1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <linux/poll.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/mutex.h>
41 #include <linux/slab.h>
42 #include <linux/ipmi.h>
43 #include <linux/ipmi_smi.h>
44 #include <linux/notifier.h>
45 #include <linux/init.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/interrupt.h>
49 
50 #define PFX "IPMI message handler: "
51 
52 #define IPMI_DRIVER_VERSION "39.2"
53 
54 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
55 static int ipmi_init_msghandler(void);
56 static void smi_recv_tasklet(unsigned long);
57 static void handle_new_recv_msgs(ipmi_smi_t intf);
58 static void need_waiter(ipmi_smi_t intf);
59 static int handle_one_recv_msg(ipmi_smi_t          intf,
60 			       struct ipmi_smi_msg *msg);
61 
62 static int initialized;
63 
64 #ifdef CONFIG_PROC_FS
65 static struct proc_dir_entry *proc_ipmi_root;
66 #endif /* CONFIG_PROC_FS */
67 
68 /* Remain in auto-maintenance mode for this amount of time (in ms). */
69 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
70 
71 #define MAX_EVENTS_IN_QUEUE	25
72 
73 /*
74  * Don't let a message sit in a queue forever, always time it with at lest
75  * the max message timer.  This is in milliseconds.
76  */
77 #define MAX_MSG_TIMEOUT		60000
78 
79 /* Call every ~1000 ms. */
80 #define IPMI_TIMEOUT_TIME	1000
81 
82 /* How many jiffies does it take to get to the timeout time. */
83 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
84 
85 /*
86  * Request events from the queue every second (this is the number of
87  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
88  * future, IPMI will add a way to know immediately if an event is in
89  * the queue and this silliness can go away.
90  */
91 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
92 
93 /*
94  * The main "user" data structure.
95  */
96 struct ipmi_user {
97 	struct list_head link;
98 
99 	/* Set to false when the user is destroyed. */
100 	bool valid;
101 
102 	struct kref refcount;
103 
104 	/* The upper layer that handles receive messages. */
105 	struct ipmi_user_hndl *handler;
106 	void             *handler_data;
107 
108 	/* The interface this user is bound to. */
109 	ipmi_smi_t intf;
110 
111 	/* Does this interface receive IPMI events? */
112 	bool gets_events;
113 };
114 
115 struct cmd_rcvr {
116 	struct list_head link;
117 
118 	ipmi_user_t   user;
119 	unsigned char netfn;
120 	unsigned char cmd;
121 	unsigned int  chans;
122 
123 	/*
124 	 * This is used to form a linked lised during mass deletion.
125 	 * Since this is in an RCU list, we cannot use the link above
126 	 * or change any data until the RCU period completes.  So we
127 	 * use this next variable during mass deletion so we can have
128 	 * a list and don't have to wait and restart the search on
129 	 * every individual deletion of a command.
130 	 */
131 	struct cmd_rcvr *next;
132 };
133 
134 struct seq_table {
135 	unsigned int         inuse : 1;
136 	unsigned int         broadcast : 1;
137 
138 	unsigned long        timeout;
139 	unsigned long        orig_timeout;
140 	unsigned int         retries_left;
141 
142 	/*
143 	 * To verify on an incoming send message response that this is
144 	 * the message that the response is for, we keep a sequence id
145 	 * and increment it every time we send a message.
146 	 */
147 	long                 seqid;
148 
149 	/*
150 	 * This is held so we can properly respond to the message on a
151 	 * timeout, and it is used to hold the temporary data for
152 	 * retransmission, too.
153 	 */
154 	struct ipmi_recv_msg *recv_msg;
155 };
156 
157 /*
158  * Store the information in a msgid (long) to allow us to find a
159  * sequence table entry from the msgid.
160  */
161 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
162 
163 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
164 	do {								\
165 		seq = ((msgid >> 26) & 0x3f);				\
166 		seqid = (msgid & 0x3fffff);				\
167 	} while (0)
168 
169 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
170 
171 struct ipmi_channel {
172 	unsigned char medium;
173 	unsigned char protocol;
174 
175 	/*
176 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
177 	 * but may be changed by the user.
178 	 */
179 	unsigned char address;
180 
181 	/*
182 	 * My LUN.  This should generally stay the SMS LUN, but just in
183 	 * case...
184 	 */
185 	unsigned char lun;
186 };
187 
188 #ifdef CONFIG_PROC_FS
189 struct ipmi_proc_entry {
190 	char                   *name;
191 	struct ipmi_proc_entry *next;
192 };
193 #endif
194 
195 struct bmc_device {
196 	struct platform_device pdev;
197 	struct ipmi_device_id  id;
198 	unsigned char          guid[16];
199 	int                    guid_set;
200 	char                   name[16];
201 	struct kref	       usecount;
202 
203 	/* bmc device attributes */
204 	struct device_attribute device_id_attr;
205 	struct device_attribute provides_dev_sdrs_attr;
206 	struct device_attribute revision_attr;
207 	struct device_attribute firmware_rev_attr;
208 	struct device_attribute version_attr;
209 	struct device_attribute add_dev_support_attr;
210 	struct device_attribute manufacturer_id_attr;
211 	struct device_attribute product_id_attr;
212 	struct device_attribute guid_attr;
213 	struct device_attribute aux_firmware_rev_attr;
214 };
215 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
216 
217 /*
218  * Various statistics for IPMI, these index stats[] in the ipmi_smi
219  * structure.
220  */
221 enum ipmi_stat_indexes {
222 	/* Commands we got from the user that were invalid. */
223 	IPMI_STAT_sent_invalid_commands = 0,
224 
225 	/* Commands we sent to the MC. */
226 	IPMI_STAT_sent_local_commands,
227 
228 	/* Responses from the MC that were delivered to a user. */
229 	IPMI_STAT_handled_local_responses,
230 
231 	/* Responses from the MC that were not delivered to a user. */
232 	IPMI_STAT_unhandled_local_responses,
233 
234 	/* Commands we sent out to the IPMB bus. */
235 	IPMI_STAT_sent_ipmb_commands,
236 
237 	/* Commands sent on the IPMB that had errors on the SEND CMD */
238 	IPMI_STAT_sent_ipmb_command_errs,
239 
240 	/* Each retransmit increments this count. */
241 	IPMI_STAT_retransmitted_ipmb_commands,
242 
243 	/*
244 	 * When a message times out (runs out of retransmits) this is
245 	 * incremented.
246 	 */
247 	IPMI_STAT_timed_out_ipmb_commands,
248 
249 	/*
250 	 * This is like above, but for broadcasts.  Broadcasts are
251 	 * *not* included in the above count (they are expected to
252 	 * time out).
253 	 */
254 	IPMI_STAT_timed_out_ipmb_broadcasts,
255 
256 	/* Responses I have sent to the IPMB bus. */
257 	IPMI_STAT_sent_ipmb_responses,
258 
259 	/* The response was delivered to the user. */
260 	IPMI_STAT_handled_ipmb_responses,
261 
262 	/* The response had invalid data in it. */
263 	IPMI_STAT_invalid_ipmb_responses,
264 
265 	/* The response didn't have anyone waiting for it. */
266 	IPMI_STAT_unhandled_ipmb_responses,
267 
268 	/* Commands we sent out to the IPMB bus. */
269 	IPMI_STAT_sent_lan_commands,
270 
271 	/* Commands sent on the IPMB that had errors on the SEND CMD */
272 	IPMI_STAT_sent_lan_command_errs,
273 
274 	/* Each retransmit increments this count. */
275 	IPMI_STAT_retransmitted_lan_commands,
276 
277 	/*
278 	 * When a message times out (runs out of retransmits) this is
279 	 * incremented.
