1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60 			       struct ipmi_smi_msg *msg);
61 
62 static int initialized;
63 
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67 
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70 
71 #define MAX_EVENTS_IN_QUEUE	25
72 
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT		60000
78 
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME	1000
81 
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84 
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92 
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97 	struct list_head link;
98 
99 	/* Set to false when the user is destroyed. */
100 	bool valid;
101 
102 	struct kref refcount;
103 
104 	/* The upper layer that handles receive messages. */
105 	const struct ipmi_user_hndl *handler;
106 	void             *handler_data;
107 
108 	/* The interface this user is bound to. */
109 	ipmi_smi_t intf;
110 
111 	/* Does this interface receive IPMI events? */
112 	bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116 	struct list_head link;
117 
118 	ipmi_user_t   user;
119 	unsigned char netfn;
120 	unsigned char cmd;
121 	unsigned int  chans;
122 
123 	/*
124 	 * This is used to form a linked lised during mass deletion.
125 	 * Since this is in an RCU list, we cannot use the link above
126 	 * or change any data until the RCU period completes.  So we
127 	 * use this next variable during mass deletion so we can have
128 	 * a list and don't have to wait and restart the search on
129 	 * every individual deletion of a command.
130 	 */
131 	struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135 	unsigned int         inuse : 1;
136 	unsigned int         broadcast : 1;
137 
138 	unsigned long        timeout;
139 	unsigned long        orig_timeout;
140 	unsigned int         retries_left;
141 
142 	/*
143 	 * To verify on an incoming send message response that this is
144 	 * the message that the response is for, we keep a sequence id
145 	 * and increment it every time we send a message.
146 	 */
147 	long                 seqid;
148 
149 	/*
150 	 * This is held so we can properly respond to the message on a
151 	 * timeout, and it is used to hold the temporary data for
152 	 * retransmission, too.
153 	 */
154 	struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) \
162 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
163 
164 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
165 	do {								\
166 		seq = (((msgid) >> 26) & 0x3f);				\
167 		seqid = ((msgid) & 0x3ffffff);				\
168 	} while (0)
169 
170 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
171 
172 struct ipmi_channel {
173 	unsigned char medium;
174 	unsigned char protocol;
175 
176 	/*
177 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
178 	 * but may be changed by the user.
179 	 */
180 	unsigned char address;
181 
182 	/*
183 	 * My LUN.  This should generally stay the SMS LUN, but just in
184 	 * case...
185 	 */
186 	unsigned char lun;
187 };
188 
189 #ifdef CONFIG_PROC_FS
190 struct ipmi_proc_entry {
191 	char                   *name;
192 	struct ipmi_proc_entry *next;
193 };
194 #endif
195 
196 struct bmc_device {
197 	struct platform_device pdev;
198 	struct ipmi_device_id  id;
199 	unsigned char          guid[16];
200 	int                    guid_set;
201 	char                   name[16];
202 	struct kref	       usecount;
203 };
204 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
205 
206 /*
207  * Various statistics for IPMI, these index stats[] in the ipmi_smi
208  * structure.
209  */
210 enum ipmi_stat_indexes {
211 	/* Commands we got from the user that were invalid. */
212 	IPMI_STAT_sent_invalid_commands = 0,
213 
214 	/* Commands we sent to the MC. */
215 	IPMI_STAT_sent_local_commands,
216 
217 	/* Responses from the MC that were delivered to a user. */
218 	IPMI_STAT_handled_local_responses,
219 
220 	/* Responses from the MC that were not delivered to a user. */
221 	IPMI_STAT_unhandled_local_responses,
222 
223 	/* Commands we sent out to the IPMB bus. */
224 	IPMI_STAT_sent_ipmb_commands,
225 
226 	/* Commands sent on the IPMB that had errors on the SEND CMD */
227 	IPMI_STAT_sent_ipmb_command_errs,
228 
229 	/* Each retransmit increments this count. */
230 	IPMI_STAT_retransmitted_ipmb_commands,
231 
232 	/*
233 	 * When a message times out (runs out of retransmits) this is
234 	 * incremented.
235 	 */
236 	IPMI_STAT_timed_out_ipmb_commands,
237 
238 	/*
239 	 * This is like above, but for broadcasts.  Broadcasts are
240 	 * *not* included in the above count (they are expected to
241 	 * time out).
242 	 */
243 	IPMI_STAT_timed_out_ipmb_broadcasts,
244 
245 	/* Responses I have sent to the IPMB bus. */
246 	IPMI_STAT_sent_ipmb_responses,
247 
248 	/* The response was delivered to the user. */
249 	IPMI_STAT_handled_ipmb_responses,
250 
251 	/* The response had invalid data in it. */
252 	IPMI_STAT_invalid_ipmb_responses,
253 
254 	/* The response didn't have anyone waiting for it. */
255 	IPMI_STAT_unhandled_ipmb_responses,
256 
257 	/* Commands we sent out to the IPMB bus. */
258 	IPMI_STAT_sent_lan_commands,
259 
260 	/* Commands sent on the IPMB that had errors on the SEND CMD */
261 	IPMI_STAT_sent_lan_command_errs,
262 
263 	/* Each retransmit increments this count. */
264 	IPMI_STAT_retransmitted_lan_commands,
265 
266 	/*
267 	 * When a message times out (runs out of retransmits) this is
268 	 * incremented.
269 	 */
270 	IPMI_STAT_timed_out_lan_commands,
271 
272 	/* Responses I have sent to the IPMB bus. */
273 	IPMI_STAT_sent_lan_responses,
274 
275 	/* The response was delivered to the user. */
276 	IPMI_STAT_handled_lan_responses,
277 
278 	/* The response had invalid data in it. */
279 	IPMI_STAT_invalid_lan_responses,
280 
281 	/* The response didn't have anyone waiting for it. */
282 	IPMI_STAT_unhandled_lan_responses,
283 
284 	/* The command was delivered to the user. */
285 	IPMI_STAT_handled_commands,
286 
287 	/* The command had invalid data in it. */
288 	IPMI_STAT_invalid_commands,
289 
290 	/* The command didn't have anyone waiting for it. */
291 	IPMI_STAT_unhandled_commands,
292 
293 	/* Invalid data in an event. */
294 	IPMI_STAT_invalid_events,
295 
296 	/* Events that were received with the proper format. */
297 	IPMI_STAT_events,
298 
299 	/* Retransmissions on IPMB that failed. */
300 	IPMI_STAT_dropped_rexmit_ipmb_commands,
301 
302 	/* Retransmissions on LAN that failed. */
303 	IPMI_STAT_dropped_rexmit_lan_commands,
304 
305 	/* This *must* remain last, add new values above this. */
306 	IPMI_NUM_STATS
307 };
308 
309 
310 #define IPMI_IPMB_NUM_SEQ	64
311 #define IPMI_MAX_CHANNELS       16
312 struct ipmi_smi {
313 	/* What interface number are we? */
314 	int intf_num;
315 
316 	struct kref refcount;
317 
318 	/* Set when the interface is being unregistered. */
319 	bool in_shutdown;
320 
321 	/* Used for a list of interfaces. */
322 	struct list_head link;
323 
324 	/*
325 	 * The list of upper layers that are using me.  seq_lock
326 	 * protects this.
327 	 */
328 	struct list_head users;
329 
330 	/* Information to supply to users. */
331 	unsigned char ipmi_version_major;
332 	unsigned char ipmi_version_minor;
333 
334 	/* Used for wake ups at startup. */
335 	wait_queue_head_t waitq;
336 
337 	struct bmc_device *bmc;
338 	char *my_dev_name;
339 
340 	/*
341 	 * This is the lower-layer's sender routine.  Note that you
342 	 * must either be holding the ipmi_interfaces_mutex or be in
343 	 * an umpreemptible region to use this.  You must fetch the
344 	 * value into a local variable and make sure it is not NULL.
345 	 */
346 	const struct ipmi_smi_handlers *handlers;
347 	void                     *send_info;
348 
349 #ifdef CONFIG_PROC_FS
350 	/* A list of proc entries for this interface. */
351 	struct mutex           proc_entry_lock;
352 	struct ipmi_proc_entry *proc_entries;
353 #endif
354 
355 	/* Driver-model device for the system interface. */
356 	struct device          *si_dev;
357 
358 	/*
359 	 * A table of sequence numbers for this interface.  We use the
360 	 * sequence numbers for IPMB messages that go out of the
361 	 * interface to match them up with their responses.  A routine
362 	 * is called periodically to time the items in this list.
363 	 */
364 	spinlock_t       seq_lock;
365 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
366 	int curr_seq;
367 
368 	/*
369 	 * Messages queued for delivery.  If delivery fails (out of memory
370 	 * for instance), They will stay in here to be processed later in a
371 	 * periodic timer interrupt.  The tasklet is for handling received
372 	 * messages directly from the handler.
373 	 */
374 	spinlock_t       waiting_rcv_msgs_lock;
375 	struct list_head waiting_rcv_msgs;
376 	atomic_t	 watchdog_pretimeouts_to_deliver;
377 	struct tasklet_struct recv_tasklet;
378 
379 	spinlock_t             xmit_msgs_lock;
380 	struct list_head       xmit_msgs;
381 	struct ipmi_smi_msg    *curr_msg;
382 	struct list_head       hp_xmit_msgs;
383 
384 	/*
385 	 * The list of command receivers that are registered for commands
386 	 * on this interface.
387 	 */
388 	struct mutex     cmd_rcvrs_mutex;
389 	struct list_head cmd_rcvrs;
390 
391 	/*
392 	 * Events that were queues because no one was there to receive
393 	 * them.
394 	 */
395 	spinlock_t       events_lock; /* For dealing with event stuff. */
396 	struct list_head waiting_events;
397 	unsigned int     waiting_events_count; /* How many events in queue? */
398 	char             delivering_events;
399 	char             event_msg_printed;
400 	atomic_t         event_waiters;
401 	unsigned int     ticks_to_req_ev;
402 	int              last_needs_timer;
403 
404 	/*
405 	 * The event receiver for my BMC, only really used at panic
406 	 * shutdown as a place to store this.
407 	 */
408 	unsigned char event_receiver;
409 	unsigned char event_receiver_lun;
410 	unsigned char local_sel_device;
411 	unsigned char local_event_generator;
412 
413 	/* For handling of maintenance mode. */
414 	int maintenance_mode;
415 	bool maintenance_mode_enable;
416 	int auto_maintenance_timeout;
417 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
418 
419 	/*
420 	 * A cheap hack, if this is non-null and a message to an
421 	 * interface comes in with a NULL user, call this routine with
422 	 * it.  Note that the message will still be freed by the
423 	 * caller.  This only works on the system interface.
424 	 */
425 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
426 
427 	/*
428 	 * When we are scanning the channels for an SMI, this will
429 	 * tell which channel we are scanning.
430 	 */
431 	int curr_channel;
432 
433 	/* Channel information */
434 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
435 
436 	/* Proc FS stuff. */
437 	struct proc_dir_entry *proc_dir;
438 	char                  proc_dir_name[10];
439 
440 	atomic_t stats[IPMI_NUM_STATS];
441 
442 	/*
443 	 * run_to_completion duplicate of smb_info, smi_info
444 	 * and ipmi_serial_info structures. Used to decrease numbers of
445 	 * parameters passed by "low" level IPMI code.
446 	 */
447 	int run_to_completion;
448 };
449 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
450 
451 /**
452  * The driver model view of the IPMI messaging driver.
453  */
454 static struct platform_driver ipmidriver = {
455 	.driver = {
456 		.name = "ipmi",
457 		.bus = &platform_bus_type
458 	}
459 };
460 static DEFINE_MUTEX(ipmidriver_mutex);
461 
462 static LIST_HEAD(ipmi_interfaces);
463 static DEFINE_MUTEX(ipmi_interfaces_mutex);
464 
465 /*
466  * List of watchers that want to know when smi's are added and deleted.
467  */
468 static LIST_HEAD(smi_watchers);
469 static DEFINE_MUTEX(smi_watchers_mutex);
470 
471 #define ipmi_inc_stat(intf, stat) \
472 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
473 #define ipmi_get_stat(intf, stat) \
474 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
475 
476 static const char * const addr_src_to_str[] = {
477 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
478 	"device-tree"
479 };
480 
481 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
482 {
483 	if (src >= SI_LAST)
484 		src = 0; /* Invalid */
485 	return addr_src_to_str[src];
486 }
487 EXPORT_SYMBOL(ipmi_addr_src_to_str);
488 
489 static int is_lan_addr(struct ipmi_addr *addr)
490 {
491 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
492 }
493 
494 static int is_ipmb_addr(struct ipmi_addr *addr)
495 {
496 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
497 }
498 
499 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
500 {
501 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
502 }
503 
504 static void free_recv_msg_list(struct list_head *q)
505 {
506 	struct ipmi_recv_msg *msg, *msg2;
507 
508 	list_for_each_entry_safe(msg, msg2, q, link) {
509 		list_del(&msg->link);
510 		ipmi_free_recv_msg(msg);
511 	}
512 }
513 
514 static void free_smi_msg_list(struct list_head *q)
515 {
516 	struct ipmi_smi_msg *msg, *msg2;
517 
518 	list_for_each_entry_safe(msg, msg2, q, link) {
519 		list_del(&msg->link);
520 		ipmi_free_smi_msg(msg);
521 	}
522 }
523 
524 static void clean_up_interface_data(ipmi_smi_t intf)
525 {
526 	int              i;
527 	struct cmd_rcvr  *rcvr, *rcvr2;
528 	struct list_head list;
529 
530 	tasklet_kill(&intf->recv_tasklet);
531 
532 	free_smi_msg_list(&intf->waiting_rcv_msgs);
533 	free_recv_msg_list(&intf->waiting_events);
534 
535 	/*
536 	 * Wholesale remove all the entries from the list in the
537 	 * interface and wait for RCU to know that none are in use.
538 	 */
539 	mutex_lock(&intf->cmd_rcvrs_mutex);
540 	INIT_LIST_HEAD(&list);
541 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
542 	mutex_unlock(&intf->cmd_rcvrs_mutex);
543 
544 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
545 		kfree(rcvr);
546 
547 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
548 		if ((intf->seq_table[i].inuse)
549 					&& (intf->seq_table[i].recv_msg))
550 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
551 	}
552 }
553 
554 static void intf_free(struct kref *ref)
555 {
556 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
557 
558 	clean_up_interface_data(intf);
559 	kfree(intf);
560 }
561 
562 struct watcher_entry {
563 	int              intf_num;
564 	ipmi_smi_t       intf;
565 	struct list_head link;
566 };
567 
568 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
569 {
570 	ipmi_smi_t intf;
571 	LIST_HEAD(to_deliver);
572 	struct watcher_entry *e, *e2;
573 
574 	mutex_lock(&smi_watchers_mutex);
575 
576 	mutex_lock(&ipmi_interfaces_mutex);
577 
578 	/* Build a list of things to deliver. */
579 	list_for_each_entry(intf, &ipmi_interfaces, link) {
580 		if (intf->intf_num == -1)
581 			continue;
582 		e = kmalloc(sizeof(*e), GFP_KERNEL);
583 		if (!e)
584 			goto out_err;
585 		kref_get(&intf->refcount);
586 		e->intf = intf;
587 		e->intf_num = intf->intf_num;
588 		list_add_tail(&e->link, &to_deliver);
589 	}
590 
591 	/* We will succeed, so add it to the list. */
592 	list_add(&watcher->link, &smi_watchers);
593 
594 	mutex_unlock(&ipmi_interfaces_mutex);
595 
596 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
597 		list_del(&e->link);
598 		watcher->new_smi(e->intf_num, e->intf->si_dev);
599 		kref_put(&e->intf->refcount, intf_free);
600 		kfree(e);
601 	}
602 
603 	mutex_unlock(&smi_watchers_mutex);
604 
605 	return 0;
606 
607  out_err:
608 	mutex_unlock(&ipmi_interfaces_mutex);
609 	mutex_unlock(&smi_watchers_mutex);
610 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
611 		list_del(&e->link);
612 		kref_put(&e->intf->refcount, intf_free);
613 		kfree(e);
614 	}
615 	return -ENOMEM;
616 }
617 EXPORT_SYMBOL(ipmi_smi_watcher_register);
618 
619 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
620 {
621 	mutex_lock(&smi_watchers_mutex);
622 	list_del(&(watcher->link));
623 	mutex_unlock(&smi_watchers_mutex);
624 	return 0;
625 }
626 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
627 
628 /*
629  * Must be called with smi_watchers_mutex held.
