1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "%s" fmt, "IPMI message handler: "
15 #define dev_fmt pr_fmt
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/poll.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/spinlock.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/ipmi.h>
26 #include <linux/ipmi_smi.h>
27 #include <linux/notifier.h>
28 #include <linux/init.h>
29 #include <linux/proc_fs.h>
30 #include <linux/rcupdate.h>
31 #include <linux/interrupt.h>
32 #include <linux/moduleparam.h>
33 #include <linux/workqueue.h>
34 #include <linux/uuid.h>
35 #include <linux/nospec.h>
36 #include <linux/vmalloc.h>
37 #include <linux/delay.h>
38 
39 #define IPMI_DRIVER_VERSION "39.2"
40 
41 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
42 static int ipmi_init_msghandler(void);
43 static void smi_recv_tasklet(struct tasklet_struct *t);
44 static void handle_new_recv_msgs(struct ipmi_smi *intf);
45 static void need_waiter(struct ipmi_smi *intf);
46 static int handle_one_recv_msg(struct ipmi_smi *intf,
47 			       struct ipmi_smi_msg *msg);
48 
49 static bool initialized;
50 static bool drvregistered;
51 
52 enum ipmi_panic_event_op {
53 	IPMI_SEND_PANIC_EVENT_NONE,
54 	IPMI_SEND_PANIC_EVENT,
55 	IPMI_SEND_PANIC_EVENT_STRING
56 };
57 #ifdef CONFIG_IPMI_PANIC_STRING
58 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
59 #elif defined(CONFIG_IPMI_PANIC_EVENT)
60 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
61 #else
62 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
63 #endif
64 
65 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
66 
67 static int panic_op_write_handler(const char *val,
68 				  const struct kernel_param *kp)
69 {
70 	char valcp[16];
71 	char *s;
72 
73 	strncpy(valcp, val, 15);
74 	valcp[15] = '\0';
75 
76 	s = strstrip(valcp);
77 
78 	if (strcmp(s, "none") == 0)
79 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE;
80 	else if (strcmp(s, "event") == 0)
81 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT;
82 	else if (strcmp(s, "string") == 0)
83 		ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING;
84 	else
85 		return -EINVAL;
86 
87 	return 0;
88 }
89 
90 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
91 {
92 	switch (ipmi_send_panic_event) {
93 	case IPMI_SEND_PANIC_EVENT_NONE:
94 		strcpy(buffer, "none\n");
95 		break;
96 
97 	case IPMI_SEND_PANIC_EVENT:
98 		strcpy(buffer, "event\n");
99 		break;
100 
101 	case IPMI_SEND_PANIC_EVENT_STRING:
102 		strcpy(buffer, "string\n");
103 		break;
104 
105 	default:
106 		strcpy(buffer, "???\n");
107 		break;
108 	}
109 
110 	return strlen(buffer);
111 }
112 
113 static const struct kernel_param_ops panic_op_ops = {
114 	.set = panic_op_write_handler,
115 	.get = panic_op_read_handler
116 };
117 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
118 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
119 
120 
121 #define MAX_EVENTS_IN_QUEUE	25
122 
123 /* Remain in auto-maintenance mode for this amount of time (in ms). */
124 static unsigned long maintenance_mode_timeout_ms = 30000;
125 module_param(maintenance_mode_timeout_ms, ulong, 0644);
126 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
127 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
128 
129 /*
130  * Don't let a message sit in a queue forever, always time it with at lest
131  * the max message timer.  This is in milliseconds.
132  */
133 #define MAX_MSG_TIMEOUT		60000
134 
135 /*
136  * Timeout times below are in milliseconds, and are done off a 1
137  * second timer.  So setting the value to 1000 would mean anything
138  * between 0 and 1000ms.  So really the only reasonable minimum
139  * setting it 2000ms, which is between 1 and 2 seconds.
140  */
141 
142 /* The default timeout for message retries. */
143 static unsigned long default_retry_ms = 2000;
144 module_param(default_retry_ms, ulong, 0644);
145 MODULE_PARM_DESC(default_retry_ms,
146 		 "The time (milliseconds) between retry sends");
147 
148 /* The default timeout for maintenance mode message retries. */
149 static unsigned long default_maintenance_retry_ms = 3000;
150 module_param(default_maintenance_retry_ms, ulong, 0644);
151 MODULE_PARM_DESC(default_maintenance_retry_ms,
152 		 "The time (milliseconds) between retry sends in maintenance mode");
153 
154 /* The default maximum number of retries */
155 static unsigned int default_max_retries = 4;
156 module_param(default_max_retries, uint, 0644);
157 MODULE_PARM_DESC(default_max_retries,
158 		 "The time (milliseconds) between retry sends in maintenance mode");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	/* Free must run in process context for RCU cleanup. */
203 	struct work_struct remove_work;
204 };
205 
206 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
207 	__acquires(user->release_barrier)
208 {
209 	struct ipmi_user *ruser;
210 
211 	*index = srcu_read_lock(&user->release_barrier);
212 	ruser = srcu_dereference(user->self, &user->release_barrier);
213 	if (!ruser)
214 		srcu_read_unlock(&user->release_barrier, *index);
215 	return ruser;
216 }
217 
218 static void release_ipmi_user(struct ipmi_user *user, int index)
219 {
220 	srcu_read_unlock(&user->release_barrier, index);
221 }
222 
223 struct cmd_rcvr {
224 	struct list_head link;
225 
226 	struct ipmi_user *user;
227 	unsigned char netfn;
228 	unsigned char cmd;
229 	unsigned int  chans;
230 
231 	/*
232 	 * This is used to form a linked lised during mass deletion.
233 	 * Since this is in an RCU list, we cannot use the link above
234 	 * or change any data until the RCU period completes.  So we
235 	 * use this next variable during mass deletion so we can have
236 	 * a list and don't have to wait and restart the search on
237 	 * every individual deletion of a command.
238 	 */
239 	struct cmd_rcvr *next;
240 };
241 
242 struct seq_table {
243 	unsigned int         inuse : 1;
244 	unsigned int         broadcast : 1;
245 
246 	unsigned long        timeout;
247 	unsigned long        orig_timeout;
248 	unsigned int         retries_left;
249 
250 	/*
251 	 * To verify on an incoming send message response that this is
252 	 * the message that the response is for, we keep a sequence id
253 	 * and increment it every time we send a message.
254 	 */
255 	long                 seqid;
256 
257 	/*
258 	 * This is held so we can properly respond to the message on a
259 	 * timeout, and it is used to hold the temporary data for
260 	 * retransmission, too.
261 	 */
262 	struct ipmi_recv_msg *recv_msg;
263 };
264 
265 /*
266  * Store the information in a msgid (long) to allow us to find a
267  * sequence table entry from the msgid.
268  */
269 #define STORE_SEQ_IN_MSGID(seq, seqid) \
270 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
271 
272 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
273 	do {								\
274 		seq = (((msgid) >> 26) & 0x3f);				\
275 		seqid = ((msgid) & 0x3ffffff);				\
276 	} while (0)
277 
278 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
279 
280 #define IPMI_MAX_CHANNELS       16
281 struct ipmi_channel {
282 	unsigned char medium;
283 	unsigned char protocol;
284 };
285 
286 struct ipmi_channel_set {
287 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
288 };
289 
290 struct ipmi_my_addrinfo {
291 	/*
292 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
293 	 * but may be changed by the user.
294 	 */
295 	unsigned char address;
296 
297 	/*
298 	 * My LUN.  This should generally stay the SMS LUN, but just in
299 	 * case...
300 	 */
301 	unsigned char lun;
302 };
303 
304 /*
305  * Note that the product id, manufacturer id, guid, and device id are
306  * immutable in this structure, so dyn_mutex is not required for
307  * accessing those.  If those change on a BMC, a new BMC is allocated.
308  */
309 struct bmc_device {
310 	struct platform_device pdev;
311 	struct list_head       intfs; /* Interfaces on this BMC. */
312 	struct ipmi_device_id  id;
313 	struct ipmi_device_id  fetch_id;
314 	int                    dyn_id_set;
315 	unsigned long          dyn_id_expiry;
316 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
317 	guid_t                 guid;
318 	guid_t                 fetch_guid;
319 	int                    dyn_guid_set;
320 	struct kref	       usecount;
321 	struct work_struct     remove_work;
322 	unsigned char	       cc; /* completion code */
323 };
324 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
325 
326 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
327 			     struct ipmi_device_id *id,
328 			     bool *guid_set, guid_t *guid);
329 
330 /*
331  * Various statistics for IPMI, these index stats[] in the ipmi_smi
332  * structure.
333  */
334 enum ipmi_stat_indexes {
335 	/* Commands we got from the user that were invalid. */
336 	IPMI_STAT_sent_invalid_commands = 0,
337 
338 	/* Commands we sent to the MC. */
339 	IPMI_STAT_sent_local_commands,
340 
341 	/* Responses from the MC that were delivered to a user. */
342 	IPMI_STAT_handled_local_responses,
343 
344 	/* Responses from the MC that were not delivered to a user. */
345 	IPMI_STAT_unhandled_local_responses,
346 
347 	/* Commands we sent out to the IPMB bus. */
348 	IPMI_STAT_sent_ipmb_commands,
349 
350 	/* Commands sent on the IPMB that had errors on the SEND CMD */
351 	IPMI_STAT_sent_ipmb_command_errs,
352 
353 	/* Each retransmit increments this count. */
354 	IPMI_STAT_retransmitted_ipmb_commands,
355 
356 	/*
357 	 * When a message times out (runs out of retransmits) this is
358 	 * incremented.
359 	 */
360 	IPMI_STAT_timed_out_ipmb_commands,
361 
362 	/*
363 	 * This is like above, but for broadcasts.  Broadcasts are
364 	 * *not* included in the above count (they are expected to
365 	 * time out).
366 	 */
367 	IPMI_STAT_timed_out_ipmb_broadcasts,
368 
369 	/* Responses I have sent to the IPMB bus. */
370 	IPMI_STAT_sent_ipmb_responses,
371 
372 	/* The response was delivered to the user. */
373 	IPMI_STAT_handled_ipmb_responses,
374 
375 	/* The response had invalid data in it. */
376 	IPMI_STAT_invalid_ipmb_responses,
377 
378 	/* The response didn't have anyone waiting for it. */
379 	IPMI_STAT_unhandled_ipmb_responses,
380 
381 	/* Commands we sent out to the IPMB bus. */
382 	IPMI_STAT_sent_lan_commands,
383 
384 	/* Commands sent on the IPMB that had errors on the SEND CMD */
385 	IPMI_STAT_sent_lan_command_errs,
386 
387 	/* Each retransmit increments this count. */
388 	IPMI_STAT_retransmitted_lan_commands,
389 
390 	/*
391 	 * When a message times out (runs out of retransmits) this is
392 	 * incremented.
393 	 */
394 	IPMI_STAT_timed_out_lan_commands,
395 
396 	/* Responses I have sent to the IPMB bus. */
397 	IPMI_STAT_sent_lan_responses,
398 
399 	/* The response was delivered to the user. */
400 	IPMI_STAT_handled_lan_responses,
401 
402 	/* The response had invalid data in it. */
403 	IPMI_STAT_invalid_lan_responses,
404 
405 	/* The response didn't have anyone waiting for it. */
406 	IPMI_STAT_unhandled_lan_responses,
407 
408 	/* The command was delivered to the user. */
409 	IPMI_STAT_handled_commands,
410 
411 	/* The command had invalid data in it. */
412 	IPMI_STAT_invalid_commands,
413 
414 	/* The command didn't have anyone waiting for it. */
415 	IPMI_STAT_unhandled_commands,
416 
417 	/* Invalid data in an event. */
418 	IPMI_STAT_invalid_events,
419 
420 	/* Events that were received with the proper format. */
421 	IPMI_STAT_events,
422 
423 	/* Retransmissions on IPMB that failed. */
424 	IPMI_STAT_dropped_rexmit_ipmb_commands,
425 
426 	/* Retransmissions on LAN that failed. */
427 	IPMI_STAT_dropped_rexmit_lan_commands,
428 
429 	/* This *must* remain last, add new values above this. */
430 	IPMI_NUM_STATS
431 };
432 
433 
434 #define IPMI_IPMB_NUM_SEQ	64
435 struct ipmi_smi {
436 	struct module *owner;
437 
438 	/* What interface number are we? */
439 	int intf_num;
440 
441 	struct kref refcount;
442 
443 	/* Set when the interface is being unregistered. */
444 	bool in_shutdown;
445 
446 	/* Used for a list of interfaces. */
447 	struct list_head link;
448 
449 	/*
450 	 * The list of upper layers that are using me.  seq_lock write
451 	 * protects this.  Read protection is with srcu.
452 	 */
453 	struct list_head users;
454 	struct srcu_struct users_srcu;
455 
456 	/* Used for wake ups at startup. */
457 	wait_queue_head_t waitq;
458 
459 	/*
460 	 * Prevents the interface from being unregistered when the
461 	 * interface is used by being looked up through the BMC
462 	 * structure.
463 	 */
464 	struct mutex bmc_reg_mutex;
465 
466 	struct bmc_device tmp_bmc;
467 	struct bmc_device *bmc;
468 	bool bmc_registered;
469 	struct list_head bmc_link;
470 	char *my_dev_name;
471 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
472 	struct work_struct bmc_reg_work;
473 
474 	const struct ipmi_smi_handlers *handlers;
475 	void                     *send_info;
476 
477 	/* Driver-model device for the system interface. */
478 	struct device          *si_dev;
479 
480 	/*
481 	 * A table of sequence numbers for this interface.  We use the
482 	 * sequence numbers for IPMB messages that go out of the
483 	 * interface to match them up with their responses.  A routine
484 	 * is called periodically to time the items in this list.
485 	 */
486 	spinlock_t       seq_lock;
487 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
488 	int curr_seq;
489 
490 	/*
491 	 * Messages queued for delivery.  If delivery fails (out of memory
492 	 * for instance), They will stay in here to be processed later in a
493 	 * periodic timer interrupt.  The tasklet is for handling received
494 	 * messages directly from the handler.
495 	 */
496 	spinlock_t       waiting_rcv_msgs_lock;
497 	struct list_head waiting_rcv_msgs;
498 	atomic_t	 watchdog_pretimeouts_to_deliver;
499 	struct tasklet_struct recv_tasklet;
500 
501 	spinlock_t             xmit_msgs_lock;
502 	struct list_head       xmit_msgs;
503 	struct ipmi_smi_msg    *curr_msg;
504 	struct list_head       hp_xmit_msgs;
505 
506 	/*
507 	 * The list of command receivers that are registered for commands
508 	 * on this interface.
509 	 */
510 	struct mutex     cmd_rcvrs_mutex;
511 	struct list_head cmd_rcvrs;
512 
513 	/*
514 	 * Events that were queues because no one was there to receive
515 	 * them.
516 	 */
517 	spinlock_t       events_lock; /* For dealing with event stuff. */
518 	struct list_head waiting_events;
519 	unsigned int     waiting_events_count; /* How many events in queue? */
520 	char             delivering_events;
521 	char             event_msg_printed;
522 
523 	/* How many users are waiting for events? */
524 	atomic_t         event_waiters;
525 	unsigned int     ticks_to_req_ev;
526 
527 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
528 
529 	/* How many users are waiting for commands? */
530 	unsigned int     command_waiters;
531 
532 	/* How many users are waiting for watchdogs? */
533 	unsigned int     watchdog_waiters;
534 
535 	/* How many users are waiting for message responses? */
536 	unsigned int     response_waiters;
537 
538 	/*
539 	 * Tells what the lower layer has last been asked to watch for,
540 	 * messages and/or watchdogs.  Protected by watch_lock.
541 	 */
542 	unsigned int     last_watch_mask;
543 
544 	/*
545 	 * The event receiver for my BMC, only really used at panic
546 	 * shutdown as a place to store this.
547 	 */
548 	unsigned char event_receiver;
549 	unsigned char event_receiver_lun;
550 	unsigned char local_sel_device;
551 	unsigned char local_event_generator;
552 
553 	/* For handling of maintenance mode. */
554 	int maintenance_mode;
555 	bool maintenance_mode_enable;
556 	int auto_maintenance_timeout;
557 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
558 
559 	/*
560 	 * If we are doing maintenance on something on IPMB, extend
561 	 * the timeout time to avoid timeouts writing firmware and
562 	 * such.
563 	 */
564 	int ipmb_maintenance_mode_timeout;
565 
566 	/*
567 	 * A cheap hack, if this is non-null and a message to an
568 	 * interface comes in with a NULL user, call this routine with
569 	 * it.  Note that the message will still be freed by the
570 	 * caller.  This only works on the system interface.
571 	 *
572 	 * Protected by bmc_reg_mutex.
573 	 */
574 	void (*null_user_handler)(struct ipmi_smi *intf,
575 				  struct ipmi_recv_msg *msg);
576 
577 	/*
578 	 * When we are scanning the channels for an SMI, this will
579 	 * tell which channel we are scanning.
580 	 */
581 	int curr_channel;
582 
583 	/* Channel information */
584 	struct ipmi_channel_set *channel_list;
585 	unsigned int curr_working_cset; /* First index into the following. */
586 	struct ipmi_channel_set wchannels[2];
587 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
588 	bool channels_ready;
589 
590 	atomic_t stats[IPMI_NUM_STATS];
591 
592 	/*
593 	 * run_to_completion duplicate of smb_info, smi_info
594 	 * and ipmi_serial_info structures. Used to decrease numbers of
595 	 * parameters passed by "low" level IPMI code.
596 	 */
597 	int run_to_completion;
598 };
599 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
600 
601 static void __get_guid(struct ipmi_smi *intf);
602 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
603 static int __ipmi_bmc_register(struct ipmi_smi *intf,
604 			       struct ipmi_device_id *id,
605 			       bool guid_set, guid_t *guid, int intf_num);
606 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
607 
608 
609 /**
610  * The driver model view of the IPMI messaging driver.
611  */
612 static struct platform_driver ipmidriver = {
613 	.driver = {
614 		.name = "ipmi",
615 		.bus = &platform_bus_type
616 	}
617 };
618 /*
619  * This mutex keeps us from adding the same BMC twice.
620  */
621 static DEFINE_MUTEX(ipmidriver_mutex);
622 
623 static LIST_HEAD(ipmi_interfaces);
624 static DEFINE_MUTEX(ipmi_interfaces_mutex);
625 #define ipmi_interfaces_mutex_held() \
626 	lockdep_is_held(&ipmi_interfaces_mutex)
627 static struct srcu_struct ipmi_interfaces_srcu;
628 
629 /*
630  * List of watchers that want to know when smi's are added and deleted.
631  */
632 static LIST_HEAD(smi_watchers);
633 static DEFINE_MUTEX(smi_watchers_mutex);
634 
635 #define ipmi_inc_stat(intf, stat) \
636 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
637 #define ipmi_get_stat(intf, stat) \
638 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
639 
640 static const char * const addr_src_to_str[] = {
641 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
642 	"device-tree", "platform"
643 };
644 
645 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
646 {
647 	if (src >= SI_LAST)
648 		src = 0; /* Invalid */
649 	return addr_src_to_str[src];
650 }
651 EXPORT_SYMBOL(ipmi_addr_src_to_str);
652 
653 static int is_lan_addr(struct ipmi_addr *addr)
654 {
655 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
656 }
657 
658 static int is_ipmb_addr(struct ipmi_addr *addr)
659 {
660 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
661 }
662 
663 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
664 {
665 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
666 }
667 
668 static void free_recv_msg_list(struct list_head *q)
669 {
670 	struct ipmi_recv_msg *msg, *msg2;
671 
672 	list_for_each_entry_safe(msg, msg2, q, link) {
673 		list_del(&msg->link);
674 		ipmi_free_recv_msg(msg);
675 	}
676 }
677 
678 static void free_smi_msg_list(struct list_head *q)
679 {
680 	struct ipmi_smi_msg *msg, *msg2;
681 
682 	list_for_each_entry_safe(msg, msg2, q, link) {
683 		list_del(&msg->link);
684 		ipmi_free_smi_msg(msg);
685 	}
686 }
687 
688 static void clean_up_interface_data(struct ipmi_smi *intf)
689 {
690 	int              i;
691 	struct cmd_rcvr  *rcvr, *rcvr2;
692 	struct list_head list;
693 
694 	tasklet_kill(&intf->recv_tasklet);
695 
696 	free_smi_msg_list(&intf->waiting_rcv_msgs);
697 	free_recv_msg_list(&intf->waiting_events);
698 
699 	/*
700 	 * Wholesale remove all the entries from the list in the
701 	 * interface and wait for RCU to know that none are in use.
