1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 
37 #define IPMI_DRIVER_VERSION "39.2"
38 
39 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
40 static int ipmi_init_msghandler(void);
41 static void smi_recv_tasklet(unsigned long);
42 static void handle_new_recv_msgs(struct ipmi_smi *intf);
43 static void need_waiter(struct ipmi_smi *intf);
44 static int handle_one_recv_msg(struct ipmi_smi *intf,
45 			       struct ipmi_smi_msg *msg);
46 
47 static bool initialized;
48 static bool drvregistered;
49 
50 enum ipmi_panic_event_op {
51 	IPMI_SEND_PANIC_EVENT_NONE,
52 	IPMI_SEND_PANIC_EVENT,
53 	IPMI_SEND_PANIC_EVENT_STRING
54 };
55 #ifdef CONFIG_IPMI_PANIC_STRING
56 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
57 #elif defined(CONFIG_IPMI_PANIC_EVENT)
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
59 #else
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
61 #endif
62 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
63 
64 static int panic_op_write_handler(const char *val,
65 				  const struct kernel_param *kp)
66 {
67 	char valcp[16];
68 	char *s;
69 
70 	strncpy(valcp, val, 15);
71 	valcp[15] = '\0';
72 
73 	s = strstrip(valcp);
74 
75 	if (strcmp(s, "none") == 0)
76 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
77 	else if (strcmp(s, "event") == 0)
78 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
79 	else if (strcmp(s, "string") == 0)
80 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
81 	else
82 		return -EINVAL;
83 
84 	return 0;
85 }
86 
87 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
88 {
89 	switch (ipmi_send_panic_event) {
90 	case IPMI_SEND_PANIC_EVENT_NONE:
91 		strcpy(buffer, "none");
92 		break;
93 
94 	case IPMI_SEND_PANIC_EVENT:
95 		strcpy(buffer, "event");
96 		break;
97 
98 	case IPMI_SEND_PANIC_EVENT_STRING:
99 		strcpy(buffer, "string");
100 		break;
101 
102 	default:
103 		strcpy(buffer, "???");
104 		break;
105 	}
106 
107 	return strlen(buffer);
108 }
109 
110 static const struct kernel_param_ops panic_op_ops = {
111 	.set = panic_op_write_handler,
112 	.get = panic_op_read_handler
113 };
114 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
115 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
116 
117 
118 #define MAX_EVENTS_IN_QUEUE	25
119 
120 /* Remain in auto-maintenance mode for this amount of time (in ms). */
121 static unsigned long maintenance_mode_timeout_ms = 30000;
122 module_param(maintenance_mode_timeout_ms, ulong, 0644);
123 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
124 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
125 
126 /*
127  * Don't let a message sit in a queue forever, always time it with at lest
128  * the max message timer.  This is in milliseconds.
129  */
130 #define MAX_MSG_TIMEOUT		60000
131 
132 /*
133  * Timeout times below are in milliseconds, and are done off a 1
134  * second timer.  So setting the value to 1000 would mean anything
135  * between 0 and 1000ms.  So really the only reasonable minimum
136  * setting it 2000ms, which is between 1 and 2 seconds.
137  */
138 
139 /* The default timeout for message retries. */
140 static unsigned long default_retry_ms = 2000;
141 module_param(default_retry_ms, ulong, 0644);
142 MODULE_PARM_DESC(default_retry_ms,
143 		 "The time (milliseconds) between retry sends");
144 
145 /* The default timeout for maintenance mode message retries. */
146 static unsigned long default_maintenance_retry_ms = 3000;
147 module_param(default_maintenance_retry_ms, ulong, 0644);
148 MODULE_PARM_DESC(default_maintenance_retry_ms,
149 		 "The time (milliseconds) between retry sends in maintenance mode");
150 
151 /* The default maximum number of retries */
152 static unsigned int default_max_retries = 4;
153 module_param(default_max_retries, uint, 0644);
154 MODULE_PARM_DESC(default_max_retries,
155 		 "The time (milliseconds) between retry sends in maintenance mode");
156 
157 /* Call every ~1000 ms. */
158 #define IPMI_TIMEOUT_TIME	1000
159 
160 /* How many jiffies does it take to get to the timeout time. */
161 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
162 
163 /*
164  * Request events from the queue every second (this is the number of
165  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
166  * future, IPMI will add a way to know immediately if an event is in
167  * the queue and this silliness can go away.
168  */
169 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
170 
171 /* How long should we cache dynamic device IDs? */
172 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
173 
174 /*
175  * The main "user" data structure.
176  */
177 struct ipmi_user {
178 	struct list_head link;
179 
180 	/*
181 	 * Set to NULL when the user is destroyed, a pointer to myself
182 	 * so srcu_dereference can be used on it.
183 	 */
184 	struct ipmi_user *self;
185 	struct srcu_struct release_barrier;
186 
187 	struct kref refcount;
188 
189 	/* The upper layer that handles receive messages. */
190 	const struct ipmi_user_hndl *handler;
191 	void             *handler_data;
192 
193 	/* The interface this user is bound to. */
194 	struct ipmi_smi *intf;
195 
196 	/* Does this interface receive IPMI events? */
197 	bool gets_events;
198 
199 	/* Free must run in process context for RCU cleanup. */
200 	struct work_struct remove_work;
201 };
202 
203 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
204 	__acquires(user->release_barrier)
205 {
206 	struct ipmi_user *ruser;
207 
208 	*index = srcu_read_lock(&user->release_barrier);
209 	ruser = srcu_dereference(user->self, &user->release_barrier);
210 	if (!ruser)
211 		srcu_read_unlock(&user->release_barrier, *index);
212 	return ruser;
213 }
214 
215 static void release_ipmi_user(struct ipmi_user *user, int index)
216 {
217 	srcu_read_unlock(&user->release_barrier, index);
218 }
219 
220 struct cmd_rcvr {
221 	struct list_head link;
222 
223 	struct ipmi_user *user;
224 	unsigned char netfn;
225 	unsigned char cmd;
226 	unsigned int  chans;
227 
228 	/*
229 	 * This is used to form a linked lised during mass deletion.
230 	 * Since this is in an RCU list, we cannot use the link above
231 	 * or change any data until the RCU period completes.  So we
232 	 * use this next variable during mass deletion so we can have
233 	 * a list and don't have to wait and restart the search on
234 	 * every individual deletion of a command.
235 	 */
236 	struct cmd_rcvr *next;
237 };
238 
239 struct seq_table {
240 	unsigned int         inuse : 1;
241 	unsigned int         broadcast : 1;
242 
243 	unsigned long        timeout;
244 	unsigned long        orig_timeout;
245 	unsigned int         retries_left;
246 
247 	/*
248 	 * To verify on an incoming send message response that this is
249 	 * the message that the response is for, we keep a sequence id
250 	 * and increment it every time we send a message.
251 	 */
252 	long                 seqid;
253 
254 	/*
255 	 * This is held so we can properly respond to the message on a
256 	 * timeout, and it is used to hold the temporary data for
257 	 * retransmission, too.
258 	 */
259 	struct ipmi_recv_msg *recv_msg;
260 };
261 
262 /*
263  * Store the information in a msgid (long) to allow us to find a
264  * sequence table entry from the msgid.
265  */
266 #define STORE_SEQ_IN_MSGID(seq, seqid) \
267 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
268 
269 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
270 	do {								\
271 		seq = (((msgid) >> 26) & 0x3f);				\
272 		seqid = ((msgid) & 0x3ffffff);				\
273 	} while (0)
274 
275 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
276 
277 #define IPMI_MAX_CHANNELS       16
278 struct ipmi_channel {
279 	unsigned char medium;
280 	unsigned char protocol;
281 };
282 
283 struct ipmi_channel_set {
284 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
285 };
286 
287 struct ipmi_my_addrinfo {
288 	/*
289 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
290 	 * but may be changed by the user.
291 	 */
292 	unsigned char address;
293 
294 	/*
295 	 * My LUN.  This should generally stay the SMS LUN, but just in
296 	 * case...
297 	 */
298 	unsigned char lun;
299 };
300 
301 /*
302  * Note that the product id, manufacturer id, guid, and device id are
303  * immutable in this structure, so dyn_mutex is not required for
304  * accessing those.  If those change on a BMC, a new BMC is allocated.
305  */
306 struct bmc_device {
307 	struct platform_device pdev;
308 	struct list_head       intfs; /* Interfaces on this BMC. */
309 	struct ipmi_device_id  id;
310 	struct ipmi_device_id  fetch_id;
311 	int                    dyn_id_set;
312 	unsigned long          dyn_id_expiry;
313 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
314 	guid_t                 guid;
315 	guid_t                 fetch_guid;
316 	int                    dyn_guid_set;
317 	struct kref	       usecount;
318 	struct work_struct     remove_work;
319 };
320 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
321 
322 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
323 			     struct ipmi_device_id *id,
324 			     bool *guid_set, guid_t *guid);
325 
326 /*
327  * Various statistics for IPMI, these index stats[] in the ipmi_smi
328  * structure.
329  */
330 enum ipmi_stat_indexes {
331 	/* Commands we got from the user that were invalid. */
332 	IPMI_STAT_sent_invalid_commands = 0,
333 
334 	/* Commands we sent to the MC. */
335 	IPMI_STAT_sent_local_commands,
336 
337 	/* Responses from the MC that were delivered to a user. */
338 	IPMI_STAT_handled_local_responses,
339 
340 	/* Responses from the MC that were not delivered to a user. */
341 	IPMI_STAT_unhandled_local_responses,
342 
343 	/* Commands we sent out to the IPMB bus. */
344 	IPMI_STAT_sent_ipmb_commands,
345 
346 	/* Commands sent on the IPMB that had errors on the SEND CMD */
347 	IPMI_STAT_sent_ipmb_command_errs,
348 
349 	/* Each retransmit increments this count. */
350 	IPMI_STAT_retransmitted_ipmb_commands,
351 
352 	/*
353 	 * When a message times out (runs out of retransmits) this is
354 	 * incremented.
355 	 */
356 	IPMI_STAT_timed_out_ipmb_commands,
357 
358 	/*
359 	 * This is like above, but for broadcasts.  Broadcasts are
360 	 * *not* included in the above count (they are expected to
361 	 * time out).
362 	 */
363 	IPMI_STAT_timed_out_ipmb_broadcasts,
364 
365 	/* Responses I have sent to the IPMB bus. */
366 	IPMI_STAT_sent_ipmb_responses,
367 
368 	/* The response was delivered to the user. */
369 	IPMI_STAT_handled_ipmb_responses,
370 
371 	/* The response had invalid data in it. */
372 	IPMI_STAT_invalid_ipmb_responses,
373 
374 	/* The response didn't have anyone waiting for it. */
375 	IPMI_STAT_unhandled_ipmb_responses,
376 
377 	/* Commands we sent out to the IPMB bus. */
378 	IPMI_STAT_sent_lan_commands,
379 
380 	/* Commands sent on the IPMB that had errors on the SEND CMD */
381 	IPMI_STAT_sent_lan_command_errs,
382 
383 	/* Each retransmit increments this count. */
384 	IPMI_STAT_retransmitted_lan_commands,
385 
386 	/*
387 	 * When a message times out (runs out of retransmits) this is
388 	 * incremented.
389 	 */
390 	IPMI_STAT_timed_out_lan_commands,
391 
392 	/* Responses I have sent to the IPMB bus. */
393 	IPMI_STAT_sent_lan_responses,
394 
395 	/* The response was delivered to the user. */
396 	IPMI_STAT_handled_lan_responses,
397 
398 	/* The response had invalid data in it. */
399 	IPMI_STAT_invalid_lan_responses,
400 
401 	/* The response didn't have anyone waiting for it. */
402 	IPMI_STAT_unhandled_lan_responses,
403 
404 	/* The command was delivered to the user. */
405 	IPMI_STAT_handled_commands,
406 
407 	/* The command had invalid data in it. */
408 	IPMI_STAT_invalid_commands,
409 
410 	/* The command didn't have anyone waiting for it. */
411 	IPMI_STAT_unhandled_commands,
412 
413 	/* Invalid data in an event. */
414 	IPMI_STAT_invalid_events,
415 
416 	/* Events that were received with the proper format. */
417 	IPMI_STAT_events,
418 
419 	/* Retransmissions on IPMB that failed. */
420 	IPMI_STAT_dropped_rexmit_ipmb_commands,
421 
422 	/* Retransmissions on LAN that failed. */
423 	IPMI_STAT_dropped_rexmit_lan_commands,
424 
425 	/* This *must* remain last, add new values above this. */
426 	IPMI_NUM_STATS
427 };
428 
429 
430 #define IPMI_IPMB_NUM_SEQ	64
431 struct ipmi_smi {
432 	struct module *owner;
433 
434 	/* What interface number are we? */
435 	int intf_num;
436 
437 	struct kref refcount;
438 
439 	/* Set when the interface is being unregistered. */
440 	bool in_shutdown;
441 
442 	/* Used for a list of interfaces. */
443 	struct list_head link;
444 
445 	/*
446 	 * The list of upper layers that are using me.  seq_lock write
447 	 * protects this.  Read protection is with srcu.
448 	 */
449 	struct list_head users;
450 	struct srcu_struct users_srcu;
451 
452 	/* Used for wake ups at startup. */
453 	wait_queue_head_t waitq;
454 
455 	/*
456 	 * Prevents the interface from being unregistered when the
457 	 * interface is used by being looked up through the BMC
458 	 * structure.
459 	 */
460 	struct mutex bmc_reg_mutex;
461 
462 	struct bmc_device tmp_bmc;
463 	struct bmc_device *bmc;
464 	bool bmc_registered;
465 	struct list_head bmc_link;
466 	char *my_dev_name;
467 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
468 	struct work_struct bmc_reg_work;
469 
470 	const struct ipmi_smi_handlers *handlers;
471 	void                     *send_info;
472 
473 	/* Driver-model device for the system interface. */
474 	struct device          *si_dev;
475 
476 	/*
477 	 * A table of sequence numbers for this interface.  We use the
478 	 * sequence numbers for IPMB messages that go out of the
479 	 * interface to match them up with their responses.  A routine
480 	 * is called periodically to time the items in this list.
481 	 */
482 	spinlock_t       seq_lock;
483 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
484 	int curr_seq;
485 
486 	/*
487 	 * Messages queued for delivery.  If delivery fails (out of memory
488 	 * for instance), They will stay in here to be processed later in a
489 	 * periodic timer interrupt.  The tasklet is for handling received
490 	 * messages directly from the handler.
491 	 */
492 	spinlock_t       waiting_rcv_msgs_lock;
493 	struct list_head waiting_rcv_msgs;
494 	atomic_t	 watchdog_pretimeouts_to_deliver;
495 	struct tasklet_struct recv_tasklet;
496 
497 	spinlock_t             xmit_msgs_lock;
498 	struct list_head       xmit_msgs;
499 	struct ipmi_smi_msg    *curr_msg;
500 	struct list_head       hp_xmit_msgs;
501 
502 	/*
503 	 * The list of command receivers that are registered for commands
504 	 * on this interface.
505 	 */
506 	struct mutex     cmd_rcvrs_mutex;
507 	struct list_head cmd_rcvrs;
508 
509 	/*
510 	 * Events that were queues because no one was there to receive
511 	 * them.
512 	 */
513 	spinlock_t       events_lock; /* For dealing with event stuff. */
514 	struct list_head waiting_events;
515 	unsigned int     waiting_events_count; /* How many events in queue? */
516 	char             delivering_events;
517 	char             event_msg_printed;
518 
519 	/* How many users are waiting for events? */
520 	atomic_t         event_waiters;
521 	unsigned int     ticks_to_req_ev;
522 
523 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
524 
525 	/* How many users are waiting for commands? */
526 	unsigned int     command_waiters;
527 
528 	/* How many users are waiting for watchdogs? */
529 	unsigned int     watchdog_waiters;
530 
531 	/* How many users are waiting for message responses? */
532 	unsigned int     response_waiters;
533 
534 	/*
535 	 * Tells what the lower layer has last been asked to watch for,
536 	 * messages and/or watchdogs.  Protected by watch_lock.
537 	 */
538 	unsigned int     last_watch_mask;
539 
540 	/*
541 	 * The event receiver for my BMC, only really used at panic
542 	 * shutdown as a place to store this.
543 	 */
544 	unsigned char event_receiver;
545 	unsigned char event_receiver_lun;
546 	unsigned char local_sel_device;
547 	unsigned char local_event_generator;
548 
549 	/* For handling of maintenance mode. */
550 	int maintenance_mode;
551 	bool maintenance_mode_enable;
552 	int auto_maintenance_timeout;
553 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
554 
555 	/*
556 	 * If we are doing maintenance on something on IPMB, extend
557 	 * the timeout time to avoid timeouts writing firmware and
558 	 * such.
559 	 */
560 	int ipmb_maintenance_mode_timeout;
561 
562 	/*
563 	 * A cheap hack, if this is non-null and a message to an
564 	 * interface comes in with a NULL user, call this routine with
565 	 * it.  Note that the message will still be freed by the
566 	 * caller.  This only works on the system interface.
567 	 *
568 	 * Protected by bmc_reg_mutex.
569 	 */
570 	void (*null_user_handler)(struct ipmi_smi *intf,
571 				  struct ipmi_recv_msg *msg);
572 
573 	/*
574 	 * When we are scanning the channels for an SMI, this will
575 	 * tell which channel we are scanning.
576 	 */
577 	int curr_channel;
578 
579 	/* Channel information */
580 	struct ipmi_channel_set *channel_list;
581 	unsigned int curr_working_cset; /* First index into the following. */
582 	struct ipmi_channel_set wchannels[2];
583 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
584 	bool channels_ready;
585 
586 	atomic_t stats[IPMI_NUM_STATS];
587 
588 	/*
589 	 * run_to_completion duplicate of smb_info, smi_info
590 	 * and ipmi_serial_info structures. Used to decrease numbers of
591 	 * parameters passed by "low" level IPMI code.
592 	 */
593 	int run_to_completion;
594 };
595 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
596 
597 static void __get_guid(struct ipmi_smi *intf);
598 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
599 static int __ipmi_bmc_register(struct ipmi_smi *intf,
600 			       struct ipmi_device_id *id,
601 			       bool guid_set, guid_t *guid, int intf_num);
602 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
603 
604 
605 /**
606  * The driver model view of the IPMI messaging driver.
607  */
608 static struct platform_driver ipmidriver = {
609 	.driver = {
610 		.name = "ipmi",
611 		.bus = &platform_bus_type
612 	}
613 };
614 /*
615  * This mutex keeps us from adding the same BMC twice.
616  */
617 static DEFINE_MUTEX(ipmidriver_mutex);
618 
619 static LIST_HEAD(ipmi_interfaces);
620 static DEFINE_MUTEX(ipmi_interfaces_mutex);
621 #define ipmi_interfaces_mutex_held() \
622 	lockdep_is_held(&ipmi_interfaces_mutex)
623 static struct srcu_struct ipmi_interfaces_srcu;
624 
625 /*
626  * List of watchers that want to know when smi's are added and deleted.
627  */
628 static LIST_HEAD(smi_watchers);
629 static DEFINE_MUTEX(smi_watchers_mutex);
630 
631 #define ipmi_inc_stat(intf, stat) \
632 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
633 #define ipmi_get_stat(intf, stat) \
634 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
635 
636 static const char * const addr_src_to_str[] = {
637 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
638 	"device-tree", "platform"
639 };
640 
641 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
642 {
643 	if (src >= SI_LAST)
644 		src = 0; /* Invalid */
645 	return addr_src_to_str[src];
646 }
647 EXPORT_SYMBOL(ipmi_addr_src_to_str);
648 
649 static int is_lan_addr(struct ipmi_addr *addr)
650 {
651 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
652 }
653 
654 static int is_ipmb_addr(struct ipmi_addr *addr)
655 {
656 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
657 }
658 
659 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
660 {
661 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
662 }
663 
664 static void free_recv_msg_list(struct list_head *q)
665 {
666 	struct ipmi_recv_msg *msg, *msg2;
667 
668 	list_for_each_entry_safe(msg, msg2, q, link) {
669 		list_del(&msg->link);
670 		ipmi_free_recv_msg(msg);
671 	}
672 }
673 
674 static void free_smi_msg_list(struct list_head *q)
675 {
676 	struct ipmi_smi_msg *msg, *msg2;
677 
678 	list_for_each_entry_safe(msg, msg2, q, link) {
679 		list_del(&msg->link);
680 		ipmi_free_smi_msg(msg);
681 	}
682 }
683 
684 static void clean_up_interface_data(struct ipmi_smi *intf)
685 {
686 	int              i;
687 	struct cmd_rcvr  *rcvr, *rcvr2;
688 	struct list_head list;
689 
690 	tasklet_kill(&intf->recv_tasklet);
691 
692 	free_smi_msg_list(&intf->waiting_rcv_msgs);
693 	free_recv_msg_list(&intf->waiting_events);
694 
695 	/*
696 	 * Wholesale remove all the entries from the list in the
697 	 * interface and wait for RCU to know that none are in use.
