xref: /openbmc/linux/drivers/char/ipmi/ipmi_msghandler.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 
48 #define PFX "IPMI message handler: "
49 
50 #define IPMI_DRIVER_VERSION "39.2"
51 
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
54 
55 static int initialized;
56 
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
60 
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
63 
64 #define MAX_EVENTS_IN_QUEUE	25
65 
66 /*
67  * Don't let a message sit in a queue forever, always time it with at lest
68  * the max message timer.  This is in milliseconds.
69  */
70 #define MAX_MSG_TIMEOUT		60000
71 
72 /*
73  * The main "user" data structure.
74  */
75 struct ipmi_user {
76 	struct list_head link;
77 
78 	/* Set to "0" when the user is destroyed. */
79 	int valid;
80 
81 	struct kref refcount;
82 
83 	/* The upper layer that handles receive messages. */
84 	struct ipmi_user_hndl *handler;
85 	void             *handler_data;
86 
87 	/* The interface this user is bound to. */
88 	ipmi_smi_t intf;
89 
90 	/* Does this interface receive IPMI events? */
91 	int gets_events;
92 };
93 
94 struct cmd_rcvr {
95 	struct list_head link;
96 
97 	ipmi_user_t   user;
98 	unsigned char netfn;
99 	unsigned char cmd;
100 	unsigned int  chans;
101 
102 	/*
103 	 * This is used to form a linked lised during mass deletion.
104 	 * Since this is in an RCU list, we cannot use the link above
105 	 * or change any data until the RCU period completes.  So we
106 	 * use this next variable during mass deletion so we can have
107 	 * a list and don't have to wait and restart the search on
108 	 * every individual deletion of a command.
109 	 */
110 	struct cmd_rcvr *next;
111 };
112 
113 struct seq_table {
114 	unsigned int         inuse : 1;
115 	unsigned int         broadcast : 1;
116 
117 	unsigned long        timeout;
118 	unsigned long        orig_timeout;
119 	unsigned int         retries_left;
120 
121 	/*
122 	 * To verify on an incoming send message response that this is
123 	 * the message that the response is for, we keep a sequence id
124 	 * and increment it every time we send a message.
125 	 */
126 	long                 seqid;
127 
128 	/*
129 	 * This is held so we can properly respond to the message on a
130 	 * timeout, and it is used to hold the temporary data for
131 	 * retransmission, too.
132 	 */
133 	struct ipmi_recv_msg *recv_msg;
134 };
135 
136 /*
137  * Store the information in a msgid (long) to allow us to find a
138  * sequence table entry from the msgid.
139  */
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
141 
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
143 	do {								\
144 		seq = ((msgid >> 26) & 0x3f);				\
145 		seqid = (msgid & 0x3fffff);				\
146 	} while (0)
147 
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
149 
150 struct ipmi_channel {
151 	unsigned char medium;
152 	unsigned char protocol;
153 
154 	/*
155 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
156 	 * but may be changed by the user.
157 	 */
158 	unsigned char address;
159 
160 	/*
161 	 * My LUN.  This should generally stay the SMS LUN, but just in
162 	 * case...
163 	 */
164 	unsigned char lun;
165 };
166 
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
169 	char                   *name;
170 	struct ipmi_proc_entry *next;
171 };
172 #endif
173 
174 struct bmc_device {
175 	struct platform_device *dev;
176 	struct ipmi_device_id  id;
177 	unsigned char          guid[16];
178 	int                    guid_set;
179 
180 	struct kref	       refcount;
181 
182 	/* bmc device attributes */
183 	struct device_attribute device_id_attr;
184 	struct device_attribute provides_dev_sdrs_attr;
185 	struct device_attribute revision_attr;
186 	struct device_attribute firmware_rev_attr;
187 	struct device_attribute version_attr;
188 	struct device_attribute add_dev_support_attr;
189 	struct device_attribute manufacturer_id_attr;
190 	struct device_attribute product_id_attr;
191 	struct device_attribute guid_attr;
192 	struct device_attribute aux_firmware_rev_attr;
193 };
194 
195 /*
196  * Various statistics for IPMI, these index stats[] in the ipmi_smi
197  * structure.
198  */
199 enum ipmi_stat_indexes {
200 	/* Commands we got from the user that were invalid. */
201 	IPMI_STAT_sent_invalid_commands = 0,
202 
203 	/* Commands we sent to the MC. */
204 	IPMI_STAT_sent_local_commands,
205 
206 	/* Responses from the MC that were delivered to a user. */
207 	IPMI_STAT_handled_local_responses,
208 
209 	/* Responses from the MC that were not delivered to a user. */
210 	IPMI_STAT_unhandled_local_responses,
211 
212 	/* Commands we sent out to the IPMB bus. */
213 	IPMI_STAT_sent_ipmb_commands,
214 
215 	/* Commands sent on the IPMB that had errors on the SEND CMD */
216 	IPMI_STAT_sent_ipmb_command_errs,
217 
218 	/* Each retransmit increments this count. */
219 	IPMI_STAT_retransmitted_ipmb_commands,
220 
221 	/*
222 	 * When a message times out (runs out of retransmits) this is
223 	 * incremented.
224 	 */
225 	IPMI_STAT_timed_out_ipmb_commands,
226 
227 	/*
228 	 * This is like above, but for broadcasts.  Broadcasts are
229 	 * *not* included in the above count (they are expected to
230 	 * time out).
231 	 */
232 	IPMI_STAT_timed_out_ipmb_broadcasts,
233 
234 	/* Responses I have sent to the IPMB bus. */
235 	IPMI_STAT_sent_ipmb_responses,
236 
237 	/* The response was delivered to the user. */
238 	IPMI_STAT_handled_ipmb_responses,
239 
240 	/* The response had invalid data in it. */
241 	IPMI_STAT_invalid_ipmb_responses,
242 
243 	/* The response didn't have anyone waiting for it. */
244 	IPMI_STAT_unhandled_ipmb_responses,
245 
246 	/* Commands we sent out to the IPMB bus. */
247 	IPMI_STAT_sent_lan_commands,
248 
249 	/* Commands sent on the IPMB that had errors on the SEND CMD */
250 	IPMI_STAT_sent_lan_command_errs,
251 
252 	/* Each retransmit increments this count. */
253 	IPMI_STAT_retransmitted_lan_commands,
254 
255 	/*
256 	 * When a message times out (runs out of retransmits) this is
257 	 * incremented.
258 	 */
259 	IPMI_STAT_timed_out_lan_commands,
260 
261 	/* Responses I have sent to the IPMB bus. */
262 	IPMI_STAT_sent_lan_responses,
263 
264 	/* The response was delivered to the user. */
265 	IPMI_STAT_handled_lan_responses,
266 
267 	/* The response had invalid data in it. */
268 	IPMI_STAT_invalid_lan_responses,
269 
270 	/* The response didn't have anyone waiting for it. */
271 	IPMI_STAT_unhandled_lan_responses,
272 
273 	/* The command was delivered to the user. */
274 	IPMI_STAT_handled_commands,
275 
276 	/* The command had invalid data in it. */
277 	IPMI_STAT_invalid_commands,
278 
279 	/* The command didn't have anyone waiting for it. */
280 	IPMI_STAT_unhandled_commands,
281 
282 	/* Invalid data in an event. */
283 	IPMI_STAT_invalid_events,
284 
285 	/* Events that were received with the proper format. */
286 	IPMI_STAT_events,
287 
288 
289 	/* This *must* remain last, add new values above this. */
290 	IPMI_NUM_STATS
291 };
292 
293 
294 #define IPMI_IPMB_NUM_SEQ	64
295 #define IPMI_MAX_CHANNELS       16
296 struct ipmi_smi {
297 	/* What interface number are we? */
298 	int intf_num;
299 
300 	struct kref refcount;
301 
302 	/* Used for a list of interfaces. */
303 	struct list_head link;
304 
305 	/*
306 	 * The list of upper layers that are using me.  seq_lock
307 	 * protects this.
308 	 */
309 	struct list_head users;
310 
311 	/* Information to supply to users. */
312 	unsigned char ipmi_version_major;
313 	unsigned char ipmi_version_minor;
314 
315 	/* Used for wake ups at startup. */
316 	wait_queue_head_t waitq;
317 
318 	struct bmc_device *bmc;
319 	char *my_dev_name;
320 	char *sysfs_name;
321 
322 	/*
323 	 * This is the lower-layer's sender routine.  Note that you
324 	 * must either be holding the ipmi_interfaces_mutex or be in
325 	 * an umpreemptible region to use this.  You must fetch the
326 	 * value into a local variable and make sure it is not NULL.
327 	 */
328 	struct ipmi_smi_handlers *handlers;
329 	void                     *send_info;
330 
331 #ifdef CONFIG_PROC_FS
332 	/* A list of proc entries for this interface. */
333 	struct mutex           proc_entry_lock;
334 	struct ipmi_proc_entry *proc_entries;
335 #endif
336 
337 	/* Driver-model device for the system interface. */
338 	struct device          *si_dev;
339 
340 	/*
341 	 * A table of sequence numbers for this interface.  We use the
342 	 * sequence numbers for IPMB messages that go out of the
343 	 * interface to match them up with their responses.  A routine
344 	 * is called periodically to time the items in this list.
345 	 */
346 	spinlock_t       seq_lock;
347 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
348 	int curr_seq;
349 
350 	/*
351 	 * Messages that were delayed for some reason (out of memory,
352 	 * for instance), will go in here to be processed later in a
353 	 * periodic timer interrupt.
354 	 */
355 	spinlock_t       waiting_msgs_lock;
356 	struct list_head waiting_msgs;
357 
358 	/*
359 	 * The list of command receivers that are registered for commands
360 	 * on this interface.
361 	 */
362 	struct mutex     cmd_rcvrs_mutex;
363 	struct list_head cmd_rcvrs;
364 
365 	/*
366 	 * Events that were queues because no one was there to receive
367 	 * them.
368 	 */
369 	spinlock_t       events_lock; /* For dealing with event stuff. */
370 	struct list_head waiting_events;
371 	unsigned int     waiting_events_count; /* How many events in queue? */
372 	char             delivering_events;
373 	char             event_msg_printed;
374 
375 	/*
376 	 * The event receiver for my BMC, only really used at panic
377 	 * shutdown as a place to store this.
378 	 */
379 	unsigned char event_receiver;
380 	unsigned char event_receiver_lun;
381 	unsigned char local_sel_device;
382 	unsigned char local_event_generator;
383 
384 	/* For handling of maintenance mode. */
385 	int maintenance_mode;
386 	int maintenance_mode_enable;
387 	int auto_maintenance_timeout;
388 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
389 
390 	/*
391 	 * A cheap hack, if this is non-null and a message to an
392 	 * interface comes in with a NULL user, call this routine with
393 	 * it.  Note that the message will still be freed by the
394 	 * caller.  This only works on the system interface.
395 	 */
396 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
397 
398 	/*
399 	 * When we are scanning the channels for an SMI, this will
400 	 * tell which channel we are scanning.
401 	 */
402 	int curr_channel;
403 
404 	/* Channel information */
405 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
406 
407 	/* Proc FS stuff. */
408 	struct proc_dir_entry *proc_dir;
409 	char                  proc_dir_name[10];
410 
411 	atomic_t stats[IPMI_NUM_STATS];
412 
413 	/*
414 	 * run_to_completion duplicate of smb_info, smi_info
415 	 * and ipmi_serial_info structures. Used to decrease numbers of
416 	 * parameters passed by "low" level IPMI code.
417 	 */
418 	int run_to_completion;
419 };
420 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
421 
422 /**
423  * The driver model view of the IPMI messaging driver.
424  */
425 static struct platform_driver ipmidriver = {
426 	.driver = {
427 		.name = "ipmi",
428 		.bus = &platform_bus_type
429 	}
430 };
431 static DEFINE_MUTEX(ipmidriver_mutex);
432 
433 static LIST_HEAD(ipmi_interfaces);
434 static DEFINE_MUTEX(ipmi_interfaces_mutex);
435 
436 /*
437  * List of watchers that want to know when smi's are added and deleted.
438  */
439 static LIST_HEAD(smi_watchers);
440 static DEFINE_MUTEX(smi_watchers_mutex);
441 
442 
443 #define ipmi_inc_stat(intf, stat) \
444 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
445 #define ipmi_get_stat(intf, stat) \
446 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
447 
448 
449 static void free_recv_msg_list(struct list_head *q)
450 {
451 	struct ipmi_recv_msg *msg, *msg2;
452 
453 	list_for_each_entry_safe(msg, msg2, q, link) {
454 		list_del(&msg->link);
455 		ipmi_free_recv_msg(msg);
456 	}
457 }
458 
459 static void free_smi_msg_list(struct list_head *q)
460 {
461 	struct ipmi_smi_msg *msg, *msg2;
462 
463 	list_for_each_entry_safe(msg, msg2, q, link) {
464 		list_del(&msg->link);
465 		ipmi_free_smi_msg(msg);
466 	}
467 }
468 
469 static void clean_up_interface_data(ipmi_smi_t intf)
470 {
471 	int              i;
472 	struct cmd_rcvr  *rcvr, *rcvr2;
473 	struct list_head list;
474 
475 	free_smi_msg_list(&intf->waiting_msgs);
476 	free_recv_msg_list(&intf->waiting_events);
477 
478 	/*
479 	 * Wholesale remove all the entries from the list in the
480 	 * interface and wait for RCU to know that none are in use.
481 	 */
482 	mutex_lock(&intf->cmd_rcvrs_mutex);
483 	INIT_LIST_HEAD(&list);
484 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
485 	mutex_unlock(&intf->cmd_rcvrs_mutex);
486 
487 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
488 		kfree(rcvr);
489 
490 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
491 		if ((intf->seq_table[i].inuse)
492 					&& (intf->seq_table[i].recv_msg))
493 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
494 	}
495 }
496 
497 static void intf_free(struct kref *ref)
498 {
499 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
500 
501 	clean_up_interface_data(intf);
502 	kfree(intf);
503 }
504 
505 struct watcher_entry {
506 	int              intf_num;
507 	ipmi_smi_t       intf;
508 	struct list_head link;
509 };
510 
511 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
512 {
513 	ipmi_smi_t intf;
514 	LIST_HEAD(to_deliver);
515 	struct watcher_entry *e, *e2;
516 
517 	mutex_lock(&smi_watchers_mutex);
518 
519 	mutex_lock(&ipmi_interfaces_mutex);
520 
521 	/* Build a list of things to deliver. */
522 	list_for_each_entry(intf, &ipmi_interfaces, link) {
523 		if (intf->intf_num == -1)
524 			continue;
525 		e = kmalloc(sizeof(*e), GFP_KERNEL);
526 		if (!e)
527 			goto out_err;
528 		kref_get(&intf->refcount);
529 		e->intf = intf;
530 		e->intf_num = intf->intf_num;
531 		list_add_tail(&e->link, &to_deliver);
532 	}
533 
534 	/* We will succeed, so add it to the list. */
535 	list_add(&watcher->link, &smi_watchers);
536 
537 	mutex_unlock(&ipmi_interfaces_mutex);
538 
539 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
540 		list_del(&e->link);
541 		watcher->new_smi(e->intf_num, e->intf->si_dev);
542 		kref_put(&e->intf->refcount, intf_free);
543 		kfree(e);
544 	}
545 
546 	mutex_unlock(&smi_watchers_mutex);
547 
548 	return 0;
549 
550  out_err:
551 	mutex_unlock(&ipmi_interfaces_mutex);
552 	mutex_unlock(&smi_watchers_mutex);
553 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
554 		list_del(&e->link);
555 		kref_put(&e->intf->refcount, intf_free);
556 		kfree(e);
557 	}
558 	return -ENOMEM;
559 }
560 EXPORT_SYMBOL(ipmi_smi_watcher_register);
561 
562 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
563 {
564 	mutex_lock(&smi_watchers_mutex);
565 	list_del(&(watcher->link));
566 	mutex_unlock(&smi_watchers_mutex);
567 	return 0;
568 }
569 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
570 
571 /*
572  * Must be called with smi_watchers_mutex held.