702 	 */
703 	mutex_lock(&intf->cmd_rcvrs_mutex);
704 	INIT_LIST_HEAD(&list);
705 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
706 	mutex_unlock(&intf->cmd_rcvrs_mutex);
707 
708 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
709 		kfree(rcvr);
710 
711 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
712 		if ((intf->seq_table[i].inuse)
713 					&& (intf->seq_table[i].recv_msg))
714 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
715 	}
716 }
717 
718 static void intf_free(struct kref *ref)
719 {
720 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
721 
722 	clean_up_interface_data(intf);
723 	kfree(intf);
724 }
725 
726 struct watcher_entry {
727 	int              intf_num;
728 	struct ipmi_smi  *intf;
729 	struct list_head link;
730 };
731 
732 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
733 {
734 	struct ipmi_smi *intf;
735 	int index, rv;
736 
737 	/*
738 	 * Make sure the driver is actually initialized, this handles
739 	 * problems with initialization order.
740 	 */
741 	rv = ipmi_init_msghandler();
742 	if (rv)
743 		return rv;
744 
745 	mutex_lock(&smi_watchers_mutex);
746 
747 	list_add(&watcher->link, &smi_watchers);
748 
749 	index = srcu_read_lock(&ipmi_interfaces_srcu);
750 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
751 			lockdep_is_held(&smi_watchers_mutex)) {
752 		int intf_num = READ_ONCE(intf->intf_num);
753 
754 		if (intf_num == -1)
755 			continue;
756 		watcher->new_smi(intf_num, intf->si_dev);
757 	}
758 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
759 
760 	mutex_unlock(&smi_watchers_mutex);
761 
762 	return 0;
763 }
764 EXPORT_SYMBOL(ipmi_smi_watcher_register);
765 
766 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
767 {
768 	mutex_lock(&smi_watchers_mutex);
769 	list_del(&watcher->link);
770 	mutex_unlock(&smi_watchers_mutex);
771 	return 0;
772 }
773 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
774 
775 /*
776  * Must be called with smi_watchers_mutex held.
777  */
778 static void
779 call_smi_watchers(int i, struct device *dev)
780 {
781 	struct ipmi_smi_watcher *w;
782 
783 	mutex_lock(&smi_watchers_mutex);
784 	list_for_each_entry(w, &smi_watchers, link) {
785 		if (try_module_get(w->owner)) {
786 			w->new_smi(i, dev);
787 			module_put(w->owner);
788 		}
789 	}
790 	mutex_unlock(&smi_watchers_mutex);
791 }
792 
793 static int
794 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
795 {
796 	if (addr1->addr_type != addr2->addr_type)
797 		return 0;
798 
799 	if (addr1->channel != addr2->channel)
800 		return 0;
801 
802 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
803 		struct ipmi_system_interface_addr *smi_addr1
804 		    = (struct ipmi_system_interface_addr *) addr1;
805 		struct ipmi_system_interface_addr *smi_addr2
806 		    = (struct ipmi_system_interface_addr *) addr2;
807 		return (smi_addr1->lun == smi_addr2->lun);
808 	}
809 
810 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
811 		struct ipmi_ipmb_addr *ipmb_addr1
812 		    = (struct ipmi_ipmb_addr *) addr1;
813 		struct ipmi_ipmb_addr *ipmb_addr2
814 		    = (struct ipmi_ipmb_addr *) addr2;
815 
816 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
817 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
818 	}
819 
820 	if (is_lan_addr(addr1)) {
821 		struct ipmi_lan_addr *lan_addr1
822 			= (struct ipmi_lan_addr *) addr1;
823 		struct ipmi_lan_addr *lan_addr2
824 		    = (struct ipmi_lan_addr *) addr2;
825 
826 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
827 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
828 			&& (lan_addr1->session_handle
829 			    == lan_addr2->session_handle)
830 			&& (lan_addr1->lun == lan_addr2->lun));
831 	}
832 
833 	return 1;
834 }
835 
836 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
837 {
838 	if (len < sizeof(struct ipmi_system_interface_addr))
839 		return -EINVAL;
840 
841 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
842 		if (addr->channel != IPMI_BMC_CHANNEL)
843 			return -EINVAL;
844 		return 0;
845 	}
846 
847 	if ((addr->channel == IPMI_BMC_CHANNEL)
848 	    || (addr->channel >= IPMI_MAX_CHANNELS)
849 	    || (addr->channel < 0))
850 		return -EINVAL;
851 
852 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
853 		if (len < sizeof(struct ipmi_ipmb_addr))
854 			return -EINVAL;
855 		return 0;
856 	}
857 
858 	if (is_lan_addr(addr)) {
859 		if (len < sizeof(struct ipmi_lan_addr))
860 			return -EINVAL;
861 		return 0;
862 	}
863 
864 	return -EINVAL;
865 }
866 EXPORT_SYMBOL(ipmi_validate_addr);
867 
868 unsigned int ipmi_addr_length(int addr_type)
869 {
870 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
871 		return sizeof(struct ipmi_system_interface_addr);
872 
873 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
874 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
875 		return sizeof(struct ipmi_ipmb_addr);
876 
877 	if (addr_type == IPMI_LAN_ADDR_TYPE)
878 		return sizeof(struct ipmi_lan_addr);
879 
880 	return 0;
881 }
882 EXPORT_SYMBOL(ipmi_addr_length);
883 
884 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
885 {
886 	int rv = 0;
887 
888 	if (!msg->user) {
889 		/* Special handling for NULL users. */
890 		if (intf->null_user_handler) {
891 			intf->null_user_handler(intf, msg);
892 		} else {
893 			/* No handler, so give up. */
894 			rv = -EINVAL;
895 		}
896 		ipmi_free_recv_msg(msg);
897 	} else if (oops_in_progress) {
898 		/*
899 		 * If we are running in the panic context, calling the
900 		 * receive handler doesn't much meaning and has a deadlock
901 		 * risk.  At this moment, simply skip it in that case.
902 		 */
903 		ipmi_free_recv_msg(msg);
904 	} else {
905 		int index;
906 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
907 
908 		if (user) {
909 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
910 			release_ipmi_user(user, index);
911 		} else {
912 			/* User went away, give up. */
913 			ipmi_free_recv_msg(msg);
914 			rv = -EINVAL;
915 		}
916 	}
917 
918 	return rv;
919 }
920 
921 static void deliver_local_response(struct ipmi_smi *intf,
922 				   struct ipmi_recv_msg *msg)
923 {
924 	if (deliver_response(intf, msg))
925 		ipmi_inc_stat(intf, unhandled_local_responses);
926 	else
927 		ipmi_inc_stat(intf, handled_local_responses);
928 }
929 
930 static void deliver_err_response(struct ipmi_smi *intf,
931 				 struct ipmi_recv_msg *msg, int err)
932 {
933 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
934 	msg->msg_data[0] = err;
935 	msg->msg.netfn |= 1; /* Convert to a response. */
936 	msg->msg.data_len = 1;
937 	msg->msg.data = msg->msg_data;
938 	deliver_local_response(intf, msg);
939 }
940 
941 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
942 {
943 	unsigned long iflags;
944 
945 	if (!intf->handlers->set_need_watch)
946 		return;
947 
948 	spin_lock_irqsave(&intf->watch_lock, iflags);
949 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
950 		intf->response_waiters++;
951 
952 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
953 		intf->watchdog_waiters++;
954 
955 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
956 		intf->command_waiters++;
957 
958 	if ((intf->last_watch_mask & flags) != flags) {
959 		intf->last_watch_mask |= flags;
960 		intf->handlers->set_need_watch(intf->send_info,
961 					       intf->last_watch_mask);
962 	}
963 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
964 }
965 
966 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
967 {
968 	unsigned long iflags;
969 
970 	if (!intf->handlers->set_need_watch)
971 		return;
972 
973 	spin_lock_irqsave(&intf->watch_lock, iflags);
974 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
975 		intf->response_waiters--;
976 
977 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
978 		intf->watchdog_waiters--;
979 
980 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
981 		intf->command_waiters--;
982 
983 	flags = 0;
984 	if (intf->response_waiters)
985 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
986 	if (intf->watchdog_waiters)
987 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
988 	if (intf->command_waiters)
989 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
990 
991 	if (intf->last_watch_mask != flags) {
992 		intf->last_watch_mask = flags;
993 		intf->handlers->set_need_watch(intf->send_info,
994 					       intf->last_watch_mask);
995 	}
996 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
997 }
998 
999 /*
1000  * Find the next sequence number not being used and add the given
1001  * message with the given timeout to the sequence table.  This must be
1002  * called with the interface's seq_lock held.
1003  */
1004 static int intf_next_seq(struct ipmi_smi      *intf,
1005 			 struct ipmi_recv_msg *recv_msg,
1006 			 unsigned long        timeout,
1007 			 int                  retries,
1008 			 int                  broadcast,
1009 			 unsigned char        *seq,
1010 			 long                 *seqid)
1011 {
1012 	int          rv = 0;
1013 	unsigned int i;
1014 
1015 	if (timeout == 0)
1016 		timeout = default_retry_ms;
1017 	if (retries < 0)
1018 		retries = default_max_retries;
1019 
1020 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1021 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1022 		if (!intf->seq_table[i].inuse)
1023 			break;
1024 	}
1025 
1026 	if (!intf->seq_table[i].inuse) {
1027 		intf->seq_table[i].recv_msg = recv_msg;
1028 
1029 		/*
1030 		 * Start with the maximum timeout, when the send response
1031 		 * comes in we will start the real timer.
1032 		 */
1033 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1034 		intf->seq_table[i].orig_timeout = timeout;
1035 		intf->seq_table[i].retries_left = retries;
1036 		intf->seq_table[i].broadcast = broadcast;
1037 		intf->seq_table[i].inuse = 1;
1038 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1039 		*seq = i;
1040 		*seqid = intf->seq_table[i].seqid;
1041 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1042 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1043 		need_waiter(intf);
1044 	} else {
1045 		rv = -EAGAIN;
1046 	}
1047 
1048 	return rv;
1049 }
1050 
1051 /*
1052  * Return the receive message for the given sequence number and
1053  * release the sequence number so it can be reused.  Some other data
1054  * is passed in to be sure the message matches up correctly (to help
1055  * guard against message coming in after their timeout and the
1056  * sequence number being reused).
1057  */
1058 static int intf_find_seq(struct ipmi_smi      *intf,
1059 			 unsigned char        seq,
1060 			 short                channel,
1061 			 unsigned char        cmd,
1062 			 unsigned char        netfn,
1063 			 struct ipmi_addr     *addr,
1064 			 struct ipmi_recv_msg **recv_msg)
1065 {
1066 	int           rv = -ENODEV;
1067 	unsigned long flags;
1068 
1069 	if (seq >= IPMI_IPMB_NUM_SEQ)
1070 		return -EINVAL;
1071 
1072 	spin_lock_irqsave(&intf->seq_lock, flags);
1073 	if (intf->seq_table[seq].inuse) {
1074 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1075 
1076 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1077 				&& (msg->msg.netfn == netfn)
1078 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1079 			*recv_msg = msg;
1080 			intf->seq_table[seq].inuse = 0;
1081 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1082 			rv = 0;
1083 		}
1084 	}
1085 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1086 
1087 	return rv;
1088 }
1089 
1090 
1091 /* Start the timer for a specific sequence table entry. */
1092 static int intf_start_seq_timer(struct ipmi_smi *intf,
1093 				long       msgid)
1094 {
1095 	int           rv = -ENODEV;
1096 	unsigned long flags;
1097 	unsigned char seq;
1098 	unsigned long seqid;
1099 
1100 
1101 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1102 
1103 	spin_lock_irqsave(&intf->seq_lock, flags);
1104 	/*
1105 	 * We do this verification because the user can be deleted
1106 	 * while a message is outstanding.
1107 	 */
1108 	if ((intf->seq_table[seq].inuse)
1109 				&& (intf->seq_table[seq].seqid == seqid)) {
1110 		struct seq_table *ent = &intf->seq_table[seq];
1111 		ent->timeout = ent->orig_timeout;
1112 		rv = 0;
1113 	}
1114 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1115 
1116 	return rv;
1117 }
1118 
1119 /* Got an error for the send message for a specific sequence number. */
1120 static int intf_err_seq(struct ipmi_smi *intf,
1121 			long         msgid,
1122 			unsigned int err)
1123 {
1124 	int                  rv = -ENODEV;
1125 	unsigned long        flags;
1126 	unsigned char        seq;
1127 	unsigned long        seqid;
1128 	struct ipmi_recv_msg *msg = NULL;
1129 
1130 
1131 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1132 
1133 	spin_lock_irqsave(&intf->seq_lock, flags);
1134 	/*
1135 	 * We do this verification because the user can be deleted
1136 	 * while a message is outstanding.
1137 	 */
1138 	if ((intf->seq_table[seq].inuse)
1139 				&& (intf->seq_table[seq].seqid == seqid)) {
1140 		struct seq_table *ent = &intf->seq_table[seq];
1141 
1142 		ent->inuse = 0;
1143 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1144 		msg = ent->recv_msg;
1145 		rv = 0;
1146 	}
1147 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1148 
1149 	if (msg)
1150 		deliver_err_response(intf, msg, err);
1151 
1152 	return rv;
1153 }
1154 
1155 static void free_user_work(struct work_struct *work)
1156 {
1157 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1158 					      remove_work);
1159 
1160 	cleanup_srcu_struct(&user->release_barrier);
1161 	vfree(user);
1162 }
1163 
1164 int ipmi_create_user(unsigned int          if_num,
1165 		     const struct ipmi_user_hndl *handler,
1166 		     void                  *handler_data,
1167 		     struct ipmi_user      **user)
1168 {
1169 	unsigned long flags;
1170 	struct ipmi_user *new_user;
1171 	int           rv, index;
1172 	struct ipmi_smi *intf;
1173 
1174 	/*
1175 	 * There is no module usecount here, because it's not
1176 	 * required.  Since this can only be used by and called from
1177 	 * other modules, they will implicitly use this module, and
1178 	 * thus this can't be removed unless the other modules are
1179 	 * removed.
1180 	 */
1181 
1182 	if (handler == NULL)
1183 		return -EINVAL;
1184 
1185 	/*
1186 	 * Make sure the driver is actually initialized, this handles
1187 	 * problems with initialization order.
1188 	 */
1189 	rv = ipmi_init_msghandler();
1190 	if (rv)
1191 		return rv;
1192 
1193 	new_user = vzalloc(sizeof(*new_user));
1194 	if (!new_user)
1195 		return -ENOMEM;
1196 
1197 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1198 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1199 		if (intf->intf_num == if_num)
1200 			goto found;
1201 	}
1202 	/* Not found, return an error */
1203 	rv = -EINVAL;
1204 	goto out_kfree;
1205 
1206  found:
1207 	INIT_WORK(&new_user->remove_work, free_user_work);
1208 
1209 	rv = init_srcu_struct(&new_user->release_barrier);
1210 	if (rv)
1211 		goto out_kfree;
1212 
1213 	if (!try_module_get(intf->owner)) {
1214 		rv = -ENODEV;
1215 		goto out_kfree;
1216 	}
1217 
1218 	/* Note that each existing user holds a refcount to the interface. */
1219 	kref_get(&intf->refcount);
1220 
1221 	kref_init(&new_user->refcount);
1222 	new_user->handler = handler;
1223 	new_user->handler_data = handler_data;
1224 	new_user->intf = intf;
1225 	new_user->gets_events = false;
1226 
1227 	rcu_assign_pointer(new_user->self, new_user);
1228 	spin_lock_irqsave(&intf->seq_lock, flags);
1229 	list_add_rcu(&new_user->link, &intf->users);
1230 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1231 	if (handler->ipmi_watchdog_pretimeout)
1232 		/* User wants pretimeouts, so make sure to watch for them. */
1233 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1234 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1235 	*user = new_user;
1236 	return 0;
1237 
1238 out_kfree:
1239 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1240 	vfree(new_user);
1241 	return rv;
1242 }
1243 EXPORT_SYMBOL(ipmi_create_user);
1244 
1245 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1246 {
1247 	int rv, index;
1248 	struct ipmi_smi *intf;
1249 
1250 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1251 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1252 		if (intf->intf_num == if_num)
1253 			goto found;
1254 	}
1255 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1256 
1257 	/* Not found, return an error */
1258 	return -EINVAL;
1259 
1260 found:
1261 	if (!intf->handlers->get_smi_info)
1262 		rv = -ENOTTY;
1263 	else
1264 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1265 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1266 
1267 	return rv;
1268 }
1269 EXPORT_SYMBOL(ipmi_get_smi_info);
1270 
1271 static void free_user(struct kref *ref)
1272 {
1273 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1274 
1275 	/* SRCU cleanup must happen in task context. */
1276 	schedule_work(&user->remove_work);
1277 }
1278 
1279 static void _ipmi_destroy_user(struct ipmi_user *user)
1280 {
1281 	struct ipmi_smi  *intf = user->intf;
1282 	int              i;
1283 	unsigned long    flags;
1284 	struct cmd_rcvr  *rcvr;
1285 	struct cmd_rcvr  *rcvrs = NULL;
1286 
1287 	if (!acquire_ipmi_user(user, &i)) {
1288 		/*
1289 		 * The user has already been cleaned up, just make sure
1290 		 * nothing is using it and return.
1291 		 */
1292 		synchronize_srcu(&user->release_barrier);
1293 		return;
1294 	}
1295 
1296 	rcu_assign_pointer(user->self, NULL);
1297 	release_ipmi_user(user, i);
1298 
1299 	synchronize_srcu(&user->release_barrier);
1300 
1301 	if (user->handler->shutdown)
1302 		user->handler->shutdown(user->handler_data);
1303 
1304 	if (user->handler->ipmi_watchdog_pretimeout)
1305 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1306 
1307 	if (user->gets_events)
1308 		atomic_dec(&intf->event_waiters);
1309 
1310 	/* Remove the user from the interface's sequence table. */
1311 	spin_lock_irqsave(&intf->seq_lock, flags);
1312 	list_del_rcu(&user->link);
1313 
1314 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1315 		if (intf->seq_table[i].inuse
1316 		    && (intf->seq_table[i].recv_msg->user == user)) {
1317 			intf->seq_table[i].inuse = 0;
1318 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1319 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1320 		}
1321 	}
1322 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1323 
1324 	/*
1325 	 * Remove the user from the command receiver's table.  First
1326 	 * we build a list of everything (not using the standard link,
1327 	 * since other things may be using it till we do
1328 	 * synchronize_srcu()) then free everything in that list.