698 	 */
699 	mutex_lock(&intf->cmd_rcvrs_mutex);
700 	INIT_LIST_HEAD(&list);
701 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
702 	mutex_unlock(&intf->cmd_rcvrs_mutex);
703 
704 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
705 		kfree(rcvr);
706 
707 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
708 		if ((intf->seq_table[i].inuse)
709 					&& (intf->seq_table[i].recv_msg))
710 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
711 	}
712 }
713 
714 static void intf_free(struct kref *ref)
715 {
716 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
717 
718 	clean_up_interface_data(intf);
719 	kfree(intf);
720 }
721 
722 struct watcher_entry {
723 	int              intf_num;
724 	struct ipmi_smi  *intf;
725 	struct list_head link;
726 };
727 
728 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
729 {
730 	struct ipmi_smi *intf;
731 	int index, rv;
732 
733 	/*
734 	 * Make sure the driver is actually initialized, this handles
735 	 * problems with initialization order.
736 	 */
737 	rv = ipmi_init_msghandler();
738 	if (rv)
739 		return rv;
740 
741 	mutex_lock(&smi_watchers_mutex);
742 
743 	list_add(&watcher->link, &smi_watchers);
744 
745 	index = srcu_read_lock(&ipmi_interfaces_srcu);
746 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
747 		int intf_num = READ_ONCE(intf->intf_num);
748 
749 		if (intf_num == -1)
750 			continue;
751 		watcher->new_smi(intf_num, intf->si_dev);
752 	}
753 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
754 
755 	mutex_unlock(&smi_watchers_mutex);
756 
757 	return 0;
758 }
759 EXPORT_SYMBOL(ipmi_smi_watcher_register);
760 
761 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
762 {
763 	mutex_lock(&smi_watchers_mutex);
764 	list_del(&watcher->link);
765 	mutex_unlock(&smi_watchers_mutex);
766 	return 0;
767 }
768 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
769 
770 /*
771  * Must be called with smi_watchers_mutex held.
772  */
773 static void
774 call_smi_watchers(int i, struct device *dev)
775 {
776 	struct ipmi_smi_watcher *w;
777 
778 	mutex_lock(&smi_watchers_mutex);
779 	list_for_each_entry(w, &smi_watchers, link) {
780 		if (try_module_get(w->owner)) {
781 			w->new_smi(i, dev);
782 			module_put(w->owner);
783 		}
784 	}
785 	mutex_unlock(&smi_watchers_mutex);
786 }
787 
788 static int
789 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
790 {
791 	if (addr1->addr_type != addr2->addr_type)
792 		return 0;
793 
794 	if (addr1->channel != addr2->channel)
795 		return 0;
796 
797 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
798 		struct ipmi_system_interface_addr *smi_addr1
799 		    = (struct ipmi_system_interface_addr *) addr1;
800 		struct ipmi_system_interface_addr *smi_addr2
801 		    = (struct ipmi_system_interface_addr *) addr2;
802 		return (smi_addr1->lun == smi_addr2->lun);
803 	}
804 
805 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
806 		struct ipmi_ipmb_addr *ipmb_addr1
807 		    = (struct ipmi_ipmb_addr *) addr1;
808 		struct ipmi_ipmb_addr *ipmb_addr2
809 		    = (struct ipmi_ipmb_addr *) addr2;
810 
811 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
812 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
813 	}
814 
815 	if (is_lan_addr(addr1)) {
816 		struct ipmi_lan_addr *lan_addr1
817 			= (struct ipmi_lan_addr *) addr1;
818 		struct ipmi_lan_addr *lan_addr2
819 		    = (struct ipmi_lan_addr *) addr2;
820 
821 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
822 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
823 			&& (lan_addr1->session_handle
824 			    == lan_addr2->session_handle)
825 			&& (lan_addr1->lun == lan_addr2->lun));
826 	}
827 
828 	return 1;
829 }
830 
831 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
832 {
833 	if (len < sizeof(struct ipmi_system_interface_addr))
834 		return -EINVAL;
835 
836 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
837 		if (addr->channel != IPMI_BMC_CHANNEL)
838 			return -EINVAL;
839 		return 0;
840 	}
841 
842 	if ((addr->channel == IPMI_BMC_CHANNEL)
843 	    || (addr->channel >= IPMI_MAX_CHANNELS)
844 	    || (addr->channel < 0))
845 		return -EINVAL;
846 
847 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
848 		if (len < sizeof(struct ipmi_ipmb_addr))
849 			return -EINVAL;
850 		return 0;
851 	}
852 
853 	if (is_lan_addr(addr)) {
854 		if (len < sizeof(struct ipmi_lan_addr))
855 			return -EINVAL;
856 		return 0;
857 	}
858 
859 	return -EINVAL;
860 }
861 EXPORT_SYMBOL(ipmi_validate_addr);
862 
863 unsigned int ipmi_addr_length(int addr_type)
864 {
865 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
866 		return sizeof(struct ipmi_system_interface_addr);
867 
868 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
869 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
870 		return sizeof(struct ipmi_ipmb_addr);
871 
872 	if (addr_type == IPMI_LAN_ADDR_TYPE)
873 		return sizeof(struct ipmi_lan_addr);
874 
875 	return 0;
876 }
877 EXPORT_SYMBOL(ipmi_addr_length);
878 
879 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
880 {
881 	int rv = 0;
882 
883 	if (!msg->user) {
884 		/* Special handling for NULL users. */
885 		if (intf->null_user_handler) {
886 			intf->null_user_handler(intf, msg);
887 		} else {
888 			/* No handler, so give up. */
889 			rv = -EINVAL;
890 		}
891 		ipmi_free_recv_msg(msg);
892 	} else if (oops_in_progress) {
893 		/*
894 		 * If we are running in the panic context, calling the
895 		 * receive handler doesn't much meaning and has a deadlock
896 		 * risk.  At this moment, simply skip it in that case.
897 		 */
898 		ipmi_free_recv_msg(msg);
899 	} else {
900 		int index;
901 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
902 
903 		if (user) {
904 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
905 			release_ipmi_user(user, index);
906 		} else {
907 			/* User went away, give up. */
908 			ipmi_free_recv_msg(msg);
909 			rv = -EINVAL;
910 		}
911 	}
912 
913 	return rv;
914 }
915 
916 static void deliver_local_response(struct ipmi_smi *intf,
917 				   struct ipmi_recv_msg *msg)
918 {
919 	if (deliver_response(intf, msg))
920 		ipmi_inc_stat(intf, unhandled_local_responses);
921 	else
922 		ipmi_inc_stat(intf, handled_local_responses);
923 }
924 
925 static void deliver_err_response(struct ipmi_smi *intf,
926 				 struct ipmi_recv_msg *msg, int err)
927 {
928 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
929 	msg->msg_data[0] = err;
930 	msg->msg.netfn |= 1; /* Convert to a response. */
931 	msg->msg.data_len = 1;
932 	msg->msg.data = msg->msg_data;
933 	deliver_local_response(intf, msg);
934 }
935 
936 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
937 {
938 	unsigned long iflags;
939 
940 	if (!intf->handlers->set_need_watch)
941 		return;
942 
943 	spin_lock_irqsave(&intf->watch_lock, iflags);
944 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
945 		intf->response_waiters++;
946 
947 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
948 		intf->watchdog_waiters++;
949 
950 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
951 		intf->command_waiters++;
952 
953 	if ((intf->last_watch_mask & flags) != flags) {
954 		intf->last_watch_mask |= flags;
955 		intf->handlers->set_need_watch(intf->send_info,
956 					       intf->last_watch_mask);
957 	}
958 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
959 }
960 
961 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
962 {
963 	unsigned long iflags;
964 
965 	if (!intf->handlers->set_need_watch)
966 		return;
967 
968 	spin_lock_irqsave(&intf->watch_lock, iflags);
969 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
970 		intf->response_waiters--;
971 
972 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
973 		intf->watchdog_waiters--;
974 
975 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
976 		intf->command_waiters--;
977 
978 	flags = 0;
979 	if (intf->response_waiters)
980 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
981 	if (intf->watchdog_waiters)
982 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
983 	if (intf->command_waiters)
984 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
985 
986 	if (intf->last_watch_mask != flags) {
987 		intf->last_watch_mask = flags;
988 		intf->handlers->set_need_watch(intf->send_info,
989 					       intf->last_watch_mask);
990 	}
991 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
992 }
993 
994 /*
995  * Find the next sequence number not being used and add the given
996  * message with the given timeout to the sequence table.  This must be
997  * called with the interface's seq_lock held.
998  */
999 static int intf_next_seq(struct ipmi_smi      *intf,
1000 			 struct ipmi_recv_msg *recv_msg,
1001 			 unsigned long        timeout,
1002 			 int                  retries,
1003 			 int                  broadcast,
1004 			 unsigned char        *seq,
1005 			 long                 *seqid)
1006 {
1007 	int          rv = 0;
1008 	unsigned int i;
1009 
1010 	if (timeout == 0)
1011 		timeout = default_retry_ms;
1012 	if (retries < 0)
1013 		retries = default_max_retries;
1014 
1015 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1016 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1017 		if (!intf->seq_table[i].inuse)
1018 			break;
1019 	}
1020 
1021 	if (!intf->seq_table[i].inuse) {
1022 		intf->seq_table[i].recv_msg = recv_msg;
1023 
1024 		/*
1025 		 * Start with the maximum timeout, when the send response
1026 		 * comes in we will start the real timer.
1027 		 */
1028 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1029 		intf->seq_table[i].orig_timeout = timeout;
1030 		intf->seq_table[i].retries_left = retries;
1031 		intf->seq_table[i].broadcast = broadcast;
1032 		intf->seq_table[i].inuse = 1;
1033 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1034 		*seq = i;
1035 		*seqid = intf->seq_table[i].seqid;
1036 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1037 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1038 		need_waiter(intf);
1039 	} else {
1040 		rv = -EAGAIN;
1041 	}
1042 
1043 	return rv;
1044 }
1045 
1046 /*
1047  * Return the receive message for the given sequence number and
1048  * release the sequence number so it can be reused.  Some other data
1049  * is passed in to be sure the message matches up correctly (to help
1050  * guard against message coming in after their timeout and the
1051  * sequence number being reused).
1052  */
1053 static int intf_find_seq(struct ipmi_smi      *intf,
1054 			 unsigned char        seq,
1055 			 short                channel,
1056 			 unsigned char        cmd,
1057 			 unsigned char        netfn,
1058 			 struct ipmi_addr     *addr,
1059 			 struct ipmi_recv_msg **recv_msg)
1060 {
1061 	int           rv = -ENODEV;
1062 	unsigned long flags;
1063 
1064 	if (seq >= IPMI_IPMB_NUM_SEQ)
1065 		return -EINVAL;
1066 
1067 	spin_lock_irqsave(&intf->seq_lock, flags);
1068 	if (intf->seq_table[seq].inuse) {
1069 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1070 
1071 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1072 				&& (msg->msg.netfn == netfn)
1073 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1074 			*recv_msg = msg;
1075 			intf->seq_table[seq].inuse = 0;
1076 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1077 			rv = 0;
1078 		}
1079 	}
1080 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1081 
1082 	return rv;
1083 }
1084 
1085 
1086 /* Start the timer for a specific sequence table entry. */
1087 static int intf_start_seq_timer(struct ipmi_smi *intf,
1088 				long       msgid)
1089 {
1090 	int           rv = -ENODEV;
1091 	unsigned long flags;
1092 	unsigned char seq;
1093 	unsigned long seqid;
1094 
1095 
1096 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1097 
1098 	spin_lock_irqsave(&intf->seq_lock, flags);
1099 	/*
1100 	 * We do this verification because the user can be deleted
1101 	 * while a message is outstanding.
1102 	 */
1103 	if ((intf->seq_table[seq].inuse)
1104 				&& (intf->seq_table[seq].seqid == seqid)) {
1105 		struct seq_table *ent = &intf->seq_table[seq];
1106 		ent->timeout = ent->orig_timeout;
1107 		rv = 0;
1108 	}
1109 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1110 
1111 	return rv;
1112 }
1113 
1114 /* Got an error for the send message for a specific sequence number. */
1115 static int intf_err_seq(struct ipmi_smi *intf,
1116 			long         msgid,
1117 			unsigned int err)
1118 {
1119 	int                  rv = -ENODEV;
1120 	unsigned long        flags;
1121 	unsigned char        seq;
1122 	unsigned long        seqid;
1123 	struct ipmi_recv_msg *msg = NULL;
1124 
1125 
1126 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1127 
1128 	spin_lock_irqsave(&intf->seq_lock, flags);
1129 	/*
1130 	 * We do this verification because the user can be deleted
1131 	 * while a message is outstanding.
1132 	 */
1133 	if ((intf->seq_table[seq].inuse)
1134 				&& (intf->seq_table[seq].seqid == seqid)) {
1135 		struct seq_table *ent = &intf->seq_table[seq];
1136 
1137 		ent->inuse = 0;
1138 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1139 		msg = ent->recv_msg;
1140 		rv = 0;
1141 	}
1142 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1143 
1144 	if (msg)
1145 		deliver_err_response(intf, msg, err);
1146 
1147 	return rv;
1148 }
1149 
1150 static void free_user_work(struct work_struct *work)
1151 {
1152 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1153 					      remove_work);
1154 
1155 	cleanup_srcu_struct(&user->release_barrier);
1156 	kfree(user);
1157 }
1158 
1159 int ipmi_create_user(unsigned int          if_num,
1160 		     const struct ipmi_user_hndl *handler,
1161 		     void                  *handler_data,
1162 		     struct ipmi_user      **user)
1163 {
1164 	unsigned long flags;
1165 	struct ipmi_user *new_user;
1166 	int           rv, index;
1167 	struct ipmi_smi *intf;
1168 
1169 	/*
1170 	 * There is no module usecount here, because it's not
1171 	 * required.  Since this can only be used by and called from
1172 	 * other modules, they will implicitly use this module, and
1173 	 * thus this can't be removed unless the other modules are
1174 	 * removed.
1175 	 */
1176 
1177 	if (handler == NULL)
1178 		return -EINVAL;
1179 
1180 	/*
1181 	 * Make sure the driver is actually initialized, this handles
1182 	 * problems with initialization order.
1183 	 */
1184 	rv = ipmi_init_msghandler();
1185 	if (rv)
1186 		return rv;
1187 
1188 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
1189 	if (!new_user)
1190 		return -ENOMEM;
1191 
1192 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1193 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1194 		if (intf->intf_num == if_num)
1195 			goto found;
1196 	}
1197 	/* Not found, return an error */
1198 	rv = -EINVAL;
1199 	goto out_kfree;
1200 
1201  found:
1202 	INIT_WORK(&new_user->remove_work, free_user_work);
1203 
1204 	rv = init_srcu_struct(&new_user->release_barrier);
1205 	if (rv)
1206 		goto out_kfree;
1207 
1208 	if (!try_module_get(intf->owner)) {
1209 		rv = -ENODEV;
1210 		goto out_kfree;
1211 	}
1212 
1213 	/* Note that each existing user holds a refcount to the interface. */
1214 	kref_get(&intf->refcount);
1215 
1216 	kref_init(&new_user->refcount);
1217 	new_user->handler = handler;
1218 	new_user->handler_data = handler_data;
1219 	new_user->intf = intf;
1220 	new_user->gets_events = false;
1221 
1222 	rcu_assign_pointer(new_user->self, new_user);
1223 	spin_lock_irqsave(&intf->seq_lock, flags);
1224 	list_add_rcu(&new_user->link, &intf->users);
1225 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1226 	if (handler->ipmi_watchdog_pretimeout)
1227 		/* User wants pretimeouts, so make sure to watch for them. */
1228 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1229 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1230 	*user = new_user;
1231 	return 0;
1232 
1233 out_kfree:
1234 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1235 	kfree(new_user);
1236 	return rv;
1237 }
1238 EXPORT_SYMBOL(ipmi_create_user);
1239 
1240 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1241 {
1242 	int rv, index;
1243 	struct ipmi_smi *intf;
1244 
1245 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1246 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1247 		if (intf->intf_num == if_num)
1248 			goto found;
1249 	}
1250 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1251 
1252 	/* Not found, return an error */
1253 	return -EINVAL;
1254 
1255 found:
1256 	if (!intf->handlers->get_smi_info)
1257 		rv = -ENOTTY;
1258 	else
1259 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1260 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1261 
1262 	return rv;
1263 }
1264 EXPORT_SYMBOL(ipmi_get_smi_info);
1265 
1266 static void free_user(struct kref *ref)
1267 {
1268 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1269 
1270 	/* SRCU cleanup must happen in task context. */
1271 	schedule_work(&user->remove_work);
1272 }
1273 
1274 static void _ipmi_destroy_user(struct ipmi_user *user)
1275 {
1276 	struct ipmi_smi  *intf = user->intf;
1277 	int              i;
1278 	unsigned long    flags;
1279 	struct cmd_rcvr  *rcvr;
1280 	struct cmd_rcvr  *rcvrs = NULL;
1281 
1282 	if (!acquire_ipmi_user(user, &i)) {
1283 		/*
1284 		 * The user has already been cleaned up, just make sure
1285 		 * nothing is using it and return.
1286 		 */
1287 		synchronize_srcu(&user->release_barrier);
1288 		return;
1289 	}
1290 
1291 	rcu_assign_pointer(user->self, NULL);
1292 	release_ipmi_user(user, i);
1293 
1294 	synchronize_srcu(&user->release_barrier);
1295 
1296 	if (user->handler->shutdown)
1297 		user->handler->shutdown(user->handler_data);
1298 
1299 	if (user->handler->ipmi_watchdog_pretimeout)
1300 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1301 
1302 	if (user->gets_events)
1303 		atomic_dec(&intf->event_waiters);
1304 
1305 	/* Remove the user from the interface's sequence table. */
1306 	spin_lock_irqsave(&intf->seq_lock, flags);
1307 	list_del_rcu(&user->link);
1308 
1309 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1310 		if (intf->seq_table[i].inuse
1311 		    && (intf->seq_table[i].recv_msg->user == user)) {
1312 			intf->seq_table[i].inuse = 0;
1313 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1314 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1315 		}
1316 	}
1317 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1318 
1319 	/*
1320 	 * Remove the user from the command receiver's table.  First
1321 	 * we build a list of everything (not using the standard link,
1322 	 * since other things may be using it till we do
1323 	 * synchronize_srcu()) then free everything in that list.
