1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <asm/system.h> 37 #include <linux/poll.h> 38 #include <linux/sched.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 49 #define PFX "IPMI message handler: " 50 51 #define IPMI_DRIVER_VERSION "39.2" 52 53 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 54 static int ipmi_init_msghandler(void); 55 56 static int initialized; 57 58 #ifdef CONFIG_PROC_FS 59 static struct proc_dir_entry *proc_ipmi_root; 60 #endif /* CONFIG_PROC_FS */ 61 62 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 63 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 64 65 #define MAX_EVENTS_IN_QUEUE 25 66 67 /* 68 * Don't let a message sit in a queue forever, always time it with at lest 69 * the max message timer. This is in milliseconds. 70 */ 71 #define MAX_MSG_TIMEOUT 60000 72 73 /* 74 * The main "user" data structure. 75 */ 76 struct ipmi_user { 77 struct list_head link; 78 79 /* Set to "0" when the user is destroyed. */ 80 int valid; 81 82 struct kref refcount; 83 84 /* The upper layer that handles receive messages. */ 85 struct ipmi_user_hndl *handler; 86 void *handler_data; 87 88 /* The interface this user is bound to. */ 89 ipmi_smi_t intf; 90 91 /* Does this interface receive IPMI events? */ 92 int gets_events; 93 }; 94 95 struct cmd_rcvr { 96 struct list_head link; 97 98 ipmi_user_t user; 99 unsigned char netfn; 100 unsigned char cmd; 101 unsigned int chans; 102 103 /* 104 * This is used to form a linked lised during mass deletion. 105 * Since this is in an RCU list, we cannot use the link above 106 * or change any data until the RCU period completes. So we 107 * use this next variable during mass deletion so we can have 108 * a list and don't have to wait and restart the search on 109 * every individual deletion of a command. 110 */ 111 struct cmd_rcvr *next; 112 }; 113 114 struct seq_table { 115 unsigned int inuse : 1; 116 unsigned int broadcast : 1; 117 118 unsigned long timeout; 119 unsigned long orig_timeout; 120 unsigned int retries_left; 121 122 /* 123 * To verify on an incoming send message response that this is 124 * the message that the response is for, we keep a sequence id 125 * and increment it every time we send a message. 126 */ 127 long seqid; 128 129 /* 130 * This is held so we can properly respond to the message on a 131 * timeout, and it is used to hold the temporary data for 132 * retransmission, too. 133 */ 134 struct ipmi_recv_msg *recv_msg; 135 }; 136 137 /* 138 * Store the information in a msgid (long) to allow us to find a 139 * sequence table entry from the msgid. 140 */ 141 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff)) 142 143 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 144 do { \ 145 seq = ((msgid >> 26) & 0x3f); \ 146 seqid = (msgid & 0x3fffff); \ 147 } while (0) 148 149 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff) 150 151 struct ipmi_channel { 152 unsigned char medium; 153 unsigned char protocol; 154 155 /* 156 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 157 * but may be changed by the user. 158 */ 159 unsigned char address; 160 161 /* 162 * My LUN. This should generally stay the SMS LUN, but just in 163 * case... 164 */ 165 unsigned char lun; 166 }; 167 168 #ifdef CONFIG_PROC_FS 169 struct ipmi_proc_entry { 170 char *name; 171 struct ipmi_proc_entry *next; 172 }; 173 #endif 174 175 struct bmc_device { 176 struct platform_device *dev; 177 struct ipmi_device_id id; 178 unsigned char guid[16]; 179 int guid_set; 180 181 struct kref refcount; 182 183 /* bmc device attributes */ 184 struct device_attribute device_id_attr; 185 struct device_attribute provides_dev_sdrs_attr; 186 struct device_attribute revision_attr; 187 struct device_attribute firmware_rev_attr; 188 struct device_attribute version_attr; 189 struct device_attribute add_dev_support_attr; 190 struct device_attribute manufacturer_id_attr; 191 struct device_attribute product_id_attr; 192 struct device_attribute guid_attr; 193 struct device_attribute aux_firmware_rev_attr; 194 }; 195 196 /* 197 * Various statistics for IPMI, these index stats[] in the ipmi_smi 198 * structure. 199 */ 200 enum ipmi_stat_indexes { 201 /* Commands we got from the user that were invalid. */ 202 IPMI_STAT_sent_invalid_commands = 0, 203 204 /* Commands we sent to the MC. */ 205 IPMI_STAT_sent_local_commands, 206 207 /* Responses from the MC that were delivered to a user. */ 208 IPMI_STAT_handled_local_responses, 209 210 /* Responses from the MC that were not delivered to a user. */ 211 IPMI_STAT_unhandled_local_responses, 212 213 /* Commands we sent out to the IPMB bus. */ 214 IPMI_STAT_sent_ipmb_commands, 215 216 /* Commands sent on the IPMB that had errors on the SEND CMD */ 217 IPMI_STAT_sent_ipmb_command_errs, 218 219 /* Each retransmit increments this count. */ 220 IPMI_STAT_retransmitted_ipmb_commands, 221 222 /* 223 * When a message times out (runs out of retransmits) this is 224 * incremented. 225 */ 226 IPMI_STAT_timed_out_ipmb_commands, 227 228 /* 229 * This is like above, but for broadcasts. Broadcasts are 230 * *not* included in the above count (they are expected to 231 * time out). 232 */ 233 IPMI_STAT_timed_out_ipmb_broadcasts, 234 235 /* Responses I have sent to the IPMB bus. */ 236 IPMI_STAT_sent_ipmb_responses, 237 238 /* The response was delivered to the user. */ 239 IPMI_STAT_handled_ipmb_responses, 240 241 /* The response had invalid data in it. */ 242 IPMI_STAT_invalid_ipmb_responses, 243 244 /* The response didn't have anyone waiting for it. */ 245 IPMI_STAT_unhandled_ipmb_responses, 246 247 /* Commands we sent out to the IPMB bus. */ 248 IPMI_STAT_sent_lan_commands, 249 250 /* Commands sent on the IPMB that had errors on the SEND CMD */ 251 IPMI_STAT_sent_lan_command_errs, 252 253 /* Each retransmit increments this count. */ 254 IPMI_STAT_retransmitted_lan_commands, 255 256 /* 257 * When a message times out (runs out of retransmits) this is 258 * incremented. 259 */ 260 IPMI_STAT_timed_out_lan_commands, 261 262 /* Responses I have sent to the IPMB bus. */ 263 IPMI_STAT_sent_lan_responses, 264 265 /* The response was delivered to the user. */ 266 IPMI_STAT_handled_lan_responses, 267 268 /* The response had invalid data in it. */ 269 IPMI_STAT_invalid_lan_responses, 270 271 /* The response didn't have anyone waiting for it. */ 272 IPMI_STAT_unhandled_lan_responses, 273 274 /* The command was delivered to the user. */ 275 IPMI_STAT_handled_commands, 276 277 /* The command had invalid data in it. */ 278 IPMI_STAT_invalid_commands, 279 280 /* The command didn't have anyone waiting for it. */ 281 IPMI_STAT_unhandled_commands, 282 283 /* Invalid data in an event. */ 284 IPMI_STAT_invalid_events, 285 286 /* Events that were received with the proper format. */ 287 IPMI_STAT_events, 288 289 /* Retransmissions on IPMB that failed. */ 290 IPMI_STAT_dropped_rexmit_ipmb_commands, 291 292 /* Retransmissions on LAN that failed. */ 293 IPMI_STAT_dropped_rexmit_lan_commands, 294 295 /* This *must* remain last, add new values above this. */ 296 IPMI_NUM_STATS 297 }; 298 299 300 #define IPMI_IPMB_NUM_SEQ 64 301 #define IPMI_MAX_CHANNELS 16 302 struct ipmi_smi { 303 /* What interface number are we? */ 304 int intf_num; 305 306 struct kref refcount; 307 308 /* Used for a list of interfaces. */ 309 struct list_head link; 310 311 /* 312 * The list of upper layers that are using me. seq_lock 313 * protects this. 314 */ 315 struct list_head users; 316 317 /* Information to supply to users. */ 318 unsigned char ipmi_version_major; 319 unsigned char ipmi_version_minor; 320 321 /* Used for wake ups at startup. */ 322 wait_queue_head_t waitq; 323 324 struct bmc_device *bmc; 325 char *my_dev_name; 326 char *sysfs_name; 327 328 /* 329 * This is the lower-layer's sender routine. Note that you 330 * must either be holding the ipmi_interfaces_mutex or be in 331 * an umpreemptible region to use this. You must fetch the 332 * value into a local variable and make sure it is not NULL. 333 */ 334 struct ipmi_smi_handlers *handlers; 335 void *send_info; 336 337 #ifdef CONFIG_PROC_FS 338 /* A list of proc entries for this interface. */ 339 struct mutex proc_entry_lock; 340 struct ipmi_proc_entry *proc_entries; 341 #endif 342 343 /* Driver-model device for the system interface. */ 344 struct device *si_dev; 345 346 /* 347 * A table of sequence numbers for this interface. We use the 348 * sequence numbers for IPMB messages that go out of the 349 * interface to match them up with their responses. A routine 350 * is called periodically to time the items in this list. 351 */ 352 spinlock_t seq_lock; 353 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 354 int curr_seq; 355 356 /* 357 * Messages that were delayed for some reason (out of memory, 358 * for instance), will go in here to be processed later in a 359 * periodic timer interrupt. 360 */ 361 spinlock_t waiting_msgs_lock; 362 struct list_head waiting_msgs; 363 364 /* 365 * The list of command receivers that are registered for commands 366 * on this interface. 367 */ 368 struct mutex cmd_rcvrs_mutex; 369 struct list_head cmd_rcvrs; 370 371 /* 372 * Events that were queues because no one was there to receive 373 * them. 374 */ 375 spinlock_t events_lock; /* For dealing with event stuff. */ 376 struct list_head waiting_events; 377 unsigned int waiting_events_count; /* How many events in queue? */ 378 char delivering_events; 379 char event_msg_printed; 380 381 /* 382 * The event receiver for my BMC, only really used at panic 383 * shutdown as a place to store this. 384 */ 385 unsigned char event_receiver; 386 unsigned char event_receiver_lun; 387 unsigned char local_sel_device; 388 unsigned char local_event_generator; 389 390 /* For handling of maintenance mode. */ 391 int maintenance_mode; 392 int maintenance_mode_enable; 393 int auto_maintenance_timeout; 394 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 395 396 /* 397 * A cheap hack, if this is non-null and a message to an 398 * interface comes in with a NULL user, call this routine with 399 * it. Note that the message will still be freed by the 400 * caller. This only works on the system interface. 401 */ 402 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 403 404 /* 405 * When we are scanning the channels for an SMI, this will 406 * tell which channel we are scanning. 407 */ 408 int curr_channel; 409 410 /* Channel information */ 411 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 412 413 /* Proc FS stuff. */ 414 struct proc_dir_entry *proc_dir; 415 char proc_dir_name[10]; 416 417 atomic_t stats[IPMI_NUM_STATS]; 418 419 /* 420 * run_to_completion duplicate of smb_info, smi_info 421 * and ipmi_serial_info structures. Used to decrease numbers of 422 * parameters passed by "low" level IPMI code. 423 */ 424 int run_to_completion; 425 }; 426 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 427 428 /** 429 * The driver model view of the IPMI messaging driver. 430 */ 431 static struct platform_driver ipmidriver = { 432 .driver = { 433 .name = "ipmi", 434 .bus = &platform_bus_type 435 } 436 }; 437 static DEFINE_MUTEX(ipmidriver_mutex); 438 439 static LIST_HEAD(ipmi_interfaces); 440 static DEFINE_MUTEX(ipmi_interfaces_mutex); 441 442 /* 443 * List of watchers that want to know when smi's are added and deleted. 444 */ 445 static LIST_HEAD(smi_watchers); 446 static DEFINE_MUTEX(smi_watchers_mutex); 447 448 449 #define ipmi_inc_stat(intf, stat) \ 450 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 451 #define ipmi_get_stat(intf, stat) \ 452 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 453 454 static int is_lan_addr(struct ipmi_addr *addr) 455 { 456 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 457 } 458 459 static int is_ipmb_addr(struct ipmi_addr *addr) 460 { 461 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 462 } 463 464 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 465 { 466 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 467 } 468 469 static void free_recv_msg_list(struct list_head *q) 470 { 471 struct ipmi_recv_msg *msg, *msg2; 472 473 list_for_each_entry_safe(msg, msg2, q, link) { 474 list_del(&msg->link); 475 ipmi_free_recv_msg(msg); 476 } 477 } 478 479 static void free_smi_msg_list(struct list_head *q) 480 { 481 struct ipmi_smi_msg *msg, *msg2; 482 483 list_for_each_entry_safe(msg, msg2, q, link) { 484 list_del(&msg->link); 485 ipmi_free_smi_msg(msg); 486 } 487 } 488 489 static void clean_up_interface_data(ipmi_smi_t intf) 490 { 491 int i; 492 struct cmd_rcvr *rcvr, *rcvr2; 493 struct list_head list; 494 495 free_smi_msg_list(&intf->waiting_msgs); 496 free_recv_msg_list(&intf->waiting_events); 497 498 /* 499 * Wholesale remove all the entries from the list in the 500 * interface and wait for RCU to know that none are in use. 501 */ 502 mutex_lock(&intf->cmd_rcvrs_mutex); 503 INIT_LIST_HEAD(&list); 504 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 505 mutex_unlock(&intf->cmd_rcvrs_mutex); 506 507 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 508 kfree(rcvr); 509 510 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 511 if ((intf->seq_table[i].inuse) 512 && (intf->seq_table[i].recv_msg)) 513 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 514 } 515 } 516 517 static void intf_free(struct kref *ref) 518 { 519 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 520 521 clean_up_interface_data(intf); 522 kfree(intf); 523 } 524 525 struct watcher_entry { 526 int intf_num; 527 ipmi_smi_t intf; 528 struct list_head link; 529 }; 530 531 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 532 { 533 ipmi_smi_t intf; 534 LIST_HEAD(to_deliver); 535 struct watcher_entry *e, *e2; 536 537 mutex_lock(&smi_watchers_mutex); 538 539 mutex_lock(&ipmi_interfaces_mutex); 540 541 /* Build a list of things to deliver. */ 542 list_for_each_entry(intf, &ipmi_interfaces, link) { 543 if (intf->intf_num == -1) 544 continue; 545 e = kmalloc(sizeof(*e), GFP_KERNEL); 546 if (!e) 547 goto out_err; 548 kref_get(&intf->refcount); 549 e->intf = intf; 550 e->intf_num = intf->intf_num; 551 list_add_tail(&e->link, &to_deliver); 552 } 553 554 /* We will succeed, so add it to the list. */ 555 list_add(&watcher->link, &smi_watchers); 556 557 mutex_unlock(&ipmi_interfaces_mutex); 558 559 list_for_each_entry_safe(e, e2, &to_deliver, link) { 560 list_del(&e->link); 561 watcher->new_smi(e->intf_num, e->intf->si_dev); 562 kref_put(&e->intf->refcount, intf_free); 563 kfree(e); 564 } 565 566 mutex_unlock(&smi_watchers_mutex); 567 568 return 0; 569 570 out_err: 571 mutex_unlock(&ipmi_interfaces_mutex); 572 mutex_unlock(&smi_watchers_mutex); 573 list_for_each_entry_safe(e, e2, &to_deliver, link) { 574 list_del(&e->link); 575 kref_put(&e->intf->refcount, intf_free); 576 kfree(e); 577 } 578 return -ENOMEM; 579 } 580 EXPORT_SYMBOL(ipmi_smi_watcher_register); 581 582 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 583 { 584 mutex_lock(&smi_watchers_mutex); 585 list_del(&(watcher->link)); 586 mutex_unlock(&smi_watchers_mutex); 587 return 0; 588 } 589 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 590 591 /* 592 * Must be called with smi_watchers_mutex held. 593 */ 594 static void 595 call_smi_watchers(int i, struct device *dev) 596 { 597 struct ipmi_smi_watcher *w; 598 599 list_for_each_entry(w, &smi_watchers, link) { 600 if (try_module_get(w->owner)) { 601 w->new_smi(i, dev); 602 module_put(w->owner); 603 } 604 } 605 } 606 607 static int 608 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 609 { 610 if (addr1->addr_type != addr2->addr_type) 611 return 0; 612 613 if (addr1->channel != addr2->channel) 614 return 0; 615 