags;
4653 	int                  i;
4654 	bool                 need_timer = false;
4655 
4656 	if (!intf->bmc_registered) {
4657 		kref_get(&intf->refcount);
4658 		if (!schedule_work(&intf->bmc_reg_work)) {
4659 			kref_put(&intf->refcount, intf_free);
4660 			need_timer = true;
4661 		}
4662 	}
4663 
4664 	/*
4665 	 * Go through the seq table and find any messages that
4666 	 * have timed out, putting them in the timeouts
4667 	 * list.
4668 	 */
4669 	INIT_LIST_HEAD(&timeouts);
4670 	spin_lock_irqsave(&intf->seq_lock, flags);
4671 	if (intf->ipmb_maintenance_mode_timeout) {
4672 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4673 			intf->ipmb_maintenance_mode_timeout = 0;
4674 		else
4675 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4676 	}
4677 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4678 		check_msg_timeout(intf, &intf->seq_table[i],
4679 				  &timeouts, timeout_period, i,
4680 				  &flags, &need_timer);
4681 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4682 
4683 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4684 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4685 
4686 	/*
4687 	 * Maintenance mode handling.  Check the timeout
4688 	 * optimistically before we claim the lock.  It may
4689 	 * mean a timeout gets missed occasionally, but that
4690 	 * only means the timeout gets extended by one period
4691 	 * in that case.  No big deal, and it avoids the lock
4692 	 * most of the time.
4693 	 */
4694 	if (intf->auto_maintenance_timeout > 0) {
4695 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4696 		if (intf->auto_maintenance_timeout > 0) {
4697 			intf->auto_maintenance_timeout
4698 				-= timeout_period;
4699 			if (!intf->maintenance_mode
4700 			    && (intf->auto_maintenance_timeout <= 0)) {
4701 				intf->maintenance_mode_enable = false;
4702 				maintenance_mode_update(intf);
4703 			}
4704 		}
4705 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4706 				       flags);
4707 	}
4708 
4709 	tasklet_schedule(&intf->recv_tasklet);
4710 
4711 	return need_timer;
4712 }
4713 
4714 static void ipmi_request_event(struct ipmi_smi *intf)
4715 {
4716 	/* No event requests when in maintenance mode. */
4717 	if (intf->maintenance_mode_enable)
4718 		return;
4719 
4720 	if (!intf->in_shutdown)
4721 		intf->handlers->request_events(intf->send_info);
4722 }
4723 
4724 static struct timer_list ipmi_timer;
4725 
4726 static atomic_t stop_operation;
4727 
4728 static void ipmi_timeout(struct timer_list *unused)
4729 {
4730 	struct ipmi_smi *intf;
4731 	bool need_timer = false;
4732 	int index;
4733 
4734 	if (atomic_read(&stop_operation))
4735 		return;
4736 
4737 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4738 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4739 		if (atomic_read(&intf->event_waiters)) {
4740 			intf->ticks_to_req_ev--;
4741 			if (intf->ticks_to_req_ev == 0) {
4742 				ipmi_request_event(intf);
4743 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4744 			}
4745 			need_timer = true;
4746 		}
4747 
4748 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4749 	}
4750 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4751 
4752 	if (need_timer)
4753 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4754 }
4755 
4756 static void need_waiter(struct ipmi_smi *intf)
4757 {
4758 	/* Racy, but worst case we start the timer twice. */
4759 	if (!timer_pending(&ipmi_timer))
4760 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4761 }
4762 
4763 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4764 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4765 
4766 static void free_smi_msg(struct ipmi_smi_msg *msg)
4767 {
4768 	atomic_dec(&smi_msg_inuse_count);
4769 	kfree(msg);
4770 }
4771 
4772 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4773 {
4774 	struct ipmi_smi_msg *rv;
4775 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4776 	if (rv) {
4777 		rv->done = free_smi_msg;
4778 		rv->user_data = NULL;
4779 		atomic_inc(&smi_msg_inuse_count);
4780 	}
4781 	return rv;
4782 }
4783 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4784 
4785 static void free_recv_msg(struct ipmi_recv_msg *msg)
4786 {
4787 	atomic_dec(&recv_msg_inuse_count);
4788 	kfree(msg);
4789 }
4790 
4791 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4792 {
4793 	struct ipmi_recv_msg *rv;
4794 
4795 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4796 	if (rv) {
4797 		rv->user = NULL;
4798 		rv->done = free_recv_msg;
4799 		atomic_inc(&recv_msg_inuse_count);
4800 	}
4801 	return rv;
4802 }
4803 
4804 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4805 {
4806 	if (msg->user)
4807 		kref_put(&msg->user->refcount, free_user);
4808 	msg->done(msg);
4809 }
4810 EXPORT_SYMBOL(ipmi_free_recv_msg);
4811 
4812 static atomic_t panic_done_count = ATOMIC_INIT(0);
4813 
4814 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4815 {
4816 	atomic_dec(&panic_done_count);
4817 }
4818 
4819 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4820 {
4821 	atomic_dec(&panic_done_count);
4822 }
4823 
4824 /*
4825  * Inside a panic, send a message and wait for a response.