1329 	 */
1330 	mutex_lock(&intf->cmd_rcvrs_mutex);
1331 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1332 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1333 		if (rcvr->user == user) {
1334 			list_del_rcu(&rcvr->link);
1335 			rcvr->next = rcvrs;
1336 			rcvrs = rcvr;
1337 		}
1338 	}
1339 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1340 	synchronize_rcu();
1341 	while (rcvrs) {
1342 		rcvr = rcvrs;
1343 		rcvrs = rcvr->next;
1344 		kfree(rcvr);
1345 	}
1346 
1347 	kref_put(&intf->refcount, intf_free);
1348 	module_put(intf->owner);
1349 }
1350 
1351 int ipmi_destroy_user(struct ipmi_user *user)
1352 {
1353 	_ipmi_destroy_user(user);
1354 
1355 	kref_put(&user->refcount, free_user);
1356 
1357 	return 0;
1358 }
1359 EXPORT_SYMBOL(ipmi_destroy_user);
1360 
1361 int ipmi_get_version(struct ipmi_user *user,
1362 		     unsigned char *major,
1363 		     unsigned char *minor)
1364 {
1365 	struct ipmi_device_id id;
1366 	int rv, index;
1367 
1368 	user = acquire_ipmi_user(user, &index);
1369 	if (!user)
1370 		return -ENODEV;
1371 
1372 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1373 	if (!rv) {
1374 		*major = ipmi_version_major(&id);
1375 		*minor = ipmi_version_minor(&id);
1376 	}
1377 	release_ipmi_user(user, index);
1378 
1379 	return rv;
1380 }
1381 EXPORT_SYMBOL(ipmi_get_version);
1382 
1383 int ipmi_set_my_address(struct ipmi_user *user,
1384 			unsigned int  channel,
1385 			unsigned char address)
1386 {
1387 	int index, rv = 0;
1388 
1389 	user = acquire_ipmi_user(user, &index);
1390 	if (!user)
1391 		return -ENODEV;
1392 
1393 	if (channel >= IPMI_MAX_CHANNELS) {
1394 		rv = -EINVAL;
1395 	} else {
1396 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1397 		user->intf->addrinfo[channel].address = address;
1398 	}
1399 	release_ipmi_user(user, index);
1400 
1401 	return rv;
1402 }
1403 EXPORT_SYMBOL(ipmi_set_my_address);
1404 
1405 int ipmi_get_my_address(struct ipmi_user *user,
1406 			unsigned int  channel,
1407 			unsigned char *address)
1408 {
1409 	int index, rv = 0;
1410 
1411 	user = acquire_ipmi_user(user, &index);
1412 	if (!user)
1413 		return -ENODEV;
1414 
1415 	if (channel >= IPMI_MAX_CHANNELS) {
1416 		rv = -EINVAL;
1417 	} else {
1418 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1419 		*address = user->intf->addrinfo[channel].address;
1420 	}
1421 	release_ipmi_user(user, index);
1422 
1423 	return rv;
1424 }
1425 EXPORT_SYMBOL(ipmi_get_my_address);
1426 
1427 int ipmi_set_my_LUN(struct ipmi_user *user,
1428 		    unsigned int  channel,
1429 		    unsigned char LUN)
1430 {
1431 	int index, rv = 0;
1432 
1433 	user = acquire_ipmi_user(user, &index);
1434 	if (!user)
1435 		return -ENODEV;
1436 
1437 	if (channel >= IPMI_MAX_CHANNELS) {
1438 		rv = -EINVAL;
1439 	} else {
1440 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1441 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1442 	}
1443 	release_ipmi_user(user, index);
1444 
1445 	return rv;
1446 }
1447 EXPORT_SYMBOL(ipmi_set_my_LUN);
1448 
1449 int ipmi_get_my_LUN(struct ipmi_user *user,
1450 		    unsigned int  channel,
1451 		    unsigned char *address)
1452 {
1453 	int index, rv = 0;
1454 
1455 	user = acquire_ipmi_user(user, &index);
1456 	if (!user)
1457 		return -ENODEV;
1458 
1459 	if (channel >= IPMI_MAX_CHANNELS) {
1460 		rv = -EINVAL;
1461 	} else {
1462 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1463 		*address = user->intf->addrinfo[channel].lun;
1464 	}
1465 	release_ipmi_user(user, index);
1466 
1467 	return rv;
1468 }
1469 EXPORT_SYMBOL(ipmi_get_my_LUN);
1470 
1471 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1472 {
1473 	int mode, index;
1474 	unsigned long flags;
1475 
1476 	user = acquire_ipmi_user(user, &index);
1477 	if (!user)
1478 		return -ENODEV;
1479 
1480 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1481 	mode = user->intf->maintenance_mode;
1482 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1483 	release_ipmi_user(user, index);
1484 
1485 	return mode;
1486 }
1487 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1488 
1489 static void maintenance_mode_update(struct ipmi_smi *intf)
1490 {
1491 	if (intf->handlers->set_maintenance_mode)
1492 		intf->handlers->set_maintenance_mode(
1493 			intf->send_info, intf->maintenance_mode_enable);
1494 }
1495 
1496 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1497 {
1498 	int rv = 0, index;
1499 	unsigned long flags;
1500 	struct ipmi_smi *intf = user->intf;
1501 
1502 	user = acquire_ipmi_user(user, &index);
1503 	if (!user)
1504 		return -ENODEV;
1505 
1506 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1507 	if (intf->maintenance_mode != mode) {
1508 		switch (mode) {
1509 		case IPMI_MAINTENANCE_MODE_AUTO:
1510 			intf->maintenance_mode_enable
1511 				= (intf->auto_maintenance_timeout > 0);
1512 			break;
1513 
1514 		case IPMI_MAINTENANCE_MODE_OFF:
1515 			intf->maintenance_mode_enable = false;
1516 			break;
1517 
1518 		case IPMI_MAINTENANCE_MODE_ON:
1519 			intf->maintenance_mode_enable = true;
1520 			break;
1521 
1522 		default:
1523 			rv = -EINVAL;
1524 			goto out_unlock;
1525 		}
1526 		intf->maintenance_mode = mode;
1527 
1528 		maintenance_mode_update(intf);
1529 	}
1530  out_unlock:
1531 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1532 	release_ipmi_user(user, index);
1533 
1534 	return rv;
1535 }
1536 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1537 
1538 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1539 {
1540 	unsigned long        flags;
1541 	struct ipmi_smi      *intf = user->intf;
1542 	struct ipmi_recv_msg *msg, *msg2;
1543 	struct list_head     msgs;
1544 	int index;
1545 
1546 	user = acquire_ipmi_user(user, &index);
1547 	if (!user)
1548 		return -ENODEV;
1549 
1550 	INIT_LIST_HEAD(&msgs);
1551 
1552 	spin_lock_irqsave(&intf->events_lock, flags);
1553 	if (user->gets_events == val)
1554 		goto out;
1555 
1556 	user->gets_events = val;
1557 
1558 	if (val) {
1559 		if (atomic_inc_return(&intf->event_waiters) == 1)
1560 			need_waiter(intf);
1561 	} else {
1562 		atomic_dec(&intf->event_waiters);
1563 	}
1564 
1565 	if (intf->delivering_events)
1566 		/*
1567 		 * Another thread is delivering events for this, so
1568 		 * let it handle any new events.
1569 		 */
1570 		goto out;
1571 
1572 	/* Deliver any queued events. */
1573 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1574 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1575 			list_move_tail(&msg->link, &msgs);
1576 		intf->waiting_events_count = 0;
1577 		if (intf->event_msg_printed) {
1578 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1579 			intf->event_msg_printed = 0;
1580 		}
1581 
1582 		intf->delivering_events = 1;
1583 		spin_unlock_irqrestore(&intf->events_lock, flags);
1584 
1585 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1586 			msg->user = user;
1587 			kref_get(&user->refcount);
1588 			deliver_local_response(intf, msg);
1589 		}
1590 
1591 		spin_lock_irqsave(&intf->events_lock, flags);
1592 		intf->delivering_events = 0;
1593 	}
1594 
1595  out:
1596 	spin_unlock_irqrestore(&intf->events_lock, flags);
1597 	release_ipmi_user(user, index);
1598 
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(ipmi_set_gets_events);
1602 
1603 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1604 				      unsigned char netfn,
1605 				      unsigned char cmd,
1606 				      unsigned char chan)
1607 {
1608 	struct cmd_rcvr *rcvr;
1609 
1610 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1611 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1612 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1613 					&& (rcvr->chans & (1 << chan)))
1614 			return rcvr;
1615 	}
1616 	return NULL;
1617 }
1618 
1619 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1620 				 unsigned char netfn,
1621 				 unsigned char cmd,
1622 				 unsigned int  chans)
1623 {
1624 	struct cmd_rcvr *rcvr;
1625 
1626 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1627 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1628 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1629 					&& (rcvr->chans & chans))
1630 			return 0;
1631 	}
1632 	return 1;
1633 }
1634 
1635 int ipmi_register_for_cmd(struct ipmi_user *user,
1636 			  unsigned char netfn,
1637 			  unsigned char cmd,
1638 			  unsigned int  chans)
1639 {
1640 	struct ipmi_smi *intf = user->intf;
1641 	struct cmd_rcvr *rcvr;
1642 	int rv = 0, index;
1643 
1644 	user = acquire_ipmi_user(user, &index);
1645 	if (!user)
1646 		return -ENODEV;
1647 
1648 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1649 	if (!rcvr) {
1650 		rv = -ENOMEM;
1651 		goto out_release;
1652 	}
1653 	rcvr->cmd = cmd;
1654 	rcvr->netfn = netfn;
1655 	rcvr->chans = chans;
1656 	rcvr->user = user;
1657 
1658 	mutex_lock(&intf->cmd_rcvrs_mutex);
1659 	/* Make sure the command/netfn is not already registered. */
1660 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1661 		rv = -EBUSY;
1662 		goto out_unlock;
1663 	}
1664 
1665 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1666 
1667 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1668 
1669 out_unlock:
1670 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1671 	if (rv)
1672 		kfree(rcvr);
1673 out_release:
1674 	release_ipmi_user(user, index);
1675 
1676 	return rv;
1677 }
1678 EXPORT_SYMBOL(ipmi_register_for_cmd);
1679 
1680 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1681 			    unsigned char netfn,
1682 			    unsigned char cmd,
1683 			    unsigned int  chans)
1684 {
1685 	struct ipmi_smi *intf = user->intf;
1686 	struct cmd_rcvr *rcvr;
1687 	struct cmd_rcvr *rcvrs = NULL;
1688 	int i, rv = -ENOENT, index;
1689 
1690 	user = acquire_ipmi_user(user, &index);
1691 	if (!user)
1692 		return -ENODEV;
1693 
1694 	mutex_lock(&intf->cmd_rcvrs_mutex);
1695 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1696 		if (((1 << i) & chans) == 0)
1697 			continue;
1698 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1699 		if (rcvr == NULL)
1700 			continue;
1701 		if (rcvr->user == user) {
1702 			rv = 0;
1703 			rcvr->chans &= ~chans;
1704 			if (rcvr->chans == 0) {
1705 				list_del_rcu(&rcvr->link);
1706 				rcvr->next = rcvrs;
1707 				rcvrs = rcvr;
1708 			}
1709 		}
1710 	}
1711 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1712 	synchronize_rcu();
1713 	release_ipmi_user(user, index);
1714 	while (rcvrs) {
1715 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1716 		rcvr = rcvrs;
1717 		rcvrs = rcvr->next;
1718 		kfree(rcvr);
1719 	}
1720 
1721 	return rv;
1722 }
1723 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1724 
1725 static unsigned char
1726 ipmb_checksum(unsigned char *data, int size)
1727 {
1728 	unsigned char csum = 0;
1729 
1730 	for (; size > 0; size--, data++)
1731 		csum += *data;
1732 
1733 	return -csum;
1734 }
1735 
1736 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1737 				   struct kernel_ipmi_msg *msg,
1738 				   struct ipmi_ipmb_addr *ipmb_addr,
1739 				   long                  msgid,
1740 				   unsigned char         ipmb_seq,
1741 				   int                   broadcast,
1742 				   unsigned char         source_address,
1743 				   unsigned char         source_lun)
1744 {
1745 	int i = broadcast;
1746 
1747 	/* Format the IPMB header data. */
1748 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1749 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1750 	smi_msg->data[2] = ipmb_addr->channel;
1751 	if (broadcast)
1752 		smi_msg->data[3] = 0;
1753 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1754 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1755 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1756 	smi_msg->data[i+6] = source_address;
1757 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1758 	smi_msg->data[i+8] = msg->cmd;
1759 
1760 	/* Now tack on the data to the message. */
1761 	if (msg->data_len > 0)
1762 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1763 	smi_msg->data_size = msg->data_len + 9;
1764 
1765 	/* Now calculate the checksum and tack it on. */
1766 	smi_msg->data[i+smi_msg->data_size]
1767 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1768 
1769 	/*
1770 	 * Add on the checksum size and the offset from the
1771 	 * broadcast.
1772 	 */
1773 	smi_msg->data_size += 1 + i;
1774 
1775 	smi_msg->msgid = msgid;
1776 }
1777 
1778 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1779 				  struct kernel_ipmi_msg *msg,
1780 				  struct ipmi_lan_addr  *lan_addr,
1781 				  long                  msgid,
1782 				  unsigned char         ipmb_seq,
1783 				  unsigned char         source_lun)
1784 {
1785 	/* Format the IPMB header data. */
1786 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1787 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1788 	smi_msg->data[2] = lan_addr->channel;
1789 	smi_msg->data[3] = lan_addr->session_handle;
1790 	smi_msg->data[4] = lan_addr->remote_SWID;
1791 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1792 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1793 	smi_msg->data[7] = lan_addr->local_SWID;
1794 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1795 	smi_msg->data[9] = msg->cmd;
1796 
1797 	/* Now tack on the data to the message. */
1798 	if (msg->data_len > 0)
1799 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1800 	smi_msg->data_size = msg->data_len + 10;
1801 
1802 	/* Now calculate the checksum and tack it on. */
1803 	smi_msg->data[smi_msg->data_size]
1804 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1805 
1806 	/*
1807 	 * Add on the checksum size and the offset from the
1808 	 * broadcast.
1809 	 */
1810 	smi_msg->data_size += 1;
1811 
1812 	smi_msg->msgid = msgid;
1813 }
1814 
1815 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1816 					     struct ipmi_smi_msg *smi_msg,
1817 					     int priority)
1818 {
1819 	if (intf->curr_msg) {
1820 		if (priority > 0)
1821 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1822 		else
1823 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1824 		smi_msg = NULL;
1825 	} else {
1826 		intf->curr_msg = smi_msg;
1827 	}
1828 
1829 	return smi_msg;
1830 }
1831 
1832 static void smi_send(struct ipmi_smi *intf,
1833 		     const struct ipmi_smi_handlers *handlers,
1834 		     struct ipmi_smi_msg *smi_msg, int priority)
1835 {
1836 	int run_to_completion = intf->run_to_completion;
1837 	unsigned long flags = 0;
1838 
1839 	if (!run_to_completion)
1840 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1841 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1842 
1843 	if (!run_to_completion)
1844 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1845 
1846 	if (smi_msg)
1847 		handlers->sender(intf->send_info, smi_msg);
1848 }
1849 
1850 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1851 {
1852 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1853 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1854 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1855 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1856 }
1857 
1858 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1859 			      struct ipmi_addr       *addr,
1860 			      long                   msgid,
1861 			      struct kernel_ipmi_msg *msg,
1862 			      struct ipmi_smi_msg    *smi_msg,
1863 			      struct ipmi_recv_msg   *recv_msg,
1864 			      int                    retries,
1865 			      unsigned int           retry_time_ms)
1866 {
1867 	struct ipmi_system_interface_addr *smi_addr;
1868 
1869 	if (msg->netfn & 1)
1870 		/* Responses are not allowed to the SMI. */
1871 		return -EINVAL;
1872 
1873 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1874 	if (smi_addr->lun > 3) {
1875 		ipmi_inc_stat(intf, sent_invalid_commands);
1876 		return -EINVAL;
1877 	}
1878 
1879 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1880 
1881 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1882 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1883 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1884 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1885 		/*
1886 		 * We don't let the user do these, since we manage
1887 		 * the sequence numbers.
1888 		 */
1889 		ipmi_inc_stat(intf, sent_invalid_commands);
1890 		return -EINVAL;
1891 	}
1892 
1893 	if (is_maintenance_mode_cmd(msg)) {
1894 		unsigned long flags;
1895 
1896 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1897 		intf->auto_maintenance_timeout
1898 			= maintenance_mode_timeout_ms;
1899 		if (!intf->maintenance_mode
1900 		    && !intf->maintenance_mode_enable) {
1901 			intf->maintenance_mode_enable = true;
1902 			maintenance_mode_update(intf);
1903 		}
1904 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1905 				       flags);
1906 	}
1907 
1908 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1909 		ipmi_inc_stat(intf, sent_invalid_commands);
1910 		return -EMSGSIZE;
1911 	}
1912 
1913 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1914 	smi_msg->data[1] = msg->cmd;
1915 	smi_msg->msgid = msgid;
1916 	smi_msg->user_data = recv_msg;
1917 	if (msg->data_len > 0)
1918 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1919 	smi_msg->data_size = msg->data_len + 2;
1920 	ipmi_inc_stat(intf, sent_local_commands);
1921 
1922 	return 0;
1923 }
1924 
1925 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1926 			   struct ipmi_addr       *addr,
1927 			   long                   msgid,
1928 			   struct kernel_ipmi_msg *msg,
1929 			   struct ipmi_smi_msg    *smi_msg,
1930 			   struct ipmi_recv_msg   *recv_msg,
1931 			   unsigned char          source_address,
1932 			   unsigned char          source_lun,
1933 			   int                    retries,
1934 			   unsigned int           retry_time_ms)
1935 {
1936 	struct ipmi_ipmb_addr *ipmb_addr;
1937 	unsigned char ipmb_seq;
1938 	long seqid;
1939 	int broadcast = 0;
1940 	struct ipmi_channel *chans;
1941 	int rv = 0;
1942 
1943 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1944 		ipmi_inc_stat(intf, sent_invalid_commands);
1945 		return -EINVAL;
1946 	}
1947 
1948 	chans = READ_ONCE(intf->channel_list)->c;
1949 
1950 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
1951 		ipmi_inc_stat(intf, sent_invalid_commands);
1952 		return -EINVAL;
1953 	}
1954 
1955 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1956 		/*
1957 		 * Broadcasts add a zero at the beginning of the
1958 		 * message, but otherwise is the same as an IPMB
1959 		 * address.
1960 		 */
1961 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1962 		broadcast = 1;
1963 		retries = 0; /* Don't retry broadcasts. */
1964 	}
1965 
1966 	/*
1967 	 * 9 for the header and 1 for the checksum, plus
1968 	 * possibly one for the broadcast.
1969 	 */
1970 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1971 		ipmi_inc_stat(intf, sent_invalid_commands);
1972 		return -EMSGSIZE;
1973 	}
1974 
1975 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1976 	if (ipmb_addr->lun > 3) {
1977 		ipmi_inc_stat(intf, sent_invalid_commands);
1978 		return -EINVAL;
1979 	}
1980 
1981 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1982 
1983 	if (recv_msg->msg.netfn & 0x1) {
1984 		/*
1985 		 * It's a response, so use the user's sequence
1986 		 * from msgid.
1987 		 */
1988 		ipmi_inc_stat(intf, sent_ipmb_responses);
1989 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1990 				msgid, broadcast,
1991 				source_address, source_lun);
1992 
1993 		/*
1994 		 * Save the receive message so we can use it
1995 		 * to deliver the response.
1996 		 */
1997 		smi_msg->user_data = recv_msg;
1998 	} else {
1999 		/* It's a command, so get a sequence for it. */
2000 		unsigned long flags;
2001 
2002 		spin_lock_irqsave(&intf->seq_lock, flags);
2003 
2004 		if (is_maintenance_mode_cmd(msg))
2005 			intf->ipmb_maintenance_mode_timeout =
2006 				maintenance_mode_timeout_ms;
2007 
2008 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2009 			/* Different default in maintenance mode */
2010 			retry_time_ms = default_maintenance_retry_ms;
2011 
2012 		/*
2013 		 * Create a sequence number with a 1 second
2014 		 * timeout and 4 retries.
2015 		 */
2016 		rv = intf_next_seq(intf,
2017 				   recv_msg,
2018 				   retry_time_ms,
2019 				   retries,
2020 				   broadcast,
2021 				   &ipmb_seq,
2022 				   &seqid);
2023 		if (rv)
2024 			/*
2025 			 * We have used up all the sequence numbers,
2026 			 * probably, so abort.
2027 			 */
2028 			goto out_err;
2029 
2030 		ipmi_inc_stat(intf, sent_ipmb_commands);
2031 
2032 		/*
2033 		 * Store the sequence number in the message,
2034 		 * so that when the send message response
2035 		 * comes back we can start the timer.
2036 		 */
2037 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2038 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2039 				ipmb_seq, broadcast,
2040 				source_address, source_lun);
2041 
2042 		/*
2043 		 * Copy the message into the recv message data, so we
2044 		 * can retransmit it later if necessary.
2045 		 */
2046 		memcpy(recv_msg->msg_data, smi_msg->data,
2047 		       smi_msg->data_size);
2048 		recv_msg->msg.data = recv_msg->msg_data;
2049 		recv_msg->msg.data_len = smi_msg->data_size;
2050 
2051 		/*
2052 		 * We don't unlock until here, because we need
2053 		 * to copy the completed message into the
2054 		 * recv_msg before we release the lock.