573  */
574 static void
575 call_smi_watchers(int i, struct device *dev)
576 {
577 	struct ipmi_smi_watcher *w;
578 
579 	list_for_each_entry(w, &smi_watchers, link) {
580 		if (try_module_get(w->owner)) {
581 			w->new_smi(i, dev);
582 			module_put(w->owner);
583 		}
584 	}
585 }
586 
587 static int
588 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
589 {
590 	if (addr1->addr_type != addr2->addr_type)
591 		return 0;
592 
593 	if (addr1->channel != addr2->channel)
594 		return 0;
595 
596 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
597 		struct ipmi_system_interface_addr *smi_addr1
598 		    = (struct ipmi_system_interface_addr *) addr1;
599 		struct ipmi_system_interface_addr *smi_addr2
600 		    = (struct ipmi_system_interface_addr *) addr2;
601 		return (smi_addr1->lun == smi_addr2->lun);
602 	}
603 
604 	if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
605 	    || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
606 		struct ipmi_ipmb_addr *ipmb_addr1
607 		    = (struct ipmi_ipmb_addr *) addr1;
608 		struct ipmi_ipmb_addr *ipmb_addr2
609 		    = (struct ipmi_ipmb_addr *) addr2;
610 
611 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
612 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
613 	}
614 
615 	if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
616 		struct ipmi_lan_addr *lan_addr1
617 			= (struct ipmi_lan_addr *) addr1;
618 		struct ipmi_lan_addr *lan_addr2
619 		    = (struct ipmi_lan_addr *) addr2;
620 
621 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
622 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
623 			&& (lan_addr1->session_handle
624 			    == lan_addr2->session_handle)
625 			&& (lan_addr1->lun == lan_addr2->lun));
626 	}
627 
628 	return 1;
629 }
630 
631 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
632 {
633 	if (len < sizeof(struct ipmi_system_interface_addr))
634 		return -EINVAL;
635 
636 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
637 		if (addr->channel != IPMI_BMC_CHANNEL)
638 			return -EINVAL;
639 		return 0;
640 	}
641 
642 	if ((addr->channel == IPMI_BMC_CHANNEL)
643 	    || (addr->channel >= IPMI_MAX_CHANNELS)
644 	    || (addr->channel < 0))
645 		return -EINVAL;
646 
647 	if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
648 	    || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
649 		if (len < sizeof(struct ipmi_ipmb_addr))
650 			return -EINVAL;
651 		return 0;
652 	}
653 
654 	if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
655 		if (len < sizeof(struct ipmi_lan_addr))
656 			return -EINVAL;
657 		return 0;
658 	}
659 
660 	return -EINVAL;
661 }
662 EXPORT_SYMBOL(ipmi_validate_addr);
663 
664 unsigned int ipmi_addr_length(int addr_type)
665 {
666 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
667 		return sizeof(struct ipmi_system_interface_addr);
668 
669 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
670 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
671 		return sizeof(struct ipmi_ipmb_addr);
672 
673 	if (addr_type == IPMI_LAN_ADDR_TYPE)
674 		return sizeof(struct ipmi_lan_addr);
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL(ipmi_addr_length);
679 
680 static void deliver_response(struct ipmi_recv_msg *msg)
681 {
682 	if (!msg->user) {
683 		ipmi_smi_t    intf = msg->user_msg_data;
684 
685 		/* Special handling for NULL users. */
686 		if (intf->null_user_handler) {
687 			intf->null_user_handler(intf, msg);
688 			ipmi_inc_stat(intf, handled_local_responses);
689 		} else {
690 			/* No handler, so give up. */
691 			ipmi_inc_stat(intf, unhandled_local_responses);
692 		}
693 		ipmi_free_recv_msg(msg);
694 	} else {
695 		ipmi_user_t user = msg->user;
696 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
697 	}
698 }
699 
700 static void
701 deliver_err_response(struct ipmi_recv_msg *msg, int err)
702 {
703 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
704 	msg->msg_data[0] = err;
705 	msg->msg.netfn |= 1; /* Convert to a response. */
706 	msg->msg.data_len = 1;
707 	msg->msg.data = msg->msg_data;
708 	deliver_response(msg);
709 }
710 
711 /*
712  * Find the next sequence number not being used and add the given
713  * message with the given timeout to the sequence table.  This must be
714  * called with the interface's seq_lock held.
715  */
716 static int intf_next_seq(ipmi_smi_t           intf,
717 			 struct ipmi_recv_msg *recv_msg,
718 			 unsigned long        timeout,
719 			 int                  retries,
720 			 int                  broadcast,
721 			 unsigned char        *seq,
722 			 long                 *seqid)
723 {
724 	int          rv = 0;
725 	unsigned int i;
726 
727 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
728 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
729 		if (!intf->seq_table[i].inuse)
730 			break;
731 	}
732 
733 	if (!intf->seq_table[i].inuse) {
734 		intf->seq_table[i].recv_msg = recv_msg;
735 
736 		/*
737 		 * Start with the maximum timeout, when the send response
738 		 * comes in we will start the real timer.
739 		 */
740 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
741 		intf->seq_table[i].orig_timeout = timeout;
742 		intf->seq_table[i].retries_left = retries;
743 		intf->seq_table[i].broadcast = broadcast;
744 		intf->seq_table[i].inuse = 1;
745 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
746 		*seq = i;
747 		*seqid = intf->seq_table[i].seqid;
748 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
749 	} else {
750 		rv = -EAGAIN;
751 	}
752 
753 	return rv;
754 }
755 
756 /*
757  * Return the receive message for the given sequence number and
758  * release the sequence number so it can be reused.  Some other data
759  * is passed in to be sure the message matches up correctly (to help
760  * guard against message coming in after their timeout and the
761  * sequence number being reused).
762  */
763 static int intf_find_seq(ipmi_smi_t           intf,
764 			 unsigned char        seq,
765 			 short                channel,
766 			 unsigned char        cmd,
767 			 unsigned char        netfn,
768 			 struct ipmi_addr     *addr,
769 			 struct ipmi_recv_msg **recv_msg)
770 {
771 	int           rv = -ENODEV;
772 	unsigned long flags;
773 
774 	if (seq >= IPMI_IPMB_NUM_SEQ)
775 		return -EINVAL;
776 
777 	spin_lock_irqsave(&(intf->seq_lock), flags);
778 	if (intf->seq_table[seq].inuse) {
779 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
780 
781 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
782 				&& (msg->msg.netfn == netfn)
783 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
784 			*recv_msg = msg;
785 			intf->seq_table[seq].inuse = 0;
786 			rv = 0;
787 		}
788 	}
789 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
790 
791 	return rv;
792 }
793 
794 
795 /* Start the timer for a specific sequence table entry. */
796 static int intf_start_seq_timer(ipmi_smi_t intf,
797 				long       msgid)
798 {
799 	int           rv = -ENODEV;
800 	unsigned long flags;
801 	unsigned char seq;
802 	unsigned long seqid;
803 
804 
805 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
806 
807 	spin_lock_irqsave(&(intf->seq_lock), flags);
808 	/*
809 	 * We do this verification because the user can be deleted
810 	 * while a message is outstanding.
811 	 */
812 	if ((intf->seq_table[seq].inuse)
813 				&& (intf->seq_table[seq].seqid == seqid)) {
814 		struct seq_table *ent = &(intf->seq_table[seq]);
815 		ent->timeout = ent->orig_timeout;
816 		rv = 0;
817 	}
818 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
819 
820 	return rv;
821 }
822 
823 /* Got an error for the send message for a specific sequence number. */
824 static int intf_err_seq(ipmi_smi_t   intf,
825 			long         msgid,
826 			unsigned int err)
827 {
828 	int                  rv = -ENODEV;
829 	unsigned long        flags;
830 	unsigned char        seq;
831 	unsigned long        seqid;
832 	struct ipmi_recv_msg *msg = NULL;
833 
834 
835 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
836 
837 	spin_lock_irqsave(&(intf->seq_lock), flags);
838 	/*
839 	 * We do this verification because the user can be deleted
840 	 * while a message is outstanding.
841 	 */
842 	if ((intf->seq_table[seq].inuse)
843 				&& (intf->seq_table[seq].seqid == seqid)) {
844 		struct seq_table *ent = &(intf->seq_table[seq]);
845 
846 		ent->inuse = 0;
847 		msg = ent->recv_msg;
848 		rv = 0;
849 	}
850 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
851 
852 	if (msg)
853 		deliver_err_response(msg, err);
854 
855 	return rv;
856 }
857 
858 
859 int ipmi_create_user(unsigned int          if_num,
860 		     struct ipmi_user_hndl *handler,
861 		     void                  *handler_data,
862 		     ipmi_user_t           *user)
863 {
864 	unsigned long flags;
865 	ipmi_user_t   new_user;
866 	int           rv = 0;
867 	ipmi_smi_t    intf;
868 
869 	/*
870 	 * There is no module usecount here, because it's not
871 	 * required.  Since this can only be used by and called from
872 	 * other modules, they will implicitly use this module, and
873 	 * thus this can't be removed unless the other modules are
874 	 * removed.
875 	 */
876 
877 	if (handler == NULL)
878 		return -EINVAL;
879 
880 	/*
881 	 * Make sure the driver is actually initialized, this handles
882 	 * problems with initialization order.
883 	 */
884 	if (!initialized) {
885 		rv = ipmi_init_msghandler();
886 		if (rv)
887 			return rv;
888 
889 		/*
890 		 * The init code doesn't return an error if it was turned
891 		 * off, but it won't initialize.  Check that.
892 		 */
893 		if (!initialized)
894 			return -ENODEV;
895 	}
896 
897 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
898 	if (!new_user)
899 		return -ENOMEM;
900 
901 	mutex_lock(&ipmi_interfaces_mutex);
902 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
903 		if (intf->intf_num == if_num)
904 			goto found;
905 	}
906 	/* Not found, return an error */
907 	rv = -EINVAL;
908 	goto out_kfree;
909 
910  found:
911 	/* Note that each existing user holds a refcount to the interface. */
912 	kref_get(&intf->refcount);
913 
914 	kref_init(&new_user->refcount);
915 	new_user->handler = handler;
916 	new_user->handler_data = handler_data;
917 	new_user->intf = intf;
918 	new_user->gets_events = 0;
919 
920 	if (!try_module_get(intf->handlers->owner)) {
921 		rv = -ENODEV;
922 		goto out_kref;
923 	}
924 
925 	if (intf->handlers->inc_usecount) {
926 		rv = intf->handlers->inc_usecount(intf->send_info);
927 		if (rv) {
928 			module_put(intf->handlers->owner);
929 			goto out_kref;
930 		}
931 	}
932 
933 	/*
934 	 * Hold the lock so intf->handlers is guaranteed to be good
935 	 * until now
936 	 */
937 	mutex_unlock(&ipmi_interfaces_mutex);
938 
939 	new_user->valid = 1;
940 	spin_lock_irqsave(&intf->seq_lock, flags);
941 	list_add_rcu(&new_user->link, &intf->users);
942 	spin_unlock_irqrestore(&intf->seq_lock, flags);
943 	*user = new_user;
944 	return 0;
945 
946 out_kref:
947 	kref_put(&intf->refcount, intf_free);
948 out_kfree:
949 	mutex_unlock(&ipmi_interfaces_mutex);
950 	kfree(new_user);
951 	return rv;
952 }
953 EXPORT_SYMBOL(ipmi_create_user);
954 
955 static void free_user(struct kref *ref)
956 {
957 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
958 	kfree(user);
959 }
960 
961 int ipmi_destroy_user(ipmi_user_t user)
962 {
963 	ipmi_smi_t       intf = user->intf;
964 	int              i;
965 	unsigned long    flags;
966 	struct cmd_rcvr  *rcvr;
967 	struct cmd_rcvr  *rcvrs = NULL;
968 
969 	user->valid = 0;
970 
971 	/* Remove the user from the interface's sequence table. */
972 	spin_lock_irqsave(&intf->seq_lock, flags);
973 	list_del_rcu(&user->link);
974 
975 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
976 		if (intf->seq_table[i].inuse
977 		    && (intf->seq_table[i].recv_msg->user == user)) {
978 			intf->seq_table[i].inuse = 0;
979 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
980 		}
981 	}
982 	spin_unlock_irqrestore(&intf->seq_lock, flags);
983 
984 	/*
985 	 * Remove the user from the command receiver's table.  First
986 	 * we build a list of everything (not using the standard link,
987 	 * since other things may be using it till we do
988 	 * synchronize_rcu()) then free everything in that list.
989 	 */
990 	mutex_lock(&intf->cmd_rcvrs_mutex);
991 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
992 		if (rcvr->user == user) {
993 			list_del_rcu(&rcvr->link);
994 			rcvr->next = rcvrs;
995 			rcvrs = rcvr;
996 		}
997 	}
998 	mutex_unlock(&intf->cmd_rcvrs_mutex);
999 	synchronize_rcu();
1000 	while (rcvrs) {
1001 		rcvr = rcvrs;
1002 		rcvrs = rcvr->next;
1003 		kfree(rcvr);
1004 	}
1005 
1006 	mutex_lock(&ipmi_interfaces_mutex);
1007 	if (intf->handlers) {
1008 		module_put(intf->handlers->owner);
1009 		if (intf->handlers->dec_usecount)
1010 			intf->handlers->dec_usecount(intf->send_info);
1011 	}
1012 	mutex_unlock(&ipmi_interfaces_mutex);
1013 
1014 	kref_put(&intf->refcount, intf_free);
1015 
1016 	kref_put(&user->refcount, free_user);
1017 
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL(ipmi_destroy_user);
1021 
1022 void ipmi_get_version(ipmi_user_t   user,
1023 		      unsigned char *major,
1024 		      unsigned char *minor)
1025 {
1026 	*major = user->intf->ipmi_version_major;
1027 	*minor = user->intf->ipmi_version_minor;
1028 }
1029 EXPORT_SYMBOL(ipmi_get_version);
1030 
1031 int ipmi_set_my_address(ipmi_user_t   user,
1032 			unsigned int  channel,
1033 			unsigned char address)
1034 {
1035 	if (channel >= IPMI_MAX_CHANNELS)
1036 		return -EINVAL;
1037 	user->intf->channels[channel].address = address;
1038 	return 0;
1039 }
1040 EXPORT_SYMBOL(ipmi_set_my_address);
1041 
1042 int ipmi_get_my_address(ipmi_user_t   user,
1043 			unsigned int  channel,
1044 			unsigned char *address)
1045 {
1046 	if (channel >= IPMI_MAX_CHANNELS)
1047 		return -EINVAL;
1048 	*address = user->intf->channels[channel].address;
1049 	return 0;
1050 }
1051 EXPORT_SYMBOL(ipmi_get_my_address);
1052 
1053 int ipmi_set_my_LUN(ipmi_user_t   user,
1054 		    unsigned int  channel,
1055 		    unsigned char LUN)
1056 {
1057 	if (channel >= IPMI_MAX_CHANNELS)
1058 		return -EINVAL;
1059 	user->intf->channels[channel].lun = LUN & 0x3;
1060 	return 0;
1061 }
1062 EXPORT_SYMBOL(ipmi_set_my_LUN);
1063 
1064 int ipmi_get_my_LUN(ipmi_user_t   user,
1065 		    unsigned int  channel,
1066 		    unsigned char *address)
1067 {
1068 	if (channel >= IPMI_MAX_CHANNELS)
1069 		return -EINVAL;
1070 	*address = user->intf->channels[channel].lun;
1071 	return 0;
1072 }
1073 EXPORT_SYMBOL(ipmi_get_my_LUN);
1074 
1075 int ipmi_get_maintenance_mode(ipmi_user_t user)
1076 {
1077 	int           mode;
1078 	unsigned long flags;
1079 
1080 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1081 	mode = user->intf->maintenance_mode;
1082 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1083 
1084 	return mode;
1085 }
1086 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1087 
1088 static void maintenance_mode_update(ipmi_smi_t intf)
1089 {
1090 	if (intf->handlers->set_maintenance_mode)
1091 		intf->handlers->set_maintenance_mode(
1092 			intf->send_info, intf->maintenance_mode_enable);
1093 }
1094 
1095 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1096 {
1097 	int           rv = 0;
1098 	unsigned long flags;
1099 	ipmi_smi_t    intf = user->intf;
1100 
1101 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1102 	if (intf->maintenance_mode != mode) {
1103 		switch (mode) {
1104 		case IPMI_MAINTENANCE_MODE_AUTO:
1105 			intf->maintenance_mode = mode;
1106 			intf->maintenance_mode_enable
1107 				= (intf->auto_maintenance_timeout > 0);
1108 			break;
1109 
1110 		case IPMI_MAINTENANCE_MODE_OFF:
1111 			intf->maintenance_mode = mode;
1112 			intf->maintenance_mode_enable = 0;
1113 			break;
1114 
1115 		case IPMI_MAINTENANCE_MODE_ON:
1116 			intf->maintenance_mode = mode;
1117 			intf->maintenance_mode_enable = 1;
1118 			break;
1119 
1120 		default:
1121 			rv = -EINVAL;
1122 			goto out_unlock;
1123 		}
1124 
1125 		maintenance_mode_update(intf);
1126 	}
1127  out_unlock:
1128 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1129 
1130 	return rv;
1131 }
1132 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1133 
1134 int ipmi_set_gets_events(ipmi_user_t user, int val)
1135 {
1136 	unsigned long        flags;
1137 	ipmi_smi_t           intf = user->intf;
1138 	struct ipmi_recv_msg *msg, *msg2;
1139 	struct list_head     msgs;
1140 
1141 	INIT_LIST_HEAD(&msgs);
1142 
1143 	spin_lock_irqsave(&intf->events_lock, flags);
1144 	user->gets_events = val;
1145 
1146 	if (intf->delivering_events)
1147 		/*
1148 		 * Another thread is delivering events for this, so
1149 		 * let it handle any new events.