630  */
631 static void
632 call_smi_watchers(int i, struct device *dev)
633 {
634 	struct ipmi_smi_watcher *w;
635 
636 	list_for_each_entry(w, &smi_watchers, link) {
637 		if (try_module_get(w->owner)) {
638 			w->new_smi(i, dev);
639 			module_put(w->owner);
640 		}
641 	}
642 }
643 
644 static int
645 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
646 {
647 	if (addr1->addr_type != addr2->addr_type)
648 		return 0;
649 
650 	if (addr1->channel != addr2->channel)
651 		return 0;
652 
653 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
654 		struct ipmi_system_interface_addr *smi_addr1
655 		    = (struct ipmi_system_interface_addr *) addr1;
656 		struct ipmi_system_interface_addr *smi_addr2
657 		    = (struct ipmi_system_interface_addr *) addr2;
658 		return (smi_addr1->lun == smi_addr2->lun);
659 	}
660 
661 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
662 		struct ipmi_ipmb_addr *ipmb_addr1
663 		    = (struct ipmi_ipmb_addr *) addr1;
664 		struct ipmi_ipmb_addr *ipmb_addr2
665 		    = (struct ipmi_ipmb_addr *) addr2;
666 
667 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
668 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
669 	}
670 
671 	if (is_lan_addr(addr1)) {
672 		struct ipmi_lan_addr *lan_addr1
673 			= (struct ipmi_lan_addr *) addr1;
674 		struct ipmi_lan_addr *lan_addr2
675 		    = (struct ipmi_lan_addr *) addr2;
676 
677 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
678 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
679 			&& (lan_addr1->session_handle
680 			    == lan_addr2->session_handle)
681 			&& (lan_addr1->lun == lan_addr2->lun));
682 	}
683 
684 	return 1;
685 }
686 
687 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
688 {
689 	if (len < sizeof(struct ipmi_system_interface_addr))
690 		return -EINVAL;
691 
692 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
693 		if (addr->channel != IPMI_BMC_CHANNEL)
694 			return -EINVAL;
695 		return 0;
696 	}
697 
698 	if ((addr->channel == IPMI_BMC_CHANNEL)
699 	    || (addr->channel >= IPMI_MAX_CHANNELS)
700 	    || (addr->channel < 0))
701 		return -EINVAL;
702 
703 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
704 		if (len < sizeof(struct ipmi_ipmb_addr))
705 			return -EINVAL;
706 		return 0;
707 	}
708 
709 	if (is_lan_addr(addr)) {
710 		if (len < sizeof(struct ipmi_lan_addr))
711 			return -EINVAL;
712 		return 0;
713 	}
714 
715 	return -EINVAL;
716 }
717 EXPORT_SYMBOL(ipmi_validate_addr);
718 
719 unsigned int ipmi_addr_length(int addr_type)
720 {
721 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
722 		return sizeof(struct ipmi_system_interface_addr);
723 
724 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
725 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
726 		return sizeof(struct ipmi_ipmb_addr);
727 
728 	if (addr_type == IPMI_LAN_ADDR_TYPE)
729 		return sizeof(struct ipmi_lan_addr);
730 
731 	return 0;
732 }
733 EXPORT_SYMBOL(ipmi_addr_length);
734 
735 static void deliver_response(struct ipmi_recv_msg *msg)
736 {
737 	if (!msg->user) {
738 		ipmi_smi_t    intf = msg->user_msg_data;
739 
740 		/* Special handling for NULL users. */
741 		if (intf->null_user_handler) {
742 			intf->null_user_handler(intf, msg);
743 			ipmi_inc_stat(intf, handled_local_responses);
744 		} else {
745 			/* No handler, so give up. */
746 			ipmi_inc_stat(intf, unhandled_local_responses);
747 		}
748 		ipmi_free_recv_msg(msg);
749 	} else if (!oops_in_progress) {
750 		/*
751 		 * If we are running in the panic context, calling the
752 		 * receive handler doesn't much meaning and has a deadlock
753 		 * risk.  At this moment, simply skip it in that case.
754 		 */
755 
756 		ipmi_user_t user = msg->user;
757 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
758 	}
759 }
760 
761 static void
762 deliver_err_response(struct ipmi_recv_msg *msg, int err)
763 {
764 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
765 	msg->msg_data[0] = err;
766 	msg->msg.netfn |= 1; /* Convert to a response. */
767 	msg->msg.data_len = 1;
768 	msg->msg.data = msg->msg_data;
769 	deliver_response(msg);
770 }
771 
772 /*
773  * Find the next sequence number not being used and add the given
774  * message with the given timeout to the sequence table.  This must be
775  * called with the interface's seq_lock held.
776  */
777 static int intf_next_seq(ipmi_smi_t           intf,
778 			 struct ipmi_recv_msg *recv_msg,
779 			 unsigned long        timeout,
780 			 int                  retries,
781 			 int                  broadcast,
782 			 unsigned char        *seq,
783 			 long                 *seqid)
784 {
785 	int          rv = 0;
786 	unsigned int i;
787 
788 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
789 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
790 		if (!intf->seq_table[i].inuse)
791 			break;
792 	}
793 
794 	if (!intf->seq_table[i].inuse) {
795 		intf->seq_table[i].recv_msg = recv_msg;
796 
797 		/*
798 		 * Start with the maximum timeout, when the send response
799 		 * comes in we will start the real timer.
800 		 */
801 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
802 		intf->seq_table[i].orig_timeout = timeout;
803 		intf->seq_table[i].retries_left = retries;
804 		intf->seq_table[i].broadcast = broadcast;
805 		intf->seq_table[i].inuse = 1;
806 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
807 		*seq = i;
808 		*seqid = intf->seq_table[i].seqid;
809 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
810 		need_waiter(intf);
811 	} else {
812 		rv = -EAGAIN;
813 	}
814 
815 	return rv;
816 }
817 
818 /*
819  * Return the receive message for the given sequence number and
820  * release the sequence number so it can be reused.  Some other data
821  * is passed in to be sure the message matches up correctly (to help
822  * guard against message coming in after their timeout and the
823  * sequence number being reused).
824  */
825 static int intf_find_seq(ipmi_smi_t           intf,
826 			 unsigned char        seq,
827 			 short                channel,
828 			 unsigned char        cmd,
829 			 unsigned char        netfn,
830 			 struct ipmi_addr     *addr,
831 			 struct ipmi_recv_msg **recv_msg)
832 {
833 	int           rv = -ENODEV;
834 	unsigned long flags;
835 
836 	if (seq >= IPMI_IPMB_NUM_SEQ)
837 		return -EINVAL;
838 
839 	spin_lock_irqsave(&(intf->seq_lock), flags);
840 	if (intf->seq_table[seq].inuse) {
841 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
842 
843 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
844 				&& (msg->msg.netfn == netfn)
845 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
846 			*recv_msg = msg;
847 			intf->seq_table[seq].inuse = 0;
848 			rv = 0;
849 		}
850 	}
851 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
852 
853 	return rv;
854 }
855 
856 
857 /* Start the timer for a specific sequence table entry. */
858 static int intf_start_seq_timer(ipmi_smi_t intf,
859 				long       msgid)
860 {
861 	int           rv = -ENODEV;
862 	unsigned long flags;
863 	unsigned char seq;
864 	unsigned long seqid;
865 
866 
867 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
868 
869 	spin_lock_irqsave(&(intf->seq_lock), flags);
870 	/*
871 	 * We do this verification because the user can be deleted
872 	 * while a message is outstanding.
873 	 */
874 	if ((intf->seq_table[seq].inuse)
875 				&& (intf->seq_table[seq].seqid == seqid)) {
876 		struct seq_table *ent = &(intf->seq_table[seq]);
877 		ent->timeout = ent->orig_timeout;
878 		rv = 0;
879 	}
880 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
881 
882 	return rv;
883 }
884 
885 /* Got an error for the send message for a specific sequence number. */
886 static int intf_err_seq(ipmi_smi_t   intf,
887 			long         msgid,
888 			unsigned int err)
889 {
890 	int                  rv = -ENODEV;
891 	unsigned long        flags;
892 	unsigned char        seq;
893 	unsigned long        seqid;
894 	struct ipmi_recv_msg *msg = NULL;
895 
896 
897 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
898 
899 	spin_lock_irqsave(&(intf->seq_lock), flags);
900 	/*
901 	 * We do this verification because the user can be deleted
902 	 * while a message is outstanding.
903 	 */
904 	if ((intf->seq_table[seq].inuse)
905 				&& (intf->seq_table[seq].seqid == seqid)) {
906 		struct seq_table *ent = &(intf->seq_table[seq]);
907 
908 		ent->inuse = 0;
909 		msg = ent->recv_msg;
910 		rv = 0;
911 	}
912 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
913 
914 	if (msg)
915 		deliver_err_response(msg, err);
916 
917 	return rv;
918 }
919 
920 
921 int ipmi_create_user(unsigned int          if_num,
922 		     const struct ipmi_user_hndl *handler,
923 		     void                  *handler_data,
924 		     ipmi_user_t           *user)
925 {
926 	unsigned long flags;
927 	ipmi_user_t   new_user;
928 	int           rv = 0;
929 	ipmi_smi_t    intf;
930 
931 	/*
932 	 * There is no module usecount here, because it's not
933 	 * required.  Since this can only be used by and called from
934 	 * other modules, they will implicitly use this module, and
935 	 * thus this can't be removed unless the other modules are
936 	 * removed.
937 	 */
938 
939 	if (handler == NULL)
940 		return -EINVAL;
941 
942 	/*
943 	 * Make sure the driver is actually initialized, this handles
944 	 * problems with initialization order.
945 	 */
946 	if (!initialized) {
947 		rv = ipmi_init_msghandler();
948 		if (rv)
949 			return rv;
950 
951 		/*
952 		 * The init code doesn't return an error if it was turned
953 		 * off, but it won't initialize.  Check that.
954 		 */
955 		if (!initialized)
956 			return -ENODEV;
957 	}
958 
959 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
960 	if (!new_user)
961 		return -ENOMEM;
962 
963 	mutex_lock(&ipmi_interfaces_mutex);
964 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
965 		if (intf->intf_num == if_num)
966 			goto found;
967 	}
968 	/* Not found, return an error */
969 	rv = -EINVAL;
970 	goto out_kfree;
971 
972  found:
973 	/* Note that each existing user holds a refcount to the interface. */
974 	kref_get(&intf->refcount);
975 
976 	kref_init(&new_user->refcount);
977 	new_user->handler = handler;
978 	new_user->handler_data = handler_data;
979 	new_user->intf = intf;
980 	new_user->gets_events = false;
981 
982 	if (!try_module_get(intf->handlers->owner)) {
983 		rv = -ENODEV;
984 		goto out_kref;
985 	}
986 
987 	if (intf->handlers->inc_usecount) {
988 		rv = intf->handlers->inc_usecount(intf->send_info);
989 		if (rv) {
990 			module_put(intf->handlers->owner);
991 			goto out_kref;
992 		}
993 	}
994 
995 	/*
996 	 * Hold the lock so intf->handlers is guaranteed to be good
997 	 * until now
998 	 */
999 	mutex_unlock(&ipmi_interfaces_mutex);
1000 
1001 	new_user->valid = true;
1002 	spin_lock_irqsave(&intf->seq_lock, flags);
1003 	list_add_rcu(&new_user->link, &intf->users);
1004 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1005 	if (handler->ipmi_watchdog_pretimeout) {
1006 		/* User wants pretimeouts, so make sure to watch for them. */
1007 		if (atomic_inc_return(&intf->event_waiters) == 1)
1008 			need_waiter(intf);
1009 	}
1010 	*user = new_user;
1011 	return 0;
1012 
1013 out_kref:
1014 	kref_put(&intf->refcount, intf_free);
1015 out_kfree:
1016 	mutex_unlock(&ipmi_interfaces_mutex);
1017 	kfree(new_user);
1018 	return rv;
1019 }
1020 EXPORT_SYMBOL(ipmi_create_user);
1021 
1022 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1023 {
1024 	int           rv = 0;
1025 	ipmi_smi_t    intf;
1026 	const struct ipmi_smi_handlers *handlers;
1027 
1028 	mutex_lock(&ipmi_interfaces_mutex);
1029 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1030 		if (intf->intf_num == if_num)
1031 			goto found;
1032 	}
1033 	/* Not found, return an error */
1034 	rv = -EINVAL;
1035 	mutex_unlock(&ipmi_interfaces_mutex);
1036 	return rv;
1037 
1038 found:
1039 	handlers = intf->handlers;
1040 	rv = -ENOSYS;
1041 	if (handlers->get_smi_info)
1042 		rv = handlers->get_smi_info(intf->send_info, data);
1043 	mutex_unlock(&ipmi_interfaces_mutex);
1044 
1045 	return rv;
1046 }
1047 EXPORT_SYMBOL(ipmi_get_smi_info);
1048 
1049 static void free_user(struct kref *ref)
1050 {
1051 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1052 	kfree(user);
1053 }
1054 
1055 int ipmi_destroy_user(ipmi_user_t user)
1056 {
1057 	ipmi_smi_t       intf = user->intf;
1058 	int              i;
1059 	unsigned long    flags;
1060 	struct cmd_rcvr  *rcvr;
1061 	struct cmd_rcvr  *rcvrs = NULL;
1062 
1063 	user->valid = false;
1064 
1065 	if (user->handler->ipmi_watchdog_pretimeout)
1066 		atomic_dec(&intf->event_waiters);
1067 
1068 	if (user->gets_events)
1069 		atomic_dec(&intf->event_waiters);
1070 
1071 	/* Remove the user from the interface's sequence table. */
1072 	spin_lock_irqsave(&intf->seq_lock, flags);
1073 	list_del_rcu(&user->link);
1074 
1075 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1076 		if (intf->seq_table[i].inuse
1077 		    && (intf->seq_table[i].recv_msg->user == user)) {
1078 			intf->seq_table[i].inuse = 0;
1079 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1080 		}
1081 	}
1082 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1083 
1084 	/*
1085 	 * Remove the user from the command receiver's table.  First
1086 	 * we build a list of everything (not using the standard link,
1087 	 * since other things may be using it till we do
1088 	 * synchronize_rcu()) then free everything in that list.
1089 	 */
1090 	mutex_lock(&intf->cmd_rcvrs_mutex);
1091 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1092 		if (rcvr->user == user) {
1093 			list_del_rcu(&rcvr->link);
1094 			rcvr->next = rcvrs;
1095 			rcvrs = rcvr;
1096 		}
1097 	}
1098 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1099 	synchronize_rcu();
1100 	while (rcvrs) {
1101 		rcvr = rcvrs;
1102 		rcvrs = rcvr->next;
1103 		kfree(rcvr);
1104 	}
1105 
1106 	mutex_lock(&ipmi_interfaces_mutex);
1107 	if (intf->handlers) {
1108 		module_put(intf->handlers->owner);
1109 		if (intf->handlers->dec_usecount)
1110 			intf->handlers->dec_usecount(intf->send_info);
1111 	}
1112 	mutex_unlock(&ipmi_interfaces_mutex);
1113 
1114 	kref_put(&intf->refcount, intf_free);
1115 
1116 	kref_put(&user->refcount, free_user);
1117 
1118 	return 0;
1119 }
1120 EXPORT_SYMBOL(ipmi_destroy_user);
1121 
1122 void ipmi_get_version(ipmi_user_t   user,
1123 		      unsigned char *major,
1124 		      unsigned char *minor)
1125 {
1126 	*major = user->intf->ipmi_version_major;
1127 	*minor = user->intf->ipmi_version_minor;
1128 }
1129 EXPORT_SYMBOL(ipmi_get_version);
1130 
1131 int ipmi_set_my_address(ipmi_user_t   user,
1132 			unsigned int  channel,
1133 			unsigned char address)
1134 {
1135 	if (channel >= IPMI_MAX_CHANNELS)
1136 		return -EINVAL;
1137 	user->intf->channels[channel].address = address;
1138 	return 0;
1139 }
1140 EXPORT_SYMBOL(ipmi_set_my_address);
1141 
1142 int ipmi_get_my_address(ipmi_user_t   user,
1143 			unsigned int  channel,
1144 			unsigned char *address)
1145 {
1146 	if (channel >= IPMI_MAX_CHANNELS)
1147 		return -EINVAL;
1148 	*address = user->intf->channels[channel].address;
1149 	return 0;
1150 }
1151 EXPORT_SYMBOL(ipmi_get_my_address);
1152 
1153 int ipmi_set_my_LUN(ipmi_user_t   user,
1154 		    unsigned int  channel,
1155 		    unsigned char LUN)
1156 {
1157 	if (channel >= IPMI_MAX_CHANNELS)
1158 		return -EINVAL;
1159 	user->intf->channels[channel].lun = LUN & 0x3;
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(ipmi_set_my_LUN);
1163 
1164 int ipmi_get_my_LUN(ipmi_user_t   user,
1165 		    unsigned int  channel,
1166 		    unsigned char *address)
1167 {
1168 	if (channel >= IPMI_MAX_CHANNELS)
1169 		return -EINVAL;
1170 	*address = user->intf->channels[channel].lun;
1171 	return 0;
1172 }
1173 EXPORT_SYMBOL(ipmi_get_my_LUN);
1174 
1175 int ipmi_get_maintenance_mode(ipmi_user_t user)
1176 {
1177 	int           mode;
1178 	unsigned long flags;
1179 
1180 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1181 	mode = user->intf->maintenance_mode;
1182 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1183 
1184 	return mode;
1185 }
1186 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1187 
1188 static void maintenance_mode_update(ipmi_smi_t intf)
1189 {
1190 	if (intf->handlers->set_maintenance_mode)
1191 		intf->handlers->set_maintenance_mode(
1192 			intf->send_info, intf->maintenance_mode_enable);
1193 }
1194 
1195 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1196 {
1197 	int           rv = 0;
1198 	unsigned long flags;
1199 	ipmi_smi_t    intf = user->intf;
1200 
1201 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1202 	if (intf->maintenance_mode != mode) {
1203 		switch (mode) {
1204 		case IPMI_MAINTENANCE_MODE_AUTO:
1205 			intf->maintenance_mode_enable
1206 				= (intf->auto_maintenance_timeout > 0);
1207 			break;
1208 
1209 		case IPMI_MAINTENANCE_MODE_OFF:
1210 			intf->maintenance_mode_enable = false;
1211 			break;
1212 
1213 		case IPMI_MAINTENANCE_MODE_ON:
1214 			intf->maintenance_mode_enable = true;
1215 			break;
1216 
1217 		default:
1218 			rv = -EINVAL;
1219 			goto out_unlock;
1220 		}
1221 		intf->maintenance_mode = mode;
1222 
1223 		maintenance_mode_update(intf);
1224 	}
1225  out_unlock:
1226 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1227 
1228 	return rv;
1229 }
1230 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1231 
1232 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1233 {
1234 	unsigned long        flags;
1235 	ipmi_smi_t           intf = user->intf;
1236 	struct ipmi_recv_msg *msg, *msg2;
1237 	struct list_head     msgs;
1238 
1239 	INIT_LIST_HEAD(&msgs);
1240 
1241 	spin_lock_irqsave(&intf->events_lock, flags);
1242 	if (user->gets_events == val)
1243 		goto out;
1244 
1245 	user->gets_events = val;
1246 
1247 	if (val) {
1248 		if (atomic_inc_return(&intf->event_waiters) == 1)
1249 			need_waiter(intf);
1250 	} else {
1251 		atomic_dec(&intf->event_waiters);
1252 	}
1253 
1254 	if (intf->delivering_events)
1255 		/*
1256 		 * Another thread is delivering events for this, so
1257 		 * let it handle any new events.