2055 		 * Otherwise, race conditions may bite us.  I
2056 		 * know that's pretty paranoid, but I prefer
2057 		 * to be correct.
2058 		 */
2059 out_err:
2060 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2061 	}
2062 
2063 	return rv;
2064 }
2065 
2066 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2067 			  struct ipmi_addr       *addr,
2068 			  long                   msgid,
2069 			  struct kernel_ipmi_msg *msg,
2070 			  struct ipmi_smi_msg    *smi_msg,
2071 			  struct ipmi_recv_msg   *recv_msg,
2072 			  unsigned char          source_lun,
2073 			  int                    retries,
2074 			  unsigned int           retry_time_ms)
2075 {
2076 	struct ipmi_lan_addr  *lan_addr;
2077 	unsigned char ipmb_seq;
2078 	long seqid;
2079 	struct ipmi_channel *chans;
2080 	int rv = 0;
2081 
2082 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2083 		ipmi_inc_stat(intf, sent_invalid_commands);
2084 		return -EINVAL;
2085 	}
2086 
2087 	chans = READ_ONCE(intf->channel_list)->c;
2088 
2089 	if ((chans[addr->channel].medium
2090 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2091 			&& (chans[addr->channel].medium
2092 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2093 		ipmi_inc_stat(intf, sent_invalid_commands);
2094 		return -EINVAL;
2095 	}
2096 
2097 	/* 11 for the header and 1 for the checksum. */
2098 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2099 		ipmi_inc_stat(intf, sent_invalid_commands);
2100 		return -EMSGSIZE;
2101 	}
2102 
2103 	lan_addr = (struct ipmi_lan_addr *) addr;
2104 	if (lan_addr->lun > 3) {
2105 		ipmi_inc_stat(intf, sent_invalid_commands);
2106 		return -EINVAL;
2107 	}
2108 
2109 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2110 
2111 	if (recv_msg->msg.netfn & 0x1) {
2112 		/*
2113 		 * It's a response, so use the user's sequence
2114 		 * from msgid.
2115 		 */
2116 		ipmi_inc_stat(intf, sent_lan_responses);
2117 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2118 			       msgid, source_lun);
2119 
2120 		/*
2121 		 * Save the receive message so we can use it
2122 		 * to deliver the response.
2123 		 */
2124 		smi_msg->user_data = recv_msg;
2125 	} else {
2126 		/* It's a command, so get a sequence for it. */
2127 		unsigned long flags;
2128 
2129 		spin_lock_irqsave(&intf->seq_lock, flags);
2130 
2131 		/*
2132 		 * Create a sequence number with a 1 second
2133 		 * timeout and 4 retries.
2134 		 */
2135 		rv = intf_next_seq(intf,
2136 				   recv_msg,
2137 				   retry_time_ms,
2138 				   retries,
2139 				   0,
2140 				   &ipmb_seq,
2141 				   &seqid);
2142 		if (rv)
2143 			/*
2144 			 * We have used up all the sequence numbers,
2145 			 * probably, so abort.
2146 			 */
2147 			goto out_err;
2148 
2149 		ipmi_inc_stat(intf, sent_lan_commands);
2150 
2151 		/*
2152 		 * Store the sequence number in the message,
2153 		 * so that when the send message response
2154 		 * comes back we can start the timer.
2155 		 */
2156 		format_lan_msg(smi_msg, msg, lan_addr,
2157 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2158 			       ipmb_seq, source_lun);
2159 
2160 		/*
2161 		 * Copy the message into the recv message data, so we
2162 		 * can retransmit it later if necessary.
2163 		 */
2164 		memcpy(recv_msg->msg_data, smi_msg->data,
2165 		       smi_msg->data_size);
2166 		recv_msg->msg.data = recv_msg->msg_data;
2167 		recv_msg->msg.data_len = smi_msg->data_size;
2168 
2169 		/*
2170 		 * We don't unlock until here, because we need
2171 		 * to copy the completed message into the
2172 		 * recv_msg before we release the lock.
2173 		 * Otherwise, race conditions may bite us.  I
2174 		 * know that's pretty paranoid, but I prefer
2175 		 * to be correct.
2176 		 */
2177 out_err:
2178 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2179 	}
2180 
2181 	return rv;
2182 }
2183 
2184 /*
2185  * Separate from ipmi_request so that the user does not have to be
2186  * supplied in certain circumstances (mainly at panic time).  If
2187  * messages are supplied, they will be freed, even if an error
2188  * occurs.
2189  */
2190 static int i_ipmi_request(struct ipmi_user     *user,
2191 			  struct ipmi_smi      *intf,
2192 			  struct ipmi_addr     *addr,
2193 			  long                 msgid,
2194 			  struct kernel_ipmi_msg *msg,
2195 			  void                 *user_msg_data,
2196 			  void                 *supplied_smi,
2197 			  struct ipmi_recv_msg *supplied_recv,
2198 			  int                  priority,
2199 			  unsigned char        source_address,
2200 			  unsigned char        source_lun,
2201 			  int                  retries,
2202 			  unsigned int         retry_time_ms)
2203 {
2204 	struct ipmi_smi_msg *smi_msg;
2205 	struct ipmi_recv_msg *recv_msg;
2206 	int rv = 0;
2207 
2208 	if (supplied_recv)
2209 		recv_msg = supplied_recv;
2210 	else {
2211 		recv_msg = ipmi_alloc_recv_msg();
2212 		if (recv_msg == NULL) {
2213 			rv = -ENOMEM;
2214 			goto out;
2215 		}
2216 	}
2217 	recv_msg->user_msg_data = user_msg_data;
2218 
2219 	if (supplied_smi)
2220 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
2221 	else {
2222 		smi_msg = ipmi_alloc_smi_msg();
2223 		if (smi_msg == NULL) {
2224 			if (!supplied_recv)
2225 				ipmi_free_recv_msg(recv_msg);
2226 			rv = -ENOMEM;
2227 			goto out;
2228 		}
2229 	}
2230 
2231 	rcu_read_lock();
2232 	if (intf->in_shutdown) {
2233 		rv = -ENODEV;
2234 		goto out_err;
2235 	}
2236 
2237 	recv_msg->user = user;
2238 	if (user)
2239 		/* The put happens when the message is freed. */
2240 		kref_get(&user->refcount);
2241 	recv_msg->msgid = msgid;
2242 	/*
2243 	 * Store the message to send in the receive message so timeout
2244 	 * responses can get the proper response data.
2245 	 */
2246 	recv_msg->msg = *msg;
2247 
2248 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2249 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2250 					recv_msg, retries, retry_time_ms);
2251 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2252 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2253 				     source_address, source_lun,
2254 				     retries, retry_time_ms);
2255 	} else if (is_lan_addr(addr)) {
2256 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2257 				    source_lun, retries, retry_time_ms);
2258 	} else {
2259 	    /* Unknown address type. */
2260 		ipmi_inc_stat(intf, sent_invalid_commands);
2261 		rv = -EINVAL;
2262 	}
2263 
2264 	if (rv) {
2265 out_err:
2266 		ipmi_free_smi_msg(smi_msg);
2267 		ipmi_free_recv_msg(recv_msg);
2268 	} else {
2269 		pr_debug("Send: %*ph\n", smi_msg->data_size, smi_msg->data);
2270 
2271 		smi_send(intf, intf->handlers, smi_msg, priority);
2272 	}
2273 	rcu_read_unlock();
2274 
2275 out:
2276 	return rv;
2277 }
2278 
2279 static int check_addr(struct ipmi_smi  *intf,
2280 		      struct ipmi_addr *addr,
2281 		      unsigned char    *saddr,
2282 		      unsigned char    *lun)
2283 {
2284 	if (addr->channel >= IPMI_MAX_CHANNELS)
2285 		return -EINVAL;
2286 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2287 	*lun = intf->addrinfo[addr->channel].lun;
2288 	*saddr = intf->addrinfo[addr->channel].address;
2289 	return 0;
2290 }
2291 
2292 int ipmi_request_settime(struct ipmi_user *user,
2293 			 struct ipmi_addr *addr,
2294 			 long             msgid,
2295 			 struct kernel_ipmi_msg  *msg,
2296 			 void             *user_msg_data,
2297 			 int              priority,
2298 			 int              retries,
2299 			 unsigned int     retry_time_ms)
2300 {
2301 	unsigned char saddr = 0, lun = 0;
2302 	int rv, index;
2303 
2304 	if (!user)
2305 		return -EINVAL;
2306 
2307 	user = acquire_ipmi_user(user, &index);
2308 	if (!user)
2309 		return -ENODEV;
2310 
2311 	rv = check_addr(user->intf, addr, &saddr, &lun);
2312 	if (!rv)
2313 		rv = i_ipmi_request(user,
2314 				    user->intf,
2315 				    addr,
2316 				    msgid,
2317 				    msg,
2318 				    user_msg_data,
2319 				    NULL, NULL,
2320 				    priority,
2321 				    saddr,
2322 				    lun,
2323 				    retries,
2324 				    retry_time_ms);
2325 
2326 	release_ipmi_user(user, index);
2327 	return rv;
2328 }
2329 EXPORT_SYMBOL(ipmi_request_settime);
2330 
2331 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2332 			     struct ipmi_addr     *addr,
2333 			     long                 msgid,
2334 			     struct kernel_ipmi_msg *msg,
2335 			     void                 *user_msg_data,
2336 			     void                 *supplied_smi,
2337 			     struct ipmi_recv_msg *supplied_recv,
2338 			     int                  priority)
2339 {
2340 	unsigned char saddr = 0, lun = 0;
2341 	int rv, index;
2342 
2343 	if (!user)
2344 		return -EINVAL;
2345 
2346 	user = acquire_ipmi_user(user, &index);
2347 	if (!user)
2348 		return -ENODEV;
2349 
2350 	rv = check_addr(user->intf, addr, &saddr, &lun);
2351 	if (!rv)
2352 		rv = i_ipmi_request(user,
2353 				    user->intf,
2354 				    addr,
2355 				    msgid,
2356 				    msg,
2357 				    user_msg_data,
2358 				    supplied_smi,
2359 				    supplied_recv,
2360 				    priority,
2361 				    saddr,
2362 				    lun,
2363 				    -1, 0);
2364 
2365 	release_ipmi_user(user, index);
2366 	return rv;
2367 }
2368 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2369 
2370 static void bmc_device_id_handler(struct ipmi_smi *intf,
2371 				  struct ipmi_recv_msg *msg)
2372 {
2373 	int rv;
2374 
2375 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2376 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2377 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2378 		dev_warn(intf->si_dev,
2379 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2380 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2381 		return;
2382 	}
2383 
2384 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2385 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2386 	if (rv) {
2387 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2388 		/* record completion code when error */
2389 		intf->bmc->cc = msg->msg.data[0];
2390 		intf->bmc->dyn_id_set = 0;
2391 	} else {
2392 		/*
2393 		 * Make sure the id data is available before setting
2394 		 * dyn_id_set.
2395 		 */
2396 		smp_wmb();
2397 		intf->bmc->dyn_id_set = 1;
2398 	}
2399 
2400 	wake_up(&intf->waitq);
2401 }
2402 
2403 static int
2404 send_get_device_id_cmd(struct ipmi_smi *intf)
2405 {
2406 	struct ipmi_system_interface_addr si;
2407 	struct kernel_ipmi_msg msg;
2408 
2409 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2410 	si.channel = IPMI_BMC_CHANNEL;
2411 	si.lun = 0;
2412 
2413 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2414 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2415 	msg.data = NULL;
2416 	msg.data_len = 0;
2417 
2418 	return i_ipmi_request(NULL,
2419 			      intf,
2420 			      (struct ipmi_addr *) &si,
2421 			      0,
2422 			      &msg,
2423 			      intf,
2424 			      NULL,
2425 			      NULL,
2426 			      0,
2427 			      intf->addrinfo[0].address,
2428 			      intf->addrinfo[0].lun,
2429 			      -1, 0);
2430 }
2431 
2432 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2433 {
2434 	int rv;
2435 	unsigned int retry_count = 0;
2436 
2437 	intf->null_user_handler = bmc_device_id_handler;
2438 
2439 retry:
2440 	bmc->cc = 0;
2441 	bmc->dyn_id_set = 2;
2442 
2443 	rv = send_get_device_id_cmd(intf);
2444 	if (rv)
2445 		goto out_reset_handler;
2446 
2447 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2448 
2449 	if (!bmc->dyn_id_set) {
2450 		if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
2451 		     || bmc->cc ==  IPMI_DEVICE_IN_INIT_ERR
2452 		     || bmc->cc ==  IPMI_NOT_IN_MY_STATE_ERR)
2453 		     && ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2454 			msleep(500);
2455 			dev_warn(intf->si_dev,
2456 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2457 			    bmc->cc);
2458 			goto retry;
2459 		}
2460 
2461 		rv = -EIO; /* Something went wrong in the fetch. */
2462 	}
2463 
2464 	/* dyn_id_set makes the id data available. */
2465 	smp_rmb();
2466 
2467 out_reset_handler:
2468 	intf->null_user_handler = NULL;
2469 
2470 	return rv;
2471 }
2472 
2473 /*
2474  * Fetch the device id for the bmc/interface.  You must pass in either
2475  * bmc or intf, this code will get the other one.  If the data has
2476  * been recently fetched, this will just use the cached data.  Otherwise
2477  * it will run a new fetch.
2478  *
2479  * Except for the first time this is called (in ipmi_add_smi()),
2480  * this will always return good data;
2481  */
2482 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2483 			       struct ipmi_device_id *id,
2484 			       bool *guid_set, guid_t *guid, int intf_num)
2485 {
2486 	int rv = 0;
2487 	int prev_dyn_id_set, prev_guid_set;
2488 	bool intf_set = intf != NULL;
2489 
2490 	if (!intf) {
2491 		mutex_lock(&bmc->dyn_mutex);
2492 retry_bmc_lock:
2493 		if (list_empty(&bmc->intfs)) {
2494 			mutex_unlock(&bmc->dyn_mutex);
2495 			return -ENOENT;
2496 		}
2497 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2498 					bmc_link);
2499 		kref_get(&intf->refcount);
2500 		mutex_unlock(&bmc->dyn_mutex);
2501 		mutex_lock(&intf->bmc_reg_mutex);
2502 		mutex_lock(&bmc->dyn_mutex);
2503 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2504 					     bmc_link)) {
2505 			mutex_unlock(&intf->bmc_reg_mutex);
2506 			kref_put(&intf->refcount, intf_free);
2507 			goto retry_bmc_lock;
2508 		}
2509 	} else {
2510 		mutex_lock(&intf->bmc_reg_mutex);
2511 		bmc = intf->bmc;
2512 		mutex_lock(&bmc->dyn_mutex);
2513 		kref_get(&intf->refcount);
2514 	}
2515 
2516 	/* If we have a valid and current ID, just return that. */
2517 	if (intf->in_bmc_register ||
2518 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2519 		goto out_noprocessing;
2520 
2521 	prev_guid_set = bmc->dyn_guid_set;
2522 	__get_guid(intf);
2523 
2524 	prev_dyn_id_set = bmc->dyn_id_set;
2525 	rv = __get_device_id(intf, bmc);
2526 	if (rv)
2527 		goto out;
2528 
2529 	/*
2530 	 * The guid, device id, manufacturer id, and product id should
2531 	 * not change on a BMC.  If it does we have to do some dancing.
2532 	 */
2533 	if (!intf->bmc_registered
2534 	    || (!prev_guid_set && bmc->dyn_guid_set)
2535 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2536 	    || (prev_guid_set && bmc->dyn_guid_set
2537 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2538 	    || bmc->id.device_id != bmc->fetch_id.device_id
2539 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2540 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2541 		struct ipmi_device_id id = bmc->fetch_id;
2542 		int guid_set = bmc->dyn_guid_set;
2543 		guid_t guid;
2544 
2545 		guid = bmc->fetch_guid;
2546 		mutex_unlock(&bmc->dyn_mutex);
2547 
2548 		__ipmi_bmc_unregister(intf);
2549 		/* Fill in the temporary BMC for good measure. */
2550 		intf->bmc->id = id;
2551 		intf->bmc->dyn_guid_set = guid_set;
2552 		intf->bmc->guid = guid;
2553 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2554 			need_waiter(intf); /* Retry later on an error. */
2555 		else
2556 			__scan_channels(intf, &id);
2557 
2558 
2559 		if (!intf_set) {
2560 			/*
2561 			 * We weren't given the interface on the
2562 			 * command line, so restart the operation on
2563 			 * the next interface for the BMC.
2564 			 */
2565 			mutex_unlock(&intf->bmc_reg_mutex);
2566 			mutex_lock(&bmc->dyn_mutex);
2567 			goto retry_bmc_lock;
2568 		}
2569 
2570 		/* We have a new BMC, set it up. */
2571 		bmc = intf->bmc;
2572 		mutex_lock(&bmc->dyn_mutex);
2573 		goto out_noprocessing;
2574 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2575 		/* Version info changes, scan the channels again. */
2576 		__scan_channels(intf, &bmc->fetch_id);
2577 
2578 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2579 
2580 out:
2581 	if (rv && prev_dyn_id_set) {
2582 		rv = 0; /* Ignore failures if we have previous data. */
2583 		bmc->dyn_id_set = prev_dyn_id_set;
2584 	}
2585 	if (!rv) {
2586 		bmc->id = bmc->fetch_id;
2587 		if (bmc->dyn_guid_set)
2588 			bmc->guid = bmc->fetch_guid;
2589 		else if (prev_guid_set)
2590 			/*
2591 			 * The guid used to be valid and it failed to fetch,
2592 			 * just use the cached value.