1150 		 */
1151 		goto out;
1152 
1153 	/* Deliver any queued events. */
1154 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1155 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1156 			list_move_tail(&msg->link, &msgs);
1157 		intf->waiting_events_count = 0;
1158 		if (intf->event_msg_printed) {
1159 			printk(KERN_WARNING PFX "Event queue no longer"
1160 			       " full\n");
1161 			intf->event_msg_printed = 0;
1162 		}
1163 
1164 		intf->delivering_events = 1;
1165 		spin_unlock_irqrestore(&intf->events_lock, flags);
1166 
1167 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1168 			msg->user = user;
1169 			kref_get(&user->refcount);
1170 			deliver_response(msg);
1171 		}
1172 
1173 		spin_lock_irqsave(&intf->events_lock, flags);
1174 		intf->delivering_events = 0;
1175 	}
1176 
1177  out:
1178 	spin_unlock_irqrestore(&intf->events_lock, flags);
1179 
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL(ipmi_set_gets_events);
1183 
1184 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1185 				      unsigned char netfn,
1186 				      unsigned char cmd,
1187 				      unsigned char chan)
1188 {
1189 	struct cmd_rcvr *rcvr;
1190 
1191 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1192 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1193 					&& (rcvr->chans & (1 << chan)))
1194 			return rcvr;
1195 	}
1196 	return NULL;
1197 }
1198 
1199 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1200 				 unsigned char netfn,
1201 				 unsigned char cmd,
1202 				 unsigned int  chans)
1203 {
1204 	struct cmd_rcvr *rcvr;
1205 
1206 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1207 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1208 					&& (rcvr->chans & chans))
1209 			return 0;
1210 	}
1211 	return 1;
1212 }
1213 
1214 int ipmi_register_for_cmd(ipmi_user_t   user,
1215 			  unsigned char netfn,
1216 			  unsigned char cmd,
1217 			  unsigned int  chans)
1218 {
1219 	ipmi_smi_t      intf = user->intf;
1220 	struct cmd_rcvr *rcvr;
1221 	int             rv = 0;
1222 
1223 
1224 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1225 	if (!rcvr)
1226 		return -ENOMEM;
1227 	rcvr->cmd = cmd;
1228 	rcvr->netfn = netfn;
1229 	rcvr->chans = chans;
1230 	rcvr->user = user;
1231 
1232 	mutex_lock(&intf->cmd_rcvrs_mutex);
1233 	/* Make sure the command/netfn is not already registered. */
1234 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1235 		rv = -EBUSY;
1236 		goto out_unlock;
1237 	}
1238 
1239 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1240 
1241  out_unlock:
1242 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1243 	if (rv)
1244 		kfree(rcvr);
1245 
1246 	return rv;
1247 }
1248 EXPORT_SYMBOL(ipmi_register_for_cmd);
1249 
1250 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1251 			    unsigned char netfn,
1252 			    unsigned char cmd,
1253 			    unsigned int  chans)
1254 {
1255 	ipmi_smi_t      intf = user->intf;
1256 	struct cmd_rcvr *rcvr;
1257 	struct cmd_rcvr *rcvrs = NULL;
1258 	int i, rv = -ENOENT;
1259 
1260 	mutex_lock(&intf->cmd_rcvrs_mutex);
1261 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1262 		if (((1 << i) & chans) == 0)
1263 			continue;
1264 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1265 		if (rcvr == NULL)
1266 			continue;
1267 		if (rcvr->user == user) {
1268 			rv = 0;
1269 			rcvr->chans &= ~chans;
1270 			if (rcvr->chans == 0) {
1271 				list_del_rcu(&rcvr->link);
1272 				rcvr->next = rcvrs;
1273 				rcvrs = rcvr;
1274 			}
1275 		}
1276 	}
1277 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1278 	synchronize_rcu();
1279 	while (rcvrs) {
1280 		rcvr = rcvrs;
1281 		rcvrs = rcvr->next;
1282 		kfree(rcvr);
1283 	}
1284 	return rv;
1285 }
1286 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1287 
1288 static unsigned char
1289 ipmb_checksum(unsigned char *data, int size)
1290 {
1291 	unsigned char csum = 0;
1292 
1293 	for (; size > 0; size--, data++)
1294 		csum += *data;
1295 
1296 	return -csum;
1297 }
1298 
1299 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1300 				   struct kernel_ipmi_msg *msg,
1301 				   struct ipmi_ipmb_addr *ipmb_addr,
1302 				   long                  msgid,
1303 				   unsigned char         ipmb_seq,
1304 				   int                   broadcast,
1305 				   unsigned char         source_address,
1306 				   unsigned char         source_lun)
1307 {
1308 	int i = broadcast;
1309 
1310 	/* Format the IPMB header data. */
1311 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1312 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1313 	smi_msg->data[2] = ipmb_addr->channel;
1314 	if (broadcast)
1315 		smi_msg->data[3] = 0;
1316 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1317 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1318 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1319 	smi_msg->data[i+6] = source_address;
1320 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1321 	smi_msg->data[i+8] = msg->cmd;
1322 
1323 	/* Now tack on the data to the message. */
1324 	if (msg->data_len > 0)
1325 		memcpy(&(smi_msg->data[i+9]), msg->data,
1326 		       msg->data_len);
1327 	smi_msg->data_size = msg->data_len + 9;
1328 
1329 	/* Now calculate the checksum and tack it on. */
1330 	smi_msg->data[i+smi_msg->data_size]
1331 		= ipmb_checksum(&(smi_msg->data[i+6]),
1332 				smi_msg->data_size-6);
1333 
1334 	/*
1335 	 * Add on the checksum size and the offset from the
1336 	 * broadcast.
1337 	 */
1338 	smi_msg->data_size += 1 + i;
1339 
1340 	smi_msg->msgid = msgid;
1341 }
1342 
1343 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1344 				  struct kernel_ipmi_msg *msg,
1345 				  struct ipmi_lan_addr  *lan_addr,
1346 				  long                  msgid,
1347 				  unsigned char         ipmb_seq,
1348 				  unsigned char         source_lun)
1349 {
1350 	/* Format the IPMB header data. */
1351 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1352 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1353 	smi_msg->data[2] = lan_addr->channel;
1354 	smi_msg->data[3] = lan_addr->session_handle;
1355 	smi_msg->data[4] = lan_addr->remote_SWID;
1356 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1357 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1358 	smi_msg->data[7] = lan_addr->local_SWID;
1359 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1360 	smi_msg->data[9] = msg->cmd;
1361 
1362 	/* Now tack on the data to the message. */
1363 	if (msg->data_len > 0)
1364 		memcpy(&(smi_msg->data[10]), msg->data,
1365 		       msg->data_len);
1366 	smi_msg->data_size = msg->data_len + 10;
1367 
1368 	/* Now calculate the checksum and tack it on. */
1369 	smi_msg->data[smi_msg->data_size]
1370 		= ipmb_checksum(&(smi_msg->data[7]),
1371 				smi_msg->data_size-7);
1372 
1373 	/*
1374 	 * Add on the checksum size and the offset from the
1375 	 * broadcast.
1376 	 */
1377 	smi_msg->data_size += 1;
1378 
1379 	smi_msg->msgid = msgid;
1380 }
1381 
1382 /*
1383  * Separate from ipmi_request so that the user does not have to be
1384  * supplied in certain circumstances (mainly at panic time).  If
1385  * messages are supplied, they will be freed, even if an error
1386  * occurs.
1387  */
1388 static int i_ipmi_request(ipmi_user_t          user,
1389 			  ipmi_smi_t           intf,
1390 			  struct ipmi_addr     *addr,
1391 			  long                 msgid,
1392 			  struct kernel_ipmi_msg *msg,
1393 			  void                 *user_msg_data,
1394 			  void                 *supplied_smi,
1395 			  struct ipmi_recv_msg *supplied_recv,
1396 			  int                  priority,
1397 			  unsigned char        source_address,
1398 			  unsigned char        source_lun,
1399 			  int                  retries,
1400 			  unsigned int         retry_time_ms)
1401 {
1402 	int                      rv = 0;
1403 	struct ipmi_smi_msg      *smi_msg;
1404 	struct ipmi_recv_msg     *recv_msg;
1405 	unsigned long            flags;
1406 	struct ipmi_smi_handlers *handlers;
1407 
1408 
1409 	if (supplied_recv)
1410 		recv_msg = supplied_recv;
1411 	else {
1412 		recv_msg = ipmi_alloc_recv_msg();
1413 		if (recv_msg == NULL)
1414 			return -ENOMEM;
1415 	}
1416 	recv_msg->user_msg_data = user_msg_data;
1417 
1418 	if (supplied_smi)
1419 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1420 	else {
1421 		smi_msg = ipmi_alloc_smi_msg();
1422 		if (smi_msg == NULL) {
1423 			ipmi_free_recv_msg(recv_msg);
1424 			return -ENOMEM;
1425 		}
1426 	}
1427 
1428 	rcu_read_lock();
1429 	handlers = intf->handlers;
1430 	if (!handlers) {
1431 		rv = -ENODEV;
1432 		goto out_err;
1433 	}
1434 
1435 	recv_msg->user = user;
1436 	if (user)
1437 		kref_get(&user->refcount);
1438 	recv_msg->msgid = msgid;
1439 	/*
1440 	 * Store the message to send in the receive message so timeout
1441 	 * responses can get the proper response data.
1442 	 */
1443 	recv_msg->msg = *msg;
1444 
1445 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1446 		struct ipmi_system_interface_addr *smi_addr;
1447 
1448 		if (msg->netfn & 1) {
1449 			/* Responses are not allowed to the SMI. */
1450 			rv = -EINVAL;
1451 			goto out_err;
1452 		}
1453 
1454 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1455 		if (smi_addr->lun > 3) {
1456 			ipmi_inc_stat(intf, sent_invalid_commands);
1457 			rv = -EINVAL;
1458 			goto out_err;
1459 		}
1460 
1461 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1462 
1463 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1464 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1465 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1466 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1467 			/*
1468 			 * We don't let the user do these, since we manage
1469 			 * the sequence numbers.
1470 			 */
1471 			ipmi_inc_stat(intf, sent_invalid_commands);
1472 			rv = -EINVAL;
1473 			goto out_err;
1474 		}
1475 
1476 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1477 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1478 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1479 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1480 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1481 			intf->auto_maintenance_timeout
1482 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1483 			if (!intf->maintenance_mode
1484 			    && !intf->maintenance_mode_enable) {
1485 				intf->maintenance_mode_enable = 1;
1486 				maintenance_mode_update(intf);
1487 			}
1488 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1489 					       flags);
1490 		}
1491 
1492 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1493 			ipmi_inc_stat(intf, sent_invalid_commands);
1494 			rv = -EMSGSIZE;
1495 			goto out_err;
1496 		}
1497 
1498 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1499 		smi_msg->data[1] = msg->cmd;
1500 		smi_msg->msgid = msgid;
1501 		smi_msg->user_data = recv_msg;
1502 		if (msg->data_len > 0)
1503 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1504 		smi_msg->data_size = msg->data_len + 2;
1505 		ipmi_inc_stat(intf, sent_local_commands);
1506 	} else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1507 		   || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
1508 		struct ipmi_ipmb_addr *ipmb_addr;
1509 		unsigned char         ipmb_seq;
1510 		long                  seqid;
1511 		int                   broadcast = 0;
1512 
1513 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1514 			ipmi_inc_stat(intf, sent_invalid_commands);
1515 			rv = -EINVAL;
1516 			goto out_err;
1517 		}
1518 
1519 		if (intf->channels[addr->channel].medium
1520 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1521 			ipmi_inc_stat(intf, sent_invalid_commands);
1522 			rv = -EINVAL;
1523 			goto out_err;
1524 		}
1525 
1526 		if (retries < 0) {
1527 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1528 			retries = 0; /* Don't retry broadcasts. */
1529 		    else
1530 			retries = 4;
1531 		}
1532 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1533 		    /*
1534 		     * Broadcasts add a zero at the beginning of the
1535 		     * message, but otherwise is the same as an IPMB
1536 		     * address.
1537 		     */
1538 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1539 		    broadcast = 1;
1540 		}
1541 
1542 
1543 		/* Default to 1 second retries. */
1544 		if (retry_time_ms == 0)
1545 		    retry_time_ms = 1000;
1546 
1547 		/*
1548 		 * 9 for the header and 1 for the checksum, plus
1549 		 * possibly one for the broadcast.
1550 		 */
1551 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1552 			ipmi_inc_stat(intf, sent_invalid_commands);
1553 			rv = -EMSGSIZE;
1554 			goto out_err;
1555 		}
1556 
1557 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1558 		if (ipmb_addr->lun > 3) {
1559 			ipmi_inc_stat(intf, sent_invalid_commands);
1560 			rv = -EINVAL;
1561 			goto out_err;
1562 		}
1563 
1564 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1565 
1566 		if (recv_msg->msg.netfn & 0x1) {
1567 			/*
1568 			 * It's a response, so use the user's sequence
1569 			 * from msgid.
1570 			 */
1571 			ipmi_inc_stat(intf, sent_ipmb_responses);
1572 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1573 					msgid, broadcast,
1574 					source_address, source_lun);
1575 
1576 			/*
1577 			 * Save the receive message so we can use it
1578 			 * to deliver the response.
1579 			 */
1580 			smi_msg->user_data = recv_msg;
1581 		} else {
1582 			/* It's a command, so get a sequence for it. */
1583 
1584 			spin_lock_irqsave(&(intf->seq_lock), flags);
1585 
1586 			ipmi_inc_stat(intf, sent_ipmb_commands);
1587 
1588 			/*
1589 			 * Create a sequence number with a 1 second
1590 			 * timeout and 4 retries.
1591 			 */
1592 			rv = intf_next_seq(intf,
1593 					   recv_msg,
1594 					   retry_time_ms,
1595 					   retries,
1596 					   broadcast,
1597 					   &ipmb_seq,
1598 					   &seqid);
1599 			if (rv) {
1600 				/*
1601 				 * We have used up all the sequence numbers,
1602 				 * probably, so abort.
1603 				 */
1604 				spin_unlock_irqrestore(&(intf->seq_lock),
1605 						       flags);
1606 				goto out_err;
1607 			}
1608 
1609 			/*
1610 			 * Store the sequence number in the message,
1611 			 * so that when the send message response
1612 			 * comes back we can start the timer.
1613 			 */
1614 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1615 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1616 					ipmb_seq, broadcast,
1617 					source_address, source_lun);
1618 
1619 			/*
1620 			 * Copy the message into the recv message data, so we
1621 			 * can retransmit it later if necessary.
1622 			 */
1623 			memcpy(recv_msg->msg_data, smi_msg->data,
1624 			       smi_msg->data_size);
1625 			recv_msg->msg.data = recv_msg->msg_data;
1626 			recv_msg->msg.data_len = smi_msg->data_size;
1627 
1628 			/*
1629 			 * We don't unlock until here, because we need
1630 			 * to copy the completed message into the
1631 			 * recv_msg before we release the lock.
1632 			 * Otherwise, race conditions may bite us.  I
1633 			 * know that's pretty paranoid, but I prefer
1634 			 * to be correct.
1635 			 */
1636 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1637 		}
1638 	} else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1639 		struct ipmi_lan_addr  *lan_addr;
1640 		unsigned char         ipmb_seq;
1641 		long                  seqid;
1642 
1643 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1644 			ipmi_inc_stat(intf, sent_invalid_commands);
1645 			rv = -EINVAL;
1646 			goto out_err;
1647 		}
1648 
1649 		if ((intf->channels[addr->channel].medium
1650 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1651 		    && (intf->channels[addr->channel].medium
1652 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1653 			ipmi_inc_stat(intf, sent_invalid_commands);
1654 			rv = -EINVAL;
1655 			goto out_err;
1656 		}
1657 
1658 		retries = 4;
1659 
1660 		/* Default to 1 second retries. */
1661 		if (retry_time_ms == 0)
1662 		    retry_time_ms = 1000;
1663 
1664 		/* 11 for the header and 1 for the checksum. */
1665 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1666 			ipmi_inc_stat(intf, sent_invalid_commands);
1667 			rv = -EMSGSIZE;
1668 			goto out_err;
1669 		}
1670 
1671 		lan_addr = (struct ipmi_lan_addr *) addr;
1672 		if (lan_addr->lun > 3) {
1673 			ipmi_inc_stat(intf, sent_invalid_commands);
1674 			rv = -EINVAL;
1675 			goto out_err;
1676 		}
1677 
1678 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1679 
1680 		if (recv_msg->msg.netfn & 0x1) {
1681 			/*
1682 			 * It's a response, so use the user's sequence
1683 			 * from msgid.
1684 			 */
1685 			ipmi_inc_stat(intf, sent_lan_responses);
1686 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1687 				       msgid, source_lun);
1688 
1689 			/*
1690 			 * Save the receive message so we can use it
1691 			 * to deliver the response.
1692 			 */
1693 			smi_msg->user_data = recv_msg;
1694 		} else {
1695 			/* It's a command, so get a sequence for it. */
1696 
1697 			spin_lock_irqsave(&(intf->seq_lock), flags);
1698 
1699 			ipmi_inc_stat(intf, sent_lan_commands);
1700 
1701 			/*
1702 			 * Create a sequence number with a 1 second
1703 			 * timeout and 4 retries.