280 	 */
281 	IPMI_STAT_timed_out_lan_commands,
282 
283 	/* Responses I have sent to the IPMB bus. */
284 	IPMI_STAT_sent_lan_responses,
285 
286 	/* The response was delivered to the user. */
287 	IPMI_STAT_handled_lan_responses,
288 
289 	/* The response had invalid data in it. */
290 	IPMI_STAT_invalid_lan_responses,
291 
292 	/* The response didn't have anyone waiting for it. */
293 	IPMI_STAT_unhandled_lan_responses,
294 
295 	/* The command was delivered to the user. */
296 	IPMI_STAT_handled_commands,
297 
298 	/* The command had invalid data in it. */
299 	IPMI_STAT_invalid_commands,
300 
301 	/* The command didn't have anyone waiting for it. */
302 	IPMI_STAT_unhandled_commands,
303 
304 	/* Invalid data in an event. */
305 	IPMI_STAT_invalid_events,
306 
307 	/* Events that were received with the proper format. */
308 	IPMI_STAT_events,
309 
310 	/* Retransmissions on IPMB that failed. */
311 	IPMI_STAT_dropped_rexmit_ipmb_commands,
312 
313 	/* Retransmissions on LAN that failed. */
314 	IPMI_STAT_dropped_rexmit_lan_commands,
315 
316 	/* This *must* remain last, add new values above this. */
317 	IPMI_NUM_STATS
318 };
319 
320 
321 #define IPMI_IPMB_NUM_SEQ	64
322 #define IPMI_MAX_CHANNELS       16
323 struct ipmi_smi {
324 	/* What interface number are we? */
325 	int intf_num;
326 
327 	struct kref refcount;
328 
329 	/* Set when the interface is being unregistered. */
330 	bool in_shutdown;
331 
332 	/* Used for a list of interfaces. */
333 	struct list_head link;
334 
335 	/*
336 	 * The list of upper layers that are using me.  seq_lock
337 	 * protects this.
338 	 */
339 	struct list_head users;
340 
341 	/* Information to supply to users. */
342 	unsigned char ipmi_version_major;
343 	unsigned char ipmi_version_minor;
344 
345 	/* Used for wake ups at startup. */
346 	wait_queue_head_t waitq;
347 
348 	struct bmc_device *bmc;
349 	char *my_dev_name;
350 
351 	/*
352 	 * This is the lower-layer's sender routine.  Note that you
353 	 * must either be holding the ipmi_interfaces_mutex or be in
354 	 * an umpreemptible region to use this.  You must fetch the
355 	 * value into a local variable and make sure it is not NULL.
356 	 */
357 	struct ipmi_smi_handlers *handlers;
358 	void                     *send_info;
359 
360 #ifdef CONFIG_PROC_FS
361 	/* A list of proc entries for this interface. */
362 	struct mutex           proc_entry_lock;
363 	struct ipmi_proc_entry *proc_entries;
364 #endif
365 
366 	/* Driver-model device for the system interface. */
367 	struct device          *si_dev;
368 
369 	/*
370 	 * A table of sequence numbers for this interface.  We use the
371 	 * sequence numbers for IPMB messages that go out of the
372 	 * interface to match them up with their responses.  A routine
373 	 * is called periodically to time the items in this list.
374 	 */
375 	spinlock_t       seq_lock;
376 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
377 	int curr_seq;
378 
379 	/*
380 	 * Messages queued for delivery.  If delivery fails (out of memory
381 	 * for instance), They will stay in here to be processed later in a
382 	 * periodic timer interrupt.  The tasklet is for handling received
383 	 * messages directly from the handler.
384 	 */
385 	spinlock_t       waiting_rcv_msgs_lock;
386 	struct list_head waiting_rcv_msgs;
387 	atomic_t	 watchdog_pretimeouts_to_deliver;
388 	struct tasklet_struct recv_tasklet;
389 
390 	spinlock_t             xmit_msgs_lock;
391 	struct list_head       xmit_msgs;
392 	struct ipmi_smi_msg    *curr_msg;
393 	struct list_head       hp_xmit_msgs;
394 
395 	/*
396 	 * The list of command receivers that are registered for commands
397 	 * on this interface.
398 	 */
399 	struct mutex     cmd_rcvrs_mutex;
400 	struct list_head cmd_rcvrs;
401 
402 	/*
403 	 * Events that were queues because no one was there to receive
404 	 * them.
405 	 */
406 	spinlock_t       events_lock; /* For dealing with event stuff. */
407 	struct list_head waiting_events;
408 	unsigned int     waiting_events_count; /* How many events in queue? */
409 	char             delivering_events;
410 	char             event_msg_printed;
411 	atomic_t         event_waiters;
412 	unsigned int     ticks_to_req_ev;
413 	int              last_needs_timer;
414 
415 	/*
416 	 * The event receiver for my BMC, only really used at panic
417 	 * shutdown as a place to store this.
418 	 */
419 	unsigned char event_receiver;
420 	unsigned char event_receiver_lun;
421 	unsigned char local_sel_device;
422 	unsigned char local_event_generator;
423 
424 	/* For handling of maintenance mode. */
425 	int maintenance_mode;
426 	bool maintenance_mode_enable;
427 	int auto_maintenance_timeout;
428 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
429 
430 	/*
431 	 * A cheap hack, if this is non-null and a message to an
432 	 * interface comes in with a NULL user, call this routine with
433 	 * it.  Note that the message will still be freed by the
434 	 * caller.  This only works on the system interface.
435 	 */
436 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
437 
438 	/*
439 	 * When we are scanning the channels for an SMI, this will
440 	 * tell which channel we are scanning.
441 	 */
442 	int curr_channel;
443 
444 	/* Channel information */
445 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
446 
447 	/* Proc FS stuff. */
448 	struct proc_dir_entry *proc_dir;
449 	char                  proc_dir_name[10];
450 
451 	atomic_t stats[IPMI_NUM_STATS];
452 
453 	/*
454 	 * run_to_completion duplicate of smb_info, smi_info
455 	 * and ipmi_serial_info structures. Used to decrease numbers of
456 	 * parameters passed by "low" level IPMI code.
457 	 */
458 	int run_to_completion;
459 };
460 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
461 
462 /**
463  * The driver model view of the IPMI messaging driver.
464  */
465 static struct platform_driver ipmidriver = {
466 	.driver = {
467 		.name = "ipmi",
468 		.bus = &platform_bus_type
469 	}
470 };
471 static DEFINE_MUTEX(ipmidriver_mutex);
472 
473 static LIST_HEAD(ipmi_interfaces);
474 static DEFINE_MUTEX(ipmi_interfaces_mutex);
475 
476 /*
477  * List of watchers that want to know when smi's are added and deleted.
478  */
479 static LIST_HEAD(smi_watchers);
480 static DEFINE_MUTEX(smi_watchers_mutex);
481 
482 #define ipmi_inc_stat(intf, stat) \
483 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
484 #define ipmi_get_stat(intf, stat) \
485 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
486 
487 static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
488 				   "ACPI", "SMBIOS", "PCI",
489 				   "device-tree", "default" };
490 
491 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
492 {
493 	if (src > SI_DEFAULT)
494 		src = 0; /* Invalid */
495 	return addr_src_to_str[src];
496 }
497 EXPORT_SYMBOL(ipmi_addr_src_to_str);
498 
499 static int is_lan_addr(struct ipmi_addr *addr)
500 {
501 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
502 }
503 
504 static int is_ipmb_addr(struct ipmi_addr *addr)
505 {
506 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
507 }
508 
509 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
510 {
511 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
512 }
513 
514 static void free_recv_msg_list(struct list_head *q)
515 {
516 	struct ipmi_recv_msg *msg, *msg2;
517 
518 	list_for_each_entry_safe(msg, msg2, q, link) {
519 		list_del(&msg->link);
520 		ipmi_free_recv_msg(msg);
521 	}
522 }
523 
524 static void free_smi_msg_list(struct list_head *q)
525 {
526 	struct ipmi_smi_msg *msg, *msg2;
527 
528 	list_for_each_entry_safe(msg, msg2, q, link) {
529 		list_del(&msg->link);
530 		ipmi_free_smi_msg(msg);
531 	}
532 }
533 
534 static void clean_up_interface_data(ipmi_smi_t intf)
535 {
536 	int              i;
537 	struct cmd_rcvr  *rcvr, *rcvr2;
538 	struct list_head list;
539 
540 	tasklet_kill(&intf->recv_tasklet);
541 
542 	free_smi_msg_list(&intf->waiting_rcv_msgs);
543 	free_recv_msg_list(&intf->waiting_events);
544 
545 	/*
546 	 * Wholesale remove all the entries from the list in the
547 	 * interface and wait for RCU to know that none are in use.