1258 		 */
1259 		goto out;
1260 
1261 	/* Deliver any queued events. */
1262 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1263 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1264 			list_move_tail(&msg->link, &msgs);
1265 		intf->waiting_events_count = 0;
1266 		if (intf->event_msg_printed) {
1267 			printk(KERN_WARNING PFX "Event queue no longer"
1268 			       " full\n");
1269 			intf->event_msg_printed = 0;
1270 		}
1271 
1272 		intf->delivering_events = 1;
1273 		spin_unlock_irqrestore(&intf->events_lock, flags);
1274 
1275 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1276 			msg->user = user;
1277 			kref_get(&user->refcount);
1278 			deliver_response(msg);
1279 		}
1280 
1281 		spin_lock_irqsave(&intf->events_lock, flags);
1282 		intf->delivering_events = 0;
1283 	}
1284 
1285  out:
1286 	spin_unlock_irqrestore(&intf->events_lock, flags);
1287 
1288 	return 0;
1289 }
1290 EXPORT_SYMBOL(ipmi_set_gets_events);
1291 
1292 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1293 				      unsigned char netfn,
1294 				      unsigned char cmd,
1295 				      unsigned char chan)
1296 {
1297 	struct cmd_rcvr *rcvr;
1298 
1299 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1300 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1301 					&& (rcvr->chans & (1 << chan)))
1302 			return rcvr;
1303 	}
1304 	return NULL;
1305 }
1306 
1307 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1308 				 unsigned char netfn,
1309 				 unsigned char cmd,
1310 				 unsigned int  chans)
1311 {
1312 	struct cmd_rcvr *rcvr;
1313 
1314 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1315 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1316 					&& (rcvr->chans & chans))
1317 			return 0;
1318 	}
1319 	return 1;
1320 }
1321 
1322 int ipmi_register_for_cmd(ipmi_user_t   user,
1323 			  unsigned char netfn,
1324 			  unsigned char cmd,
1325 			  unsigned int  chans)
1326 {
1327 	ipmi_smi_t      intf = user->intf;
1328 	struct cmd_rcvr *rcvr;
1329 	int             rv = 0;
1330 
1331 
1332 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1333 	if (!rcvr)
1334 		return -ENOMEM;
1335 	rcvr->cmd = cmd;
1336 	rcvr->netfn = netfn;
1337 	rcvr->chans = chans;
1338 	rcvr->user = user;
1339 
1340 	mutex_lock(&intf->cmd_rcvrs_mutex);
1341 	/* Make sure the command/netfn is not already registered. */
1342 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1343 		rv = -EBUSY;
1344 		goto out_unlock;
1345 	}
1346 
1347 	if (atomic_inc_return(&intf->event_waiters) == 1)
1348 		need_waiter(intf);
1349 
1350 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1351 
1352  out_unlock:
1353 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1354 	if (rv)
1355 		kfree(rcvr);
1356 
1357 	return rv;
1358 }
1359 EXPORT_SYMBOL(ipmi_register_for_cmd);
1360 
1361 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1362 			    unsigned char netfn,
1363 			    unsigned char cmd,
1364 			    unsigned int  chans)
1365 {
1366 	ipmi_smi_t      intf = user->intf;
1367 	struct cmd_rcvr *rcvr;
1368 	struct cmd_rcvr *rcvrs = NULL;
1369 	int i, rv = -ENOENT;
1370 
1371 	mutex_lock(&intf->cmd_rcvrs_mutex);
1372 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1373 		if (((1 << i) & chans) == 0)
1374 			continue;
1375 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1376 		if (rcvr == NULL)
1377 			continue;
1378 		if (rcvr->user == user) {
1379 			rv = 0;
1380 			rcvr->chans &= ~chans;
1381 			if (rcvr->chans == 0) {
1382 				list_del_rcu(&rcvr->link);
1383 				rcvr->next = rcvrs;
1384 				rcvrs = rcvr;
1385 			}
1386 		}
1387 	}
1388 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1389 	synchronize_rcu();
1390 	while (rcvrs) {
1391 		atomic_dec(&intf->event_waiters);
1392 		rcvr = rcvrs;
1393 		rcvrs = rcvr->next;
1394 		kfree(rcvr);
1395 	}
1396 	return rv;
1397 }
1398 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1399 
1400 static unsigned char
1401 ipmb_checksum(unsigned char *data, int size)
1402 {
1403 	unsigned char csum = 0;
1404 
1405 	for (; size > 0; size--, data++)
1406 		csum += *data;
1407 
1408 	return -csum;
1409 }
1410 
1411 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1412 				   struct kernel_ipmi_msg *msg,
1413 				   struct ipmi_ipmb_addr *ipmb_addr,
1414 				   long                  msgid,
1415 				   unsigned char         ipmb_seq,
1416 				   int                   broadcast,
1417 				   unsigned char         source_address,
1418 				   unsigned char         source_lun)
1419 {
1420 	int i = broadcast;
1421 
1422 	/* Format the IPMB header data. */
1423 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1424 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1425 	smi_msg->data[2] = ipmb_addr->channel;
1426 	if (broadcast)
1427 		smi_msg->data[3] = 0;
1428 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1429 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1430 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1431 	smi_msg->data[i+6] = source_address;
1432 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1433 	smi_msg->data[i+8] = msg->cmd;
1434 
1435 	/* Now tack on the data to the message. */
1436 	if (msg->data_len > 0)
1437 		memcpy(&(smi_msg->data[i+9]), msg->data,
1438 		       msg->data_len);
1439 	smi_msg->data_size = msg->data_len + 9;
1440 
1441 	/* Now calculate the checksum and tack it on. */
1442 	smi_msg->data[i+smi_msg->data_size]
1443 		= ipmb_checksum(&(smi_msg->data[i+6]),
1444 				smi_msg->data_size-6);
1445 
1446 	/*
1447 	 * Add on the checksum size and the offset from the
1448 	 * broadcast.
1449 	 */
1450 	smi_msg->data_size += 1 + i;
1451 
1452 	smi_msg->msgid = msgid;
1453 }
1454 
1455 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1456 				  struct kernel_ipmi_msg *msg,
1457 				  struct ipmi_lan_addr  *lan_addr,
1458 				  long                  msgid,
1459 				  unsigned char         ipmb_seq,
1460 				  unsigned char         source_lun)
1461 {
1462 	/* Format the IPMB header data. */
1463 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1464 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1465 	smi_msg->data[2] = lan_addr->channel;
1466 	smi_msg->data[3] = lan_addr->session_handle;
1467 	smi_msg->data[4] = lan_addr->remote_SWID;
1468 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1469 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1470 	smi_msg->data[7] = lan_addr->local_SWID;
1471 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1472 	smi_msg->data[9] = msg->cmd;
1473 
1474 	/* Now tack on the data to the message. */
1475 	if (msg->data_len > 0)
1476 		memcpy(&(smi_msg->data[10]), msg->data,
1477 		       msg->data_len);
1478 	smi_msg->data_size = msg->data_len + 10;
1479 
1480 	/* Now calculate the checksum and tack it on. */
1481 	smi_msg->data[smi_msg->data_size]
1482 		= ipmb_checksum(&(smi_msg->data[7]),
1483 				smi_msg->data_size-7);
1484 
1485 	/*
1486 	 * Add on the checksum size and the offset from the
1487 	 * broadcast.
1488 	 */
1489 	smi_msg->data_size += 1;
1490 
1491 	smi_msg->msgid = msgid;
1492 }
1493 
1494 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1495 					     struct ipmi_smi_msg *smi_msg,
1496 					     int priority)
1497 {
1498 	if (intf->curr_msg) {
1499 		if (priority > 0)
1500 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1501 		else
1502 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1503 		smi_msg = NULL;
1504 	} else {
1505 		intf->curr_msg = smi_msg;
1506 	}
1507 
1508 	return smi_msg;
1509 }
1510 
1511 
1512 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers,
1513 		     struct ipmi_smi_msg *smi_msg, int priority)
1514 {
1515 	int run_to_completion = intf->run_to_completion;
1516 
1517 	if (run_to_completion) {
1518 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1519 	} else {
1520 		unsigned long flags;
1521 
1522 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1523 		smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1524 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1525 	}
1526 
1527 	if (smi_msg)
1528 		handlers->sender(intf->send_info, smi_msg);
1529 }
1530 
1531 /*
1532  * Separate from ipmi_request so that the user does not have to be
1533  * supplied in certain circumstances (mainly at panic time).  If
1534  * messages are supplied, they will be freed, even if an error
1535  * occurs.
1536  */
1537 static int i_ipmi_request(ipmi_user_t          user,
1538 			  ipmi_smi_t           intf,
1539 			  struct ipmi_addr     *addr,
1540 			  long                 msgid,
1541 			  struct kernel_ipmi_msg *msg,
1542 			  void                 *user_msg_data,
1543 			  void                 *supplied_smi,
1544 			  struct ipmi_recv_msg *supplied_recv,
1545 			  int                  priority,
1546 			  unsigned char        source_address,
1547 			  unsigned char        source_lun,
1548 			  int                  retries,
1549 			  unsigned int         retry_time_ms)
1550 {
1551 	int                      rv = 0;
1552 	struct ipmi_smi_msg      *smi_msg;
1553 	struct ipmi_recv_msg     *recv_msg;
1554 	unsigned long            flags;
1555 
1556 
1557 	if (supplied_recv)
1558 		recv_msg = supplied_recv;
1559 	else {
1560 		recv_msg = ipmi_alloc_recv_msg();
1561 		if (recv_msg == NULL)
1562 			return -ENOMEM;
1563 	}
1564 	recv_msg->user_msg_data = user_msg_data;
1565 
1566 	if (supplied_smi)
1567 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1568 	else {
1569 		smi_msg = ipmi_alloc_smi_msg();
1570 		if (smi_msg == NULL) {
1571 			ipmi_free_recv_msg(recv_msg);
1572 			return -ENOMEM;
1573 		}
1574 	}
1575 
1576 	rcu_read_lock();
1577 	if (intf->in_shutdown) {
1578 		rv = -ENODEV;
1579 		goto out_err;
1580 	}
1581 
1582 	recv_msg->user = user;
1583 	if (user)
1584 		kref_get(&user->refcount);
1585 	recv_msg->msgid = msgid;
1586 	/*
1587 	 * Store the message to send in the receive message so timeout
1588 	 * responses can get the proper response data.
1589 	 */
1590 	recv_msg->msg = *msg;
1591 
1592 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1593 		struct ipmi_system_interface_addr *smi_addr;
1594 
1595 		if (msg->netfn & 1) {
1596 			/* Responses are not allowed to the SMI. */
1597 			rv = -EINVAL;
1598 			goto out_err;
1599 		}
1600 
1601 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1602 		if (smi_addr->lun > 3) {
1603 			ipmi_inc_stat(intf, sent_invalid_commands);
1604 			rv = -EINVAL;
1605 			goto out_err;
1606 		}
1607 
1608 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1609 
1610 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1611 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1612 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1613 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1614 			/*
1615 			 * We don't let the user do these, since we manage
1616 			 * the sequence numbers.
1617 			 */
1618 			ipmi_inc_stat(intf, sent_invalid_commands);
1619 			rv = -EINVAL;
1620 			goto out_err;
1621 		}
1622 
1623 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1624 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1625 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1626 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1627 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1628 			intf->auto_maintenance_timeout
1629 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1630 			if (!intf->maintenance_mode
1631 			    && !intf->maintenance_mode_enable) {
1632 				intf->maintenance_mode_enable = true;
1633 				maintenance_mode_update(intf);
1634 			}
1635 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1636 					       flags);
1637 		}
1638 
1639 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1640 			ipmi_inc_stat(intf, sent_invalid_commands);
1641 			rv = -EMSGSIZE;
1642 			goto out_err;
1643 		}
1644 
1645 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1646 		smi_msg->data[1] = msg->cmd;
1647 		smi_msg->msgid = msgid;
1648 		smi_msg->user_data = recv_msg;
1649 		if (msg->data_len > 0)
1650 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1651 		smi_msg->data_size = msg->data_len + 2;
1652 		ipmi_inc_stat(intf, sent_local_commands);
1653 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1654 		struct ipmi_ipmb_addr *ipmb_addr;
1655 		unsigned char         ipmb_seq;
1656 		long                  seqid;
1657 		int                   broadcast = 0;
1658 
1659 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1660 			ipmi_inc_stat(intf, sent_invalid_commands);
1661 			rv = -EINVAL;
1662 			goto out_err;
1663 		}
1664 
1665 		if (intf->channels[addr->channel].medium
1666 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1667 			ipmi_inc_stat(intf, sent_invalid_commands);
1668 			rv = -EINVAL;
1669 			goto out_err;
1670 		}
1671 
1672 		if (retries < 0) {
1673 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1674 			retries = 0; /* Don't retry broadcasts. */
1675 		    else
1676 			retries = 4;
1677 		}
1678 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1679 		    /*
1680 		     * Broadcasts add a zero at the beginning of the
1681 		     * message, but otherwise is the same as an IPMB
1682 		     * address.
1683 		     */
1684 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1685 		    broadcast = 1;
1686 		}
1687 
1688 
1689 		/* Default to 1 second retries. */
1690 		if (retry_time_ms == 0)
1691 		    retry_time_ms = 1000;
1692 
1693 		/*
1694 		 * 9 for the header and 1 for the checksum, plus
1695 		 * possibly one for the broadcast.
1696 		 */
1697 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1698 			ipmi_inc_stat(intf, sent_invalid_commands);
1699 			rv = -EMSGSIZE;
1700 			goto out_err;
1701 		}
1702 
1703 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1704 		if (ipmb_addr->lun > 3) {
1705 			ipmi_inc_stat(intf, sent_invalid_commands);
1706 			rv = -EINVAL;
1707 			goto out_err;
1708 		}
1709 
1710 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1711 
1712 		if (recv_msg->msg.netfn & 0x1) {
1713 			/*
1714 			 * It's a response, so use the user's sequence
1715 			 * from msgid.
1716 			 */
1717 			ipmi_inc_stat(intf, sent_ipmb_responses);
1718 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1719 					msgid, broadcast,
1720 					source_address, source_lun);
1721 
1722 			/*
1723 			 * Save the receive message so we can use it
1724 			 * to deliver the response.
1725 			 */
1726 			smi_msg->user_data = recv_msg;
1727 		} else {
1728 			/* It's a command, so get a sequence for it. */
1729 
1730 			spin_lock_irqsave(&(intf->seq_lock), flags);
1731 
1732 			/*
1733 			 * Create a sequence number with a 1 second
1734 			 * timeout and 4 retries.
1735 			 */
1736 			rv = intf_next_seq(intf,
1737 					   recv_msg,
1738 					   retry_time_ms,
1739 					   retries,
1740 					   broadcast,
1741 					   &ipmb_seq,
1742 					   &seqid);
1743 			if (rv) {
1744 				/*
1745 				 * We have used up all the sequence numbers,
1746 				 * probably, so abort.
1747 				 */
1748 				spin_unlock_irqrestore(&(intf->seq_lock),
1749 						       flags);
1750 				goto out_err;
1751 			}
1752 
1753 			ipmi_inc_stat(intf, sent_ipmb_commands);
1754 
1755 			/*
1756 			 * Store the sequence number in the message,
1757 			 * so that when the send message response
1758 			 * comes back we can start the timer.
1759 			 */
1760 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1761 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1762 					ipmb_seq, broadcast,
1763 					source_address, source_lun);
1764 
1765 			/*
1766 			 * Copy the message into the recv message data, so we
1767 			 * can retransmit it later if necessary.
1768 			 */
1769 			memcpy(recv_msg->msg_data, smi_msg->data,
1770 			       smi_msg->data_size);
1771 			recv_msg->msg.data = recv_msg->msg_data;
1772 			recv_msg->msg.data_len = smi_msg->data_size;
1773 
1774 			/*
1775 			 * We don't unlock until here, because we need
1776 			 * to copy the completed message into the
1777 			 * recv_msg before we release the lock.
1778 			 * Otherwise, race conditions may bite us.  I
1779 			 * know that's pretty paranoid, but I prefer
1780 			 * to be correct.
1781 			 */
1782 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1783 		}
1784 	} else if (is_lan_addr(addr)) {
1785 		struct ipmi_lan_addr  *lan_addr;
1786 		unsigned char         ipmb_seq;
1787 		long                  seqid;
1788 
1789 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1790 			ipmi_inc_stat(intf, sent_invalid_commands);
1791 			rv = -EINVAL;
1792 			goto out_err;
1793 		}
1794 
1795 		if ((intf->channels[addr->channel].medium
1796 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1797 		    && (intf->channels[addr->channel].medium
1798 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1799 			ipmi_inc_stat(intf, sent_invalid_commands);
1800 			rv = -EINVAL;
1801 			goto out_err;
1802 		}
1803 
1804 		retries = 4;
1805 
1806 		/* Default to 1 second retries. */
1807 		if (retry_time_ms == 0)
1808 		    retry_time_ms = 1000;
1809 
1810 		/* 11 for the header and 1 for the checksum. */
1811 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1812 			ipmi_inc_stat(intf, sent_invalid_commands);
1813 			rv = -EMSGSIZE;
1814 			goto out_err;
1815 		}
1816 
1817 		lan_addr = (struct ipmi_lan_addr *) addr;
1818 		if (lan_addr->lun > 3) {
1819 			ipmi_inc_stat(intf, sent_invalid_commands);
1820 			rv = -EINVAL;
1821 			goto out_err;
1822 		}
1823 
1824 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1825 
1826 		if (recv_msg->msg.netfn & 0x1) {
1827 			/*
1828 			 * It's a response, so use the user's sequence
1829 			 * from msgid.
1830 			 */
1831 			ipmi_inc_stat(intf, sent_lan_responses);
1832 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1833 				       msgid, source_lun);
1834 
1835 			/*
1836 			 * Save the receive message so we can use it
1837 			 * to deliver the response.