1704 			 */
1705 			rv = intf_next_seq(intf,
1706 					   recv_msg,
1707 					   retry_time_ms,
1708 					   retries,
1709 					   0,
1710 					   &ipmb_seq,
1711 					   &seqid);
1712 			if (rv) {
1713 				/*
1714 				 * We have used up all the sequence numbers,
1715 				 * probably, so abort.
1716 				 */
1717 				spin_unlock_irqrestore(&(intf->seq_lock),
1718 						       flags);
1719 				goto out_err;
1720 			}
1721 
1722 			/*
1723 			 * Store the sequence number in the message,
1724 			 * so that when the send message response
1725 			 * comes back we can start the timer.
1726 			 */
1727 			format_lan_msg(smi_msg, msg, lan_addr,
1728 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1729 				       ipmb_seq, source_lun);
1730 
1731 			/*
1732 			 * Copy the message into the recv message data, so we
1733 			 * can retransmit it later if necessary.
1734 			 */
1735 			memcpy(recv_msg->msg_data, smi_msg->data,
1736 			       smi_msg->data_size);
1737 			recv_msg->msg.data = recv_msg->msg_data;
1738 			recv_msg->msg.data_len = smi_msg->data_size;
1739 
1740 			/*
1741 			 * We don't unlock until here, because we need
1742 			 * to copy the completed message into the
1743 			 * recv_msg before we release the lock.
1744 			 * Otherwise, race conditions may bite us.  I
1745 			 * know that's pretty paranoid, but I prefer
1746 			 * to be correct.
1747 			 */
1748 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1749 		}
1750 	} else {
1751 	    /* Unknown address type. */
1752 		ipmi_inc_stat(intf, sent_invalid_commands);
1753 		rv = -EINVAL;
1754 		goto out_err;
1755 	}
1756 
1757 #ifdef DEBUG_MSGING
1758 	{
1759 		int m;
1760 		for (m = 0; m < smi_msg->data_size; m++)
1761 			printk(" %2.2x", smi_msg->data[m]);
1762 		printk("\n");
1763 	}
1764 #endif
1765 
1766 	handlers->sender(intf->send_info, smi_msg, priority);
1767 	rcu_read_unlock();
1768 
1769 	return 0;
1770 
1771  out_err:
1772 	rcu_read_unlock();
1773 	ipmi_free_smi_msg(smi_msg);
1774 	ipmi_free_recv_msg(recv_msg);
1775 	return rv;
1776 }
1777 
1778 static int check_addr(ipmi_smi_t       intf,
1779 		      struct ipmi_addr *addr,
1780 		      unsigned char    *saddr,
1781 		      unsigned char    *lun)
1782 {
1783 	if (addr->channel >= IPMI_MAX_CHANNELS)
1784 		return -EINVAL;
1785 	*lun = intf->channels[addr->channel].lun;
1786 	*saddr = intf->channels[addr->channel].address;
1787 	return 0;
1788 }
1789 
1790 int ipmi_request_settime(ipmi_user_t      user,
1791 			 struct ipmi_addr *addr,
1792 			 long             msgid,
1793 			 struct kernel_ipmi_msg  *msg,
1794 			 void             *user_msg_data,
1795 			 int              priority,
1796 			 int              retries,
1797 			 unsigned int     retry_time_ms)
1798 {
1799 	unsigned char saddr, lun;
1800 	int           rv;
1801 
1802 	if (!user)
1803 		return -EINVAL;
1804 	rv = check_addr(user->intf, addr, &saddr, &lun);
1805 	if (rv)
1806 		return rv;
1807 	return i_ipmi_request(user,
1808 			      user->intf,
1809 			      addr,
1810 			      msgid,
1811 			      msg,
1812 			      user_msg_data,
1813 			      NULL, NULL,
1814 			      priority,
1815 			      saddr,
1816 			      lun,
1817 			      retries,
1818 			      retry_time_ms);
1819 }
1820 EXPORT_SYMBOL(ipmi_request_settime);
1821 
1822 int ipmi_request_supply_msgs(ipmi_user_t          user,
1823 			     struct ipmi_addr     *addr,
1824 			     long                 msgid,
1825 			     struct kernel_ipmi_msg *msg,
1826 			     void                 *user_msg_data,
1827 			     void                 *supplied_smi,
1828 			     struct ipmi_recv_msg *supplied_recv,
1829 			     int                  priority)
1830 {
1831 	unsigned char saddr, lun;
1832 	int           rv;
1833 
1834 	if (!user)
1835 		return -EINVAL;
1836 	rv = check_addr(user->intf, addr, &saddr, &lun);
1837 	if (rv)
1838 		return rv;
1839 	return i_ipmi_request(user,
1840 			      user->intf,
1841 			      addr,
1842 			      msgid,
1843 			      msg,
1844 			      user_msg_data,
1845 			      supplied_smi,
1846 			      supplied_recv,
1847 			      priority,
1848 			      saddr,
1849 			      lun,
1850 			      -1, 0);
1851 }
1852 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1853 
1854 #ifdef CONFIG_PROC_FS
1855 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1856 			       int count, int *eof, void *data)
1857 {
1858 	char       *out = (char *) page;
1859 	ipmi_smi_t intf = data;
1860 	int        i;
1861 	int        rv = 0;
1862 
1863 	for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1864 		rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1865 	out[rv-1] = '\n'; /* Replace the final space with a newline */
1866 	out[rv] = '\0';
1867 	rv++;
1868 	return rv;
1869 }
1870 
1871 static int version_file_read_proc(char *page, char **start, off_t off,
1872 				  int count, int *eof, void *data)
1873 {
1874 	char       *out = (char *) page;
1875 	ipmi_smi_t intf = data;
1876 
1877 	return sprintf(out, "%u.%u\n",
1878 		       ipmi_version_major(&intf->bmc->id),
1879 		       ipmi_version_minor(&intf->bmc->id));
1880 }
1881 
1882 static int stat_file_read_proc(char *page, char **start, off_t off,
1883 			       int count, int *eof, void *data)
1884 {
1885 	char       *out = (char *) page;
1886 	ipmi_smi_t intf = data;
1887 
1888 	out += sprintf(out, "sent_invalid_commands:       %u\n",
1889 		       ipmi_get_stat(intf, sent_invalid_commands));
1890 	out += sprintf(out, "sent_local_commands:         %u\n",
1891 		       ipmi_get_stat(intf, sent_local_commands));
1892 	out += sprintf(out, "handled_local_responses:     %u\n",
1893 		       ipmi_get_stat(intf, handled_local_responses));
1894 	out += sprintf(out, "unhandled_local_responses:   %u\n",
1895 		       ipmi_get_stat(intf, unhandled_local_responses));
1896 	out += sprintf(out, "sent_ipmb_commands:          %u\n",
1897 		       ipmi_get_stat(intf, sent_ipmb_commands));
1898 	out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1899 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
1900 	out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1901 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
1902 	out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1903 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
1904 	out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1905 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1906 	out += sprintf(out, "sent_ipmb_responses:         %u\n",
1907 		       ipmi_get_stat(intf, sent_ipmb_responses));
1908 	out += sprintf(out, "handled_ipmb_responses:      %u\n",
1909 		       ipmi_get_stat(intf, handled_ipmb_responses));
1910 	out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1911 		       ipmi_get_stat(intf, invalid_ipmb_responses));
1912 	out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1913 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
1914 	out += sprintf(out, "sent_lan_commands:           %u\n",
1915 		       ipmi_get_stat(intf, sent_lan_commands));
1916 	out += sprintf(out, "sent_lan_command_errs:       %u\n",
1917 		       ipmi_get_stat(intf, sent_lan_command_errs));
1918 	out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1919 		       ipmi_get_stat(intf, retransmitted_lan_commands));
1920 	out += sprintf(out, "timed_out_lan_commands:      %u\n",
1921 		       ipmi_get_stat(intf, timed_out_lan_commands));
1922 	out += sprintf(out, "sent_lan_responses:          %u\n",
1923 		       ipmi_get_stat(intf, sent_lan_responses));
1924 	out += sprintf(out, "handled_lan_responses:       %u\n",
1925 		       ipmi_get_stat(intf, handled_lan_responses));
1926 	out += sprintf(out, "invalid_lan_responses:       %u\n",
1927 		       ipmi_get_stat(intf, invalid_lan_responses));
1928 	out += sprintf(out, "unhandled_lan_responses:     %u\n",
1929 		       ipmi_get_stat(intf, unhandled_lan_responses));
1930 	out += sprintf(out, "handled_commands:            %u\n",
1931 		       ipmi_get_stat(intf, handled_commands));
1932 	out += sprintf(out, "invalid_commands:            %u\n",
1933 		       ipmi_get_stat(intf, invalid_commands));
1934 	out += sprintf(out, "unhandled_commands:          %u\n",
1935 		       ipmi_get_stat(intf, unhandled_commands));
1936 	out += sprintf(out, "invalid_events:              %u\n",
1937 		       ipmi_get_stat(intf, invalid_events));
1938 	out += sprintf(out, "events:                      %u\n",
1939 		       ipmi_get_stat(intf, events));
1940 
1941 	return (out - ((char *) page));
1942 }
1943 #endif /* CONFIG_PROC_FS */
1944 
1945 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1946 			    read_proc_t *read_proc,
1947 			    void *data)
1948 {
1949 	int                    rv = 0;
1950 #ifdef CONFIG_PROC_FS
1951 	struct proc_dir_entry  *file;
1952 	struct ipmi_proc_entry *entry;
1953 
1954 	/* Create a list element. */
1955 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1956 	if (!entry)
1957 		return -ENOMEM;
1958 	entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1959 	if (!entry->name) {
1960 		kfree(entry);
1961 		return -ENOMEM;
1962 	}
1963 	strcpy(entry->name, name);
1964 
1965 	file = create_proc_entry(name, 0, smi->proc_dir);
1966 	if (!file) {
1967 		kfree(entry->name);
1968 		kfree(entry);
1969 		rv = -ENOMEM;
1970 	} else {
1971 		file->data = data;
1972 		file->read_proc = read_proc;
1973 
1974 		mutex_lock(&smi->proc_entry_lock);
1975 		/* Stick it on the list. */
1976 		entry->next = smi->proc_entries;
1977 		smi->proc_entries = entry;
1978 		mutex_unlock(&smi->proc_entry_lock);
1979 	}
1980 #endif /* CONFIG_PROC_FS */
1981 
1982 	return rv;
1983 }
1984 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
1985 
1986 static int add_proc_entries(ipmi_smi_t smi, int num)
1987 {
1988 	int rv = 0;
1989 
1990 #ifdef CONFIG_PROC_FS
1991 	sprintf(smi->proc_dir_name, "%d", num);
1992 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1993 	if (!smi->proc_dir)
1994 		rv = -ENOMEM;
1995 
1996 	if (rv == 0)
1997 		rv = ipmi_smi_add_proc_entry(smi, "stats",
1998 					     stat_file_read_proc,
1999 					     smi);
2000 
2001 	if (rv == 0)
2002 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2003 					     ipmb_file_read_proc,
2004 					     smi);
2005 
2006 	if (rv == 0)
2007 		rv = ipmi_smi_add_proc_entry(smi, "version",
2008 					     version_file_read_proc,
2009 					     smi);
2010 #endif /* CONFIG_PROC_FS */
2011 
2012 	return rv;
2013 }
2014 
2015 static void remove_proc_entries(ipmi_smi_t smi)
2016 {
2017 #ifdef CONFIG_PROC_FS
2018 	struct ipmi_proc_entry *entry;
2019 
2020 	mutex_lock(&smi->proc_entry_lock);
2021 	while (smi->proc_entries) {
2022 		entry = smi->proc_entries;
2023 		smi->proc_entries = entry->next;
2024 
2025 		remove_proc_entry(entry->name, smi->proc_dir);
2026 		kfree(entry->name);
2027 		kfree(entry);
2028 	}
2029 	mutex_unlock(&smi->proc_entry_lock);
2030 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2031 #endif /* CONFIG_PROC_FS */
2032 }
2033 
2034 static int __find_bmc_guid(struct device *dev, void *data)
2035 {
2036 	unsigned char *id = data;
2037 	struct bmc_device *bmc = dev_get_drvdata(dev);
2038 	return memcmp(bmc->guid, id, 16) == 0;
2039 }
2040 
2041 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2042 					     unsigned char *guid)
2043 {
2044 	struct device *dev;
2045 
2046 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2047 	if (dev)
2048 		return dev_get_drvdata(dev);
2049 	else
2050 		return NULL;
2051 }
2052 
2053 struct prod_dev_id {
2054 	unsigned int  product_id;
2055 	unsigned char device_id;
2056 };
2057 
2058 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2059 {
2060 	struct prod_dev_id *id = data;
2061 	struct bmc_device *bmc = dev_get_drvdata(dev);
2062 
2063 	return (bmc->id.product_id == id->product_id
2064 		&& bmc->id.device_id == id->device_id);
2065 }
2066 
2067 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2068 	struct device_driver *drv,
2069 	unsigned int product_id, unsigned char device_id)
2070 {
2071 	struct prod_dev_id id = {
2072 		.product_id = product_id,
2073 		.device_id = device_id,
2074 	};
2075 	struct device *dev;
2076 
2077 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2078 	if (dev)
2079 		return dev_get_drvdata(dev);
2080 	else
2081 		return NULL;
2082 }
2083 
2084 static ssize_t device_id_show(struct device *dev,
2085 			      struct device_attribute *attr,
2086 			      char *buf)
2087 {
2088 	struct bmc_device *bmc = dev_get_drvdata(dev);
2089 
2090 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2091 }
2092 
2093 static ssize_t provides_dev_sdrs_show(struct device *dev,
2094 				      struct device_attribute *attr,
2095 				      char *buf)
2096 {
2097 	struct bmc_device *bmc = dev_get_drvdata(dev);
2098 
2099 	return snprintf(buf, 10, "%u\n",
2100 			(bmc->id.device_revision & 0x80) >> 7);
2101 }
2102 
2103 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2104 			     char *buf)
2105 {
2106 	struct bmc_device *bmc = dev_get_drvdata(dev);
2107 
2108 	return snprintf(buf, 20, "%u\n",
2109 			bmc->id.device_revision & 0x0F);
2110 }
2111 
2112 static ssize_t firmware_rev_show(struct device *dev,
2113 				 struct device_attribute *attr,
2114 				 char *buf)
2115 {
2116 	struct bmc_device *bmc = dev_get_drvdata(dev);
2117 
2118 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2119 			bmc->id.firmware_revision_2);
2120 }
2121 
2122 static ssize_t ipmi_version_show(struct device *dev,
2123 				 struct device_attribute *attr,
2124 				 char *buf)
2125 {
2126 	struct bmc_device *bmc = dev_get_drvdata(dev);
2127 
2128 	return snprintf(buf, 20, "%u.%u\n",
2129 			ipmi_version_major(&bmc->id),
2130 			ipmi_version_minor(&bmc->id));
2131 }
2132 
2133 static ssize_t add_dev_support_show(struct device *dev,
2134 				    struct device_attribute *attr,
2135 				    char *buf)
2136 {
2137 	struct bmc_device *bmc = dev_get_drvdata(dev);
2138 
2139 	return snprintf(buf, 10, "0x%02x\n",
2140 			bmc->id.additional_device_support);
2141 }
2142 
2143 static ssize_t manufacturer_id_show(struct device *dev,
2144 				    struct device_attribute *attr,
2145 				    char *buf)
2146 {
2147 	struct bmc_device *bmc = dev_get_drvdata(dev);
2148 
2149 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2150 }
2151 
2152 static ssize_t product_id_show(struct device *dev,
2153 			       struct device_attribute *attr,
2154 			       char *buf)
2155 {
2156 	struct bmc_device *bmc = dev_get_drvdata(dev);
2157 
2158 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2159 }
2160 
2161 static ssize_t aux_firmware_rev_show(struct device *dev,
2162 				     struct device_attribute *attr,
2163 				     char *buf)
2164 {
2165 	struct bmc_device *bmc = dev_get_drvdata(dev);
2166 
2167 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2168 			bmc->id.aux_firmware_revision[3],
2169 			bmc->id.aux_firmware_revision[2],
2170 			bmc->id.aux_firmware_revision[1],
2171 			bmc->id.aux_firmware_revision[0]);
2172 }
2173 
2174 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2175 			 char *buf)
2176 {
2177 	struct bmc_device *bmc = dev_get_drvdata(dev);
2178 
2179 	return snprintf(buf, 100, "%Lx%Lx\n",
2180 			(long long) bmc->guid[0],
2181 			(long long) bmc->guid[8]);
2182 }
2183 
2184 static void remove_files(struct bmc_device *bmc)
2185 {
2186 	if (!bmc->dev)
2187 		return;
2188 
2189 	device_remove_file(&bmc->dev->dev,
2190 			   &bmc->device_id_attr);
2191 	device_remove_file(&bmc->dev->dev,
2192 			   &bmc->provides_dev_sdrs_attr);
2193 	device_remove_file(&bmc->dev->dev,
2194 			   &bmc->revision_attr);
2195 	device_remove_file(&bmc->dev->dev,
2196 			   &bmc->firmware_rev_attr);
2197 	device_remove_file(&bmc->dev->dev,
2198 			   &bmc->version_attr);
2199 	device_remove_file(&bmc->dev->dev,
2200 			   &bmc->add_dev_support_attr);
2201 	device_remove_file(&bmc->dev->dev,
2202 			   &bmc->manufacturer_id_attr);
2203 	device_remove_file(&bmc->dev->dev,
2204 			   &bmc->product_id_attr);