2593 			 */
2594 			bmc->dyn_guid_set = prev_guid_set;
2595 	}
2596 out_noprocessing:
2597 	if (!rv) {
2598 		if (id)
2599 			*id = bmc->id;
2600 
2601 		if (guid_set)
2602 			*guid_set = bmc->dyn_guid_set;
2603 
2604 		if (guid && bmc->dyn_guid_set)
2605 			*guid =  bmc->guid;
2606 	}
2607 
2608 	mutex_unlock(&bmc->dyn_mutex);
2609 	mutex_unlock(&intf->bmc_reg_mutex);
2610 
2611 	kref_put(&intf->refcount, intf_free);
2612 	return rv;
2613 }
2614 
2615 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2616 			     struct ipmi_device_id *id,
2617 			     bool *guid_set, guid_t *guid)
2618 {
2619 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2620 }
2621 
2622 static ssize_t device_id_show(struct device *dev,
2623 			      struct device_attribute *attr,
2624 			      char *buf)
2625 {
2626 	struct bmc_device *bmc = to_bmc_device(dev);
2627 	struct ipmi_device_id id;
2628 	int rv;
2629 
2630 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2631 	if (rv)
2632 		return rv;
2633 
2634 	return snprintf(buf, 10, "%u\n", id.device_id);
2635 }
2636 static DEVICE_ATTR_RO(device_id);
2637 
2638 static ssize_t provides_device_sdrs_show(struct device *dev,
2639 					 struct device_attribute *attr,
2640 					 char *buf)
2641 {
2642 	struct bmc_device *bmc = to_bmc_device(dev);
2643 	struct ipmi_device_id id;
2644 	int rv;
2645 
2646 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2647 	if (rv)
2648 		return rv;
2649 
2650 	return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7);
2651 }
2652 static DEVICE_ATTR_RO(provides_device_sdrs);
2653 
2654 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2655 			     char *buf)
2656 {
2657 	struct bmc_device *bmc = to_bmc_device(dev);
2658 	struct ipmi_device_id id;
2659 	int rv;
2660 
2661 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2662 	if (rv)
2663 		return rv;
2664 
2665 	return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F);
2666 }
2667 static DEVICE_ATTR_RO(revision);
2668 
2669 static ssize_t firmware_revision_show(struct device *dev,
2670 				      struct device_attribute *attr,
2671 				      char *buf)
2672 {
2673 	struct bmc_device *bmc = to_bmc_device(dev);
2674 	struct ipmi_device_id id;
2675 	int rv;
2676 
2677 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2678 	if (rv)
2679 		return rv;
2680 
2681 	return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1,
2682 			id.firmware_revision_2);
2683 }
2684 static DEVICE_ATTR_RO(firmware_revision);
2685 
2686 static ssize_t ipmi_version_show(struct device *dev,
2687 				 struct device_attribute *attr,
2688 				 char *buf)
2689 {
2690 	struct bmc_device *bmc = to_bmc_device(dev);
2691 	struct ipmi_device_id id;
2692 	int rv;
2693 
2694 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2695 	if (rv)
2696 		return rv;
2697 
2698 	return snprintf(buf, 20, "%u.%u\n",
2699 			ipmi_version_major(&id),
2700 			ipmi_version_minor(&id));
2701 }
2702 static DEVICE_ATTR_RO(ipmi_version);
2703 
2704 static ssize_t add_dev_support_show(struct device *dev,
2705 				    struct device_attribute *attr,
2706 				    char *buf)
2707 {
2708 	struct bmc_device *bmc = to_bmc_device(dev);
2709 	struct ipmi_device_id id;
2710 	int rv;
2711 
2712 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2713 	if (rv)
2714 		return rv;
2715 
2716 	return snprintf(buf, 10, "0x%02x\n", id.additional_device_support);
2717 }
2718 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2719 		   NULL);
2720 
2721 static ssize_t manufacturer_id_show(struct device *dev,
2722 				    struct device_attribute *attr,
2723 				    char *buf)
2724 {
2725 	struct bmc_device *bmc = to_bmc_device(dev);
2726 	struct ipmi_device_id id;
2727 	int rv;
2728 
2729 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2730 	if (rv)
2731 		return rv;
2732 
2733 	return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id);
2734 }
2735 static DEVICE_ATTR_RO(manufacturer_id);
2736 
2737 static ssize_t product_id_show(struct device *dev,
2738 			       struct device_attribute *attr,
2739 			       char *buf)
2740 {
2741 	struct bmc_device *bmc = to_bmc_device(dev);
2742 	struct ipmi_device_id id;
2743 	int rv;
2744 
2745 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2746 	if (rv)
2747 		return rv;
2748 
2749 	return snprintf(buf, 10, "0x%4.4x\n", id.product_id);
2750 }
2751 static DEVICE_ATTR_RO(product_id);
2752 
2753 static ssize_t aux_firmware_rev_show(struct device *dev,
2754 				     struct device_attribute *attr,
2755 				     char *buf)
2756 {
2757 	struct bmc_device *bmc = to_bmc_device(dev);
2758 	struct ipmi_device_id id;
2759 	int rv;
2760 
2761 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2762 	if (rv)
2763 		return rv;
2764 
2765 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2766 			id.aux_firmware_revision[3],
2767 			id.aux_firmware_revision[2],
2768 			id.aux_firmware_revision[1],
2769 			id.aux_firmware_revision[0]);
2770 }
2771 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2772 
2773 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2774 			 char *buf)
2775 {
2776 	struct bmc_device *bmc = to_bmc_device(dev);
2777 	bool guid_set;
2778 	guid_t guid;
2779 	int rv;
2780 
2781 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2782 	if (rv)
2783 		return rv;
2784 	if (!guid_set)
2785 		return -ENOENT;
2786 
2787 	return snprintf(buf, UUID_STRING_LEN + 1 + 1, "%pUl\n", &guid);
2788 }
2789 static DEVICE_ATTR_RO(guid);
2790 
2791 static struct attribute *bmc_dev_attrs[] = {
2792 	&dev_attr_device_id.attr,
2793 	&dev_attr_provides_device_sdrs.attr,
2794 	&dev_attr_revision.attr,
2795 	&dev_attr_firmware_revision.attr,
2796 	&dev_attr_ipmi_version.attr,
2797 	&dev_attr_additional_device_support.attr,
2798 	&dev_attr_manufacturer_id.attr,
2799 	&dev_attr_product_id.attr,
2800 	&dev_attr_aux_firmware_revision.attr,
2801 	&dev_attr_guid.attr,
2802 	NULL
2803 };
2804 
2805 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2806 				       struct attribute *attr, int idx)
2807 {
2808 	struct device *dev = kobj_to_dev(kobj);
2809 	struct bmc_device *bmc = to_bmc_device(dev);
2810 	umode_t mode = attr->mode;
2811 	int rv;
2812 
2813 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2814 		struct ipmi_device_id id;
2815 
2816 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2817 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2818 	}
2819 	if (attr == &dev_attr_guid.attr) {
2820 		bool guid_set;
2821 
2822 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2823 		return (!rv && guid_set) ? mode : 0;
2824 	}
2825 	return mode;
2826 }
2827 
2828 static const struct attribute_group bmc_dev_attr_group = {
2829 	.attrs		= bmc_dev_attrs,
2830 	.is_visible	= bmc_dev_attr_is_visible,
2831 };
2832 
2833 static const struct attribute_group *bmc_dev_attr_groups[] = {
2834 	&bmc_dev_attr_group,
2835 	NULL
2836 };
2837 
2838 static const struct device_type bmc_device_type = {
2839 	.groups		= bmc_dev_attr_groups,
2840 };
2841 
2842 static int __find_bmc_guid(struct device *dev, const void *data)
2843 {
2844 	const guid_t *guid = data;
2845 	struct bmc_device *bmc;
2846 	int rv;
2847 
2848 	if (dev->type != &bmc_device_type)
2849 		return 0;
2850 
2851 	bmc = to_bmc_device(dev);
2852 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2853 	if (rv)
2854 		rv = kref_get_unless_zero(&bmc->usecount);
2855 	return rv;
2856 }
2857 
2858 /*
2859  * Returns with the bmc's usecount incremented, if it is non-NULL.
2860  */
2861 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2862 					     guid_t *guid)
2863 {
2864 	struct device *dev;
2865 	struct bmc_device *bmc = NULL;
2866 
2867 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2868 	if (dev) {
2869 		bmc = to_bmc_device(dev);
2870 		put_device(dev);
2871 	}
2872 	return bmc;
2873 }
2874 
2875 struct prod_dev_id {
2876 	unsigned int  product_id;
2877 	unsigned char device_id;
2878 };
2879 
2880 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
2881 {
2882 	const struct prod_dev_id *cid = data;
2883 	struct bmc_device *bmc;
2884 	int rv;
2885 
2886 	if (dev->type != &bmc_device_type)
2887 		return 0;
2888 
2889 	bmc = to_bmc_device(dev);
2890 	rv = (bmc->id.product_id == cid->product_id
2891 	      && bmc->id.device_id == cid->device_id);
2892 	if (rv)
2893 		rv = kref_get_unless_zero(&bmc->usecount);
2894 	return rv;
2895 }
2896 
2897 /*
2898  * Returns with the bmc's usecount incremented, if it is non-NULL.
2899  */
2900 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2901 	struct device_driver *drv,
2902 	unsigned int product_id, unsigned char device_id)
2903 {
2904 	struct prod_dev_id id = {
2905 		.product_id = product_id,
2906 		.device_id = device_id,
2907 	};
2908 	struct device *dev;
2909 	struct bmc_device *bmc = NULL;
2910 
2911 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2912 	if (dev) {
2913 		bmc = to_bmc_device(dev);
2914 		put_device(dev);
2915 	}
2916 	return bmc;
2917 }
2918 
2919 static DEFINE_IDA(ipmi_bmc_ida);
2920 
2921 static void
2922 release_bmc_device(struct device *dev)
2923 {
2924 	kfree(to_bmc_device(dev));
2925 }
2926 
2927 static void cleanup_bmc_work(struct work_struct *work)
2928 {
2929 	struct bmc_device *bmc = container_of(work, struct bmc_device,
2930 					      remove_work);
2931 	int id = bmc->pdev.id; /* Unregister overwrites id */
2932 
2933 	platform_device_unregister(&bmc->pdev);
2934 	ida_simple_remove(&ipmi_bmc_ida, id);
2935 }
2936 
2937 static void
2938 cleanup_bmc_device(struct kref *ref)
2939 {
2940 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2941 
2942 	/*
2943 	 * Remove the platform device in a work queue to avoid issues
2944 	 * with removing the device attributes while reading a device
2945 	 * attribute.
2946 	 */
2947 	schedule_work(&bmc->remove_work);
2948 }
2949 
2950 /*
2951  * Must be called with intf->bmc_reg_mutex held.
2952  */
2953 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
2954 {
2955 	struct bmc_device *bmc = intf->bmc;
2956 
2957 	if (!intf->bmc_registered)
2958 		return;
2959 
2960 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2961 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2962 	kfree(intf->my_dev_name);
2963 	intf->my_dev_name = NULL;
2964 
2965 	mutex_lock(&bmc->dyn_mutex);
2966 	list_del(&intf->bmc_link);
2967 	mutex_unlock(&bmc->dyn_mutex);
2968 	intf->bmc = &intf->tmp_bmc;
2969 	kref_put(&bmc->usecount, cleanup_bmc_device);
2970 	intf->bmc_registered = false;
2971 }
2972 
2973 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
2974 {
2975 	mutex_lock(&intf->bmc_reg_mutex);
2976 	__ipmi_bmc_unregister(intf);
2977 	mutex_unlock(&intf->bmc_reg_mutex);
2978 }
2979 
2980 /*
2981  * Must be called with intf->bmc_reg_mutex held.
2982  */
2983 static int __ipmi_bmc_register(struct ipmi_smi *intf,
2984 			       struct ipmi_device_id *id,
2985 			       bool guid_set, guid_t *guid, int intf_num)
2986 {
2987 	int               rv;
2988 	struct bmc_device *bmc;
2989 	struct bmc_device *old_bmc;
2990 
2991 	/*
2992 	 * platform_device_register() can cause bmc_reg_mutex to
2993 	 * be claimed because of the is_visible functions of
2994 	 * the attributes.  Eliminate possible recursion and
2995 	 * release the lock.
2996 	 */
2997 	intf->in_bmc_register = true;
2998 	mutex_unlock(&intf->bmc_reg_mutex);
2999 
3000 	/*
3001 	 * Try to find if there is an bmc_device struct
3002 	 * representing the interfaced BMC already
3003 	 */
3004 	mutex_lock(&ipmidriver_mutex);
3005 	if (guid_set)
3006 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3007 	else
3008 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3009 						    id->product_id,
3010 						    id->device_id);
3011 
3012 	/*
3013 	 * If there is already an bmc_device, free the new one,
3014 	 * otherwise register the new BMC device
3015 	 */
3016 	if (old_bmc) {
3017 		bmc = old_bmc;
3018 		/*
3019 		 * Note: old_bmc already has usecount incremented by
3020 		 * the BMC find functions.
3021 		 */
3022 		intf->bmc = old_bmc;
3023 		mutex_lock(&bmc->dyn_mutex);
3024 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3025 		mutex_unlock(&bmc->dyn_mutex);
3026 
3027 		dev_info(intf->si_dev,
3028 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3029 			 bmc->id.manufacturer_id,
3030 			 bmc->id.product_id,
3031 			 bmc->id.device_id);
3032 	} else {
3033 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3034 		if (!bmc) {
3035 			rv = -ENOMEM;
3036 			goto out;
3037 		}
3038 		INIT_LIST_HEAD(&bmc->intfs);
3039 		mutex_init(&bmc->dyn_mutex);
3040 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3041 
3042 		bmc->id = *id;
3043 		bmc->dyn_id_set = 1;
3044 		bmc->dyn_guid_set = guid_set;
3045 		bmc->guid = *guid;
3046 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3047 
3048 		bmc->pdev.name = "ipmi_bmc";
3049 
3050 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3051 		if (rv < 0) {
3052 			kfree(bmc);
3053 			goto out;
3054 		}
3055 
3056 		bmc->pdev.dev.driver = &ipmidriver.driver;
3057 		bmc->pdev.id = rv;
3058 		bmc->pdev.dev.release = release_bmc_device;
3059 		bmc->pdev.dev.type = &bmc_device_type;
3060 		kref_init(&bmc->usecount);
3061 
3062 		intf->bmc = bmc;
3063 		mutex_lock(&bmc->dyn_mutex);
3064 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3065 		mutex_unlock(&bmc->dyn_mutex);
3066 
3067 		rv = platform_device_register(&bmc->pdev);
3068 		if (rv) {
3069 			dev_err(intf->si_dev,
3070 				"Unable to register bmc device: %d\n",
3071 				rv);
3072 			goto out_list_del;
3073 		}
3074 
3075 		dev_info(intf->si_dev,
3076 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3077 			 bmc->id.manufacturer_id,
3078 			 bmc->id.product_id,
3079 			 bmc->id.device_id);
3080 	}
3081 
3082 	/*
3083 	 * create symlink from system interface device to bmc device
3084 	 * and back.
3085 	 */
3086 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3087 	if (rv) {
3088 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3089 		goto out_put_bmc;
3090 	}
3091 
3092 	if (intf_num == -1)
3093 		intf_num = intf->intf_num;
3094 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3095 	if (!intf->my_dev_name) {
3096 		rv = -ENOMEM;
3097 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3098 			rv);
3099 		goto out_unlink1;
3100 	}
3101 
3102 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3103 			       intf->my_dev_name);
3104 	if (rv) {
3105 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3106 			rv);
3107 		goto out_free_my_dev_name;
3108 	}
3109 
3110 	intf->bmc_registered = true;
3111 
3112 out:
3113 	mutex_unlock(&ipmidriver_mutex);
3114 	mutex_lock(&intf->bmc_reg_mutex);
3115 	intf->in_bmc_register = false;
3116 	return rv;
3117 
3118 
3119 out_free_my_dev_name:
3120 	kfree(intf->my_dev_name);
3121 	intf->my_dev_name = NULL;
3122 
3123 out_unlink1:
3124 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3125 
3126 out_put_bmc:
3127 	mutex_lock(&bmc->dyn_mutex);
3128 	list_del(&intf->bmc_link);
3129 	mutex_unlock(&bmc->dyn_mutex);
3130 	intf->bmc = &intf->tmp_bmc;
3131 	kref_put(&bmc->usecount, cleanup_bmc_device);
3132 	goto out;
3133 
3134 out_list_del:
3135 	mutex_lock(&bmc->dyn_mutex);
3136 	list_del(&intf->bmc_link);
3137 	mutex_unlock(&bmc->dyn_mutex);
3138 	intf->bmc = &intf->tmp_bmc;
3139 	put_device(&bmc->pdev.dev);
3140 	goto out;
3141 }
3142 
3143 static int
3144 send_guid_cmd(struct ipmi_smi *intf, int chan)
3145 {
3146 	struct kernel_ipmi_msg            msg;
3147 	struct ipmi_system_interface_addr si;
3148 
3149 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3150 	si.channel = IPMI_BMC_CHANNEL;
3151 	si.lun = 0;
3152 
3153 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3154 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3155 	msg.data = NULL;
3156 	msg.data_len = 0;
3157 	return i_ipmi_request(NULL,
3158 			      intf,
3159 			      (struct ipmi_addr *) &si,
3160 			      0,
3161 			      &msg,
3162 			      intf,
3163 			      NULL,
3164 			      NULL,
3165 			      0,
3166 			      intf->addrinfo[0].address,
3167 			      intf->addrinfo[0].lun,
3168 			      -1, 0);
3169 }
3170 
3171 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3172 {
3173 	struct bmc_device *bmc = intf->bmc;
3174 
3175 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3176 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3177 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3178 		/* Not for me */
3179 		return;
3180 
3181 	if (msg->msg.data[0] != 0) {
3182 		/* Error from getting the GUID, the BMC doesn't have one. */
3183 		bmc->dyn_guid_set = 0;
3184 		goto out;
3185 	}
3186 
3187 	if (msg->msg.data_len < UUID_SIZE + 1) {
3188 		bmc->dyn_guid_set = 0;
3189 		dev_warn(intf->si_dev,
3190 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3191 			 msg->msg.data_len, UUID_SIZE + 1);
3192 		goto out;
3193 	}
3194 
3195 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3196 	/*
3197 	 * Make sure the guid data is available before setting
3198 	 * dyn_guid_set.
3199 	 */
3200 	smp_wmb();
3201 	bmc->dyn_guid_set = 1;
3202  out:
3203 	wake_up(&intf->waitq);
3204 }
3205 
3206 static void __get_guid(struct ipmi_smi *intf)
3207 {
3208 	int rv;
3209 	struct bmc_device *bmc = intf->bmc;
3210 
3211 	bmc->dyn_guid_set = 2;
3212 	intf->null_user_handler = guid_handler;
3213 	rv = send_guid_cmd(intf, 0);
3214 	if (rv)
3215 		/* Send failed, no GUID available. */
3216 		bmc->dyn_guid_set = 0;
3217 	else
3218 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3219 
3220 	/* dyn_guid_set makes the guid data available. */
3221 	smp_rmb();
3222 
3223 	intf->null_user_handler = NULL;
3224 }
3225 
3226 static int
3227 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3228 {
3229 	struct kernel_ipmi_msg            msg;
3230 	unsigned char                     data[1];
3231 	struct ipmi_system_interface_addr si;
3232 
3233 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3234 	si.channel = IPMI_BMC_CHANNEL;
3235 	si.lun = 0;
3236 
3237 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3238 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3239 	msg.data = data;
3240 	msg.data_len = 1;
3241 	data[0] = chan;
3242 	return i_ipmi_request(NULL,
3243 			      intf,
3244 			      (struct ipmi_addr *) &si,
3245 			      0,
3246 			      &msg,
3247 			      intf,
3248 			      NULL,
3249 			      NULL,
3250 			      0,
3251 			      intf->addrinfo[0].address,
3252 			      intf->addrinfo[0].lun,
3253 			      -1, 0);
3254 }
3255 
3256 static void
3257 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3258 {
3259 	int rv = 0;
3260 	int ch;
3261 	unsigned int set = intf->curr_working_cset;
3262 	struct ipmi_channel *chans;
3263 
3264 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3265 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3266 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3267 		/* It's the one we want */
3268 		if (msg->msg.data[0] != 0) {
3269 			/* Got an error from the channel, just go on. */
3270 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3271 				/*
3272 				 * If the MC does not support this
3273 				 * command, that is legal.  We just
3274 				 * assume it has one IPMB at channel
3275 				 * zero.
3276 				 */
3277 				intf->wchannels[set].c[0].medium
3278 					= IPMI_CHANNEL_MEDIUM_IPMB;
3279 				intf->wchannels[set].c[0].protocol
3280 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3281 
3282 				intf->channel_list = intf->wchannels + set;
3283 				intf->channels_ready = true;
3284 				wake_up(&intf->waitq);
3285 				goto out;
3286 			}
3287 			goto next_channel;
3288 		}
3289 		if (msg->msg.data_len < 4) {
3290 			/* Message not big enough, just go on. */
3291 			goto next_channel;
3292 		}
3293 		ch = intf->curr_channel;
3294 		chans = intf->wchannels[set].c;
3295 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3296 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3297 
3298  next_channel:
3299 		intf->curr_channel++;
3300 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3301 			intf->channel_list = intf->wchannels + set;
3302 			intf->channels_ready = true;
3303 			wake_up(&intf->waitq);
3304 		} else {
3305 			intf->channel_list = intf->wchannels + set;
3306 			intf->channels_ready = true;
3307 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3308 		}
3309 
3310 		if (rv) {
3311 			/* Got an error somehow, just give up. */
3312 			dev_warn(intf->si_dev,
3313 				 "Error sending channel information for channel %d: %d\n",
3314 				 intf->curr_channel, rv);
3315 
3316 			intf->channel_list = intf->wchannels + set;
3317 			intf->channels_ready = true;
3318 			wake_up(&intf->waitq);
3319 		}
3320 	}
3321  out:
3322 	return;
3323 }
3324 
3325 /*
3326  * Must be holding intf->bmc_reg_mutex to call this.
3327  */
3328 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3329 {
3330 	int rv;
3331 
3332 	if (ipmi_version_major(id) > 1
3333 			|| (ipmi_version_major(id) == 1
3334 			    && ipmi_version_minor(id) >= 5)) {
3335 		unsigned int set;
3336 
3337 		/*
3338 		 * Start scanning the channels to see what is
3339 		 * available.