1838 			 */
1839 			smi_msg->user_data = recv_msg;
1840 		} else {
1841 			/* It's a command, so get a sequence for it. */
1842 
1843 			spin_lock_irqsave(&(intf->seq_lock), flags);
1844 
1845 			/*
1846 			 * Create a sequence number with a 1 second
1847 			 * timeout and 4 retries.
1848 			 */
1849 			rv = intf_next_seq(intf,
1850 					   recv_msg,
1851 					   retry_time_ms,
1852 					   retries,
1853 					   0,
1854 					   &ipmb_seq,
1855 					   &seqid);
1856 			if (rv) {
1857 				/*
1858 				 * We have used up all the sequence numbers,
1859 				 * probably, so abort.
1860 				 */
1861 				spin_unlock_irqrestore(&(intf->seq_lock),
1862 						       flags);
1863 				goto out_err;
1864 			}
1865 
1866 			ipmi_inc_stat(intf, sent_lan_commands);
1867 
1868 			/*
1869 			 * Store the sequence number in the message,
1870 			 * so that when the send message response
1871 			 * comes back we can start the timer.
1872 			 */
1873 			format_lan_msg(smi_msg, msg, lan_addr,
1874 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1875 				       ipmb_seq, source_lun);
1876 
1877 			/*
1878 			 * Copy the message into the recv message data, so we
1879 			 * can retransmit it later if necessary.
1880 			 */
1881 			memcpy(recv_msg->msg_data, smi_msg->data,
1882 			       smi_msg->data_size);
1883 			recv_msg->msg.data = recv_msg->msg_data;
1884 			recv_msg->msg.data_len = smi_msg->data_size;
1885 
1886 			/*
1887 			 * We don't unlock until here, because we need
1888 			 * to copy the completed message into the
1889 			 * recv_msg before we release the lock.
1890 			 * Otherwise, race conditions may bite us.  I
1891 			 * know that's pretty paranoid, but I prefer
1892 			 * to be correct.
1893 			 */
1894 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1895 		}
1896 	} else {
1897 	    /* Unknown address type. */
1898 		ipmi_inc_stat(intf, sent_invalid_commands);
1899 		rv = -EINVAL;
1900 		goto out_err;
1901 	}
1902 
1903 #ifdef DEBUG_MSGING
1904 	{
1905 		int m;
1906 		for (m = 0; m < smi_msg->data_size; m++)
1907 			printk(" %2.2x", smi_msg->data[m]);
1908 		printk("\n");
1909 	}
1910 #endif
1911 
1912 	smi_send(intf, intf->handlers, smi_msg, priority);
1913 	rcu_read_unlock();
1914 
1915 	return 0;
1916 
1917  out_err:
1918 	rcu_read_unlock();
1919 	ipmi_free_smi_msg(smi_msg);
1920 	ipmi_free_recv_msg(recv_msg);
1921 	return rv;
1922 }
1923 
1924 static int check_addr(ipmi_smi_t       intf,
1925 		      struct ipmi_addr *addr,
1926 		      unsigned char    *saddr,
1927 		      unsigned char    *lun)
1928 {
1929 	if (addr->channel >= IPMI_MAX_CHANNELS)
1930 		return -EINVAL;
1931 	*lun = intf->channels[addr->channel].lun;
1932 	*saddr = intf->channels[addr->channel].address;
1933 	return 0;
1934 }
1935 
1936 int ipmi_request_settime(ipmi_user_t      user,
1937 			 struct ipmi_addr *addr,
1938 			 long             msgid,
1939 			 struct kernel_ipmi_msg  *msg,
1940 			 void             *user_msg_data,
1941 			 int              priority,
1942 			 int              retries,
1943 			 unsigned int     retry_time_ms)
1944 {
1945 	unsigned char saddr = 0, lun = 0;
1946 	int           rv;
1947 
1948 	if (!user)
1949 		return -EINVAL;
1950 	rv = check_addr(user->intf, addr, &saddr, &lun);
1951 	if (rv)
1952 		return rv;
1953 	return i_ipmi_request(user,
1954 			      user->intf,
1955 			      addr,
1956 			      msgid,
1957 			      msg,
1958 			      user_msg_data,
1959 			      NULL, NULL,
1960 			      priority,
1961 			      saddr,
1962 			      lun,
1963 			      retries,
1964 			      retry_time_ms);
1965 }
1966 EXPORT_SYMBOL(ipmi_request_settime);
1967 
1968 int ipmi_request_supply_msgs(ipmi_user_t          user,
1969 			     struct ipmi_addr     *addr,
1970 			     long                 msgid,
1971 			     struct kernel_ipmi_msg *msg,
1972 			     void                 *user_msg_data,
1973 			     void                 *supplied_smi,
1974 			     struct ipmi_recv_msg *supplied_recv,
1975 			     int                  priority)
1976 {
1977 	unsigned char saddr = 0, lun = 0;
1978 	int           rv;
1979 
1980 	if (!user)
1981 		return -EINVAL;
1982 	rv = check_addr(user->intf, addr, &saddr, &lun);
1983 	if (rv)
1984 		return rv;
1985 	return i_ipmi_request(user,
1986 			      user->intf,
1987 			      addr,
1988 			      msgid,
1989 			      msg,
1990 			      user_msg_data,
1991 			      supplied_smi,
1992 			      supplied_recv,
1993 			      priority,
1994 			      saddr,
1995 			      lun,
1996 			      -1, 0);
1997 }
1998 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1999 
2000 #ifdef CONFIG_PROC_FS
2001 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
2002 {
2003 	ipmi_smi_t intf = m->private;
2004 	int        i;
2005 
2006 	seq_printf(m, "%x", intf->channels[0].address);
2007 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2008 		seq_printf(m, " %x", intf->channels[i].address);
2009 	seq_putc(m, '\n');
2010 
2011 	return 0;
2012 }
2013 
2014 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2015 {
2016 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2017 }
2018 
2019 static const struct file_operations smi_ipmb_proc_ops = {
2020 	.open		= smi_ipmb_proc_open,
2021 	.read		= seq_read,
2022 	.llseek		= seq_lseek,
2023 	.release	= single_release,
2024 };
2025 
2026 static int smi_version_proc_show(struct seq_file *m, void *v)
2027 {
2028 	ipmi_smi_t intf = m->private;
2029 
2030 	seq_printf(m, "%u.%u\n",
2031 		   ipmi_version_major(&intf->bmc->id),
2032 		   ipmi_version_minor(&intf->bmc->id));
2033 
2034 	return 0;
2035 }
2036 
2037 static int smi_version_proc_open(struct inode *inode, struct file *file)
2038 {
2039 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2040 }
2041 
2042 static const struct file_operations smi_version_proc_ops = {
2043 	.open		= smi_version_proc_open,
2044 	.read		= seq_read,
2045 	.llseek		= seq_lseek,
2046 	.release	= single_release,
2047 };
2048 
2049 static int smi_stats_proc_show(struct seq_file *m, void *v)
2050 {
2051 	ipmi_smi_t intf = m->private;
2052 
2053 	seq_printf(m, "sent_invalid_commands:       %u\n",
2054 		       ipmi_get_stat(intf, sent_invalid_commands));
2055 	seq_printf(m, "sent_local_commands:         %u\n",
2056 		       ipmi_get_stat(intf, sent_local_commands));
2057 	seq_printf(m, "handled_local_responses:     %u\n",
2058 		       ipmi_get_stat(intf, handled_local_responses));
2059 	seq_printf(m, "unhandled_local_responses:   %u\n",
2060 		       ipmi_get_stat(intf, unhandled_local_responses));
2061 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2062 		       ipmi_get_stat(intf, sent_ipmb_commands));
2063 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2064 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2065 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2066 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2067 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2068 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2069 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2070 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2071 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2072 		       ipmi_get_stat(intf, sent_ipmb_responses));
2073 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2074 		       ipmi_get_stat(intf, handled_ipmb_responses));
2075 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2076 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2077 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2078 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2079 	seq_printf(m, "sent_lan_commands:           %u\n",
2080 		       ipmi_get_stat(intf, sent_lan_commands));
2081 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2082 		       ipmi_get_stat(intf, sent_lan_command_errs));
2083 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2084 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2085 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2086 		       ipmi_get_stat(intf, timed_out_lan_commands));
2087 	seq_printf(m, "sent_lan_responses:          %u\n",
2088 		       ipmi_get_stat(intf, sent_lan_responses));
2089 	seq_printf(m, "handled_lan_responses:       %u\n",
2090 		       ipmi_get_stat(intf, handled_lan_responses));
2091 	seq_printf(m, "invalid_lan_responses:       %u\n",
2092 		       ipmi_get_stat(intf, invalid_lan_responses));
2093 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2094 		       ipmi_get_stat(intf, unhandled_lan_responses));
2095 	seq_printf(m, "handled_commands:            %u\n",
2096 		       ipmi_get_stat(intf, handled_commands));
2097 	seq_printf(m, "invalid_commands:            %u\n",
2098 		       ipmi_get_stat(intf, invalid_commands));
2099 	seq_printf(m, "unhandled_commands:          %u\n",
2100 		       ipmi_get_stat(intf, unhandled_commands));
2101 	seq_printf(m, "invalid_events:              %u\n",
2102 		       ipmi_get_stat(intf, invalid_events));
2103 	seq_printf(m, "events:                      %u\n",
2104 		       ipmi_get_stat(intf, events));
2105 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2106 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2107 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2108 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2109 	return 0;
2110 }
2111 
2112 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2113 {
2114 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2115 }
2116 
2117 static const struct file_operations smi_stats_proc_ops = {
2118 	.open		= smi_stats_proc_open,
2119 	.read		= seq_read,
2120 	.llseek		= seq_lseek,
2121 	.release	= single_release,
2122 };
2123 #endif /* CONFIG_PROC_FS */
2124 
2125 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2126 			    const struct file_operations *proc_ops,
2127 			    void *data)
2128 {
2129 	int                    rv = 0;
2130 #ifdef CONFIG_PROC_FS
2131 	struct proc_dir_entry  *file;
2132 	struct ipmi_proc_entry *entry;
2133 
2134 	/* Create a list element. */
2135 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2136 	if (!entry)
2137 		return -ENOMEM;
2138 	entry->name = kstrdup(name, GFP_KERNEL);
2139 	if (!entry->name) {
2140 		kfree(entry);
2141 		return -ENOMEM;
2142 	}
2143 
2144 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2145 	if (!file) {
2146 		kfree(entry->name);
2147 		kfree(entry);
2148 		rv = -ENOMEM;
2149 	} else {
2150 		mutex_lock(&smi->proc_entry_lock);
2151 		/* Stick it on the list. */
2152 		entry->next = smi->proc_entries;
2153 		smi->proc_entries = entry;
2154 		mutex_unlock(&smi->proc_entry_lock);
2155 	}
2156 #endif /* CONFIG_PROC_FS */
2157 
2158 	return rv;
2159 }
2160 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2161 
2162 static int add_proc_entries(ipmi_smi_t smi, int num)
2163 {
2164 	int rv = 0;
2165 
2166 #ifdef CONFIG_PROC_FS
2167 	sprintf(smi->proc_dir_name, "%d", num);
2168 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2169 	if (!smi->proc_dir)
2170 		rv = -ENOMEM;
2171 
2172 	if (rv == 0)
2173 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2174 					     &smi_stats_proc_ops,
2175 					     smi);
2176 
2177 	if (rv == 0)
2178 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2179 					     &smi_ipmb_proc_ops,
2180 					     smi);
2181 
2182 	if (rv == 0)
2183 		rv = ipmi_smi_add_proc_entry(smi, "version",
2184 					     &smi_version_proc_ops,
2185 					     smi);
2186 #endif /* CONFIG_PROC_FS */
2187 
2188 	return rv;
2189 }
2190 
2191 static void remove_proc_entries(ipmi_smi_t smi)
2192 {
2193 #ifdef CONFIG_PROC_FS
2194 	struct ipmi_proc_entry *entry;
2195 
2196 	mutex_lock(&smi->proc_entry_lock);
2197 	while (smi->proc_entries) {
2198 		entry = smi->proc_entries;
2199 		smi->proc_entries = entry->next;
2200 
2201 		remove_proc_entry(entry->name, smi->proc_dir);
2202 		kfree(entry->name);
2203 		kfree(entry);
2204 	}
2205 	mutex_unlock(&smi->proc_entry_lock);
2206 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2207 #endif /* CONFIG_PROC_FS */
2208 }
2209 
2210 static int __find_bmc_guid(struct device *dev, void *data)
2211 {
2212 	unsigned char *id = data;
2213 	struct bmc_device *bmc = to_bmc_device(dev);
2214 	return memcmp(bmc->guid, id, 16) == 0;
2215 }
2216 
2217 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2218 					     unsigned char *guid)
2219 {
2220 	struct device *dev;
2221 
2222 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2223 	if (dev)
2224 		return to_bmc_device(dev);
2225 	else
2226 		return NULL;
2227 }
2228 
2229 struct prod_dev_id {
2230 	unsigned int  product_id;
2231 	unsigned char device_id;
2232 };
2233 
2234 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2235 {
2236 	struct prod_dev_id *id = data;
2237 	struct bmc_device *bmc = to_bmc_device(dev);
2238 
2239 	return (bmc->id.product_id == id->product_id
2240 		&& bmc->id.device_id == id->device_id);
2241 }
2242 
2243 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2244 	struct device_driver *drv,
2245 	unsigned int product_id, unsigned char device_id)
2246 {
2247 	struct prod_dev_id id = {
2248 		.product_id = product_id,
2249 		.device_id = device_id,
2250 	};
2251 	struct device *dev;
2252 
2253 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2254 	if (dev)
2255 		return to_bmc_device(dev);
2256 	else
2257 		return NULL;
2258 }
2259 
2260 static ssize_t device_id_show(struct device *dev,
2261 			      struct device_attribute *attr,
2262 			      char *buf)
2263 {
2264 	struct bmc_device *bmc = to_bmc_device(dev);
2265 
2266 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2267 }
2268 static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2269 
2270 static ssize_t provides_device_sdrs_show(struct device *dev,
2271 					 struct device_attribute *attr,
2272 					 char *buf)
2273 {
2274 	struct bmc_device *bmc = to_bmc_device(dev);
2275 
2276 	return snprintf(buf, 10, "%u\n",
2277 			(bmc->id.device_revision & 0x80) >> 7);
2278 }
2279 static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2280 		   NULL);
2281 
2282 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2283 			     char *buf)
2284 {
2285 	struct bmc_device *bmc = to_bmc_device(dev);
2286 
2287 	return snprintf(buf, 20, "%u\n",
2288 			bmc->id.device_revision & 0x0F);
2289 }
2290 static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2291 
2292 static ssize_t firmware_revision_show(struct device *dev,
2293 				      struct device_attribute *attr,
2294 				      char *buf)
2295 {
2296 	struct bmc_device *bmc = to_bmc_device(dev);
2297 
2298 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2299 			bmc->id.firmware_revision_2);
2300 }
2301 static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2302 
2303 static ssize_t ipmi_version_show(struct device *dev,
2304 				 struct device_attribute *attr,
2305 				 char *buf)
2306 {
2307 	struct bmc_device *bmc = to_bmc_device(dev);
2308 
2309 	return snprintf(buf, 20, "%u.%u\n",
2310 			ipmi_version_major(&bmc->id),
2311 			ipmi_version_minor(&bmc->id));
2312 }
2313 static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2314 
2315 static ssize_t add_dev_support_show(struct device *dev,
2316 				    struct device_attribute *attr,
2317 				    char *buf)
2318 {
2319 	struct bmc_device *bmc = to_bmc_device(dev);
2320 
2321 	return snprintf(buf, 10, "0x%02x\n",
2322 			bmc->id.additional_device_support);
2323 }
2324 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2325 		   NULL);
2326 
2327 static ssize_t manufacturer_id_show(struct device *dev,
2328 				    struct device_attribute *attr,
2329 				    char *buf)
2330 {
2331 	struct bmc_device *bmc = to_bmc_device(dev);
2332 
2333 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2334 }
2335 static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2336 
2337 static ssize_t product_id_show(struct device *dev,
2338 			       struct device_attribute *attr,
2339 			       char *buf)
2340 {
2341 	struct bmc_device *bmc = to_bmc_device(dev);
2342 
2343 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2344 }
2345 static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2346 
2347 static ssize_t aux_firmware_rev_show(struct device *dev,
2348 				     struct device_attribute *attr,
2349 				     char *buf)
2350 {
2351 	struct bmc_device *bmc = to_bmc_device(dev);
2352 
2353 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2354 			bmc->id.aux_firmware_revision[3],
2355 			bmc->id.aux_firmware_revision[2],
2356 			bmc->id.aux_firmware_revision[1],
2357 			bmc->id.aux_firmware_revision[0]);
2358 }
2359 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2360 
2361 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2362 			 char *buf)
2363 {
2364 	struct bmc_device *bmc = to_bmc_device(dev);
2365 
2366 	return snprintf(buf, 100, "%Lx%Lx\n",
2367 			(long long) bmc->guid[0],
2368 			(long long) bmc->guid[8]);
2369 }
2370 static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2371 
2372 static struct attribute *bmc_dev_attrs[] = {
2373 	&dev_attr_device_id.attr,
2374 	&dev_attr_provides_device_sdrs.attr,
2375 	&dev_attr_revision.attr,
2376 	&dev_attr_firmware_revision.attr,
2377 	&dev_attr_ipmi_version.attr,
2378 	&dev_attr_additional_device_support.attr,
2379 	&dev_attr_manufacturer_id.attr,
2380 	&dev_attr_product_id.attr,
2381 	&dev_attr_aux_firmware_revision.attr,
2382 	&dev_attr_guid.attr,
2383 	NULL
2384 };
2385 
2386 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2387 				       struct attribute *attr, int idx)
2388 {
2389 	struct device *dev = kobj_to_dev(kobj);
2390 	struct bmc_device *bmc = to_bmc_device(dev);
2391 	umode_t mode = attr->mode;
2392 
2393 	if (attr == &dev_attr_aux_firmware_revision.attr)
2394 		return bmc->id.aux_firmware_revision_set ? mode : 0;
2395 	if (attr == &dev_attr_guid.attr)
2396 		return bmc->guid_set ? mode : 0;
2397 	return mode;
2398 }
2399 
2400 static const struct attribute_group bmc_dev_attr_group = {
2401 	.attrs		= bmc_dev_attrs,
2402 	.is_visible	= bmc_dev_attr_is_visible,
2403 };
2404 
2405 static const struct attribute_group *bmc_dev_attr_groups[] = {
2406 	&bmc_dev_attr_group,
2407 	NULL
2408 };
2409 
2410 static const struct device_type bmc_device_type = {
2411 	.groups		= bmc_dev_attr_groups,
2412 };
2413 
2414 static void
2415 release_bmc_device(struct device *dev)
2416 {
2417 	kfree(to_bmc_device(dev));
2418 }
2419 
2420 static void
2421 cleanup_bmc_device(struct kref *ref)
2422 {
2423 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2424 
2425 	platform_device_unregister(&bmc->pdev);
2426 }
2427 
2428 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2429 {
2430 	struct bmc_device *bmc = intf->bmc;
2431 
2432 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2433 	if (intf->my_dev_name) {
2434 		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2435 		kfree(intf->my_dev_name);
2436 		intf->my_dev_name = NULL;
2437 	}
2438 
2439 	mutex_lock(&ipmidriver_mutex);
2440 	kref_put(&bmc->usecount, cleanup_bmc_device);
2441 	intf->bmc = NULL;
2442 	mutex_unlock(&ipmidriver_mutex);
2443 }
2444 
2445 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2446 {
2447 	int               rv;
2448 	struct bmc_device *bmc = intf->bmc;
2449 	struct bmc_device *old_bmc;
2450 
2451 	mutex_lock(&ipmidriver_mutex);
2452 
2453 	/*
2454 	 * Try to find if there is an bmc_device struct
2455 	 * representing the interfaced BMC already
2456 	 */
2457 	if (bmc->guid_set)
2458 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2459 	else
2460 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2461 						    bmc->id.product_id,
2462 						    bmc->id.device_id);
2463 
2464 	/*
2465 	 * If there is already an bmc_device, free the new one,
2466 	 * otherwise register the new BMC device
2467 	 */
2468 	if (old_bmc) {
2469 		kfree(bmc);
2470 		intf->bmc = old_bmc;
2471 		bmc = old_bmc;
2472 
2473 		kref_get(&bmc->usecount);
2474 		mutex_unlock(&ipmidriver_mutex);
2475 
2476 		printk(KERN_INFO
2477 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2478 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2479 		       bmc->id.manufacturer_id,
2480 		       bmc->id.product_id,
2481 		       bmc->id.device_id);
2482 	} else {
2483 		unsigned char orig_dev_id = bmc->id.device_id;
2484 		int warn_printed = 0;
2485 
2486 		snprintf(bmc->name, sizeof(bmc->name),
2487 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2488 		bmc->pdev.name = bmc->name;
2489 
2490 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2491 						 bmc->id.product_id,
2492 						 bmc->id.device_id)) {
2493 			if (!warn_printed) {
2494 				printk(KERN_WARNING PFX
2495 				       "This machine has two different BMCs"
2496 				       " with the same product id and device"
2497 				       " id.  This is an error in the"
2498 				       " firmware, but incrementing the"
2499 				       " device id to work around the problem."