548 	 */
549 	mutex_lock(&intf->cmd_rcvrs_mutex);
550 	INIT_LIST_HEAD(&list);
551 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
552 	mutex_unlock(&intf->cmd_rcvrs_mutex);
553 
554 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
555 		kfree(rcvr);
556 
557 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
558 		if ((intf->seq_table[i].inuse)
559 					&& (intf->seq_table[i].recv_msg))
560 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
561 	}
562 }
563 
564 static void intf_free(struct kref *ref)
565 {
566 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
567 
568 	clean_up_interface_data(intf);
569 	kfree(intf);
570 }
571 
572 struct watcher_entry {
573 	int              intf_num;
574 	ipmi_smi_t       intf;
575 	struct list_head link;
576 };
577 
578 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
579 {
580 	ipmi_smi_t intf;
581 	LIST_HEAD(to_deliver);
582 	struct watcher_entry *e, *e2;
583 
584 	mutex_lock(&smi_watchers_mutex);
585 
586 	mutex_lock(&ipmi_interfaces_mutex);
587 
588 	/* Build a list of things to deliver. */
589 	list_for_each_entry(intf, &ipmi_interfaces, link) {
590 		if (intf->intf_num == -1)
591 			continue;
592 		e = kmalloc(sizeof(*e), GFP_KERNEL);
593 		if (!e)
594 			goto out_err;
595 		kref_get(&intf->refcount);
596 		e->intf = intf;
597 		e->intf_num = intf->intf_num;
598 		list_add_tail(&e->link, &to_deliver);
599 	}
600 
601 	/* We will succeed, so add it to the list. */
602 	list_add(&watcher->link, &smi_watchers);
603 
604 	mutex_unlock(&ipmi_interfaces_mutex);
605 
606 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
607 		list_del(&e->link);
608 		watcher->new_smi(e->intf_num, e->intf->si_dev);
609 		kref_put(&e->intf->refcount, intf_free);
610 		kfree(e);
611 	}
612 
613 	mutex_unlock(&smi_watchers_mutex);
614 
615 	return 0;
616 
617  out_err:
618 	mutex_unlock(&ipmi_interfaces_mutex);
619 	mutex_unlock(&smi_watchers_mutex);
620 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
621 		list_del(&e->link);
622 		kref_put(&e->intf->refcount, intf_free);
623 		kfree(e);
624 	}
625 	return -ENOMEM;
626 }
627 EXPORT_SYMBOL(ipmi_smi_watcher_register);
628 
629 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
630 {
631 	mutex_lock(&smi_watchers_mutex);
632 	list_del(&(watcher->link));
633 	mutex_unlock(&smi_watchers_mutex);
634 	return 0;
635 }
636 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
637 
638 /*
639  * Must be called with smi_watchers_mutex held.
640  */
641 static void
642 call_smi_watchers(int i, struct device *dev)
643 {
644 	struct ipmi_smi_watcher *w;
645 
646 	list_for_each_entry(w, &smi_watchers, link) {
647 		if (try_module_get(w->owner)) {
648 			w->new_smi(i, dev);
649 			module_put(w->owner);
650 		}
651 	}
652 }
653 
654 static int
655 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
656 {
657 	if (addr1->addr_type != addr2->addr_type)
658 		return 0;
659 
660 	if (addr1->channel != addr2->channel)
661 		return 0;
662 
663 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
664 		struct ipmi_system_interface_addr *smi_addr1
665 		    = (struct ipmi_system_interface_addr *) addr1;
666 		struct ipmi_system_interface_addr *smi_addr2
667 		    = (struct ipmi_system_interface_addr *) addr2;
668 		return (smi_addr1->lun == smi_addr2->lun);
669 	}
670 
671 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
672 		struct ipmi_ipmb_addr *ipmb_addr1
673 		    = (struct ipmi_ipmb_addr *) addr1;
674 		struct ipmi_ipmb_addr *ipmb_addr2
675 		    = (struct ipmi_ipmb_addr *) addr2;
676 
677 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
678 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
679 	}
680 
681 	if (is_lan_addr(addr1)) {
682 		struct ipmi_lan_addr *lan_addr1
683 			= (struct ipmi_lan_addr *) addr1;
684 		struct ipmi_lan_addr *lan_addr2
685 		    = (struct ipmi_lan_addr *) addr2;
686 
687 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
688 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
689 			&& (lan_addr1->session_handle
690 			    == lan_addr2->session_handle)
691 			&& (lan_addr1->lun == lan_addr2->lun));
692 	}
693 
694 	return 1;
695 }
696 
697 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
698 {
699 	if (len < sizeof(struct ipmi_system_interface_addr))
700 		return -EINVAL;
701 
702 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
703 		if (addr->channel != IPMI_BMC_CHANNEL)
704 			return -EINVAL;
705 		return 0;
706 	}
707 
708 	if ((addr->channel == IPMI_BMC_CHANNEL)
709 	    || (addr->channel >= IPMI_MAX_CHANNELS)
710 	    || (addr->channel < 0))
711 		return -EINVAL;
712 
713 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
714 		if (len < sizeof(struct ipmi_ipmb_addr))
715 			return -EINVAL;
716 		return 0;
717 	}
718 
719 	if (is_lan_addr(addr)) {
720 		if (len < sizeof(struct ipmi_lan_addr))
721 			return -EINVAL;
722 		return 0;
723 	}
724 
725 	return -EINVAL;
726 }
727 EXPORT_SYMBOL(ipmi_validate_addr);
728 
729 unsigned int ipmi_addr_length(int addr_type)
730 {
731 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
732 		return sizeof(struct ipmi_system_interface_addr);
733 
734 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
735 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
736 		return sizeof(struct ipmi_ipmb_addr);
737 
738 	if (addr_type == IPMI_LAN_ADDR_TYPE)
739 		return sizeof(struct ipmi_lan_addr);
740 
741 	return 0;
742 }
743 EXPORT_SYMBOL(ipmi_addr_length);
744 
745 static void deliver_response(struct ipmi_recv_msg *msg)
746 {
747 	if (!msg->user) {
748 		ipmi_smi_t    intf = msg->user_msg_data;
749 
750 		/* Special handling for NULL users. */
751 		if (intf->null_user_handler) {
752 			intf->null_user_handler(intf, msg);
753 			ipmi_inc_stat(intf, handled_local_responses);
754 		} else {
755 			/* No handler, so give up. */
756 			ipmi_inc_stat(intf, unhandled_local_responses);
757 		}
758 		ipmi_free_recv_msg(msg);
759 	} else {
760 		ipmi_user_t user = msg->user;
761 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
762 	}
763 }
764 
765 static void
766 deliver_err_response(struct ipmi_recv_msg *msg, int err)
767 {
768 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
769 	msg->msg_data[0] = err;
770 	msg->msg.netfn |= 1; /* Convert to a response. */
771 	msg->msg.data_len = 1;
772 	msg->msg.data = msg->msg_data;
773 	deliver_response(msg);
774 }
775 
776 /*
777  * Find the next sequence number not being used and add the given
778  * message with the given timeout to the sequence table.  This must be
779  * called with the interface's seq_lock held.
780  */
781 static int intf_next_seq(ipmi_smi_t           intf,
782 			 struct ipmi_recv_msg *recv_msg,
783 			 unsigned long        timeout,
784 			 int                  retries,
785 			 int                  broadcast,
786 			 unsigned char        *seq,
787 			 long                 *seqid)
788 {
789 	int          rv = 0;
790 	unsigned int i;
791 
792 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
793 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
794 		if (!intf->seq_table[i].inuse)
795 			break;
796 	}
797 
798 	if (!intf->seq_table[i].inuse) {
799 		intf->seq_table[i].recv_msg = recv_msg;
800 
801 		/*
802 		 * Start with the maximum timeout, when the send response
803 		 * comes in we will start the real timer.