616 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 617 struct ipmi_system_interface_addr *smi_addr1 618 = (struct ipmi_system_interface_addr *) addr1; 619 struct ipmi_system_interface_addr *smi_addr2 620 = (struct ipmi_system_interface_addr *) addr2; 621 return (smi_addr1->lun == smi_addr2->lun); 622 } 623 624 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 625 struct ipmi_ipmb_addr *ipmb_addr1 626 = (struct ipmi_ipmb_addr *) addr1; 627 struct ipmi_ipmb_addr *ipmb_addr2 628 = (struct ipmi_ipmb_addr *) addr2; 629 630 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 631 && (ipmb_addr1->lun == ipmb_addr2->lun)); 632 } 633 634 if (is_lan_addr(addr1)) { 635 struct ipmi_lan_addr *lan_addr1 636 = (struct ipmi_lan_addr *) addr1; 637 struct ipmi_lan_addr *lan_addr2 638 = (struct ipmi_lan_addr *) addr2; 639 640 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 641 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 642 && (lan_addr1->session_handle 643 == lan_addr2->session_handle) 644 && (lan_addr1->lun == lan_addr2->lun)); 645 } 646 647 return 1; 648 } 649 650 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 651 { 652 if (len < sizeof(struct ipmi_system_interface_addr)) 653 return -EINVAL; 654 655 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 656 if (addr->channel != IPMI_BMC_CHANNEL) 657 return -EINVAL; 658 return 0; 659 } 660 661 if ((addr->channel == IPMI_BMC_CHANNEL) 662 || (addr->channel >= IPMI_MAX_CHANNELS) 663 || (addr->channel < 0)) 664 return -EINVAL; 665 666 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 667 if (len < sizeof(struct ipmi_ipmb_addr)) 668 return -EINVAL; 669 return 0; 670 } 671 672 if (is_lan_addr(addr)) { 673 if (len < sizeof(struct ipmi_lan_addr)) 674 return -EINVAL; 675 return 0; 676 } 677 678 return -EINVAL; 679 } 680 EXPORT_SYMBOL(ipmi_validate_addr); 681 682 unsigned int ipmi_addr_length(int addr_type) 683 { 684 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 685 return sizeof(struct ipmi_system_interface_addr); 686 687 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 688 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 689 return sizeof(struct ipmi_ipmb_addr); 690 691 if (addr_type == IPMI_LAN_ADDR_TYPE) 692 return sizeof(struct ipmi_lan_addr); 693 694 return 0; 695 } 696 EXPORT_SYMBOL(ipmi_addr_length); 697 698 static void deliver_response(struct ipmi_recv_msg *msg) 699 { 700 if (!msg->user) { 701 ipmi_smi_t intf = msg->user_msg_data; 702 703 /* Special handling for NULL users. */ 704 if (intf->null_user_handler) { 705 intf->null_user_handler(intf, msg); 706 ipmi_inc_stat(intf, handled_local_responses); 707 } else { 708 /* No handler, so give up. */ 709 ipmi_inc_stat(intf, unhandled_local_responses); 710 } 711 ipmi_free_recv_msg(msg); 712 } else { 713 ipmi_user_t user = msg->user; 714 user->handler->ipmi_recv_hndl(msg, user->handler_data); 715 } 716 } 717 718 static void 719 deliver_err_response(struct ipmi_recv_msg *msg, int err) 720 { 721 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 722 msg->msg_data[0] = err; 723 msg->msg.netfn |= 1; /* Convert to a response. */ 724 msg->msg.data_len = 1; 725 msg->msg.data = msg->msg_data; 726 deliver_response(msg); 727 } 728 729 /* 730 * Find the next sequence number not being used and add the given 731 * message with the given timeout to the sequence table. This must be 732 * called with the interface's seq_lock held. 733 */ 734 static int intf_next_seq(ipmi_smi_t intf, 735 struct ipmi_recv_msg *recv_msg, 736 unsigned long timeout, 737 int retries, 738 int broadcast, 739 unsigned char *seq, 740 long *seqid) 741 { 742 int rv = 0; 743 unsigned int i; 744 745 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 746 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 747 if (!intf->seq_table[i].inuse) 748 break; 749 } 750 751 if (!intf->seq_table[i].inuse) { 752 intf->seq_table[i].recv_msg = recv_msg; 753 754 /* 755 * Start with the maximum timeout, when the send response 756 * comes in we will start the real timer. 757 */ 758 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 759 intf->seq_table[i].orig_timeout = timeout; 760 intf->seq_table[i].retries_left = retries; 761 intf->seq_table[i].broadcast = broadcast; 762 intf->seq_table[i].inuse = 1; 763 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 764 *seq = i; 765 *seqid = intf->seq_table[i].seqid; 766 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 767 } else { 768 rv = -EAGAIN; 769 } 770 771 return rv; 772 } 773 774 /* 775 * Return the receive message for the given sequence number and 776 * release the sequence number so it can be reused. Some other data 777 * is passed in to be sure the message matches up correctly (to help 778 * guard against message coming in after their timeout and the 779 * sequence number being reused). 780 */ 781 static int intf_find_seq(ipmi_smi_t intf, 782 unsigned char seq, 783 short channel, 784 unsigned char cmd, 785 unsigned char netfn, 786 struct ipmi_addr *addr, 787 struct ipmi_recv_msg **recv_msg) 788 { 789 int rv = -ENODEV; 790 unsigned long flags; 791 792 if (seq >= IPMI_IPMB_NUM_SEQ) 793 return -EINVAL; 794 795 spin_lock_irqsave(&(intf->seq_lock), flags); 796 if (intf->seq_table[seq].inuse) { 797 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 798 799 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 800 && (msg->msg.netfn == netfn) 801 && (ipmi_addr_equal(addr, &(msg->addr)))) { 802 *recv_msg = msg; 803 intf->seq_table[seq].inuse = 0; 804 rv = 0; 805 } 806 } 807 spin_unlock_irqrestore(&(intf->seq_lock), flags); 808 809 return rv; 810 } 811 812 813 /* Start the timer for a specific sequence table entry. */ 814 static int intf_start_seq_timer(ipmi_smi_t intf, 815 long msgid) 816 { 817 int rv = -ENODEV; 818 unsigned long flags; 819 unsigned char seq; 820 unsigned long seqid; 821 822 823 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 824 825 spin_lock_irqsave(&(intf->seq_lock), flags); 826 /* 827 * We do this verification because the user can be deleted 828 * while a message is outstanding. 829 */ 830 if ((intf->seq_table[seq].inuse) 831 && (intf->seq_table[seq].seqid == seqid)) { 832 struct seq_table *ent = &(intf->seq_table[seq]); 833 ent->timeout = ent->orig_timeout; 834 rv = 0; 835 } 836 spin_unlock_irqrestore(&(intf->seq_lock), flags); 837 838 return rv; 839 } 840 841 /* Got an error for the send message for a specific sequence number. */ 842 static int intf_err_seq(ipmi_smi_t intf, 843 long msgid, 844 unsigned int err) 845 { 846 int rv = -ENODEV; 847 unsigned long flags; 848 unsigned char seq; 849 unsigned long seqid; 850 struct ipmi_recv_msg *msg = NULL; 851 852 853 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 854 855 spin_lock_irqsave(&(intf->seq_lock), flags); 856 /* 857 * We do this verification because the user can be deleted 858 * while a message is outstanding. 859 */ 860 if ((intf->seq_table[seq].inuse) 861 && (intf->seq_table[seq].seqid == seqid)) { 862 struct seq_table *ent = &(intf->seq_table[seq]); 863 864 ent->inuse = 0; 865 msg = ent->recv_msg; 866 rv = 0; 867 } 868 spin_unlock_irqrestore(&(intf->seq_lock), flags); 869 870 if (msg) 871 deliver_err_response(msg, err); 872 873 return rv; 874 } 875 876 877 int ipmi_create_user(unsigned int if_num, 878 struct ipmi_user_hndl *handler, 879 void *handler_data, 880 ipmi_user_t *user) 881 { 882 unsigned long flags; 883 ipmi_user_t new_user; 884 int rv = 0; 885 ipmi_smi_t intf; 886 887 /* 888 * There is no module usecount here, because it's not 889 * required. Since this can only be used by and called from 890 * other modules, they will implicitly use this module, and 891 * thus this can't be removed unless the other modules are 892 * removed. 893 */ 894 895 if (handler == NULL) 896 return -EINVAL; 897 898 /* 899 * Make sure the driver is actually initialized, this handles 900 * problems with initialization order. 901 */ 902 if (!initialized) { 903 rv = ipmi_init_msghandler(); 904 if (rv) 905 return rv; 906 907 /* 908 * The init code doesn't return an error if it was turned 909 * off, but it won't initialize. Check that. 910 */ 911 if (!initialized) 912 return -ENODEV; 913 } 914 915 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 916 if (!new_user) 917 return -ENOMEM; 918 919 mutex_lock(&ipmi_interfaces_mutex); 920 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 921 if (intf->intf_num == if_num) 922 goto found; 923 } 924 /* Not found, return an error */ 925 rv = -EINVAL; 926 goto out_kfree; 927 928 found: 929 /* Note that each existing user holds a refcount to the interface. */ 930 kref_get(&intf->refcount); 931 932 kref_init(&new_user->refcount); 933 new_user->handler = handler; 934 new_user->handler_data = handler_data; 935 new_user->intf = intf; 936 new_user->gets_events = 0; 937 938 if (!try_module_get(intf->handlers->owner)) { 939 rv = -ENODEV; 940 goto out_kref; 941 } 942 943 if (intf->handlers->inc_usecount) { 944 rv = intf->handlers->inc_usecount(intf->send_info); 945 if (rv) { 946 module_put(intf->handlers->owner); 947 goto out_kref; 948 } 949 } 950 951 /* 952 * Hold the lock so intf->handlers is guaranteed to be good 953 * until now 954 */ 955 mutex_unlock(&ipmi_interfaces_mutex); 956 957 new_user->valid = 1; 958 spin_lock_irqsave(&intf->seq_lock, flags); 959 list_add_rcu(&new_user->link, &intf->users); 960 spin_unlock_irqrestore(&intf->seq_lock, flags); 961 *user = new_user; 962 return 0; 963 964 out_kref: 965 kref_put(&intf->refcount, intf_free); 966 out_kfree: 967 mutex_unlock(&ipmi_interfaces_mutex); 968 kfree(new_user); 969 return rv; 970 } 971 EXPORT_SYMBOL(ipmi_create_user); 972 973 static void free_user(struct kref *ref) 974 { 975 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 976 kfree(user); 977 } 978 979 int ipmi_destroy_user(ipmi_user_t user) 980 { 981 ipmi_smi_t intf = user->intf; 982 int i; 983 unsigned long flags; 984 struct cmd_rcvr *rcvr; 985 struct cmd_rcvr *rcvrs = NULL; 986 987 user->valid = 0; 988 989 /* Remove the user from the interface's sequence table. */ 990 spin_lock_irqsave(&intf->seq_lock, flags); 991 list_del_rcu(&user->link); 992 993 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 994 if (intf->seq_table[i].inuse 995 && (intf->seq_table[i].recv_msg->user == user)) { 996 intf->seq_table[i].inuse = 0; 997 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 998 } 999 } 1000 spin_unlock_irqrestore(&intf->seq_lock, flags); 1001 1002 /* 1003 * Remove the user from the command receiver's table. First 1004 * we build a list of everything (not using the standard link, 1005 * since other things may be using it till we do 1006 * synchronize_rcu()) then free everything in that list. 1007 */ 1008 mutex_lock(&intf->cmd_rcvrs_mutex); 1009 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1010 if (rcvr->user == user) { 1011 list_del_rcu(&rcvr->link); 1012 rcvr->next = rcvrs; 1013 rcvrs = rcvr; 1014 } 1015 } 1016 mutex_unlock(&intf->cmd_rcvrs_mutex); 1017 synchronize_rcu(); 1018 while (rcvrs) { 1019 rcvr = rcvrs; 1020 rcvrs = rcvr->next; 1021 kfree(rcvr); 1022 } 1023 1024 mutex_lock(&ipmi_interfaces_mutex); 1025 if (intf->handlers) { 1026 module_put(intf->handlers->owner); 1027 if (intf->handlers->dec_usecount) 1028 intf->handlers->dec_usecount(intf->send_info); 1029 } 1030 mutex_unlock(&ipmi_interfaces_mutex); 1031 1032 kref_put(&intf->refcount, intf_free); 1033 1034 kref_put(&user->refcount, free_user); 1035 1036 return 0; 1037 } 1038 EXPORT_SYMBOL(ipmi_destroy_user); 1039 1040 void ipmi_get_version(ipmi_user_t user, 1041 unsigned char *major, 1042 unsigned char *minor) 1043 { 1044 *major = user->intf->ipmi_version_major; 1045 *minor = user->intf->ipmi_version_minor; 1046 } 1047 EXPORT_SYMBOL(ipmi_get_version); 1048 1049 int ipmi_set_my_address(ipmi_user_t user, 1050 unsigned int channel, 1051 unsigned char address) 1052 { 1053 if (channel >= IPMI_MAX_CHANNELS) 1054 return -EINVAL; 1055 user->intf->channels[channel].address = address; 1056 return 0; 1057 } 1058 EXPORT_SYMBOL(ipmi_set_my_address); 1059 1060 int ipmi_get_my_address(ipmi_user_t user, 1061 unsigned int channel, 1062 unsigned char *address) 1063 { 1064 if (channel >= IPMI_MAX_CHANNELS) 1065 return -EINVAL; 1066 *address = user->intf->channels[channel].address; 1067 return 0; 1068 } 1069 EXPORT_SYMBOL(ipmi_get_my_address); 1070 1071 int ipmi_set_my_LUN(ipmi_user_t user, 1072 unsigned int channel, 1073 unsigned char LUN) 1074 { 1075 if (channel >= IPMI_MAX_CHANNELS) 1076 return -EINVAL; 1077 user->intf->channels[channel].lun = LUN & 0x3; 1078 return 0; 1079 } 1080 EXPORT_SYMBOL(ipmi_set_my_LUN); 1081 1082 int ipmi_get_my_LUN(ipmi_user_t user, 1083 unsigned int channel, 1084 unsigned char *address) 1085 { 1086 if (channel >= IPMI_MAX_CHANNELS) 1087 return -EINVAL; 1088 *address = user->intf->channels[channel].lun; 1089 return 0; 1090 } 1091 EXPORT_SYMBOL(ipmi_get_my_LUN); 1092 1093 int ipmi_get_maintenance_mode(ipmi_user_t user) 1094 { 1095 int mode; 1096 unsigned long flags; 1097 1098 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1099 mode = user->intf->maintenance_mode; 1100 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1101 1102 return mode; 1103 } 1104 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1105 1106 static void maintenance_mode_update(ipmi_smi_t intf) 1107 { 1108 if (intf->handlers->set_maintenance_mode) 1109 intf->handlers->set_maintenance_mode( 1110 intf->send_info, intf->maintenance_mode_enable); 1111 } 1112 1113 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1114 { 1115 int rv = 0; 1116 unsigned long flags; 1117 ipmi_smi_t intf = user->intf; 1118 1119 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1120 if (intf->maintenance_mode != mode) { 1121 switch (mode) { 1122 case IPMI_MAINTENANCE_MODE_AUTO: 1123 intf->maintenance_mode = mode; 1124 intf->maintenance_mode_enable 1125 = (intf->auto_maintenance_timeout > 0); 1126 break; 1127 1128 case IPMI_MAINTENANCE_MODE_OFF: 1129 intf->maintenance_mode = mode; 1130 intf->maintenance_mode_enable = 0; 1131 break; 1132 1133 case IPMI_MAINTENANCE_MODE_ON: 1134 intf->maintenance_mode = mode; 1135 intf->maintenance_mode_enable = 1; 1136 break; 1137 1138 default: 1139 rv = -EINVAL; 1140 goto out_unlock; 1141 } 1142 1143 maintenance_mode_update(intf); 1144 } 1145 out_unlock: 1146 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1147 1148 return rv; 1149 } 1150 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1151 1152 int ipmi_set_gets_events(ipmi_user_t user, int val) 1153 { 1154 unsigned long flags; 1155 ipmi_smi_t intf = user->intf; 1156 struct ipmi_recv_msg *msg, *msg2; 1157 struct list_head msgs; 1158 1159 INIT_LIST_HEAD(&msgs); 1160 1161 spin_lock_irqsave(&intf->events_lock, flags); 1162 user->gets_events = val; 1163 1164 if (intf->delivering_events) 1165 /* 1166 * Another thread is delivering events for this, so 1167 * let it handle any new events. 