1324 	 */
1325 	mutex_lock(&intf->cmd_rcvrs_mutex);
1326 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1327 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1328 		if (rcvr->user == user) {
1329 			list_del_rcu(&rcvr->link);
1330 			rcvr->next = rcvrs;
1331 			rcvrs = rcvr;
1332 		}
1333 	}
1334 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1335 	synchronize_rcu();
1336 	while (rcvrs) {
1337 		rcvr = rcvrs;
1338 		rcvrs = rcvr->next;
1339 		kfree(rcvr);
1340 	}
1341 
1342 	kref_put(&intf->refcount, intf_free);
1343 	module_put(intf->owner);
1344 }
1345 
1346 int ipmi_destroy_user(struct ipmi_user *user)
1347 {
1348 	_ipmi_destroy_user(user);
1349 
1350 	kref_put(&user->refcount, free_user);
1351 
1352 	return 0;
1353 }
1354 EXPORT_SYMBOL(ipmi_destroy_user);
1355 
1356 int ipmi_get_version(struct ipmi_user *user,
1357 		     unsigned char *major,
1358 		     unsigned char *minor)
1359 {
1360 	struct ipmi_device_id id;
1361 	int rv, index;
1362 
1363 	user = acquire_ipmi_user(user, &index);
1364 	if (!user)
1365 		return -ENODEV;
1366 
1367 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1368 	if (!rv) {
1369 		*major = ipmi_version_major(&id);
1370 		*minor = ipmi_version_minor(&id);
1371 	}
1372 	release_ipmi_user(user, index);
1373 
1374 	return rv;
1375 }
1376 EXPORT_SYMBOL(ipmi_get_version);
1377 
1378 int ipmi_set_my_address(struct ipmi_user *user,
1379 			unsigned int  channel,
1380 			unsigned char address)
1381 {
1382 	int index, rv = 0;
1383 
1384 	user = acquire_ipmi_user(user, &index);
1385 	if (!user)
1386 		return -ENODEV;
1387 
1388 	if (channel >= IPMI_MAX_CHANNELS) {
1389 		rv = -EINVAL;
1390 	} else {
1391 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1392 		user->intf->addrinfo[channel].address = address;
1393 	}
1394 	release_ipmi_user(user, index);
1395 
1396 	return rv;
1397 }
1398 EXPORT_SYMBOL(ipmi_set_my_address);
1399 
1400 int ipmi_get_my_address(struct ipmi_user *user,
1401 			unsigned int  channel,
1402 			unsigned char *address)
1403 {
1404 	int index, rv = 0;
1405 
1406 	user = acquire_ipmi_user(user, &index);
1407 	if (!user)
1408 		return -ENODEV;
1409 
1410 	if (channel >= IPMI_MAX_CHANNELS) {
1411 		rv = -EINVAL;
1412 	} else {
1413 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1414 		*address = user->intf->addrinfo[channel].address;
1415 	}
1416 	release_ipmi_user(user, index);
1417 
1418 	return rv;
1419 }
1420 EXPORT_SYMBOL(ipmi_get_my_address);
1421 
1422 int ipmi_set_my_LUN(struct ipmi_user *user,
1423 		    unsigned int  channel,
1424 		    unsigned char LUN)
1425 {
1426 	int index, rv = 0;
1427 
1428 	user = acquire_ipmi_user(user, &index);
1429 	if (!user)
1430 		return -ENODEV;
1431 
1432 	if (channel >= IPMI_MAX_CHANNELS) {
1433 		rv = -EINVAL;
1434 	} else {
1435 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1436 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1437 	}
1438 	release_ipmi_user(user, index);
1439 
1440 	return rv;
1441 }
1442 EXPORT_SYMBOL(ipmi_set_my_LUN);
1443 
1444 int ipmi_get_my_LUN(struct ipmi_user *user,
1445 		    unsigned int  channel,
1446 		    unsigned char *address)
1447 {
1448 	int index, rv = 0;
1449 
1450 	user = acquire_ipmi_user(user, &index);
1451 	if (!user)
1452 		return -ENODEV;
1453 
1454 	if (channel >= IPMI_MAX_CHANNELS) {
1455 		rv = -EINVAL;
1456 	} else {
1457 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1458 		*address = user->intf->addrinfo[channel].lun;
1459 	}
1460 	release_ipmi_user(user, index);
1461 
1462 	return rv;
1463 }
1464 EXPORT_SYMBOL(ipmi_get_my_LUN);
1465 
1466 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1467 {
1468 	int mode, index;
1469 	unsigned long flags;
1470 
1471 	user = acquire_ipmi_user(user, &index);
1472 	if (!user)
1473 		return -ENODEV;
1474 
1475 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1476 	mode = user->intf->maintenance_mode;
1477 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1478 	release_ipmi_user(user, index);
1479 
1480 	return mode;
1481 }
1482 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1483 
1484 static void maintenance_mode_update(struct ipmi_smi *intf)
1485 {
1486 	if (intf->handlers->set_maintenance_mode)
1487 		intf->handlers->set_maintenance_mode(
1488 			intf->send_info, intf->maintenance_mode_enable);
1489 }
1490 
1491 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1492 {
1493 	int rv = 0, index;
1494 	unsigned long flags;
1495 	struct ipmi_smi *intf = user->intf;
1496 
1497 	user = acquire_ipmi_user(user, &index);
1498 	if (!user)
1499 		return -ENODEV;
1500 
1501 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1502 	if (intf->maintenance_mode != mode) {
1503 		switch (mode) {
1504 		case IPMI_MAINTENANCE_MODE_AUTO:
1505 			intf->maintenance_mode_enable
1506 				= (intf->auto_maintenance_timeout > 0);
1507 			break;
1508 
1509 		case IPMI_MAINTENANCE_MODE_OFF:
1510 			intf->maintenance_mode_enable = false;
1511 			break;
1512 
1513 		case IPMI_MAINTENANCE_MODE_ON:
1514 			intf->maintenance_mode_enable = true;
1515 			break;
1516 
1517 		default:
1518 			rv = -EINVAL;
1519 			goto out_unlock;
1520 		}
1521 		intf->maintenance_mode = mode;
1522 
1523 		maintenance_mode_update(intf);
1524 	}
1525  out_unlock:
1526 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1527 	release_ipmi_user(user, index);
1528 
1529 	return rv;
1530 }
1531 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1532 
1533 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1534 {
1535 	unsigned long        flags;
1536 	struct ipmi_smi      *intf = user->intf;
1537 	struct ipmi_recv_msg *msg, *msg2;
1538 	struct list_head     msgs;
1539 	int index;
1540 
1541 	user = acquire_ipmi_user(user, &index);
1542 	if (!user)
1543 		return -ENODEV;
1544 
1545 	INIT_LIST_HEAD(&msgs);
1546 
1547 	spin_lock_irqsave(&intf->events_lock, flags);
1548 	if (user->gets_events == val)
1549 		goto out;
1550 
1551 	user->gets_events = val;
1552 
1553 	if (val) {
1554 		if (atomic_inc_return(&intf->event_waiters) == 1)
1555 			need_waiter(intf);
1556 	} else {
1557 		atomic_dec(&intf->event_waiters);
1558 	}
1559 
1560 	if (intf->delivering_events)
1561 		/*
1562 		 * Another thread is delivering events for this, so
1563 		 * let it handle any new events.
1564 		 */
1565 		goto out;
1566 
1567 	/* Deliver any queued events. */
1568 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1569 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1570 			list_move_tail(&msg->link, &msgs);
1571 		intf->waiting_events_count = 0;
1572 		if (intf->event_msg_printed) {
1573 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1574 			intf->event_msg_printed = 0;
1575 		}
1576 
1577 		intf->delivering_events = 1;
1578 		spin_unlock_irqrestore(&intf->events_lock, flags);
1579 
1580 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1581 			msg->user = user;
1582 			kref_get(&user->refcount);
1583 			deliver_local_response(intf, msg);
1584 		}
1585 
1586 		spin_lock_irqsave(&intf->events_lock, flags);
1587 		intf->delivering_events = 0;
1588 	}
1589 
1590  out:
1591 	spin_unlock_irqrestore(&intf->events_lock, flags);
1592 	release_ipmi_user(user, index);
1593 
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(ipmi_set_gets_events);
1597 
1598 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1599 				      unsigned char netfn,
1600 				      unsigned char cmd,
1601 				      unsigned char chan)
1602 {
1603 	struct cmd_rcvr *rcvr;
1604 
1605 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1606 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1607 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1608 					&& (rcvr->chans & (1 << chan)))
1609 			return rcvr;
1610 	}
1611 	return NULL;
1612 }
1613 
1614 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1615 				 unsigned char netfn,
1616 				 unsigned char cmd,
1617 				 unsigned int  chans)
1618 {
1619 	struct cmd_rcvr *rcvr;
1620 
1621 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1622 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1623 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1624 					&& (rcvr->chans & chans))
1625 			return 0;
1626 	}
1627 	return 1;
1628 }
1629 
1630 int ipmi_register_for_cmd(struct ipmi_user *user,
1631 			  unsigned char netfn,
1632 			  unsigned char cmd,
1633 			  unsigned int  chans)
1634 {
1635 	struct ipmi_smi *intf = user->intf;
1636 	struct cmd_rcvr *rcvr;
1637 	int rv = 0, index;
1638 
1639 	user = acquire_ipmi_user(user, &index);
1640 	if (!user)
1641 		return -ENODEV;
1642 
1643 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1644 	if (!rcvr) {
1645 		rv = -ENOMEM;
1646 		goto out_release;
1647 	}
1648 	rcvr->cmd = cmd;
1649 	rcvr->netfn = netfn;
1650 	rcvr->chans = chans;
1651 	rcvr->user = user;
1652 
1653 	mutex_lock(&intf->cmd_rcvrs_mutex);
1654 	/* Make sure the command/netfn is not already registered. */
1655 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1656 		rv = -EBUSY;
1657 		goto out_unlock;
1658 	}
1659 
1660 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1661 
1662 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1663 
1664 out_unlock:
1665 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1666 	if (rv)
1667 		kfree(rcvr);
1668 out_release:
1669 	release_ipmi_user(user, index);
1670 
1671 	return rv;
1672 }
1673 EXPORT_SYMBOL(ipmi_register_for_cmd);
1674 
1675 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1676 			    unsigned char netfn,
1677 			    unsigned char cmd,
1678 			    unsigned int  chans)
1679 {
1680 	struct ipmi_smi *intf = user->intf;
1681 	struct cmd_rcvr *rcvr;
1682 	struct cmd_rcvr *rcvrs = NULL;
1683 	int i, rv = -ENOENT, index;
1684 
1685 	user = acquire_ipmi_user(user, &index);
1686 	if (!user)
1687 		return -ENODEV;
1688 
1689 	mutex_lock(&intf->cmd_rcvrs_mutex);
1690 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1691 		if (((1 << i) & chans) == 0)
1692 			continue;
1693 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1694 		if (rcvr == NULL)
1695 			continue;
1696 		if (rcvr->user == user) {
1697 			rv = 0;
1698 			rcvr->chans &= ~chans;
1699 			if (rcvr->chans == 0) {
1700 				list_del_rcu(&rcvr->link);
1701 				rcvr->next = rcvrs;
1702 				rcvrs = rcvr;
1703 			}
1704 		}
1705 	}
1706 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1707 	synchronize_rcu();
1708 	release_ipmi_user(user, index);
1709 	while (rcvrs) {
1710 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1711 		rcvr = rcvrs;
1712 		rcvrs = rcvr->next;
1713 		kfree(rcvr);
1714 	}
1715 
1716 	return rv;
1717 }
1718 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1719 
1720 static unsigned char
1721 ipmb_checksum(unsigned char *data, int size)
1722 {
1723 	unsigned char csum = 0;
1724 
1725 	for (; size > 0; size--, data++)
1726 		csum += *data;
1727 
1728 	return -csum;
1729 }
1730 
1731 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1732 				   struct kernel_ipmi_msg *msg,
1733 				   struct ipmi_ipmb_addr *ipmb_addr,
1734 				   long                  msgid,
1735 				   unsigned char         ipmb_seq,
1736 				   int                   broadcast,
1737 				   unsigned char         source_address,
1738 				   unsigned char         source_lun)
1739 {
1740 	int i = broadcast;
1741 
1742 	/* Format the IPMB header data. */
1743 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1744 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1745 	smi_msg->data[2] = ipmb_addr->channel;
1746 	if (broadcast)
1747 		smi_msg->data[3] = 0;
1748 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1749 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1750 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1751 	smi_msg->data[i+6] = source_address;
1752 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1753 	smi_msg->data[i+8] = msg->cmd;
1754 
1755 	/* Now tack on the data to the message. */
1756 	if (msg->data_len > 0)
1757 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1758 	smi_msg->data_size = msg->data_len + 9;
1759 
1760 	/* Now calculate the checksum and tack it on. */
1761 	smi_msg->data[i+smi_msg->data_size]
1762 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1763 
1764 	/*
1765 	 * Add on the checksum size and the offset from the
1766 	 * broadcast.
1767 	 */
1768 	smi_msg->data_size += 1 + i;
1769 
1770 	smi_msg->msgid = msgid;
1771 }
1772 
1773 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1774 				  struct kernel_ipmi_msg *msg,
1775 				  struct ipmi_lan_addr  *lan_addr,
1776 				  long                  msgid,
1777 				  unsigned char         ipmb_seq,
1778 				  unsigned char         source_lun)
1779 {
1780 	/* Format the IPMB header data. */
1781 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1782 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1783 	smi_msg->data[2] = lan_addr->channel;
1784 	smi_msg->data[3] = lan_addr->session_handle;
1785 	smi_msg->data[4] = lan_addr->remote_SWID;
1786 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1787 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1788 	smi_msg->data[7] = lan_addr->local_SWID;
1789 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1790 	smi_msg->data[9] = msg->cmd;
1791 
1792 	/* Now tack on the data to the message. */
1793 	if (msg->data_len > 0)
1794 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1795 	smi_msg->data_size = msg->data_len + 10;
1796 
1797 	/* Now calculate the checksum and tack it on. */
1798 	smi_msg->data[smi_msg->data_size]
1799 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1800 
1801 	/*
1802 	 * Add on the checksum size and the offset from the
1803 	 * broadcast.
1804 	 */
1805 	smi_msg->data_size += 1;
1806 
1807 	smi_msg->msgid = msgid;
1808 }
1809 
1810 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1811 					     struct ipmi_smi_msg *smi_msg,
1812 					     int priority)
1813 {
1814 	if (intf->curr_msg) {
1815 		if (priority > 0)
1816 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1817 		else
1818 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1819 		smi_msg = NULL;
1820 	} else {
1821 		intf->curr_msg = smi_msg;
1822 	}
1823 
1824 	return smi_msg;
1825 }
1826 
1827 static void smi_send(struct ipmi_smi *intf,
1828 		     const struct ipmi_smi_handlers *handlers,
1829 		     struct ipmi_smi_msg *smi_msg, int priority)
1830 {
1831 	int run_to_completion = intf->run_to_completion;
1832 	unsigned long flags = 0;
1833 
1834 	if (!run_to_completion)
1835 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1836 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1837 
1838 	if (!run_to_completion)
1839 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1840 
1841 	if (smi_msg)
1842 		handlers->sender(intf->send_info, smi_msg);
1843 }
1844 
1845 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1846 {
1847 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1848 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1849 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1850 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1851 }
1852 
1853 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1854 			      struct ipmi_addr       *addr,
1855 			      long                   msgid,
1856 			      struct kernel_ipmi_msg *msg,
1857 			      struct ipmi_smi_msg    *smi_msg,
1858 			      struct ipmi_recv_msg   *recv_msg,
1859 			      int                    retries,
1860 			      unsigned int           retry_time_ms)
1861 {
1862 	struct ipmi_system_interface_addr *smi_addr;
1863 
1864 	if (msg->netfn & 1)
1865 		/* Responses are not allowed to the SMI. */
1866 		return -EINVAL;
1867 
1868 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1869 	if (smi_addr->lun > 3) {
1870 		ipmi_inc_stat(intf, sent_invalid_commands);
1871 		return -EINVAL;
1872 	}
1873 
1874 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1875 
1876 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1877 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1878 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1879 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1880 		/*
1881 		 * We don't let the user do these, since we manage
1882 		 * the sequence numbers.
1883 		 */
1884 		ipmi_inc_stat(intf, sent_invalid_commands);
1885 		return -EINVAL;
1886 	}
1887 
1888 	if (is_maintenance_mode_cmd(msg)) {
1889 		unsigned long flags;
1890 
1891 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1892 		intf->auto_maintenance_timeout
1893 			= maintenance_mode_timeout_ms;
1894 		if (!intf->maintenance_mode
1895 		    && !intf->maintenance_mode_enable) {
1896 			intf->maintenance_mode_enable = true;
1897 			maintenance_mode_update(intf);
1898 		}
1899 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1900 				       flags);
1901 	}
1902 
1903 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1904 		ipmi_inc_stat(intf, sent_invalid_commands);
1905 		return -EMSGSIZE;
1906 	}
1907 
1908 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1909 	smi_msg->data[1] = msg->cmd;
1910 	smi_msg->msgid = msgid;
1911 	smi_msg->user_data = recv_msg;
1912 	if (msg->data_len > 0)
1913 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1914 	smi_msg->data_size = msg->data_len + 2;
1915 	ipmi_inc_stat(intf, sent_local_commands);
1916 
1917 	return 0;
1918 }
1919 
1920 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1921 			   struct ipmi_addr       *addr,
1922 			   long                   msgid,
1923 			   struct kernel_ipmi_msg *msg,
1924 			   struct ipmi_smi_msg    *smi_msg,
1925 			   struct ipmi_recv_msg   *recv_msg,
1926 			   unsigned char          source_address,
1927 			   unsigned char          source_lun,
1928 			   int                    retries,
1929 			   unsigned int           retry_time_ms)
1930 {
1931 	struct ipmi_ipmb_addr *ipmb_addr;
1932 	unsigned char ipmb_seq;
1933 	long seqid;
1934 	int broadcast = 0;
1935 	struct ipmi_channel *chans;
1936 	int rv = 0;
1937 
1938 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1939 		ipmi_inc_stat(intf, sent_invalid_commands);
1940 		return -EINVAL;
1941 	}
1942 
1943 	chans = READ_ONCE(intf->channel_list)->c;
1944 
1945 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1946 		ipmi_inc_stat(intf, sent_invalid_commands);
1947 		return -EINVAL;
1948 	}
1949 
1950 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1951 		/*
1952 		 * Broadcasts add a zero at the beginning of the
1953 		 * message, but otherwise is the same as an IPMB
1954 		 * address.
1955 		 */
1956 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1957 		broadcast = 1;
1958 		retries = 0; /* Don't retry broadcasts. */
1959 	}
1960 
1961 	/*
1962 	 * 9 for the header and 1 for the checksum, plus
1963 	 * possibly one for the broadcast.
1964 	 */
1965 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1966 		ipmi_inc_stat(intf, sent_invalid_commands);
1967 		return -EMSGSIZE;
1968 	}
1969 
1970 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1971 	if (ipmb_addr->lun > 3) {
1972 		ipmi_inc_stat(intf, sent_invalid_commands);
1973 		return -EINVAL;
1974 	}
1975 
1976 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1977 
1978 	if (recv_msg->msg.netfn & 0x1) {
1979 		/*
1980 		 * It's a response, so use the user's sequence
1981 		 * from msgid.
1982 		 */
1983 		ipmi_inc_stat(intf, sent_ipmb_responses);
1984 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1985 				msgid, broadcast,
1986 				source_address, source_lun);
1987 
1988 		/*
1989 		 * Save the receive message so we can use it
1990 		 * to deliver the response.
1991 		 */
1992 		smi_msg->user_data = recv_msg;
1993 	} else {
1994 		/* It's a command, so get a sequence for it. */
1995 		unsigned long flags;
1996 
1997 		spin_lock_irqsave(&intf->seq_lock, flags);
1998 
1999 		if (is_maintenance_mode_cmd(msg))
2000 			intf->ipmb_maintenance_mode_timeout =
2001 				maintenance_mode_timeout_ms;
2002 
2003 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2004 			/* Different default in maintenance mode */
2005 			retry_time_ms = default_maintenance_retry_ms;
2006 
2007 		/*
2008 		 * Create a sequence number with a 1 second
2009 		 * timeout and 4 retries.
2010 		 */
2011 		rv = intf_next_seq(intf,
2012 				   recv_msg,
2013 				   retry_time_ms,
2014 				   retries,
2015 				   broadcast,
2016 				   &ipmb_seq,
2017 				   &seqid);
2018 		if (rv)
2019 			/*
2020 			 * We have used up all the sequence numbers,
2021 			 * probably, so abort.
2022 			 */
2023 			goto out_err;
2024 
2025 		ipmi_inc_stat(intf, sent_ipmb_commands);
2026 
2027 		/*
2028 		 * Store the sequence number in the message,
2029 		 * so that when the send message response
2030 		 * comes back we can start the timer.