804 		 */
805 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
806 		intf->seq_table[i].orig_timeout = timeout;
807 		intf->seq_table[i].retries_left = retries;
808 		intf->seq_table[i].broadcast = broadcast;
809 		intf->seq_table[i].inuse = 1;
810 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
811 		*seq = i;
812 		*seqid = intf->seq_table[i].seqid;
813 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
814 		need_waiter(intf);
815 	} else {
816 		rv = -EAGAIN;
817 	}
818 
819 	return rv;
820 }
821 
822 /*
823  * Return the receive message for the given sequence number and
824  * release the sequence number so it can be reused.  Some other data
825  * is passed in to be sure the message matches up correctly (to help
826  * guard against message coming in after their timeout and the
827  * sequence number being reused).
828  */
829 static int intf_find_seq(ipmi_smi_t           intf,
830 			 unsigned char        seq,
831 			 short                channel,
832 			 unsigned char        cmd,
833 			 unsigned char        netfn,
834 			 struct ipmi_addr     *addr,
835 			 struct ipmi_recv_msg **recv_msg)
836 {
837 	int           rv = -ENODEV;
838 	unsigned long flags;
839 
840 	if (seq >= IPMI_IPMB_NUM_SEQ)
841 		return -EINVAL;
842 
843 	spin_lock_irqsave(&(intf->seq_lock), flags);
844 	if (intf->seq_table[seq].inuse) {
845 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
846 
847 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
848 				&& (msg->msg.netfn == netfn)
849 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
850 			*recv_msg = msg;
851 			intf->seq_table[seq].inuse = 0;
852 			rv = 0;
853 		}
854 	}
855 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
856 
857 	return rv;
858 }
859 
860 
861 /* Start the timer for a specific sequence table entry. */
862 static int intf_start_seq_timer(ipmi_smi_t intf,
863 				long       msgid)
864 {
865 	int           rv = -ENODEV;
866 	unsigned long flags;
867 	unsigned char seq;
868 	unsigned long seqid;
869 
870 
871 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
872 
873 	spin_lock_irqsave(&(intf->seq_lock), flags);
874 	/*
875 	 * We do this verification because the user can be deleted
876 	 * while a message is outstanding.
877 	 */
878 	if ((intf->seq_table[seq].inuse)
879 				&& (intf->seq_table[seq].seqid == seqid)) {
880 		struct seq_table *ent = &(intf->seq_table[seq]);
881 		ent->timeout = ent->orig_timeout;
882 		rv = 0;
883 	}
884 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
885 
886 	return rv;
887 }
888 
889 /* Got an error for the send message for a specific sequence number. */
890 static int intf_err_seq(ipmi_smi_t   intf,
891 			long         msgid,
892 			unsigned int err)
893 {
894 	int                  rv = -ENODEV;
895 	unsigned long        flags;
896 	unsigned char        seq;
897 	unsigned long        seqid;
898 	struct ipmi_recv_msg *msg = NULL;
899 
900 
901 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
902 
903 	spin_lock_irqsave(&(intf->seq_lock), flags);
904 	/*
905 	 * We do this verification because the user can be deleted
906 	 * while a message is outstanding.
907 	 */
908 	if ((intf->seq_table[seq].inuse)
909 				&& (intf->seq_table[seq].seqid == seqid)) {
910 		struct seq_table *ent = &(intf->seq_table[seq]);
911 
912 		ent->inuse = 0;
913 		msg = ent->recv_msg;
914 		rv = 0;
915 	}
916 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
917 
918 	if (msg)
919 		deliver_err_response(msg, err);
920 
921 	return rv;
922 }
923 
924 
925 int ipmi_create_user(unsigned int          if_num,
926 		     struct ipmi_user_hndl *handler,
927 		     void                  *handler_data,
928 		     ipmi_user_t           *user)
929 {
930 	unsigned long flags;
931 	ipmi_user_t   new_user;
932 	int           rv = 0;
933 	ipmi_smi_t    intf;
934 
935 	/*
936 	 * There is no module usecount here, because it's not
937 	 * required.  Since this can only be used by and called from
938 	 * other modules, they will implicitly use this module, and
939 	 * thus this can't be removed unless the other modules are
940 	 * removed.
941 	 */
942 
943 	if (handler == NULL)
944 		return -EINVAL;
945 
946 	/*
947 	 * Make sure the driver is actually initialized, this handles
948 	 * problems with initialization order.
949 	 */
950 	if (!initialized) {
951 		rv = ipmi_init_msghandler();
952 		if (rv)
953 			return rv;
954 
955 		/*
956 		 * The init code doesn't return an error if it was turned
957 		 * off, but it won't initialize.  Check that.
958 		 */
959 		if (!initialized)
960 			return -ENODEV;
961 	}
962 
963 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
964 	if (!new_user)
965 		return -ENOMEM;
966 
967 	mutex_lock(&ipmi_interfaces_mutex);
968 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
969 		if (intf->intf_num == if_num)
970 			goto found;
971 	}
972 	/* Not found, return an error */
973 	rv = -EINVAL;
974 	goto out_kfree;
975 
976  found:
977 	/* Note that each existing user holds a refcount to the interface. */
978 	kref_get(&intf->refcount);
979 
980 	kref_init(&new_user->refcount);
981 	new_user->handler = handler;
982 	new_user->handler_data = handler_data;
983 	new_user->intf = intf;
984 	new_user->gets_events = false;
985 
986 	if (!try_module_get(intf->handlers->owner)) {
987 		rv = -ENODEV;
988 		goto out_kref;
989 	}
990 
991 	if (intf->handlers->inc_usecount) {
992 		rv = intf->handlers->inc_usecount(intf->send_info);
993 		if (rv) {
994 			module_put(intf->handlers->owner);
995 			goto out_kref;
996 		}
997 	}
998 
999 	/*
1000 	 * Hold the lock so intf->handlers is guaranteed to be good
1001 	 * until now
1002 	 */
1003 	mutex_unlock(&ipmi_interfaces_mutex);
1004 
1005 	new_user->valid = true;
1006 	spin_lock_irqsave(&intf->seq_lock, flags);
1007 	list_add_rcu(&new_user->link, &intf->users);
1008 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1009 	if (handler->ipmi_watchdog_pretimeout) {
1010 		/* User wants pretimeouts, so make sure to watch for them. */
1011 		if (atomic_inc_return(&intf->event_waiters) == 1)
1012 			need_waiter(intf);
1013 	}
1014 	*user = new_user;
1015 	return 0;
1016 
1017 out_kref:
1018 	kref_put(&intf->refcount, intf_free);
1019 out_kfree:
1020 	mutex_unlock(&ipmi_interfaces_mutex);
1021 	kfree(new_user);
1022 	return rv;
1023 }
1024 EXPORT_SYMBOL(ipmi_create_user);
1025 
1026 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1027 {
1028 	int           rv = 0;
1029 	ipmi_smi_t    intf;
1030 	struct ipmi_smi_handlers *handlers;
1031 
1032 	mutex_lock(&ipmi_interfaces_mutex);
1033 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1034 		if (intf->intf_num == if_num)
1035 			goto found;
1036 	}
1037 	/* Not found, return an error */
1038 	rv = -EINVAL;
1039 	mutex_unlock(&ipmi_interfaces_mutex);
1040 	return rv;
1041 
1042 found:
1043 	handlers = intf->handlers;
1044 	rv = -ENOSYS;
1045 	if (handlers->get_smi_info)
1046 		rv = handlers->get_smi_info(intf->send_info, data);
1047 	mutex_unlock(&ipmi_interfaces_mutex);
1048 
1049 	return rv;
1050 }
1051 EXPORT_SYMBOL(ipmi_get_smi_info);
1052 
1053 static void free_user(struct kref *ref)
1054 {
1055 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1056 	kfree(user);
1057 }
1058 
1059 int ipmi_destroy_user(ipmi_user_t user)
1060 {
1061 	ipmi_smi_t       intf = user->intf;
1062 	int              i;
1063 	unsigned long    flags;
1064 	struct cmd_rcvr  *rcvr;
1065 	struct cmd_rcvr  *rcvrs = NULL;
1066 
1067 	user->valid = false;
1068 
1069 	if (user->handler->ipmi_watchdog_pretimeout)
1070 		atomic_dec(&intf->event_waiters);
1071 
1072 	if (user->gets_events)
1073 		atomic_dec(&intf->event_waiters);
1074 
1075 	/* Remove the user from the interface's sequence table. */
1076 	spin_lock_irqsave(&intf->seq_lock, flags);
1077 	list_del_rcu(&user->link);
1078 
1079 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1080 		if (intf->seq_table[i].inuse
1081 		    && (intf->seq_table[i].recv_msg->user == user)) {
1082 			intf->seq_table[i].inuse = 0;
1083 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1084 		}
1085 	}
1086 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1087 
1088 	/*
1089 	 * Remove the user from the command receiver's table.  First
1090 	 * we build a list of everything (not using the standard link,
1091 	 * since other things may be using it till we do
1092 	 * synchronize_rcu()) then free everything in that list.