2205 
2206 	if (bmc->id.aux_firmware_revision_set)
2207 		device_remove_file(&bmc->dev->dev,
2208 				   &bmc->aux_firmware_rev_attr);
2209 	if (bmc->guid_set)
2210 		device_remove_file(&bmc->dev->dev,
2211 				   &bmc->guid_attr);
2212 }
2213 
2214 static void
2215 cleanup_bmc_device(struct kref *ref)
2216 {
2217 	struct bmc_device *bmc;
2218 
2219 	bmc = container_of(ref, struct bmc_device, refcount);
2220 
2221 	remove_files(bmc);
2222 	platform_device_unregister(bmc->dev);
2223 	kfree(bmc);
2224 }
2225 
2226 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2227 {
2228 	struct bmc_device *bmc = intf->bmc;
2229 
2230 	if (intf->sysfs_name) {
2231 		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2232 		kfree(intf->sysfs_name);
2233 		intf->sysfs_name = NULL;
2234 	}
2235 	if (intf->my_dev_name) {
2236 		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2237 		kfree(intf->my_dev_name);
2238 		intf->my_dev_name = NULL;
2239 	}
2240 
2241 	mutex_lock(&ipmidriver_mutex);
2242 	kref_put(&bmc->refcount, cleanup_bmc_device);
2243 	intf->bmc = NULL;
2244 	mutex_unlock(&ipmidriver_mutex);
2245 }
2246 
2247 static int create_files(struct bmc_device *bmc)
2248 {
2249 	int err;
2250 
2251 	bmc->device_id_attr.attr.name = "device_id";
2252 	bmc->device_id_attr.attr.mode = S_IRUGO;
2253 	bmc->device_id_attr.show = device_id_show;
2254 
2255 	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2256 	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2257 	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2258 
2259 	bmc->revision_attr.attr.name = "revision";
2260 	bmc->revision_attr.attr.mode = S_IRUGO;
2261 	bmc->revision_attr.show = revision_show;
2262 
2263 	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2264 	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2265 	bmc->firmware_rev_attr.show = firmware_rev_show;
2266 
2267 	bmc->version_attr.attr.name = "ipmi_version";
2268 	bmc->version_attr.attr.mode = S_IRUGO;
2269 	bmc->version_attr.show = ipmi_version_show;
2270 
2271 	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2272 	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2273 	bmc->add_dev_support_attr.show = add_dev_support_show;
2274 
2275 	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2276 	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2277 	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2278 
2279 	bmc->product_id_attr.attr.name = "product_id";
2280 	bmc->product_id_attr.attr.mode = S_IRUGO;
2281 	bmc->product_id_attr.show = product_id_show;
2282 
2283 	bmc->guid_attr.attr.name = "guid";
2284 	bmc->guid_attr.attr.mode = S_IRUGO;
2285 	bmc->guid_attr.show = guid_show;
2286 
2287 	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2288 	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2289 	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2290 
2291 	err = device_create_file(&bmc->dev->dev,
2292 			   &bmc->device_id_attr);
2293 	if (err)
2294 		goto out;
2295 	err = device_create_file(&bmc->dev->dev,
2296 			   &bmc->provides_dev_sdrs_attr);
2297 	if (err)
2298 		goto out_devid;
2299 	err = device_create_file(&bmc->dev->dev,
2300 			   &bmc->revision_attr);
2301 	if (err)
2302 		goto out_sdrs;
2303 	err = device_create_file(&bmc->dev->dev,
2304 			   &bmc->firmware_rev_attr);
2305 	if (err)
2306 		goto out_rev;
2307 	err = device_create_file(&bmc->dev->dev,
2308 			   &bmc->version_attr);
2309 	if (err)
2310 		goto out_firm;
2311 	err = device_create_file(&bmc->dev->dev,
2312 			   &bmc->add_dev_support_attr);
2313 	if (err)
2314 		goto out_version;
2315 	err = device_create_file(&bmc->dev->dev,
2316 			   &bmc->manufacturer_id_attr);
2317 	if (err)
2318 		goto out_add_dev;
2319 	err = device_create_file(&bmc->dev->dev,
2320 			   &bmc->product_id_attr);
2321 	if (err)
2322 		goto out_manu;
2323 	if (bmc->id.aux_firmware_revision_set) {
2324 		err = device_create_file(&bmc->dev->dev,
2325 				   &bmc->aux_firmware_rev_attr);
2326 		if (err)
2327 			goto out_prod_id;
2328 	}
2329 	if (bmc->guid_set) {
2330 		err = device_create_file(&bmc->dev->dev,
2331 				   &bmc->guid_attr);
2332 		if (err)
2333 			goto out_aux_firm;
2334 	}
2335 
2336 	return 0;
2337 
2338 out_aux_firm:
2339 	if (bmc->id.aux_firmware_revision_set)
2340 		device_remove_file(&bmc->dev->dev,
2341 				   &bmc->aux_firmware_rev_attr);
2342 out_prod_id:
2343 	device_remove_file(&bmc->dev->dev,
2344 			   &bmc->product_id_attr);
2345 out_manu:
2346 	device_remove_file(&bmc->dev->dev,
2347 			   &bmc->manufacturer_id_attr);
2348 out_add_dev:
2349 	device_remove_file(&bmc->dev->dev,
2350 			   &bmc->add_dev_support_attr);
2351 out_version:
2352 	device_remove_file(&bmc->dev->dev,
2353 			   &bmc->version_attr);
2354 out_firm:
2355 	device_remove_file(&bmc->dev->dev,
2356 			   &bmc->firmware_rev_attr);
2357 out_rev:
2358 	device_remove_file(&bmc->dev->dev,
2359 			   &bmc->revision_attr);
2360 out_sdrs:
2361 	device_remove_file(&bmc->dev->dev,
2362 			   &bmc->provides_dev_sdrs_attr);
2363 out_devid:
2364 	device_remove_file(&bmc->dev->dev,
2365 			   &bmc->device_id_attr);
2366 out:
2367 	return err;
2368 }
2369 
2370 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2371 			     const char *sysfs_name)
2372 {
2373 	int               rv;
2374 	struct bmc_device *bmc = intf->bmc;
2375 	struct bmc_device *old_bmc;
2376 	int               size;
2377 	char              dummy[1];
2378 
2379 	mutex_lock(&ipmidriver_mutex);
2380 
2381 	/*
2382 	 * Try to find if there is an bmc_device struct
2383 	 * representing the interfaced BMC already
2384 	 */
2385 	if (bmc->guid_set)
2386 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2387 	else
2388 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2389 						    bmc->id.product_id,
2390 						    bmc->id.device_id);
2391 
2392 	/*
2393 	 * If there is already an bmc_device, free the new one,
2394 	 * otherwise register the new BMC device
2395 	 */
2396 	if (old_bmc) {
2397 		kfree(bmc);
2398 		intf->bmc = old_bmc;
2399 		bmc = old_bmc;
2400 
2401 		kref_get(&bmc->refcount);
2402 		mutex_unlock(&ipmidriver_mutex);
2403 
2404 		printk(KERN_INFO
2405 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2406 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2407 		       bmc->id.manufacturer_id,
2408 		       bmc->id.product_id,
2409 		       bmc->id.device_id);
2410 	} else {
2411 		char name[14];
2412 		unsigned char orig_dev_id = bmc->id.device_id;
2413 		int warn_printed = 0;
2414 
2415 		snprintf(name, sizeof(name),
2416 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2417 
2418 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2419 						 bmc->id.product_id,
2420 						 bmc->id.device_id)) {
2421 			if (!warn_printed) {
2422 				printk(KERN_WARNING PFX
2423 				       "This machine has two different BMCs"
2424 				       " with the same product id and device"
2425 				       " id.  This is an error in the"
2426 				       " firmware, but incrementing the"
2427 				       " device id to work around the problem."
2428 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2429 				       bmc->id.product_id, bmc->id.device_id);
2430 				warn_printed = 1;
2431 			}
2432 			bmc->id.device_id++; /* Wraps at 255 */
2433 			if (bmc->id.device_id == orig_dev_id) {
2434 				printk(KERN_ERR PFX
2435 				       "Out of device ids!\n");
2436 				break;
2437 			}
2438 		}
2439 
2440 		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2441 		if (!bmc->dev) {
2442 			mutex_unlock(&ipmidriver_mutex);
2443 			printk(KERN_ERR
2444 			       "ipmi_msghandler:"
2445 			       " Unable to allocate platform device\n");
2446 			return -ENOMEM;
2447 		}
2448 		bmc->dev->dev.driver = &ipmidriver.driver;
2449 		dev_set_drvdata(&bmc->dev->dev, bmc);
2450 		kref_init(&bmc->refcount);
2451 
2452 		rv = platform_device_add(bmc->dev);
2453 		mutex_unlock(&ipmidriver_mutex);
2454 		if (rv) {
2455 			platform_device_put(bmc->dev);
2456 			bmc->dev = NULL;
2457 			printk(KERN_ERR
2458 			       "ipmi_msghandler:"
2459 			       " Unable to register bmc device: %d\n",
2460 			       rv);
2461 			/*
2462 			 * Don't go to out_err, you can only do that if
2463 			 * the device is registered already.
2464 			 */
2465 			return rv;
2466 		}
2467 
2468 		rv = create_files(bmc);
2469 		if (rv) {
2470 			mutex_lock(&ipmidriver_mutex);
2471 			platform_device_unregister(bmc->dev);
2472 			mutex_unlock(&ipmidriver_mutex);
2473 
2474 			return rv;
2475 		}
2476 
2477 		printk(KERN_INFO
2478 		       "ipmi: Found new BMC (man_id: 0x%6.6x, "
2479 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2480 		       bmc->id.manufacturer_id,
2481 		       bmc->id.product_id,
2482 		       bmc->id.device_id);
2483 	}
2484 
2485 	/*
2486 	 * create symlink from system interface device to bmc device
2487 	 * and back.
2488 	 */
2489 	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2490 	if (!intf->sysfs_name) {
2491 		rv = -ENOMEM;
2492 		printk(KERN_ERR
2493 		       "ipmi_msghandler: allocate link to BMC: %d\n",
2494 		       rv);
2495 		goto out_err;
2496 	}
2497 
2498 	rv = sysfs_create_link(&intf->si_dev->kobj,
2499 			       &bmc->dev->dev.kobj, intf->sysfs_name);
2500 	if (rv) {
2501 		kfree(intf->sysfs_name);
2502 		intf->sysfs_name = NULL;
2503 		printk(KERN_ERR
2504 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2505 		       rv);
2506 		goto out_err;
2507 	}
2508 
2509 	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2510 	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2511 	if (!intf->my_dev_name) {
2512 		kfree(intf->sysfs_name);
2513 		intf->sysfs_name = NULL;
2514 		rv = -ENOMEM;
2515 		printk(KERN_ERR
2516 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2517 		       rv);
2518 		goto out_err;
2519 	}
2520 	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2521 
2522 	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2523 			       intf->my_dev_name);
2524 	if (rv) {
2525 		kfree(intf->sysfs_name);
2526 		intf->sysfs_name = NULL;
2527 		kfree(intf->my_dev_name);
2528 		intf->my_dev_name = NULL;
2529 		printk(KERN_ERR
2530 		       "ipmi_msghandler:"
2531 		       " Unable to create symlink to bmc: %d\n",
2532 		       rv);
2533 		goto out_err;
2534 	}
2535 
2536 	return 0;
2537 
2538 out_err:
2539 	ipmi_bmc_unregister(intf);
2540 	return rv;
2541 }
2542 
2543 static int
2544 send_guid_cmd(ipmi_smi_t intf, int chan)
2545 {
2546 	struct kernel_ipmi_msg            msg;
2547 	struct ipmi_system_interface_addr si;
2548 
2549 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2550 	si.channel = IPMI_BMC_CHANNEL;
2551 	si.lun = 0;
2552 
2553 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2554 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2555 	msg.data = NULL;
2556 	msg.data_len = 0;
2557 	return i_ipmi_request(NULL,
2558 			      intf,
2559 			      (struct ipmi_addr *) &si,
2560 			      0,
2561 			      &msg,
2562 			      intf,
2563 			      NULL,
2564 			      NULL,
2565 			      0,
2566 			      intf->channels[0].address,
2567 			      intf->channels[0].lun,
2568 			      -1, 0);
2569 }
2570 
2571 static void
2572 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2573 {
2574 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2575 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2576 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2577 		/* Not for me */
2578 		return;
2579 
2580 	if (msg->msg.data[0] != 0) {
2581 		/* Error from getting the GUID, the BMC doesn't have one. */
2582 		intf->bmc->guid_set = 0;
2583 		goto out;
2584 	}
2585 
2586 	if (msg->msg.data_len < 17) {
2587 		intf->bmc->guid_set = 0;
2588 		printk(KERN_WARNING PFX
2589 		       "guid_handler: The GUID response from the BMC was too"
2590 		       " short, it was %d but should have been 17.  Assuming"
2591 		       " GUID is not available.\n",
2592 		       msg->msg.data_len);
2593 		goto out;
2594 	}
2595 
2596 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2597 	intf->bmc->guid_set = 1;
2598  out:
2599 	wake_up(&intf->waitq);
2600 }
2601 
2602 static void
2603 get_guid(ipmi_smi_t intf)
2604 {
2605 	int rv;
2606 
2607 	intf->bmc->guid_set = 0x2;
2608 	intf->null_user_handler = guid_handler;
2609 	rv = send_guid_cmd(intf, 0);
2610 	if (rv)
2611 		/* Send failed, no GUID available. */
2612 		intf->bmc->guid_set = 0;
2613 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2614 	intf->null_user_handler = NULL;
2615 }
2616 
2617 static int
2618 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2619 {
2620 	struct kernel_ipmi_msg            msg;
2621 	unsigned char                     data[1];
2622 	struct ipmi_system_interface_addr si;
2623 
2624 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2625 	si.channel = IPMI_BMC_CHANNEL;
2626 	si.lun = 0;
2627 
2628 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2629 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2630 	msg.data = data;
2631 	msg.data_len = 1;
2632 	data[0] = chan;
2633 	return i_ipmi_request(NULL,
2634 			      intf,
2635 			      (struct ipmi_addr *) &si,
2636 			      0,
2637 			      &msg,
2638 			      intf,
2639 			      NULL,
2640 			      NULL,
2641 			      0,
2642 			      intf->channels[0].address,
2643 			      intf->channels[0].lun,
2644 			      -1, 0);
2645 }
2646 
2647 static void
2648 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2649 {
2650 	int rv = 0;
2651 	int chan;
2652 
2653 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2654 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2655 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2656 		/* It's the one we want */
2657 		if (msg->msg.data[0] != 0) {
2658 			/* Got an error from the channel, just go on. */
2659 
2660 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2661 				/*
2662 				 * If the MC does not support this
2663 				 * command, that is legal.  We just
2664 				 * assume it has one IPMB at channel
2665 				 * zero.
2666 				 */
2667 				intf->channels[0].medium
2668 					= IPMI_CHANNEL_MEDIUM_IPMB;
2669 				intf->channels[0].protocol
2670 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2671 				rv = -ENOSYS;
2672 
2673 				intf->curr_channel = IPMI_MAX_CHANNELS;
2674 				wake_up(&intf->waitq);
2675 				goto out;
2676 			}
2677 			goto next_channel;
2678 		}
2679 		if (msg->msg.data_len < 4) {
2680 			/* Message not big enough, just go on. */
2681 			goto next_channel;
2682 		}
2683 		chan = intf->curr_channel;
2684 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2685 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2686 
2687  next_channel:
2688 		intf->curr_channel++;
2689 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2690 			wake_up(&intf->waitq);
2691 		else
2692 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2693 
2694 		if (rv) {
2695 			/* Got an error somehow, just give up. */
2696 			intf->curr_channel = IPMI_MAX_CHANNELS;
2697 			wake_up(&intf->waitq);
2698 
2699 			printk(KERN_WARNING PFX
2700 			       "Error sending channel information: %d\n",
2701 			       rv);
2702 		}
2703 	}
2704  out:
2705 	return;
2706 }
2707 
2708 void ipmi_poll_interface(ipmi_user_t user)
2709 {
2710 	ipmi_smi_t intf = user->intf;
2711 
2712 	if (intf->handlers->poll)
2713 		intf->handlers->poll(intf->send_info);
2714 }
2715 EXPORT_SYMBOL(ipmi_poll_interface);
2716 
2717 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2718 		      void		       *send_info,
2719 		      struct ipmi_device_id    *device_id,
2720 		      struct device            *si_dev,
2721 		      const char               *sysfs_name,
2722 		      unsigned char            slave_addr)
2723 {
2724 	int              i, j;
2725 	int              rv;
2726 	ipmi_smi_t       intf;
2727 	ipmi_smi_t       tintf;
2728 	struct list_head *link;
2729 
2730 	/*
2731 	 * Make sure the driver is actually initialized, this handles
2732 	 * problems with initialization order.