2031 		 */
2032 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2033 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2034 				ipmb_seq, broadcast,
2035 				source_address, source_lun);
2036 
2037 		/*
2038 		 * Copy the message into the recv message data, so we
2039 		 * can retransmit it later if necessary.
2040 		 */
2041 		memcpy(recv_msg->msg_data, smi_msg->data,
2042 		       smi_msg->data_size);
2043 		recv_msg->msg.data = recv_msg->msg_data;
2044 		recv_msg->msg.data_len = smi_msg->data_size;
2045 
2046 		/*
2047 		 * We don't unlock until here, because we need
2048 		 * to copy the completed message into the
2049 		 * recv_msg before we release the lock.
2050 		 * Otherwise, race conditions may bite us.  I
2051 		 * know that's pretty paranoid, but I prefer
2052 		 * to be correct.
2053 		 */
2054 out_err:
2055 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2056 	}
2057 
2058 	return rv;
2059 }
2060 
2061 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2062 			  struct ipmi_addr       *addr,
2063 			  long                   msgid,
2064 			  struct kernel_ipmi_msg *msg,
2065 			  struct ipmi_smi_msg    *smi_msg,
2066 			  struct ipmi_recv_msg   *recv_msg,
2067 			  unsigned char          source_lun,
2068 			  int                    retries,
2069 			  unsigned int           retry_time_ms)
2070 {
2071 	struct ipmi_lan_addr  *lan_addr;
2072 	unsigned char ipmb_seq;
2073 	long seqid;
2074 	struct ipmi_channel *chans;
2075 	int rv = 0;
2076 
2077 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2078 		ipmi_inc_stat(intf, sent_invalid_commands);
2079 		return -EINVAL;
2080 	}
2081 
2082 	chans = READ_ONCE(intf->channel_list)->c;
2083 
2084 	if ((chans[addr->channel].medium
2085 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2086 			&& (chans[addr->channel].medium
2087 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2088 		ipmi_inc_stat(intf, sent_invalid_commands);
2089 		return -EINVAL;
2090 	}
2091 
2092 	/* 11 for the header and 1 for the checksum. */
2093 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2094 		ipmi_inc_stat(intf, sent_invalid_commands);
2095 		return -EMSGSIZE;
2096 	}
2097 
2098 	lan_addr = (struct ipmi_lan_addr *) addr;
2099 	if (lan_addr->lun > 3) {
2100 		ipmi_inc_stat(intf, sent_invalid_commands);
2101 		return -EINVAL;
2102 	}
2103 
2104 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2105 
2106 	if (recv_msg->msg.netfn & 0x1) {
2107 		/*
2108 		 * It's a response, so use the user's sequence
2109 		 * from msgid.
2110 		 */
2111 		ipmi_inc_stat(intf, sent_lan_responses);
2112 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2113 			       msgid, source_lun);
2114 
2115 		/*
2116 		 * Save the receive message so we can use it
2117 		 * to deliver the response.
2118 		 */
2119 		smi_msg->user_data = recv_msg;
2120 	} else {
2121 		/* It's a command, so get a sequence for it. */
2122 		unsigned long flags;
2123 
2124 		spin_lock_irqsave(&intf->seq_lock, flags);
2125 
2126 		/*
2127 		 * Create a sequence number with a 1 second
2128 		 * timeout and 4 retries.
2129 		 */
2130 		rv = intf_next_seq(intf,
2131 				   recv_msg,
2132 				   retry_time_ms,
2133 				   retries,
2134 				   0,
2135 				   &ipmb_seq,
2136 				   &seqid);
2137 		if (rv)
2138 			/*
2139 			 * We have used up all the sequence numbers,
2140 			 * probably, so abort.
2141 			 */
2142 			goto out_err;
2143 
2144 		ipmi_inc_stat(intf, sent_lan_commands);
2145 
2146 		/*
2147 		 * Store the sequence number in the message,
2148 		 * so that when the send message response
2149 		 * comes back we can start the timer.
2150 		 */
2151 		format_lan_msg(smi_msg, msg, lan_addr,
2152 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2153 			       ipmb_seq, source_lun);
2154 
2155 		/*
2156 		 * Copy the message into the recv message data, so we
2157 		 * can retransmit it later if necessary.
2158 		 */
2159 		memcpy(recv_msg->msg_data, smi_msg->data,
2160 		       smi_msg->data_size);
2161 		recv_msg->msg.data = recv_msg->msg_data;
2162 		recv_msg->msg.data_len = smi_msg->data_size;
2163 
2164 		/*
2165 		 * We don't unlock until here, because we need
2166 		 * to copy the completed message into the
2167 		 * recv_msg before we release the lock.
2168 		 * Otherwise, race conditions may bite us.  I
2169 		 * know that's pretty paranoid, but I prefer
2170 		 * to be correct.
2171 		 */
2172 out_err:
2173 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2174 	}
2175 
2176 	return rv;
2177 }
2178 
2179 /*
2180  * Separate from ipmi_request so that the user does not have to be
2181  * supplied in certain circumstances (mainly at panic time).  If
2182  * messages are supplied, they will be freed, even if an error
2183  * occurs.
2184  */
2185 static int i_ipmi_request(struct ipmi_user     *user,
2186 			  struct ipmi_smi      *intf,
2187 			  struct ipmi_addr     *addr,
2188 			  long                 msgid,
2189 			  struct kernel_ipmi_msg *msg,
2190 			  void                 *user_msg_data,
2191 			  void                 *supplied_smi,
2192 			  struct ipmi_recv_msg *supplied_recv,
2193 			  int                  priority,
2194 			  unsigned char        source_address,
2195 			  unsigned char        source_lun,
2196 			  int                  retries,
2197 			  unsigned int         retry_time_ms)
2198 {
2199 	struct ipmi_smi_msg *smi_msg;
2200 	struct ipmi_recv_msg *recv_msg;
2201 	int rv = 0;
2202 
2203 	if (supplied_recv)
2204 		recv_msg = supplied_recv;
2205 	else {
2206 		recv_msg = ipmi_alloc_recv_msg();
2207 		if (recv_msg == NULL) {
2208 			rv = -ENOMEM;
2209 			goto out;
2210 		}
2211 	}
2212 	recv_msg->user_msg_data = user_msg_data;
2213 
2214 	if (supplied_smi)
2215 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2216 	else {
2217 		smi_msg = ipmi_alloc_smi_msg();
2218 		if (smi_msg == NULL) {
2219 			if (!supplied_recv)
2220 				ipmi_free_recv_msg(recv_msg);
2221 			rv = -ENOMEM;
2222 			goto out;
2223 		}
2224 	}
2225 
2226 	rcu_read_lock();
2227 	if (intf->in_shutdown) {
2228 		rv = -ENODEV;
2229 		goto out_err;
2230 	}
2231 
2232 	recv_msg->user = user;
2233 	if (user)
2234 		/* The put happens when the message is freed. */
2235 		kref_get(&user->refcount);
2236 	recv_msg->msgid = msgid;
2237 	/*
2238 	 * Store the message to send in the receive message so timeout
2239 	 * responses can get the proper response data.
2240 	 */
2241 	recv_msg->msg = *msg;
2242 
2243 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2244 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2245 					recv_msg, retries, retry_time_ms);
2246 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2247 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2248 				     source_address, source_lun,
2249 				     retries, retry_time_ms);
2250 	} else if (is_lan_addr(addr)) {
2251 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2252 				    source_lun, retries, retry_time_ms);
2253 	} else {
2254 	    /* Unknown address type. */
2255 		ipmi_inc_stat(intf, sent_invalid_commands);
2256 		rv = -EINVAL;
2257 	}
2258 
2259 	if (rv) {
2260 out_err:
2261 		ipmi_free_smi_msg(smi_msg);
2262 		ipmi_free_recv_msg(recv_msg);
2263 	} else {
2264 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2265 
2266 		smi_send(intf, intf->handlers, smi_msg, priority);
2267 	}
2268 	rcu_read_unlock();
2269 
2270 out:
2271 	return rv;
2272 }
2273 
2274 static int check_addr(struct ipmi_smi  *intf,
2275 		      struct ipmi_addr *addr,
2276 		      unsigned char    *saddr,
2277 		      unsigned char    *lun)
2278 {
2279 	if (addr->channel >= IPMI_MAX_CHANNELS)
2280 		return -EINVAL;
2281 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2282 	*lun = intf->addrinfo[addr->channel].lun;
2283 	*saddr = intf->addrinfo[addr->channel].address;
2284 	return 0;
2285 }
2286 
2287 int ipmi_request_settime(struct ipmi_user *user,
2288 			 struct ipmi_addr *addr,
2289 			 long             msgid,
2290 			 struct kernel_ipmi_msg  *msg,
2291 			 void             *user_msg_data,
2292 			 int              priority,
2293 			 int              retries,
2294 			 unsigned int     retry_time_ms)
2295 {
2296 	unsigned char saddr = 0, lun = 0;
2297 	int rv, index;
2298 
2299 	if (!user)
2300 		return -EINVAL;
2301 
2302 	user = acquire_ipmi_user(user, &index);
2303 	if (!user)
2304 		return -ENODEV;
2305 
2306 	rv = check_addr(user->intf, addr, &saddr, &lun);
2307 	if (!rv)
2308 		rv = i_ipmi_request(user,
2309 				    user->intf,
2310 				    addr,
2311 				    msgid,
2312 				    msg,
2313 				    user_msg_data,
2314 				    NULL, NULL,
2315 				    priority,
2316 				    saddr,
2317 				    lun,
2318 				    retries,
2319 				    retry_time_ms);
2320 
2321 	release_ipmi_user(user, index);
2322 	return rv;
2323 }
2324 EXPORT_SYMBOL(ipmi_request_settime);
2325 
2326 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2327 			     struct ipmi_addr     *addr,
2328 			     long                 msgid,
2329 			     struct kernel_ipmi_msg *msg,
2330 			     void                 *user_msg_data,
2331 			     void                 *supplied_smi,
2332 			     struct ipmi_recv_msg *supplied_recv,
2333 			     int                  priority)
2334 {
2335 	unsigned char saddr = 0, lun = 0;
2336 	int rv, index;
2337 
2338 	if (!user)
2339 		return -EINVAL;
2340 
2341 	user = acquire_ipmi_user(user, &index);
2342 	if (!user)
2343 		return -ENODEV;
2344 
2345 	rv = check_addr(user->intf, addr, &saddr, &lun);
2346 	if (!rv)
2347 		rv = i_ipmi_request(user,
2348 				    user->intf,
2349 				    addr,
2350 				    msgid,
2351 				    msg,
2352 				    user_msg_data,
2353 				    supplied_smi,
2354 				    supplied_recv,
2355 				    priority,
2356 				    saddr,
2357 				    lun,
2358 				    -1, 0);
2359 
2360 	release_ipmi_user(user, index);
2361 	return rv;
2362 }
2363 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2364 
2365 static void bmc_device_id_handler(struct ipmi_smi *intf,
2366 				  struct ipmi_recv_msg *msg)
2367 {
2368 	int rv;
2369 
2370 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2371 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2372 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2373 		dev_warn(intf->si_dev,
2374 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2375 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2376 		return;
2377 	}
2378 
2379 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2380 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2381 	if (rv) {
2382 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2383 		intf->bmc->dyn_id_set = 0;
2384 	} else {
2385 		/*
2386 		 * Make sure the id data is available before setting
2387 		 * dyn_id_set.
2388 		 */
2389 		smp_wmb();
2390 		intf->bmc->dyn_id_set = 1;
2391 	}
2392 
2393 	wake_up(&intf->waitq);
2394 }
2395 
2396 static int
2397 send_get_device_id_cmd(struct ipmi_smi *intf)
2398 {
2399 	struct ipmi_system_interface_addr si;
2400 	struct kernel_ipmi_msg msg;
2401 
2402 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2403 	si.channel = IPMI_BMC_CHANNEL;
2404 	si.lun = 0;
2405 
2406 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2407 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2408 	msg.data = NULL;
2409 	msg.data_len = 0;
2410 
2411 	return i_ipmi_request(NULL,
2412 			      intf,
2413 			      (struct ipmi_addr *) &si,
2414 			      0,
2415 			      &msg,
2416 			      intf,
2417 			      NULL,
2418 			      NULL,
2419 			      0,
2420 			      intf->addrinfo[0].address,
2421 			      intf->addrinfo[0].lun,
2422 			      -1, 0);
2423 }
2424 
2425 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2426 {
2427 	int rv;
2428 
2429 	bmc->dyn_id_set = 2;
2430 
2431 	intf->null_user_handler = bmc_device_id_handler;
2432 
2433 	rv = send_get_device_id_cmd(intf);
2434 	if (rv)
2435 		return rv;
2436 
2437 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2438 
2439 	if (!bmc->dyn_id_set)
2440 		rv = -EIO; /* Something went wrong in the fetch. */
2441 
2442 	/* dyn_id_set makes the id data available. */
2443 	smp_rmb();
2444 
2445 	intf->null_user_handler = NULL;
2446 
2447 	return rv;
2448 }
2449 
2450 /*
2451  * Fetch the device id for the bmc/interface.  You must pass in either
2452  * bmc or intf, this code will get the other one.  If the data has
2453  * been recently fetched, this will just use the cached data.  Otherwise
2454  * it will run a new fetch.
2455  *
2456  * Except for the first time this is called (in ipmi_add_smi()),
2457  * this will always return good data;
2458  */
2459 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2460 			       struct ipmi_device_id *id,
2461 			       bool *guid_set, guid_t *guid, int intf_num)
2462 {
2463 	int rv = 0;
2464 	int prev_dyn_id_set, prev_guid_set;
2465 	bool intf_set = intf != NULL;
2466 
2467 	if (!intf) {
2468 		mutex_lock(&bmc->dyn_mutex);
2469 retry_bmc_lock:
2470 		if (list_empty(&bmc->intfs)) {
2471 			mutex_unlock(&bmc->dyn_mutex);
2472 			return -ENOENT;
2473 		}
2474 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2475 					bmc_link);
2476 		kref_get(&intf->refcount);
2477 		mutex_unlock(&bmc->dyn_mutex);
2478 		mutex_lock(&intf->bmc_reg_mutex);
2479 		mutex_lock(&bmc->dyn_mutex);
2480 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2481 					     bmc_link)) {
2482 			mutex_unlock(&intf->bmc_reg_mutex);
2483 			kref_put(&intf->refcount, intf_free);
2484 			goto retry_bmc_lock;
2485 		}
2486 	} else {
2487 		mutex_lock(&intf->bmc_reg_mutex);
2488 		bmc = intf->bmc;
2489 		mutex_lock(&bmc->dyn_mutex);
2490 		kref_get(&intf->refcount);
2491 	}
2492 
2493 	/* If we have a valid and current ID, just return that. */
2494 	if (intf->in_bmc_register ||
2495 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2496 		goto out_noprocessing;
2497 
2498 	prev_guid_set = bmc->dyn_guid_set;
2499 	__get_guid(intf);
2500 
2501 	prev_dyn_id_set = bmc->dyn_id_set;
2502 	rv = __get_device_id(intf, bmc);
2503 	if (rv)
2504 		goto out;
2505 
2506 	/*
2507 	 * The guid, device id, manufacturer id, and product id should
2508 	 * not change on a BMC.  If it does we have to do some dancing.
2509 	 */
2510 	if (!intf->bmc_registered
2511 	    || (!prev_guid_set && bmc->dyn_guid_set)
2512 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2513 	    || (prev_guid_set && bmc->dyn_guid_set
2514 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2515 	    || bmc->id.device_id != bmc->fetch_id.device_id
2516 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2517 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2518 		struct ipmi_device_id id = bmc->fetch_id;
2519 		int guid_set = bmc->dyn_guid_set;
2520 		guid_t guid;
2521 
2522 		guid = bmc->fetch_guid;
2523 		mutex_unlock(&bmc->dyn_mutex);
2524 
2525 		__ipmi_bmc_unregister(intf);
2526 		/* Fill in the temporary BMC for good measure. */
2527 		intf->bmc->id = id;
2528 		intf->bmc->dyn_guid_set = guid_set;
2529 		intf->bmc->guid = guid;
2530 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2531 			need_waiter(intf); /* Retry later on an error. */
2532 		else
2533 			__scan_channels(intf, &id);
2534 
2535 
2536 		if (!intf_set) {
2537 			/*
2538 			 * We weren't given the interface on the
2539 			 * command line, so restart the operation on
2540 			 * the next interface for the BMC.
2541 			 */
2542 			mutex_unlock(&intf->bmc_reg_mutex);
2543 			mutex_lock(&bmc->dyn_mutex);
2544 			goto retry_bmc_lock;
2545 		}
2546 
2547 		/* We have a new BMC, set it up. */
2548 		bmc = intf->bmc;
2549 		mutex_lock(&bmc->dyn_mutex);
2550 		goto out_noprocessing;
2551 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2552 		/* Version info changes, scan the channels again. */
2553 		__scan_channels(intf, &bmc->fetch_id);
2554 
2555 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2556 
2557 out:
2558 	if (rv && prev_dyn_id_set) {
2559 		rv = 0; /* Ignore failures if we have previous data. */
2560 		bmc->dyn_id_set = prev_dyn_id_set;
2561 	}
2562 	if (!rv) {
2563 		bmc->id = bmc->fetch_id;
2564 		if (bmc->dyn_guid_set)
2565 			bmc->guid = bmc->fetch_guid;
2566 		else if (prev_guid_set)
2567 			/*
2568 			 * The guid used to be valid and it failed to fetch,
2569 			 * just use the cached value.