1093 	 */
1094 	mutex_lock(&intf->cmd_rcvrs_mutex);
1095 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1096 		if (rcvr->user == user) {
1097 			list_del_rcu(&rcvr->link);
1098 			rcvr->next = rcvrs;
1099 			rcvrs = rcvr;
1100 		}
1101 	}
1102 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1103 	synchronize_rcu();
1104 	while (rcvrs) {
1105 		rcvr = rcvrs;
1106 		rcvrs = rcvr->next;
1107 		kfree(rcvr);
1108 	}
1109 
1110 	mutex_lock(&ipmi_interfaces_mutex);
1111 	if (intf->handlers) {
1112 		module_put(intf->handlers->owner);
1113 		if (intf->handlers->dec_usecount)
1114 			intf->handlers->dec_usecount(intf->send_info);
1115 	}
1116 	mutex_unlock(&ipmi_interfaces_mutex);
1117 
1118 	kref_put(&intf->refcount, intf_free);
1119 
1120 	kref_put(&user->refcount, free_user);
1121 
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL(ipmi_destroy_user);
1125 
1126 void ipmi_get_version(ipmi_user_t   user,
1127 		      unsigned char *major,
1128 		      unsigned char *minor)
1129 {
1130 	*major = user->intf->ipmi_version_major;
1131 	*minor = user->intf->ipmi_version_minor;
1132 }
1133 EXPORT_SYMBOL(ipmi_get_version);
1134 
1135 int ipmi_set_my_address(ipmi_user_t   user,
1136 			unsigned int  channel,
1137 			unsigned char address)
1138 {
1139 	if (channel >= IPMI_MAX_CHANNELS)
1140 		return -EINVAL;
1141 	user->intf->channels[channel].address = address;
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL(ipmi_set_my_address);
1145 
1146 int ipmi_get_my_address(ipmi_user_t   user,
1147 			unsigned int  channel,
1148 			unsigned char *address)
1149 {
1150 	if (channel >= IPMI_MAX_CHANNELS)
1151 		return -EINVAL;
1152 	*address = user->intf->channels[channel].address;
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL(ipmi_get_my_address);
1156 
1157 int ipmi_set_my_LUN(ipmi_user_t   user,
1158 		    unsigned int  channel,
1159 		    unsigned char LUN)
1160 {
1161 	if (channel >= IPMI_MAX_CHANNELS)
1162 		return -EINVAL;
1163 	user->intf->channels[channel].lun = LUN & 0x3;
1164 	return 0;
1165 }
1166 EXPORT_SYMBOL(ipmi_set_my_LUN);
1167 
1168 int ipmi_get_my_LUN(ipmi_user_t   user,
1169 		    unsigned int  channel,
1170 		    unsigned char *address)
1171 {
1172 	if (channel >= IPMI_MAX_CHANNELS)
1173 		return -EINVAL;
1174 	*address = user->intf->channels[channel].lun;
1175 	return 0;
1176 }
1177 EXPORT_SYMBOL(ipmi_get_my_LUN);
1178 
1179 int ipmi_get_maintenance_mode(ipmi_user_t user)
1180 {
1181 	int           mode;
1182 	unsigned long flags;
1183 
1184 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1185 	mode = user->intf->maintenance_mode;
1186 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1187 
1188 	return mode;
1189 }
1190 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1191 
1192 static void maintenance_mode_update(ipmi_smi_t intf)
1193 {
1194 	if (intf->handlers->set_maintenance_mode)
1195 		intf->handlers->set_maintenance_mode(
1196 			intf->send_info, intf->maintenance_mode_enable);
1197 }
1198 
1199 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1200 {
1201 	int           rv = 0;
1202 	unsigned long flags;
1203 	ipmi_smi_t    intf = user->intf;
1204 
1205 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1206 	if (intf->maintenance_mode != mode) {
1207 		switch (mode) {
1208 		case IPMI_MAINTENANCE_MODE_AUTO:
1209 			intf->maintenance_mode_enable
1210 				= (intf->auto_maintenance_timeout > 0);
1211 			break;
1212 
1213 		case IPMI_MAINTENANCE_MODE_OFF:
1214 			intf->maintenance_mode_enable = false;
1215 			break;
1216 
1217 		case IPMI_MAINTENANCE_MODE_ON:
1218 			intf->maintenance_mode_enable = true;
1219 			break;
1220 
1221 		default:
1222 			rv = -EINVAL;
1223 			goto out_unlock;
1224 		}
1225 		intf->maintenance_mode = mode;
1226 
1227 		maintenance_mode_update(intf);
1228 	}
1229  out_unlock:
1230 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1231 
1232 	return rv;
1233 }
1234 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1235 
1236 int ipmi_set_gets_events(ipmi_user_t user, bool val)
1237 {
1238 	unsigned long        flags;
1239 	ipmi_smi_t           intf = user->intf;
1240 	struct ipmi_recv_msg *msg, *msg2;
1241 	struct list_head     msgs;
1242 
1243 	INIT_LIST_HEAD(&msgs);
1244 
1245 	spin_lock_irqsave(&intf->events_lock, flags);
1246 	if (user->gets_events == val)
1247 		goto out;
1248 
1249 	user->gets_events = val;
1250 
1251 	if (val) {
1252 		if (atomic_inc_return(&intf->event_waiters) == 1)
1253 			need_waiter(intf);
1254 	} else {
1255 		atomic_dec(&intf->event_waiters);
1256 	}
1257 
1258 	if (intf->delivering_events)
1259 		/*
1260 		 * Another thread is delivering events for this, so
1261 		 * let it handle any new events.