1168 */ 1169 goto out; 1170 1171 /* Deliver any queued events. */ 1172 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1173 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1174 list_move_tail(&msg->link, &msgs); 1175 intf->waiting_events_count = 0; 1176 if (intf->event_msg_printed) { 1177 printk(KERN_WARNING PFX "Event queue no longer" 1178 " full\n"); 1179 intf->event_msg_printed = 0; 1180 } 1181 1182 intf->delivering_events = 1; 1183 spin_unlock_irqrestore(&intf->events_lock, flags); 1184 1185 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1186 msg->user = user; 1187 kref_get(&user->refcount); 1188 deliver_response(msg); 1189 } 1190 1191 spin_lock_irqsave(&intf->events_lock, flags); 1192 intf->delivering_events = 0; 1193 } 1194 1195 out: 1196 spin_unlock_irqrestore(&intf->events_lock, flags); 1197 1198 return 0; 1199 } 1200 EXPORT_SYMBOL(ipmi_set_gets_events); 1201 1202 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1203 unsigned char netfn, 1204 unsigned char cmd, 1205 unsigned char chan) 1206 { 1207 struct cmd_rcvr *rcvr; 1208 1209 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1210 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1211 && (rcvr->chans & (1 << chan))) 1212 return rcvr; 1213 } 1214 return NULL; 1215 } 1216 1217 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1218 unsigned char netfn, 1219 unsigned char cmd, 1220 unsigned int chans) 1221 { 1222 struct cmd_rcvr *rcvr; 1223 1224 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1225 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1226 && (rcvr->chans & chans)) 1227 return 0; 1228 } 1229 return 1; 1230 } 1231 1232 int ipmi_register_for_cmd(ipmi_user_t user, 1233 unsigned char netfn, 1234 unsigned char cmd, 1235 unsigned int chans) 1236 { 1237 ipmi_smi_t intf = user->intf; 1238 struct cmd_rcvr *rcvr; 1239 int rv = 0; 1240 1241 1242 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1243 if (!rcvr) 1244 return -ENOMEM; 1245 rcvr->cmd = cmd; 1246 rcvr->netfn = netfn; 1247 rcvr->chans = chans; 1248 rcvr->user = user; 1249 1250 mutex_lock(&intf->cmd_rcvrs_mutex); 1251 /* Make sure the command/netfn is not already registered. */ 1252 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1253 rv = -EBUSY; 1254 goto out_unlock; 1255 } 1256 1257 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1258 1259 out_unlock: 1260 mutex_unlock(&intf->cmd_rcvrs_mutex); 1261 if (rv) 1262 kfree(rcvr); 1263 1264 return rv; 1265 } 1266 EXPORT_SYMBOL(ipmi_register_for_cmd); 1267 1268 int ipmi_unregister_for_cmd(ipmi_user_t user, 1269 unsigned char netfn, 1270 unsigned char cmd, 1271 unsigned int chans) 1272 { 1273 ipmi_smi_t intf = user->intf; 1274 struct cmd_rcvr *rcvr; 1275 struct cmd_rcvr *rcvrs = NULL; 1276 int i, rv = -ENOENT; 1277 1278 mutex_lock(&intf->cmd_rcvrs_mutex); 1279 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1280 if (((1 << i) & chans) == 0) 1281 continue; 1282 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1283 if (rcvr == NULL) 1284 continue; 1285 if (rcvr->user == user) { 1286 rv = 0; 1287 rcvr->chans &= ~chans; 1288 if (rcvr->chans == 0) { 1289 list_del_rcu(&rcvr->link); 1290 rcvr->next = rcvrs; 1291 rcvrs = rcvr; 1292 } 1293 } 1294 } 1295 mutex_unlock(&intf->cmd_rcvrs_mutex); 1296 synchronize_rcu(); 1297 while (rcvrs) { 1298 rcvr = rcvrs; 1299 rcvrs = rcvr->next; 1300 kfree(rcvr); 1301 } 1302 return rv; 1303 } 1304 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1305 1306 static unsigned char 1307 ipmb_checksum(unsigned char *data, int size) 1308 { 1309 unsigned char csum = 0; 1310 1311 for (; size > 0; size--, data++) 1312 csum += *data; 1313 1314 return -csum; 1315 } 1316 1317 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1318 struct kernel_ipmi_msg *msg, 1319 struct ipmi_ipmb_addr *ipmb_addr, 1320 long msgid, 1321 unsigned char ipmb_seq, 1322 int broadcast, 1323 unsigned char source_address, 1324 unsigned char source_lun) 1325 { 1326 int i = broadcast; 1327 1328 /* Format the IPMB header data. */ 1329 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1330 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1331 smi_msg->data[2] = ipmb_addr->channel; 1332 if (broadcast) 1333 smi_msg->data[3] = 0; 1334 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1335 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1336 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1337 smi_msg->data[i+6] = source_address; 1338 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1339 smi_msg->data[i+8] = msg->cmd; 1340 1341 /* Now tack on the data to the message. */ 1342 if (msg->data_len > 0) 1343 memcpy(&(smi_msg->data[i+9]), msg->data, 1344 msg->data_len); 1345 smi_msg->data_size = msg->data_len + 9; 1346 1347 /* Now calculate the checksum and tack it on. */ 1348 smi_msg->data[i+smi_msg->data_size] 1349 = ipmb_checksum(&(smi_msg->data[i+6]), 1350 smi_msg->data_size-6); 1351 1352 /* 1353 * Add on the checksum size and the offset from the 1354 * broadcast. 1355 */ 1356 smi_msg->data_size += 1 + i; 1357 1358 smi_msg->msgid = msgid; 1359 } 1360 1361 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1362 struct kernel_ipmi_msg *msg, 1363 struct ipmi_lan_addr *lan_addr, 1364 long msgid, 1365 unsigned char ipmb_seq, 1366 unsigned char source_lun) 1367 { 1368 /* Format the IPMB header data. */ 1369 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1370 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1371 smi_msg->data[2] = lan_addr->channel; 1372 smi_msg->data[3] = lan_addr->session_handle; 1373 smi_msg->data[4] = lan_addr->remote_SWID; 1374 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1375 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1376 smi_msg->data[7] = lan_addr->local_SWID; 1377 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1378 smi_msg->data[9] = msg->cmd; 1379 1380 /* Now tack on the data to the message. */ 1381 if (msg->data_len > 0) 1382 memcpy(&(smi_msg->data[10]), msg->data, 1383 msg->data_len); 1384 smi_msg->data_size = msg->data_len + 10; 1385 1386 /* Now calculate the checksum and tack it on. */ 1387 smi_msg->data[smi_msg->data_size] 1388 = ipmb_checksum(&(smi_msg->data[7]), 1389 smi_msg->data_size-7); 1390 1391 /* 1392 * Add on the checksum size and the offset from the 1393 * broadcast. 1394 */ 1395 smi_msg->data_size += 1; 1396 1397 smi_msg->msgid = msgid; 1398 } 1399 1400 /* 1401 * Separate from ipmi_request so that the user does not have to be 1402 * supplied in certain circumstances (mainly at panic time). If 1403 * messages are supplied, they will be freed, even if an error 1404 * occurs. 1405 */ 1406 static int i_ipmi_request(ipmi_user_t user, 1407 ipmi_smi_t intf, 1408 struct ipmi_addr *addr, 1409 long msgid, 1410 struct kernel_ipmi_msg *msg, 1411 void *user_msg_data, 1412 void *supplied_smi, 1413 struct ipmi_recv_msg *supplied_recv, 1414 int priority, 1415 unsigned char source_address, 1416 unsigned char source_lun, 1417 int retries, 1418 unsigned int retry_time_ms) 1419 { 1420 int rv = 0; 1421 struct ipmi_smi_msg *smi_msg; 1422 struct ipmi_recv_msg *recv_msg; 1423 unsigned long flags; 1424 struct ipmi_smi_handlers *handlers; 1425 1426 1427 if (supplied_recv) 1428 recv_msg = supplied_recv; 1429 else { 1430 recv_msg = ipmi_alloc_recv_msg(); 1431 if (recv_msg == NULL) 1432 return -ENOMEM; 1433 } 1434 recv_msg->user_msg_data = user_msg_data; 1435 1436 if (supplied_smi) 1437 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1438 else { 1439 smi_msg = ipmi_alloc_smi_msg(); 1440 if (smi_msg == NULL) { 1441 ipmi_free_recv_msg(recv_msg); 1442 return -ENOMEM; 1443 } 1444 } 1445 1446 rcu_read_lock(); 1447 handlers = intf->handlers; 1448 if (!handlers) { 1449 rv = -ENODEV; 1450 goto out_err; 1451 } 1452 1453 recv_msg->user = user; 1454 if (user) 1455 kref_get(&user->refcount); 1456 recv_msg->msgid = msgid; 1457 /* 1458 * Store the message to send in the receive message so timeout 1459 * responses can get the proper response data. 1460 */ 1461 recv_msg->msg = *msg; 1462 1463 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1464 struct ipmi_system_interface_addr *smi_addr; 1465 1466 if (msg->netfn & 1) { 1467 /* Responses are not allowed to the SMI. */ 1468 rv = -EINVAL; 1469 goto out_err; 1470 } 1471 1472 smi_addr = (struct ipmi_system_interface_addr *) addr; 1473 if (smi_addr->lun > 3) { 1474 ipmi_inc_stat(intf, sent_invalid_commands); 1475 rv = -EINVAL; 1476 goto out_err; 1477 } 1478 1479 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1480 1481 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1482 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1483 || (msg->cmd == IPMI_GET_MSG_CMD) 1484 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1485 /* 1486 * We don't let the user do these, since we manage 1487 * the sequence numbers. 1488 */ 1489 ipmi_inc_stat(intf, sent_invalid_commands); 1490 rv = -EINVAL; 1491 goto out_err; 1492 } 1493 1494 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1495 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1496 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1497 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1498 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1499 intf->auto_maintenance_timeout 1500 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1501 if (!intf->maintenance_mode 1502 && !intf->maintenance_mode_enable) { 1503 intf->maintenance_mode_enable = 1; 1504 maintenance_mode_update(intf); 1505 } 1506 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1507 flags); 1508 } 1509 1510 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1511 ipmi_inc_stat(intf, sent_invalid_commands); 1512 rv = -EMSGSIZE; 1513 goto out_err; 1514 } 1515 1516 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1517 smi_msg->data[1] = msg->cmd; 1518 smi_msg->msgid = msgid; 1519 smi_msg->user_data = recv_msg; 1520 if (msg->data_len > 0) 1521 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1522 smi_msg->data_size = msg->data_len + 2; 1523 ipmi_inc_stat(intf, sent_local_commands); 1524 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1525 struct ipmi_ipmb_addr *ipmb_addr; 1526 unsigned char ipmb_seq; 1527 long seqid; 1528 int broadcast = 0; 1529 1530 if (addr->channel >= IPMI_MAX_CHANNELS) { 1531 ipmi_inc_stat(intf, sent_invalid_commands); 1532 rv = -EINVAL; 1533 goto out_err; 1534 } 1535 1536 if (intf->channels[addr->channel].medium 1537 != IPMI_CHANNEL_MEDIUM_IPMB) { 1538 ipmi_inc_stat(intf, sent_invalid_commands); 1539 rv = -EINVAL; 1540 goto out_err; 1541 } 1542 1543 if (retries < 0) { 1544 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1545 retries = 0; /* Don't retry broadcasts. */ 1546 else 1547 retries = 4; 1548 } 1549 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1550 /* 1551 * Broadcasts add a zero at the beginning of the 1552 * message, but otherwise is the same as an IPMB 1553 * address. 1554 */ 1555 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1556 broadcast = 1; 1557 } 1558 1559 1560 /* Default to 1 second retries. */ 1561 if (retry_time_ms == 0) 1562 retry_time_ms = 1000; 1563 1564 /* 1565 * 9 for the header and 1 for the checksum, plus 1566 * possibly one for the broadcast. 1567 */ 1568 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1569 ipmi_inc_stat(intf, sent_invalid_commands); 1570 rv = -EMSGSIZE; 1571 goto out_err; 1572 } 1573 1574 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1575 if (ipmb_addr->lun > 3) { 1576 ipmi_inc_stat(intf, sent_invalid_commands); 1577 rv = -EINVAL; 1578 goto out_err; 1579 } 1580 1581 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1582 1583 if (recv_msg->msg.netfn & 0x1) { 1584 /* 1585 * It's a response, so use the user's sequence 1586 * from msgid. 1587 */ 1588 ipmi_inc_stat(intf, sent_ipmb_responses); 1589 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1590 msgid, broadcast, 1591 source_address, source_lun); 1592 1593 /* 1594 * Save the receive message so we can use it 1595 * to deliver the response. 1596 */ 1597 smi_msg->user_data = recv_msg; 1598 } else { 1599 /* It's a command, so get a sequence for it. */ 1600 1601 spin_lock_irqsave(&(intf->seq_lock), flags); 1602 1603 /* 1604 * Create a sequence number with a 1 second 1605 * timeout and 4 retries. 1606 */ 1607 rv = intf_next_seq(intf, 1608 recv_msg, 1609 retry_time_ms, 1610 retries, 1611 broadcast, 1612 &ipmb_seq, 1613 &seqid); 1614 if (rv) { 1615 /* 1616 * We have used up all the sequence numbers, 1617 * probably, so abort. 1618 */ 1619 spin_unlock_irqrestore(&(intf->seq_lock), 1620 flags); 1621 goto out_err; 1622 } 1623 1624 ipmi_inc_stat(intf, sent_ipmb_commands); 1625 1626 /* 1627 * Store the sequence number in the message, 1628 * so that when the send message response 1629 * comes back we can start the timer. 1630 */ 1631 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1632 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1633 ipmb_seq, broadcast, 1634 source_address, source_lun); 1635 1636 /* 1637 * Copy the message into the recv message data, so we 1638 * can retransmit it later if necessary. 1639 */ 1640 memcpy(recv_msg->msg_data, smi_msg->data, 1641 smi_msg->data_size); 1642 recv_msg->msg.data = recv_msg->msg_data; 1643 recv_msg->msg.data_len = smi_msg->data_size; 1644 1645 /* 1646 * We don't unlock until here, because we need 1647 * to copy the completed message into the 1648 * recv_msg before we release the lock. 1649 * Otherwise, race conditions may bite us. I 1650 * know that's pretty paranoid, but I prefer 1651 * to be correct. 1652 */ 1653 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1654 } 1655 } else if (is_lan_addr(addr)) { 1656 struct ipmi_lan_addr *lan_addr; 1657 unsigned char ipmb_seq; 1658 long seqid; 1659 1660 if (addr->channel >= IPMI_MAX_CHANNELS) { 1661 ipmi_inc_stat(intf, sent_invalid_commands); 1662 rv = -EINVAL; 1663 goto out_err; 1664 } 1665 1666 if ((intf->channels[addr->channel].medium 1667 != IPMI_CHANNEL_MEDIUM_8023LAN) 1668 && (intf->channels[addr->channel].medium 1669 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1670 ipmi_inc_stat(intf, sent_invalid_commands); 1671 rv = -EINVAL; 1672 goto out_err; 1673 } 1674 1675 retries = 4; 1676 1677 /* Default to 1 second retries. */ 1678 if (retry_time_ms == 0) 1679 retry_time_ms = 1000; 1680 1681 /* 11 for the header and 1 for the checksum. */ 1682 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1683 ipmi_inc_stat(intf, sent_invalid_commands); 1684 rv = -EMSGSIZE; 1685 goto out_err; 1686 } 1687 1688 lan_addr = (struct ipmi_lan_addr *) addr; 1689 if (lan_addr->lun > 3) { 1690 ipmi_inc_stat(intf, sent_invalid_commands); 1691 rv = -EINVAL; 1692 goto out_err; 1693 } 1694 1695 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1696 1697 if (recv_msg->msg.netfn & 0x1) { 1698 /* 1699 * It's a response, so use the user's sequence 1700 * from msgid. 1701 */ 1702 ipmi_inc_stat(intf, sent_lan_responses); 1703 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1704 msgid, source_lun); 1705 1706 /* 1707 * Save the receive message so we can use it 1708 * to deliver the response. 1709 */ 1710 smi_msg->user_data = recv_msg; 1711 } else { 1712 /* It's a command, so get a sequence for it. */ 1713 1714 spin_lock_irqsave(&(intf->seq_lock), flags); 1715 1716 /* 1717 * Create a sequence number with a 1 second 1718 * timeout and 4 retries. 1719 */ 1720 rv = intf_next_seq(intf, 1721 recv_msg, 1722 retry_time_ms, 1723 retries, 1724 0, 1725 &ipmb_seq, 1726 &seqid); 1727 if (rv) { 1728 /* 1729 * We have used up all the sequence numbers, 1730 * probably, so abort. 1731 */ 1732 spin_unlock_irqrestore(&(intf->seq_lock), 1733 flags); 1734 goto out_err; 1735 } 1736 1737 ipmi_inc_stat(intf, sent_lan_commands); 1738 1739 /* 1740 * Store the sequence number in the message, 1741 * so that when the send message response 1742 * comes back we can start the timer. 1743 */ 1744 format_lan_msg(smi_msg, msg, lan_addr, 1745 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1746 ipmb_seq, source_lun); 1747 1748 /* 1749 * Copy the message into the recv message data, so we 1750 * can retransmit it later if necessary. 1751 */ 1752 memcpy(recv_msg->msg_data, smi_msg->data, 1753 smi_msg->data_size); 1754 recv_msg->msg.data = recv_msg->msg_data; 1755 recv_msg->msg.data_len = smi_msg->data_size; 1756 1757 /* 1758 * We don't unlock until here, because we need 1759 * to copy the completed message into the 1760 * recv_msg before we release the lock. 1761 * Otherwise, race conditions may bite us. I 1762 * know that's pretty paranoid, but I prefer 1763 * to be correct. 