2500 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2501 				       bmc->id.product_id, bmc->id.device_id);
2502 				warn_printed = 1;
2503 			}
2504 			bmc->id.device_id++; /* Wraps at 255 */
2505 			if (bmc->id.device_id == orig_dev_id) {
2506 				printk(KERN_ERR PFX
2507 				       "Out of device ids!\n");
2508 				break;
2509 			}
2510 		}
2511 
2512 		bmc->pdev.dev.driver = &ipmidriver.driver;
2513 		bmc->pdev.id = bmc->id.device_id;
2514 		bmc->pdev.dev.release = release_bmc_device;
2515 		bmc->pdev.dev.type = &bmc_device_type;
2516 		kref_init(&bmc->usecount);
2517 
2518 		rv = platform_device_register(&bmc->pdev);
2519 		mutex_unlock(&ipmidriver_mutex);
2520 		if (rv) {
2521 			put_device(&bmc->pdev.dev);
2522 			printk(KERN_ERR
2523 			       "ipmi_msghandler:"
2524 			       " Unable to register bmc device: %d\n",
2525 			       rv);
2526 			/*
2527 			 * Don't go to out_err, you can only do that if
2528 			 * the device is registered already.
2529 			 */
2530 			return rv;
2531 		}
2532 
2533 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2534 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2535 			 bmc->id.manufacturer_id,
2536 			 bmc->id.product_id,
2537 			 bmc->id.device_id);
2538 	}
2539 
2540 	/*
2541 	 * create symlink from system interface device to bmc device
2542 	 * and back.
2543 	 */
2544 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2545 	if (rv) {
2546 		printk(KERN_ERR
2547 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2548 		       rv);
2549 		goto out_err;
2550 	}
2551 
2552 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2553 	if (!intf->my_dev_name) {
2554 		rv = -ENOMEM;
2555 		printk(KERN_ERR
2556 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2557 		       rv);
2558 		goto out_err;
2559 	}
2560 
2561 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2562 			       intf->my_dev_name);
2563 	if (rv) {
2564 		kfree(intf->my_dev_name);
2565 		intf->my_dev_name = NULL;
2566 		printk(KERN_ERR
2567 		       "ipmi_msghandler:"
2568 		       " Unable to create symlink to bmc: %d\n",
2569 		       rv);
2570 		goto out_err;
2571 	}
2572 
2573 	return 0;
2574 
2575 out_err:
2576 	ipmi_bmc_unregister(intf);
2577 	return rv;
2578 }
2579 
2580 static int
2581 send_guid_cmd(ipmi_smi_t intf, int chan)
2582 {
2583 	struct kernel_ipmi_msg            msg;
2584 	struct ipmi_system_interface_addr si;
2585 
2586 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2587 	si.channel = IPMI_BMC_CHANNEL;
2588 	si.lun = 0;
2589 
2590 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2591 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2592 	msg.data = NULL;
2593 	msg.data_len = 0;
2594 	return i_ipmi_request(NULL,
2595 			      intf,
2596 			      (struct ipmi_addr *) &si,
2597 			      0,
2598 			      &msg,
2599 			      intf,
2600 			      NULL,
2601 			      NULL,
2602 			      0,
2603 			      intf->channels[0].address,
2604 			      intf->channels[0].lun,
2605 			      -1, 0);
2606 }
2607 
2608 static void
2609 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2610 {
2611 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2612 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2613 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2614 		/* Not for me */
2615 		return;
2616 
2617 	if (msg->msg.data[0] != 0) {
2618 		/* Error from getting the GUID, the BMC doesn't have one. */
2619 		intf->bmc->guid_set = 0;
2620 		goto out;
2621 	}
2622 
2623 	if (msg->msg.data_len < 17) {
2624 		intf->bmc->guid_set = 0;
2625 		printk(KERN_WARNING PFX
2626 		       "guid_handler: The GUID response from the BMC was too"
2627 		       " short, it was %d but should have been 17.  Assuming"
2628 		       " GUID is not available.\n",
2629 		       msg->msg.data_len);
2630 		goto out;
2631 	}
2632 
2633 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2634 	intf->bmc->guid_set = 1;
2635  out:
2636 	wake_up(&intf->waitq);
2637 }
2638 
2639 static void
2640 get_guid(ipmi_smi_t intf)
2641 {
2642 	int rv;
2643 
2644 	intf->bmc->guid_set = 0x2;
2645 	intf->null_user_handler = guid_handler;
2646 	rv = send_guid_cmd(intf, 0);
2647 	if (rv)
2648 		/* Send failed, no GUID available. */
2649 		intf->bmc->guid_set = 0;
2650 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2651 	intf->null_user_handler = NULL;
2652 }
2653 
2654 static int
2655 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2656 {
2657 	struct kernel_ipmi_msg            msg;
2658 	unsigned char                     data[1];
2659 	struct ipmi_system_interface_addr si;
2660 
2661 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2662 	si.channel = IPMI_BMC_CHANNEL;
2663 	si.lun = 0;
2664 
2665 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2666 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2667 	msg.data = data;
2668 	msg.data_len = 1;
2669 	data[0] = chan;
2670 	return i_ipmi_request(NULL,
2671 			      intf,
2672 			      (struct ipmi_addr *) &si,
2673 			      0,
2674 			      &msg,
2675 			      intf,
2676 			      NULL,
2677 			      NULL,
2678 			      0,
2679 			      intf->channels[0].address,
2680 			      intf->channels[0].lun,
2681 			      -1, 0);
2682 }
2683 
2684 static void
2685 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2686 {
2687 	int rv = 0;
2688 	int chan;
2689 
2690 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2691 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2692 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2693 		/* It's the one we want */
2694 		if (msg->msg.data[0] != 0) {
2695 			/* Got an error from the channel, just go on. */
2696 
2697 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2698 				/*
2699 				 * If the MC does not support this
2700 				 * command, that is legal.  We just
2701 				 * assume it has one IPMB at channel
2702 				 * zero.
2703 				 */
2704 				intf->channels[0].medium
2705 					= IPMI_CHANNEL_MEDIUM_IPMB;
2706 				intf->channels[0].protocol
2707 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2708 
2709 				intf->curr_channel = IPMI_MAX_CHANNELS;
2710 				wake_up(&intf->waitq);
2711 				goto out;
2712 			}
2713 			goto next_channel;
2714 		}
2715 		if (msg->msg.data_len < 4) {
2716 			/* Message not big enough, just go on. */
2717 			goto next_channel;
2718 		}
2719 		chan = intf->curr_channel;
2720 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2721 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2722 
2723  next_channel:
2724 		intf->curr_channel++;
2725 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2726 			wake_up(&intf->waitq);
2727 		else
2728 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2729 
2730 		if (rv) {
2731 			/* Got an error somehow, just give up. */
2732 			printk(KERN_WARNING PFX
2733 			       "Error sending channel information for channel"
2734 			       " %d: %d\n", intf->curr_channel, rv);
2735 
2736 			intf->curr_channel = IPMI_MAX_CHANNELS;
2737 			wake_up(&intf->waitq);
2738 		}
2739 	}
2740  out:
2741 	return;
2742 }
2743 
2744 static void ipmi_poll(ipmi_smi_t intf)
2745 {
2746 	if (intf->handlers->poll)
2747 		intf->handlers->poll(intf->send_info);
2748 	/* In case something came in */
2749 	handle_new_recv_msgs(intf);
2750 }
2751 
2752 void ipmi_poll_interface(ipmi_user_t user)
2753 {
2754 	ipmi_poll(user->intf);
2755 }
2756 EXPORT_SYMBOL(ipmi_poll_interface);
2757 
2758 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers,
2759 		      void		       *send_info,
2760 		      struct ipmi_device_id    *device_id,
2761 		      struct device            *si_dev,
2762 		      unsigned char            slave_addr)
2763 {
2764 	int              i, j;
2765 	int              rv;
2766 	ipmi_smi_t       intf;
2767 	ipmi_smi_t       tintf;
2768 	struct list_head *link;
2769 
2770 	/*
2771 	 * Make sure the driver is actually initialized, this handles
2772 	 * problems with initialization order.
2773 	 */
2774 	if (!initialized) {
2775 		rv = ipmi_init_msghandler();
2776 		if (rv)
2777 			return rv;
2778 		/*
2779 		 * The init code doesn't return an error if it was turned
2780 		 * off, but it won't initialize.  Check that.
2781 		 */
2782 		if (!initialized)
2783 			return -ENODEV;
2784 	}
2785 
2786 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2787 	if (!intf)
2788 		return -ENOMEM;
2789 
2790 	intf->ipmi_version_major = ipmi_version_major(device_id);
2791 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2792 
2793 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2794 	if (!intf->bmc) {
2795 		kfree(intf);
2796 		return -ENOMEM;
2797 	}
2798 	intf->intf_num = -1; /* Mark it invalid for now. */
2799 	kref_init(&intf->refcount);
2800 	intf->bmc->id = *device_id;
2801 	intf->si_dev = si_dev;
2802 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2803 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2804 		intf->channels[j].lun = 2;
2805 	}
2806 	if (slave_addr != 0)
2807 		intf->channels[0].address = slave_addr;
2808 	INIT_LIST_HEAD(&intf->users);
2809 	intf->handlers = handlers;
2810 	intf->send_info = send_info;
2811 	spin_lock_init(&intf->seq_lock);
2812 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2813 		intf->seq_table[j].inuse = 0;
2814 		intf->seq_table[j].seqid = 0;
2815 	}
2816 	intf->curr_seq = 0;
2817 #ifdef CONFIG_PROC_FS
2818 	mutex_init(&intf->proc_entry_lock);
2819 #endif
2820 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2821 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2822 	tasklet_init(&intf->recv_tasklet,
2823 		     smi_recv_tasklet,
2824 		     (unsigned long) intf);
2825 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2826 	spin_lock_init(&intf->xmit_msgs_lock);
2827 	INIT_LIST_HEAD(&intf->xmit_msgs);
2828 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2829 	spin_lock_init(&intf->events_lock);
2830 	atomic_set(&intf->event_waiters, 0);
2831 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2832 	INIT_LIST_HEAD(&intf->waiting_events);
2833 	intf->waiting_events_count = 0;
2834 	mutex_init(&intf->cmd_rcvrs_mutex);
2835 	spin_lock_init(&intf->maintenance_mode_lock);
2836 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2837 	init_waitqueue_head(&intf->waitq);
2838 	for (i = 0; i < IPMI_NUM_STATS; i++)
2839 		atomic_set(&intf->stats[i], 0);
2840 
2841 	intf->proc_dir = NULL;
2842 
2843 	mutex_lock(&smi_watchers_mutex);
2844 	mutex_lock(&ipmi_interfaces_mutex);
2845 	/* Look for a hole in the numbers. */
2846 	i = 0;
2847 	link = &ipmi_interfaces;
2848 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2849 		if (tintf->intf_num != i) {
2850 			link = &tintf->link;
2851 			break;
2852 		}
2853 		i++;
2854 	}
2855 	/* Add the new interface in numeric order. */
2856 	if (i == 0)
2857 		list_add_rcu(&intf->link, &ipmi_interfaces);
2858 	else
2859 		list_add_tail_rcu(&intf->link, link);
2860 
2861 	rv = handlers->start_processing(send_info, intf);
2862 	if (rv)
2863 		goto out;
2864 
2865 	get_guid(intf);
2866 
2867 	if ((intf->ipmi_version_major > 1)
2868 			|| ((intf->ipmi_version_major == 1)
2869 			    && (intf->ipmi_version_minor >= 5))) {
2870 		/*
2871 		 * Start scanning the channels to see what is
2872 		 * available.
2873 		 */
2874 		intf->null_user_handler = channel_handler;
2875 		intf->curr_channel = 0;
2876 		rv = send_channel_info_cmd(intf, 0);
2877 		if (rv) {
2878 			printk(KERN_WARNING PFX
2879 			       "Error sending channel information for channel"
2880 			       " 0, %d\n", rv);
2881 			goto out;
2882 		}
2883 
2884 		/* Wait for the channel info to be read. */
2885 		wait_event(intf->waitq,
2886 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2887 		intf->null_user_handler = NULL;
2888 	} else {
2889 		/* Assume a single IPMB channel at zero. */
2890 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2891 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2892 		intf->curr_channel = IPMI_MAX_CHANNELS;
2893 	}
2894 
2895 	rv = ipmi_bmc_register(intf, i);
2896 
2897 	if (rv == 0)
2898 		rv = add_proc_entries(intf, i);
2899 
2900  out:
2901 	if (rv) {
2902 		if (intf->proc_dir)
2903 			remove_proc_entries(intf);
2904 		intf->handlers = NULL;
2905 		list_del_rcu(&intf->link);
2906 		mutex_unlock(&ipmi_interfaces_mutex);
2907 		mutex_unlock(&smi_watchers_mutex);
2908 		synchronize_rcu();
2909 		kref_put(&intf->refcount, intf_free);
2910 	} else {
2911 		/*
2912 		 * Keep memory order straight for RCU readers.  Make
2913 		 * sure everything else is committed to memory before
2914 		 * setting intf_num to mark the interface valid.
2915 		 */
2916 		smp_wmb();
2917 		intf->intf_num = i;
2918 		mutex_unlock(&ipmi_interfaces_mutex);
2919 		/* After this point the interface is legal to use. */
2920 		call_smi_watchers(i, intf->si_dev);
2921 		mutex_unlock(&smi_watchers_mutex);
2922 	}
2923 
2924 	return rv;
2925 }
2926 EXPORT_SYMBOL(ipmi_register_smi);
2927 
2928 static void deliver_smi_err_response(ipmi_smi_t intf,
2929 				     struct ipmi_smi_msg *msg,
2930 				     unsigned char err)
2931 {
2932 	msg->rsp[0] = msg->data[0] | 4;
2933 	msg->rsp[1] = msg->data[1];
2934 	msg->rsp[2] = err;
2935 	msg->rsp_size = 3;
2936 	/* It's an error, so it will never requeue, no need to check return. */
2937 	handle_one_recv_msg(intf, msg);
2938 }
2939 
2940 static void cleanup_smi_msgs(ipmi_smi_t intf)
2941 {
2942 	int              i;
2943 	struct seq_table *ent;
2944 	struct ipmi_smi_msg *msg;
2945 	struct list_head *entry;
2946 	struct list_head tmplist;
2947 
2948 	/* Clear out our transmit queues and hold the messages. */
2949 	INIT_LIST_HEAD(&tmplist);
2950 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2951 	list_splice_tail(&intf->xmit_msgs, &tmplist);
2952 
2953 	/* Current message first, to preserve order */
2954 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2955 		/* Wait for the message to clear out. */
2956 		schedule_timeout(1);
2957 	}
2958 
2959 	/* No need for locks, the interface is down. */
2960 
2961 	/*
2962 	 * Return errors for all pending messages in queue and in the
2963 	 * tables waiting for remote responses.