3340 		 */
3341 		set = !intf->curr_working_cset;
3342 		intf->curr_working_cset = set;
3343 		memset(&intf->wchannels[set], 0,
3344 		       sizeof(struct ipmi_channel_set));
3345 
3346 		intf->null_user_handler = channel_handler;
3347 		intf->curr_channel = 0;
3348 		rv = send_channel_info_cmd(intf, 0);
3349 		if (rv) {
3350 			dev_warn(intf->si_dev,
3351 				 "Error sending channel information for channel 0, %d\n",
3352 				 rv);
3353 			intf->null_user_handler = NULL;
3354 			return -EIO;
3355 		}
3356 
3357 		/* Wait for the channel info to be read. */
3358 		wait_event(intf->waitq, intf->channels_ready);
3359 		intf->null_user_handler = NULL;
3360 	} else {
3361 		unsigned int set = intf->curr_working_cset;
3362 
3363 		/* Assume a single IPMB channel at zero. */
3364 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3365 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3366 		intf->channel_list = intf->wchannels + set;
3367 		intf->channels_ready = true;
3368 	}
3369 
3370 	return 0;
3371 }
3372 
3373 static void ipmi_poll(struct ipmi_smi *intf)
3374 {
3375 	if (intf->handlers->poll)
3376 		intf->handlers->poll(intf->send_info);
3377 	/* In case something came in */
3378 	handle_new_recv_msgs(intf);
3379 }
3380 
3381 void ipmi_poll_interface(struct ipmi_user *user)
3382 {
3383 	ipmi_poll(user->intf);
3384 }
3385 EXPORT_SYMBOL(ipmi_poll_interface);
3386 
3387 static void redo_bmc_reg(struct work_struct *work)
3388 {
3389 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3390 					     bmc_reg_work);
3391 
3392 	if (!intf->in_shutdown)
3393 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3394 
3395 	kref_put(&intf->refcount, intf_free);
3396 }
3397 
3398 int ipmi_add_smi(struct module         *owner,
3399 		 const struct ipmi_smi_handlers *handlers,
3400 		 void		       *send_info,
3401 		 struct device         *si_dev,
3402 		 unsigned char         slave_addr)
3403 {
3404 	int              i, j;
3405 	int              rv;
3406 	struct ipmi_smi *intf, *tintf;
3407 	struct list_head *link;
3408 	struct ipmi_device_id id;
3409 
3410 	/*
3411 	 * Make sure the driver is actually initialized, this handles
3412 	 * problems with initialization order.
3413 	 */
3414 	rv = ipmi_init_msghandler();
3415 	if (rv)
3416 		return rv;
3417 
3418 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3419 	if (!intf)
3420 		return -ENOMEM;
3421 
3422 	rv = init_srcu_struct(&intf->users_srcu);
3423 	if (rv) {
3424 		kfree(intf);
3425 		return rv;
3426 	}
3427 
3428 	intf->owner = owner;
3429 	intf->bmc = &intf->tmp_bmc;
3430 	INIT_LIST_HEAD(&intf->bmc->intfs);
3431 	mutex_init(&intf->bmc->dyn_mutex);
3432 	INIT_LIST_HEAD(&intf->bmc_link);
3433 	mutex_init(&intf->bmc_reg_mutex);
3434 	intf->intf_num = -1; /* Mark it invalid for now. */
3435 	kref_init(&intf->refcount);
3436 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3437 	intf->si_dev = si_dev;
3438 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3439 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3440 		intf->addrinfo[j].lun = 2;
3441 	}
3442 	if (slave_addr != 0)
3443 		intf->addrinfo[0].address = slave_addr;
3444 	INIT_LIST_HEAD(&intf->users);
3445 	intf->handlers = handlers;
3446 	intf->send_info = send_info;
3447 	spin_lock_init(&intf->seq_lock);
3448 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3449 		intf->seq_table[j].inuse = 0;
3450 		intf->seq_table[j].seqid = 0;
3451 	}
3452 	intf->curr_seq = 0;
3453 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3454 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3455 	tasklet_setup(&intf->recv_tasklet,
3456 		     smi_recv_tasklet);
3457 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3458 	spin_lock_init(&intf->xmit_msgs_lock);
3459 	INIT_LIST_HEAD(&intf->xmit_msgs);
3460 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3461 	spin_lock_init(&intf->events_lock);
3462 	spin_lock_init(&intf->watch_lock);
3463 	atomic_set(&intf->event_waiters, 0);
3464 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3465 	INIT_LIST_HEAD(&intf->waiting_events);
3466 	intf->waiting_events_count = 0;
3467 	mutex_init(&intf->cmd_rcvrs_mutex);
3468 	spin_lock_init(&intf->maintenance_mode_lock);
3469 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3470 	init_waitqueue_head(&intf->waitq);
3471 	for (i = 0; i < IPMI_NUM_STATS; i++)
3472 		atomic_set(&intf->stats[i], 0);
3473 
3474 	mutex_lock(&ipmi_interfaces_mutex);
3475 	/* Look for a hole in the numbers. */
3476 	i = 0;
3477 	link = &ipmi_interfaces;
3478 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3479 				ipmi_interfaces_mutex_held()) {
3480 		if (tintf->intf_num != i) {
3481 			link = &tintf->link;
3482 			break;
3483 		}
3484 		i++;
3485 	}
3486 	/* Add the new interface in numeric order. */
3487 	if (i == 0)
3488 		list_add_rcu(&intf->link, &ipmi_interfaces);
3489 	else
3490 		list_add_tail_rcu(&intf->link, link);
3491 
3492 	rv = handlers->start_processing(send_info, intf);
3493 	if (rv)
3494 		goto out_err;
3495 
3496 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3497 	if (rv) {
3498 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3499 		goto out_err_started;
3500 	}
3501 
3502 	mutex_lock(&intf->bmc_reg_mutex);
3503 	rv = __scan_channels(intf, &id);
3504 	mutex_unlock(&intf->bmc_reg_mutex);
3505 	if (rv)
3506 		goto out_err_bmc_reg;
3507 
3508 	/*
3509 	 * Keep memory order straight for RCU readers.  Make
3510 	 * sure everything else is committed to memory before
3511 	 * setting intf_num to mark the interface valid.
3512 	 */
3513 	smp_wmb();
3514 	intf->intf_num = i;
3515 	mutex_unlock(&ipmi_interfaces_mutex);
3516 
3517 	/* After this point the interface is legal to use. */
3518 	call_smi_watchers(i, intf->si_dev);
3519 
3520 	return 0;
3521 
3522  out_err_bmc_reg:
3523 	ipmi_bmc_unregister(intf);
3524  out_err_started:
3525 	if (intf->handlers->shutdown)
3526 		intf->handlers->shutdown(intf->send_info);
3527  out_err:
3528 	list_del_rcu(&intf->link);
3529 	mutex_unlock(&ipmi_interfaces_mutex);
3530 	synchronize_srcu(&ipmi_interfaces_srcu);
3531 	cleanup_srcu_struct(&intf->users_srcu);
3532 	kref_put(&intf->refcount, intf_free);
3533 
3534 	return rv;
3535 }
3536 EXPORT_SYMBOL(ipmi_add_smi);
3537 
3538 static void deliver_smi_err_response(struct ipmi_smi *intf,
3539 				     struct ipmi_smi_msg *msg,
3540 				     unsigned char err)
3541 {
3542 	msg->rsp[0] = msg->data[0] | 4;
3543 	msg->rsp[1] = msg->data[1];
3544 	msg->rsp[2] = err;
3545 	msg->rsp_size = 3;
3546 	/* It's an error, so it will never requeue, no need to check return. */
3547 	handle_one_recv_msg(intf, msg);
3548 }
3549 
3550 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3551 {
3552 	int              i;
3553 	struct seq_table *ent;
3554 	struct ipmi_smi_msg *msg;
3555 	struct list_head *entry;
3556 	struct list_head tmplist;
3557 
3558 	/* Clear out our transmit queues and hold the messages. */
3559 	INIT_LIST_HEAD(&tmplist);
3560 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3561 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3562 
3563 	/* Current message first, to preserve order */
3564 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3565 		/* Wait for the message to clear out. */
3566 		schedule_timeout(1);
3567 	}
3568 
3569 	/* No need for locks, the interface is down. */
3570 
3571 	/*
3572 	 * Return errors for all pending messages in queue and in the
3573 	 * tables waiting for remote responses.
3574 	 */
3575 	while (!list_empty(&tmplist)) {
3576 		entry = tmplist.next;
3577 		list_del(entry);
3578 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3579 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3580 	}
3581 
3582 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3583 		ent = &intf->seq_table[i];
3584 		if (!ent->inuse)
3585 			continue;
3586 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3587 	}
3588 }
3589 
3590 void ipmi_unregister_smi(struct ipmi_smi *intf)
3591 {
3592 	struct ipmi_smi_watcher *w;
3593 	int intf_num = intf->intf_num, index;
3594 
3595 	mutex_lock(&ipmi_interfaces_mutex);
3596 	intf->intf_num = -1;
3597 	intf->in_shutdown = true;
3598 	list_del_rcu(&intf->link);
3599 	mutex_unlock(&ipmi_interfaces_mutex);
3600 	synchronize_srcu(&ipmi_interfaces_srcu);
3601 
3602 	/* At this point no users can be added to the interface. */
3603 
3604 	/*
3605 	 * Call all the watcher interfaces to tell them that
3606 	 * an interface is going away.
3607 	 */
3608 	mutex_lock(&smi_watchers_mutex);
3609 	list_for_each_entry(w, &smi_watchers, link)
3610 		w->smi_gone(intf_num);
3611 	mutex_unlock(&smi_watchers_mutex);
3612 
3613 	index = srcu_read_lock(&intf->users_srcu);
3614 	while (!list_empty(&intf->users)) {
3615 		struct ipmi_user *user =
3616 			container_of(list_next_rcu(&intf->users),
3617 				     struct ipmi_user, link);
3618 
3619 		_ipmi_destroy_user(user);
3620 	}
3621 	srcu_read_unlock(&intf->users_srcu, index);
3622 
3623 	if (intf->handlers->shutdown)
3624 		intf->handlers->shutdown(intf->send_info);
3625 
3626 	cleanup_smi_msgs(intf);
3627 
3628 	ipmi_bmc_unregister(intf);
3629 
3630 	cleanup_srcu_struct(&intf->users_srcu);
3631 	kref_put(&intf->refcount, intf_free);
3632 }
3633 EXPORT_SYMBOL(ipmi_unregister_smi);
3634 
3635 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3636 				   struct ipmi_smi_msg *msg)
3637 {
3638 	struct ipmi_ipmb_addr ipmb_addr;
3639 	struct ipmi_recv_msg  *recv_msg;
3640 
3641 	/*
3642 	 * This is 11, not 10, because the response must contain a
3643 	 * completion code.
3644 	 */
3645 	if (msg->rsp_size < 11) {
3646 		/* Message not big enough, just ignore it. */
3647 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3648 		return 0;
3649 	}
3650 
3651 	if (msg->rsp[2] != 0) {
3652 		/* An error getting the response, just ignore it. */
3653 		return 0;
3654 	}
3655 
3656 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3657 	ipmb_addr.slave_addr = msg->rsp[6];
3658 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3659 	ipmb_addr.lun = msg->rsp[7] & 3;
3660 
3661 	/*
3662 	 * It's a response from a remote entity.  Look up the sequence
3663 	 * number and handle the response.
3664 	 */
3665 	if (intf_find_seq(intf,
3666 			  msg->rsp[7] >> 2,
3667 			  msg->rsp[3] & 0x0f,
3668 			  msg->rsp[8],
3669 			  (msg->rsp[4] >> 2) & (~1),
3670 			  (struct ipmi_addr *) &ipmb_addr,
3671 			  &recv_msg)) {
3672 		/*
3673 		 * We were unable to find the sequence number,
3674 		 * so just nuke the message.
3675 		 */
3676 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3677 		return 0;
3678 	}
3679 
3680 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3681 	/*
3682 	 * The other fields matched, so no need to set them, except
3683 	 * for netfn, which needs to be the response that was
3684 	 * returned, not the request value.
3685 	 */
3686 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3687 	recv_msg->msg.data = recv_msg->msg_data;
3688 	recv_msg->msg.data_len = msg->rsp_size - 10;
3689 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3690 	if (deliver_response(intf, recv_msg))
3691 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3692 	else
3693 		ipmi_inc_stat(intf, handled_ipmb_responses);
3694 
3695 	return 0;
3696 }
3697 
3698 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3699 				   struct ipmi_smi_msg *msg)
3700 {
3701 	struct cmd_rcvr          *rcvr;
3702 	int                      rv = 0;
3703 	unsigned char            netfn;
3704 	unsigned char            cmd;
3705 	unsigned char            chan;
3706 	struct ipmi_user         *user = NULL;
3707 	struct ipmi_ipmb_addr    *ipmb_addr;
3708 	struct ipmi_recv_msg     *recv_msg;
3709 
3710 	if (msg->rsp_size < 10) {
3711 		/* Message not big enough, just ignore it. */
3712 		ipmi_inc_stat(intf, invalid_commands);
3713 		return 0;
3714 	}
3715 
3716 	if (msg->rsp[2] != 0) {
3717 		/* An error getting the response, just ignore it. */
3718 		return 0;
3719 	}
3720 
3721 	netfn = msg->rsp[4] >> 2;
3722 	cmd = msg->rsp[8];
3723 	chan = msg->rsp[3] & 0xf;
3724 
3725 	rcu_read_lock();
3726 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3727 	if (rcvr) {
3728 		user = rcvr->user;
3729 		kref_get(&user->refcount);
3730 	} else
3731 		user = NULL;
3732 	rcu_read_unlock();
3733 
3734 	if (user == NULL) {
3735 		/* We didn't find a user, deliver an error response. */
3736 		ipmi_inc_stat(intf, unhandled_commands);
3737 
3738 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3739 		msg->data[1] = IPMI_SEND_MSG_CMD;
3740 		msg->data[2] = msg->rsp[3];
3741 		msg->data[3] = msg->rsp[6];
3742 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3743 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3744 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3745 		/* rqseq/lun */
3746 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3747 		msg->data[8] = msg->rsp[8]; /* cmd */
3748 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3749 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3750 		msg->data_size = 11;
3751 
3752 		pr_debug("Invalid command: %*ph\n", msg->data_size, msg->data);
3753 
3754 		rcu_read_lock();
3755 		if (!intf->in_shutdown) {
3756 			smi_send(intf, intf->handlers, msg, 0);
3757 			/*
3758 			 * We used the message, so return the value
3759 			 * that causes it to not be freed or
3760 			 * queued.
3761 			 */
3762 			rv = -1;
3763 		}
3764 		rcu_read_unlock();
3765 	} else {
3766 		recv_msg = ipmi_alloc_recv_msg();
3767 		if (!recv_msg) {
3768 			/*
3769 			 * We couldn't allocate memory for the
3770 			 * message, so requeue it for handling
3771 			 * later.
3772 			 */
3773 			rv = 1;
3774 			kref_put(&user->refcount, free_user);
3775 		} else {
3776 			/* Extract the source address from the data. */
3777 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3778 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3779 			ipmb_addr->slave_addr = msg->rsp[6];
3780 			ipmb_addr->lun = msg->rsp[7] & 3;
3781 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3782 
3783 			/*
3784 			 * Extract the rest of the message information
3785 			 * from the IPMB header.
3786 			 */
3787 			recv_msg->user = user;
3788 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3789 			recv_msg->msgid = msg->rsp[7] >> 2;
3790 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3791 			recv_msg->msg.cmd = msg->rsp[8];
3792 			recv_msg->msg.data = recv_msg->msg_data;
3793 
3794 			/*
3795 			 * We chop off 10, not 9 bytes because the checksum
3796 			 * at the end also needs to be removed.
3797 			 */
3798 			recv_msg->msg.data_len = msg->rsp_size - 10;
3799 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3800 			       msg->rsp_size - 10);
3801 			if (deliver_response(intf, recv_msg))
3802 				ipmi_inc_stat(intf, unhandled_commands);
3803 			else
3804 				ipmi_inc_stat(intf, handled_commands);
3805 		}
3806 	}
3807 
3808 	return rv;
3809 }
3810 
3811 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
3812 				  struct ipmi_smi_msg *msg)
3813 {
3814 	struct ipmi_lan_addr  lan_addr;
3815 	struct ipmi_recv_msg  *recv_msg;
3816 
3817 
3818 	/*
3819 	 * This is 13, not 12, because the response must contain a
3820 	 * completion code.
3821 	 */
3822 	if (msg->rsp_size < 13) {
3823 		/* Message not big enough, just ignore it. */
3824 		ipmi_inc_stat(intf, invalid_lan_responses);
3825 		return 0;
3826 	}
3827 
3828 	if (msg->rsp[2] != 0) {
3829 		/* An error getting the response, just ignore it. */
3830 		return 0;
3831 	}
3832 
3833 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3834 	lan_addr.session_handle = msg->rsp[4];
3835 	lan_addr.remote_SWID = msg->rsp[8];
3836 	lan_addr.local_SWID = msg->rsp[5];
3837 	lan_addr.channel = msg->rsp[3] & 0x0f;
3838 	lan_addr.privilege = msg->rsp[3] >> 4;
3839 	lan_addr.lun = msg->rsp[9] & 3;
3840 
3841 	/*
3842 	 * It's a response from a remote entity.  Look up the sequence
3843 	 * number and handle the response.
3844 	 */
3845 	if (intf_find_seq(intf,
3846 			  msg->rsp[9] >> 2,
3847 			  msg->rsp[3] & 0x0f,
3848 			  msg->rsp[10],
3849 			  (msg->rsp[6] >> 2) & (~1),
3850 			  (struct ipmi_addr *) &lan_addr,
3851 			  &recv_msg)) {
3852 		/*
3853 		 * We were unable to find the sequence number,
3854 		 * so just nuke the message.
3855 		 */
3856 		ipmi_inc_stat(intf, unhandled_lan_responses);
3857 		return 0;
3858 	}
3859 
3860 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
3861 	/*
3862 	 * The other fields matched, so no need to set them, except
3863 	 * for netfn, which needs to be the response that was
3864 	 * returned, not the request value.
3865 	 */
3866 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3867 	recv_msg->msg.data = recv_msg->msg_data;
3868 	recv_msg->msg.data_len = msg->rsp_size - 12;
3869 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3870 	if (deliver_response(intf, recv_msg))
3871 		ipmi_inc_stat(intf, unhandled_lan_responses);
3872 	else
3873 		ipmi_inc_stat(intf, handled_lan_responses);
3874 
3875 	return 0;
3876 }
3877 
3878 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
3879 				  struct ipmi_smi_msg *msg)
3880 {
3881 	struct cmd_rcvr          *rcvr;
3882 	int                      rv = 0;
3883 	unsigned char            netfn;
3884 	unsigned char            cmd;
3885 	unsigned char            chan;
3886 	struct ipmi_user         *user = NULL;
3887 	struct ipmi_lan_addr     *lan_addr;
3888 	struct ipmi_recv_msg     *recv_msg;
3889 
3890 	if (msg->rsp_size < 12) {
3891 		/* Message not big enough, just ignore it. */
3892 		ipmi_inc_stat(intf, invalid_commands);
3893 		return 0;
3894 	}
3895 
3896 	if (msg->rsp[2] != 0) {
3897 		/* An error getting the response, just ignore it. */
3898 		return 0;
3899 	}
3900 
3901 	netfn = msg->rsp[6] >> 2;
3902 	cmd = msg->rsp[10];
3903 	chan = msg->rsp[3] & 0xf;
3904 
3905 	rcu_read_lock();
3906 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3907 	if (rcvr) {
3908 		user = rcvr->user;
3909 		kref_get(&user->refcount);
3910 	} else
3911 		user = NULL;
3912 	rcu_read_unlock();
3913 
3914 	if (user == NULL) {
3915 		/* We didn't find a user, just give up. */
3916 		ipmi_inc_stat(intf, unhandled_commands);
3917 
3918 		/*
3919 		 * Don't do anything with these messages, just allow
3920 		 * them to be freed.
3921 		 */
3922 		rv = 0;
3923 	} else {
3924 		recv_msg = ipmi_alloc_recv_msg();
3925 		if (!recv_msg) {
3926 			/*
3927 			 * We couldn't allocate memory for the
3928 			 * message, so requeue it for handling later.