1764 */ 1765 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1766 } 1767 } else { 1768 /* Unknown address type. */ 1769 ipmi_inc_stat(intf, sent_invalid_commands); 1770 rv = -EINVAL; 1771 goto out_err; 1772 } 1773 1774 #ifdef DEBUG_MSGING 1775 { 1776 int m; 1777 for (m = 0; m < smi_msg->data_size; m++) 1778 printk(" %2.2x", smi_msg->data[m]); 1779 printk("\n"); 1780 } 1781 #endif 1782 1783 handlers->sender(intf->send_info, smi_msg, priority); 1784 rcu_read_unlock(); 1785 1786 return 0; 1787 1788 out_err: 1789 rcu_read_unlock(); 1790 ipmi_free_smi_msg(smi_msg); 1791 ipmi_free_recv_msg(recv_msg); 1792 return rv; 1793 } 1794 1795 static int check_addr(ipmi_smi_t intf, 1796 struct ipmi_addr *addr, 1797 unsigned char *saddr, 1798 unsigned char *lun) 1799 { 1800 if (addr->channel >= IPMI_MAX_CHANNELS) 1801 return -EINVAL; 1802 *lun = intf->channels[addr->channel].lun; 1803 *saddr = intf->channels[addr->channel].address; 1804 return 0; 1805 } 1806 1807 int ipmi_request_settime(ipmi_user_t user, 1808 struct ipmi_addr *addr, 1809 long msgid, 1810 struct kernel_ipmi_msg *msg, 1811 void *user_msg_data, 1812 int priority, 1813 int retries, 1814 unsigned int retry_time_ms) 1815 { 1816 unsigned char saddr, lun; 1817 int rv; 1818 1819 if (!user) 1820 return -EINVAL; 1821 rv = check_addr(user->intf, addr, &saddr, &lun); 1822 if (rv) 1823 return rv; 1824 return i_ipmi_request(user, 1825 user->intf, 1826 addr, 1827 msgid, 1828 msg, 1829 user_msg_data, 1830 NULL, NULL, 1831 priority, 1832 saddr, 1833 lun, 1834 retries, 1835 retry_time_ms); 1836 } 1837 EXPORT_SYMBOL(ipmi_request_settime); 1838 1839 int ipmi_request_supply_msgs(ipmi_user_t user, 1840 struct ipmi_addr *addr, 1841 long msgid, 1842 struct kernel_ipmi_msg *msg, 1843 void *user_msg_data, 1844 void *supplied_smi, 1845 struct ipmi_recv_msg *supplied_recv, 1846 int priority) 1847 { 1848 unsigned char saddr, lun; 1849 int rv; 1850 1851 if (!user) 1852 return -EINVAL; 1853 rv = check_addr(user->intf, addr, &saddr, &lun); 1854 if (rv) 1855 return rv; 1856 return i_ipmi_request(user, 1857 user->intf, 1858 addr, 1859 msgid, 1860 msg, 1861 user_msg_data, 1862 supplied_smi, 1863 supplied_recv, 1864 priority, 1865 saddr, 1866 lun, 1867 -1, 0); 1868 } 1869 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1870 1871 #ifdef CONFIG_PROC_FS 1872 static int ipmb_file_read_proc(char *page, char **start, off_t off, 1873 int count, int *eof, void *data) 1874 { 1875 char *out = (char *) page; 1876 ipmi_smi_t intf = data; 1877 int i; 1878 int rv = 0; 1879 1880 for (i = 0; i < IPMI_MAX_CHANNELS; i++) 1881 rv += sprintf(out+rv, "%x ", intf->channels[i].address); 1882 out[rv-1] = '\n'; /* Replace the final space with a newline */ 1883 out[rv] = '\0'; 1884 rv++; 1885 return rv; 1886 } 1887 1888 static int version_file_read_proc(char *page, char **start, off_t off, 1889 int count, int *eof, void *data) 1890 { 1891 char *out = (char *) page; 1892 ipmi_smi_t intf = data; 1893 1894 return sprintf(out, "%u.%u\n", 1895 ipmi_version_major(&intf->bmc->id), 1896 ipmi_version_minor(&intf->bmc->id)); 1897 } 1898 1899 static int stat_file_read_proc(char *page, char **start, off_t off, 1900 int count, int *eof, void *data) 1901 { 1902 char *out = (char *) page; 1903 ipmi_smi_t intf = data; 1904 1905 out += sprintf(out, "sent_invalid_commands: %u\n", 1906 ipmi_get_stat(intf, sent_invalid_commands)); 1907 out += sprintf(out, "sent_local_commands: %u\n", 1908 ipmi_get_stat(intf, sent_local_commands)); 1909 out += sprintf(out, "handled_local_responses: %u\n", 1910 ipmi_get_stat(intf, handled_local_responses)); 1911 out += sprintf(out, "unhandled_local_responses: %u\n", 1912 ipmi_get_stat(intf, unhandled_local_responses)); 1913 out += sprintf(out, "sent_ipmb_commands: %u\n", 1914 ipmi_get_stat(intf, sent_ipmb_commands)); 1915 out += sprintf(out, "sent_ipmb_command_errs: %u\n", 1916 ipmi_get_stat(intf, sent_ipmb_command_errs)); 1917 out += sprintf(out, "retransmitted_ipmb_commands: %u\n", 1918 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 1919 out += sprintf(out, "timed_out_ipmb_commands: %u\n", 1920 ipmi_get_stat(intf, timed_out_ipmb_commands)); 1921 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n", 1922 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 1923 out += sprintf(out, "sent_ipmb_responses: %u\n", 1924 ipmi_get_stat(intf, sent_ipmb_responses)); 1925 out += sprintf(out, "handled_ipmb_responses: %u\n", 1926 ipmi_get_stat(intf, handled_ipmb_responses)); 1927 out += sprintf(out, "invalid_ipmb_responses: %u\n", 1928 ipmi_get_stat(intf, invalid_ipmb_responses)); 1929 out += sprintf(out, "unhandled_ipmb_responses: %u\n", 1930 ipmi_get_stat(intf, unhandled_ipmb_responses)); 1931 out += sprintf(out, "sent_lan_commands: %u\n", 1932 ipmi_get_stat(intf, sent_lan_commands)); 1933 out += sprintf(out, "sent_lan_command_errs: %u\n", 1934 ipmi_get_stat(intf, sent_lan_command_errs)); 1935 out += sprintf(out, "retransmitted_lan_commands: %u\n", 1936 ipmi_get_stat(intf, retransmitted_lan_commands)); 1937 out += sprintf(out, "timed_out_lan_commands: %u\n", 1938 ipmi_get_stat(intf, timed_out_lan_commands)); 1939 out += sprintf(out, "sent_lan_responses: %u\n", 1940 ipmi_get_stat(intf, sent_lan_responses)); 1941 out += sprintf(out, "handled_lan_responses: %u\n", 1942 ipmi_get_stat(intf, handled_lan_responses)); 1943 out += sprintf(out, "invalid_lan_responses: %u\n", 1944 ipmi_get_stat(intf, invalid_lan_responses)); 1945 out += sprintf(out, "unhandled_lan_responses: %u\n", 1946 ipmi_get_stat(intf, unhandled_lan_responses)); 1947 out += sprintf(out, "handled_commands: %u\n", 1948 ipmi_get_stat(intf, handled_commands)); 1949 out += sprintf(out, "invalid_commands: %u\n", 1950 ipmi_get_stat(intf, invalid_commands)); 1951 out += sprintf(out, "unhandled_commands: %u\n", 1952 ipmi_get_stat(intf, unhandled_commands)); 1953 out += sprintf(out, "invalid_events: %u\n", 1954 ipmi_get_stat(intf, invalid_events)); 1955 out += sprintf(out, "events: %u\n", 1956 ipmi_get_stat(intf, events)); 1957 out += sprintf(out, "failed rexmit LAN msgs: %u\n", 1958 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 1959 out += sprintf(out, "failed rexmit IPMB msgs: %u\n", 1960 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 1961 1962 return (out - ((char *) page)); 1963 } 1964 #endif /* CONFIG_PROC_FS */ 1965 1966 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 1967 read_proc_t *read_proc, 1968 void *data) 1969 { 1970 int rv = 0; 1971 #ifdef CONFIG_PROC_FS 1972 struct proc_dir_entry *file; 1973 struct ipmi_proc_entry *entry; 1974 1975 /* Create a list element. */ 1976 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1977 if (!entry) 1978 return -ENOMEM; 1979 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL); 1980 if (!entry->name) { 1981 kfree(entry); 1982 return -ENOMEM; 1983 } 1984 strcpy(entry->name, name); 1985 1986 file = create_proc_entry(name, 0, smi->proc_dir); 1987 if (!file) { 1988 kfree(entry->name); 1989 kfree(entry); 1990 rv = -ENOMEM; 1991 } else { 1992 file->data = data; 1993 file->read_proc = read_proc; 1994 1995 mutex_lock(&smi->proc_entry_lock); 1996 /* Stick it on the list. */ 1997 entry->next = smi->proc_entries; 1998 smi->proc_entries = entry; 1999 mutex_unlock(&smi->proc_entry_lock); 2000 } 2001 #endif /* CONFIG_PROC_FS */ 2002 2003 return rv; 2004 } 2005 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2006 2007 static int add_proc_entries(ipmi_smi_t smi, int num) 2008 { 2009 int rv = 0; 2010 2011 #ifdef CONFIG_PROC_FS 2012 sprintf(smi->proc_dir_name, "%d", num); 2013 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2014 if (!smi->proc_dir) 2015 rv = -ENOMEM; 2016 2017 if (rv == 0) 2018 rv = ipmi_smi_add_proc_entry(smi, "stats", 2019 stat_file_read_proc, 2020 smi); 2021 2022 if (rv == 0) 2023 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2024 ipmb_file_read_proc, 2025 smi); 2026 2027 if (rv == 0) 2028 rv = ipmi_smi_add_proc_entry(smi, "version", 2029 version_file_read_proc, 2030 smi); 2031 #endif /* CONFIG_PROC_FS */ 2032 2033 return rv; 2034 } 2035 2036 static void remove_proc_entries(ipmi_smi_t smi) 2037 { 2038 #ifdef CONFIG_PROC_FS 2039 struct ipmi_proc_entry *entry; 2040 2041 mutex_lock(&smi->proc_entry_lock); 2042 while (smi->proc_entries) { 2043 entry = smi->proc_entries; 2044 smi->proc_entries = entry->next; 2045 2046 remove_proc_entry(entry->name, smi->proc_dir); 2047 kfree(entry->name); 2048 kfree(entry); 2049 } 2050 mutex_unlock(&smi->proc_entry_lock); 2051 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2052 #endif /* CONFIG_PROC_FS */ 2053 } 2054 2055 static int __find_bmc_guid(struct device *dev, void *data) 2056 { 2057 unsigned char *id = data; 2058 struct bmc_device *bmc = dev_get_drvdata(dev); 2059 return memcmp(bmc->guid, id, 16) == 0; 2060 } 2061 2062 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2063 unsigned char *guid) 2064 { 2065 struct device *dev; 2066 2067 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2068 if (dev) 2069 return dev_get_drvdata(dev); 2070 else 2071 return NULL; 2072 } 2073 2074 struct prod_dev_id { 2075 unsigned int product_id; 2076 unsigned char device_id; 2077 }; 2078 2079 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2080 { 2081 struct prod_dev_id *id = data; 2082 struct bmc_device *bmc = dev_get_drvdata(dev); 2083 2084 return (bmc->id.product_id == id->product_id 2085 && bmc->id.device_id == id->device_id); 2086 } 2087 2088 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2089 struct device_driver *drv, 2090 unsigned int product_id, unsigned char device_id) 2091 { 2092 struct prod_dev_id id = { 2093 .product_id = product_id, 2094 .device_id = device_id, 2095 }; 2096 struct device *dev; 2097 2098 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2099 if (dev) 2100 return dev_get_drvdata(dev); 2101 else 2102 return NULL; 2103 } 2104 2105 static ssize_t device_id_show(struct device *dev, 2106 struct device_attribute *attr, 2107 char *buf) 2108 { 2109 struct bmc_device *bmc = dev_get_drvdata(dev); 2110 2111 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2112 } 2113 2114 static ssize_t provides_dev_sdrs_show(struct device *dev, 2115 struct device_attribute *attr, 2116 char *buf) 2117 { 2118 struct bmc_device *bmc = dev_get_drvdata(dev); 2119 2120 return snprintf(buf, 10, "%u\n", 2121 (bmc->id.device_revision & 0x80) >> 7); 2122 } 2123 2124 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2125 char *buf) 2126 { 2127 struct bmc_device *bmc = dev_get_drvdata(dev); 2128 2129 return snprintf(buf, 20, "%u\n", 2130 bmc->id.device_revision & 0x0F); 2131 } 2132 2133 static ssize_t firmware_rev_show(struct device *dev, 2134 struct device_attribute *attr, 2135 char *buf) 2136 { 2137 struct bmc_device *bmc = dev_get_drvdata(dev); 2138 2139 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2140 bmc->id.firmware_revision_2); 2141 } 2142 2143 static ssize_t ipmi_version_show(struct device *dev, 2144 struct device_attribute *attr, 2145 char *buf) 2146 { 2147 struct bmc_device *bmc = dev_get_drvdata(dev); 2148 2149 return snprintf(buf, 20, "%u.%u\n", 2150 ipmi_version_major(&bmc->id), 2151 ipmi_version_minor(&bmc->id)); 2152 } 2153 2154 static ssize_t add_dev_support_show(struct device *dev, 2155 struct device_attribute *attr, 2156 char *buf) 2157 { 2158 struct bmc_device *bmc = dev_get_drvdata(dev); 2159 2160 return snprintf(buf, 10, "0x%02x\n", 2161 bmc->id.additional_device_support); 2162 } 2163 2164 static ssize_t manufacturer_id_show(struct device *dev, 2165 struct device_attribute *attr, 2166 char *buf) 2167 { 2168 struct bmc_device *bmc = dev_get_drvdata(dev); 2169 2170 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2171 } 2172 2173 static ssize_t product_id_show(struct device *dev, 2174 struct device_attribute *attr, 2175 char *buf) 2176 { 2177 struct bmc_device *bmc = dev_get_drvdata(dev); 2178 2179 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2180 } 2181 2182 static ssize_t aux_firmware_rev_show(struct device *dev, 2183 struct device_attribute *attr, 2184 char *buf) 2185 { 2186 struct bmc_device *bmc = dev_get_drvdata(dev); 2187 2188 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2189 bmc->id.aux_firmware_revision[3], 2190 bmc->id.aux_firmware_revision[2], 2191 bmc->id.aux_firmware_revision[1], 2192 bmc->id.aux_firmware_revision[0]); 2193 } 2194 2195 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2196 char *buf) 2197 { 2198 struct bmc_device *bmc = dev_get_drvdata(dev); 2199 2200 return snprintf(buf, 100, "%Lx%Lx\n", 2201 (long long) bmc->guid[0], 2202 (long long) bmc->guid[8]); 2203 } 2204 2205 static void remove_files(struct bmc_device *bmc) 2206 { 2207 if (!bmc->dev) 2208 return; 2209 2210 device_remove_file(&bmc->dev->dev, 2211 &bmc->device_id_attr); 2212 device_remove_file(&bmc->dev->dev, 2213 &bmc->provides_dev_sdrs_attr); 2214 device_remove_file(&bmc->dev->dev, 2215 &bmc->revision_attr); 2216 device_remove_file(&bmc->dev->dev, 2217 &bmc->firmware_rev_attr); 2218 device_remove_file(&bmc->dev->dev, 2219 &bmc->version_attr); 2220 device_remove_file(&bmc->dev->dev, 2221 &bmc->add_dev_support_attr); 2222 device_remove_file(&bmc->dev->dev, 2223 &bmc->manufacturer_id_attr); 2224 device_remove_file(&bmc->dev->dev, 2225 &bmc->product_id_attr); 2226 2227 if (bmc->id.aux_firmware_revision_set) 2228 device_remove_file(&bmc->dev->dev, 2229 &bmc->aux_firmware_rev_attr); 2230 if (bmc->guid_set) 2231 device_remove_file(&bmc->dev->dev, 2232 &bmc->guid_attr); 2233 } 2234 2235 static void 2236 cleanup_bmc_device(struct kref *ref) 2237 { 2238 struct bmc_device *bmc; 2239 2240 bmc = container_of(ref, struct bmc_device, refcount); 2241 2242 remove_files(bmc); 2243 platform_device_unregister(bmc->dev); 2244 kfree(bmc); 2245 } 2246 2247 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2248 { 2249 struct bmc_device *bmc = intf->bmc; 2250 2251 if (intf->sysfs_name) { 2252 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name); 2253 kfree(intf->sysfs_name); 2254 intf->sysfs_name = NULL; 2255 } 2256 if (intf->my_dev_name) { 2257 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name); 2258 kfree(intf->my_dev_name); 2259 intf->my_dev_name = NULL; 2260 } 2261 2262 mutex_lock(&ipmidriver_mutex); 2263 kref_put(&bmc->refcount, cleanup_bmc_device); 2264 intf->bmc = NULL; 2265 mutex_unlock(&ipmidriver_mutex); 2266 } 2267 2268 static int create_files(struct bmc_device *bmc) 2269 { 2270 int err; 2271 2272 bmc->device_id_attr.attr.name = "device_id"; 2273 bmc->device_id_attr.attr.mode = S_IRUGO; 2274 bmc->device_id_attr.show = device_id_show; 2275 sysfs_attr_init(&bmc->device_id_attr.attr); 2276 2277 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs"; 2278 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO; 2279 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show; 2280 sysfs_attr_init(&bmc->provides_dev_sdrs_attr.attr); 2281 2282 bmc->revision_attr.attr.name = "revision"; 2283 bmc->revision_attr.attr.mode = S_IRUGO; 2284 bmc->revision_attr.show = revision_show; 2285 sysfs_attr_init(&bmc->revision_attr.attr); 2286 2287 bmc->firmware_rev_attr.attr.name = "firmware_revision"; 2288 bmc->firmware_rev_attr.attr.mode = S_IRUGO; 2289 bmc->firmware_rev_attr.show = firmware_rev_show; 2290 sysfs_attr_init(&bmc->firmware_rev_attr.attr); 2291 2292 bmc->version_attr.attr.name = "ipmi_version"; 2293 bmc->version_attr.attr.mode = S_IRUGO; 2294 bmc->version_attr.show = ipmi_version_show; 2295 sysfs_attr_init(&bmc->version_attr.attr); 2296 