2964 	 */
2965 	while (!list_empty(&tmplist)) {
2966 		entry = tmplist.next;
2967 		list_del(entry);
2968 		msg = list_entry(entry, struct ipmi_smi_msg, link);
2969 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2970 	}
2971 
2972 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2973 		ent = &(intf->seq_table[i]);
2974 		if (!ent->inuse)
2975 			continue;
2976 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2977 	}
2978 }
2979 
2980 int ipmi_unregister_smi(ipmi_smi_t intf)
2981 {
2982 	struct ipmi_smi_watcher *w;
2983 	int intf_num = intf->intf_num;
2984 	ipmi_user_t user;
2985 
2986 	mutex_lock(&smi_watchers_mutex);
2987 	mutex_lock(&ipmi_interfaces_mutex);
2988 	intf->intf_num = -1;
2989 	intf->in_shutdown = true;
2990 	list_del_rcu(&intf->link);
2991 	mutex_unlock(&ipmi_interfaces_mutex);
2992 	synchronize_rcu();
2993 
2994 	cleanup_smi_msgs(intf);
2995 
2996 	/* Clean up the effects of users on the lower-level software. */
2997 	mutex_lock(&ipmi_interfaces_mutex);
2998 	rcu_read_lock();
2999 	list_for_each_entry_rcu(user, &intf->users, link) {
3000 		module_put(intf->handlers->owner);
3001 		if (intf->handlers->dec_usecount)
3002 			intf->handlers->dec_usecount(intf->send_info);
3003 	}
3004 	rcu_read_unlock();
3005 	intf->handlers = NULL;
3006 	mutex_unlock(&ipmi_interfaces_mutex);
3007 
3008 	remove_proc_entries(intf);
3009 	ipmi_bmc_unregister(intf);
3010 
3011 	/*
3012 	 * Call all the watcher interfaces to tell them that
3013 	 * an interface is gone.
3014 	 */
3015 	list_for_each_entry(w, &smi_watchers, link)
3016 		w->smi_gone(intf_num);
3017 	mutex_unlock(&smi_watchers_mutex);
3018 
3019 	kref_put(&intf->refcount, intf_free);
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL(ipmi_unregister_smi);
3023 
3024 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3025 				   struct ipmi_smi_msg *msg)
3026 {
3027 	struct ipmi_ipmb_addr ipmb_addr;
3028 	struct ipmi_recv_msg  *recv_msg;
3029 
3030 	/*
3031 	 * This is 11, not 10, because the response must contain a
3032 	 * completion code.
3033 	 */
3034 	if (msg->rsp_size < 11) {
3035 		/* Message not big enough, just ignore it. */
3036 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3037 		return 0;
3038 	}
3039 
3040 	if (msg->rsp[2] != 0) {
3041 		/* An error getting the response, just ignore it. */
3042 		return 0;
3043 	}
3044 
3045 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3046 	ipmb_addr.slave_addr = msg->rsp[6];
3047 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3048 	ipmb_addr.lun = msg->rsp[7] & 3;
3049 
3050 	/*
3051 	 * It's a response from a remote entity.  Look up the sequence
3052 	 * number and handle the response.
3053 	 */
3054 	if (intf_find_seq(intf,
3055 			  msg->rsp[7] >> 2,
3056 			  msg->rsp[3] & 0x0f,
3057 			  msg->rsp[8],
3058 			  (msg->rsp[4] >> 2) & (~1),
3059 			  (struct ipmi_addr *) &(ipmb_addr),
3060 			  &recv_msg)) {
3061 		/*
3062 		 * We were unable to find the sequence number,
3063 		 * so just nuke the message.
3064 		 */
3065 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3066 		return 0;
3067 	}
3068 
3069 	memcpy(recv_msg->msg_data,
3070 	       &(msg->rsp[9]),
3071 	       msg->rsp_size - 9);
3072 	/*
3073 	 * The other fields matched, so no need to set them, except
3074 	 * for netfn, which needs to be the response that was
3075 	 * returned, not the request value.
3076 	 */
3077 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3078 	recv_msg->msg.data = recv_msg->msg_data;
3079 	recv_msg->msg.data_len = msg->rsp_size - 10;
3080 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3081 	ipmi_inc_stat(intf, handled_ipmb_responses);
3082 	deliver_response(recv_msg);
3083 
3084 	return 0;
3085 }
3086 
3087 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3088 				   struct ipmi_smi_msg *msg)
3089 {
3090 	struct cmd_rcvr          *rcvr;
3091 	int                      rv = 0;
3092 	unsigned char            netfn;
3093 	unsigned char            cmd;
3094 	unsigned char            chan;
3095 	ipmi_user_t              user = NULL;
3096 	struct ipmi_ipmb_addr    *ipmb_addr;
3097 	struct ipmi_recv_msg     *recv_msg;
3098 
3099 	if (msg->rsp_size < 10) {
3100 		/* Message not big enough, just ignore it. */
3101 		ipmi_inc_stat(intf, invalid_commands);
3102 		return 0;
3103 	}
3104 
3105 	if (msg->rsp[2] != 0) {
3106 		/* An error getting the response, just ignore it. */
3107 		return 0;
3108 	}
3109 
3110 	netfn = msg->rsp[4] >> 2;
3111 	cmd = msg->rsp[8];
3112 	chan = msg->rsp[3] & 0xf;
3113 
3114 	rcu_read_lock();
3115 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3116 	if (rcvr) {
3117 		user = rcvr->user;
3118 		kref_get(&user->refcount);
3119 	} else
3120 		user = NULL;
3121 	rcu_read_unlock();
3122 
3123 	if (user == NULL) {
3124 		/* We didn't find a user, deliver an error response. */
3125 		ipmi_inc_stat(intf, unhandled_commands);
3126 
3127 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3128 		msg->data[1] = IPMI_SEND_MSG_CMD;
3129 		msg->data[2] = msg->rsp[3];
3130 		msg->data[3] = msg->rsp[6];
3131 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3132 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3133 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3134 		/* rqseq/lun */
3135 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3136 		msg->data[8] = msg->rsp[8]; /* cmd */
3137 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3138 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3139 		msg->data_size = 11;
3140 
3141 #ifdef DEBUG_MSGING
3142 	{
3143 		int m;
3144 		printk("Invalid command:");
3145 		for (m = 0; m < msg->data_size; m++)
3146 			printk(" %2.2x", msg->data[m]);
3147 		printk("\n");
3148 	}
3149 #endif
3150 		rcu_read_lock();
3151 		if (!intf->in_shutdown) {
3152 			smi_send(intf, intf->handlers, msg, 0);
3153 			/*
3154 			 * We used the message, so return the value
3155 			 * that causes it to not be freed or
3156 			 * queued.
3157 			 */
3158 			rv = -1;
3159 		}
3160 		rcu_read_unlock();
3161 	} else {
3162 		/* Deliver the message to the user. */
3163 		ipmi_inc_stat(intf, handled_commands);
3164 
3165 		recv_msg = ipmi_alloc_recv_msg();
3166 		if (!recv_msg) {
3167 			/*
3168 			 * We couldn't allocate memory for the
3169 			 * message, so requeue it for handling
3170 			 * later.
3171 			 */
3172 			rv = 1;
3173 			kref_put(&user->refcount, free_user);
3174 		} else {
3175 			/* Extract the source address from the data. */
3176 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3177 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3178 			ipmb_addr->slave_addr = msg->rsp[6];
3179 			ipmb_addr->lun = msg->rsp[7] & 3;
3180 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3181 
3182 			/*
3183 			 * Extract the rest of the message information
3184 			 * from the IPMB header.
3185 			 */
3186 			recv_msg->user = user;
3187 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3188 			recv_msg->msgid = msg->rsp[7] >> 2;
3189 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3190 			recv_msg->msg.cmd = msg->rsp[8];
3191 			recv_msg->msg.data = recv_msg->msg_data;
3192 
3193 			/*
3194 			 * We chop off 10, not 9 bytes because the checksum
3195 			 * at the end also needs to be removed.
3196 			 */
3197 			recv_msg->msg.data_len = msg->rsp_size - 10;
3198 			memcpy(recv_msg->msg_data,
3199 			       &(msg->rsp[9]),
3200 			       msg->rsp_size - 10);
3201 			deliver_response(recv_msg);
3202 		}
3203 	}
3204 
3205 	return rv;
3206 }
3207 
3208 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3209 				  struct ipmi_smi_msg *msg)
3210 {
3211 	struct ipmi_lan_addr  lan_addr;
3212 	struct ipmi_recv_msg  *recv_msg;
3213 
3214 
3215 	/*
3216 	 * This is 13, not 12, because the response must contain a
3217 	 * completion code.
3218 	 */
3219 	if (msg->rsp_size < 13) {
3220 		/* Message not big enough, just ignore it. */
3221 		ipmi_inc_stat(intf, invalid_lan_responses);
3222 		return 0;
3223 	}
3224 
3225 	if (msg->rsp[2] != 0) {
3226 		/* An error getting the response, just ignore it. */
3227 		return 0;
3228 	}
3229 
3230 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3231 	lan_addr.session_handle = msg->rsp[4];
3232 	lan_addr.remote_SWID = msg->rsp[8];
3233 	lan_addr.local_SWID = msg->rsp[5];
3234 	lan_addr.channel = msg->rsp[3] & 0x0f;
3235 	lan_addr.privilege = msg->rsp[3] >> 4;
3236 	lan_addr.lun = msg->rsp[9] & 3;
3237 
3238 	/*
3239 	 * It's a response from a remote entity.  Look up the sequence
3240 	 * number and handle the response.
3241 	 */
3242 	if (intf_find_seq(intf,
3243 			  msg->rsp[9] >> 2,
3244 			  msg->rsp[3] & 0x0f,
3245 			  msg->rsp[10],
3246 			  (msg->rsp[6] >> 2) & (~1),
3247 			  (struct ipmi_addr *) &(lan_addr),
3248 			  &recv_msg)) {
3249 		/*
3250 		 * We were unable to find the sequence number,
3251 		 * so just nuke the message.
3252 		 */
3253 		ipmi_inc_stat(intf, unhandled_lan_responses);
3254 		return 0;
3255 	}
3256 
3257 	memcpy(recv_msg->msg_data,
3258 	       &(msg->rsp[11]),
3259 	       msg->rsp_size - 11);
3260 	/*
3261 	 * The other fields matched, so no need to set them, except
3262 	 * for netfn, which needs to be the response that was
3263 	 * returned, not the request value.
3264 	 */
3265 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3266 	recv_msg->msg.data = recv_msg->msg_data;
3267 	recv_msg->msg.data_len = msg->rsp_size - 12;
3268 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3269 	ipmi_inc_stat(intf, handled_lan_responses);
3270 	deliver_response(recv_msg);
3271 
3272 	return 0;
3273 }
3274 
3275 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3276 				  struct ipmi_smi_msg *msg)
3277 {
3278 	struct cmd_rcvr          *rcvr;
3279 	int                      rv = 0;
3280 	unsigned char            netfn;
3281 	unsigned char            cmd;
3282 	unsigned char            chan;
3283 	ipmi_user_t              user = NULL;
3284 	struct ipmi_lan_addr     *lan_addr;
3285 	struct ipmi_recv_msg     *recv_msg;
3286 
3287 	if (msg->rsp_size < 12) {
3288 		/* Message not big enough, just ignore it. */
3289 		ipmi_inc_stat(intf, invalid_commands);
3290 		return 0;
3291 	}
3292 
3293 	if (msg->rsp[2] != 0) {
3294 		/* An error getting the response, just ignore it. */
3295 		return 0;
3296 	}
3297 
3298 	netfn = msg->rsp[6] >> 2;
3299 	cmd = msg->rsp[10];
3300 	chan = msg->rsp[3] & 0xf;
3301 
3302 	rcu_read_lock();
3303 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3304 	if (rcvr) {
3305 		user = rcvr->user;
3306 		kref_get(&user->refcount);
3307 	} else
3308 		user = NULL;
3309 	rcu_read_unlock();
3310 
3311 	if (user == NULL) {
3312 		/* We didn't find a user, just give up. */
3313 		ipmi_inc_stat(intf, unhandled_commands);
3314 
3315 		/*
3316 		 * Don't do anything with these messages, just allow
3317 		 * them to be freed.
3318 		 */
3319 		rv = 0;
3320 	} else {
3321 		/* Deliver the message to the user. */
3322 		ipmi_inc_stat(intf, handled_commands);
3323 
3324 		recv_msg = ipmi_alloc_recv_msg();
3325 		if (!recv_msg) {
3326 			/*
3327 			 * We couldn't allocate memory for the
3328 			 * message, so requeue it for handling later.
3329 			 */
3330 			rv = 1;
3331 			kref_put(&user->refcount, free_user);
3332 		} else {
3333 			/* Extract the source address from the data. */
3334 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3335 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3336 			lan_addr->session_handle = msg->rsp[4];
3337 			lan_addr->remote_SWID = msg->rsp[8];
3338 			lan_addr->local_SWID = msg->rsp[5];
3339 			lan_addr->lun = msg->rsp[9] & 3;
3340 			lan_addr->channel = msg->rsp[3] & 0xf;
3341 			lan_addr->privilege = msg->rsp[3] >> 4;
3342 
3343 			/*
3344 			 * Extract the rest of the message information
3345 			 * from the IPMB header.
3346 			 */
3347 			recv_msg->user = user;
3348 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3349 			recv_msg->msgid = msg->rsp[9] >> 2;
3350 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3351 			recv_msg->msg.cmd = msg->rsp[10];
3352 			recv_msg->msg.data = recv_msg->msg_data;
3353 
3354 			/*
3355 			 * We chop off 12, not 11 bytes because the checksum
3356 			 * at the end also needs to be removed.
3357 			 */
3358 			recv_msg->msg.data_len = msg->rsp_size - 12;
3359 			memcpy(recv_msg->msg_data,
3360 			       &(msg->rsp[11]),
3361 			       msg->rsp_size - 12);
3362 			deliver_response(recv_msg);
3363 		}
3364 	}
3365 
3366 	return rv;
3367 }
3368 
3369 /*
3370  * This routine will handle "Get Message" command responses with
3371  * channels that use an OEM Medium. The message format belongs to
3372  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3373  * Chapter 22, sections 22.6 and 22.24 for more details.
3374  */
3375 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3376 				  struct ipmi_smi_msg *msg)
3377 {
3378 	struct cmd_rcvr       *rcvr;
3379 	int                   rv = 0;
3380 	unsigned char         netfn;
3381 	unsigned char         cmd;
3382 	unsigned char         chan;
3383 	ipmi_user_t           user = NULL;
3384 	struct ipmi_system_interface_addr *smi_addr;
3385 	struct ipmi_recv_msg  *recv_msg;
3386 
3387 	/*
3388 	 * We expect the OEM SW to perform error checking
3389 	 * so we just do some basic sanity checks
3390 	 */
3391 	if (msg->rsp_size < 4) {
3392 		/* Message not big enough, just ignore it. */
3393 		ipmi_inc_stat(intf, invalid_commands);
3394 		return 0;
3395 	}
3396 
3397 	if (msg->rsp[2] != 0) {
3398 		/* An error getting the response, just ignore it. */
3399 		return 0;
3400 	}
3401 
3402 	/*
3403 	 * This is an OEM Message so the OEM needs to know how
3404 	 * handle the message. We do no interpretation.
3405 	 */
3406 	netfn = msg->rsp[0] >> 2;
3407 	cmd = msg->rsp[1];
3408 	chan = msg->rsp[3] & 0xf;
3409 
3410 	rcu_read_lock();
3411 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3412 	if (rcvr) {
3413 		user = rcvr->user;
3414 		kref_get(&user->refcount);
3415 	} else
3416 		user = NULL;
3417 	rcu_read_unlock();
3418 
3419 	if (user == NULL) {
3420 		/* We didn't find a user, just give up. */
3421 		ipmi_inc_stat(intf, unhandled_commands);
3422 
3423 		/*
3424 		 * Don't do anything with these messages, just allow
3425 		 * them to be freed.
3426 		 */
3427 
3428 		rv = 0;
3429 	} else {
3430 		/* Deliver the message to the user. */
3431 		ipmi_inc_stat(intf, handled_commands);
3432 
3433 		recv_msg = ipmi_alloc_recv_msg();
3434 		if (!recv_msg) {
3435 			/*
3436 			 * We couldn't allocate memory for the
3437 			 * message, so requeue it for handling
3438 			 * later.
3439 			 */
3440 			rv = 1;
3441 			kref_put(&user->refcount, free_user);
3442 		} else {
3443 			/*
3444 			 * OEM Messages are expected to be delivered via
3445 			 * the system interface to SMS software.  We might
3446 			 * need to visit this again depending on OEM
3447 			 * requirements
3448 			 */
3449 			smi_addr = ((struct ipmi_system_interface_addr *)
3450 				    &(recv_msg->addr));
3451 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3452 			smi_addr->channel = IPMI_BMC_CHANNEL;
3453 			smi_addr->lun = msg->rsp[0] & 3;
3454 
3455 			recv_msg->user = user;
3456 			recv_msg->user_msg_data = NULL;
3457 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3458 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3459 			recv_msg->msg.cmd = msg->rsp[1];
3460 			recv_msg->msg.data = recv_msg->msg_data;
3461 
3462 			/*
3463 			 * The message starts at byte 4 which follows the
3464 			 * the Channel Byte in the "GET MESSAGE" command
3465 			 */
3466 			recv_msg->msg.data_len = msg->rsp_size - 4;
3467 			memcpy(recv_msg->msg_data,
3468 			       &(msg->rsp[4]),
3469 			       msg->rsp_size - 4);
3470 			deliver_response(recv_msg);
3471 		}
3472 	}
3473 
3474 	return rv;
3475 }
3476 
3477 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3478 				     struct ipmi_smi_msg  *msg)
3479 {
3480 	struct ipmi_system_interface_addr *smi_addr;
3481 
3482 	recv_msg->msgid = 0;
3483 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3484 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3485 	smi_addr->channel = IPMI_BMC_CHANNEL;
3486 	smi_addr->lun = msg->rsp[0] & 3;
3487 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3488 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3489 	recv_msg->msg.cmd = msg->rsp[1];
3490 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3491 	recv_msg->msg.data = recv_msg->msg_data;
3492 	recv_msg->msg.data_len = msg->rsp_size - 3;
3493 }
3494 
3495 static int handle_read_event_rsp(ipmi_smi_t          intf,
3496 				 struct ipmi_smi_msg *msg)
3497 {
3498 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3499 	struct list_head     msgs;
3500 	ipmi_user_t          user;
3501 	int                  rv = 0;
3502 	int                  deliver_count = 0;
3503 	unsigned long        flags;
3504 
3505 	if (msg->rsp_size < 19) {
3506 		/* Message is too small to be an IPMB event. */
3507 		ipmi_inc_stat(intf, invalid_events);
3508 		return 0;
3509 	}
3510 
3511 	if (msg->rsp[2] != 0) {
3512 		/* An error getting the event, just ignore it. */
3513 		return 0;
3514 	}
3515 
3516 	INIT_LIST_HEAD(&msgs);
3517 
3518 	spin_lock_irqsave(&intf->events_lock, flags);
3519 
3520 	ipmi_inc_stat(intf, events);
3521 
3522 	/*
3523 	 * Allocate and fill in one message for every user that is
3524 	 * getting events.