4826  */
4827 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4828 					struct ipmi_addr *addr,
4829 					struct kernel_ipmi_msg *msg)
4830 {
4831 	struct ipmi_smi_msg  smi_msg;
4832 	struct ipmi_recv_msg recv_msg;
4833 	int rv;
4834 
4835 	smi_msg.done = dummy_smi_done_handler;
4836 	recv_msg.done = dummy_recv_done_handler;
4837 	atomic_add(2, &panic_done_count);
4838 	rv = i_ipmi_request(NULL,
4839 			    intf,
4840 			    addr,
4841 			    0,
4842 			    msg,
4843 			    intf,
4844 			    &smi_msg,
4845 			    &recv_msg,
4846 			    0,
4847 			    intf->addrinfo[0].address,
4848 			    intf->addrinfo[0].lun,
4849 			    0, 1); /* Don't retry, and don't wait. */
4850 	if (rv)
4851 		atomic_sub(2, &panic_done_count);
4852 	else if (intf->handlers->flush_messages)
4853 		intf->handlers->flush_messages(intf->send_info);
4854 
4855 	while (atomic_read(&panic_done_count) != 0)
4856 		ipmi_poll(intf);
4857 }
4858 
4859 static void event_receiver_fetcher(struct ipmi_smi *intf,
4860 				   struct ipmi_recv_msg *msg)
4861 {
4862 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4863 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4864 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4865 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4866 		/* A get event receiver command, save it. */
4867 		intf->event_receiver = msg->msg.data[1];
4868 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4869 	}
4870 }
4871 
4872 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4873 {
4874 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4875 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4876 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4877 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4878 		/*
4879 		 * A get device id command, save if we are an event
4880 		 * receiver or generator.
4881 		 */
4882 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4883 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4884 	}
4885 }
4886 
4887 static void send_panic_events(struct ipmi_smi *intf, char *str)
4888 {
4889 	struct kernel_ipmi_msg msg;
4890 	unsigned char data[16];
4891 	struct ipmi_system_interface_addr *si;
4892 	struct ipmi_addr addr;
4893 	char *p = str;
4894 	struct ipmi_ipmb_addr *ipmb;
4895 	int j;
4896 
4897 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4898 		return;
4899 
4900 	si = (struct ipmi_system_interface_addr *) &addr;
4901 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4902 	si->channel = IPMI_BMC_CHANNEL;
4903 	si->lun = 0;
4904 
4905 	/* Fill in an event telling that we have failed. */
4906 	msg.netfn = 0x04; /* Sensor or Event. */
4907 	msg.cmd = 2; /* Platform event command. */
4908 	msg.data = data;
4909 	msg.data_len = 8;
4910 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4911 	data[1] = 0x03; /* This is for IPMI 1.0. */
4912 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4913 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4914 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4915 
4916 	/*
4917 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4918 	 * to make the panic events more useful.
4919 	 */
4920 	if (str) {
4921 		data[3] = str[0];
4922 		data[6] = str[1];
4923 		data[7] = str[2];
4924 	}
4925 
4926 	/* Send the event announcing the panic. */
4927 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4928 
4929 	/*
4930 	 * On every interface, dump a bunch of OEM event holding the
4931 	 * string.