2297 bmc->add_dev_support_attr.attr.name = "additional_device_support"; 2298 bmc->add_dev_support_attr.attr.mode = S_IRUGO; 2299 bmc->add_dev_support_attr.show = add_dev_support_show; 2300 sysfs_attr_init(&bmc->add_dev_support_attr.attr); 2301 2302 bmc->manufacturer_id_attr.attr.name = "manufacturer_id"; 2303 bmc->manufacturer_id_attr.attr.mode = S_IRUGO; 2304 bmc->manufacturer_id_attr.show = manufacturer_id_show; 2305 sysfs_attr_init(&bmc->manufacturer_id_attr.attr); 2306 2307 bmc->product_id_attr.attr.name = "product_id"; 2308 bmc->product_id_attr.attr.mode = S_IRUGO; 2309 bmc->product_id_attr.show = product_id_show; 2310 sysfs_attr_init(&bmc->product_id_attr.attr); 2311 2312 bmc->guid_attr.attr.name = "guid"; 2313 bmc->guid_attr.attr.mode = S_IRUGO; 2314 bmc->guid_attr.show = guid_show; 2315 sysfs_attr_init(&bmc->guid_attr.attr); 2316 2317 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision"; 2318 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO; 2319 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show; 2320 sysfs_attr_init(&bmc->aux_firmware_rev_attr.attr); 2321 2322 err = device_create_file(&bmc->dev->dev, 2323 &bmc->device_id_attr); 2324 if (err) 2325 goto out; 2326 err = device_create_file(&bmc->dev->dev, 2327 &bmc->provides_dev_sdrs_attr); 2328 if (err) 2329 goto out_devid; 2330 err = device_create_file(&bmc->dev->dev, 2331 &bmc->revision_attr); 2332 if (err) 2333 goto out_sdrs; 2334 err = device_create_file(&bmc->dev->dev, 2335 &bmc->firmware_rev_attr); 2336 if (err) 2337 goto out_rev; 2338 err = device_create_file(&bmc->dev->dev, 2339 &bmc->version_attr); 2340 if (err) 2341 goto out_firm; 2342 err = device_create_file(&bmc->dev->dev, 2343 &bmc->add_dev_support_attr); 2344 if (err) 2345 goto out_version; 2346 err = device_create_file(&bmc->dev->dev, 2347 &bmc->manufacturer_id_attr); 2348 if (err) 2349 goto out_add_dev; 2350 err = device_create_file(&bmc->dev->dev, 2351 &bmc->product_id_attr); 2352 if (err) 2353 goto out_manu; 2354 if (bmc->id.aux_firmware_revision_set) { 2355 err = device_create_file(&bmc->dev->dev, 2356 &bmc->aux_firmware_rev_attr); 2357 if (err) 2358 goto out_prod_id; 2359 } 2360 if (bmc->guid_set) { 2361 err = device_create_file(&bmc->dev->dev, 2362 &bmc->guid_attr); 2363 if (err) 2364 goto out_aux_firm; 2365 } 2366 2367 return 0; 2368 2369 out_aux_firm: 2370 if (bmc->id.aux_firmware_revision_set) 2371 device_remove_file(&bmc->dev->dev, 2372 &bmc->aux_firmware_rev_attr); 2373 out_prod_id: 2374 device_remove_file(&bmc->dev->dev, 2375 &bmc->product_id_attr); 2376 out_manu: 2377 device_remove_file(&bmc->dev->dev, 2378 &bmc->manufacturer_id_attr); 2379 out_add_dev: 2380 device_remove_file(&bmc->dev->dev, 2381 &bmc->add_dev_support_attr); 2382 out_version: 2383 device_remove_file(&bmc->dev->dev, 2384 &bmc->version_attr); 2385 out_firm: 2386 device_remove_file(&bmc->dev->dev, 2387 &bmc->firmware_rev_attr); 2388 out_rev: 2389 device_remove_file(&bmc->dev->dev, 2390 &bmc->revision_attr); 2391 out_sdrs: 2392 device_remove_file(&bmc->dev->dev, 2393 &bmc->provides_dev_sdrs_attr); 2394 out_devid: 2395 device_remove_file(&bmc->dev->dev, 2396 &bmc->device_id_attr); 2397 out: 2398 return err; 2399 } 2400 2401 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum, 2402 const char *sysfs_name) 2403 { 2404 int rv; 2405 struct bmc_device *bmc = intf->bmc; 2406 struct bmc_device *old_bmc; 2407 int size; 2408 char dummy[1]; 2409 2410 mutex_lock(&ipmidriver_mutex); 2411 2412 /* 2413 * Try to find if there is an bmc_device struct 2414 * representing the interfaced BMC already 2415 */ 2416 if (bmc->guid_set) 2417 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2418 else 2419 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2420 bmc->id.product_id, 2421 bmc->id.device_id); 2422 2423 /* 2424 * If there is already an bmc_device, free the new one, 2425 * otherwise register the new BMC device 2426 */ 2427 if (old_bmc) { 2428 kfree(bmc); 2429 intf->bmc = old_bmc; 2430 bmc = old_bmc; 2431 2432 kref_get(&bmc->refcount); 2433 mutex_unlock(&ipmidriver_mutex); 2434 2435 printk(KERN_INFO 2436 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2437 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2438 bmc->id.manufacturer_id, 2439 bmc->id.product_id, 2440 bmc->id.device_id); 2441 } else { 2442 char name[14]; 2443 unsigned char orig_dev_id = bmc->id.device_id; 2444 int warn_printed = 0; 2445 2446 snprintf(name, sizeof(name), 2447 "ipmi_bmc.%4.4x", bmc->id.product_id); 2448 2449 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2450 bmc->id.product_id, 2451 bmc->id.device_id)) { 2452 if (!warn_printed) { 2453 printk(KERN_WARNING PFX 2454 "This machine has two different BMCs" 2455 " with the same product id and device" 2456 " id. This is an error in the" 2457 " firmware, but incrementing the" 2458 " device id to work around the problem." 2459 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2460 bmc->id.product_id, bmc->id.device_id); 2461 warn_printed = 1; 2462 } 2463 bmc->id.device_id++; /* Wraps at 255 */ 2464 if (bmc->id.device_id == orig_dev_id) { 2465 printk(KERN_ERR PFX 2466 "Out of device ids!\n"); 2467 break; 2468 } 2469 } 2470 2471 bmc->dev = platform_device_alloc(name, bmc->id.device_id); 2472 if (!bmc->dev) { 2473 mutex_unlock(&ipmidriver_mutex); 2474 printk(KERN_ERR 2475 "ipmi_msghandler:" 2476 " Unable to allocate platform device\n"); 2477 return -ENOMEM; 2478 } 2479 bmc->dev->dev.driver = &ipmidriver.driver; 2480 dev_set_drvdata(&bmc->dev->dev, bmc); 2481 kref_init(&bmc->refcount); 2482 2483 rv = platform_device_add(bmc->dev); 2484 mutex_unlock(&ipmidriver_mutex); 2485 if (rv) { 2486 platform_device_put(bmc->dev); 2487 bmc->dev = NULL; 2488 printk(KERN_ERR 2489 "ipmi_msghandler:" 2490 " Unable to register bmc device: %d\n", 2491 rv); 2492 /* 2493 * Don't go to out_err, you can only do that if 2494 * the device is registered already. 2495 */ 2496 return rv; 2497 } 2498 2499 rv = create_files(bmc); 2500 if (rv) { 2501 mutex_lock(&ipmidriver_mutex); 2502 platform_device_unregister(bmc->dev); 2503 mutex_unlock(&ipmidriver_mutex); 2504 2505 return rv; 2506 } 2507 2508 dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, " 2509 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2510 bmc->id.manufacturer_id, 2511 bmc->id.product_id, 2512 bmc->id.device_id); 2513 } 2514 2515 /* 2516 * create symlink from system interface device to bmc device 2517 * and back. 2518 */ 2519 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL); 2520 if (!intf->sysfs_name) { 2521 rv = -ENOMEM; 2522 printk(KERN_ERR 2523 "ipmi_msghandler: allocate link to BMC: %d\n", 2524 rv); 2525 goto out_err; 2526 } 2527 2528 rv = sysfs_create_link(&intf->si_dev->kobj, 2529 &bmc->dev->dev.kobj, intf->sysfs_name); 2530 if (rv) { 2531 kfree(intf->sysfs_name); 2532 intf->sysfs_name = NULL; 2533 printk(KERN_ERR 2534 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2535 rv); 2536 goto out_err; 2537 } 2538 2539 size = snprintf(dummy, 0, "ipmi%d", ifnum); 2540 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL); 2541 if (!intf->my_dev_name) { 2542 kfree(intf->sysfs_name); 2543 intf->sysfs_name = NULL; 2544 rv = -ENOMEM; 2545 printk(KERN_ERR 2546 "ipmi_msghandler: allocate link from BMC: %d\n", 2547 rv); 2548 goto out_err; 2549 } 2550 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum); 2551 2552 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj, 2553 intf->my_dev_name); 2554 if (rv) { 2555 kfree(intf->sysfs_name); 2556 intf->sysfs_name = NULL; 2557 kfree(intf->my_dev_name); 2558 intf->my_dev_name = NULL; 2559 printk(KERN_ERR 2560 "ipmi_msghandler:" 2561 " Unable to create symlink to bmc: %d\n", 2562 rv); 2563 goto out_err; 2564 } 2565 2566 return 0; 2567 2568 out_err: 2569 ipmi_bmc_unregister(intf); 2570 return rv; 2571 } 2572 2573 static int 2574 send_guid_cmd(ipmi_smi_t intf, int chan) 2575 { 2576 struct kernel_ipmi_msg msg; 2577 struct ipmi_system_interface_addr si; 2578 2579 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2580 si.channel = IPMI_BMC_CHANNEL; 2581 si.lun = 0; 2582 2583 msg.netfn = IPMI_NETFN_APP_REQUEST; 2584 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2585 msg.data = NULL; 2586 msg.data_len = 0; 2587 return i_ipmi_request(NULL, 2588 intf, 2589 (struct ipmi_addr *) &si, 2590 0, 2591 &msg, 2592 intf, 2593 NULL, 2594 NULL, 2595 0, 2596 intf->channels[0].address, 2597 intf->channels[0].lun, 2598 -1, 0); 2599 } 2600 2601 static void 2602 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2603 { 2604 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2605 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2606 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2607 /* Not for me */ 2608 return; 2609 2610 if (msg->msg.data[0] != 0) { 2611 /* Error from getting the GUID, the BMC doesn't have one. */ 2612 intf->bmc->guid_set = 0; 2613 goto out; 2614 } 2615 2616 if (msg->msg.data_len < 17) { 2617 intf->bmc->guid_set = 0; 2618 printk(KERN_WARNING PFX 2619 "guid_handler: The GUID response from the BMC was too" 2620 " short, it was %d but should have been 17. Assuming" 2621 " GUID is not available.\n", 2622 msg->msg.data_len); 2623 goto out; 2624 } 2625 2626 memcpy(intf->bmc->guid, msg->msg.data, 16); 2627 intf->bmc->guid_set = 1; 2628 out: 2629 wake_up(&intf->waitq); 2630 } 2631 2632 static void 2633 get_guid(ipmi_smi_t intf) 2634 { 2635 int rv; 2636 2637 intf->bmc->guid_set = 0x2; 2638 intf->null_user_handler = guid_handler; 2639 rv = send_guid_cmd(intf, 0); 2640 if (rv) 2641 /* Send failed, no GUID available. */ 2642 intf->bmc->guid_set = 0; 2643 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2644 intf->null_user_handler = NULL; 2645 } 2646 2647 static int 2648 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2649 { 2650 struct kernel_ipmi_msg msg; 2651 unsigned char data[1]; 2652 struct ipmi_system_interface_addr si; 2653 2654 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2655 si.channel = IPMI_BMC_CHANNEL; 2656 si.lun = 0; 2657 2658 msg.netfn = IPMI_NETFN_APP_REQUEST; 2659 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2660 msg.data = data; 2661 msg.data_len = 1; 2662 data[0] = chan; 2663 return i_ipmi_request(NULL, 2664 intf, 2665 (struct ipmi_addr *) &si, 2666 0, 2667 &msg, 2668 intf, 2669 NULL, 2670 NULL, 2671 0, 2672 intf->channels[0].address, 2673 intf->channels[0].lun, 2674 -1, 0); 2675 } 2676 2677 static void 2678 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2679 { 2680 int rv = 0; 2681 int chan; 2682 2683 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2684 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2685 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2686 /* It's the one we want */ 2687 if (msg->msg.data[0] != 0) { 2688 /* Got an error from the channel, just go on. */ 2689 2690 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2691 /* 2692 * If the MC does not support this 2693 * command, that is legal. We just 2694 * assume it has one IPMB at channel 2695 * zero. 2696 */ 2697 intf->channels[0].medium 2698 = IPMI_CHANNEL_MEDIUM_IPMB; 2699 intf->channels[0].protocol 2700 = IPMI_CHANNEL_PROTOCOL_IPMB; 2701 rv = -ENOSYS; 2702 2703 intf->curr_channel = IPMI_MAX_CHANNELS; 2704 wake_up(&intf->waitq); 2705 goto out; 2706 } 2707 goto next_channel; 2708 } 2709 if (msg->msg.data_len < 4) { 2710 /* Message not big enough, just go on. */ 2711 goto next_channel; 2712 } 2713 chan = intf->curr_channel; 2714 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2715 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2716 2717 next_channel: 2718 intf->curr_channel++; 2719 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2720 wake_up(&intf->waitq); 2721 else 2722 rv = send_channel_info_cmd(intf, intf->curr_channel); 2723 2724 if (rv) { 2725 /* Got an error somehow, just give up. */ 2726 intf->curr_channel = IPMI_MAX_CHANNELS; 2727 wake_up(&intf->waitq); 2728 2729 printk(KERN_WARNING PFX 2730 "Error sending channel information: %d\n", 2731 rv); 2732 } 2733 } 2734 out: 2735 return; 2736 } 2737 2738 void ipmi_poll_interface(ipmi_user_t user) 2739 { 2740 ipmi_smi_t intf = user->intf; 2741 2742 if (intf->handlers->poll) 2743 intf->handlers->poll(intf->send_info); 2744 } 2745 EXPORT_SYMBOL(ipmi_poll_interface); 2746 2747 int ipmi_register_smi(struct ipmi_smi_handlers *handlers, 2748 void *send_info, 2749 struct ipmi_device_id *device_id, 2750 struct device *si_dev, 2751 const char *sysfs_name, 2752 unsigned char slave_addr) 2753 { 2754 int i, j; 2755 int rv; 2756 ipmi_smi_t intf; 2757 ipmi_smi_t tintf; 2758 struct list_head *link; 2759 2760 /* 2761 * Make sure the driver is actually initialized, this handles 2762 * problems with initialization order. 2763 */ 2764 if (!initialized) { 2765 rv = ipmi_init_msghandler(); 2766 if (rv) 2767 return rv; 2768 /* 2769 * The init code doesn't return an error if it was turned 2770 * off, but it won't initialize. Check that. 2771 */ 2772 if (!initialized) 2773 return -ENODEV; 2774 } 2775 2776 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2777 if (!intf) 2778 return -ENOMEM; 2779 2780 intf->ipmi_version_major = ipmi_version_major(device_id); 2781 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2782 2783 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2784 if (!intf->bmc) { 2785 kfree(intf); 2786 return -ENOMEM; 2787 } 2788 intf->intf_num = -1; /* Mark it invalid for now. */ 2789 kref_init(&intf->refcount); 2790 intf->bmc->id = *device_id; 2791 intf->si_dev = si_dev; 2792 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2793 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2794 intf->channels[j].lun = 2; 2795 } 2796 if (slave_addr != 0) 2797 intf->channels[0].address = slave_addr; 2798 INIT_LIST_HEAD(&intf->users); 2799 intf->handlers = handlers; 2800 intf->send_info = send_info; 2801 spin_lock_init(&intf->seq_lock); 2802 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2803 intf->seq_table[j].inuse = 0; 2804 intf->seq_table[j].seqid = 0; 2805 } 2806 intf->curr_seq = 0; 2807 #ifdef CONFIG_PROC_FS 2808 mutex_init(&intf->proc_entry_lock); 2809 #endif 2810 spin_lock_init(&intf->waiting_msgs_lock); 2811 INIT_LIST_HEAD(&intf->waiting_msgs); 2812 spin_lock_init(&intf->events_lock); 2813 INIT_LIST_HEAD(&intf->waiting_events); 2814 intf->waiting_events_count = 0; 2815 mutex_init(&intf->cmd_rcvrs_mutex); 2816 spin_lock_init(&intf->maintenance_mode_lock); 2817 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2818 init_waitqueue_head(&intf->waitq); 2819 for (i = 0; i < IPMI_NUM_STATS; i++) 2820 atomic_set(&intf->stats[i], 0); 2821 2822 intf->proc_dir = NULL; 2823 2824 mutex_lock(&smi_watchers_mutex); 2825 mutex_lock(&ipmi_interfaces_mutex); 2826 /* Look for a hole in the numbers. */ 2827 i = 0; 2828 link = &ipmi_interfaces; 2829 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2830 if (tintf->intf_num != i) { 2831 link = &tintf->link; 2832 break; 2833 } 2834 i++; 2835 } 2836 /* Add the new interface in numeric order. */ 2837 if (i == 0) 2838 list_add_rcu(&intf->link, &ipmi_interfaces); 2839 else 2840 list_add_tail_rcu(&intf->link, link); 2841 2842 rv = handlers->start_processing(send_info, intf); 2843 if (rv) 2844 goto out; 2845 2846 get_guid(intf); 2847 2848 if ((intf->ipmi_version_major > 1) 2849 || ((intf->ipmi_version_major == 1) 2850 && (intf->ipmi_version_minor >= 5))) { 2851 /* 2852 * Start scanning the channels to see what is 2853 * available. 