2570 			 */
2571 			bmc->dyn_guid_set = prev_guid_set;
2572 	}
2573 out_noprocessing:
2574 	if (!rv) {
2575 		if (id)
2576 			*id = bmc->id;
2577 
2578 		if (guid_set)
2579 			*guid_set = bmc->dyn_guid_set;
2580 
2581 		if (guid && bmc->dyn_guid_set)
2582 			*guid =  bmc->guid;
2583 	}
2584 
2585 	mutex_unlock(&bmc->dyn_mutex);
2586 	mutex_unlock(&intf->bmc_reg_mutex);
2587 
2588 	kref_put(&intf->refcount, intf_free);
2589 	return rv;
2590 }
2591 
2592 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2593 			     struct ipmi_device_id *id,
2594 			     bool *guid_set, guid_t *guid)
2595 {
2596 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2597 }
2598 
2599 static ssize_t device_id_show(struct device *dev,
2600 			      struct device_attribute *attr,
2601 			      char *buf)
2602 {
2603 	struct bmc_device *bmc = to_bmc_device(dev);
2604 	struct ipmi_device_id id;
2605 	int rv;
2606 
2607 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2608 	if (rv)
2609 		return rv;
2610 
2611 	return snprintf(buf, 10, "%u\n", id.device_id);
2612 }
2613 static DEVICE_ATTR_RO(device_id);
2614 
2615 static ssize_t provides_device_sdrs_show(struct device *dev,
2616 					 struct device_attribute *attr,
2617 					 char *buf)
2618 {
2619 	struct bmc_device *bmc = to_bmc_device(dev);
2620 	struct ipmi_device_id id;
2621 	int rv;
2622 
2623 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2624 	if (rv)
2625 		return rv;
2626 
2627 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2628 }
2629 static DEVICE_ATTR_RO(provides_device_sdrs);
2630 
2631 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2632 			     char *buf)
2633 {
2634 	struct bmc_device *bmc = to_bmc_device(dev);
2635 	struct ipmi_device_id id;
2636 	int rv;
2637 
2638 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2639 	if (rv)
2640 		return rv;
2641 
2642 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2643 }
2644 static DEVICE_ATTR_RO(revision);
2645 
2646 static ssize_t firmware_revision_show(struct device *dev,
2647 				      struct device_attribute *attr,
2648 				      char *buf)
2649 {
2650 	struct bmc_device *bmc = to_bmc_device(dev);
2651 	struct ipmi_device_id id;
2652 	int rv;
2653 
2654 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2655 	if (rv)
2656 		return rv;
2657 
2658 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2659 			id.firmware_revision_2);
2660 }
2661 static DEVICE_ATTR_RO(firmware_revision);
2662 
2663 static ssize_t ipmi_version_show(struct device *dev,
2664 				 struct device_attribute *attr,
2665 				 char *buf)
2666 {
2667 	struct bmc_device *bmc = to_bmc_device(dev);
2668 	struct ipmi_device_id id;
2669 	int rv;
2670 
2671 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2672 	if (rv)
2673 		return rv;
2674 
2675 	return snprintf(buf, 20, "%u.%u\n",
2676 			ipmi_version_major(&id),
2677 			ipmi_version_minor(&id));
2678 }
2679 static DEVICE_ATTR_RO(ipmi_version);
2680 
2681 static ssize_t add_dev_support_show(struct device *dev,
2682 				    struct device_attribute *attr,
2683 				    char *buf)
2684 {
2685 	struct bmc_device *bmc = to_bmc_device(dev);
2686 	struct ipmi_device_id id;
2687 	int rv;
2688 
2689 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2690 	if (rv)
2691 		return rv;
2692 
2693 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2694 }
2695 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2696 		   NULL);
2697 
2698 static ssize_t manufacturer_id_show(struct device *dev,
2699 				    struct device_attribute *attr,
2700 				    char *buf)
2701 {
2702 	struct bmc_device *bmc = to_bmc_device(dev);
2703 	struct ipmi_device_id id;
2704 	int rv;
2705 
2706 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2707 	if (rv)
2708 		return rv;
2709 
2710 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2711 }
2712 static DEVICE_ATTR_RO(manufacturer_id);
2713 
2714 static ssize_t product_id_show(struct device *dev,
2715 			       struct device_attribute *attr,
2716 			       char *buf)
2717 {
2718 	struct bmc_device *bmc = to_bmc_device(dev);
2719 	struct ipmi_device_id id;
2720 	int rv;
2721 
2722 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2723 	if (rv)
2724 		return rv;
2725 
2726 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2727 }
2728 static DEVICE_ATTR_RO(product_id);
2729 
2730 static ssize_t aux_firmware_rev_show(struct device *dev,
2731 				     struct device_attribute *attr,
2732 				     char *buf)
2733 {
2734 	struct bmc_device *bmc = to_bmc_device(dev);
2735 	struct ipmi_device_id id;
2736 	int rv;
2737 
2738 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2739 	if (rv)
2740 		return rv;
2741 
2742 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2743 			id.aux_firmware_revision[3],
2744 			id.aux_firmware_revision[2],
2745 			id.aux_firmware_revision[1],
2746 			id.aux_firmware_revision[0]);
2747 }
2748 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2749 
2750 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2751 			 char *buf)
2752 {
2753 	struct bmc_device *bmc = to_bmc_device(dev);
2754 	bool guid_set;
2755 	guid_t guid;
2756 	int rv;
2757 
2758 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2759 	if (rv)
2760 		return rv;
2761 	if (!guid_set)
2762 		return -ENOENT;
2763 
2764 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2765 }
2766 static DEVICE_ATTR_RO(guid);
2767 
2768 static struct attribute *bmc_dev_attrs[] = {
2769 	&dev_attr_device_id.attr,
2770 	&dev_attr_provides_device_sdrs.attr,
2771 	&dev_attr_revision.attr,
2772 	&dev_attr_firmware_revision.attr,
2773 	&dev_attr_ipmi_version.attr,
2774 	&dev_attr_additional_device_support.attr,
2775 	&dev_attr_manufacturer_id.attr,
2776 	&dev_attr_product_id.attr,
2777 	&dev_attr_aux_firmware_revision.attr,
2778 	&dev_attr_guid.attr,
2779 	NULL
2780 };
2781 
2782 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2783 				       struct attribute *attr, int idx)
2784 {
2785 	struct device *dev = kobj_to_dev(kobj);
2786 	struct bmc_device *bmc = to_bmc_device(dev);
2787 	umode_t mode = attr->mode;
2788 	int rv;
2789 
2790 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2791 		struct ipmi_device_id id;
2792 
2793 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2794 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2795 	}
2796 	if (attr == &dev_attr_guid.attr) {
2797 		bool guid_set;
2798 
2799 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2800 		return (!rv && guid_set) ? mode : 0;
2801 	}
2802 	return mode;
2803 }
2804 
2805 static const struct attribute_group bmc_dev_attr_group = {
2806 	.attrs		= bmc_dev_attrs,
2807 	.is_visible	= bmc_dev_attr_is_visible,
2808 };
2809 
2810 static const struct attribute_group *bmc_dev_attr_groups[] = {
2811 	&bmc_dev_attr_group,
2812 	NULL
2813 };
2814 
2815 static const struct device_type bmc_device_type = {
2816 	.groups		= bmc_dev_attr_groups,
2817 };
2818 
2819 static int __find_bmc_guid(struct device *dev, const void *data)
2820 {
2821 	const guid_t *guid = data;
2822 	struct bmc_device *bmc;
2823 	int rv;
2824 
2825 	if (dev->type != &bmc_device_type)
2826 		return 0;
2827 
2828 	bmc = to_bmc_device(dev);
2829 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2830 	if (rv)
2831 		rv = kref_get_unless_zero(&bmc->usecount);
2832 	return rv;
2833 }
2834 
2835 /*
2836  * Returns with the bmc's usecount incremented, if it is non-NULL.
2837  */
2838 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2839 					     guid_t *guid)
2840 {
2841 	struct device *dev;
2842 	struct bmc_device *bmc = NULL;
2843 
2844 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2845 	if (dev) {
2846 		bmc = to_bmc_device(dev);
2847 		put_device(dev);
2848 	}
2849 	return bmc;
2850 }
2851 
2852 struct prod_dev_id {
2853 	unsigned int  product_id;
2854 	unsigned char device_id;
2855 };
2856 
2857 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2858 {
2859 	const struct prod_dev_id *cid = data;
2860 	struct bmc_device *bmc;
2861 	int rv;
2862 
2863 	if (dev->type != &bmc_device_type)
2864 		return 0;
2865 
2866 	bmc = to_bmc_device(dev);
2867 	rv = (bmc->id.product_id == cid->product_id
2868 	      && bmc->id.device_id == cid->device_id);
2869 	if (rv)
2870 		rv = kref_get_unless_zero(&bmc->usecount);
2871 	return rv;
2872 }
2873 
2874 /*
2875  * Returns with the bmc's usecount incremented, if it is non-NULL.
2876  */
2877 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2878 	struct device_driver *drv,
2879 	unsigned int product_id, unsigned char device_id)
2880 {
2881 	struct prod_dev_id id = {
2882 		.product_id = product_id,
2883 		.device_id = device_id,
2884 	};
2885 	struct device *dev;
2886 	struct bmc_device *bmc = NULL;
2887 
2888 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2889 	if (dev) {
2890 		bmc = to_bmc_device(dev);
2891 		put_device(dev);
2892 	}
2893 	return bmc;
2894 }
2895 
2896 static DEFINE_IDA(ipmi_bmc_ida);
2897 
2898 static void
2899 release_bmc_device(struct device *dev)
2900 {
2901 	kfree(to_bmc_device(dev));
2902 }
2903 
2904 static void cleanup_bmc_work(struct work_struct *work)
2905 {
2906 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2907 					      remove_work);
2908 	int id = bmc->pdev.id; /* Unregister overwrites id */
2909 
2910 	platform_device_unregister(&bmc->pdev);
2911 	ida_simple_remove(&ipmi_bmc_ida, id);
2912 }
2913 
2914 static void
2915 cleanup_bmc_device(struct kref *ref)
2916 {
2917 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2918 
2919 	/*
2920 	 * Remove the platform device in a work queue to avoid issues
2921 	 * with removing the device attributes while reading a device
2922 	 * attribute.
2923 	 */
2924 	schedule_work(&bmc->remove_work);
2925 }
2926 
2927 /*
2928  * Must be called with intf->bmc_reg_mutex held.
2929  */
2930 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2931 {
2932 	struct bmc_device *bmc = intf->bmc;
2933 
2934 	if (!intf->bmc_registered)
2935 		return;
2936 
2937 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2938 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2939 	kfree(intf->my_dev_name);
2940 	intf->my_dev_name = NULL;
2941 
2942 	mutex_lock(&bmc->dyn_mutex);
2943 	list_del(&intf->bmc_link);
2944 	mutex_unlock(&bmc->dyn_mutex);
2945 	intf->bmc = &intf->tmp_bmc;
2946 	kref_put(&bmc->usecount, cleanup_bmc_device);
2947 	intf->bmc_registered = false;
2948 }
2949 
2950 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2951 {
2952 	mutex_lock(&intf->bmc_reg_mutex);
2953 	__ipmi_bmc_unregister(intf);
2954 	mutex_unlock(&intf->bmc_reg_mutex);
2955 }
2956 
2957 /*
2958  * Must be called with intf->bmc_reg_mutex held.
2959  */
2960 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2961 			       struct ipmi_device_id *id,
2962 			       bool guid_set, guid_t *guid, int intf_num)
2963 {
2964 	int               rv;
2965 	struct bmc_device *bmc;
2966 	struct bmc_device *old_bmc;
2967 
2968 	/*
2969 	 * platform_device_register() can cause bmc_reg_mutex to
2970 	 * be claimed because of the is_visible functions of
2971 	 * the attributes.  Eliminate possible recursion and
2972 	 * release the lock.
2973 	 */
2974 	intf->in_bmc_register = true;
2975 	mutex_unlock(&intf->bmc_reg_mutex);
2976 
2977 	/*
2978 	 * Try to find if there is an bmc_device struct
2979 	 * representing the interfaced BMC already
2980 	 */
2981 	mutex_lock(&ipmidriver_mutex);
2982 	if (guid_set)
2983 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
2984 	else
2985 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2986 						    id->product_id,
2987 						    id->device_id);
2988 
2989 	/*
2990 	 * If there is already an bmc_device, free the new one,
2991 	 * otherwise register the new BMC device
2992 	 */
2993 	if (old_bmc) {
2994 		bmc = old_bmc;
2995 		/*
2996 		 * Note: old_bmc already has usecount incremented by
2997 		 * the BMC find functions.
2998 		 */
2999 		intf->bmc = old_bmc;
3000 		mutex_lock(&bmc->dyn_mutex);
3001 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3002 		mutex_unlock(&bmc->dyn_mutex);
3003 
3004 		dev_info(intf->si_dev,
3005 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3006 			 bmc->id.manufacturer_id,
3007 			 bmc->id.product_id,
3008 			 bmc->id.device_id);
3009 	} else {
3010 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3011 		if (!bmc) {
3012 			rv = -ENOMEM;
3013 			goto out;
3014 		}
3015 		INIT_LIST_HEAD(&bmc->intfs);
3016 		mutex_init(&bmc->dyn_mutex);
3017 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3018 
3019 		bmc->id = *id;
3020 		bmc->dyn_id_set = 1;
3021 		bmc->dyn_guid_set = guid_set;
3022 		bmc->guid = *guid;
3023 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3024 
3025 		bmc->pdev.name = "ipmi_bmc";
3026 
3027 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3028 		if (rv < 0) {
3029 			kfree(bmc);
3030 			goto out;
3031 		}
3032 
3033 		bmc->pdev.dev.driver = &ipmidriver.driver;
3034 		bmc->pdev.id = rv;
3035 		bmc->pdev.dev.release = release_bmc_device;
3036 		bmc->pdev.dev.type = &bmc_device_type;
3037 		kref_init(&bmc->usecount);
3038 
3039 		intf->bmc = bmc;
3040 		mutex_lock(&bmc->dyn_mutex);
3041 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3042 		mutex_unlock(&bmc->dyn_mutex);
3043 
3044 		rv = platform_device_register(&bmc->pdev);
3045 		if (rv) {
3046 			dev_err(intf->si_dev,
3047 				"Unable to register bmc device: %d\n",
3048 				rv);
3049 			goto out_list_del;
3050 		}
3051 
3052 		dev_info(intf->si_dev,
3053 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3054 			 bmc->id.manufacturer_id,
3055 			 bmc->id.product_id,
3056 			 bmc->id.device_id);
3057 	}
3058 
3059 	/*
3060 	 * create symlink from system interface device to bmc device
3061 	 * and back.
3062 	 */
3063 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3064 	if (rv) {
3065 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3066 		goto out_put_bmc;
3067 	}
3068 
3069 	if (intf_num == -1)
3070 		intf_num = intf->intf_num;
3071 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3072 	if (!intf->my_dev_name) {
3073 		rv = -ENOMEM;
3074 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3075 			rv);
3076 		goto out_unlink1;
3077 	}
3078 
3079 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3080 			       intf->my_dev_name);
3081 	if (rv) {
3082 		kfree(intf->my_dev_name);
3083 		intf->my_dev_name = NULL;
3084 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3085 			rv);
3086 		goto out_free_my_dev_name;
3087 	}
3088 
3089 	intf->bmc_registered = true;
3090 
3091 out:
3092 	mutex_unlock(&ipmidriver_mutex);
3093 	mutex_lock(&intf->bmc_reg_mutex);
3094 	intf->in_bmc_register = false;
3095 	return rv;
3096 
3097 
3098 out_free_my_dev_name:
3099 	kfree(intf->my_dev_name);
3100 	intf->my_dev_name = NULL;
3101 
3102 out_unlink1:
3103 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3104 
3105 out_put_bmc:
3106 	mutex_lock(&bmc->dyn_mutex);
3107 	list_del(&intf->bmc_link);
3108 	mutex_unlock(&bmc->dyn_mutex);
3109 	intf->bmc = &intf->tmp_bmc;
3110 	kref_put(&bmc->usecount, cleanup_bmc_device);
3111 	goto out;
3112 
3113 out_list_del:
3114 	mutex_lock(&bmc->dyn_mutex);
3115 	list_del(&intf->bmc_link);
3116 	mutex_unlock(&bmc->dyn_mutex);
3117 	intf->bmc = &intf->tmp_bmc;
3118 	put_device(&bmc->pdev.dev);
3119 	goto out;
3120 }
3121 
3122 static int
3123 send_guid_cmd(struct ipmi_smi *intf, int chan)
3124 {
3125 	struct kernel_ipmi_msg            msg;
3126 	struct ipmi_system_interface_addr si;
3127 
3128 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3129 	si.channel = IPMI_BMC_CHANNEL;
3130 	si.lun = 0;
3131 
3132 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3133 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3134 	msg.data = NULL;
3135 	msg.data_len = 0;
3136 	return i_ipmi_request(NULL,
3137 			      intf,
3138 			      (struct ipmi_addr *) &si,
3139 			      0,
3140 			      &msg,
3141 			      intf,
3142 			      NULL,
3143 			      NULL,
3144 			      0,
3145 			      intf->addrinfo[0].address,
3146 			      intf->addrinfo[0].lun,
3147 			      -1, 0);
3148 }
3149 
3150 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3151 {
3152 	struct bmc_device *bmc = intf->bmc;
3153 
3154 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3155 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3156 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3157 		/* Not for me */
3158 		return;
3159 
3160 	if (msg->msg.data[0] != 0) {
3161 		/* Error from getting the GUID, the BMC doesn't have one. */
3162 		bmc->dyn_guid_set = 0;
3163 		goto out;
3164 	}
3165 
3166 	if (msg->msg.data_len < UUID_SIZE + 1) {
3167 		bmc->dyn_guid_set = 0;
3168 		dev_warn(intf->si_dev,
3169 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3170 			 msg->msg.data_len, UUID_SIZE + 1);
3171 		goto out;
3172 	}
3173 
3174 	guid_copy(&bmc->fetch_guid, (guid_t *)(msg->msg.data + 1));
3175 	/*
3176 	 * Make sure the guid data is available before setting
3177 	 * dyn_guid_set.
3178 	 */
3179 	smp_wmb();
3180 	bmc->dyn_guid_set = 1;
3181  out:
3182 	wake_up(&intf->waitq);
3183 }
3184 
3185 static void __get_guid(struct ipmi_smi *intf)
3186 {
3187 	int rv;
3188 	struct bmc_device *bmc = intf->bmc;
3189 
3190 	bmc->dyn_guid_set = 2;
3191 	intf->null_user_handler = guid_handler;
3192 	rv = send_guid_cmd(intf, 0);
3193 	if (rv)
3194 		/* Send failed, no GUID available. */
3195 		bmc->dyn_guid_set = 0;
3196 	else
3197 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3198 
3199 	/* dyn_guid_set makes the guid data available. */
3200 	smp_rmb();
3201 
3202 	intf->null_user_handler = NULL;
3203 }
3204 
3205 static int
3206 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3207 {
3208 	struct kernel_ipmi_msg            msg;
3209 	unsigned char                     data[1];
3210 	struct ipmi_system_interface_addr si;
3211 
3212 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3213 	si.channel = IPMI_BMC_CHANNEL;
3214 	si.lun = 0;
3215 
3216 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3217 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3218 	msg.data = data;
3219 	msg.data_len = 1;
3220 	data[0] = chan;
3221 	return i_ipmi_request(NULL,
3222 			      intf,
3223 			      (struct ipmi_addr *) &si,
3224 			      0,
3225 			      &msg,
3226 			      intf,
3227 			      NULL,
3228 			      NULL,
3229 			      0,
3230 			      intf->addrinfo[0].address,
3231 			      intf->addrinfo[0].lun,
3232 			      -1, 0);
3233 }
3234 
3235 static void
3236 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3237 {
3238 	int rv = 0;
3239 	int ch;
3240 	unsigned int set = intf->curr_working_cset;
3241 	struct ipmi_channel *chans;
3242 
3243 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3244 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3245 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3246 		/* It's the one we want */
3247 		if (msg->msg.data[0] != 0) {
3248 			/* Got an error from the channel, just go on. */
3249 
3250 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3251 				/*
3252 				 * If the MC does not support this
3253 				 * command, that is legal.  We just
3254 				 * assume it has one IPMB at channel
3255 				 * zero.
3256 				 */
3257 				intf->wchannels[set].c[0].medium
3258 					= IPMI_CHANNEL_MEDIUM_IPMB;
3259 				intf->wchannels[set].c[0].protocol
3260 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3261 
3262 				intf->channel_list = intf->wchannels + set;
3263 				intf->channels_ready = true;
3264 				wake_up(&intf->waitq);
3265 				goto out;
3266 			}
3267 			goto next_channel;
3268 		}
3269 		if (msg->msg.data_len < 4) {
3270 			/* Message not big enough, just go on. */
3271 			goto next_channel;
3272 		}
3273 		ch = intf->curr_channel;
3274 		chans = intf->wchannels[set].c;
3275 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3276 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3277 
3278  next_channel:
3279 		intf->curr_channel++;
3280 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3281 			intf->channel_list = intf->wchannels + set;
3282 			intf->channels_ready = true;
3283 			wake_up(&intf->waitq);
3284 		} else {
3285 			intf->channel_list = intf->wchannels + set;
3286 			intf->channels_ready = true;
3287 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3288 		}
3289 
3290 		if (rv) {
3291 			/* Got an error somehow, just give up. */
3292 			dev_warn(intf->si_dev,
3293 				 "Error sending channel information for channel %d: %d\n",
3294 				 intf->curr_channel, rv);
3295 
3296 			intf->channel_list = intf->wchannels + set;
3297 			intf->channels_ready = true;
3298 			wake_up(&intf->waitq);
3299 		}
3300 	}
3301  out:
3302 	return;
3303 }
3304 
3305 /*
3306  * Must be holding intf->bmc_reg_mutex to call this.
3307  */
3308 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3309 {
3310 	int rv;
3311 
3312 	if (ipmi_version_major(id) > 1
3313 			|| (ipmi_version_major(id) == 1
3314 			    && ipmi_version_minor(id) >= 5)) {
3315 		unsigned int set;
3316 
3317 		/*
3318 		 * Start scanning the channels to see what is
3319 		 * available.