3929 			 */
3930 			rv = 1;
3931 			kref_put(&user->refcount, free_user);
3932 		} else {
3933 			/* Extract the source address from the data. */
3934 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3935 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3936 			lan_addr->session_handle = msg->rsp[4];
3937 			lan_addr->remote_SWID = msg->rsp[8];
3938 			lan_addr->local_SWID = msg->rsp[5];
3939 			lan_addr->lun = msg->rsp[9] & 3;
3940 			lan_addr->channel = msg->rsp[3] & 0xf;
3941 			lan_addr->privilege = msg->rsp[3] >> 4;
3942 
3943 			/*
3944 			 * Extract the rest of the message information
3945 			 * from the IPMB header.
3946 			 */
3947 			recv_msg->user = user;
3948 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3949 			recv_msg->msgid = msg->rsp[9] >> 2;
3950 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3951 			recv_msg->msg.cmd = msg->rsp[10];
3952 			recv_msg->msg.data = recv_msg->msg_data;
3953 
3954 			/*
3955 			 * We chop off 12, not 11 bytes because the checksum
3956 			 * at the end also needs to be removed.
3957 			 */
3958 			recv_msg->msg.data_len = msg->rsp_size - 12;
3959 			memcpy(recv_msg->msg_data, &msg->rsp[11],
3960 			       msg->rsp_size - 12);
3961 			if (deliver_response(intf, recv_msg))
3962 				ipmi_inc_stat(intf, unhandled_commands);
3963 			else
3964 				ipmi_inc_stat(intf, handled_commands);
3965 		}
3966 	}
3967 
3968 	return rv;
3969 }
3970 
3971 /*
3972  * This routine will handle "Get Message" command responses with
3973  * channels that use an OEM Medium. The message format belongs to
3974  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3975  * Chapter 22, sections 22.6 and 22.24 for more details.
3976  */
3977 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
3978 				  struct ipmi_smi_msg *msg)
3979 {
3980 	struct cmd_rcvr       *rcvr;
3981 	int                   rv = 0;
3982 	unsigned char         netfn;
3983 	unsigned char         cmd;
3984 	unsigned char         chan;
3985 	struct ipmi_user *user = NULL;
3986 	struct ipmi_system_interface_addr *smi_addr;
3987 	struct ipmi_recv_msg  *recv_msg;
3988 
3989 	/*
3990 	 * We expect the OEM SW to perform error checking
3991 	 * so we just do some basic sanity checks
3992 	 */
3993 	if (msg->rsp_size < 4) {
3994 		/* Message not big enough, just ignore it. */
3995 		ipmi_inc_stat(intf, invalid_commands);
3996 		return 0;
3997 	}
3998 
3999 	if (msg->rsp[2] != 0) {
4000 		/* An error getting the response, just ignore it. */
4001 		return 0;
4002 	}
4003 
4004 	/*
4005 	 * This is an OEM Message so the OEM needs to know how
4006 	 * handle the message. We do no interpretation.
4007 	 */
4008 	netfn = msg->rsp[0] >> 2;
4009 	cmd = msg->rsp[1];
4010 	chan = msg->rsp[3] & 0xf;
4011 
4012 	rcu_read_lock();
4013 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4014 	if (rcvr) {
4015 		user = rcvr->user;
4016 		kref_get(&user->refcount);
4017 	} else
4018 		user = NULL;
4019 	rcu_read_unlock();
4020 
4021 	if (user == NULL) {
4022 		/* We didn't find a user, just give up. */
4023 		ipmi_inc_stat(intf, unhandled_commands);
4024 
4025 		/*
4026 		 * Don't do anything with these messages, just allow
4027 		 * them to be freed.
4028 		 */
4029 
4030 		rv = 0;
4031 	} else {
4032 		recv_msg = ipmi_alloc_recv_msg();
4033 		if (!recv_msg) {
4034 			/*
4035 			 * We couldn't allocate memory for the
4036 			 * message, so requeue it for handling
4037 			 * later.
4038 			 */
4039 			rv = 1;
4040 			kref_put(&user->refcount, free_user);
4041 		} else {
4042 			/*
4043 			 * OEM Messages are expected to be delivered via
4044 			 * the system interface to SMS software.  We might
4045 			 * need to visit this again depending on OEM
4046 			 * requirements
4047 			 */
4048 			smi_addr = ((struct ipmi_system_interface_addr *)
4049 				    &recv_msg->addr);
4050 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4051 			smi_addr->channel = IPMI_BMC_CHANNEL;
4052 			smi_addr->lun = msg->rsp[0] & 3;
4053 
4054 			recv_msg->user = user;
4055 			recv_msg->user_msg_data = NULL;
4056 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4057 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4058 			recv_msg->msg.cmd = msg->rsp[1];
4059 			recv_msg->msg.data = recv_msg->msg_data;
4060 
4061 			/*
4062 			 * The message starts at byte 4 which follows the
4063 			 * the Channel Byte in the "GET MESSAGE" command
4064 			 */
4065 			recv_msg->msg.data_len = msg->rsp_size - 4;
4066 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4067 			       msg->rsp_size - 4);
4068 			if (deliver_response(intf, recv_msg))
4069 				ipmi_inc_stat(intf, unhandled_commands);
4070 			else
4071 				ipmi_inc_stat(intf, handled_commands);
4072 		}
4073 	}
4074 
4075 	return rv;
4076 }
4077 
4078 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4079 				     struct ipmi_smi_msg  *msg)
4080 {
4081 	struct ipmi_system_interface_addr *smi_addr;
4082 
4083 	recv_msg->msgid = 0;
4084 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4085 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4086 	smi_addr->channel = IPMI_BMC_CHANNEL;
4087 	smi_addr->lun = msg->rsp[0] & 3;
4088 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4089 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4090 	recv_msg->msg.cmd = msg->rsp[1];
4091 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4092 	recv_msg->msg.data = recv_msg->msg_data;
4093 	recv_msg->msg.data_len = msg->rsp_size - 3;
4094 }
4095 
4096 static int handle_read_event_rsp(struct ipmi_smi *intf,
4097 				 struct ipmi_smi_msg *msg)
4098 {
4099 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4100 	struct list_head     msgs;
4101 	struct ipmi_user     *user;
4102 	int rv = 0, deliver_count = 0, index;
4103 	unsigned long        flags;
4104 
4105 	if (msg->rsp_size < 19) {
4106 		/* Message is too small to be an IPMB event. */
4107 		ipmi_inc_stat(intf, invalid_events);
4108 		return 0;
4109 	}
4110 
4111 	if (msg->rsp[2] != 0) {
4112 		/* An error getting the event, just ignore it. */
4113 		return 0;
4114 	}
4115 
4116 	INIT_LIST_HEAD(&msgs);
4117 
4118 	spin_lock_irqsave(&intf->events_lock, flags);
4119 
4120 	ipmi_inc_stat(intf, events);
4121 
4122 	/*
4123 	 * Allocate and fill in one message for every user that is
4124 	 * getting events.
4125 	 */
4126 	index = srcu_read_lock(&intf->users_srcu);
4127 	list_for_each_entry_rcu(user, &intf->users, link) {
4128 		if (!user->gets_events)
4129 			continue;
4130 
4131 		recv_msg = ipmi_alloc_recv_msg();
4132 		if (!recv_msg) {
4133 			rcu_read_unlock();
4134 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4135 						 link) {
4136 				list_del(&recv_msg->link);
4137 				ipmi_free_recv_msg(recv_msg);
4138 			}
4139 			/*
4140 			 * We couldn't allocate memory for the
4141 			 * message, so requeue it for handling
4142 			 * later.
4143 			 */
4144 			rv = 1;
4145 			goto out;
4146 		}
4147 
4148 		deliver_count++;
4149 
4150 		copy_event_into_recv_msg(recv_msg, msg);
4151 		recv_msg->user = user;
4152 		kref_get(&user->refcount);
4153 		list_add_tail(&recv_msg->link, &msgs);
4154 	}
4155 	srcu_read_unlock(&intf->users_srcu, index);
4156 
4157 	if (deliver_count) {
4158 		/* Now deliver all the messages. */
4159 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4160 			list_del(&recv_msg->link);
4161 			deliver_local_response(intf, recv_msg);
4162 		}
4163 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4164 		/*
4165 		 * No one to receive the message, put it in queue if there's
4166 		 * not already too many things in the queue.
4167 		 */
4168 		recv_msg = ipmi_alloc_recv_msg();
4169 		if (!recv_msg) {
4170 			/*
4171 			 * We couldn't allocate memory for the
4172 			 * message, so requeue it for handling
4173 			 * later.
4174 			 */
4175 			rv = 1;
4176 			goto out;
4177 		}
4178 
4179 		copy_event_into_recv_msg(recv_msg, msg);
4180 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4181 		intf->waiting_events_count++;
4182 	} else if (!intf->event_msg_printed) {
4183 		/*
4184 		 * There's too many things in the queue, discard this
4185 		 * message.
4186 		 */
4187 		dev_warn(intf->si_dev,
4188 			 "Event queue full, discarding incoming events\n");
4189 		intf->event_msg_printed = 1;
4190 	}
4191 
4192  out:
4193 	spin_unlock_irqrestore(&intf->events_lock, flags);
4194 
4195 	return rv;
4196 }
4197 
4198 static int handle_bmc_rsp(struct ipmi_smi *intf,
4199 			  struct ipmi_smi_msg *msg)
4200 {
4201 	struct ipmi_recv_msg *recv_msg;
4202 	struct ipmi_system_interface_addr *smi_addr;
4203 
4204 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
4205 	if (recv_msg == NULL) {
4206 		dev_warn(intf->si_dev,
4207 			 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4208 		return 0;
4209 	}
4210 
4211 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4212 	recv_msg->msgid = msg->msgid;
4213 	smi_addr = ((struct ipmi_system_interface_addr *)
4214 		    &recv_msg->addr);
4215 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4216 	smi_addr->channel = IPMI_BMC_CHANNEL;
4217 	smi_addr->lun = msg->rsp[0] & 3;
4218 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4219 	recv_msg->msg.cmd = msg->rsp[1];
4220 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4221 	recv_msg->msg.data = recv_msg->msg_data;
4222 	recv_msg->msg.data_len = msg->rsp_size - 2;
4223 	deliver_local_response(intf, recv_msg);
4224 
4225 	return 0;
4226 }
4227 
4228 /*
4229  * Handle a received message.  Return 1 if the message should be requeued,
4230  * 0 if the message should be freed, or -1 if the message should not
4231  * be freed or requeued.
4232  */
4233 static int handle_one_recv_msg(struct ipmi_smi *intf,
4234 			       struct ipmi_smi_msg *msg)
4235 {
4236 	int requeue;
4237 	int chan;
4238 
4239 	pr_debug("Recv: %*ph\n", msg->rsp_size, msg->rsp);
4240 
4241 	if ((msg->data_size >= 2)
4242 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4243 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4244 	    && (msg->user_data == NULL)) {
4245 
4246 		if (intf->in_shutdown)
4247 			goto free_msg;
4248 
4249 		/*
4250 		 * This is the local response to a command send, start
4251 		 * the timer for these.  The user_data will not be
4252 		 * NULL if this is a response send, and we will let
4253 		 * response sends just go through.
4254 		 */
4255 
4256 		/*
4257 		 * Check for errors, if we get certain errors (ones
4258 		 * that mean basically we can try again later), we
4259 		 * ignore them and start the timer.  Otherwise we
4260 		 * report the error immediately.
4261 		 */
4262 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4263 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4264 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4265 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4266 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4267 			int ch = msg->rsp[3] & 0xf;
4268 			struct ipmi_channel *chans;
4269 
4270 			/* Got an error sending the message, handle it. */
4271 
4272 			chans = READ_ONCE(intf->channel_list)->c;
4273 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4274 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4275 				ipmi_inc_stat(intf, sent_lan_command_errs);
4276 			else
4277 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4278 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4279 		} else
4280 			/* The message was sent, start the timer. */
4281 			intf_start_seq_timer(intf, msg->msgid);
4282 free_msg:
4283 		requeue = 0;
4284 		goto out;
4285 
4286 	} else if (msg->rsp_size < 2) {
4287 		/* Message is too small to be correct. */
4288 		dev_warn(intf->si_dev,
4289 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4290 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4291 
4292 		/* Generate an error response for the message. */
4293 		msg->rsp[0] = msg->data[0] | (1 << 2);
4294 		msg->rsp[1] = msg->data[1];
4295 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4296 		msg->rsp_size = 3;
4297 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4298 		   || (msg->rsp[1] != msg->data[1])) {
4299 		/*
4300 		 * The NetFN and Command in the response is not even
4301 		 * marginally correct.
4302 		 */
4303 		dev_warn(intf->si_dev,
4304 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4305 			 (msg->data[0] >> 2) | 1, msg->data[1],
4306 			 msg->rsp[0] >> 2, msg->rsp[1]);
4307 
4308 		/* Generate an error response for the message. */
4309 		msg->rsp[0] = msg->data[0] | (1 << 2);
4310 		msg->rsp[1] = msg->data[1];
4311 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4312 		msg->rsp_size = 3;
4313 	}
4314 
4315 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4316 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4317 	    && (msg->user_data != NULL)) {
4318 		/*
4319 		 * It's a response to a response we sent.  For this we
4320 		 * deliver a send message response to the user.
4321 		 */
4322 		struct ipmi_recv_msg *recv_msg = msg->user_data;
4323 
4324 		requeue = 0;
4325 		if (msg->rsp_size < 2)
4326 			/* Message is too small to be correct. */
4327 			goto out;
4328 
4329 		chan = msg->data[2] & 0x0f;
4330 		if (chan >= IPMI_MAX_CHANNELS)
4331 			/* Invalid channel number */
4332 			goto out;
4333 
4334 		if (!recv_msg)
4335 			goto out;
4336 
4337 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4338 		recv_msg->msg.data = recv_msg->msg_data;
4339 		recv_msg->msg.data_len = 1;
4340 		recv_msg->msg_data[0] = msg->rsp[2];
4341 		deliver_local_response(intf, recv_msg);
4342 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4343 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4344 		struct ipmi_channel   *chans;
4345 
4346 		/* It's from the receive queue. */
4347 		chan = msg->rsp[3] & 0xf;
4348 		if (chan >= IPMI_MAX_CHANNELS) {
4349 			/* Invalid channel number */
4350 			requeue = 0;
4351 			goto out;
4352 		}
4353 
4354 		/*
4355 		 * We need to make sure the channels have been initialized.
4356 		 * The channel_handler routine will set the "curr_channel"
4357 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4358 		 * channels for this interface have been initialized.
4359 		 */
4360 		if (!intf->channels_ready) {
4361 			requeue = 0; /* Throw the message away */
4362 			goto out;
4363 		}
4364 
4365 		chans = READ_ONCE(intf->channel_list)->c;
4366 
4367 		switch (chans[chan].medium) {
4368 		case IPMI_CHANNEL_MEDIUM_IPMB:
4369 			if (msg->rsp[4] & 0x04) {
4370 				/*
4371 				 * It's a response, so find the
4372 				 * requesting message and send it up.
4373 				 */
4374 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4375 			} else {
4376 				/*
4377 				 * It's a command to the SMS from some other
4378 				 * entity.  Handle that.
4379 				 */
4380 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4381 			}
4382 			break;
4383 
4384 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4385 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4386 			if (msg->rsp[6] & 0x04) {
4387 				/*
4388 				 * It's a response, so find the
4389 				 * requesting message and send it up.
4390 				 */
4391 				requeue = handle_lan_get_msg_rsp(intf, msg);
4392 			} else {
4393 				/*
4394 				 * It's a command to the SMS from some other
4395 				 * entity.  Handle that.
4396 				 */
4397 				requeue = handle_lan_get_msg_cmd(intf, msg);
4398 			}
4399 			break;
4400 
4401 		default:
4402 			/* Check for OEM Channels.  Clients had better
4403 			   register for these commands. */
4404 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4405 			    && (chans[chan].medium
4406 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4407 				requeue = handle_oem_get_msg_cmd(intf, msg);
4408 			} else {
4409 				/*
4410 				 * We don't handle the channel type, so just
4411 				 * free the message.
4412 				 */
4413 				requeue = 0;
4414 			}
4415 		}
4416 
4417 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4418 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4419 		/* It's an asynchronous event. */
4420 		requeue = handle_read_event_rsp(intf, msg);
4421 	} else {
4422 		/* It's a response from the local BMC. */
4423 		requeue = handle_bmc_rsp(intf, msg);
4424 	}
4425 
4426  out:
4427 	return requeue;
4428 }
4429 
4430 /*
4431  * If there are messages in the queue or pretimeouts, handle them.
4432  */
4433 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4434 {
4435 	struct ipmi_smi_msg  *smi_msg;
4436 	unsigned long        flags = 0;
4437 	int                  rv;
4438 	int                  run_to_completion = intf->run_to_completion;
4439 
4440 	/* See if any waiting messages need to be processed. */
4441 	if (!run_to_completion)
4442 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4443 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4444 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4445 				     struct ipmi_smi_msg, link);
4446 		list_del(&smi_msg->link);
4447 		if (!run_to_completion)
4448 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4449 					       flags);
4450 		rv = handle_one_recv_msg(intf, smi_msg);
4451 		if (!run_to_completion)
4452 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4453 		if (rv > 0) {
4454 			/*
4455 			 * To preserve message order, quit if we
4456 			 * can't handle a message.  Add the message
4457 			 * back at the head, this is safe because this
4458 			 * tasklet is the only thing that pulls the
4459 			 * messages.
4460 			 */
4461 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4462 			break;
4463 		} else {
4464 			if (rv == 0)
4465 				/* Message handled */
4466 				ipmi_free_smi_msg(smi_msg);
4467 			/* If rv < 0, fatal error, del but don't free. */
4468 		}
4469 	}
4470 	if (!run_to_completion)
4471 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4472 
4473 	/*
4474 	 * If the pretimout count is non-zero, decrement one from it and
4475 	 * deliver pretimeouts to all the users.
4476 	 */
4477 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4478 		struct ipmi_user *user;
4479 		int index;
4480 
4481 		index = srcu_read_lock(&intf->users_srcu);
4482 		list_for_each_entry_rcu(user, &intf->users, link) {
4483 			if (user->handler->ipmi_watchdog_pretimeout)
4484 				user->handler->ipmi_watchdog_pretimeout(
4485 					user->handler_data);
4486 		}
4487 		srcu_read_unlock(&intf->users_srcu, index);
4488 	}
4489 }
4490 
4491 static void smi_recv_tasklet(struct tasklet_struct *t)
4492 {
4493 	unsigned long flags = 0; /* keep us warning-free. */
4494 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4495 	int run_to_completion = intf->run_to_completion;
4496 	struct ipmi_smi_msg *newmsg = NULL;
4497 
4498 	/*
4499 	 * Start the next message if available.
4500 	 *
4501 	 * Do this here, not in the actual receiver, because we may deadlock
4502 	 * because the lower layer is allowed to hold locks while calling
4503 	 * message delivery.
4504 	 */
4505 
4506 	rcu_read_lock();
4507 
4508 	if (!run_to_completion)
4509 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4510 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4511 		struct list_head *entry = NULL;
4512 
4513 		/* Pick the high priority queue first. */
4514 		if (!list_empty(&intf->hp_xmit_msgs))
4515 			entry = intf->hp_xmit_msgs.next;
4516 		else if (!list_empty(&intf->xmit_msgs))
4517 			entry = intf->xmit_msgs.next;
4518 
4519 		if (entry) {
4520 			list_del(entry);
4521 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4522 			intf->curr_msg = newmsg;
4523 		}
4524 	}
4525 
4526 	if (!run_to_completion)
4527 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4528 	if (newmsg)
4529 		intf->handlers->sender(intf->send_info, newmsg);
4530 
4531 	rcu_read_unlock();
4532 
4533 	handle_new_recv_msgs(intf);
4534 }
4535 
4536 /* Handle a new message from the lower layer. */
4537 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4538 			   struct ipmi_smi_msg *msg)
4539 {
4540 	unsigned long flags = 0; /* keep us warning-free. */
4541 	int run_to_completion = intf->run_to_completion;
4542 
4543 	/*
4544 	 * To preserve message order, we keep a queue and deliver from
4545 	 * a tasklet.
4546 	 */
4547 	if (!run_to_completion)
4548 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4549 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4550 	if (!run_to_completion)
4551 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4552 				       flags);
4553 
4554 	if (!run_to_completion)
4555 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4556 	/*
4557 	 * We can get an asynchronous event or receive message in addition
4558 	 * to commands we send.