2854 */ 2855 intf->null_user_handler = channel_handler; 2856 intf->curr_channel = 0; 2857 rv = send_channel_info_cmd(intf, 0); 2858 if (rv) 2859 goto out; 2860 2861 /* Wait for the channel info to be read. */ 2862 wait_event(intf->waitq, 2863 intf->curr_channel >= IPMI_MAX_CHANNELS); 2864 intf->null_user_handler = NULL; 2865 } else { 2866 /* Assume a single IPMB channel at zero. */ 2867 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2868 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2869 intf->curr_channel = IPMI_MAX_CHANNELS; 2870 } 2871 2872 if (rv == 0) 2873 rv = add_proc_entries(intf, i); 2874 2875 rv = ipmi_bmc_register(intf, i, sysfs_name); 2876 2877 out: 2878 if (rv) { 2879 if (intf->proc_dir) 2880 remove_proc_entries(intf); 2881 intf->handlers = NULL; 2882 list_del_rcu(&intf->link); 2883 mutex_unlock(&ipmi_interfaces_mutex); 2884 mutex_unlock(&smi_watchers_mutex); 2885 synchronize_rcu(); 2886 kref_put(&intf->refcount, intf_free); 2887 } else { 2888 /* 2889 * Keep memory order straight for RCU readers. Make 2890 * sure everything else is committed to memory before 2891 * setting intf_num to mark the interface valid. 2892 */ 2893 smp_wmb(); 2894 intf->intf_num = i; 2895 mutex_unlock(&ipmi_interfaces_mutex); 2896 /* After this point the interface is legal to use. */ 2897 call_smi_watchers(i, intf->si_dev); 2898 mutex_unlock(&smi_watchers_mutex); 2899 } 2900 2901 return rv; 2902 } 2903 EXPORT_SYMBOL(ipmi_register_smi); 2904 2905 static void cleanup_smi_msgs(ipmi_smi_t intf) 2906 { 2907 int i; 2908 struct seq_table *ent; 2909 2910 /* No need for locks, the interface is down. */ 2911 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 2912 ent = &(intf->seq_table[i]); 2913 if (!ent->inuse) 2914 continue; 2915 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 2916 } 2917 } 2918 2919 int ipmi_unregister_smi(ipmi_smi_t intf) 2920 { 2921 struct ipmi_smi_watcher *w; 2922 int intf_num = intf->intf_num; 2923 2924 ipmi_bmc_unregister(intf); 2925 2926 mutex_lock(&smi_watchers_mutex); 2927 mutex_lock(&ipmi_interfaces_mutex); 2928 intf->intf_num = -1; 2929 intf->handlers = NULL; 2930 list_del_rcu(&intf->link); 2931 mutex_unlock(&ipmi_interfaces_mutex); 2932 synchronize_rcu(); 2933 2934 cleanup_smi_msgs(intf); 2935 2936 remove_proc_entries(intf); 2937 2938 /* 2939 * Call all the watcher interfaces to tell them that 2940 * an interface is gone. 2941 */ 2942 list_for_each_entry(w, &smi_watchers, link) 2943 w->smi_gone(intf_num); 2944 mutex_unlock(&smi_watchers_mutex); 2945 2946 kref_put(&intf->refcount, intf_free); 2947 return 0; 2948 } 2949 EXPORT_SYMBOL(ipmi_unregister_smi); 2950 2951 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 2952 struct ipmi_smi_msg *msg) 2953 { 2954 struct ipmi_ipmb_addr ipmb_addr; 2955 struct ipmi_recv_msg *recv_msg; 2956 2957 /* 2958 * This is 11, not 10, because the response must contain a 2959 * completion code. 2960 */ 2961 if (msg->rsp_size < 11) { 2962 /* Message not big enough, just ignore it. */ 2963 ipmi_inc_stat(intf, invalid_ipmb_responses); 2964 return 0; 2965 } 2966 2967 if (msg->rsp[2] != 0) { 2968 /* An error getting the response, just ignore it. */ 2969 return 0; 2970 } 2971 2972 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 2973 ipmb_addr.slave_addr = msg->rsp[6]; 2974 ipmb_addr.channel = msg->rsp[3] & 0x0f; 2975 ipmb_addr.lun = msg->rsp[7] & 3; 2976 2977 /* 2978 * It's a response from a remote entity. Look up the sequence 2979 * number and handle the response. 2980 */ 2981 if (intf_find_seq(intf, 2982 msg->rsp[7] >> 2, 2983 msg->rsp[3] & 0x0f, 2984 msg->rsp[8], 2985 (msg->rsp[4] >> 2) & (~1), 2986 (struct ipmi_addr *) &(ipmb_addr), 2987 &recv_msg)) { 2988 /* 2989 * We were unable to find the sequence number, 2990 * so just nuke the message. 2991 */ 2992 ipmi_inc_stat(intf, unhandled_ipmb_responses); 2993 return 0; 2994 } 2995 2996 memcpy(recv_msg->msg_data, 2997 &(msg->rsp[9]), 2998 msg->rsp_size - 9); 2999 /* 3000 * The other fields matched, so no need to set them, except 3001 * for netfn, which needs to be the response that was 3002 * returned, not the request value. 3003 */ 3004 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3005 recv_msg->msg.data = recv_msg->msg_data; 3006 recv_msg->msg.data_len = msg->rsp_size - 10; 3007 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3008 ipmi_inc_stat(intf, handled_ipmb_responses); 3009 deliver_response(recv_msg); 3010 3011 return 0; 3012 } 3013 3014 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3015 struct ipmi_smi_msg *msg) 3016 { 3017 struct cmd_rcvr *rcvr; 3018 int rv = 0; 3019 unsigned char netfn; 3020 unsigned char cmd; 3021 unsigned char chan; 3022 ipmi_user_t user = NULL; 3023 struct ipmi_ipmb_addr *ipmb_addr; 3024 struct ipmi_recv_msg *recv_msg; 3025 struct ipmi_smi_handlers *handlers; 3026 3027 if (msg->rsp_size < 10) { 3028 /* Message not big enough, just ignore it. */ 3029 ipmi_inc_stat(intf, invalid_commands); 3030 return 0; 3031 } 3032 3033 if (msg->rsp[2] != 0) { 3034 /* An error getting the response, just ignore it. */ 3035 return 0; 3036 } 3037 3038 netfn = msg->rsp[4] >> 2; 3039 cmd = msg->rsp[8]; 3040 chan = msg->rsp[3] & 0xf; 3041 3042 rcu_read_lock(); 3043 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3044 if (rcvr) { 3045 user = rcvr->user; 3046 kref_get(&user->refcount); 3047 } else 3048 user = NULL; 3049 rcu_read_unlock(); 3050 3051 if (user == NULL) { 3052 /* We didn't find a user, deliver an error response. */ 3053 ipmi_inc_stat(intf, unhandled_commands); 3054 3055 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3056 msg->data[1] = IPMI_SEND_MSG_CMD; 3057 msg->data[2] = msg->rsp[3]; 3058 msg->data[3] = msg->rsp[6]; 3059 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3060 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3061 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3062 /* rqseq/lun */ 3063 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3064 msg->data[8] = msg->rsp[8]; /* cmd */ 3065 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3066 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3067 msg->data_size = 11; 3068 3069 #ifdef DEBUG_MSGING 3070 { 3071 int m; 3072 printk("Invalid command:"); 3073 for (m = 0; m < msg->data_size; m++) 3074 printk(" %2.2x", msg->data[m]); 3075 printk("\n"); 3076 } 3077 #endif 3078 rcu_read_lock(); 3079 handlers = intf->handlers; 3080 if (handlers) { 3081 handlers->sender(intf->send_info, msg, 0); 3082 /* 3083 * We used the message, so return the value 3084 * that causes it to not be freed or 3085 * queued. 3086 */ 3087 rv = -1; 3088 } 3089 rcu_read_unlock(); 3090 } else { 3091 /* Deliver the message to the user. */ 3092 ipmi_inc_stat(intf, handled_commands); 3093 3094 recv_msg = ipmi_alloc_recv_msg(); 3095 if (!recv_msg) { 3096 /* 3097 * We couldn't allocate memory for the 3098 * message, so requeue it for handling 3099 * later. 3100 */ 3101 rv = 1; 3102 kref_put(&user->refcount, free_user); 3103 } else { 3104 /* Extract the source address from the data. */ 3105 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3106 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3107 ipmb_addr->slave_addr = msg->rsp[6]; 3108 ipmb_addr->lun = msg->rsp[7] & 3; 3109 ipmb_addr->channel = msg->rsp[3] & 0xf; 3110 3111 /* 3112 * Extract the rest of the message information 3113 * from the IPMB header. 3114 */ 3115 recv_msg->user = user; 3116 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3117 recv_msg->msgid = msg->rsp[7] >> 2; 3118 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3119 recv_msg->msg.cmd = msg->rsp[8]; 3120 recv_msg->msg.data = recv_msg->msg_data; 3121 3122 /* 3123 * We chop off 10, not 9 bytes because the checksum 3124 * at the end also needs to be removed. 3125 */ 3126 recv_msg->msg.data_len = msg->rsp_size - 10; 3127 memcpy(recv_msg->msg_data, 3128 &(msg->rsp[9]), 3129 msg->rsp_size - 10); 3130 deliver_response(recv_msg); 3131 } 3132 } 3133 3134 return rv; 3135 } 3136 3137 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3138 struct ipmi_smi_msg *msg) 3139 { 3140 struct ipmi_lan_addr lan_addr; 3141 struct ipmi_recv_msg *recv_msg; 3142 3143 3144 /* 3145 * This is 13, not 12, because the response must contain a 3146 * completion code. 3147 */ 3148 if (msg->rsp_size < 13) { 3149 /* Message not big enough, just ignore it. */ 3150 ipmi_inc_stat(intf, invalid_lan_responses); 3151 return 0; 3152 } 3153 3154 if (msg->rsp[2] != 0) { 3155 /* An error getting the response, just ignore it. */ 3156 return 0; 3157 } 3158 3159 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3160 lan_addr.session_handle = msg->rsp[4]; 3161 lan_addr.remote_SWID = msg->rsp[8]; 3162 lan_addr.local_SWID = msg->rsp[5]; 3163 lan_addr.channel = msg->rsp[3] & 0x0f; 3164 lan_addr.privilege = msg->rsp[3] >> 4; 3165 lan_addr.lun = msg->rsp[9] & 3; 3166 3167 /* 3168 * It's a response from a remote entity. Look up the sequence 3169 * number and handle the response. 3170 */ 3171 if (intf_find_seq(intf, 3172 msg->rsp[9] >> 2, 3173 msg->rsp[3] & 0x0f, 3174 msg->rsp[10], 3175 (msg->rsp[6] >> 2) & (~1), 3176 (struct ipmi_addr *) &(lan_addr), 3177 &recv_msg)) { 3178 /* 3179 * We were unable to find the sequence number, 3180 * so just nuke the message. 3181 */ 3182 ipmi_inc_stat(intf, unhandled_lan_responses); 3183 return 0; 3184 } 3185 3186 memcpy(recv_msg->msg_data, 3187 &(msg->rsp[11]), 3188 msg->rsp_size - 11); 3189 /* 3190 * The other fields matched, so no need to set them, except 3191 * for netfn, which needs to be the response that was 3192 * returned, not the request value. 3193 */ 3194 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3195 recv_msg->msg.data = recv_msg->msg_data; 3196 recv_msg->msg.data_len = msg->rsp_size - 12; 3197 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3198 ipmi_inc_stat(intf, handled_lan_responses); 3199 deliver_response(recv_msg); 3200 3201 return 0; 3202 } 3203 3204 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3205 struct ipmi_smi_msg *msg) 3206 { 3207 struct cmd_rcvr *rcvr; 3208 int rv = 0; 3209 unsigned char netfn; 3210 unsigned char cmd; 3211 unsigned char chan; 3212 ipmi_user_t user = NULL; 3213 struct ipmi_lan_addr *lan_addr; 3214 struct ipmi_recv_msg *recv_msg; 3215 3216 if (msg->rsp_size < 12) { 3217 /* Message not big enough, just ignore it. */ 3218 ipmi_inc_stat(intf, invalid_commands); 3219 return 0; 3220 } 3221 3222 if (msg->rsp[2] != 0) { 3223 /* An error getting the response, just ignore it. */ 3224 return 0; 3225 } 3226 3227 netfn = msg->rsp[6] >> 2; 3228 cmd = msg->rsp[10]; 3229 chan = msg->rsp[3] & 0xf; 3230 3231 rcu_read_lock(); 3232 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3233 if (rcvr) { 3234 user = rcvr->user; 3235 kref_get(&user->refcount); 3236 } else 3237 user = NULL; 3238 rcu_read_unlock(); 3239 3240 if (user == NULL) { 3241 /* We didn't find a user, just give up. */ 3242 ipmi_inc_stat(intf, unhandled_commands); 3243 3244 /* 3245 * Don't do anything with these messages, just allow 3246 * them to be freed. 3247 */ 3248 rv = 0; 3249 } else { 3250 /* Deliver the message to the user. */ 3251 ipmi_inc_stat(intf, handled_commands); 3252 3253 recv_msg = ipmi_alloc_recv_msg(); 3254 if (!recv_msg) { 3255 /* 3256 * We couldn't allocate memory for the 3257 * message, so requeue it for handling later. 3258 */ 3259 rv = 1; 3260 kref_put(&user->refcount, free_user); 3261 } else { 3262 /* Extract the source address from the data. */ 3263 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3264 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3265 lan_addr->session_handle = msg->rsp[4]; 3266 lan_addr->remote_SWID = msg->rsp[8]; 3267 lan_addr->local_SWID = msg->rsp[5]; 3268 lan_addr->lun = msg->rsp[9] & 3; 3269 lan_addr->channel = msg->rsp[3] & 0xf; 3270 lan_addr->privilege = msg->rsp[3] >> 4; 3271 3272 /* 3273 * Extract the rest of the message information 3274 * from the IPMB header. 3275 */ 3276 recv_msg->user = user; 3277 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3278 recv_msg->msgid = msg->rsp[9] >> 2; 3279 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3280 recv_msg->msg.cmd = msg->rsp[10]; 3281 recv_msg->msg.data = recv_msg->msg_data; 3282 3283 /* 3284 * We chop off 12, not 11 bytes because the checksum 3285 * at the end also needs to be removed. 3286 */ 3287 recv_msg->msg.data_len = msg->rsp_size - 12; 3288 memcpy(recv_msg->msg_data, 3289 &(msg->rsp[11]), 3290 msg->rsp_size - 12); 3291 deliver_response(recv_msg); 3292 } 3293 } 3294 3295 return rv; 3296 } 3297 3298 /* 3299 * This routine will handle "Get Message" command responses with 3300 * channels that use an OEM Medium. The message format belongs to 3301 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3302 * Chapter 22, sections 22.6 and 22.24 for more details. 3303 */ 3304 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3305 struct ipmi_smi_msg *msg) 3306 { 3307 struct cmd_rcvr *rcvr; 3308 int rv = 0; 3309 unsigned char netfn; 3310 unsigned char cmd; 3311 unsigned char chan; 3312 ipmi_user_t user = NULL; 3313 struct ipmi_system_interface_addr *smi_addr; 3314 struct ipmi_recv_msg *recv_msg; 3315 3316 /* 3317 * We expect the OEM SW to perform error checking 3318 * so we just do some basic sanity checks 3319 */ 3320 if (msg->rsp_size < 4) { 3321 /* Message not big enough, just ignore it. */ 3322 ipmi_inc_stat(intf, invalid_commands); 3323 return 0; 3324 } 3325 3326 if (msg->rsp[2] != 0) { 3327 /* An error getting the response, just ignore it. */ 3328 return 0; 3329 } 3330 3331 /* 3332 * This is an OEM Message so the OEM needs to know how 3333 * handle the message. We do no interpretation. 3334 */ 3335 netfn = msg->rsp[0] >> 2; 3336 cmd = msg->rsp[1]; 3337 chan = msg->rsp[3] & 0xf; 3338 3339 rcu_read_lock(); 3340 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3341 if (rcvr) { 3342 user = rcvr->user; 3343 kref_get(&user->refcount); 3344 } else 3345 user = NULL; 3346 rcu_read_unlock(); 3347 3348 if (user == NULL) { 3349 /* We didn't find a user, just give up. */ 3350 ipmi_inc_stat(intf, unhandled_commands); 3351 3352 /* 3353 * Don't do anything with these messages, just allow 3354 * them to be freed. 3355 */ 3356 3357 rv = 0; 3358 } else { 3359 /* Deliver the message to the user. */ 3360 ipmi_inc_stat(intf, handled_commands); 3361 3362 recv_msg = ipmi_alloc_recv_msg(); 3363 if (!recv_msg) { 3364 /* 3365 * We couldn't allocate memory for the 3366 * message, so requeue it for handling 3367 * later. 3368 */ 3369 rv = 1; 3370 kref_put(&user->refcount, free_user); 3371 } else { 3372 /* 3373 * OEM Messages are expected to be delivered via 3374 * the system interface to SMS software. We might 3375 * need to visit this again depending on OEM 3376 * requirements 3377 */ 3378 smi_addr = ((struct ipmi_system_interface_addr *) 3379 &(recv_msg->addr)); 3380 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3381 smi_addr->channel = IPMI_BMC_CHANNEL; 3382 smi_addr->lun = msg->rsp[0] & 3; 3383 3384 recv_msg->user = user; 3385 recv_msg->user_msg_data = NULL; 3386 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3387 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3388 recv_msg->msg.cmd = msg->rsp[1]; 3389 recv_msg->msg.data = recv_msg->msg_data; 3390 3391 /* 3392 * The message starts at byte 4 which follows the 3393 * the Channel Byte in the "GET MESSAGE" command 3394 */ 3395 recv_msg->msg.data_len = msg->rsp_size - 4; 3396 memcpy(recv_msg->msg_data, 3397 &(msg->rsp[4]), 3398 msg->rsp_size - 4); 3399 deliver_response(recv_msg); 3400 } 3401 } 3402 3403 return rv; 3404 } 3405 3406 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3407 struct ipmi_smi_msg *msg) 3408 { 3409 struct ipmi_system_interface_addr *smi_addr; 3410 3411 recv_msg->msgid = 0; 3412 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3413 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3414 smi_addr->channel = IPMI_BMC_CHANNEL; 3415 smi_addr->lun = msg->rsp[0] & 3; 3416 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3417 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3418 recv_msg->msg.cmd = msg->rsp[1]; 3419 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3420 recv_msg->msg.data = recv_msg->msg_data; 3421 recv_msg->msg.data_len = msg->rsp_size - 3; 3422 } 3423 3424 static int handle_read_event_rsp(ipmi_smi_t intf, 3425 struct ipmi_smi_msg *msg) 3426 { 3427 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3428 struct list_head msgs; 3429 ipmi_user_t user; 3430 int rv = 0; 3431 int deliver_count = 0; 3432 unsigned long flags; 3433 3434 if (msg->rsp_size < 19) { 3435 /* Message is too small to be an IPMB event. */ 3436 ipmi_inc_stat(intf, invalid_events); 3437 return 0; 3438 } 3439 3440 if (msg->rsp[2] != 0) { 3441 /* An error getting the event, just ignore it. */ 3442 return 0; 3443 } 3444 3445 INIT_LIST_HEAD(&msgs); 3446 3447 spin_lock_irqsave(&intf->events_lock, flags); 3448 3449 ipmi_inc_stat(intf, events); 3450 3451 /* 3452 * Allocate and fill in one message for every user that is 3453 * getting events. 