3320 		 */
3321 		set = !intf->curr_working_cset;
3322 		intf->curr_working_cset = set;
3323 		memset(&intf->wchannels[set], 0,
3324 		       sizeof(struct ipmi_channel_set));
3325 
3326 		intf->null_user_handler = channel_handler;
3327 		intf->curr_channel = 0;
3328 		rv = send_channel_info_cmd(intf, 0);
3329 		if (rv) {
3330 			dev_warn(intf->si_dev,
3331 				 "Error sending channel information for channel 0, %d\n",
3332 				 rv);
3333 			return -EIO;
3334 		}
3335 
3336 		/* Wait for the channel info to be read. */
3337 		wait_event(intf->waitq, intf->channels_ready);
3338 		intf->null_user_handler = NULL;
3339 	} else {
3340 		unsigned int set = intf->curr_working_cset;
3341 
3342 		/* Assume a single IPMB channel at zero. */
3343 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3344 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3345 		intf->channel_list = intf->wchannels + set;
3346 		intf->channels_ready = true;
3347 	}
3348 
3349 	return 0;
3350 }
3351 
3352 static void ipmi_poll(struct ipmi_smi *intf)
3353 {
3354 	if (intf->handlers->poll)
3355 		intf->handlers->poll(intf->send_info);
3356 	/* In case something came in */
3357 	handle_new_recv_msgs(intf);
3358 }
3359 
3360 void ipmi_poll_interface(struct ipmi_user *user)
3361 {
3362 	ipmi_poll(user->intf);
3363 }
3364 EXPORT_SYMBOL(ipmi_poll_interface);
3365 
3366 static void redo_bmc_reg(struct work_struct *work)
3367 {
3368 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3369 					     bmc_reg_work);
3370 
3371 	if (!intf->in_shutdown)
3372 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3373 
3374 	kref_put(&intf->refcount, intf_free);
3375 }
3376 
3377 int ipmi_add_smi(struct module         *owner,
3378 		 const struct ipmi_smi_handlers *handlers,
3379 		 void		       *send_info,
3380 		 struct device         *si_dev,
3381 		 unsigned char         slave_addr)
3382 {
3383 	int              i, j;
3384 	int              rv;
3385 	struct ipmi_smi *intf, *tintf;
3386 	struct list_head *link;
3387 	struct ipmi_device_id id;
3388 
3389 	/*
3390 	 * Make sure the driver is actually initialized, this handles
3391 	 * problems with initialization order.
3392 	 */
3393 	rv = ipmi_init_msghandler();
3394 	if (rv)
3395 		return rv;
3396 
3397 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3398 	if (!intf)
3399 		return -ENOMEM;
3400 
3401 	rv = init_srcu_struct(&intf->users_srcu);
3402 	if (rv) {
3403 		kfree(intf);
3404 		return rv;
3405 	}
3406 
3407 	intf->owner = owner;
3408 	intf->bmc = &intf->tmp_bmc;
3409 	INIT_LIST_HEAD(&intf->bmc->intfs);
3410 	mutex_init(&intf->bmc->dyn_mutex);
3411 	INIT_LIST_HEAD(&intf->bmc_link);
3412 	mutex_init(&intf->bmc_reg_mutex);
3413 	intf->intf_num = -1; /* Mark it invalid for now. */
3414 	kref_init(&intf->refcount);
3415 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3416 	intf->si_dev = si_dev;
3417 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3418 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3419 		intf->addrinfo[j].lun = 2;
3420 	}
3421 	if (slave_addr != 0)
3422 		intf->addrinfo[0].address = slave_addr;
3423 	INIT_LIST_HEAD(&intf->users);
3424 	intf->handlers = handlers;
3425 	intf->send_info = send_info;
3426 	spin_lock_init(&intf->seq_lock);
3427 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3428 		intf->seq_table[j].inuse = 0;
3429 		intf->seq_table[j].seqid = 0;
3430 	}
3431 	intf->curr_seq = 0;
3432 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3433 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3434 	tasklet_init(&intf->recv_tasklet,
3435 		     smi_recv_tasklet,
3436 		     (unsigned long) intf);
3437 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3438 	spin_lock_init(&intf->xmit_msgs_lock);
3439 	INIT_LIST_HEAD(&intf->xmit_msgs);
3440 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3441 	spin_lock_init(&intf->events_lock);
3442 	spin_lock_init(&intf->watch_lock);
3443 	atomic_set(&intf->event_waiters, 0);
3444 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3445 	INIT_LIST_HEAD(&intf->waiting_events);
3446 	intf->waiting_events_count = 0;
3447 	mutex_init(&intf->cmd_rcvrs_mutex);
3448 	spin_lock_init(&intf->maintenance_mode_lock);
3449 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3450 	init_waitqueue_head(&intf->waitq);
3451 	for (i = 0; i < IPMI_NUM_STATS; i++)
3452 		atomic_set(&intf->stats[i], 0);
3453 
3454 	mutex_lock(&ipmi_interfaces_mutex);
3455 	/* Look for a hole in the numbers. */
3456 	i = 0;
3457 	link = &ipmi_interfaces;
3458 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3459 				ipmi_interfaces_mutex_held()) {
3460 		if (tintf->intf_num != i) {
3461 			link = &tintf->link;
3462 			break;
3463 		}
3464 		i++;
3465 	}
3466 	/* Add the new interface in numeric order. */
3467 	if (i == 0)
3468 		list_add_rcu(&intf->link, &ipmi_interfaces);
3469 	else
3470 		list_add_tail_rcu(&intf->link, link);
3471 
3472 	rv = handlers->start_processing(send_info, intf);
3473 	if (rv)
3474 		goto out_err;
3475 
3476 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3477 	if (rv) {
3478 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3479 		goto out_err_started;
3480 	}
3481 
3482 	mutex_lock(&intf->bmc_reg_mutex);
3483 	rv = __scan_channels(intf, &id);
3484 	mutex_unlock(&intf->bmc_reg_mutex);
3485 	if (rv)
3486 		goto out_err_bmc_reg;
3487 
3488 	/*
3489 	 * Keep memory order straight for RCU readers.  Make
3490 	 * sure everything else is committed to memory before
3491 	 * setting intf_num to mark the interface valid.
3492 	 */
3493 	smp_wmb();
3494 	intf->intf_num = i;
3495 	mutex_unlock(&ipmi_interfaces_mutex);
3496 
3497 	/* After this point the interface is legal to use. */
3498 	call_smi_watchers(i, intf->si_dev);
3499 
3500 	return 0;
3501 
3502  out_err_bmc_reg:
3503 	ipmi_bmc_unregister(intf);
3504  out_err_started:
3505 	if (intf->handlers->shutdown)
3506 		intf->handlers->shutdown(intf->send_info);
3507  out_err:
3508 	list_del_rcu(&intf->link);
3509 	mutex_unlock(&ipmi_interfaces_mutex);
3510 	synchronize_srcu(&ipmi_interfaces_srcu);
3511 	cleanup_srcu_struct(&intf->users_srcu);
3512 	kref_put(&intf->refcount, intf_free);
3513 
3514 	return rv;
3515 }
3516 EXPORT_SYMBOL(ipmi_add_smi);
3517 
3518 static void deliver_smi_err_response(struct ipmi_smi *intf,
3519 				     struct ipmi_smi_msg *msg,
3520 				     unsigned char err)
3521 {
3522 	msg->rsp[0] = msg->data[0] | 4;
3523 	msg->rsp[1] = msg->data[1];
3524 	msg->rsp[2] = err;
3525 	msg->rsp_size = 3;
3526 	/* It's an error, so it will never requeue, no need to check return. */
3527 	handle_one_recv_msg(intf, msg);
3528 }
3529 
3530 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3531 {
3532 	int              i;
3533 	struct seq_table *ent;
3534 	struct ipmi_smi_msg *msg;
3535 	struct list_head *entry;
3536 	struct list_head tmplist;
3537 
3538 	/* Clear out our transmit queues and hold the messages. */
3539 	INIT_LIST_HEAD(&tmplist);
3540 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3541 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3542 
3543 	/* Current message first, to preserve order */
3544 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3545 		/* Wait for the message to clear out. */
3546 		schedule_timeout(1);
3547 	}
3548 
3549 	/* No need for locks, the interface is down. */
3550 
3551 	/*
3552 	 * Return errors for all pending messages in queue and in the
3553 	 * tables waiting for remote responses.
3554 	 */
3555 	while (!list_empty(&tmplist)) {
3556 		entry = tmplist.next;
3557 		list_del(entry);
3558 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3559 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3560 	}
3561 
3562 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3563 		ent = &intf->seq_table[i];
3564 		if (!ent->inuse)
3565 			continue;
3566 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3567 	}
3568 }
3569 
3570 void ipmi_unregister_smi(struct ipmi_smi *intf)
3571 {
3572 	struct ipmi_smi_watcher *w;
3573 	int intf_num = intf->intf_num, index;
3574 
3575 	mutex_lock(&ipmi_interfaces_mutex);
3576 	intf->intf_num = -1;
3577 	intf->in_shutdown = true;
3578 	list_del_rcu(&intf->link);
3579 	mutex_unlock(&ipmi_interfaces_mutex);
3580 	synchronize_srcu(&ipmi_interfaces_srcu);
3581 
3582 	/* At this point no users can be added to the interface. */
3583 
3584 	/*
3585 	 * Call all the watcher interfaces to tell them that
3586 	 * an interface is going away.
3587 	 */
3588 	mutex_lock(&smi_watchers_mutex);
3589 	list_for_each_entry(w, &smi_watchers, link)
3590 		w->smi_gone(intf_num);
3591 	mutex_unlock(&smi_watchers_mutex);
3592 
3593 	index = srcu_read_lock(&intf->users_srcu);
3594 	while (!list_empty(&intf->users)) {
3595 		struct ipmi_user *user =
3596 			container_of(list_next_rcu(&intf->users),
3597 				     struct ipmi_user, link);
3598 
3599 		_ipmi_destroy_user(user);
3600 	}
3601 	srcu_read_unlock(&intf->users_srcu, index);
3602 
3603 	if (intf->handlers->shutdown)
3604 		intf->handlers->shutdown(intf->send_info);
3605 
3606 	cleanup_smi_msgs(intf);
3607 
3608 	ipmi_bmc_unregister(intf);
3609 
3610 	cleanup_srcu_struct(&intf->users_srcu);
3611 	kref_put(&intf->refcount, intf_free);
3612 }
3613 EXPORT_SYMBOL(ipmi_unregister_smi);
3614 
3615 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3616 				   struct ipmi_smi_msg *msg)
3617 {
3618 	struct ipmi_ipmb_addr ipmb_addr;
3619 	struct ipmi_recv_msg  *recv_msg;
3620 
3621 	/*
3622 	 * This is 11, not 10, because the response must contain a
3623 	 * completion code.
3624 	 */
3625 	if (msg->rsp_size < 11) {
3626 		/* Message not big enough, just ignore it. */
3627 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3628 		return 0;
3629 	}
3630 
3631 	if (msg->rsp[2] != 0) {
3632 		/* An error getting the response, just ignore it. */
3633 		return 0;
3634 	}
3635 
3636 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3637 	ipmb_addr.slave_addr = msg->rsp[6];
3638 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3639 	ipmb_addr.lun = msg->rsp[7] & 3;
3640 
3641 	/*
3642 	 * It's a response from a remote entity.  Look up the sequence
3643 	 * number and handle the response.
3644 	 */
3645 	if (intf_find_seq(intf,
3646 			  msg->rsp[7] >> 2,
3647 			  msg->rsp[3] & 0x0f,
3648 			  msg->rsp[8],
3649 			  (msg->rsp[4] >> 2) & (~1),
3650 			  (struct ipmi_addr *) &ipmb_addr,
3651 			  &recv_msg)) {
3652 		/*
3653 		 * We were unable to find the sequence number,
3654 		 * so just nuke the message.
3655 		 */
3656 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3657 		return 0;
3658 	}
3659 
3660 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3661 	/*
3662 	 * The other fields matched, so no need to set them, except
3663 	 * for netfn, which needs to be the response that was
3664 	 * returned, not the request value.
3665 	 */
3666 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3667 	recv_msg->msg.data = recv_msg->msg_data;
3668 	recv_msg->msg.data_len = msg->rsp_size - 10;
3669 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3670 	if (deliver_response(intf, recv_msg))
3671 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3672 	else
3673 		ipmi_inc_stat(intf, handled_ipmb_responses);
3674 
3675 	return 0;
3676 }
3677 
3678 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3679 				   struct ipmi_smi_msg *msg)
3680 {
3681 	struct cmd_rcvr          *rcvr;
3682 	int                      rv = 0;
3683 	unsigned char            netfn;
3684 	unsigned char            cmd;
3685 	unsigned char            chan;
3686 	struct ipmi_user         *user = NULL;
3687 	struct ipmi_ipmb_addr    *ipmb_addr;
3688 	struct ipmi_recv_msg     *recv_msg;
3689 
3690 	if (msg->rsp_size < 10) {
3691 		/* Message not big enough, just ignore it. */
3692 		ipmi_inc_stat(intf, invalid_commands);
3693 		return 0;
3694 	}
3695 
3696 	if (msg->rsp[2] != 0) {
3697 		/* An error getting the response, just ignore it. */
3698 		return 0;
3699 	}
3700 
3701 	netfn = msg->rsp[4] >> 2;
3702 	cmd = msg->rsp[8];
3703 	chan = msg->rsp[3] & 0xf;
3704 
3705 	rcu_read_lock();
3706 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3707 	if (rcvr) {
3708 		user = rcvr->user;
3709 		kref_get(&user->refcount);
3710 	} else
3711 		user = NULL;
3712 	rcu_read_unlock();
3713 
3714 	if (user == NULL) {
3715 		/* We didn't find a user, deliver an error response. */
3716 		ipmi_inc_stat(intf, unhandled_commands);
3717 
3718 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3719 		msg->data[1] = IPMI_SEND_MSG_CMD;
3720 		msg->data[2] = msg->rsp[3];
3721 		msg->data[3] = msg->rsp[6];
3722 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3723 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3724 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3725 		/* rqseq/lun */
3726 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3727 		msg->data[8] = msg->rsp[8]; /* cmd */
3728 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3729 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3730 		msg->data_size = 11;
3731 
3732 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3733 
3734 		rcu_read_lock();
3735 		if (!intf->in_shutdown) {
3736 			smi_send(intf, intf->handlers, msg, 0);
3737 			/*
3738 			 * We used the message, so return the value
3739 			 * that causes it to not be freed or
3740 			 * queued.
3741 			 */
3742 			rv = -1;
3743 		}
3744 		rcu_read_unlock();
3745 	} else {
3746 		recv_msg = ipmi_alloc_recv_msg();
3747 		if (!recv_msg) {
3748 			/*
3749 			 * We couldn't allocate memory for the
3750 			 * message, so requeue it for handling
3751 			 * later.
3752 			 */
3753 			rv = 1;
3754 			kref_put(&user->refcount, free_user);
3755 		} else {
3756 			/* Extract the source address from the data. */
3757 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3758 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3759 			ipmb_addr->slave_addr = msg->rsp[6];
3760 			ipmb_addr->lun = msg->rsp[7] & 3;
3761 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3762 
3763 			/*
3764 			 * Extract the rest of the message information
3765 			 * from the IPMB header.
3766 			 */
3767 			recv_msg->user = user;
3768 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3769 			recv_msg->msgid = msg->rsp[7] >> 2;
3770 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3771 			recv_msg->msg.cmd = msg->rsp[8];
3772 			recv_msg->msg.data = recv_msg->msg_data;
3773 
3774 			/*
3775 			 * We chop off 10, not 9 bytes because the checksum
3776 			 * at the end also needs to be removed.
3777 			 */
3778 			recv_msg->msg.data_len = msg->rsp_size - 10;
3779 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3780 			       msg->rsp_size - 10);
3781 			if (deliver_response(intf, recv_msg))
3782 				ipmi_inc_stat(intf, unhandled_commands);
3783 			else
3784 				ipmi_inc_stat(intf, handled_commands);
3785 		}
3786 	}
3787 
3788 	return rv;
3789 }
3790 
3791 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3792 				  struct ipmi_smi_msg *msg)
3793 {
3794 	struct ipmi_lan_addr  lan_addr;
3795 	struct ipmi_recv_msg  *recv_msg;
3796 
3797 
3798 	/*
3799 	 * This is 13, not 12, because the response must contain a
3800 	 * completion code.
3801 	 */
3802 	if (msg->rsp_size < 13) {
3803 		/* Message not big enough, just ignore it. */
3804 		ipmi_inc_stat(intf, invalid_lan_responses);
3805 		return 0;
3806 	}
3807 
3808 	if (msg->rsp[2] != 0) {
3809 		/* An error getting the response, just ignore it. */
3810 		return 0;
3811 	}
3812 
3813 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3814 	lan_addr.session_handle = msg->rsp[4];
3815 	lan_addr.remote_SWID = msg->rsp[8];
3816 	lan_addr.local_SWID = msg->rsp[5];
3817 	lan_addr.channel = msg->rsp[3] & 0x0f;
3818 	lan_addr.privilege = msg->rsp[3] >> 4;
3819 	lan_addr.lun = msg->rsp[9] & 3;
3820 
3821 	/*
3822 	 * It's a response from a remote entity.  Look up the sequence
3823 	 * number and handle the response.
3824 	 */
3825 	if (intf_find_seq(intf,
3826 			  msg->rsp[9] >> 2,
3827 			  msg->rsp[3] & 0x0f,
3828 			  msg->rsp[10],
3829 			  (msg->rsp[6] >> 2) & (~1),
3830 			  (struct ipmi_addr *) &lan_addr,
3831 			  &recv_msg)) {
3832 		/*
3833 		 * We were unable to find the sequence number,
3834 		 * so just nuke the message.
3835 		 */
3836 		ipmi_inc_stat(intf, unhandled_lan_responses);
3837 		return 0;
3838 	}
3839 
3840 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3841 	/*
3842 	 * The other fields matched, so no need to set them, except
3843 	 * for netfn, which needs to be the response that was
3844 	 * returned, not the request value.
3845 	 */
3846 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3847 	recv_msg->msg.data = recv_msg->msg_data;
3848 	recv_msg->msg.data_len = msg->rsp_size - 12;
3849 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3850 	if (deliver_response(intf, recv_msg))
3851 		ipmi_inc_stat(intf, unhandled_lan_responses);
3852 	else
3853 		ipmi_inc_stat(intf, handled_lan_responses);
3854 
3855 	return 0;
3856 }
3857 
3858 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3859 				  struct ipmi_smi_msg *msg)
3860 {
3861 	struct cmd_rcvr          *rcvr;
3862 	int                      rv = 0;
3863 	unsigned char            netfn;
3864 	unsigned char            cmd;
3865 	unsigned char            chan;
3866 	struct ipmi_user         *user = NULL;
3867 	struct ipmi_lan_addr     *lan_addr;
3868 	struct ipmi_recv_msg     *recv_msg;
3869 
3870 	if (msg->rsp_size < 12) {
3871 		/* Message not big enough, just ignore it. */
3872 		ipmi_inc_stat(intf, invalid_commands);
3873 		return 0;
3874 	}
3875 
3876 	if (msg->rsp[2] != 0) {
3877 		/* An error getting the response, just ignore it. */
3878 		return 0;
3879 	}
3880 
3881 	netfn = msg->rsp[6] >> 2;
3882 	cmd = msg->rsp[10];
3883 	chan = msg->rsp[3] & 0xf;
3884 
3885 	rcu_read_lock();
3886 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3887 	if (rcvr) {
3888 		user = rcvr->user;
3889 		kref_get(&user->refcount);
3890 	} else
3891 		user = NULL;
3892 	rcu_read_unlock();
3893 
3894 	if (user == NULL) {
3895 		/* We didn't find a user, just give up. */
3896 		ipmi_inc_stat(intf, unhandled_commands);
3897 
3898 		/*
3899 		 * Don't do anything with these messages, just allow
3900 		 * them to be freed.
3901 		 */
3902 		rv = 0;
3903 	} else {
3904 		recv_msg = ipmi_alloc_recv_msg();
3905 		if (!recv_msg) {
3906 			/*
3907 			 * We couldn't allocate memory for the
3908 			 * message, so requeue it for handling later.