2733 	 */
2734 	if (!initialized) {
2735 		rv = ipmi_init_msghandler();
2736 		if (rv)
2737 			return rv;
2738 		/*
2739 		 * The init code doesn't return an error if it was turned
2740 		 * off, but it won't initialize.  Check that.
2741 		 */
2742 		if (!initialized)
2743 			return -ENODEV;
2744 	}
2745 
2746 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2747 	if (!intf)
2748 		return -ENOMEM;
2749 
2750 	intf->ipmi_version_major = ipmi_version_major(device_id);
2751 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2752 
2753 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2754 	if (!intf->bmc) {
2755 		kfree(intf);
2756 		return -ENOMEM;
2757 	}
2758 	intf->intf_num = -1; /* Mark it invalid for now. */
2759 	kref_init(&intf->refcount);
2760 	intf->bmc->id = *device_id;
2761 	intf->si_dev = si_dev;
2762 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2763 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2764 		intf->channels[j].lun = 2;
2765 	}
2766 	if (slave_addr != 0)
2767 		intf->channels[0].address = slave_addr;
2768 	INIT_LIST_HEAD(&intf->users);
2769 	intf->handlers = handlers;
2770 	intf->send_info = send_info;
2771 	spin_lock_init(&intf->seq_lock);
2772 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2773 		intf->seq_table[j].inuse = 0;
2774 		intf->seq_table[j].seqid = 0;
2775 	}
2776 	intf->curr_seq = 0;
2777 #ifdef CONFIG_PROC_FS
2778 	mutex_init(&intf->proc_entry_lock);
2779 #endif
2780 	spin_lock_init(&intf->waiting_msgs_lock);
2781 	INIT_LIST_HEAD(&intf->waiting_msgs);
2782 	spin_lock_init(&intf->events_lock);
2783 	INIT_LIST_HEAD(&intf->waiting_events);
2784 	intf->waiting_events_count = 0;
2785 	mutex_init(&intf->cmd_rcvrs_mutex);
2786 	spin_lock_init(&intf->maintenance_mode_lock);
2787 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2788 	init_waitqueue_head(&intf->waitq);
2789 	for (i = 0; i < IPMI_NUM_STATS; i++)
2790 		atomic_set(&intf->stats[i], 0);
2791 
2792 	intf->proc_dir = NULL;
2793 
2794 	mutex_lock(&smi_watchers_mutex);
2795 	mutex_lock(&ipmi_interfaces_mutex);
2796 	/* Look for a hole in the numbers. */
2797 	i = 0;
2798 	link = &ipmi_interfaces;
2799 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2800 		if (tintf->intf_num != i) {
2801 			link = &tintf->link;
2802 			break;
2803 		}
2804 		i++;
2805 	}
2806 	/* Add the new interface in numeric order. */
2807 	if (i == 0)
2808 		list_add_rcu(&intf->link, &ipmi_interfaces);
2809 	else
2810 		list_add_tail_rcu(&intf->link, link);
2811 
2812 	rv = handlers->start_processing(send_info, intf);
2813 	if (rv)
2814 		goto out;
2815 
2816 	get_guid(intf);
2817 
2818 	if ((intf->ipmi_version_major > 1)
2819 			|| ((intf->ipmi_version_major == 1)
2820 			    && (intf->ipmi_version_minor >= 5))) {
2821 		/*
2822 		 * Start scanning the channels to see what is
2823 		 * available.
2824 		 */
2825 		intf->null_user_handler = channel_handler;
2826 		intf->curr_channel = 0;
2827 		rv = send_channel_info_cmd(intf, 0);
2828 		if (rv)
2829 			goto out;
2830 
2831 		/* Wait for the channel info to be read. */
2832 		wait_event(intf->waitq,
2833 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2834 		intf->null_user_handler = NULL;
2835 	} else {
2836 		/* Assume a single IPMB channel at zero. */
2837 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2838 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2839 	}
2840 
2841 	if (rv == 0)
2842 		rv = add_proc_entries(intf, i);
2843 
2844 	rv = ipmi_bmc_register(intf, i, sysfs_name);
2845 
2846  out:
2847 	if (rv) {
2848 		if (intf->proc_dir)
2849 			remove_proc_entries(intf);
2850 		intf->handlers = NULL;
2851 		list_del_rcu(&intf->link);
2852 		mutex_unlock(&ipmi_interfaces_mutex);
2853 		mutex_unlock(&smi_watchers_mutex);
2854 		synchronize_rcu();
2855 		kref_put(&intf->refcount, intf_free);
2856 	} else {
2857 		/*
2858 		 * Keep memory order straight for RCU readers.  Make
2859 		 * sure everything else is committed to memory before
2860 		 * setting intf_num to mark the interface valid.
2861 		 */
2862 		smp_wmb();
2863 		intf->intf_num = i;
2864 		mutex_unlock(&ipmi_interfaces_mutex);
2865 		/* After this point the interface is legal to use. */
2866 		call_smi_watchers(i, intf->si_dev);
2867 		mutex_unlock(&smi_watchers_mutex);
2868 	}
2869 
2870 	return rv;
2871 }
2872 EXPORT_SYMBOL(ipmi_register_smi);
2873 
2874 static void cleanup_smi_msgs(ipmi_smi_t intf)
2875 {
2876 	int              i;
2877 	struct seq_table *ent;
2878 
2879 	/* No need for locks, the interface is down. */
2880 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2881 		ent = &(intf->seq_table[i]);
2882 		if (!ent->inuse)
2883 			continue;
2884 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2885 	}
2886 }
2887 
2888 int ipmi_unregister_smi(ipmi_smi_t intf)
2889 {
2890 	struct ipmi_smi_watcher *w;
2891 	int    intf_num = intf->intf_num;
2892 
2893 	ipmi_bmc_unregister(intf);
2894 
2895 	mutex_lock(&smi_watchers_mutex);
2896 	mutex_lock(&ipmi_interfaces_mutex);
2897 	intf->intf_num = -1;
2898 	intf->handlers = NULL;
2899 	list_del_rcu(&intf->link);
2900 	mutex_unlock(&ipmi_interfaces_mutex);
2901 	synchronize_rcu();
2902 
2903 	cleanup_smi_msgs(intf);
2904 
2905 	remove_proc_entries(intf);
2906 
2907 	/*
2908 	 * Call all the watcher interfaces to tell them that
2909 	 * an interface is gone.
2910 	 */
2911 	list_for_each_entry(w, &smi_watchers, link)
2912 		w->smi_gone(intf_num);
2913 	mutex_unlock(&smi_watchers_mutex);
2914 
2915 	kref_put(&intf->refcount, intf_free);
2916 	return 0;
2917 }
2918 EXPORT_SYMBOL(ipmi_unregister_smi);
2919 
2920 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2921 				   struct ipmi_smi_msg *msg)
2922 {
2923 	struct ipmi_ipmb_addr ipmb_addr;
2924 	struct ipmi_recv_msg  *recv_msg;
2925 
2926 	/*
2927 	 * This is 11, not 10, because the response must contain a
2928 	 * completion code.
2929 	 */
2930 	if (msg->rsp_size < 11) {
2931 		/* Message not big enough, just ignore it. */
2932 		ipmi_inc_stat(intf, invalid_ipmb_responses);
2933 		return 0;
2934 	}
2935 
2936 	if (msg->rsp[2] != 0) {
2937 		/* An error getting the response, just ignore it. */
2938 		return 0;
2939 	}
2940 
2941 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2942 	ipmb_addr.slave_addr = msg->rsp[6];
2943 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
2944 	ipmb_addr.lun = msg->rsp[7] & 3;
2945 
2946 	/*
2947 	 * It's a response from a remote entity.  Look up the sequence
2948 	 * number and handle the response.
2949 	 */
2950 	if (intf_find_seq(intf,
2951 			  msg->rsp[7] >> 2,
2952 			  msg->rsp[3] & 0x0f,
2953 			  msg->rsp[8],
2954 			  (msg->rsp[4] >> 2) & (~1),
2955 			  (struct ipmi_addr *) &(ipmb_addr),
2956 			  &recv_msg)) {
2957 		/*
2958 		 * We were unable to find the sequence number,
2959 		 * so just nuke the message.
2960 		 */
2961 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
2962 		return 0;
2963 	}
2964 
2965 	memcpy(recv_msg->msg_data,
2966 	       &(msg->rsp[9]),
2967 	       msg->rsp_size - 9);
2968 	/*
2969 	 * The other fields matched, so no need to set them, except
2970 	 * for netfn, which needs to be the response that was
2971 	 * returned, not the request value.
2972 	 */
2973 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
2974 	recv_msg->msg.data = recv_msg->msg_data;
2975 	recv_msg->msg.data_len = msg->rsp_size - 10;
2976 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2977 	ipmi_inc_stat(intf, handled_ipmb_responses);
2978 	deliver_response(recv_msg);
2979 
2980 	return 0;
2981 }
2982 
2983 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
2984 				   struct ipmi_smi_msg *msg)
2985 {
2986 	struct cmd_rcvr          *rcvr;
2987 	int                      rv = 0;
2988 	unsigned char            netfn;
2989 	unsigned char            cmd;
2990 	unsigned char            chan;
2991 	ipmi_user_t              user = NULL;
2992 	struct ipmi_ipmb_addr    *ipmb_addr;
2993 	struct ipmi_recv_msg     *recv_msg;
2994 	struct ipmi_smi_handlers *handlers;
2995 
2996 	if (msg->rsp_size < 10) {
2997 		/* Message not big enough, just ignore it. */
2998 		ipmi_inc_stat(intf, invalid_commands);
2999 		return 0;
3000 	}
3001 
3002 	if (msg->rsp[2] != 0) {
3003 		/* An error getting the response, just ignore it. */
3004 		return 0;
3005 	}
3006 
3007 	netfn = msg->rsp[4] >> 2;
3008 	cmd = msg->rsp[8];
3009 	chan = msg->rsp[3] & 0xf;
3010 
3011 	rcu_read_lock();
3012 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3013 	if (rcvr) {
3014 		user = rcvr->user;
3015 		kref_get(&user->refcount);
3016 	} else
3017 		user = NULL;
3018 	rcu_read_unlock();
3019 
3020 	if (user == NULL) {
3021 		/* We didn't find a user, deliver an error response. */
3022 		ipmi_inc_stat(intf, unhandled_commands);
3023 
3024 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3025 		msg->data[1] = IPMI_SEND_MSG_CMD;
3026 		msg->data[2] = msg->rsp[3];
3027 		msg->data[3] = msg->rsp[6];
3028 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3029 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3030 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3031 		/* rqseq/lun */
3032 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3033 		msg->data[8] = msg->rsp[8]; /* cmd */
3034 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3035 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3036 		msg->data_size = 11;
3037 
3038 #ifdef DEBUG_MSGING
3039 	{
3040 		int m;
3041 		printk("Invalid command:");
3042 		for (m = 0; m < msg->data_size; m++)
3043 			printk(" %2.2x", msg->data[m]);
3044 		printk("\n");
3045 	}
3046 #endif
3047 		rcu_read_lock();
3048 		handlers = intf->handlers;
3049 		if (handlers) {
3050 			handlers->sender(intf->send_info, msg, 0);
3051 			/*
3052 			 * We used the message, so return the value
3053 			 * that causes it to not be freed or
3054 			 * queued.
3055 			 */
3056 			rv = -1;
3057 		}
3058 		rcu_read_unlock();
3059 	} else {
3060 		/* Deliver the message to the user. */
3061 		ipmi_inc_stat(intf, handled_commands);
3062 
3063 		recv_msg = ipmi_alloc_recv_msg();
3064 		if (!recv_msg) {
3065 			/*
3066 			 * We couldn't allocate memory for the
3067 			 * message, so requeue it for handling
3068 			 * later.
3069 			 */
3070 			rv = 1;
3071 			kref_put(&user->refcount, free_user);
3072 		} else {
3073 			/* Extract the source address from the data. */
3074 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3075 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3076 			ipmb_addr->slave_addr = msg->rsp[6];
3077 			ipmb_addr->lun = msg->rsp[7] & 3;
3078 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3079 
3080 			/*
3081 			 * Extract the rest of the message information
3082 			 * from the IPMB header.
3083 			 */
3084 			recv_msg->user = user;
3085 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3086 			recv_msg->msgid = msg->rsp[7] >> 2;
3087 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3088 			recv_msg->msg.cmd = msg->rsp[8];
3089 			recv_msg->msg.data = recv_msg->msg_data;
3090 
3091 			/*
3092 			 * We chop off 10, not 9 bytes because the checksum
3093 			 * at the end also needs to be removed.
3094 			 */
3095 			recv_msg->msg.data_len = msg->rsp_size - 10;
3096 			memcpy(recv_msg->msg_data,
3097 			       &(msg->rsp[9]),
3098 			       msg->rsp_size - 10);
3099 			deliver_response(recv_msg);
3100 		}
3101 	}
3102 
3103 	return rv;
3104 }
3105 
3106 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3107 				  struct ipmi_smi_msg *msg)
3108 {
3109 	struct ipmi_lan_addr  lan_addr;
3110 	struct ipmi_recv_msg  *recv_msg;
3111 
3112 
3113 	/*
3114 	 * This is 13, not 12, because the response must contain a
3115 	 * completion code.
3116 	 */
3117 	if (msg->rsp_size < 13) {
3118 		/* Message not big enough, just ignore it. */
3119 		ipmi_inc_stat(intf, invalid_lan_responses);
3120 		return 0;
3121 	}
3122 
3123 	if (msg->rsp[2] != 0) {
3124 		/* An error getting the response, just ignore it. */
3125 		return 0;
3126 	}
3127 
3128 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3129 	lan_addr.session_handle = msg->rsp[4];
3130 	lan_addr.remote_SWID = msg->rsp[8];
3131 	lan_addr.local_SWID = msg->rsp[5];
3132 	lan_addr.channel = msg->rsp[3] & 0x0f;
3133 	lan_addr.privilege = msg->rsp[3] >> 4;
3134 	lan_addr.lun = msg->rsp[9] & 3;
3135 
3136 	/*
3137 	 * It's a response from a remote entity.  Look up the sequence
3138 	 * number and handle the response.
3139 	 */
3140 	if (intf_find_seq(intf,
3141 			  msg->rsp[9] >> 2,
3142 			  msg->rsp[3] & 0x0f,
3143 			  msg->rsp[10],
3144 			  (msg->rsp[6] >> 2) & (~1),
3145 			  (struct ipmi_addr *) &(lan_addr),
3146 			  &recv_msg)) {
3147 		/*
3148 		 * We were unable to find the sequence number,
3149 		 * so just nuke the message.
3150 		 */
3151 		ipmi_inc_stat(intf, unhandled_lan_responses);
3152 		return 0;
3153 	}
3154 
3155 	memcpy(recv_msg->msg_data,
3156 	       &(msg->rsp[11]),
3157 	       msg->rsp_size - 11);
3158 	/*
3159 	 * The other fields matched, so no need to set them, except
3160 	 * for netfn, which needs to be the response that was
3161 	 * returned, not the request value.
3162 	 */
3163 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3164 	recv_msg->msg.data = recv_msg->msg_data;
3165 	recv_msg->msg.data_len = msg->rsp_size - 12;
3166 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3167 	ipmi_inc_stat(intf, handled_lan_responses);
3168 	deliver_response(recv_msg);
3169 
3170 	return 0;
3171 }
3172 
3173 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3174 				  struct ipmi_smi_msg *msg)
3175 {
3176 	struct cmd_rcvr          *rcvr;
3177 	int                      rv = 0;
3178 	unsigned char            netfn;
3179 	unsigned char            cmd;
3180 	unsigned char            chan;
3181 	ipmi_user_t              user = NULL;
3182 	struct ipmi_lan_addr     *lan_addr;
3183 	struct ipmi_recv_msg     *recv_msg;
3184 
3185 	if (msg->rsp_size < 12) {
3186 		/* Message not big enough, just ignore it. */
3187 		ipmi_inc_stat(intf, invalid_commands);
3188 		return 0;
3189 	}
3190 
3191 	if (msg->rsp[2] != 0) {
3192 		/* An error getting the response, just ignore it. */
3193 		return 0;
3194 	}
3195 
3196 	netfn = msg->rsp[6] >> 2;
3197 	cmd = msg->rsp[10];
3198 	chan = msg->rsp[3] & 0xf;
3199 
3200 	rcu_read_lock();
3201 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3202 	if (rcvr) {
3203 		user = rcvr->user;
3204 		kref_get(&user->refcount);
3205 	} else
3206 		user = NULL;
3207 	rcu_read_unlock();
3208 
3209 	if (user == NULL) {
3210 		/* We didn't find a user, just give up. */
3211 		ipmi_inc_stat(intf, unhandled_commands);
3212 
3213 		/*
3214 		 * Don't do anything with these messages, just allow
3215 		 * them to be freed.
3216 		 */
3217 		rv = 0;
3218 	} else {
3219 		/* Deliver the message to the user. */
3220 		ipmi_inc_stat(intf, handled_commands);
3221 
3222 		recv_msg = ipmi_alloc_recv_msg();
3223 		if (!recv_msg) {
3224 			/*
3225 			 * We couldn't allocate memory for the
3226 			 * message, so requeue it for handling later.