4932 	 */
4933 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4934 		return;
4935 
4936 	/*
4937 	 * intf_num is used as an marker to tell if the
4938 	 * interface is valid.  Thus we need a read barrier to
4939 	 * make sure data fetched before checking intf_num
4940 	 * won't be used.
4941 	 */
4942 	smp_rmb();
4943 
4944 	/*
4945 	 * First job here is to figure out where to send the
4946 	 * OEM events.  There's no way in IPMI to send OEM
4947 	 * events using an event send command, so we have to
4948 	 * find the SEL to put them in and stick them in
4949 	 * there.
4950 	 */
4951 
4952 	/* Get capabilities from the get device id. */
4953 	intf->local_sel_device = 0;
4954 	intf->local_event_generator = 0;
4955 	intf->event_receiver = 0;
4956 
4957 	/* Request the device info from the local MC. */
4958 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4959 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4960 	msg.data = NULL;
4961 	msg.data_len = 0;
4962 	intf->null_user_handler = device_id_fetcher;
4963 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4964 
4965 	if (intf->local_event_generator) {
4966 		/* Request the event receiver from the local MC. */
4967 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4968 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4969 		msg.data = NULL;
4970 		msg.data_len = 0;
4971 		intf->null_user_handler = event_receiver_fetcher;
4972 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4973 	}
4974 	intf->null_user_handler = NULL;
4975 
4976 	/*
4977 	 * Validate the event receiver.  The low bit must not
4978 	 * be 1 (it must be a valid IPMB address), it cannot
4979 	 * be zero, and it must not be my address.
4980 	 */
4981 	if (((intf->event_receiver & 1) == 0)
4982 	    && (intf->event_receiver != 0)
4983 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
4984 		/*
4985 		 * The event receiver is valid, send an IPMB
4986 		 * message.
4987 		 */
4988 		ipmb = (struct ipmi_ipmb_addr *) &addr;
4989 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4990 		ipmb->channel = 0; /* FIXME - is this right? */
4991 		ipmb->lun = intf->event_receiver_lun;
4992 		ipmb->slave_addr = intf->event_receiver;
4993 	} else if (intf->local_sel_device) {
4994 		/*
4995 		 * The event receiver was not valid (or was
4996 		 * me), but I am an SEL device, just dump it
4997 		 * in my SEL.
4998 		 */
4999 		si = (struct ipmi_system_interface_addr *) &addr;
5000 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5001 		si->channel = IPMI_BMC_CHANNEL;
5002 		si->lun = 0;
5003 	} else
5004 		return; /* No where to send the event. */
5005 
5006 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5007 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5008 	msg.data = data;
5009 	msg.data_len = 16;
5010 
5011 	j = 0;
5012 	while (*p) {
5013 		int size = strlen(p);
5014 
5015 		if (size > 11)
5016 			size = 11;
5017 		data[0] = 0;
5018 		data[1] = 0;
5019 		data[2] = 0xf0; /* OEM event without timestamp. */
5020 		data[3] = intf->addrinfo[0].address;
5021 		data[4] = j++; /* sequence # */
5022 		/*
5023 		 * Always give 11 bytes, so strncpy will fill
5024 		 * it with zeroes for me.
5025 		 */
5026 		strncpy(data+5, p, 11);
5027 		p += size;
5028 
5029 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5030 	}
5031 }
5032 
5033 static int has_panicked;
5034 
5035 static int panic_event(struct notifier_block *this,
5036 		       unsigned long         event,
5037 		       void                  *ptr)
5038 {
5039 	struct ipmi_smi *intf;
5040 	struct ipmi_user *user;
5041 
5042 	if (has_panicked)
5043 		return NOTIFY_DONE;
5044 	has_panicked = 1;
5045 
5046 	/* For every registered interface, set it to run to completion. */
5047 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5048 		if (!intf->handlers || intf->intf_num == -1)
5049 			/* Interface is not ready. */
5050 			continue;
5051 
5052 		if (!intf->handlers->poll)
5053 			continue;
5054 
5055 		/*
5056 		 * If we were interrupted while locking xmit_msgs_lock or
5057 		 * waiting_rcv_msgs_lock, the corresponding list may be
5058 		 * corrupted.  In this case, drop items on the list for
5059 		 * the safety.