3909 			 */
3910 			rv = 1;
3911 			kref_put(&user->refcount, free_user);
3912 		} else {
3913 			/* Extract the source address from the data. */
3914 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3915 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3916 			lan_addr->session_handle = msg->rsp[4];
3917 			lan_addr->remote_SWID = msg->rsp[8];
3918 			lan_addr->local_SWID = msg->rsp[5];
3919 			lan_addr->lun = msg->rsp[9] & 3;
3920 			lan_addr->channel = msg->rsp[3] & 0xf;
3921 			lan_addr->privilege = msg->rsp[3] >> 4;
3922 
3923 			/*
3924 			 * Extract the rest of the message information
3925 			 * from the IPMB header.
3926 			 */
3927 			recv_msg->user = user;
3928 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3929 			recv_msg->msgid = msg->rsp[9] >> 2;
3930 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3931 			recv_msg->msg.cmd = msg->rsp[10];
3932 			recv_msg->msg.data = recv_msg->msg_data;
3933 
3934 			/*
3935 			 * We chop off 12, not 11 bytes because the checksum
3936 			 * at the end also needs to be removed.
3937 			 */
3938 			recv_msg->msg.data_len = msg->rsp_size - 12;
3939 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3940 			       msg->rsp_size - 12);
3941 			if (deliver_response(intf, recv_msg))
3942 				ipmi_inc_stat(intf, unhandled_commands);
3943 			else
3944 				ipmi_inc_stat(intf, handled_commands);
3945 		}
3946 	}
3947 
3948 	return rv;
3949 }
3950 
3951 /*
3952  * This routine will handle "Get Message" command responses with
3953  * channels that use an OEM Medium. The message format belongs to
3954  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3955  * Chapter 22, sections 22.6 and 22.24 for more details.
3956  */
3957 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3958 				  struct ipmi_smi_msg *msg)
3959 {
3960 	struct cmd_rcvr       *rcvr;
3961 	int                   rv = 0;
3962 	unsigned char         netfn;
3963 	unsigned char         cmd;
3964 	unsigned char         chan;
3965 	struct ipmi_user *user = NULL;
3966 	struct ipmi_system_interface_addr *smi_addr;
3967 	struct ipmi_recv_msg  *recv_msg;
3968 
3969 	/*
3970 	 * We expect the OEM SW to perform error checking
3971 	 * so we just do some basic sanity checks
3972 	 */
3973 	if (msg->rsp_size < 4) {
3974 		/* Message not big enough, just ignore it. */
3975 		ipmi_inc_stat(intf, invalid_commands);
3976 		return 0;
3977 	}
3978 
3979 	if (msg->rsp[2] != 0) {
3980 		/* An error getting the response, just ignore it. */
3981 		return 0;
3982 	}
3983 
3984 	/*
3985 	 * This is an OEM Message so the OEM needs to know how
3986 	 * handle the message. We do no interpretation.
3987 	 */
3988 	netfn = msg->rsp[0] >> 2;
3989 	cmd = msg->rsp[1];
3990 	chan = msg->rsp[3] & 0xf;
3991 
3992 	rcu_read_lock();
3993 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3994 	if (rcvr) {
3995 		user = rcvr->user;
3996 		kref_get(&user->refcount);
3997 	} else
3998 		user = NULL;
3999 	rcu_read_unlock();
4000 
4001 	if (user == NULL) {
4002 		/* We didn't find a user, just give up. */
4003 		ipmi_inc_stat(intf, unhandled_commands);
4004 
4005 		/*
4006 		 * Don't do anything with these messages, just allow
4007 		 * them to be freed.
4008 		 */
4009 
4010 		rv = 0;
4011 	} else {
4012 		recv_msg = ipmi_alloc_recv_msg();
4013 		if (!recv_msg) {
4014 			/*
4015 			 * We couldn't allocate memory for the
4016 			 * message, so requeue it for handling
4017 			 * later.
4018 			 */
4019 			rv = 1;
4020 			kref_put(&user->refcount, free_user);
4021 		} else {
4022 			/*
4023 			 * OEM Messages are expected to be delivered via
4024 			 * the system interface to SMS software.  We might
4025 			 * need to visit this again depending on OEM
4026 			 * requirements
4027 			 */
4028 			smi_addr = ((struct ipmi_system_interface_addr *)
4029 				    &recv_msg->addr);
4030 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4031 			smi_addr->channel = IPMI_BMC_CHANNEL;
4032 			smi_addr->lun = msg->rsp[0] & 3;
4033 
4034 			recv_msg->user = user;
4035 			recv_msg->user_msg_data = NULL;
4036 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4037 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4038 			recv_msg->msg.cmd = msg->rsp[1];
4039 			recv_msg->msg.data = recv_msg->msg_data;
4040 
4041 			/*
4042 			 * The message starts at byte 4 which follows the
4043 			 * the Channel Byte in the "GET MESSAGE" command
4044 			 */
4045 			recv_msg->msg.data_len = msg->rsp_size - 4;
4046 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4047 			       msg->rsp_size - 4);
4048 			if (deliver_response(intf, recv_msg))
4049 				ipmi_inc_stat(intf, unhandled_commands);
4050 			else
4051 				ipmi_inc_stat(intf, handled_commands);
4052 		}
4053 	}
4054 
4055 	return rv;
4056 }
4057 
4058 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4059 				     struct ipmi_smi_msg  *msg)
4060 {
4061 	struct ipmi_system_interface_addr *smi_addr;
4062 
4063 	recv_msg->msgid = 0;
4064 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4065 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4066 	smi_addr->channel = IPMI_BMC_CHANNEL;
4067 	smi_addr->lun = msg->rsp[0] & 3;
4068 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4069 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4070 	recv_msg->msg.cmd = msg->rsp[1];
4071 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4072 	recv_msg->msg.data = recv_msg->msg_data;
4073 	recv_msg->msg.data_len = msg->rsp_size - 3;
4074 }
4075 
4076 static int handle_read_event_rsp(struct ipmi_smi *intf,
4077 				 struct ipmi_smi_msg *msg)
4078 {
4079 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4080 	struct list_head     msgs;
4081 	struct ipmi_user     *user;
4082 	int rv = 0, deliver_count = 0, index;
4083 	unsigned long        flags;
4084 
4085 	if (msg->rsp_size < 19) {
4086 		/* Message is too small to be an IPMB event. */
4087 		ipmi_inc_stat(intf, invalid_events);
4088 		return 0;
4089 	}
4090 
4091 	if (msg->rsp[2] != 0) {
4092 		/* An error getting the event, just ignore it. */
4093 		return 0;
4094 	}
4095 
4096 	INIT_LIST_HEAD(&msgs);
4097 
4098 	spin_lock_irqsave(&intf->events_lock, flags);
4099 
4100 	ipmi_inc_stat(intf, events);
4101 
4102 	/*
4103 	 * Allocate and fill in one message for every user that is
4104 	 * getting events.
4105 	 */
4106 	index = srcu_read_lock(&intf->users_srcu);
4107 	list_for_each_entry_rcu(user, &intf->users, link) {
4108 		if (!user->gets_events)
4109 			continue;
4110 
4111 		recv_msg = ipmi_alloc_recv_msg();
4112 		if (!recv_msg) {
4113 			rcu_read_unlock();
4114 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4115 						 link) {
4116 				list_del(&recv_msg->link);
4117 				ipmi_free_recv_msg(recv_msg);
4118 			}
4119 			/*
4120 			 * We couldn't allocate memory for the
4121 			 * message, so requeue it for handling
4122 			 * later.
4123 			 */
4124 			rv = 1;
4125 			goto out;
4126 		}
4127 
4128 		deliver_count++;
4129 
4130 		copy_event_into_recv_msg(recv_msg, msg);
4131 		recv_msg->user = user;
4132 		kref_get(&user->refcount);
4133 		list_add_tail(&recv_msg->link, &msgs);
4134 	}
4135 	srcu_read_unlock(&intf->users_srcu, index);
4136 
4137 	if (deliver_count) {
4138 		/* Now deliver all the messages. */
4139 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4140 			list_del(&recv_msg->link);
4141 			deliver_local_response(intf, recv_msg);
4142 		}
4143 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4144 		/*
4145 		 * No one to receive the message, put it in queue if there's
4146 		 * not already too many things in the queue.
4147 		 */
4148 		recv_msg = ipmi_alloc_recv_msg();
4149 		if (!recv_msg) {
4150 			/*
4151 			 * We couldn't allocate memory for the
4152 			 * message, so requeue it for handling
4153 			 * later.
4154 			 */
4155 			rv = 1;
4156 			goto out;
4157 		}
4158 
4159 		copy_event_into_recv_msg(recv_msg, msg);
4160 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4161 		intf->waiting_events_count++;
4162 	} else if (!intf->event_msg_printed) {
4163 		/*
4164 		 * There's too many things in the queue, discard this
4165 		 * message.
4166 		 */
4167 		dev_warn(intf->si_dev,
4168 			 "Event queue full, discarding incoming events\n");
4169 		intf->event_msg_printed = 1;
4170 	}
4171 
4172  out:
4173 	spin_unlock_irqrestore(&intf->events_lock, flags);
4174 
4175 	return rv;
4176 }
4177 
4178 static int handle_bmc_rsp(struct ipmi_smi *intf,
4179 			  struct ipmi_smi_msg *msg)
4180 {
4181 	struct ipmi_recv_msg *recv_msg;
4182 	struct ipmi_system_interface_addr *smi_addr;
4183 
4184 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4185 	if (recv_msg == NULL) {
4186 		dev_warn(intf->si_dev,
4187 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4188 		return 0;
4189 	}
4190 
4191 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4192 	recv_msg->msgid = msg->msgid;
4193 	smi_addr = ((struct ipmi_system_interface_addr *)
4194 		    &recv_msg->addr);
4195 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4196 	smi_addr->channel = IPMI_BMC_CHANNEL;
4197 	smi_addr->lun = msg->rsp[0] & 3;
4198 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4199 	recv_msg->msg.cmd = msg->rsp[1];
4200 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4201 	recv_msg->msg.data = recv_msg->msg_data;
4202 	recv_msg->msg.data_len = msg->rsp_size - 2;
4203 	deliver_local_response(intf, recv_msg);
4204 
4205 	return 0;
4206 }
4207 
4208 /*
4209  * Handle a received message.  Return 1 if the message should be requeued,
4210  * 0 if the message should be freed, or -1 if the message should not
4211  * be freed or requeued.
4212  */
4213 static int handle_one_recv_msg(struct ipmi_smi *intf,
4214 			       struct ipmi_smi_msg *msg)
4215 {
4216 	int requeue;
4217 	int chan;
4218 
4219 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4220 
4221 	if ((msg->data_size >= 2)
4222 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4223 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4224 	    && (msg->user_data == NULL)) {
4225 
4226 		if (intf->in_shutdown)
4227 			goto free_msg;
4228 
4229 		/*
4230 		 * This is the local response to a command send, start
4231 		 * the timer for these.  The user_data will not be
4232 		 * NULL if this is a response send, and we will let
4233 		 * response sends just go through.
4234 		 */
4235 
4236 		/*
4237 		 * Check for errors, if we get certain errors (ones
4238 		 * that mean basically we can try again later), we
4239 		 * ignore them and start the timer.  Otherwise we
4240 		 * report the error immediately.
4241 		 */
4242 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4243 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4244 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4245 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4246 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4247 			int ch = msg->rsp[3] & 0xf;
4248 			struct ipmi_channel *chans;
4249 
4250 			/* Got an error sending the message, handle it. */
4251 
4252 			chans = READ_ONCE(intf->channel_list)->c;
4253 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4254 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4255 				ipmi_inc_stat(intf, sent_lan_command_errs);
4256 			else
4257 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4258 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4259 		} else
4260 			/* The message was sent, start the timer. */
4261 			intf_start_seq_timer(intf, msg->msgid);
4262 free_msg:
4263 		requeue = 0;
4264 		goto out;
4265 
4266 	} else if (msg->rsp_size < 2) {
4267 		/* Message is too small to be correct. */
4268 		dev_warn(intf->si_dev,
4269 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4270 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4271 
4272 		/* Generate an error response for the message. */
4273 		msg->rsp[0] = msg->data[0] | (1 << 2);
4274 		msg->rsp[1] = msg->data[1];
4275 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4276 		msg->rsp_size = 3;
4277 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4278 		   || (msg->rsp[1] != msg->data[1])) {
4279 		/*
4280 		 * The NetFN and Command in the response is not even
4281 		 * marginally correct.
4282 		 */
4283 		dev_warn(intf->si_dev,
4284 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4285 			 (msg->data[0] >> 2) | 1, msg->data[1],
4286 			 msg->rsp[0] >> 2, msg->rsp[1]);
4287 
4288 		/* Generate an error response for the message. */
4289 		msg->rsp[0] = msg->data[0] | (1 << 2);
4290 		msg->rsp[1] = msg->data[1];
4291 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4292 		msg->rsp_size = 3;
4293 	}
4294 
4295 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4296 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4297 	    && (msg->user_data != NULL)) {
4298 		/*
4299 		 * It's a response to a response we sent.  For this we
4300 		 * deliver a send message response to the user.
4301 		 */
4302 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4303 
4304 		requeue = 0;
4305 		if (msg->rsp_size < 2)
4306 			/* Message is too small to be correct. */
4307 			goto out;
4308 
4309 		chan = msg->data[2] & 0x0f;
4310 		if (chan >= IPMI_MAX_CHANNELS)
4311 			/* Invalid channel number */
4312 			goto out;
4313 
4314 		if (!recv_msg)
4315 			goto out;
4316 
4317 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4318 		recv_msg->msg.data = recv_msg->msg_data;
4319 		recv_msg->msg.data_len = 1;
4320 		recv_msg->msg_data[0] = msg->rsp[2];
4321 		deliver_local_response(intf, recv_msg);
4322 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4323 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4324 		struct ipmi_channel   *chans;
4325 
4326 		/* It's from the receive queue. */
4327 		chan = msg->rsp[3] & 0xf;
4328 		if (chan >= IPMI_MAX_CHANNELS) {
4329 			/* Invalid channel number */
4330 			requeue = 0;
4331 			goto out;
4332 		}
4333 
4334 		/*
4335 		 * We need to make sure the channels have been initialized.
4336 		 * The channel_handler routine will set the "curr_channel"
4337 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4338 		 * channels for this interface have been initialized.
4339 		 */
4340 		if (!intf->channels_ready) {
4341 			requeue = 0; /* Throw the message away */
4342 			goto out;
4343 		}
4344 
4345 		chans = READ_ONCE(intf->channel_list)->c;
4346 
4347 		switch (chans[chan].medium) {
4348 		case IPMI_CHANNEL_MEDIUM_IPMB:
4349 			if (msg->rsp[4] & 0x04) {
4350 				/*
4351 				 * It's a response, so find the
4352 				 * requesting message and send it up.
4353 				 */
4354 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4355 			} else {
4356 				/*
4357 				 * It's a command to the SMS from some other
4358 				 * entity.  Handle that.
4359 				 */
4360 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4361 			}
4362 			break;
4363 
4364 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4365 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4366 			if (msg->rsp[6] & 0x04) {
4367 				/*
4368 				 * It's a response, so find the
4369 				 * requesting message and send it up.
4370 				 */
4371 				requeue = handle_lan_get_msg_rsp(intf, msg);
4372 			} else {
4373 				/*
4374 				 * It's a command to the SMS from some other
4375 				 * entity.  Handle that.
4376 				 */
4377 				requeue = handle_lan_get_msg_cmd(intf, msg);
4378 			}
4379 			break;
4380 
4381 		default:
4382 			/* Check for OEM Channels.  Clients had better
4383 			   register for these commands. */
4384 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4385 			    && (chans[chan].medium
4386 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4387 				requeue = handle_oem_get_msg_cmd(intf, msg);
4388 			} else {
4389 				/*
4390 				 * We don't handle the channel type, so just
4391 				 * free the message.
4392 				 */
4393 				requeue = 0;
4394 			}
4395 		}
4396 
4397 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4398 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4399 		/* It's an asynchronous event. */
4400 		requeue = handle_read_event_rsp(intf, msg);
4401 	} else {
4402 		/* It's a response from the local BMC. */
4403 		requeue = handle_bmc_rsp(intf, msg);
4404 	}
4405 
4406  out:
4407 	return requeue;
4408 }
4409 
4410 /*
4411  * If there are messages in the queue or pretimeouts, handle them.
4412  */
4413 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4414 {
4415 	struct ipmi_smi_msg  *smi_msg;
4416 	unsigned long        flags = 0;
4417 	int                  rv;
4418 	int                  run_to_completion = intf->run_to_completion;
4419 
4420 	/* See if any waiting messages need to be processed. */
4421 	if (!run_to_completion)
4422 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4423 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4424 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4425 				     struct ipmi_smi_msg, link);
4426 		list_del(&smi_msg->link);
4427 		if (!run_to_completion)
4428 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4429 					       flags);
4430 		rv = handle_one_recv_msg(intf, smi_msg);
4431 		if (!run_to_completion)
4432 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4433 		if (rv > 0) {
4434 			/*
4435 			 * To preserve message order, quit if we
4436 			 * can't handle a message.  Add the message
4437 			 * back at the head, this is safe because this
4438 			 * tasklet is the only thing that pulls the
4439 			 * messages.
4440 			 */
4441 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4442 			break;
4443 		} else {
4444 			if (rv == 0)
4445 				/* Message handled */
4446 				ipmi_free_smi_msg(smi_msg);
4447 			/* If rv < 0, fatal error, del but don't free. */
4448 		}
4449 	}
4450 	if (!run_to_completion)
4451 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4452 
4453 	/*
4454 	 * If the pretimout count is non-zero, decrement one from it and
4455 	 * deliver pretimeouts to all the users.
4456 	 */
4457 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4458 		struct ipmi_user *user;
4459 		int index;
4460 
4461 		index = srcu_read_lock(&intf->users_srcu);
4462 		list_for_each_entry_rcu(user, &intf->users, link) {
4463 			if (user->handler->ipmi_watchdog_pretimeout)
4464 				user->handler->ipmi_watchdog_pretimeout(
4465 					user->handler_data);
4466 		}
4467 		srcu_read_unlock(&intf->users_srcu, index);
4468 	}
4469 }
4470 
4471 static void smi_recv_tasklet(unsigned long val)
4472 {
4473 	unsigned long flags = 0; /* keep us warning-free. */
4474 	struct ipmi_smi *intf = (struct ipmi_smi *) val;
4475 	int run_to_completion = intf->run_to_completion;
4476 	struct ipmi_smi_msg *newmsg = NULL;
4477 
4478 	/*
4479 	 * Start the next message if available.
4480 	 *
4481 	 * Do this here, not in the actual receiver, because we may deadlock
4482 	 * because the lower layer is allowed to hold locks while calling
4483 	 * message delivery.
4484 	 */
4485 
4486 	rcu_read_lock();
4487 
4488 	if (!run_to_completion)
4489 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4490 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4491 		struct list_head *entry = NULL;
4492 
4493 		/* Pick the high priority queue first. */
4494 		if (!list_empty(&intf->hp_xmit_msgs))
4495 			entry = intf->hp_xmit_msgs.next;
4496 		else if (!list_empty(&intf->xmit_msgs))
4497 			entry = intf->xmit_msgs.next;
4498 
4499 		if (entry) {
4500 			list_del(entry);
4501 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4502 			intf->curr_msg = newmsg;
4503 		}
4504 	}
4505 
4506 	if (!run_to_completion)
4507 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4508 	if (newmsg)
4509 		intf->handlers->sender(intf->send_info, newmsg);
4510 
4511 	rcu_read_unlock();
4512 
4513 	handle_new_recv_msgs(intf);
4514 }
4515 
4516 /* Handle a new message from the lower layer. */
4517 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4518 			   struct ipmi_smi_msg *msg)
4519 {
4520 	unsigned long flags = 0; /* keep us warning-free. */
4521 	int run_to_completion = intf->run_to_completion;
4522 
4523 	/*
4524 	 * To preserve message order, we keep a queue and deliver from
4525 	 * a tasklet.
4526 	 */
4527 	if (!run_to_completion)
4528 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4529 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4530 	if (!run_to_completion)
4531 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4532 				       flags);
4533 
4534 	if (!run_to_completion)
4535 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4536 	/*
4537 	 * We can get an asynchronous event or receive message in addition
4538 	 * to commands we send.