1262 		 */
1263 		goto out;
1264 
1265 	/* Deliver any queued events. */
1266 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1267 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1268 			list_move_tail(&msg->link, &msgs);
1269 		intf->waiting_events_count = 0;
1270 		if (intf->event_msg_printed) {
1271 			printk(KERN_WARNING PFX "Event queue no longer"
1272 			       " full\n");
1273 			intf->event_msg_printed = 0;
1274 		}
1275 
1276 		intf->delivering_events = 1;
1277 		spin_unlock_irqrestore(&intf->events_lock, flags);
1278 
1279 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1280 			msg->user = user;
1281 			kref_get(&user->refcount);
1282 			deliver_response(msg);
1283 		}
1284 
1285 		spin_lock_irqsave(&intf->events_lock, flags);
1286 		intf->delivering_events = 0;
1287 	}
1288 
1289  out:
1290 	spin_unlock_irqrestore(&intf->events_lock, flags);
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL(ipmi_set_gets_events);
1295 
1296 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1297 				      unsigned char netfn,
1298 				      unsigned char cmd,
1299 				      unsigned char chan)
1300 {
1301 	struct cmd_rcvr *rcvr;
1302 
1303 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1304 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1305 					&& (rcvr->chans & (1 << chan)))
1306 			return rcvr;
1307 	}
1308 	return NULL;
1309 }
1310 
1311 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1312 				 unsigned char netfn,
1313 				 unsigned char cmd,
1314 				 unsigned int  chans)
1315 {
1316 	struct cmd_rcvr *rcvr;
1317 
1318 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1319 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1320 					&& (rcvr->chans & chans))
1321 			return 0;
1322 	}
1323 	return 1;
1324 }
1325 
1326 int ipmi_register_for_cmd(ipmi_user_t   user,
1327 			  unsigned char netfn,
1328 			  unsigned char cmd,
1329 			  unsigned int  chans)
1330 {
1331 	ipmi_smi_t      intf = user->intf;
1332 	struct cmd_rcvr *rcvr;
1333 	int             rv = 0;
1334 
1335 
1336 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1337 	if (!rcvr)
1338 		return -ENOMEM;
1339 	rcvr->cmd = cmd;
1340 	rcvr->netfn = netfn;
1341 	rcvr->chans = chans;
1342 	rcvr->user = user;
1343 
1344 	mutex_lock(&intf->cmd_rcvrs_mutex);
1345 	/* Make sure the command/netfn is not already registered. */
1346 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1347 		rv = -EBUSY;
1348 		goto out_unlock;
1349 	}
1350 
1351 	if (atomic_inc_return(&intf->event_waiters) == 1)
1352 		need_waiter(intf);
1353 
1354 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1355 
1356  out_unlock:
1357 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1358 	if (rv)
1359 		kfree(rcvr);
1360 
1361 	return rv;
1362 }
1363 EXPORT_SYMBOL(ipmi_register_for_cmd);
1364 
1365 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1366 			    unsigned char netfn,
1367 			    unsigned char cmd,
1368 			    unsigned int  chans)
1369 {
1370 	ipmi_smi_t      intf = user->intf;
1371 	struct cmd_rcvr *rcvr;
1372 	struct cmd_rcvr *rcvrs = NULL;
1373 	int i, rv = -ENOENT;
1374 
1375 	mutex_lock(&intf->cmd_rcvrs_mutex);
1376 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1377 		if (((1 << i) & chans) == 0)
1378 			continue;
1379 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1380 		if (rcvr == NULL)
1381 			continue;
1382 		if (rcvr->user == user) {
1383 			rv = 0;
1384 			rcvr->chans &= ~chans;
1385 			if (rcvr->chans == 0) {
1386 				list_del_rcu(&rcvr->link);
1387 				rcvr->next = rcvrs;
1388 				rcvrs = rcvr;
1389 			}
1390 		}
1391 	}
1392 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1393 	synchronize_rcu();
1394 	while (rcvrs) {
1395 		atomic_dec(&intf->event_waiters);
1396 		rcvr = rcvrs;
1397 		rcvrs = rcvr->next;
1398 		kfree(rcvr);
1399 	}
1400 	return rv;
1401 }
1402 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1403 
1404 static unsigned char
1405 ipmb_checksum(unsigned char *data, int size)
1406 {
1407 	unsigned char csum = 0;
1408 
1409 	for (; size > 0; size--, data++)
1410 		csum += *data;
1411 
1412 	return -csum;
1413 }
1414 
1415 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1416 				   struct kernel_ipmi_msg *msg,
1417 				   struct ipmi_ipmb_addr *ipmb_addr,
1418 				   long                  msgid,
1419 				   unsigned char         ipmb_seq,
1420 				   int                   broadcast,
1421 				   unsigned char         source_address,
1422 				   unsigned char         source_lun)
1423 {
1424 	int i = broadcast;
1425 
1426 	/* Format the IPMB header data. */
1427 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1428 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1429 	smi_msg->data[2] = ipmb_addr->channel;
1430 	if (broadcast)
1431 		smi_msg->data[3] = 0;
1432 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1433 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1434 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1435 	smi_msg->data[i+6] = source_address;
1436 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1437 	smi_msg->data[i+8] = msg->cmd;
1438 
1439 	/* Now tack on the data to the message. */
1440 	if (msg->data_len > 0)
1441 		memcpy(&(smi_msg->data[i+9]), msg->data,
1442 		       msg->data_len);
1443 	smi_msg->data_size = msg->data_len + 9;
1444 
1445 	/* Now calculate the checksum and tack it on. */
1446 	smi_msg->data[i+smi_msg->data_size]
1447 		= ipmb_checksum(&(smi_msg->data[i+6]),
1448 				smi_msg->data_size-6);
1449 
1450 	/*
1451 	 * Add on the checksum size and the offset from the
1452 	 * broadcast.
1453 	 */
1454 	smi_msg->data_size += 1 + i;
1455 
1456 	smi_msg->msgid = msgid;
1457 }
1458 
1459 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1460 				  struct kernel_ipmi_msg *msg,
1461 				  struct ipmi_lan_addr  *lan_addr,
1462 				  long                  msgid,
1463 				  unsigned char         ipmb_seq,
1464 				  unsigned char         source_lun)
1465 {
1466 	/* Format the IPMB header data. */
1467 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1468 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1469 	smi_msg->data[2] = lan_addr->channel;
1470 	smi_msg->data[3] = lan_addr->session_handle;
1471 	smi_msg->data[4] = lan_addr->remote_SWID;
1472 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1473 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1474 	smi_msg->data[7] = lan_addr->local_SWID;
1475 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1476 	smi_msg->data[9] = msg->cmd;
1477 
1478 	/* Now tack on the data to the message. */
1479 	if (msg->data_len > 0)
1480 		memcpy(&(smi_msg->data[10]), msg->data,
1481 		       msg->data_len);
1482 	smi_msg->data_size = msg->data_len + 10;
1483 
1484 	/* Now calculate the checksum and tack it on. */
1485 	smi_msg->data[smi_msg->data_size]
1486 		= ipmb_checksum(&(smi_msg->data[7]),
1487 				smi_msg->data_size-7);
1488 
1489 	/*
1490 	 * Add on the checksum size and the offset from the
1491 	 * broadcast.
1492 	 */
1493 	smi_msg->data_size += 1;
1494 
1495 	smi_msg->msgid = msgid;
1496 }
1497 
1498 static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1499 		     struct ipmi_smi_msg *smi_msg, int priority)
1500 {
1501 	int run_to_completion = intf->run_to_completion;
1502 	unsigned long flags;
1503 
1504 	if (!run_to_completion)
1505 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1506 	if (intf->curr_msg) {
1507 		if (priority > 0)
1508 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1509 		else
1510 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1511 		smi_msg = NULL;
1512 	} else {
1513 		intf->curr_msg = smi_msg;
1514 	}
1515 	if (!run_to_completion)
1516 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1517 
1518 	if (smi_msg)
1519 		handlers->sender(intf->send_info, smi_msg);
1520 }
1521 
1522 /*
1523  * Separate from ipmi_request so that the user does not have to be
1524  * supplied in certain circumstances (mainly at panic time).  If
1525  * messages are supplied, they will be freed, even if an error
1526  * occurs.
1527  */
1528 static int i_ipmi_request(ipmi_user_t          user,
1529 			  ipmi_smi_t           intf,
1530 			  struct ipmi_addr     *addr,
1531 			  long                 msgid,
1532 			  struct kernel_ipmi_msg *msg,
1533 			  void                 *user_msg_data,
1534 			  void                 *supplied_smi,
1535 			  struct ipmi_recv_msg *supplied_recv,
1536 			  int                  priority,
1537 			  unsigned char        source_address,
1538 			  unsigned char        source_lun,
1539 			  int                  retries,
1540 			  unsigned int         retry_time_ms)
1541 {
1542 	int                      rv = 0;
1543 	struct ipmi_smi_msg      *smi_msg;
1544 	struct ipmi_recv_msg     *recv_msg;
1545 	unsigned long            flags;
1546 
1547 
1548 	if (supplied_recv)
1549 		recv_msg = supplied_recv;
1550 	else {
1551 		recv_msg = ipmi_alloc_recv_msg();
1552 		if (recv_msg == NULL)
1553 			return -ENOMEM;
1554 	}
1555 	recv_msg->user_msg_data = user_msg_data;
1556 
1557 	if (supplied_smi)
1558 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1559 	else {
1560 		smi_msg = ipmi_alloc_smi_msg();
1561 		if (smi_msg == NULL) {
1562 			ipmi_free_recv_msg(recv_msg);
1563 			return -ENOMEM;
1564 		}
1565 	}
1566 
1567 	rcu_read_lock();
1568 	if (intf->in_shutdown) {
1569 		rv = -ENODEV;
1570 		goto out_err;
1571 	}
1572 
1573 	recv_msg->user = user;
1574 	if (user)
1575 		kref_get(&user->refcount);
1576 	recv_msg->msgid = msgid;
1577 	/*
1578 	 * Store the message to send in the receive message so timeout
1579 	 * responses can get the proper response data.