4559 	 */
4560 	if (msg == intf->curr_msg)
4561 		intf->curr_msg = NULL;
4562 	if (!run_to_completion)
4563 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4564 
4565 	if (run_to_completion)
4566 		smi_recv_tasklet(&intf->recv_tasklet);
4567 	else
4568 		tasklet_schedule(&intf->recv_tasklet);
4569 }
4570 EXPORT_SYMBOL(ipmi_smi_msg_received);
4571 
4572 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4573 {
4574 	if (intf->in_shutdown)
4575 		return;
4576 
4577 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4578 	tasklet_schedule(&intf->recv_tasklet);
4579 }
4580 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4581 
4582 static struct ipmi_smi_msg *
4583 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4584 		  unsigned char seq, long seqid)
4585 {
4586 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4587 	if (!smi_msg)
4588 		/*
4589 		 * If we can't allocate the message, then just return, we
4590 		 * get 4 retries, so this should be ok.
4591 		 */
4592 		return NULL;
4593 
4594 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4595 	smi_msg->data_size = recv_msg->msg.data_len;
4596 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4597 
4598 	pr_debug("Resend: %*ph\n", smi_msg->data_size, smi_msg->data);
4599 
4600 	return smi_msg;
4601 }
4602 
4603 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4604 			      struct list_head *timeouts,
4605 			      unsigned long timeout_period,
4606 			      int slot, unsigned long *flags,
4607 			      bool *need_timer)
4608 {
4609 	struct ipmi_recv_msg *msg;
4610 
4611 	if (intf->in_shutdown)
4612 		return;
4613 
4614 	if (!ent->inuse)
4615 		return;
4616 
4617 	if (timeout_period < ent->timeout) {
4618 		ent->timeout -= timeout_period;
4619 		*need_timer = true;
4620 		return;
4621 	}
4622 
4623 	if (ent->retries_left == 0) {
4624 		/* The message has used all its retries. */
4625 		ent->inuse = 0;
4626 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4627 		msg = ent->recv_msg;
4628 		list_add_tail(&msg->link, timeouts);
4629 		if (ent->broadcast)
4630 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4631 		else if (is_lan_addr(&ent->recv_msg->addr))
4632 			ipmi_inc_stat(intf, timed_out_lan_commands);
4633 		else
4634 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4635 	} else {
4636 		struct ipmi_smi_msg *smi_msg;
4637 		/* More retries, send again. */
4638 
4639 		*need_timer = true;
4640 
4641 		/*
4642 		 * Start with the max timer, set to normal timer after
4643 		 * the message is sent.
4644 		 */
4645 		ent->timeout = MAX_MSG_TIMEOUT;
4646 		ent->retries_left--;
4647 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4648 					    ent->seqid);
4649 		if (!smi_msg) {
4650 			if (is_lan_addr(&ent->recv_msg->addr))
4651 				ipmi_inc_stat(intf,
4652 					      dropped_rexmit_lan_commands);
4653 			else
4654 				ipmi_inc_stat(intf,
4655 					      dropped_rexmit_ipmb_commands);
4656 			return;
4657 		}
4658 
4659 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4660 
4661 		/*
4662 		 * Send the new message.  We send with a zero
4663 		 * priority.  It timed out, I doubt time is that
4664 		 * critical now, and high priority messages are really
4665 		 * only for messages to the local MC, which don't get
4666 		 * resent.
4667 		 */
4668 		if (intf->handlers) {
4669 			if (is_lan_addr(&ent->recv_msg->addr))
4670 				ipmi_inc_stat(intf,
4671 					      retransmitted_lan_commands);
4672 			else
4673 				ipmi_inc_stat(intf,
4674 					      retransmitted_ipmb_commands);
4675 
4676 			smi_send(intf, intf->handlers, smi_msg, 0);
4677 		} else
4678 			ipmi_free_smi_msg(smi_msg);
4679 
4680 		spin_lock_irqsave(&intf->seq_lock, *flags);
4681 	}
4682 }
4683 
4684 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
4685 				 unsigned long timeout_period)
4686 {
4687 	struct list_head     timeouts;
4688 	struct ipmi_recv_msg *msg, *msg2;
4689 	unsigned long        flags;
4690 	int                  i;
4691 	bool                 need_timer = false;
4692 
4693 	if (!intf->bmc_registered) {
4694 		kref_get(&intf->refcount);
4695 		if (!schedule_work(&intf->bmc_reg_work)) {
4696 			kref_put(&intf->refcount, intf_free);
4697 			need_timer = true;
4698 		}
4699 	}
4700 
4701 	/*
4702 	 * Go through the seq table and find any messages that
4703 	 * have timed out, putting them in the timeouts
4704 	 * list.
4705 	 */
4706 	INIT_LIST_HEAD(&timeouts);
4707 	spin_lock_irqsave(&intf->seq_lock, flags);
4708 	if (intf->ipmb_maintenance_mode_timeout) {
4709 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
4710 			intf->ipmb_maintenance_mode_timeout = 0;
4711 		else
4712 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
4713 	}
4714 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4715 		check_msg_timeout(intf, &intf->seq_table[i],
4716 				  &timeouts, timeout_period, i,
4717 				  &flags, &need_timer);
4718 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4719 
4720 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4721 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
4722 
4723 	/*
4724 	 * Maintenance mode handling.  Check the timeout
4725 	 * optimistically before we claim the lock.  It may
4726 	 * mean a timeout gets missed occasionally, but that
4727 	 * only means the timeout gets extended by one period
4728 	 * in that case.  No big deal, and it avoids the lock
4729 	 * most of the time.
4730 	 */
4731 	if (intf->auto_maintenance_timeout > 0) {
4732 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4733 		if (intf->auto_maintenance_timeout > 0) {
4734 			intf->auto_maintenance_timeout
4735 				-= timeout_period;
4736 			if (!intf->maintenance_mode
4737 			    && (intf->auto_maintenance_timeout <= 0)) {
4738 				intf->maintenance_mode_enable = false;
4739 				maintenance_mode_update(intf);
4740 			}
4741 		}
4742 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4743 				       flags);
4744 	}
4745 
4746 	tasklet_schedule(&intf->recv_tasklet);
4747 
4748 	return need_timer;
4749 }
4750 
4751 static void ipmi_request_event(struct ipmi_smi *intf)
4752 {
4753 	/* No event requests when in maintenance mode. */
4754 	if (intf->maintenance_mode_enable)
4755 		return;
4756 
4757 	if (!intf->in_shutdown)
4758 		intf->handlers->request_events(intf->send_info);
4759 }
4760 
4761 static struct timer_list ipmi_timer;
4762 
4763 static atomic_t stop_operation;
4764 
4765 static void ipmi_timeout(struct timer_list *unused)
4766 {
4767 	struct ipmi_smi *intf;
4768 	bool need_timer = false;
4769 	int index;
4770 
4771 	if (atomic_read(&stop_operation))
4772 		return;
4773 
4774 	index = srcu_read_lock(&ipmi_interfaces_srcu);
4775 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4776 		if (atomic_read(&intf->event_waiters)) {
4777 			intf->ticks_to_req_ev--;
4778 			if (intf->ticks_to_req_ev == 0) {
4779 				ipmi_request_event(intf);
4780 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4781 			}
4782 			need_timer = true;
4783 		}
4784 
4785 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4786 	}
4787 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
4788 
4789 	if (need_timer)
4790 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4791 }
4792 
4793 static void need_waiter(struct ipmi_smi *intf)
4794 {
4795 	/* Racy, but worst case we start the timer twice. */
4796 	if (!timer_pending(&ipmi_timer))
4797 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4798 }
4799 
4800 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4801 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4802 
4803 static void free_smi_msg(struct ipmi_smi_msg *msg)
4804 {
4805 	atomic_dec(&smi_msg_inuse_count);
4806 	kfree(msg);
4807 }
4808 
4809 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4810 {
4811 	struct ipmi_smi_msg *rv;
4812 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4813 	if (rv) {
4814 		rv->done = free_smi_msg;
4815 		rv->user_data = NULL;
4816 		atomic_inc(&smi_msg_inuse_count);
4817 	}
4818 	return rv;
4819 }
4820 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4821 
4822 static void free_recv_msg(struct ipmi_recv_msg *msg)
4823 {
4824 	atomic_dec(&recv_msg_inuse_count);
4825 	kfree(msg);
4826 }
4827 
4828 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4829 {
4830 	struct ipmi_recv_msg *rv;
4831 
4832 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4833 	if (rv) {
4834 		rv->user = NULL;
4835 		rv->done = free_recv_msg;
4836 		atomic_inc(&recv_msg_inuse_count);
4837 	}
4838 	return rv;
4839 }
4840 
4841 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4842 {
4843 	if (msg->user)
4844 		kref_put(&msg->user->refcount, free_user);
4845 	msg->done(msg);
4846 }
4847 EXPORT_SYMBOL(ipmi_free_recv_msg);
4848 
4849 static atomic_t panic_done_count = ATOMIC_INIT(0);
4850 
4851 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4852 {
4853 	atomic_dec(&panic_done_count);
4854 }
4855 
4856 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4857 {
4858 	atomic_dec(&panic_done_count);
4859 }
4860 
4861 /*
4862  * Inside a panic, send a message and wait for a response.
4863  */
4864 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
4865 					struct ipmi_addr *addr,
4866 					struct kernel_ipmi_msg *msg)
4867 {
4868 	struct ipmi_smi_msg  smi_msg;
4869 	struct ipmi_recv_msg recv_msg;
4870 	int rv;
4871 
4872 	smi_msg.done = dummy_smi_done_handler;
4873 	recv_msg.done = dummy_recv_done_handler;
4874 	atomic_add(2, &panic_done_count);
4875 	rv = i_ipmi_request(NULL,
4876 			    intf,
4877 			    addr,
4878 			    0,
4879 			    msg,
4880 			    intf,
4881 			    &smi_msg,
4882 			    &recv_msg,
4883 			    0,
4884 			    intf->addrinfo[0].address,
4885 			    intf->addrinfo[0].lun,
4886 			    0, 1); /* Don't retry, and don't wait. */
4887 	if (rv)
4888 		atomic_sub(2, &panic_done_count);
4889 	else if (intf->handlers->flush_messages)
4890 		intf->handlers->flush_messages(intf->send_info);
4891 
4892 	while (atomic_read(&panic_done_count) != 0)
4893 		ipmi_poll(intf);
4894 }
4895 
4896 static void event_receiver_fetcher(struct ipmi_smi *intf,
4897 				   struct ipmi_recv_msg *msg)
4898 {
4899 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4900 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4901 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4902 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4903 		/* A get event receiver command, save it. */
4904 		intf->event_receiver = msg->msg.data[1];
4905 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4906 	}
4907 }
4908 
4909 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
4910 {
4911 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4912 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4913 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4914 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4915 		/*
4916 		 * A get device id command, save if we are an event
4917 		 * receiver or generator.
4918 		 */
4919 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4920 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4921 	}
4922 }
4923 
4924 static void send_panic_events(struct ipmi_smi *intf, char *str)
4925 {
4926 	struct kernel_ipmi_msg msg;
4927 	unsigned char data[16];
4928 	struct ipmi_system_interface_addr *si;
4929 	struct ipmi_addr addr;
4930 	char *p = str;
4931 	struct ipmi_ipmb_addr *ipmb;
4932 	int j;
4933 
4934 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
4935 		return;
4936 
4937 	si = (struct ipmi_system_interface_addr *) &addr;
4938 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4939 	si->channel = IPMI_BMC_CHANNEL;
4940 	si->lun = 0;
4941 
4942 	/* Fill in an event telling that we have failed. */
4943 	msg.netfn = 0x04; /* Sensor or Event. */
4944 	msg.cmd = 2; /* Platform event command. */
4945 	msg.data = data;
4946 	msg.data_len = 8;
4947 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4948 	data[1] = 0x03; /* This is for IPMI 1.0. */
4949 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4950 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4951 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4952 
4953 	/*
4954 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4955 	 * to make the panic events more useful.
4956 	 */
4957 	if (str) {
4958 		data[3] = str[0];
4959 		data[6] = str[1];
4960 		data[7] = str[2];
4961 	}
4962 
4963 	/* Send the event announcing the panic. */
4964 	ipmi_panic_request_and_wait(intf, &addr, &msg);
4965 
4966 	/*
4967 	 * On every interface, dump a bunch of OEM event holding the
4968 	 * string.
4969 	 */
4970 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
4971 		return;
4972 
4973 	/*
4974 	 * intf_num is used as an marker to tell if the
4975 	 * interface is valid.  Thus we need a read barrier to
4976 	 * make sure data fetched before checking intf_num
4977 	 * won't be used.
4978 	 */
4979 	smp_rmb();
4980 
4981 	/*
4982 	 * First job here is to figure out where to send the
4983 	 * OEM events.  There's no way in IPMI to send OEM
4984 	 * events using an event send command, so we have to
4985 	 * find the SEL to put them in and stick them in
4986 	 * there.
4987 	 */
4988 
4989 	/* Get capabilities from the get device id. */
4990 	intf->local_sel_device = 0;
4991 	intf->local_event_generator = 0;
4992 	intf->event_receiver = 0;
4993 
4994 	/* Request the device info from the local MC. */
4995 	msg.netfn = IPMI_NETFN_APP_REQUEST;
4996 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4997 	msg.data = NULL;
4998 	msg.data_len = 0;
4999 	intf->null_user_handler = device_id_fetcher;
5000 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5001 
5002 	if (intf->local_event_generator) {
5003 		/* Request the event receiver from the local MC. */
5004 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5005 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5006 		msg.data = NULL;
5007 		msg.data_len = 0;
5008 		intf->null_user_handler = event_receiver_fetcher;
5009 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5010 	}
5011 	intf->null_user_handler = NULL;
5012 
5013 	/*
5014 	 * Validate the event receiver.  The low bit must not
5015 	 * be 1 (it must be a valid IPMB address), it cannot
5016 	 * be zero, and it must not be my address.
5017 	 */
5018 	if (((intf->event_receiver & 1) == 0)
5019 	    && (intf->event_receiver != 0)
5020 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5021 		/*
5022 		 * The event receiver is valid, send an IPMB
5023 		 * message.
5024 		 */
5025 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5026 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5027 		ipmb->channel = 0; /* FIXME - is this right? */
5028 		ipmb->lun = intf->event_receiver_lun;
5029 		ipmb->slave_addr = intf->event_receiver;
5030 	} else if (intf->local_sel_device) {
5031 		/*
5032 		 * The event receiver was not valid (or was
5033 		 * me), but I am an SEL device, just dump it
5034 		 * in my SEL.
5035 		 */
5036 		si = (struct ipmi_system_interface_addr *) &addr;
5037 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5038 		si->channel = IPMI_BMC_CHANNEL;
5039 		si->lun = 0;
5040 	} else
5041 		return; /* No where to send the event. */
5042 
5043 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5044 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5045 	msg.data = data;
5046 	msg.data_len = 16;
5047 
5048 	j = 0;
5049 	while (*p) {
5050 		int size = strlen(p);
5051 
5052 		if (size > 11)
5053 			size = 11;
5054 		data[0] = 0;
5055 		data[1] = 0;
5056 		data[2] = 0xf0; /* OEM event without timestamp. */
5057 		data[3] = intf->addrinfo[0].address;
5058 		data[4] = j++; /* sequence # */
5059 		/*
5060 		 * Always give 11 bytes, so strncpy will fill
5061 		 * it with zeroes for me.
5062 		 */
5063 		strncpy(data+5, p, 11);
5064 		p += size;
5065 
5066 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5067 	}
5068 }
5069 
5070 static int has_panicked;
5071 
5072 static int panic_event(struct notifier_block *this,
5073 		       unsigned long         event,
5074 		       void                  *ptr)
5075 {
5076 	struct ipmi_smi *intf;
5077 	struct ipmi_user *user;
5078 
5079 	if (has_panicked)
5080 		return NOTIFY_DONE;
5081 	has_panicked = 1;
5082 
5083 	/* For every registered interface, set it to run to completion. */
5084 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5085 		if (!intf->handlers || intf->intf_num == -1)
5086 			/* Interface is not ready. */
5087 			continue;
5088 
5089 		if (!intf->handlers->poll)
5090 			continue;
5091 
5092 		/*
5093 		 * If we were interrupted while locking xmit_msgs_lock or
5094 		 * waiting_rcv_msgs_lock, the corresponding list may be
5095 		 * corrupted.  In this case, drop items on the list for
5096 		 * the safety.
5097 		 */
5098 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5099 			INIT_LIST_HEAD(&intf->xmit_msgs);
5100 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5101 		} else
5102 			spin_unlock(&intf->xmit_msgs_lock);
5103 
5104 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5105 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5106 		else
5107 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5108 
5109 		intf->run_to_completion = 1;
5110 		if (intf->handlers->set_run_to_completion)
5111 			intf->handlers->set_run_to_completion(intf->send_info,
5112 							      1);
5113 
5114 		list_for_each_entry_rcu(user, &intf->users, link) {
5115 			if (user->handler->ipmi_panic_handler)
5116 				user->handler->ipmi_panic_handler(
5117 					user->handler_data);
5118 		}
5119 
5120 		send_panic_events(intf, ptr);
5121 	}
5122 
5123 	return NOTIFY_DONE;
5124 }
5125 
5126 /* Must be called with ipmi_interfaces_mutex held. */
5127 static int ipmi_register_driver(void)
5128 {
5129 	int rv;
5130 
5131 	if (drvregistered)
5132 		return 0;
5133 
5134 	rv = driver_register(&ipmidriver.driver);
5135 	if (rv)
5136 		pr_err("Could not register IPMI driver\n");
5137 	else
5138 		drvregistered = true;
5139 	return rv;
5140 }
5141 
5142 static struct notifier_block panic_block = {
5143 	.notifier_call	= panic_event,
5144 	.next		= NULL,
5145 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5146 };
5147 
5148 static int ipmi_init_msghandler(void)
5149 {
5150 	int rv;
5151 
5152 	mutex_lock(&ipmi_interfaces_mutex);
5153 	rv = ipmi_register_driver();
5154 	if (rv)
5155 		goto out;
5156 	if (initialized)
5157 		goto out;
5158 
5159 	init_srcu_struct(&ipmi_interfaces_srcu);
5160 
5161 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5162 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5163 
5164 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5165 
5166 	initialized = true;
5167 
5168 out:
5169 	mutex_unlock(&ipmi_interfaces_mutex);
5170 	return rv;
5171 }
5172 
5173 static int __init ipmi_init_msghandler_mod(void)
5174 {
5175 	int rv;
5176 
5177 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5178 
5179 	mutex_lock(&ipmi_interfaces_mutex);
5180 	rv = ipmi_register_driver();
5181 	mutex_unlock(&ipmi_interfaces_mutex);
5182 
5183 	return rv;
5184 }
5185 
5186 static void __exit cleanup_ipmi(void)
5187 {
5188 	int count;
5189 
5190 	if (initialized) {
5191 		atomic_notifier_chain_unregister(&panic_notifier_list,
5192 						 &panic_block);
5193 
5194 		/*
5195 		 * This can't be called if any interfaces exist, so no worry
5196 		 * about shutting down the interfaces.
5197 		 */
5198 
5199 		/*
5200 		 * Tell the timer to stop, then wait for it to stop.  This
5201 		 * avoids problems with race conditions removing the timer
5202 		 * here.
5203 		 */
5204 		atomic_set(&stop_operation, 1);
5205 		del_timer_sync(&ipmi_timer);
5206 
5207 		initialized = false;
5208 
5209 		/* Check for buffer leaks. */
5210 		count = atomic_read(&smi_msg_inuse_count);
5211 		if (count != 0)
5212 			pr_warn("SMI message count %d at exit\n", count);
5213 		count = atomic_read(&recv_msg_inuse_count);
5214 		if (count != 0)
5215 			pr_warn("recv message count %d at exit\n", count);
5216 
5217 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5218 	}
5219 	if (drvregistered)
5220 		driver_unregister(&ipmidriver.driver);
5221 }
5222 module_exit(cleanup_ipmi);
5223 
5224 module_init(ipmi_init_msghandler_mod);
5225 MODULE_LICENSE("GPL");
5226 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5227 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
5228 		   " interface.");
5229 MODULE_VERSION(IPMI_DRIVER_VERSION);
5230 MODULE_SOFTDEP("post: ipmi_devintf");
5231