3525 	 */
3526 	rcu_read_lock();
3527 	list_for_each_entry_rcu(user, &intf->users, link) {
3528 		if (!user->gets_events)
3529 			continue;
3530 
3531 		recv_msg = ipmi_alloc_recv_msg();
3532 		if (!recv_msg) {
3533 			rcu_read_unlock();
3534 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3535 						 link) {
3536 				list_del(&recv_msg->link);
3537 				ipmi_free_recv_msg(recv_msg);
3538 			}
3539 			/*
3540 			 * We couldn't allocate memory for the
3541 			 * message, so requeue it for handling
3542 			 * later.
3543 			 */
3544 			rv = 1;
3545 			goto out;
3546 		}
3547 
3548 		deliver_count++;
3549 
3550 		copy_event_into_recv_msg(recv_msg, msg);
3551 		recv_msg->user = user;
3552 		kref_get(&user->refcount);
3553 		list_add_tail(&(recv_msg->link), &msgs);
3554 	}
3555 	rcu_read_unlock();
3556 
3557 	if (deliver_count) {
3558 		/* Now deliver all the messages. */
3559 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3560 			list_del(&recv_msg->link);
3561 			deliver_response(recv_msg);
3562 		}
3563 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3564 		/*
3565 		 * No one to receive the message, put it in queue if there's
3566 		 * not already too many things in the queue.
3567 		 */
3568 		recv_msg = ipmi_alloc_recv_msg();
3569 		if (!recv_msg) {
3570 			/*
3571 			 * We couldn't allocate memory for the
3572 			 * message, so requeue it for handling
3573 			 * later.
3574 			 */
3575 			rv = 1;
3576 			goto out;
3577 		}
3578 
3579 		copy_event_into_recv_msg(recv_msg, msg);
3580 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3581 		intf->waiting_events_count++;
3582 	} else if (!intf->event_msg_printed) {
3583 		/*
3584 		 * There's too many things in the queue, discard this
3585 		 * message.
3586 		 */
3587 		printk(KERN_WARNING PFX "Event queue full, discarding"
3588 		       " incoming events\n");
3589 		intf->event_msg_printed = 1;
3590 	}
3591 
3592  out:
3593 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3594 
3595 	return rv;
3596 }
3597 
3598 static int handle_bmc_rsp(ipmi_smi_t          intf,
3599 			  struct ipmi_smi_msg *msg)
3600 {
3601 	struct ipmi_recv_msg *recv_msg;
3602 	struct ipmi_user     *user;
3603 
3604 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3605 	if (recv_msg == NULL) {
3606 		printk(KERN_WARNING
3607 		       "IPMI message received with no owner. This\n"
3608 		       "could be because of a malformed message, or\n"
3609 		       "because of a hardware error.  Contact your\n"
3610 		       "hardware vender for assistance\n");
3611 		return 0;
3612 	}
3613 
3614 	user = recv_msg->user;
3615 	/* Make sure the user still exists. */
3616 	if (user && !user->valid) {
3617 		/* The user for the message went away, so give up. */
3618 		ipmi_inc_stat(intf, unhandled_local_responses);
3619 		ipmi_free_recv_msg(recv_msg);
3620 	} else {
3621 		struct ipmi_system_interface_addr *smi_addr;
3622 
3623 		ipmi_inc_stat(intf, handled_local_responses);
3624 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3625 		recv_msg->msgid = msg->msgid;
3626 		smi_addr = ((struct ipmi_system_interface_addr *)
3627 			    &(recv_msg->addr));
3628 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3629 		smi_addr->channel = IPMI_BMC_CHANNEL;
3630 		smi_addr->lun = msg->rsp[0] & 3;
3631 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3632 		recv_msg->msg.cmd = msg->rsp[1];
3633 		memcpy(recv_msg->msg_data,
3634 		       &(msg->rsp[2]),
3635 		       msg->rsp_size - 2);
3636 		recv_msg->msg.data = recv_msg->msg_data;
3637 		recv_msg->msg.data_len = msg->rsp_size - 2;
3638 		deliver_response(recv_msg);
3639 	}
3640 
3641 	return 0;
3642 }
3643 
3644 /*
3645  * Handle a received message.  Return 1 if the message should be requeued,
3646  * 0 if the message should be freed, or -1 if the message should not
3647  * be freed or requeued.
3648  */
3649 static int handle_one_recv_msg(ipmi_smi_t          intf,
3650 			       struct ipmi_smi_msg *msg)
3651 {
3652 	int requeue;
3653 	int chan;
3654 
3655 #ifdef DEBUG_MSGING
3656 	int m;
3657 	printk("Recv:");
3658 	for (m = 0; m < msg->rsp_size; m++)
3659 		printk(" %2.2x", msg->rsp[m]);
3660 	printk("\n");
3661 #endif
3662 	if (msg->rsp_size < 2) {
3663 		/* Message is too small to be correct. */
3664 		printk(KERN_WARNING PFX "BMC returned to small a message"
3665 		       " for netfn %x cmd %x, got %d bytes\n",
3666 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3667 
3668 		/* Generate an error response for the message. */
3669 		msg->rsp[0] = msg->data[0] | (1 << 2);
3670 		msg->rsp[1] = msg->data[1];
3671 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3672 		msg->rsp_size = 3;
3673 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3674 		   || (msg->rsp[1] != msg->data[1])) {
3675 		/*
3676 		 * The NetFN and Command in the response is not even
3677 		 * marginally correct.
3678 		 */
3679 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3680 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3681 		       (msg->data[0] >> 2) | 1, msg->data[1],
3682 		       msg->rsp[0] >> 2, msg->rsp[1]);
3683 
3684 		/* Generate an error response for the message. */
3685 		msg->rsp[0] = msg->data[0] | (1 << 2);
3686 		msg->rsp[1] = msg->data[1];
3687 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3688 		msg->rsp_size = 3;
3689 	}
3690 
3691 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3692 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3693 	    && (msg->user_data != NULL)) {
3694 		/*
3695 		 * It's a response to a response we sent.  For this we
3696 		 * deliver a send message response to the user.
3697 		 */
3698 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3699 
3700 		requeue = 0;
3701 		if (msg->rsp_size < 2)
3702 			/* Message is too small to be correct. */
3703 			goto out;
3704 
3705 		chan = msg->data[2] & 0x0f;
3706 		if (chan >= IPMI_MAX_CHANNELS)
3707 			/* Invalid channel number */
3708 			goto out;
3709 
3710 		if (!recv_msg)
3711 			goto out;
3712 
3713 		/* Make sure the user still exists. */
3714 		if (!recv_msg->user || !recv_msg->user->valid)
3715 			goto out;
3716 
3717 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3718 		recv_msg->msg.data = recv_msg->msg_data;
3719 		recv_msg->msg.data_len = 1;
3720 		recv_msg->msg_data[0] = msg->rsp[2];
3721 		deliver_response(recv_msg);
3722 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3723 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3724 		/* It's from the receive queue. */
3725 		chan = msg->rsp[3] & 0xf;
3726 		if (chan >= IPMI_MAX_CHANNELS) {
3727 			/* Invalid channel number */
3728 			requeue = 0;
3729 			goto out;
3730 		}
3731 
3732 		/*
3733 		 * We need to make sure the channels have been initialized.
3734 		 * The channel_handler routine will set the "curr_channel"
3735 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3736 		 * channels for this interface have been initialized.
3737 		 */
3738 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3739 			requeue = 0; /* Throw the message away */
3740 			goto out;
3741 		}
3742 
3743 		switch (intf->channels[chan].medium) {
3744 		case IPMI_CHANNEL_MEDIUM_IPMB:
3745 			if (msg->rsp[4] & 0x04) {
3746 				/*
3747 				 * It's a response, so find the
3748 				 * requesting message and send it up.
3749 				 */
3750 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3751 			} else {
3752 				/*
3753 				 * It's a command to the SMS from some other
3754 				 * entity.  Handle that.
3755 				 */
3756 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3757 			}
3758 			break;
3759 
3760 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3761 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3762 			if (msg->rsp[6] & 0x04) {
3763 				/*
3764 				 * It's a response, so find the
3765 				 * requesting message and send it up.
3766 				 */
3767 				requeue = handle_lan_get_msg_rsp(intf, msg);
3768 			} else {
3769 				/*
3770 				 * It's a command to the SMS from some other
3771 				 * entity.  Handle that.
3772 				 */
3773 				requeue = handle_lan_get_msg_cmd(intf, msg);
3774 			}
3775 			break;
3776 
3777 		default:
3778 			/* Check for OEM Channels.  Clients had better
3779 			   register for these commands. */
3780 			if ((intf->channels[chan].medium
3781 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3782 			    && (intf->channels[chan].medium
3783 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3784 				requeue = handle_oem_get_msg_cmd(intf, msg);
3785 			} else {
3786 				/*
3787 				 * We don't handle the channel type, so just
3788 				 * free the message.
3789 				 */
3790 				requeue = 0;
3791 			}
3792 		}
3793 
3794 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3795 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3796 		/* It's an asynchronous event. */
3797 		requeue = handle_read_event_rsp(intf, msg);
3798 	} else {
3799 		/* It's a response from the local BMC. */
3800 		requeue = handle_bmc_rsp(intf, msg);
3801 	}
3802 
3803  out:
3804 	return requeue;
3805 }
3806 
3807 /*
3808  * If there are messages in the queue or pretimeouts, handle them.
3809  */
3810 static void handle_new_recv_msgs(ipmi_smi_t intf)
3811 {
3812 	struct ipmi_smi_msg  *smi_msg;
3813 	unsigned long        flags = 0;
3814 	int                  rv;
3815 	int                  run_to_completion = intf->run_to_completion;
3816 
3817 	/* See if any waiting messages need to be processed. */
3818 	if (!run_to_completion)
3819 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3820 	while (!list_empty(&intf->waiting_rcv_msgs)) {
3821 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3822 				     struct ipmi_smi_msg, link);
3823 		list_del(&smi_msg->link);
3824 		if (!run_to_completion)
3825 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3826 					       flags);
3827 		rv = handle_one_recv_msg(intf, smi_msg);
3828 		if (!run_to_completion)
3829 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3830 		if (rv > 0) {
3831 			/*
3832 			 * To preserve message order, quit if we
3833 			 * can't handle a message.  Add the message
3834 			 * back at the head, this is safe because this
3835 			 * tasklet is the only thing that pulls the
3836 			 * messages.
3837 			 */
3838 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
3839 			break;
3840 		} else {
3841 			if (rv == 0)
3842 				/* Message handled */
3843 				ipmi_free_smi_msg(smi_msg);
3844 			/* If rv < 0, fatal error, del but don't free. */
3845 		}
3846 	}
3847 	if (!run_to_completion)
3848 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3849 
3850 	/*
3851 	 * If the pretimout count is non-zero, decrement one from it and
3852 	 * deliver pretimeouts to all the users.
3853 	 */
3854 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3855 		ipmi_user_t user;
3856 
3857 		rcu_read_lock();
3858 		list_for_each_entry_rcu(user, &intf->users, link) {
3859 			if (user->handler->ipmi_watchdog_pretimeout)
3860 				user->handler->ipmi_watchdog_pretimeout(
3861 					user->handler_data);
3862 		}
3863 		rcu_read_unlock();
3864 	}
3865 }
3866 
3867 static void smi_recv_tasklet(unsigned long val)
3868 {
3869 	unsigned long flags = 0; /* keep us warning-free. */
3870 	ipmi_smi_t intf = (ipmi_smi_t) val;
3871 	int run_to_completion = intf->run_to_completion;
3872 	struct ipmi_smi_msg *newmsg = NULL;
3873 
3874 	/*
3875 	 * Start the next message if available.
3876 	 *
3877 	 * Do this here, not in the actual receiver, because we may deadlock
3878 	 * because the lower layer is allowed to hold locks while calling
3879 	 * message delivery.
3880 	 */
3881 
3882 	rcu_read_lock();
3883 
3884 	if (!run_to_completion)
3885 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3886 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3887 		struct list_head *entry = NULL;
3888 
3889 		/* Pick the high priority queue first. */
3890 		if (!list_empty(&intf->hp_xmit_msgs))
3891 			entry = intf->hp_xmit_msgs.next;
3892 		else if (!list_empty(&intf->xmit_msgs))
3893 			entry = intf->xmit_msgs.next;
3894 
3895 		if (entry) {
3896 			list_del(entry);
3897 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3898 			intf->curr_msg = newmsg;
3899 		}
3900 	}
3901 	if (!run_to_completion)
3902 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3903 	if (newmsg)
3904 		intf->handlers->sender(intf->send_info, newmsg);
3905 
3906 	rcu_read_unlock();
3907 
3908 	handle_new_recv_msgs(intf);
3909 }
3910 
3911 /* Handle a new message from the lower layer. */
3912 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3913 			   struct ipmi_smi_msg *msg)
3914 {
3915 	unsigned long flags = 0; /* keep us warning-free. */
3916 	int run_to_completion = intf->run_to_completion;
3917 
3918 	if ((msg->data_size >= 2)
3919 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3920 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3921 	    && (msg->user_data == NULL)) {
3922 
3923 		if (intf->in_shutdown)
3924 			goto free_msg;
3925 
3926 		/*
3927 		 * This is the local response to a command send, start
3928 		 * the timer for these.  The user_data will not be
3929 		 * NULL if this is a response send, and we will let
3930 		 * response sends just go through.
3931 		 */
3932 
3933 		/*
3934 		 * Check for errors, if we get certain errors (ones
3935 		 * that mean basically we can try again later), we
3936 		 * ignore them and start the timer.  Otherwise we
3937 		 * report the error immediately.
3938 		 */
3939 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3940 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3941 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3942 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3943 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3944 			int chan = msg->rsp[3] & 0xf;
3945 
3946 			/* Got an error sending the message, handle it. */
3947 			if (chan >= IPMI_MAX_CHANNELS)
3948 				; /* This shouldn't happen */
3949 			else if ((intf->channels[chan].medium
3950 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3951 				 || (intf->channels[chan].medium
3952 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3953 				ipmi_inc_stat(intf, sent_lan_command_errs);
3954 			else
3955 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3956 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3957 		} else
3958 			/* The message was sent, start the timer. */
3959 			intf_start_seq_timer(intf, msg->msgid);
3960 
3961 free_msg:
3962 		ipmi_free_smi_msg(msg);
3963 	} else {
3964 		/*
3965 		 * To preserve message order, we keep a queue and deliver from
3966 		 * a tasklet.
3967 		 */
3968 		if (!run_to_completion)
3969 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3970 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3971 		if (!run_to_completion)
3972 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3973 					       flags);
3974 	}
3975 
3976 	if (!run_to_completion)
3977 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3978 	/*
3979 	 * We can get an asynchronous event or receive message in addition
3980 	 * to commands we send.
3981 	 */
3982 	if (msg == intf->curr_msg)
3983 		intf->curr_msg = NULL;
3984 	if (!run_to_completion)
3985 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3986 
3987 	if (run_to_completion)
3988 		smi_recv_tasklet((unsigned long) intf);
3989 	else
3990 		tasklet_schedule(&intf->recv_tasklet);
3991 }
3992 EXPORT_SYMBOL(ipmi_smi_msg_received);
3993 
3994 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3995 {
3996 	if (intf->in_shutdown)
3997 		return;
3998 
3999 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4000 	tasklet_schedule(&intf->recv_tasklet);
4001 }
4002 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4003 
4004 static struct ipmi_smi_msg *
4005 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4006 		  unsigned char seq, long seqid)
4007 {
4008 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4009 	if (!smi_msg)
4010 		/*
4011 		 * If we can't allocate the message, then just return, we
4012 		 * get 4 retries, so this should be ok.
4013 		 */
4014 		return NULL;
4015 
4016 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4017 	smi_msg->data_size = recv_msg->msg.data_len;
4018 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4019 
4020 #ifdef DEBUG_MSGING
4021 	{
4022 		int m;
4023 		printk("Resend: ");
4024 		for (m = 0; m < smi_msg->data_size; m++)
4025 			printk(" %2.2x", smi_msg->data[m]);
4026 		printk("\n");
4027 	}
4028 #endif
4029 	return smi_msg;
4030 }
4031 
4032 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4033 			      struct list_head *timeouts, long timeout_period,
4034 			      int slot, unsigned long *flags,
4035 			      unsigned int *waiting_msgs)
4036 {
4037 	struct ipmi_recv_msg     *msg;
4038 	const struct ipmi_smi_handlers *handlers;
4039 
4040 	if (intf->in_shutdown)
4041 		return;
4042 
4043 	if (!ent->inuse)
4044 		return;
4045 
4046 	ent->timeout -= timeout_period;
4047 	if (ent->timeout > 0) {
4048 		(*waiting_msgs)++;
4049 		return;
4050 	}
4051 
4052 	if (ent->retries_left == 0) {
4053 		/* The message has used all its retries. */
4054 		ent->inuse = 0;
4055 		msg = ent->recv_msg;
4056 		list_add_tail(&msg->link, timeouts);
4057 		if (ent->broadcast)
4058 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4059 		else if (is_lan_addr(&ent->recv_msg->addr))
4060 			ipmi_inc_stat(intf, timed_out_lan_commands);
4061 		else
4062 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4063 	} else {
4064 		struct ipmi_smi_msg *smi_msg;
4065 		/* More retries, send again. */
4066 
4067 		(*waiting_msgs)++;
4068 
4069 		/*
4070 		 * Start with the max timer, set to normal timer after
4071 		 * the message is sent.