1580 	 */
1581 	recv_msg->msg = *msg;
1582 
1583 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1584 		struct ipmi_system_interface_addr *smi_addr;
1585 
1586 		if (msg->netfn & 1) {
1587 			/* Responses are not allowed to the SMI. */
1588 			rv = -EINVAL;
1589 			goto out_err;
1590 		}
1591 
1592 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1593 		if (smi_addr->lun > 3) {
1594 			ipmi_inc_stat(intf, sent_invalid_commands);
1595 			rv = -EINVAL;
1596 			goto out_err;
1597 		}
1598 
1599 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1600 
1601 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1602 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1603 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1604 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1605 			/*
1606 			 * We don't let the user do these, since we manage
1607 			 * the sequence numbers.
1608 			 */
1609 			ipmi_inc_stat(intf, sent_invalid_commands);
1610 			rv = -EINVAL;
1611 			goto out_err;
1612 		}
1613 
1614 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1615 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1616 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1617 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1618 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1619 			intf->auto_maintenance_timeout
1620 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1621 			if (!intf->maintenance_mode
1622 			    && !intf->maintenance_mode_enable) {
1623 				intf->maintenance_mode_enable = true;
1624 				maintenance_mode_update(intf);
1625 			}
1626 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1627 					       flags);
1628 		}
1629 
1630 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1631 			ipmi_inc_stat(intf, sent_invalid_commands);
1632 			rv = -EMSGSIZE;
1633 			goto out_err;
1634 		}
1635 
1636 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1637 		smi_msg->data[1] = msg->cmd;
1638 		smi_msg->msgid = msgid;
1639 		smi_msg->user_data = recv_msg;
1640 		if (msg->data_len > 0)
1641 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1642 		smi_msg->data_size = msg->data_len + 2;
1643 		ipmi_inc_stat(intf, sent_local_commands);
1644 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1645 		struct ipmi_ipmb_addr *ipmb_addr;
1646 		unsigned char         ipmb_seq;
1647 		long                  seqid;
1648 		int                   broadcast = 0;
1649 
1650 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1651 			ipmi_inc_stat(intf, sent_invalid_commands);
1652 			rv = -EINVAL;
1653 			goto out_err;
1654 		}
1655 
1656 		if (intf->channels[addr->channel].medium
1657 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1658 			ipmi_inc_stat(intf, sent_invalid_commands);
1659 			rv = -EINVAL;
1660 			goto out_err;
1661 		}
1662 
1663 		if (retries < 0) {
1664 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1665 			retries = 0; /* Don't retry broadcasts. */
1666 		    else
1667 			retries = 4;
1668 		}
1669 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1670 		    /*
1671 		     * Broadcasts add a zero at the beginning of the
1672 		     * message, but otherwise is the same as an IPMB
1673 		     * address.
1674 		     */
1675 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1676 		    broadcast = 1;
1677 		}
1678 
1679 
1680 		/* Default to 1 second retries. */
1681 		if (retry_time_ms == 0)
1682 		    retry_time_ms = 1000;
1683 
1684 		/*
1685 		 * 9 for the header and 1 for the checksum, plus
1686 		 * possibly one for the broadcast.
1687 		 */
1688 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1689 			ipmi_inc_stat(intf, sent_invalid_commands);
1690 			rv = -EMSGSIZE;
1691 			goto out_err;
1692 		}
1693 
1694 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1695 		if (ipmb_addr->lun > 3) {
1696 			ipmi_inc_stat(intf, sent_invalid_commands);
1697 			rv = -EINVAL;
1698 			goto out_err;
1699 		}
1700 
1701 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1702 
1703 		if (recv_msg->msg.netfn & 0x1) {
1704 			/*
1705 			 * It's a response, so use the user's sequence
1706 			 * from msgid.
1707 			 */
1708 			ipmi_inc_stat(intf, sent_ipmb_responses);
1709 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1710 					msgid, broadcast,
1711 					source_address, source_lun);
1712 
1713 			/*
1714 			 * Save the receive message so we can use it
1715 			 * to deliver the response.
1716 			 */
1717 			smi_msg->user_data = recv_msg;
1718 		} else {
1719 			/* It's a command, so get a sequence for it. */
1720 
1721 			spin_lock_irqsave(&(intf->seq_lock), flags);
1722 
1723 			/*
1724 			 * Create a sequence number with a 1 second
1725 			 * timeout and 4 retries.
1726 			 */
1727 			rv = intf_next_seq(intf,
1728 					   recv_msg,
1729 					   retry_time_ms,
1730 					   retries,
1731 					   broadcast,
1732 					   &ipmb_seq,
1733 					   &seqid);
1734 			if (rv) {
1735 				/*
1736 				 * We have used up all the sequence numbers,
1737 				 * probably, so abort.
1738 				 */
1739 				spin_unlock_irqrestore(&(intf->seq_lock),
1740 						       flags);
1741 				goto out_err;
1742 			}
1743 
1744 			ipmi_inc_stat(intf, sent_ipmb_commands);
1745 
1746 			/*
1747 			 * Store the sequence number in the message,
1748 			 * so that when the send message response
1749 			 * comes back we can start the timer.
1750 			 */
1751 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1752 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1753 					ipmb_seq, broadcast,
1754 					source_address, source_lun);
1755 
1756 			/*
1757 			 * Copy the message into the recv message data, so we
1758 			 * can retransmit it later if necessary.
1759 			 */
1760 			memcpy(recv_msg->msg_data, smi_msg->data,
1761 			       smi_msg->data_size);
1762 			recv_msg->msg.data = recv_msg->msg_data;
1763 			recv_msg->msg.data_len = smi_msg->data_size;
1764 
1765 			/*
1766 			 * We don't unlock until here, because we need
1767 			 * to copy the completed message into the
1768 			 * recv_msg before we release the lock.
1769 			 * Otherwise, race conditions may bite us.  I
1770 			 * know that's pretty paranoid, but I prefer
1771 			 * to be correct.
1772 			 */
1773 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1774 		}
1775 	} else if (is_lan_addr(addr)) {
1776 		struct ipmi_lan_addr  *lan_addr;
1777 		unsigned char         ipmb_seq;
1778 		long                  seqid;
1779 
1780 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1781 			ipmi_inc_stat(intf, sent_invalid_commands);
1782 			rv = -EINVAL;
1783 			goto out_err;
1784 		}
1785 
1786 		if ((intf->channels[addr->channel].medium
1787 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1788 		    && (intf->channels[addr->channel].medium
1789 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1790 			ipmi_inc_stat(intf, sent_invalid_commands);
1791 			rv = -EINVAL;
1792 			goto out_err;
1793 		}
1794 
1795 		retries = 4;
1796 
1797 		/* Default to 1 second retries. */
1798 		if (retry_time_ms == 0)
1799 		    retry_time_ms = 1000;
1800 
1801 		/* 11 for the header and 1 for the checksum. */
1802 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1803 			ipmi_inc_stat(intf, sent_invalid_commands);
1804 			rv = -EMSGSIZE;
1805 			goto out_err;
1806 		}
1807 
1808 		lan_addr = (struct ipmi_lan_addr *) addr;
1809 		if (lan_addr->lun > 3) {
1810 			ipmi_inc_stat(intf, sent_invalid_commands);
1811 			rv = -EINVAL;
1812 			goto out_err;
1813 		}
1814 
1815 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1816 
1817 		if (recv_msg->msg.netfn & 0x1) {
1818 			/*
1819 			 * It's a response, so use the user's sequence
1820 			 * from msgid.
1821 			 */
1822 			ipmi_inc_stat(intf, sent_lan_responses);
1823 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1824 				       msgid, source_lun);
1825 
1826 			/*
1827 			 * Save the receive message so we can use it
1828 			 * to deliver the response.