5060 		 */
5061 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5062 			INIT_LIST_HEAD(&intf->xmit_msgs);
5063 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5064 		} else
5065 			spin_unlock(&intf->xmit_msgs_lock);
5066 
5067 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5068 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5069 		else
5070 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5071 
5072 		intf->run_to_completion = 1;
5073 		if (intf->handlers->set_run_to_completion)
5074 			intf->handlers->set_run_to_completion(intf->send_info,
5075 							      1);
5076 
5077 		list_for_each_entry_rcu(user, &intf->users, link) {
5078 			if (user->handler->ipmi_panic_handler)
5079 				user->handler->ipmi_panic_handler(
5080 					user->handler_data);
5081 		}
5082 
5083 		send_panic_events(intf, ptr);
5084 	}
5085 
5086 	return NOTIFY_DONE;
5087 }
5088 
5089 /* Must be called with ipmi_interfaces_mutex held. */
5090 static int ipmi_register_driver(void)
5091 {
5092 	int rv;
5093 
5094 	if (drvregistered)
5095 		return 0;
5096 
5097 	rv = driver_register(&ipmidriver.driver);
5098 	if (rv)
5099 		pr_err("Could not register IPMI driver\n");
5100 	else
5101 		drvregistered = true;
5102 	return rv;
5103 }
5104 
5105 static struct notifier_block panic_block = {
5106 	.notifier_call	= panic_event,
5107 	.next		= NULL,
5108 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5109 };
5110 
5111 static int ipmi_init_msghandler(void)
5112 {
5113 	int rv;
5114 
5115 	mutex_lock(&ipmi_interfaces_mutex);
5116 	rv = ipmi_register_driver();
5117 	if (rv)
5118 		goto out;
5119 	if (initialized)
5120 		goto out;
5121 
5122 	init_srcu_struct(&ipmi_interfaces_srcu);
5123 
5124 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5125 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5126 
5127 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5128 
5129 	initialized = true;
5130 
5131 out:
5132 	mutex_unlock(&ipmi_interfaces_mutex);
5133 	return rv;
5134 }
5135 
5136 static int __init ipmi_init_msghandler_mod(void)
5137 {
5138 	int rv;
5139 
5140 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5141 
5142 	mutex_lock(&ipmi_interfaces_mutex);
5143 	rv = ipmi_register_driver();
5144 	mutex_unlock(&ipmi_interfaces_mutex);
5145 
5146 	return rv;
5147 }
5148 
5149 static void __exit cleanup_ipmi(void)
5150 {
5151 	int count;
5152 
5153 	if (initialized) {
5154 		atomic_notifier_chain_unregister(&panic_notifier_list,
5155 						 &panic_block);
5156 
5157 		/*
5158 		 * This can't be called if any interfaces exist, so no worry
5159 		 * about shutting down the interfaces.
5160 		 */
5161 
5162 		/*
5163 		 * Tell the timer to stop, then wait for it to stop.  This
5164 		 * avoids problems with race conditions removing the timer
5165 		 * here.
5166 		 */
5167 		atomic_inc(&stop_operation);
5168 		del_timer_sync(&ipmi_timer);
5169 
5170 		initialized = false;
5171 
5172 		/* Check for buffer leaks. */
5173 		count = atomic_read(&smi_msg_inuse_count);
5174 		if (count != 0)
5175 			pr_warn("SMI message count %d at exit\n", count);
5176 		count = atomic_read(&recv_msg_inuse_count);
5177 		if (count != 0)
5178 			pr_warn("recv message count %d at exit\n", count);
5179 
5180 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5181 	}
5182 	if (drvregistered)
5183 		driver_unregister(&ipmidriver.driver);
5184 }
5185 module_exit(cleanup_ipmi);
5186 
5187 module_init(ipmi_init_msghandler_mod);
5188 MODULE_LICENSE("GPL");
5189 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5190 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5191 		   " interface.");
5192 MODULE_VERSION(IPMI_DRIVER_VERSION);
5193 MODULE_SOFTDEP("post: ipmi_devintf");
5194