4072 		 */
4073 		ent->timeout = MAX_MSG_TIMEOUT;
4074 		ent->retries_left--;
4075 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4076 					    ent->seqid);
4077 		if (!smi_msg) {
4078 			if (is_lan_addr(&ent->recv_msg->addr))
4079 				ipmi_inc_stat(intf,
4080 					      dropped_rexmit_lan_commands);
4081 			else
4082 				ipmi_inc_stat(intf,
4083 					      dropped_rexmit_ipmb_commands);
4084 			return;
4085 		}
4086 
4087 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4088 
4089 		/*
4090 		 * Send the new message.  We send with a zero
4091 		 * priority.  It timed out, I doubt time is that
4092 		 * critical now, and high priority messages are really
4093 		 * only for messages to the local MC, which don't get
4094 		 * resent.
4095 		 */
4096 		handlers = intf->handlers;
4097 		if (handlers) {
4098 			if (is_lan_addr(&ent->recv_msg->addr))
4099 				ipmi_inc_stat(intf,
4100 					      retransmitted_lan_commands);
4101 			else
4102 				ipmi_inc_stat(intf,
4103 					      retransmitted_ipmb_commands);
4104 
4105 			smi_send(intf, handlers, smi_msg, 0);
4106 		} else
4107 			ipmi_free_smi_msg(smi_msg);
4108 
4109 		spin_lock_irqsave(&intf->seq_lock, *flags);
4110 	}
4111 }
4112 
4113 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4114 {
4115 	struct list_head     timeouts;
4116 	struct ipmi_recv_msg *msg, *msg2;
4117 	unsigned long        flags;
4118 	int                  i;
4119 	unsigned int         waiting_msgs = 0;
4120 
4121 	/*
4122 	 * Go through the seq table and find any messages that
4123 	 * have timed out, putting them in the timeouts
4124 	 * list.
4125 	 */
4126 	INIT_LIST_HEAD(&timeouts);
4127 	spin_lock_irqsave(&intf->seq_lock, flags);
4128 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4129 		check_msg_timeout(intf, &(intf->seq_table[i]),
4130 				  &timeouts, timeout_period, i,
4131 				  &flags, &waiting_msgs);
4132 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4133 
4134 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4135 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4136 
4137 	/*
4138 	 * Maintenance mode handling.  Check the timeout
4139 	 * optimistically before we claim the lock.  It may
4140 	 * mean a timeout gets missed occasionally, but that
4141 	 * only means the timeout gets extended by one period
4142 	 * in that case.  No big deal, and it avoids the lock
4143 	 * most of the time.
4144 	 */
4145 	if (intf->auto_maintenance_timeout > 0) {
4146 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4147 		if (intf->auto_maintenance_timeout > 0) {
4148 			intf->auto_maintenance_timeout
4149 				-= timeout_period;
4150 			if (!intf->maintenance_mode
4151 			    && (intf->auto_maintenance_timeout <= 0)) {
4152 				intf->maintenance_mode_enable = false;
4153 				maintenance_mode_update(intf);
4154 			}
4155 		}
4156 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4157 				       flags);
4158 	}
4159 
4160 	tasklet_schedule(&intf->recv_tasklet);
4161 
4162 	return waiting_msgs;
4163 }
4164 
4165 static void ipmi_request_event(ipmi_smi_t intf)
4166 {
4167 	/* No event requests when in maintenance mode. */
4168 	if (intf->maintenance_mode_enable)
4169 		return;
4170 
4171 	if (!intf->in_shutdown)
4172 		intf->handlers->request_events(intf->send_info);
4173 }
4174 
4175 static struct timer_list ipmi_timer;
4176 
4177 static atomic_t stop_operation;
4178 
4179 static void ipmi_timeout(unsigned long data)
4180 {
4181 	ipmi_smi_t intf;
4182 	int nt = 0;
4183 
4184 	if (atomic_read(&stop_operation))
4185 		return;
4186 
4187 	rcu_read_lock();
4188 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4189 		int lnt = 0;
4190 
4191 		if (atomic_read(&intf->event_waiters)) {
4192 			intf->ticks_to_req_ev--;
4193 			if (intf->ticks_to_req_ev == 0) {
4194 				ipmi_request_event(intf);
4195 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4196 			}
4197 			lnt++;
4198 		}
4199 
4200 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4201 
4202 		lnt = !!lnt;
4203 		if (lnt != intf->last_needs_timer &&
4204 					intf->handlers->set_need_watch)
4205 			intf->handlers->set_need_watch(intf->send_info, lnt);
4206 		intf->last_needs_timer = lnt;
4207 
4208 		nt += lnt;
4209 	}
4210 	rcu_read_unlock();
4211 
4212 	if (nt)
4213 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4214 }
4215 
4216 static void need_waiter(ipmi_smi_t intf)
4217 {
4218 	/* Racy, but worst case we start the timer twice. */
4219 	if (!timer_pending(&ipmi_timer))
4220 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4221 }
4222 
4223 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4224 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4225 
4226 static void free_smi_msg(struct ipmi_smi_msg *msg)
4227 {
4228 	atomic_dec(&smi_msg_inuse_count);
4229 	kfree(msg);
4230 }
4231 
4232 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4233 {
4234 	struct ipmi_smi_msg *rv;
4235 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4236 	if (rv) {
4237 		rv->done = free_smi_msg;
4238 		rv->user_data = NULL;
4239 		atomic_inc(&smi_msg_inuse_count);
4240 	}
4241 	return rv;
4242 }
4243 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4244 
4245 static void free_recv_msg(struct ipmi_recv_msg *msg)
4246 {
4247 	atomic_dec(&recv_msg_inuse_count);
4248 	kfree(msg);
4249 }
4250 
4251 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4252 {
4253 	struct ipmi_recv_msg *rv;
4254 
4255 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4256 	if (rv) {
4257 		rv->user = NULL;
4258 		rv->done = free_recv_msg;
4259 		atomic_inc(&recv_msg_inuse_count);
4260 	}
4261 	return rv;
4262 }
4263 
4264 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4265 {
4266 	if (msg->user)
4267 		kref_put(&msg->user->refcount, free_user);
4268 	msg->done(msg);
4269 }
4270 EXPORT_SYMBOL(ipmi_free_recv_msg);
4271 
4272 #ifdef CONFIG_IPMI_PANIC_EVENT
4273 
4274 static atomic_t panic_done_count = ATOMIC_INIT(0);
4275 
4276 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4277 {
4278 	atomic_dec(&panic_done_count);
4279 }
4280 
4281 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4282 {
4283 	atomic_dec(&panic_done_count);
4284 }
4285 
4286 /*
4287  * Inside a panic, send a message and wait for a response.
4288  */
4289 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4290 					struct ipmi_addr     *addr,
4291 					struct kernel_ipmi_msg *msg)
4292 {
4293 	struct ipmi_smi_msg  smi_msg;
4294 	struct ipmi_recv_msg recv_msg;
4295 	int rv;
4296 
4297 	smi_msg.done = dummy_smi_done_handler;
4298 	recv_msg.done = dummy_recv_done_handler;
4299 	atomic_add(2, &panic_done_count);
4300 	rv = i_ipmi_request(NULL,
4301 			    intf,
4302 			    addr,
4303 			    0,
4304 			    msg,
4305 			    intf,
4306 			    &smi_msg,
4307 			    &recv_msg,
4308 			    0,
4309 			    intf->channels[0].address,
4310 			    intf->channels[0].lun,
4311 			    0, 1); /* Don't retry, and don't wait. */
4312 	if (rv)
4313 		atomic_sub(2, &panic_done_count);
4314 	else if (intf->handlers->flush_messages)
4315 		intf->handlers->flush_messages(intf->send_info);
4316 
4317 	while (atomic_read(&panic_done_count) != 0)
4318 		ipmi_poll(intf);
4319 }
4320 
4321 #ifdef CONFIG_IPMI_PANIC_STRING
4322 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4323 {
4324 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4325 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4326 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4327 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4328 		/* A get event receiver command, save it. */
4329 		intf->event_receiver = msg->msg.data[1];
4330 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4331 	}
4332 }
4333 
4334 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4335 {
4336 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4337 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4338 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4339 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4340 		/*
4341 		 * A get device id command, save if we are an event
4342 		 * receiver or generator.
4343 		 */
4344 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4345 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4346 	}
4347 }
4348 #endif
4349 
4350 static void send_panic_events(char *str)
4351 {
4352 	struct kernel_ipmi_msg            msg;
4353 	ipmi_smi_t                        intf;
4354 	unsigned char                     data[16];
4355 	struct ipmi_system_interface_addr *si;
4356 	struct ipmi_addr                  addr;
4357 
4358 	si = (struct ipmi_system_interface_addr *) &addr;
4359 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4360 	si->channel = IPMI_BMC_CHANNEL;
4361 	si->lun = 0;
4362 
4363 	/* Fill in an event telling that we have failed. */
4364 	msg.netfn = 0x04; /* Sensor or Event. */
4365 	msg.cmd = 2; /* Platform event command. */
4366 	msg.data = data;
4367 	msg.data_len = 8;
4368 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4369 	data[1] = 0x03; /* This is for IPMI 1.0. */
4370 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4371 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4372 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4373 
4374 	/*
4375 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4376 	 * to make the panic events more useful.
4377 	 */
4378 	if (str) {
4379 		data[3] = str[0];
4380 		data[6] = str[1];
4381 		data[7] = str[2];
4382 	}
4383 
4384 	/* For every registered interface, send the event. */
4385 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4386 		if (!intf->handlers)
4387 			/* Interface is not ready. */
4388 			continue;
4389 
4390 		/* Send the event announcing the panic. */
4391 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4392 	}
4393 
4394 #ifdef CONFIG_IPMI_PANIC_STRING
4395 	/*
4396 	 * On every interface, dump a bunch of OEM event holding the
4397 	 * string.
4398 	 */
4399 	if (!str)
4400 		return;
4401 
4402 	/* For every registered interface, send the event. */
4403 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4404 		char                  *p = str;
4405 		struct ipmi_ipmb_addr *ipmb;
4406 		int                   j;
4407 
4408 		if (intf->intf_num == -1)
4409 			/* Interface was not ready yet. */
4410 			continue;
4411 
4412 		/*
4413 		 * intf_num is used as an marker to tell if the
4414 		 * interface is valid.  Thus we need a read barrier to
4415 		 * make sure data fetched before checking intf_num
4416 		 * won't be used.
4417 		 */
4418 		smp_rmb();
4419 
4420 		/*
4421 		 * First job here is to figure out where to send the
4422 		 * OEM events.  There's no way in IPMI to send OEM
4423 		 * events using an event send command, so we have to
4424 		 * find the SEL to put them in and stick them in
4425 		 * there.
4426 		 */
4427 
4428 		/* Get capabilities from the get device id. */
4429 		intf->local_sel_device = 0;
4430 		intf->local_event_generator = 0;
4431 		intf->event_receiver = 0;
4432 
4433 		/* Request the device info from the local MC. */
4434 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4435 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4436 		msg.data = NULL;
4437 		msg.data_len = 0;
4438 		intf->null_user_handler = device_id_fetcher;
4439 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4440 
4441 		if (intf->local_event_generator) {
4442 			/* Request the event receiver from the local MC. */
4443 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4444 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4445 			msg.data = NULL;
4446 			msg.data_len = 0;
4447 			intf->null_user_handler = event_receiver_fetcher;
4448 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4449 		}
4450 		intf->null_user_handler = NULL;
4451 
4452 		/*
4453 		 * Validate the event receiver.  The low bit must not
4454 		 * be 1 (it must be a valid IPMB address), it cannot
4455 		 * be zero, and it must not be my address.
4456 		 */
4457 		if (((intf->event_receiver & 1) == 0)
4458 		    && (intf->event_receiver != 0)
4459 		    && (intf->event_receiver != intf->channels[0].address)) {
4460 			/*
4461 			 * The event receiver is valid, send an IPMB
4462 			 * message.
4463 			 */
4464 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4465 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4466 			ipmb->channel = 0; /* FIXME - is this right? */
4467 			ipmb->lun = intf->event_receiver_lun;
4468 			ipmb->slave_addr = intf->event_receiver;
4469 		} else if (intf->local_sel_device) {
4470 			/*
4471 			 * The event receiver was not valid (or was
4472 			 * me), but I am an SEL device, just dump it
4473 			 * in my SEL.
4474 			 */
4475 			si = (struct ipmi_system_interface_addr *) &addr;
4476 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4477 			si->channel = IPMI_BMC_CHANNEL;
4478 			si->lun = 0;
4479 		} else
4480 			continue; /* No where to send the event. */
4481 
4482 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4483 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4484 		msg.data = data;
4485 		msg.data_len = 16;
4486 
4487 		j = 0;
4488 		while (*p) {
4489 			int size = strlen(p);
4490 
4491 			if (size > 11)
4492 				size = 11;
4493 			data[0] = 0;
4494 			data[1] = 0;
4495 			data[2] = 0xf0; /* OEM event without timestamp. */
4496 			data[3] = intf->channels[0].address;
4497 			data[4] = j++; /* sequence # */
4498 			/*
4499 			 * Always give 11 bytes, so strncpy will fill
4500 			 * it with zeroes for me.
4501 			 */
4502 			strncpy(data+5, p, 11);
4503 			p += size;
4504 
4505 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4506 		}
4507 	}
4508 #endif /* CONFIG_IPMI_PANIC_STRING */
4509 }
4510 #endif /* CONFIG_IPMI_PANIC_EVENT */
4511 
4512 static int has_panicked;
4513 
4514 static int panic_event(struct notifier_block *this,
4515 		       unsigned long         event,
4516 		       void                  *ptr)
4517 {
4518 	ipmi_smi_t intf;
4519 
4520 	if (has_panicked)
4521 		return NOTIFY_DONE;
4522 	has_panicked = 1;
4523 
4524 	/* For every registered interface, set it to run to completion. */
4525 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4526 		if (!intf->handlers)
4527 			/* Interface is not ready. */
4528 			continue;
4529 
4530 		/*
4531 		 * If we were interrupted while locking xmit_msgs_lock or
4532 		 * waiting_rcv_msgs_lock, the corresponding list may be
4533 		 * corrupted.  In this case, drop items on the list for
4534 		 * the safety.
4535 		 */
4536 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
4537 			INIT_LIST_HEAD(&intf->xmit_msgs);
4538 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
4539 		} else
4540 			spin_unlock(&intf->xmit_msgs_lock);
4541 
4542 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
4543 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
4544 		else
4545 			spin_unlock(&intf->waiting_rcv_msgs_lock);
4546 
4547 		intf->run_to_completion = 1;
4548 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4549 	}
4550 
4551 #ifdef CONFIG_IPMI_PANIC_EVENT
4552 	send_panic_events(ptr);
4553 #endif
4554 
4555 	return NOTIFY_DONE;
4556 }
4557 
4558 static struct notifier_block panic_block = {
4559 	.notifier_call	= panic_event,
4560 	.next		= NULL,
4561 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4562 };
4563 
4564 static int ipmi_init_msghandler(void)
4565 {
4566 	int rv;
4567 
4568 	if (initialized)
4569 		return 0;
4570 
4571 	rv = driver_register(&ipmidriver.driver);
4572 	if (rv) {
4573 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4574 		return rv;
4575 	}
4576 
4577 	printk(KERN_INFO "ipmi message handler version "
4578 	       IPMI_DRIVER_VERSION "\n");
4579 
4580 #ifdef CONFIG_PROC_FS
4581 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4582 	if (!proc_ipmi_root) {
4583 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4584 	    driver_unregister(&ipmidriver.driver);
4585 	    return -ENOMEM;
4586 	}
4587 
4588 #endif /* CONFIG_PROC_FS */
4589 
4590 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4591 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4592 
4593 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4594 
4595 	initialized = 1;
4596 
4597 	return 0;
4598 }
4599 
4600 static int __init ipmi_init_msghandler_mod(void)
4601 {
4602 	ipmi_init_msghandler();
4603 	return 0;
4604 }
4605 
4606 static void __exit cleanup_ipmi(void)
4607 {
4608 	int count;
4609 
4610 	if (!initialized)
4611 		return;
4612 
4613 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4614 
4615 	/*
4616 	 * This can't be called if any interfaces exist, so no worry
4617 	 * about shutting down the interfaces.
4618 	 */
4619 
4620 	/*
4621 	 * Tell the timer to stop, then wait for it to stop.  This
4622 	 * avoids problems with race conditions removing the timer
4623 	 * here.
4624 	 */
4625 	atomic_inc(&stop_operation);
4626 	del_timer_sync(&ipmi_timer);
4627 
4628 #ifdef CONFIG_PROC_FS
4629 	proc_remove(proc_ipmi_root);
4630 #endif /* CONFIG_PROC_FS */
4631 
4632 	driver_unregister(&ipmidriver.driver);
4633 
4634 	initialized = 0;
4635 
4636 	/* Check for buffer leaks. */
4637 	count = atomic_read(&smi_msg_inuse_count);
4638 	if (count != 0)
4639 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4640 		       count);
4641 	count = atomic_read(&recv_msg_inuse_count);
4642 	if (count != 0)
4643 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4644 		       count);
4645 }
4646 module_exit(cleanup_ipmi);
4647 
4648 module_init(ipmi_init_msghandler_mod);
4649 MODULE_LICENSE("GPL");
4650 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4651 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4652 		   " interface.");
4653 MODULE_VERSION(IPMI_DRIVER_VERSION);
4654 MODULE_SOFTDEP("post: ipmi_devintf");
4655