3454 */ 3455 rcu_read_lock(); 3456 list_for_each_entry_rcu(user, &intf->users, link) { 3457 if (!user->gets_events) 3458 continue; 3459 3460 recv_msg = ipmi_alloc_recv_msg(); 3461 if (!recv_msg) { 3462 rcu_read_unlock(); 3463 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3464 link) { 3465 list_del(&recv_msg->link); 3466 ipmi_free_recv_msg(recv_msg); 3467 } 3468 /* 3469 * We couldn't allocate memory for the 3470 * message, so requeue it for handling 3471 * later. 3472 */ 3473 rv = 1; 3474 goto out; 3475 } 3476 3477 deliver_count++; 3478 3479 copy_event_into_recv_msg(recv_msg, msg); 3480 recv_msg->user = user; 3481 kref_get(&user->refcount); 3482 list_add_tail(&(recv_msg->link), &msgs); 3483 } 3484 rcu_read_unlock(); 3485 3486 if (deliver_count) { 3487 /* Now deliver all the messages. */ 3488 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3489 list_del(&recv_msg->link); 3490 deliver_response(recv_msg); 3491 } 3492 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3493 /* 3494 * No one to receive the message, put it in queue if there's 3495 * not already too many things in the queue. 3496 */ 3497 recv_msg = ipmi_alloc_recv_msg(); 3498 if (!recv_msg) { 3499 /* 3500 * We couldn't allocate memory for the 3501 * message, so requeue it for handling 3502 * later. 3503 */ 3504 rv = 1; 3505 goto out; 3506 } 3507 3508 copy_event_into_recv_msg(recv_msg, msg); 3509 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3510 intf->waiting_events_count++; 3511 } else if (!intf->event_msg_printed) { 3512 /* 3513 * There's too many things in the queue, discard this 3514 * message. 3515 */ 3516 printk(KERN_WARNING PFX "Event queue full, discarding" 3517 " incoming events\n"); 3518 intf->event_msg_printed = 1; 3519 } 3520 3521 out: 3522 spin_unlock_irqrestore(&(intf->events_lock), flags); 3523 3524 return rv; 3525 } 3526 3527 static int handle_bmc_rsp(ipmi_smi_t intf, 3528 struct ipmi_smi_msg *msg) 3529 { 3530 struct ipmi_recv_msg *recv_msg; 3531 struct ipmi_user *user; 3532 3533 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3534 if (recv_msg == NULL) { 3535 printk(KERN_WARNING 3536 "IPMI message received with no owner. This\n" 3537 "could be because of a malformed message, or\n" 3538 "because of a hardware error. Contact your\n" 3539 "hardware vender for assistance\n"); 3540 return 0; 3541 } 3542 3543 user = recv_msg->user; 3544 /* Make sure the user still exists. */ 3545 if (user && !user->valid) { 3546 /* The user for the message went away, so give up. */ 3547 ipmi_inc_stat(intf, unhandled_local_responses); 3548 ipmi_free_recv_msg(recv_msg); 3549 } else { 3550 struct ipmi_system_interface_addr *smi_addr; 3551 3552 ipmi_inc_stat(intf, handled_local_responses); 3553 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3554 recv_msg->msgid = msg->msgid; 3555 smi_addr = ((struct ipmi_system_interface_addr *) 3556 &(recv_msg->addr)); 3557 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3558 smi_addr->channel = IPMI_BMC_CHANNEL; 3559 smi_addr->lun = msg->rsp[0] & 3; 3560 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3561 recv_msg->msg.cmd = msg->rsp[1]; 3562 memcpy(recv_msg->msg_data, 3563 &(msg->rsp[2]), 3564 msg->rsp_size - 2); 3565 recv_msg->msg.data = recv_msg->msg_data; 3566 recv_msg->msg.data_len = msg->rsp_size - 2; 3567 deliver_response(recv_msg); 3568 } 3569 3570 return 0; 3571 } 3572 3573 /* 3574 * Handle a new message. Return 1 if the message should be requeued, 3575 * 0 if the message should be freed, or -1 if the message should not 3576 * be freed or requeued. 3577 */ 3578 static int handle_new_recv_msg(ipmi_smi_t intf, 3579 struct ipmi_smi_msg *msg) 3580 { 3581 int requeue; 3582 int chan; 3583 3584 #ifdef DEBUG_MSGING 3585 int m; 3586 printk("Recv:"); 3587 for (m = 0; m < msg->rsp_size; m++) 3588 printk(" %2.2x", msg->rsp[m]); 3589 printk("\n"); 3590 #endif 3591 if (msg->rsp_size < 2) { 3592 /* Message is too small to be correct. */ 3593 printk(KERN_WARNING PFX "BMC returned to small a message" 3594 " for netfn %x cmd %x, got %d bytes\n", 3595 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3596 3597 /* Generate an error response for the message. */ 3598 msg->rsp[0] = msg->data[0] | (1 << 2); 3599 msg->rsp[1] = msg->data[1]; 3600 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3601 msg->rsp_size = 3; 3602 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3603 || (msg->rsp[1] != msg->data[1])) { 3604 /* 3605 * The NetFN and Command in the response is not even 3606 * marginally correct. 3607 */ 3608 printk(KERN_WARNING PFX "BMC returned incorrect response," 3609 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3610 (msg->data[0] >> 2) | 1, msg->data[1], 3611 msg->rsp[0] >> 2, msg->rsp[1]); 3612 3613 /* Generate an error response for the message. */ 3614 msg->rsp[0] = msg->data[0] | (1 << 2); 3615 msg->rsp[1] = msg->data[1]; 3616 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3617 msg->rsp_size = 3; 3618 } 3619 3620 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3621 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3622 && (msg->user_data != NULL)) { 3623 /* 3624 * It's a response to a response we sent. For this we 3625 * deliver a send message response to the user. 3626 */ 3627 struct ipmi_recv_msg *recv_msg = msg->user_data; 3628 3629 requeue = 0; 3630 if (msg->rsp_size < 2) 3631 /* Message is too small to be correct. */ 3632 goto out; 3633 3634 chan = msg->data[2] & 0x0f; 3635 if (chan >= IPMI_MAX_CHANNELS) 3636 /* Invalid channel number */ 3637 goto out; 3638 3639 if (!recv_msg) 3640 goto out; 3641 3642 /* Make sure the user still exists. */ 3643 if (!recv_msg->user || !recv_msg->user->valid) 3644 goto out; 3645 3646 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3647 recv_msg->msg.data = recv_msg->msg_data; 3648 recv_msg->msg.data_len = 1; 3649 recv_msg->msg_data[0] = msg->rsp[2]; 3650 deliver_response(recv_msg); 3651 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3652 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3653 /* It's from the receive queue. */ 3654 chan = msg->rsp[3] & 0xf; 3655 if (chan >= IPMI_MAX_CHANNELS) { 3656 /* Invalid channel number */ 3657 requeue = 0; 3658 goto out; 3659 } 3660 3661 /* 3662 * We need to make sure the channels have been initialized. 3663 * The channel_handler routine will set the "curr_channel" 3664 * equal to or greater than IPMI_MAX_CHANNELS when all the 3665 * channels for this interface have been initialized. 3666 */ 3667 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3668 requeue = 0; /* Throw the message away */ 3669 goto out; 3670 } 3671 3672 switch (intf->channels[chan].medium) { 3673 case IPMI_CHANNEL_MEDIUM_IPMB: 3674 if (msg->rsp[4] & 0x04) { 3675 /* 3676 * It's a response, so find the 3677 * requesting message and send it up. 3678 */ 3679 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3680 } else { 3681 /* 3682 * It's a command to the SMS from some other 3683 * entity. Handle that. 3684 */ 3685 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3686 } 3687 break; 3688 3689 case IPMI_CHANNEL_MEDIUM_8023LAN: 3690 case IPMI_CHANNEL_MEDIUM_ASYNC: 3691 if (msg->rsp[6] & 0x04) { 3692 /* 3693 * It's a response, so find the 3694 * requesting message and send it up. 3695 */ 3696 requeue = handle_lan_get_msg_rsp(intf, msg); 3697 } else { 3698 /* 3699 * It's a command to the SMS from some other 3700 * entity. Handle that. 3701 */ 3702 requeue = handle_lan_get_msg_cmd(intf, msg); 3703 } 3704 break; 3705 3706 default: 3707 /* Check for OEM Channels. Clients had better 3708 register for these commands. */ 3709 if ((intf->channels[chan].medium 3710 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3711 && (intf->channels[chan].medium 3712 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3713 requeue = handle_oem_get_msg_cmd(intf, msg); 3714 } else { 3715 /* 3716 * We don't handle the channel type, so just 3717 * free the message. 3718 */ 3719 requeue = 0; 3720 } 3721 } 3722 3723 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3724 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3725 /* It's an asyncronous event. */ 3726 requeue = handle_read_event_rsp(intf, msg); 3727 } else { 3728 /* It's a response from the local BMC. */ 3729 requeue = handle_bmc_rsp(intf, msg); 3730 } 3731 3732 out: 3733 return requeue; 3734 } 3735 3736 /* Handle a new message from the lower layer. */ 3737 void ipmi_smi_msg_received(ipmi_smi_t intf, 3738 struct ipmi_smi_msg *msg) 3739 { 3740 unsigned long flags = 0; /* keep us warning-free. */ 3741 int rv; 3742 int run_to_completion; 3743 3744 3745 if ((msg->data_size >= 2) 3746 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3747 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3748 && (msg->user_data == NULL)) { 3749 /* 3750 * This is the local response to a command send, start 3751 * the timer for these. The user_data will not be 3752 * NULL if this is a response send, and we will let 3753 * response sends just go through. 3754 */ 3755 3756 /* 3757 * Check for errors, if we get certain errors (ones 3758 * that mean basically we can try again later), we 3759 * ignore them and start the timer. Otherwise we 3760 * report the error immediately. 3761 */ 3762 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3763 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3764 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3765 && (msg->rsp[2] != IPMI_BUS_ERR) 3766 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3767 int chan = msg->rsp[3] & 0xf; 3768 3769 /* Got an error sending the message, handle it. */ 3770 if (chan >= IPMI_MAX_CHANNELS) 3771 ; /* This shouldn't happen */ 3772 else if ((intf->channels[chan].medium 3773 == IPMI_CHANNEL_MEDIUM_8023LAN) 3774 || (intf->channels[chan].medium 3775 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3776 ipmi_inc_stat(intf, sent_lan_command_errs); 3777 else 3778 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3779 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3780 } else 3781 /* The message was sent, start the timer. */ 3782 intf_start_seq_timer(intf, msg->msgid); 3783 3784 ipmi_free_smi_msg(msg); 3785 goto out; 3786 } 3787 3788 /* 3789 * To preserve message order, if the list is not empty, we 3790 * tack this message onto the end of the list. 3791 */ 3792 run_to_completion = intf->run_to_completion; 3793 if (!run_to_completion) 3794 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3795 if (!list_empty(&intf->waiting_msgs)) { 3796 list_add_tail(&msg->link, &intf->waiting_msgs); 3797 if (!run_to_completion) 3798 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3799 goto out; 3800 } 3801 if (!run_to_completion) 3802 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3803 3804 rv = handle_new_recv_msg(intf, msg); 3805 if (rv > 0) { 3806 /* 3807 * Could not handle the message now, just add it to a 3808 * list to handle later. 3809 */ 3810 run_to_completion = intf->run_to_completion; 3811 if (!run_to_completion) 3812 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3813 list_add_tail(&msg->link, &intf->waiting_msgs); 3814 if (!run_to_completion) 3815 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3816 } else if (rv == 0) { 3817 ipmi_free_smi_msg(msg); 3818 } 3819 3820 out: 3821 return; 3822 } 3823 EXPORT_SYMBOL(ipmi_smi_msg_received); 3824 3825 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3826 { 3827 ipmi_user_t user; 3828 3829 rcu_read_lock(); 3830 list_for_each_entry_rcu(user, &intf->users, link) { 3831 if (!user->handler->ipmi_watchdog_pretimeout) 3832 continue; 3833 3834 user->handler->ipmi_watchdog_pretimeout(user->handler_data); 3835 } 3836 rcu_read_unlock(); 3837 } 3838 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3839 3840 static struct ipmi_smi_msg * 3841 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 3842 unsigned char seq, long seqid) 3843 { 3844 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 3845 if (!smi_msg) 3846 /* 3847 * If we can't allocate the message, then just return, we 3848 * get 4 retries, so this should be ok. 3849 */ 3850 return NULL; 3851 3852 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 3853 smi_msg->data_size = recv_msg->msg.data_len; 3854 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 3855 3856 #ifdef DEBUG_MSGING 3857 { 3858 int m; 3859 printk("Resend: "); 3860 for (m = 0; m < smi_msg->data_size; m++) 3861 printk(" %2.2x", smi_msg->data[m]); 3862 printk("\n"); 3863 } 3864 #endif 3865 return smi_msg; 3866 } 3867 3868 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 3869 struct list_head *timeouts, long timeout_period, 3870 int slot, unsigned long *flags) 3871 { 3872 struct ipmi_recv_msg *msg; 3873 struct ipmi_smi_handlers *handlers; 3874 3875 if (intf->intf_num == -1) 3876 return; 3877 3878 if (!ent->inuse) 3879 return; 3880 3881 ent->timeout -= timeout_period; 3882 if (ent->timeout > 0) 3883 return; 3884 3885 if (ent->retries_left == 0) { 3886 /* The message has used all its retries. */ 3887 ent->inuse = 0; 3888 msg = ent->recv_msg; 3889 list_add_tail(&msg->link, timeouts); 3890 if (ent->broadcast) 3891 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 3892 else if (is_lan_addr(&ent->recv_msg->addr)) 3893 ipmi_inc_stat(intf, timed_out_lan_commands); 3894 else 3895 ipmi_inc_stat(intf, timed_out_ipmb_commands); 3896 } else { 3897 struct ipmi_smi_msg *smi_msg; 3898 /* More retries, send again. */ 3899 3900 /* 3901 * Start with the max timer, set to normal timer after 3902 * the message is sent. 3903 */ 3904 ent->timeout = MAX_MSG_TIMEOUT; 3905 ent->retries_left--; 3906 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 3907 ent->seqid); 3908 if (!smi_msg) { 3909 if (is_lan_addr(&ent->recv_msg->addr)) 3910 ipmi_inc_stat(intf, 3911 dropped_rexmit_lan_commands); 3912 else 3913 ipmi_inc_stat(intf, 3914 dropped_rexmit_ipmb_commands); 3915 return; 3916 } 3917 3918 spin_unlock_irqrestore(&intf->seq_lock, *flags); 3919 3920 /* 3921 * Send the new message. We send with a zero 3922 * priority. It timed out, I doubt time is that 3923 * critical now, and high priority messages are really 3924 * only for messages to the local MC, which don't get 3925 * resent. 