3227 			 */
3228 			rv = 1;
3229 			kref_put(&user->refcount, free_user);
3230 		} else {
3231 			/* Extract the source address from the data. */
3232 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3233 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3234 			lan_addr->session_handle = msg->rsp[4];
3235 			lan_addr->remote_SWID = msg->rsp[8];
3236 			lan_addr->local_SWID = msg->rsp[5];
3237 			lan_addr->lun = msg->rsp[9] & 3;
3238 			lan_addr->channel = msg->rsp[3] & 0xf;
3239 			lan_addr->privilege = msg->rsp[3] >> 4;
3240 
3241 			/*
3242 			 * Extract the rest of the message information
3243 			 * from the IPMB header.
3244 			 */
3245 			recv_msg->user = user;
3246 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3247 			recv_msg->msgid = msg->rsp[9] >> 2;
3248 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3249 			recv_msg->msg.cmd = msg->rsp[10];
3250 			recv_msg->msg.data = recv_msg->msg_data;
3251 
3252 			/*
3253 			 * We chop off 12, not 11 bytes because the checksum
3254 			 * at the end also needs to be removed.
3255 			 */
3256 			recv_msg->msg.data_len = msg->rsp_size - 12;
3257 			memcpy(recv_msg->msg_data,
3258 			       &(msg->rsp[11]),
3259 			       msg->rsp_size - 12);
3260 			deliver_response(recv_msg);
3261 		}
3262 	}
3263 
3264 	return rv;
3265 }
3266 
3267 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3268 				     struct ipmi_smi_msg  *msg)
3269 {
3270 	struct ipmi_system_interface_addr *smi_addr;
3271 
3272 	recv_msg->msgid = 0;
3273 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3274 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3275 	smi_addr->channel = IPMI_BMC_CHANNEL;
3276 	smi_addr->lun = msg->rsp[0] & 3;
3277 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3278 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3279 	recv_msg->msg.cmd = msg->rsp[1];
3280 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3281 	recv_msg->msg.data = recv_msg->msg_data;
3282 	recv_msg->msg.data_len = msg->rsp_size - 3;
3283 }
3284 
3285 static int handle_read_event_rsp(ipmi_smi_t          intf,
3286 				 struct ipmi_smi_msg *msg)
3287 {
3288 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3289 	struct list_head     msgs;
3290 	ipmi_user_t          user;
3291 	int                  rv = 0;
3292 	int                  deliver_count = 0;
3293 	unsigned long        flags;
3294 
3295 	if (msg->rsp_size < 19) {
3296 		/* Message is too small to be an IPMB event. */
3297 		ipmi_inc_stat(intf, invalid_events);
3298 		return 0;
3299 	}
3300 
3301 	if (msg->rsp[2] != 0) {
3302 		/* An error getting the event, just ignore it. */
3303 		return 0;
3304 	}
3305 
3306 	INIT_LIST_HEAD(&msgs);
3307 
3308 	spin_lock_irqsave(&intf->events_lock, flags);
3309 
3310 	ipmi_inc_stat(intf, events);
3311 
3312 	/*
3313 	 * Allocate and fill in one message for every user that is
3314 	 * getting events.
3315 	 */
3316 	rcu_read_lock();
3317 	list_for_each_entry_rcu(user, &intf->users, link) {
3318 		if (!user->gets_events)
3319 			continue;
3320 
3321 		recv_msg = ipmi_alloc_recv_msg();
3322 		if (!recv_msg) {
3323 			rcu_read_unlock();
3324 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3325 						 link) {
3326 				list_del(&recv_msg->link);
3327 				ipmi_free_recv_msg(recv_msg);
3328 			}
3329 			/*
3330 			 * We couldn't allocate memory for the
3331 			 * message, so requeue it for handling
3332 			 * later.
3333 			 */
3334 			rv = 1;
3335 			goto out;
3336 		}
3337 
3338 		deliver_count++;
3339 
3340 		copy_event_into_recv_msg(recv_msg, msg);
3341 		recv_msg->user = user;
3342 		kref_get(&user->refcount);
3343 		list_add_tail(&(recv_msg->link), &msgs);
3344 	}
3345 	rcu_read_unlock();
3346 
3347 	if (deliver_count) {
3348 		/* Now deliver all the messages. */
3349 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3350 			list_del(&recv_msg->link);
3351 			deliver_response(recv_msg);
3352 		}
3353 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3354 		/*
3355 		 * No one to receive the message, put it in queue if there's
3356 		 * not already too many things in the queue.
3357 		 */
3358 		recv_msg = ipmi_alloc_recv_msg();
3359 		if (!recv_msg) {
3360 			/*
3361 			 * We couldn't allocate memory for the
3362 			 * message, so requeue it for handling
3363 			 * later.
3364 			 */
3365 			rv = 1;
3366 			goto out;
3367 		}
3368 
3369 		copy_event_into_recv_msg(recv_msg, msg);
3370 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3371 		intf->waiting_events_count++;
3372 	} else if (!intf->event_msg_printed) {
3373 		/*
3374 		 * There's too many things in the queue, discard this
3375 		 * message.
3376 		 */
3377 		printk(KERN_WARNING PFX "Event queue full, discarding"
3378 		       " incoming events\n");
3379 		intf->event_msg_printed = 1;
3380 	}
3381 
3382  out:
3383 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3384 
3385 	return rv;
3386 }
3387 
3388 static int handle_bmc_rsp(ipmi_smi_t          intf,
3389 			  struct ipmi_smi_msg *msg)
3390 {
3391 	struct ipmi_recv_msg *recv_msg;
3392 	struct ipmi_user     *user;
3393 
3394 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3395 	if (recv_msg == NULL) {
3396 		printk(KERN_WARNING
3397 		       "IPMI message received with no owner. This\n"
3398 		       "could be because of a malformed message, or\n"
3399 		       "because of a hardware error.  Contact your\n"
3400 		       "hardware vender for assistance\n");
3401 		return 0;
3402 	}
3403 
3404 	user = recv_msg->user;
3405 	/* Make sure the user still exists. */
3406 	if (user && !user->valid) {
3407 		/* The user for the message went away, so give up. */
3408 		ipmi_inc_stat(intf, unhandled_local_responses);
3409 		ipmi_free_recv_msg(recv_msg);
3410 	} else {
3411 		struct ipmi_system_interface_addr *smi_addr;
3412 
3413 		ipmi_inc_stat(intf, handled_local_responses);
3414 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3415 		recv_msg->msgid = msg->msgid;
3416 		smi_addr = ((struct ipmi_system_interface_addr *)
3417 			    &(recv_msg->addr));
3418 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3419 		smi_addr->channel = IPMI_BMC_CHANNEL;
3420 		smi_addr->lun = msg->rsp[0] & 3;
3421 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3422 		recv_msg->msg.cmd = msg->rsp[1];
3423 		memcpy(recv_msg->msg_data,
3424 		       &(msg->rsp[2]),
3425 		       msg->rsp_size - 2);
3426 		recv_msg->msg.data = recv_msg->msg_data;
3427 		recv_msg->msg.data_len = msg->rsp_size - 2;
3428 		deliver_response(recv_msg);
3429 	}
3430 
3431 	return 0;
3432 }
3433 
3434 /*
3435  * Handle a new message.  Return 1 if the message should be requeued,
3436  * 0 if the message should be freed, or -1 if the message should not
3437  * be freed or requeued.
3438  */
3439 static int handle_new_recv_msg(ipmi_smi_t          intf,
3440 			       struct ipmi_smi_msg *msg)
3441 {
3442 	int requeue;
3443 	int chan;
3444 
3445 #ifdef DEBUG_MSGING
3446 	int m;
3447 	printk("Recv:");
3448 	for (m = 0; m < msg->rsp_size; m++)
3449 		printk(" %2.2x", msg->rsp[m]);
3450 	printk("\n");
3451 #endif
3452 	if (msg->rsp_size < 2) {
3453 		/* Message is too small to be correct. */
3454 		printk(KERN_WARNING PFX "BMC returned to small a message"
3455 		       " for netfn %x cmd %x, got %d bytes\n",
3456 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3457 
3458 		/* Generate an error response for the message. */
3459 		msg->rsp[0] = msg->data[0] | (1 << 2);
3460 		msg->rsp[1] = msg->data[1];
3461 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3462 		msg->rsp_size = 3;
3463 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3464 		   || (msg->rsp[1] != msg->data[1])) {
3465 		/*
3466 		 * The NetFN and Command in the response is not even
3467 		 * marginally correct.
3468 		 */
3469 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3470 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3471 		       (msg->data[0] >> 2) | 1, msg->data[1],
3472 		       msg->rsp[0] >> 2, msg->rsp[1]);
3473 
3474 		/* Generate an error response for the message. */
3475 		msg->rsp[0] = msg->data[0] | (1 << 2);
3476 		msg->rsp[1] = msg->data[1];
3477 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3478 		msg->rsp_size = 3;
3479 	}
3480 
3481 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3482 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3483 	    && (msg->user_data != NULL)) {
3484 		/*
3485 		 * It's a response to a response we sent.  For this we
3486 		 * deliver a send message response to the user.
3487 		 */
3488 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3489 
3490 		requeue = 0;
3491 		if (msg->rsp_size < 2)
3492 			/* Message is too small to be correct. */
3493 			goto out;
3494 
3495 		chan = msg->data[2] & 0x0f;
3496 		if (chan >= IPMI_MAX_CHANNELS)
3497 			/* Invalid channel number */
3498 			goto out;
3499 
3500 		if (!recv_msg)
3501 			goto out;
3502 
3503 		/* Make sure the user still exists. */
3504 		if (!recv_msg->user || !recv_msg->user->valid)
3505 			goto out;
3506 
3507 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3508 		recv_msg->msg.data = recv_msg->msg_data;
3509 		recv_msg->msg.data_len = 1;
3510 		recv_msg->msg_data[0] = msg->rsp[2];
3511 		deliver_response(recv_msg);
3512 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3513 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3514 		/* It's from the receive queue. */
3515 		chan = msg->rsp[3] & 0xf;
3516 		if (chan >= IPMI_MAX_CHANNELS) {
3517 			/* Invalid channel number */
3518 			requeue = 0;
3519 			goto out;
3520 		}
3521 
3522 		switch (intf->channels[chan].medium) {
3523 		case IPMI_CHANNEL_MEDIUM_IPMB:
3524 			if (msg->rsp[4] & 0x04) {
3525 				/*
3526 				 * It's a response, so find the
3527 				 * requesting message and send it up.
3528 				 */
3529 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3530 			} else {
3531 				/*
3532 				 * It's a command to the SMS from some other
3533 				 * entity.  Handle that.
3534 				 */
3535 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3536 			}
3537 			break;
3538 
3539 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3540 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3541 			if (msg->rsp[6] & 0x04) {
3542 				/*
3543 				 * It's a response, so find the
3544 				 * requesting message and send it up.
3545 				 */
3546 				requeue = handle_lan_get_msg_rsp(intf, msg);
3547 			} else {
3548 				/*
3549 				 * It's a command to the SMS from some other
3550 				 * entity.  Handle that.
3551 				 */
3552 				requeue = handle_lan_get_msg_cmd(intf, msg);
3553 			}
3554 			break;
3555 
3556 		default:
3557 			/*
3558 			 * We don't handle the channel type, so just
3559 			 * free the message.
3560 			 */
3561 			requeue = 0;
3562 		}
3563 
3564 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3565 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3566 		/* It's an asyncronous event. */
3567 		requeue = handle_read_event_rsp(intf, msg);
3568 	} else {
3569 		/* It's a response from the local BMC. */
3570 		requeue = handle_bmc_rsp(intf, msg);
3571 	}
3572 
3573  out:
3574 	return requeue;
3575 }
3576 
3577 /* Handle a new message from the lower layer. */
3578 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3579 			   struct ipmi_smi_msg *msg)
3580 {
3581 	unsigned long flags = 0; /* keep us warning-free. */
3582 	int           rv;
3583 	int           run_to_completion;
3584 
3585 
3586 	if ((msg->data_size >= 2)
3587 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3588 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3589 	    && (msg->user_data == NULL)) {
3590 		/*
3591 		 * This is the local response to a command send, start
3592 		 * the timer for these.  The user_data will not be
3593 		 * NULL if this is a response send, and we will let
3594 		 * response sends just go through.
3595 		 */
3596 
3597 		/*
3598 		 * Check for errors, if we get certain errors (ones
3599 		 * that mean basically we can try again later), we
3600 		 * ignore them and start the timer.  Otherwise we
3601 		 * report the error immediately.
3602 		 */
3603 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3604 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3605 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3606 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3607 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3608 			int chan = msg->rsp[3] & 0xf;
3609 
3610 			/* Got an error sending the message, handle it. */
3611 			if (chan >= IPMI_MAX_CHANNELS)
3612 				; /* This shouldn't happen */
3613 			else if ((intf->channels[chan].medium
3614 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3615 				 || (intf->channels[chan].medium
3616 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3617 				ipmi_inc_stat(intf, sent_lan_command_errs);
3618 			else
3619 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3620 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3621 		} else
3622 			/* The message was sent, start the timer. */
3623 			intf_start_seq_timer(intf, msg->msgid);
3624 
3625 		ipmi_free_smi_msg(msg);
3626 		goto out;
3627 	}
3628 
3629 	/*
3630 	 * To preserve message order, if the list is not empty, we
3631 	 * tack this message onto the end of the list.
3632 	 */
3633 	run_to_completion = intf->run_to_completion;
3634 	if (!run_to_completion)
3635 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3636 	if (!list_empty(&intf->waiting_msgs)) {
3637 		list_add_tail(&msg->link, &intf->waiting_msgs);
3638 		if (!run_to_completion)
3639 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3640 		goto out;
3641 	}
3642 	if (!run_to_completion)
3643 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3644 
3645 	rv = handle_new_recv_msg(intf, msg);
3646 	if (rv > 0) {
3647 		/*
3648 		 * Could not handle the message now, just add it to a
3649 		 * list to handle later.
3650 		 */
3651 		run_to_completion = intf->run_to_completion;
3652 		if (!run_to_completion)
3653 			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3654 		list_add_tail(&msg->link, &intf->waiting_msgs);
3655 		if (!run_to_completion)
3656 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3657 	} else if (rv == 0) {
3658 		ipmi_free_smi_msg(msg);
3659 	}
3660 
3661  out:
3662 	return;
3663 }
3664 EXPORT_SYMBOL(ipmi_smi_msg_received);
3665 
3666 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3667 {
3668 	ipmi_user_t user;
3669 
3670 	rcu_read_lock();
3671 	list_for_each_entry_rcu(user, &intf->users, link) {
3672 		if (!user->handler->ipmi_watchdog_pretimeout)
3673 			continue;
3674 
3675 		user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3676 	}
3677 	rcu_read_unlock();
3678 }
3679 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3680 
3681 static struct ipmi_smi_msg *
3682 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3683 		  unsigned char seq, long seqid)
3684 {
3685 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3686 	if (!smi_msg)
3687 		/*
3688 		 * If we can't allocate the message, then just return, we
3689 		 * get 4 retries, so this should be ok.
3690 		 */
3691 		return NULL;
3692 
3693 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3694 	smi_msg->data_size = recv_msg->msg.data_len;
3695 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3696 
3697 #ifdef DEBUG_MSGING
3698 	{
3699 		int m;
3700 		printk("Resend: ");
3701 		for (m = 0; m < smi_msg->data_size; m++)
3702 			printk(" %2.2x", smi_msg->data[m]);
3703 		printk("\n");
3704 	}
3705 #endif
3706 	return smi_msg;
3707 }
3708 
3709 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3710 			      struct list_head *timeouts, long timeout_period,
3711 			      int slot, unsigned long *flags)
3712 {
3713 	struct ipmi_recv_msg     *msg;
3714 	struct ipmi_smi_handlers *handlers;
3715 
3716 	if (intf->intf_num == -1)
3717 		return;
3718 
3719 	if (!ent->inuse)
3720 		return;
3721 
3722 	ent->timeout -= timeout_period;
3723 	if (ent->timeout > 0)
3724 		return;
3725 
3726 	if (ent->retries_left == 0) {
3727 		/* The message has used all its retries. */
3728 		ent->inuse = 0;
3729 		msg = ent->recv_msg;
3730 		list_add_tail(&msg->link, timeouts);
3731 		if (ent->broadcast)
3732 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3733 		else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3734 			ipmi_inc_stat(intf, timed_out_lan_commands);
3735 		else
3736 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
3737 	} else {
3738 		struct ipmi_smi_msg *smi_msg;
3739 		/* More retries, send again. */
3740 
3741 		/*
3742 		 * Start with the max timer, set to normal timer after
3743 		 * the message is sent.