4539 	 */
4540 	if (msg == intf->curr_msg)
4541 		intf->curr_msg = NULL;
4542 	if (!run_to_completion)
4543 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4544 
4545 	if (run_to_completion)
4546 		smi_recv_tasklet((unsigned long) intf);
4547 	else
4548 		tasklet_schedule(&intf->recv_tasklet);
4549 }
4550 EXPORT_SYMBOL(ipmi_smi_msg_received);
4551 
4552 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4553 {
4554 	if (intf->in_shutdown)
4555 		return;
4556 
4557 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4558 	tasklet_schedule(&intf->recv_tasklet);
4559 }
4560 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4561 
4562 static struct ipmi_smi_msg *
4563 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4564 		  unsigned char seq, long seqid)
4565 {
4566 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4567 	if (!smi_msg)
4568 		/*
4569 		 * If we can't allocate the message, then just return, we
4570 		 * get 4 retries, so this should be ok.
4571 		 */
4572 		return NULL;
4573 
4574 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4575 	smi_msg->data_size = recv_msg->msg.data_len;
4576 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4577 
4578 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4579 
4580 	return smi_msg;
4581 }
4582 
4583 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4584 			      struct list_head *timeouts,
4585 			      unsigned long timeout_period,
4586 			      int slot, unsigned long *flags,
4587 			      bool *need_timer)
4588 {
4589 	struct ipmi_recv_msg *msg;
4590 
4591 	if (intf->in_shutdown)
4592 		return;
4593 
4594 	if (!ent->inuse)
4595 		return;
4596 
4597 	if (timeout_period < ent->timeout) {
4598 		ent->timeout -= timeout_period;
4599 		*need_timer = true;
4600 		return;
4601 	}
4602 
4603 	if (ent->retries_left == 0) {
4604 		/* The message has used all its retries. */
4605 		ent->inuse = 0;
4606 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4607 		msg = ent->recv_msg;
4608 		list_add_tail(&msg->link, timeouts);
4609 		if (ent->broadcast)
4610 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4611 		else if (is_lan_addr(&ent->recv_msg->addr))
4612 			ipmi_inc_stat(intf, timed_out_lan_commands);
4613 		else
4614 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4615 	} else {
4616 		struct ipmi_smi_msg *smi_msg;
4617 		/* More retries, send again. */
4618 
4619 		*need_timer = true;
4620 
4621 		/*
4622 		 * Start with the max timer, set to normal timer after
4623 		 * the message is sent.
4624 		 */
4625 		ent->timeout = MAX_MSG_TIMEOUT;
4626 		ent->retries_left--;
4627 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4628 					    ent->seqid);
4629 		if (!smi_msg) {
4630 			if (is_lan_addr(&ent->recv_msg->addr))
4631 				ipmi_inc_stat(intf,
4632 					      dropped_rexmit_lan_commands);
4633 			else
4634 				ipmi_inc_stat(intf,
4635 					      dropped_rexmit_ipmb_commands);
4636 			return;
4637 		}
4638 
4639 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4640 
4641 		/*
4642 		 * Send the new message.  We send with a zero
4643 		 * priority.  It timed out, I doubt time is that
4644 		 * critical now, and high priority messages are really
4645 		 * only for messages to the local MC, which don't get
4646 		 * resent.
4647 		 */
4648 		if (intf->handlers) {
4649 			if (is_lan_addr(&ent->recv_msg->addr))
4650 				ipmi_inc_stat(intf,
4651 					      retransmitted_lan_commands);
4652 			else
4653 				ipmi_inc_stat(intf,
4654 					      retransmitted_ipmb_commands);
4655 
4656 			smi_send(intf, intf->handlers, smi_msg, 0);
4657 		} else
4658 			ipmi_free_smi_msg(smi_msg);
4659 
4660 		spin_lock_irqsave(&intf->seq_lock, *flags);
4661 	}
4662 }
4663 
4664 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4665 				 unsigned long timeout_period)
4666 {
4667 	struct list_head     timeouts;
4668 	struct ipmi_recv_msg *msg, *msg2;
4669 	unsigned long        flags;
4670 	int                  i;
4671 	bool                 need_timer = false;
4672 
4673 	if (!intf->bmc_registered) {
4674 		kref_get(&intf->refcount);
4675 		if (!schedule_work(&intf->bmc_reg_work)) {
4676 			kref_put(&intf->refcount, intf_free);
4677 			need_timer = true;
4678 		}
4679 	}
4680 
4681 	/*
4682 	 * Go through the seq table and find any messages that
4683 	 * have timed out, putting them in the timeouts
4684 	 * list.
4685 	 */
4686 	INIT_LIST_HEAD(&timeouts);
4687 	spin_lock_irqsave(&intf->seq_lock, flags);
4688 	if (intf->ipmb_maintenance_mode_timeout) {
4689 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4690 			intf->ipmb_maintenance_mode_timeout = 0;
4691 		else
4692 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4693 	}
4694 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4695 		check_msg_timeout(intf, &intf->seq_table[i],
4696 				  &timeouts, timeout_period, i,
4697 				  &flags, &need_timer);
4698 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4699 
4700 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4701 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4702 
4703 	/*
4704 	 * Maintenance mode handling.  Check the timeout
4705 	 * optimistically before we claim the lock.  It may
4706 	 * mean a timeout gets missed occasionally, but that
4707 	 * only means the timeout gets extended by one period
4708 	 * in that case.  No big deal, and it avoids the lock
4709 	 * most of the time.
4710 	 */
4711 	if (intf->auto_maintenance_timeout > 0) {
4712 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4713 		if (intf->auto_maintenance_timeout > 0) {
4714 			intf->auto_maintenance_timeout
4715 				-= timeout_period;
4716 			if (!intf->maintenance_mode
4717 			    && (intf->auto_maintenance_timeout <= 0)) {
4718 				intf->maintenance_mode_enable = false;
4719 				maintenance_mode_update(intf);
4720 			}
4721 		}
4722 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4723 				       flags);
4724 	}
4725 
4726 	tasklet_schedule(&intf->recv_tasklet);
4727 
4728 	return need_timer;
4729 }
4730 
4731 static void ipmi_request_event(struct ipmi_smi *intf)
4732 {
4733 	/* No event requests when in maintenance mode. */
4734 	if (intf->maintenance_mode_enable)
4735 		return;
4736 
4737 	if (!intf->in_shutdown)
4738 		intf->handlers->request_events(intf->send_info);
4739 }
4740 
4741 static struct timer_list ipmi_timer;
4742 
4743 static atomic_t stop_operation;
4744 
4745 static void ipmi_timeout(struct timer_list *unused)
4746 {
4747 	struct ipmi_smi *intf;
4748 	bool need_timer = false;
4749 	int index;
4750 
4751 	if (atomic_read(&stop_operation))
4752 		return;
4753 
4754 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4755 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4756 		if (atomic_read(&intf->event_waiters)) {
4757 			intf->ticks_to_req_ev--;
4758 			if (intf->ticks_to_req_ev == 0) {
4759 				ipmi_request_event(intf);
4760 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4761 			}
4762 			need_timer = true;
4763 		}
4764 
4765 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4766 	}
4767 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4768 
4769 	if (need_timer)
4770 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4771 }
4772 
4773 static void need_waiter(struct ipmi_smi *intf)
4774 {
4775 	/* Racy, but worst case we start the timer twice. */
4776 	if (!timer_pending(&ipmi_timer))
4777 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4778 }
4779 
4780 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4781 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4782 
4783 static void free_smi_msg(struct ipmi_smi_msg *msg)
4784 {
4785 	atomic_dec(&smi_msg_inuse_count);
4786 	kfree(msg);
4787 }
4788 
4789 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4790 {
4791 	struct ipmi_smi_msg *rv;
4792 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4793 	if (rv) {
4794 		rv->done = free_smi_msg;
4795 		rv->user_data = NULL;
4796 		atomic_inc(&smi_msg_inuse_count);
4797 	}
4798 	return rv;
4799 }
4800 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4801 
4802 static void free_recv_msg(struct ipmi_recv_msg *msg)
4803 {
4804 	atomic_dec(&recv_msg_inuse_count);
4805 	kfree(msg);
4806 }
4807 
4808 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4809 {
4810 	struct ipmi_recv_msg *rv;
4811 
4812 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4813 	if (rv) {
4814 		rv->user = NULL;
4815 		rv->done = free_recv_msg;
4816 		atomic_inc(&recv_msg_inuse_count);
4817 	}
4818 	return rv;
4819 }
4820 
4821 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4822 {
4823 	if (msg->user)
4824 		kref_put(&msg->user->refcount, free_user);
4825 	msg->done(msg);
4826 }
4827 EXPORT_SYMBOL(ipmi_free_recv_msg);
4828 
4829 static atomic_t panic_done_count = ATOMIC_INIT(0);
4830 
4831 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4832 {
4833 	atomic_dec(&panic_done_count);
4834 }
4835 
4836 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4837 {
4838 	atomic_dec(&panic_done_count);
4839 }
4840 
4841 /*
4842  * Inside a panic, send a message and wait for a response.
4843  */
4844 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4845 					struct ipmi_addr *addr,
4846 					struct kernel_ipmi_msg *msg)
4847 {
4848 	struct ipmi_smi_msg  smi_msg;
4849 	struct ipmi_recv_msg recv_msg;
4850 	int rv;
4851 
4852 	smi_msg.done = dummy_smi_done_handler;
4853 	recv_msg.done = dummy_recv_done_handler;
4854 	atomic_add(2, &panic_done_count);
4855 	rv = i_ipmi_request(NULL,
4856 			    intf,
4857 			    addr,
4858 			    0,
4859 			    msg,
4860 			    intf,
4861 			    &smi_msg,
4862 			    &recv_msg,
4863 			    0,
4864 			    intf->addrinfo[0].address,
4865 			    intf->addrinfo[0].lun,
4866 			    0, 1); /* Don't retry, and don't wait. */
4867 	if (rv)
4868 		atomic_sub(2, &panic_done_count);
4869 	else if (intf->handlers->flush_messages)
4870 		intf->handlers->flush_messages(intf->send_info);
4871 
4872 	while (atomic_read(&panic_done_count) != 0)
4873 		ipmi_poll(intf);
4874 }
4875 
4876 static void event_receiver_fetcher(struct ipmi_smi *intf,
4877 				   struct ipmi_recv_msg *msg)
4878 {
4879 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4880 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4881 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4882 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4883 		/* A get event receiver command, save it. */
4884 		intf->event_receiver = msg->msg.data[1];
4885 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4886 	}
4887 }
4888 
4889 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4890 {
4891 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4892 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4893 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4894 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4895 		/*
4896 		 * A get device id command, save if we are an event
4897 		 * receiver or generator.
4898 		 */
4899 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4900 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4901 	}
4902 }
4903 
4904 static void send_panic_events(struct ipmi_smi *intf, char *str)
4905 {
4906 	struct kernel_ipmi_msg msg;
4907 	unsigned char data[16];
4908 	struct ipmi_system_interface_addr *si;
4909 	struct ipmi_addr addr;
4910 	char *p = str;
4911 	struct ipmi_ipmb_addr *ipmb;
4912 	int j;
4913 
4914 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4915 		return;
4916 
4917 	si = (struct ipmi_system_interface_addr *) &addr;
4918 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4919 	si->channel = IPMI_BMC_CHANNEL;
4920 	si->lun = 0;
4921 
4922 	/* Fill in an event telling that we have failed. */
4923 	msg.netfn = 0x04; /* Sensor or Event. */
4924 	msg.cmd = 2; /* Platform event command. */
4925 	msg.data = data;
4926 	msg.data_len = 8;
4927 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4928 	data[1] = 0x03; /* This is for IPMI 1.0. */
4929 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4930 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4931 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4932 
4933 	/*
4934 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4935 	 * to make the panic events more useful.
4936 	 */
4937 	if (str) {
4938 		data[3] = str[0];
4939 		data[6] = str[1];
4940 		data[7] = str[2];
4941 	}
4942 
4943 	/* Send the event announcing the panic. */
4944 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4945 
4946 	/*
4947 	 * On every interface, dump a bunch of OEM event holding the
4948 	 * string.
4949 	 */
4950 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4951 		return;
4952 
4953 	/*
4954 	 * intf_num is used as an marker to tell if the
4955 	 * interface is valid.  Thus we need a read barrier to
4956 	 * make sure data fetched before checking intf_num
4957 	 * won't be used.
4958 	 */
4959 	smp_rmb();
4960 
4961 	/*
4962 	 * First job here is to figure out where to send the
4963 	 * OEM events.  There's no way in IPMI to send OEM
4964 	 * events using an event send command, so we have to
4965 	 * find the SEL to put them in and stick them in
4966 	 * there.
4967 	 */
4968 
4969 	/* Get capabilities from the get device id. */
4970 	intf->local_sel_device = 0;
4971 	intf->local_event_generator = 0;
4972 	intf->event_receiver = 0;
4973 
4974 	/* Request the device info from the local MC. */
4975 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4976 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4977 	msg.data = NULL;
4978 	msg.data_len = 0;
4979 	intf->null_user_handler = device_id_fetcher;
4980 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4981 
4982 	if (intf->local_event_generator) {
4983 		/* Request the event receiver from the local MC. */
4984 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4985 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4986 		msg.data = NULL;
4987 		msg.data_len = 0;
4988 		intf->null_user_handler = event_receiver_fetcher;
4989 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4990 	}
4991 	intf->null_user_handler = NULL;
4992 
4993 	/*
4994 	 * Validate the event receiver.  The low bit must not
4995 	 * be 1 (it must be a valid IPMB address), it cannot
4996 	 * be zero, and it must not be my address.
4997 	 */
4998 	if (((intf->event_receiver & 1) == 0)
4999 	    && (intf->event_receiver != 0)
5000 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5001 		/*
5002 		 * The event receiver is valid, send an IPMB
5003 		 * message.
5004 		 */
5005 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5006 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5007 		ipmb->channel = 0; /* FIXME - is this right? */
5008 		ipmb->lun = intf->event_receiver_lun;
5009 		ipmb->slave_addr = intf->event_receiver;
5010 	} else if (intf->local_sel_device) {
5011 		/*
5012 		 * The event receiver was not valid (or was
5013 		 * me), but I am an SEL device, just dump it
5014 		 * in my SEL.
5015 		 */
5016 		si = (struct ipmi_system_interface_addr *) &addr;
5017 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5018 		si->channel = IPMI_BMC_CHANNEL;
5019 		si->lun = 0;
5020 	} else
5021 		return; /* No where to send the event. */
5022 
5023 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5024 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5025 	msg.data = data;
5026 	msg.data_len = 16;
5027 
5028 	j = 0;
5029 	while (*p) {
5030 		int size = strlen(p);
5031 
5032 		if (size > 11)
5033 			size = 11;
5034 		data[0] = 0;
5035 		data[1] = 0;
5036 		data[2] = 0xf0; /* OEM event without timestamp. */
5037 		data[3] = intf->addrinfo[0].address;
5038 		data[4] = j++; /* sequence # */
5039 		/*
5040 		 * Always give 11 bytes, so strncpy will fill
5041 		 * it with zeroes for me.
5042 		 */
5043 		strncpy(data+5, p, 11);
5044 		p += size;
5045 
5046 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5047 	}
5048 }
5049 
5050 static int has_panicked;
5051 
5052 static int panic_event(struct notifier_block *this,
5053 		       unsigned long         event,
5054 		       void                  *ptr)
5055 {
5056 	struct ipmi_smi *intf;
5057 	struct ipmi_user *user;
5058 
5059 	if (has_panicked)
5060 		return NOTIFY_DONE;
5061 	has_panicked = 1;
5062 
5063 	/* For every registered interface, set it to run to completion. */
5064 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5065 		if (!intf->handlers || intf->intf_num == -1)
5066 			/* Interface is not ready. */
5067 			continue;
5068 
5069 		if (!intf->handlers->poll)
5070 			continue;
5071 
5072 		/*
5073 		 * If we were interrupted while locking xmit_msgs_lock or
5074 		 * waiting_rcv_msgs_lock, the corresponding list may be
5075 		 * corrupted.  In this case, drop items on the list for
5076 		 * the safety.
5077 		 */
5078 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5079 			INIT_LIST_HEAD(&intf->xmit_msgs);
5080 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5081 		} else
5082 			spin_unlock(&intf->xmit_msgs_lock);
5083 
5084 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5085 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5086 		else
5087 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5088 
5089 		intf->run_to_completion = 1;
5090 		if (intf->handlers->set_run_to_completion)
5091 			intf->handlers->set_run_to_completion(intf->send_info,
5092 							      1);
5093 
5094 		list_for_each_entry_rcu(user, &intf->users, link) {
5095 			if (user->handler->ipmi_panic_handler)
5096 				user->handler->ipmi_panic_handler(
5097 					user->handler_data);
5098 		}
5099 
5100 		send_panic_events(intf, ptr);
5101 	}
5102 
5103 	return NOTIFY_DONE;
5104 }
5105 
5106 /* Must be called with ipmi_interfaces_mutex held. */
5107 static int ipmi_register_driver(void)
5108 {
5109 	int rv;
5110 
5111 	if (drvregistered)
5112 		return 0;
5113 
5114 	rv = driver_register(&ipmidriver.driver);
5115 	if (rv)
5116 		pr_err("Could not register IPMI driver\n");
5117 	else
5118 		drvregistered = true;
5119 	return rv;
5120 }
5121 
5122 static struct notifier_block panic_block = {
5123 	.notifier_call	= panic_event,
5124 	.next		= NULL,
5125 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5126 };
5127 
5128 static int ipmi_init_msghandler(void)
5129 {
5130 	int rv;
5131 
5132 	mutex_lock(&ipmi_interfaces_mutex);
5133 	rv = ipmi_register_driver();
5134 	if (rv)
5135 		goto out;
5136 	if (initialized)
5137 		goto out;
5138 
5139 	init_srcu_struct(&ipmi_interfaces_srcu);
5140 
5141 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5142 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5143 
5144 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5145 
5146 	initialized = true;
5147 
5148 out:
5149 	mutex_unlock(&ipmi_interfaces_mutex);
5150 	return rv;
5151 }
5152 
5153 static int __init ipmi_init_msghandler_mod(void)
5154 {
5155 	int rv;
5156 
5157 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5158 
5159 	mutex_lock(&ipmi_interfaces_mutex);
5160 	rv = ipmi_register_driver();
5161 	mutex_unlock(&ipmi_interfaces_mutex);
5162 
5163 	return rv;
5164 }
5165 
5166 static void __exit cleanup_ipmi(void)
5167 {
5168 	int count;
5169 
5170 	if (initialized) {
5171 		atomic_notifier_chain_unregister(&panic_notifier_list,
5172 						 &panic_block);
5173 
5174 		/*
5175 		 * This can't be called if any interfaces exist, so no worry
5176 		 * about shutting down the interfaces.
5177 		 */
5178 
5179 		/*
5180 		 * Tell the timer to stop, then wait for it to stop.  This
5181 		 * avoids problems with race conditions removing the timer
5182 		 * here.
5183 		 */
5184 		atomic_set(&stop_operation, 1);
5185 		del_timer_sync(&ipmi_timer);
5186 
5187 		initialized = false;
5188 
5189 		/* Check for buffer leaks. */
5190 		count = atomic_read(&smi_msg_inuse_count);
5191 		if (count != 0)
5192 			pr_warn("SMI message count %d at exit\n", count);
5193 		count = atomic_read(&recv_msg_inuse_count);
5194 		if (count != 0)
5195 			pr_warn("recv message count %d at exit\n", count);
5196 
5197 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5198 	}
5199 	if (drvregistered)
5200 		driver_unregister(&ipmidriver.driver);
5201 }
5202 module_exit(cleanup_ipmi);
5203 
5204 module_init(ipmi_init_msghandler_mod);
5205 MODULE_LICENSE("GPL");
5206 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5207 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5208 		   " interface.");
5209 MODULE_VERSION(IPMI_DRIVER_VERSION);
5210 MODULE_SOFTDEP("post: ipmi_devintf");
5211