3926 */ 3927 handlers = intf->handlers; 3928 if (handlers) { 3929 if (is_lan_addr(&ent->recv_msg->addr)) 3930 ipmi_inc_stat(intf, 3931 retransmitted_lan_commands); 3932 else 3933 ipmi_inc_stat(intf, 3934 retransmitted_ipmb_commands); 3935 3936 intf->handlers->sender(intf->send_info, 3937 smi_msg, 0); 3938 } else 3939 ipmi_free_smi_msg(smi_msg); 3940 3941 spin_lock_irqsave(&intf->seq_lock, *flags); 3942 } 3943 } 3944 3945 static void ipmi_timeout_handler(long timeout_period) 3946 { 3947 ipmi_smi_t intf; 3948 struct list_head timeouts; 3949 struct ipmi_recv_msg *msg, *msg2; 3950 struct ipmi_smi_msg *smi_msg, *smi_msg2; 3951 unsigned long flags; 3952 int i; 3953 3954 rcu_read_lock(); 3955 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 3956 /* See if any waiting messages need to be processed. */ 3957 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3958 list_for_each_entry_safe(smi_msg, smi_msg2, 3959 &intf->waiting_msgs, link) { 3960 if (!handle_new_recv_msg(intf, smi_msg)) { 3961 list_del(&smi_msg->link); 3962 ipmi_free_smi_msg(smi_msg); 3963 } else { 3964 /* 3965 * To preserve message order, quit if we 3966 * can't handle a message. 3967 */ 3968 break; 3969 } 3970 } 3971 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3972 3973 /* 3974 * Go through the seq table and find any messages that 3975 * have timed out, putting them in the timeouts 3976 * list. 3977 */ 3978 INIT_LIST_HEAD(&timeouts); 3979 spin_lock_irqsave(&intf->seq_lock, flags); 3980 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 3981 check_msg_timeout(intf, &(intf->seq_table[i]), 3982 &timeouts, timeout_period, i, 3983 &flags); 3984 spin_unlock_irqrestore(&intf->seq_lock, flags); 3985 3986 list_for_each_entry_safe(msg, msg2, &timeouts, link) 3987 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 3988 3989 /* 3990 * Maintenance mode handling. Check the timeout 3991 * optimistically before we claim the lock. It may 3992 * mean a timeout gets missed occasionally, but that 3993 * only means the timeout gets extended by one period 3994 * in that case. No big deal, and it avoids the lock 3995 * most of the time. 3996 */ 3997 if (intf->auto_maintenance_timeout > 0) { 3998 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 3999 if (intf->auto_maintenance_timeout > 0) { 4000 intf->auto_maintenance_timeout 4001 -= timeout_period; 4002 if (!intf->maintenance_mode 4003 && (intf->auto_maintenance_timeout <= 0)) { 4004 intf->maintenance_mode_enable = 0; 4005 maintenance_mode_update(intf); 4006 } 4007 } 4008 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4009 flags); 4010 } 4011 } 4012 rcu_read_unlock(); 4013 } 4014 4015 static void ipmi_request_event(void) 4016 { 4017 ipmi_smi_t intf; 4018 struct ipmi_smi_handlers *handlers; 4019 4020 rcu_read_lock(); 4021 /* 4022 * Called from the timer, no need to check if handlers is 4023 * valid. 4024 */ 4025 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4026 /* No event requests when in maintenance mode. */ 4027 if (intf->maintenance_mode_enable) 4028 continue; 4029 4030 handlers = intf->handlers; 4031 if (handlers) 4032 handlers->request_events(intf->send_info); 4033 } 4034 rcu_read_unlock(); 4035 } 4036 4037 static struct timer_list ipmi_timer; 4038 4039 /* Call every ~1000 ms. */ 4040 #define IPMI_TIMEOUT_TIME 1000 4041 4042 /* How many jiffies does it take to get to the timeout time. */ 4043 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 4044 4045 /* 4046 * Request events from the queue every second (this is the number of 4047 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 4048 * future, IPMI will add a way to know immediately if an event is in 4049 * the queue and this silliness can go away. 4050 */ 4051 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 4052 4053 static atomic_t stop_operation; 4054 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4055 4056 static void ipmi_timeout(unsigned long data) 4057 { 4058 if (atomic_read(&stop_operation)) 4059 return; 4060 4061 ticks_to_req_ev--; 4062 if (ticks_to_req_ev == 0) { 4063 ipmi_request_event(); 4064 ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4065 } 4066 4067 ipmi_timeout_handler(IPMI_TIMEOUT_TIME); 4068 4069 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4070 } 4071 4072 4073 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4074 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4075 4076 /* FIXME - convert these to slabs. */ 4077 static void free_smi_msg(struct ipmi_smi_msg *msg) 4078 { 4079 atomic_dec(&smi_msg_inuse_count); 4080 kfree(msg); 4081 } 4082 4083 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4084 { 4085 struct ipmi_smi_msg *rv; 4086 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4087 if (rv) { 4088 rv->done = free_smi_msg; 4089 rv->user_data = NULL; 4090 atomic_inc(&smi_msg_inuse_count); 4091 } 4092 return rv; 4093 } 4094 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4095 4096 static void free_recv_msg(struct ipmi_recv_msg *msg) 4097 { 4098 atomic_dec(&recv_msg_inuse_count); 4099 kfree(msg); 4100 } 4101 4102 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4103 { 4104 struct ipmi_recv_msg *rv; 4105 4106 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4107 if (rv) { 4108 rv->user = NULL; 4109 rv->done = free_recv_msg; 4110 atomic_inc(&recv_msg_inuse_count); 4111 } 4112 return rv; 4113 } 4114 4115 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4116 { 4117 if (msg->user) 4118 kref_put(&msg->user->refcount, free_user); 4119 msg->done(msg); 4120 } 4121 EXPORT_SYMBOL(ipmi_free_recv_msg); 4122 4123 #ifdef CONFIG_IPMI_PANIC_EVENT 4124 4125 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4126 { 4127 } 4128 4129 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4130 { 4131 } 4132 4133 #ifdef CONFIG_IPMI_PANIC_STRING 4134 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4135 { 4136 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4137 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4138 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4139 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4140 /* A get event receiver command, save it. */ 4141 intf->event_receiver = msg->msg.data[1]; 4142 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4143 } 4144 } 4145 4146 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4147 { 4148 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4149 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4150 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4151 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4152 /* 4153 * A get device id command, save if we are an event 4154 * receiver or generator. 4155 */ 4156 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4157 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4158 } 4159 } 4160 #endif 4161 4162 static void send_panic_events(char *str) 4163 { 4164 struct kernel_ipmi_msg msg; 4165 ipmi_smi_t intf; 4166 unsigned char data[16]; 4167 struct ipmi_system_interface_addr *si; 4168 struct ipmi_addr addr; 4169 struct ipmi_smi_msg smi_msg; 4170 struct ipmi_recv_msg recv_msg; 4171 4172 si = (struct ipmi_system_interface_addr *) &addr; 4173 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4174 si->channel = IPMI_BMC_CHANNEL; 4175 si->lun = 0; 4176 4177 /* Fill in an event telling that we have failed. */ 4178 msg.netfn = 0x04; /* Sensor or Event. */ 4179 msg.cmd = 2; /* Platform event command. */ 4180 msg.data = data; 4181 msg.data_len = 8; 4182 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4183 data[1] = 0x03; /* This is for IPMI 1.0. */ 4184 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4185 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4186 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4187 4188 /* 4189 * Put a few breadcrumbs in. Hopefully later we can add more things 4190 * to make the panic events more useful. 4191 */ 4192 if (str) { 4193 data[3] = str[0]; 4194 data[6] = str[1]; 4195 data[7] = str[2]; 4196 } 4197 4198 smi_msg.done = dummy_smi_done_handler; 4199 recv_msg.done = dummy_recv_done_handler; 4200 4201 /* For every registered interface, send the event. */ 4202 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4203 if (!intf->handlers) 4204 /* Interface is not ready. */ 4205 continue; 4206 4207 intf->run_to_completion = 1; 4208 /* Send the event announcing the panic. */ 4209 intf->handlers->set_run_to_completion(intf->send_info, 1); 4210 i_ipmi_request(NULL, 4211 intf, 4212 &addr, 4213 0, 4214 &msg, 4215 intf, 4216 &smi_msg, 4217 &recv_msg, 4218 0, 4219 intf->channels[0].address, 4220 intf->channels[0].lun, 4221 0, 1); /* Don't retry, and don't wait. */ 4222 } 4223 4224 #ifdef CONFIG_IPMI_PANIC_STRING 4225 /* 4226 * On every interface, dump a bunch of OEM event holding the 4227 * string. 4228 */ 4229 if (!str) 4230 return; 4231 4232 /* For every registered interface, send the event. */ 4233 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4234 char *p = str; 4235 struct ipmi_ipmb_addr *ipmb; 4236 int j; 4237 4238 if (intf->intf_num == -1) 4239 /* Interface was not ready yet. */ 4240 continue; 4241 4242 /* 4243 * intf_num is used as an marker to tell if the 4244 * interface is valid. Thus we need a read barrier to 4245 * make sure data fetched before checking intf_num 4246 * won't be used. 4247 */ 4248 smp_rmb(); 4249 4250 /* 4251 * First job here is to figure out where to send the 4252 * OEM events. There's no way in IPMI to send OEM 4253 * events using an event send command, so we have to 4254 * find the SEL to put them in and stick them in 4255 * there. 4256 */ 4257 4258 /* Get capabilities from the get device id. */ 4259 intf->local_sel_device = 0; 4260 intf->local_event_generator = 0; 4261 intf->event_receiver = 0; 4262 4263 /* Request the device info from the local MC. */ 4264 msg.netfn = IPMI_NETFN_APP_REQUEST; 4265 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4266 msg.data = NULL; 4267 msg.data_len = 0; 4268 intf->null_user_handler = device_id_fetcher; 4269 i_ipmi_request(NULL, 4270 intf, 4271 &addr, 4272 0, 4273 &msg, 4274 intf, 4275 &smi_msg, 4276 &recv_msg, 4277 0, 4278 intf->channels[0].address, 4279 intf->channels[0].lun, 4280 0, 1); /* Don't retry, and don't wait. */ 4281 4282 if (intf->local_event_generator) { 4283 /* Request the event receiver from the local MC. */ 4284 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4285 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4286 msg.data = NULL; 4287 msg.data_len = 0; 4288 intf->null_user_handler = event_receiver_fetcher; 4289 i_ipmi_request(NULL, 4290 intf, 4291 &addr, 4292 0, 4293 &msg, 4294 intf, 4295 &smi_msg, 4296 &recv_msg, 4297 0, 4298 intf->channels[0].address, 4299 intf->channels[0].lun, 4300 0, 1); /* no retry, and no wait. */ 4301 } 4302 intf->null_user_handler = NULL; 4303 4304 /* 4305 * Validate the event receiver. The low bit must not 4306 * be 1 (it must be a valid IPMB address), it cannot 4307 * be zero, and it must not be my address. 4308 */ 4309 if (((intf->event_receiver & 1) == 0) 4310 && (intf->event_receiver != 0) 4311 && (intf->event_receiver != intf->channels[0].address)) { 4312 /* 4313 * The event receiver is valid, send an IPMB 4314 * message. 4315 */ 4316 ipmb = (struct ipmi_ipmb_addr *) &addr; 4317 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4318 ipmb->channel = 0; /* FIXME - is this right? */ 4319 ipmb->lun = intf->event_receiver_lun; 4320 ipmb->slave_addr = intf->event_receiver; 4321 } else if (intf->local_sel_device) { 4322 /* 4323 * The event receiver was not valid (or was 4324 * me), but I am an SEL device, just dump it 4325 * in my SEL. 4326 */ 4327 si = (struct ipmi_system_interface_addr *) &addr; 4328 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4329 si->channel = IPMI_BMC_CHANNEL; 4330 si->lun = 0; 4331 } else 4332 continue; /* No where to send the event. */ 4333 4334 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4335 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4336 msg.data = data; 4337 msg.data_len = 16; 4338 4339 j = 0; 4340 while (*p) { 4341 int size = strlen(p); 4342 4343 if (size > 11) 4344 size = 11; 4345 data[0] = 0; 4346 data[1] = 0; 4347 data[2] = 0xf0; /* OEM event without timestamp. */ 4348 data[3] = intf->channels[0].address; 4349 data[4] = j++; /* sequence # */ 4350 /* 4351 * Always give 11 bytes, so strncpy will fill 4352 * it with zeroes for me. 4353 */ 4354 strncpy(data+5, p, 11); 4355 p += size; 4356 4357 i_ipmi_request(NULL, 4358 intf, 4359 &addr, 4360 0, 4361 &msg, 4362 intf, 4363 &smi_msg, 4364 &recv_msg, 4365 0, 4366 intf->channels[0].address, 4367 intf->channels[0].lun, 4368 0, 1); /* no retry, and no wait. */ 4369 } 4370 } 4371 #endif /* CONFIG_IPMI_PANIC_STRING */ 4372 } 4373 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4374 4375 static int has_panicked; 4376 4377 static int panic_event(struct notifier_block *this, 4378 unsigned long event, 4379 void *ptr) 4380 { 4381 ipmi_smi_t intf; 4382 4383 if (has_panicked) 4384 return NOTIFY_DONE; 4385 has_panicked = 1; 4386 4387 /* For every registered interface, set it to run to completion. */ 4388 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4389 if (!intf->handlers) 4390 /* Interface is not ready. */ 4391 continue; 4392 4393 intf->run_to_completion = 1; 4394 intf->handlers->set_run_to_completion(intf->send_info, 1); 4395 } 4396 4397 #ifdef CONFIG_IPMI_PANIC_EVENT 4398 send_panic_events(ptr); 4399 #endif 4400 4401 return NOTIFY_DONE; 4402 } 4403 4404 static struct notifier_block panic_block = { 4405 .notifier_call = panic_event, 4406 .next = NULL, 4407 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4408 }; 4409 4410 static int ipmi_init_msghandler(void) 4411 { 4412 int rv; 4413 4414 if (initialized) 4415 return 0; 4416 4417 rv = driver_register(&ipmidriver.driver); 4418 if (rv) { 4419 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4420 return rv; 4421 } 4422 4423 printk(KERN_INFO "ipmi message handler version " 4424 IPMI_DRIVER_VERSION "\n"); 4425 4426 #ifdef CONFIG_PROC_FS 4427 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4428 if (!proc_ipmi_root) { 4429 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4430 return -ENOMEM; 4431 } 4432 4433 #endif /* CONFIG_PROC_FS */ 4434 4435 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4436 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4437 4438 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4439 4440 initialized = 1; 4441 4442 return 0; 4443 } 4444 4445 static int __init ipmi_init_msghandler_mod(void) 4446 { 4447 ipmi_init_msghandler(); 4448 return 0; 4449 } 4450 4451 static void __exit cleanup_ipmi(void) 4452 { 4453 int count; 4454 4455 if (!initialized) 4456 return; 4457 4458 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4459 4460 /* 4461 * This can't be called if any interfaces exist, so no worry 4462 * about shutting down the interfaces. 4463 */ 4464 4465 /* 4466 * Tell the timer to stop, then wait for it to stop. This 4467 * avoids problems with race conditions removing the timer 4468 * here. 4469 */ 4470 atomic_inc(&stop_operation); 4471 del_timer_sync(&ipmi_timer); 4472 4473 #ifdef CONFIG_PROC_FS 4474 remove_proc_entry(proc_ipmi_root->name, NULL); 4475 #endif /* CONFIG_PROC_FS */ 4476 4477 driver_unregister(&ipmidriver.driver); 4478 4479 initialized = 0; 4480 4481 /* Check for buffer leaks. */ 4482 count = atomic_read(&smi_msg_inuse_count); 4483 if (count != 0) 4484 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4485 count); 4486 count = atomic_read(&recv_msg_inuse_count); 4487 if (count != 0) 4488 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4489 count); 4490 } 4491 module_exit(cleanup_ipmi); 4492 4493 module_init(ipmi_init_msghandler_mod); 4494 MODULE_LICENSE("GPL"); 4495 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4496 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4497 " interface."); 4498 MODULE_VERSION(IPMI_DRIVER_VERSION); 4499