3744 		 */
3745 		ent->timeout = MAX_MSG_TIMEOUT;
3746 		ent->retries_left--;
3747 		if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3748 			ipmi_inc_stat(intf, retransmitted_lan_commands);
3749 		else
3750 			ipmi_inc_stat(intf, retransmitted_ipmb_commands);
3751 
3752 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3753 					    ent->seqid);
3754 		if (!smi_msg)
3755 			return;
3756 
3757 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
3758 
3759 		/*
3760 		 * Send the new message.  We send with a zero
3761 		 * priority.  It timed out, I doubt time is that
3762 		 * critical now, and high priority messages are really
3763 		 * only for messages to the local MC, which don't get
3764 		 * resent.
3765 		 */
3766 		handlers = intf->handlers;
3767 		if (handlers)
3768 			intf->handlers->sender(intf->send_info,
3769 					       smi_msg, 0);
3770 		else
3771 			ipmi_free_smi_msg(smi_msg);
3772 
3773 		spin_lock_irqsave(&intf->seq_lock, *flags);
3774 	}
3775 }
3776 
3777 static void ipmi_timeout_handler(long timeout_period)
3778 {
3779 	ipmi_smi_t           intf;
3780 	struct list_head     timeouts;
3781 	struct ipmi_recv_msg *msg, *msg2;
3782 	struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3783 	unsigned long        flags;
3784 	int                  i;
3785 
3786 	rcu_read_lock();
3787 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3788 		/* See if any waiting messages need to be processed. */
3789 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3790 		list_for_each_entry_safe(smi_msg, smi_msg2,
3791 					 &intf->waiting_msgs, link) {
3792 			if (!handle_new_recv_msg(intf, smi_msg)) {
3793 				list_del(&smi_msg->link);
3794 				ipmi_free_smi_msg(smi_msg);
3795 			} else {
3796 				/*
3797 				 * To preserve message order, quit if we
3798 				 * can't handle a message.
3799 				 */
3800 				break;
3801 			}
3802 		}
3803 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3804 
3805 		/*
3806 		 * Go through the seq table and find any messages that
3807 		 * have timed out, putting them in the timeouts
3808 		 * list.
3809 		 */
3810 		INIT_LIST_HEAD(&timeouts);
3811 		spin_lock_irqsave(&intf->seq_lock, flags);
3812 		for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3813 			check_msg_timeout(intf, &(intf->seq_table[i]),
3814 					  &timeouts, timeout_period, i,
3815 					  &flags);
3816 		spin_unlock_irqrestore(&intf->seq_lock, flags);
3817 
3818 		list_for_each_entry_safe(msg, msg2, &timeouts, link)
3819 			deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3820 
3821 		/*
3822 		 * Maintenance mode handling.  Check the timeout
3823 		 * optimistically before we claim the lock.  It may
3824 		 * mean a timeout gets missed occasionally, but that
3825 		 * only means the timeout gets extended by one period
3826 		 * in that case.  No big deal, and it avoids the lock
3827 		 * most of the time.
3828 		 */
3829 		if (intf->auto_maintenance_timeout > 0) {
3830 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3831 			if (intf->auto_maintenance_timeout > 0) {
3832 				intf->auto_maintenance_timeout
3833 					-= timeout_period;
3834 				if (!intf->maintenance_mode
3835 				    && (intf->auto_maintenance_timeout <= 0)) {
3836 					intf->maintenance_mode_enable = 0;
3837 					maintenance_mode_update(intf);
3838 				}
3839 			}
3840 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3841 					       flags);
3842 		}
3843 	}
3844 	rcu_read_unlock();
3845 }
3846 
3847 static void ipmi_request_event(void)
3848 {
3849 	ipmi_smi_t               intf;
3850 	struct ipmi_smi_handlers *handlers;
3851 
3852 	rcu_read_lock();
3853 	/*
3854 	 * Called from the timer, no need to check if handlers is
3855 	 * valid.
3856 	 */
3857 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3858 		/* No event requests when in maintenance mode. */
3859 		if (intf->maintenance_mode_enable)
3860 			continue;
3861 
3862 		handlers = intf->handlers;
3863 		if (handlers)
3864 			handlers->request_events(intf->send_info);
3865 	}
3866 	rcu_read_unlock();
3867 }
3868 
3869 static struct timer_list ipmi_timer;
3870 
3871 /* Call every ~100 ms. */
3872 #define IPMI_TIMEOUT_TIME	100
3873 
3874 /* How many jiffies does it take to get to the timeout time. */
3875 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
3876 
3877 /*
3878  * Request events from the queue every second (this is the number of
3879  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
3880  * future, IPMI will add a way to know immediately if an event is in
3881  * the queue and this silliness can go away.
3882  */
3883 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
3884 
3885 static atomic_t stop_operation;
3886 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3887 
3888 static void ipmi_timeout(unsigned long data)
3889 {
3890 	if (atomic_read(&stop_operation))
3891 		return;
3892 
3893 	ticks_to_req_ev--;
3894 	if (ticks_to_req_ev == 0) {
3895 		ipmi_request_event();
3896 		ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3897 	}
3898 
3899 	ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3900 
3901 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3902 }
3903 
3904 
3905 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3906 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3907 
3908 /* FIXME - convert these to slabs. */
3909 static void free_smi_msg(struct ipmi_smi_msg *msg)
3910 {
3911 	atomic_dec(&smi_msg_inuse_count);
3912 	kfree(msg);
3913 }
3914 
3915 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3916 {
3917 	struct ipmi_smi_msg *rv;
3918 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3919 	if (rv) {
3920 		rv->done = free_smi_msg;
3921 		rv->user_data = NULL;
3922 		atomic_inc(&smi_msg_inuse_count);
3923 	}
3924 	return rv;
3925 }
3926 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
3927 
3928 static void free_recv_msg(struct ipmi_recv_msg *msg)
3929 {
3930 	atomic_dec(&recv_msg_inuse_count);
3931 	kfree(msg);
3932 }
3933 
3934 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3935 {
3936 	struct ipmi_recv_msg *rv;
3937 
3938 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3939 	if (rv) {
3940 		rv->user = NULL;
3941 		rv->done = free_recv_msg;
3942 		atomic_inc(&recv_msg_inuse_count);
3943 	}
3944 	return rv;
3945 }
3946 
3947 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3948 {
3949 	if (msg->user)
3950 		kref_put(&msg->user->refcount, free_user);
3951 	msg->done(msg);
3952 }
3953 EXPORT_SYMBOL(ipmi_free_recv_msg);
3954 
3955 #ifdef CONFIG_IPMI_PANIC_EVENT
3956 
3957 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3958 {
3959 }
3960 
3961 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3962 {
3963 }
3964 
3965 #ifdef CONFIG_IPMI_PANIC_STRING
3966 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3967 {
3968 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3969 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3970 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3971 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3972 		/* A get event receiver command, save it. */
3973 		intf->event_receiver = msg->msg.data[1];
3974 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3975 	}
3976 }
3977 
3978 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3979 {
3980 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3981 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3982 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3983 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3984 		/*
3985 		 * A get device id command, save if we are an event
3986 		 * receiver or generator.
3987 		 */
3988 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3989 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3990 	}
3991 }
3992 #endif
3993 
3994 static void send_panic_events(char *str)
3995 {
3996 	struct kernel_ipmi_msg            msg;
3997 	ipmi_smi_t                        intf;
3998 	unsigned char                     data[16];
3999 	struct ipmi_system_interface_addr *si;
4000 	struct ipmi_addr                  addr;
4001 	struct ipmi_smi_msg               smi_msg;
4002 	struct ipmi_recv_msg              recv_msg;
4003 
4004 	si = (struct ipmi_system_interface_addr *) &addr;
4005 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4006 	si->channel = IPMI_BMC_CHANNEL;
4007 	si->lun = 0;
4008 
4009 	/* Fill in an event telling that we have failed. */
4010 	msg.netfn = 0x04; /* Sensor or Event. */
4011 	msg.cmd = 2; /* Platform event command. */
4012 	msg.data = data;
4013 	msg.data_len = 8;
4014 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4015 	data[1] = 0x03; /* This is for IPMI 1.0. */
4016 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4017 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4018 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4019 
4020 	/*
4021 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4022 	 * to make the panic events more useful.
4023 	 */
4024 	if (str) {
4025 		data[3] = str[0];
4026 		data[6] = str[1];
4027 		data[7] = str[2];
4028 	}
4029 
4030 	smi_msg.done = dummy_smi_done_handler;
4031 	recv_msg.done = dummy_recv_done_handler;
4032 
4033 	/* For every registered interface, send the event. */
4034 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4035 		if (!intf->handlers)
4036 			/* Interface is not ready. */
4037 			continue;
4038 
4039 		intf->run_to_completion = 1;
4040 		/* Send the event announcing the panic. */
4041 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4042 		i_ipmi_request(NULL,
4043 			       intf,
4044 			       &addr,
4045 			       0,
4046 			       &msg,
4047 			       intf,
4048 			       &smi_msg,
4049 			       &recv_msg,
4050 			       0,
4051 			       intf->channels[0].address,
4052 			       intf->channels[0].lun,
4053 			       0, 1); /* Don't retry, and don't wait. */
4054 	}
4055 
4056 #ifdef CONFIG_IPMI_PANIC_STRING
4057 	/*
4058 	 * On every interface, dump a bunch of OEM event holding the
4059 	 * string.
4060 	 */
4061 	if (!str)
4062 		return;
4063 
4064 	/* For every registered interface, send the event. */
4065 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4066 		char                  *p = str;
4067 		struct ipmi_ipmb_addr *ipmb;
4068 		int                   j;
4069 
4070 		if (intf->intf_num == -1)
4071 			/* Interface was not ready yet. */
4072 			continue;
4073 
4074 		/*
4075 		 * intf_num is used as an marker to tell if the
4076 		 * interface is valid.  Thus we need a read barrier to
4077 		 * make sure data fetched before checking intf_num
4078 		 * won't be used.
4079 		 */
4080 		smp_rmb();
4081 
4082 		/*
4083 		 * First job here is to figure out where to send the
4084 		 * OEM events.  There's no way in IPMI to send OEM
4085 		 * events using an event send command, so we have to
4086 		 * find the SEL to put them in and stick them in
4087 		 * there.
4088 		 */
4089 
4090 		/* Get capabilities from the get device id. */
4091 		intf->local_sel_device = 0;
4092 		intf->local_event_generator = 0;
4093 		intf->event_receiver = 0;
4094 
4095 		/* Request the device info from the local MC. */
4096 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4097 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4098 		msg.data = NULL;
4099 		msg.data_len = 0;
4100 		intf->null_user_handler = device_id_fetcher;
4101 		i_ipmi_request(NULL,
4102 			       intf,
4103 			       &addr,
4104 			       0,
4105 			       &msg,
4106 			       intf,
4107 			       &smi_msg,
4108 			       &recv_msg,
4109 			       0,
4110 			       intf->channels[0].address,
4111 			       intf->channels[0].lun,
4112 			       0, 1); /* Don't retry, and don't wait. */
4113 
4114 		if (intf->local_event_generator) {
4115 			/* Request the event receiver from the local MC. */
4116 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4117 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4118 			msg.data = NULL;
4119 			msg.data_len = 0;
4120 			intf->null_user_handler = event_receiver_fetcher;
4121 			i_ipmi_request(NULL,
4122 				       intf,
4123 				       &addr,
4124 				       0,
4125 				       &msg,
4126 				       intf,
4127 				       &smi_msg,
4128 				       &recv_msg,
4129 				       0,
4130 				       intf->channels[0].address,
4131 				       intf->channels[0].lun,
4132 				       0, 1); /* no retry, and no wait. */
4133 		}
4134 		intf->null_user_handler = NULL;
4135 
4136 		/*
4137 		 * Validate the event receiver.  The low bit must not
4138 		 * be 1 (it must be a valid IPMB address), it cannot
4139 		 * be zero, and it must not be my address.
4140 		 */
4141 		if (((intf->event_receiver & 1) == 0)
4142 		    && (intf->event_receiver != 0)
4143 		    && (intf->event_receiver != intf->channels[0].address)) {
4144 			/*
4145 			 * The event receiver is valid, send an IPMB
4146 			 * message.
4147 			 */
4148 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4149 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4150 			ipmb->channel = 0; /* FIXME - is this right? */
4151 			ipmb->lun = intf->event_receiver_lun;
4152 			ipmb->slave_addr = intf->event_receiver;
4153 		} else if (intf->local_sel_device) {
4154 			/*
4155 			 * The event receiver was not valid (or was
4156 			 * me), but I am an SEL device, just dump it
4157 			 * in my SEL.
4158 			 */
4159 			si = (struct ipmi_system_interface_addr *) &addr;
4160 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4161 			si->channel = IPMI_BMC_CHANNEL;
4162 			si->lun = 0;
4163 		} else
4164 			continue; /* No where to send the event. */
4165 
4166 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4167 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4168 		msg.data = data;
4169 		msg.data_len = 16;
4170 
4171 		j = 0;
4172 		while (*p) {
4173 			int size = strlen(p);
4174 
4175 			if (size > 11)
4176 				size = 11;
4177 			data[0] = 0;
4178 			data[1] = 0;
4179 			data[2] = 0xf0; /* OEM event without timestamp. */
4180 			data[3] = intf->channels[0].address;
4181 			data[4] = j++; /* sequence # */
4182 			/*
4183 			 * Always give 11 bytes, so strncpy will fill
4184 			 * it with zeroes for me.
4185 			 */
4186 			strncpy(data+5, p, 11);
4187 			p += size;
4188 
4189 			i_ipmi_request(NULL,
4190 				       intf,
4191 				       &addr,
4192 				       0,
4193 				       &msg,
4194 				       intf,
4195 				       &smi_msg,
4196 				       &recv_msg,
4197 				       0,
4198 				       intf->channels[0].address,
4199 				       intf->channels[0].lun,
4200 				       0, 1); /* no retry, and no wait. */
4201 		}
4202 	}
4203 #endif /* CONFIG_IPMI_PANIC_STRING */
4204 }
4205 #endif /* CONFIG_IPMI_PANIC_EVENT */
4206 
4207 static int has_panicked;
4208 
4209 static int panic_event(struct notifier_block *this,
4210 		       unsigned long         event,
4211 		       void                  *ptr)
4212 {
4213 	ipmi_smi_t intf;
4214 
4215 	if (has_panicked)
4216 		return NOTIFY_DONE;
4217 	has_panicked = 1;
4218 
4219 	/* For every registered interface, set it to run to completion. */
4220 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4221 		if (!intf->handlers)
4222 			/* Interface is not ready. */
4223 			continue;
4224 
4225 		intf->run_to_completion = 1;
4226 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4227 	}
4228 
4229 #ifdef CONFIG_IPMI_PANIC_EVENT
4230 	send_panic_events(ptr);
4231 #endif
4232 
4233 	return NOTIFY_DONE;
4234 }
4235 
4236 static struct notifier_block panic_block = {
4237 	.notifier_call	= panic_event,
4238 	.next		= NULL,
4239 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4240 };
4241 
4242 static int ipmi_init_msghandler(void)
4243 {
4244 	int rv;
4245 
4246 	if (initialized)
4247 		return 0;
4248 
4249 	rv = driver_register(&ipmidriver.driver);
4250 	if (rv) {
4251 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4252 		return rv;
4253 	}
4254 
4255 	printk(KERN_INFO "ipmi message handler version "
4256 	       IPMI_DRIVER_VERSION "\n");
4257 
4258 #ifdef CONFIG_PROC_FS
4259 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4260 	if (!proc_ipmi_root) {
4261 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4262 	    return -ENOMEM;
4263 	}
4264 
4265 #endif /* CONFIG_PROC_FS */
4266 
4267 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4268 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4269 
4270 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4271 
4272 	initialized = 1;
4273 
4274 	return 0;
4275 }
4276 
4277 static __init int ipmi_init_msghandler_mod(void)
4278 {
4279 	ipmi_init_msghandler();
4280 	return 0;
4281 }
4282 
4283 static __exit void cleanup_ipmi(void)
4284 {
4285 	int count;
4286 
4287 	if (!initialized)
4288 		return;
4289 
4290 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4291 
4292 	/*
4293 	 * This can't be called if any interfaces exist, so no worry
4294 	 * about shutting down the interfaces.
4295 	 */
4296 
4297 	/*
4298 	 * Tell the timer to stop, then wait for it to stop.  This
4299 	 * avoids problems with race conditions removing the timer
4300 	 * here.
4301 	 */
4302 	atomic_inc(&stop_operation);
4303 	del_timer_sync(&ipmi_timer);
4304 
4305 #ifdef CONFIG_PROC_FS
4306 	remove_proc_entry(proc_ipmi_root->name, NULL);
4307 #endif /* CONFIG_PROC_FS */
4308 
4309 	driver_unregister(&ipmidriver.driver);
4310 
4311 	initialized = 0;
4312 
4313 	/* Check for buffer leaks. */
4314 	count = atomic_read(&smi_msg_inuse_count);
4315 	if (count != 0)
4316 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4317 		       count);
4318 	count = atomic_read(&recv_msg_inuse_count);
4319 	if (count != 0)
4320 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4321 		       count);
4322 }
4323 module_exit(cleanup_ipmi);
4324 
4325 module_init(ipmi_init_msghandler_mod);
4326 MODULE_LICENSE("GPL");
4327 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4328 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4329 		   " interface.");
4330 MODULE_VERSION(IPMI_DRIVER_VERSION);
4331