1829 			 */
1830 			smi_msg->user_data = recv_msg;
1831 		} else {
1832 			/* It's a command, so get a sequence for it. */
1833 
1834 			spin_lock_irqsave(&(intf->seq_lock), flags);
1835 
1836 			/*
1837 			 * Create a sequence number with a 1 second
1838 			 * timeout and 4 retries.
1839 			 */
1840 			rv = intf_next_seq(intf,
1841 					   recv_msg,
1842 					   retry_time_ms,
1843 					   retries,
1844 					   0,
1845 					   &ipmb_seq,
1846 					   &seqid);
1847 			if (rv) {
1848 				/*
1849 				 * We have used up all the sequence numbers,
1850 				 * probably, so abort.
1851 				 */
1852 				spin_unlock_irqrestore(&(intf->seq_lock),
1853 						       flags);
1854 				goto out_err;
1855 			}
1856 
1857 			ipmi_inc_stat(intf, sent_lan_commands);
1858 
1859 			/*
1860 			 * Store the sequence number in the message,
1861 			 * so that when the send message response
1862 			 * comes back we can start the timer.
1863 			 */
1864 			format_lan_msg(smi_msg, msg, lan_addr,
1865 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1866 				       ipmb_seq, source_lun);
1867 
1868 			/*
1869 			 * Copy the message into the recv message data, so we
1870 			 * can retransmit it later if necessary.
1871 			 */
1872 			memcpy(recv_msg->msg_data, smi_msg->data,
1873 			       smi_msg->data_size);
1874 			recv_msg->msg.data = recv_msg->msg_data;
1875 			recv_msg->msg.data_len = smi_msg->data_size;
1876 
1877 			/*
1878 			 * We don't unlock until here, because we need
1879 			 * to copy the completed message into the
1880 			 * recv_msg before we release the lock.
1881 			 * Otherwise, race conditions may bite us.  I
1882 			 * know that's pretty paranoid, but I prefer
1883 			 * to be correct.
1884 			 */
1885 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1886 		}
1887 	} else {
1888 	    /* Unknown address type. */
1889 		ipmi_inc_stat(intf, sent_invalid_commands);
1890 		rv = -EINVAL;
1891 		goto out_err;
1892 	}
1893 
1894 #ifdef DEBUG_MSGING
1895 	{
1896 		int m;
1897 		for (m = 0; m < smi_msg->data_size; m++)
1898 			printk(" %2.2x", smi_msg->data[m]);
1899 		printk("\n");
1900 	}
1901 #endif
1902 
1903 	smi_send(intf, intf->handlers, smi_msg, priority);
1904 	rcu_read_unlock();
1905 
1906 	return 0;
1907 
1908  out_err:
1909 	rcu_read_unlock();
1910 	ipmi_free_smi_msg(smi_msg);
1911 	ipmi_free_recv_msg(recv_msg);
1912 	return rv;
1913 }
1914 
1915 static int check_addr(ipmi_smi_t       intf,
1916 		      struct ipmi_addr *addr,
1917 		      unsigned char    *saddr,
1918 		      unsigned char    *lun)
1919 {
1920 	if (addr->channel >= IPMI_MAX_CHANNELS)
1921 		return -EINVAL;
1922 	*lun = intf->channels[addr->channel].lun;
1923 	*saddr = intf->channels[addr->channel].address;
1924 	return 0;
1925 }
1926 
1927 int ipmi_request_settime(ipmi_user_t      user,
1928 			 struct ipmi_addr *addr,
1929 			 long             msgid,
1930 			 struct kernel_ipmi_msg  *msg,
1931 			 void             *user_msg_data,
1932 			 int              priority,
1933 			 int              retries,
1934 			 unsigned int     retry_time_ms)
1935 {
1936 	unsigned char saddr = 0, lun = 0;
1937 	int           rv;
1938 
1939 	if (!user)
1940 		return -EINVAL;
1941 	rv = check_addr(user->intf, addr, &saddr, &lun);
1942 	if (rv)
1943 		return rv;
1944 	return i_ipmi_request(user,
1945 			      user->intf,
1946 			      addr,
1947 			      msgid,
1948 			      msg,
1949 			      user_msg_data,
1950 			      NULL, NULL,
1951 			      priority,
1952 			      saddr,
1953 			      lun,
1954 			      retries,
1955 			      retry_time_ms);
1956 }
1957 EXPORT_SYMBOL(ipmi_request_settime);
1958 
1959 int ipmi_request_supply_msgs(ipmi_user_t          user,
1960 			     struct ipmi_addr     *addr,
1961 			     long                 msgid,
1962 			     struct kernel_ipmi_msg *msg,
1963 			     void                 *user_msg_data,
1964 			     void                 *supplied_smi,
1965 			     struct ipmi_recv_msg *supplied_recv,
1966 			     int                  priority)
1967 {
1968 	unsigned char saddr = 0, lun = 0;
1969 	int           rv;
1970 
1971 	if (!user)
1972 		return -EINVAL;
1973 	rv = check_addr(user->intf, addr, &saddr, &lun);
1974 	if (rv)
1975 		return rv;
1976 	return i_ipmi_request(user,
1977 			      user->intf,
1978 			      addr,
1979 			      msgid,
1980 			      msg,
1981 			      user_msg_data,
1982 			      supplied_smi,
1983 			      supplied_recv,
1984 			      priority,
1985 			      saddr,
1986 			      lun,
1987 			      -1, 0);
1988 }
1989 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1990 
1991 #ifdef CONFIG_PROC_FS
1992 static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1993 {
1994 	ipmi_smi_t intf = m->private;
1995 	int        i;
1996 
1997 	seq_printf(m, "%x", intf->channels[0].address);
1998 	for (i = 1; i < IPMI_MAX_CHANNELS; i++)
1999 		seq_printf(m, " %x", intf->channels[i].address);
2000 	return seq_putc(m, '\n');
2001 }
2002 
2003 static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2004 {
2005 	return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2006 }
2007 
2008 static const struct file_operations smi_ipmb_proc_ops = {
2009 	.open		= smi_ipmb_proc_open,
2010 	.read		= seq_read,
2011 	.llseek		= seq_lseek,
2012 	.release	= single_release,
2013 };
2014 
2015 static int smi_version_proc_show(struct seq_file *m, void *v)
2016 {
2017 	ipmi_smi_t intf = m->private;
2018 
2019 	return seq_printf(m, "%u.%u\n",
2020 		       ipmi_version_major(&intf->bmc->id),
2021 		       ipmi_version_minor(&intf->bmc->id));
2022 }
2023 
2024 static int smi_version_proc_open(struct inode *inode, struct file *file)
2025 {
2026 	return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2027 }
2028 
2029 static const struct file_operations smi_version_proc_ops = {
2030 	.open		= smi_version_proc_open,
2031 	.read		= seq_read,
2032 	.llseek		= seq_lseek,
2033 	.release	= single_release,
2034 };
2035 
2036 static int smi_stats_proc_show(struct seq_file *m, void *v)
2037 {
2038 	ipmi_smi_t intf = m->private;
2039 
2040 	seq_printf(m, "sent_invalid_commands:       %u\n",
2041 		       ipmi_get_stat(intf, sent_invalid_commands));
2042 	seq_printf(m, "sent_local_commands:         %u\n",
2043 		       ipmi_get_stat(intf, sent_local_commands));
2044 	seq_printf(m, "handled_local_responses:     %u\n",
2045 		       ipmi_get_stat(intf, handled_local_responses));
2046 	seq_printf(m, "unhandled_local_responses:   %u\n",
2047 		       ipmi_get_stat(intf, unhandled_local_responses));
2048 	seq_printf(m, "sent_ipmb_commands:          %u\n",
2049 		       ipmi_get_stat(intf, sent_ipmb_commands));
2050 	seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2051 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
2052 	seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2053 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2054 	seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2055 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
2056 	seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2057 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2058 	seq_printf(m, "sent_ipmb_responses:         %u\n",
2059 		       ipmi_get_stat(intf, sent_ipmb_responses));
2060 	seq_printf(m, "handled_ipmb_responses:      %u\n",
2061 		       ipmi_get_stat(intf, handled_ipmb_responses));
2062 	seq_printf(m, "invalid_ipmb_responses:      %u\n",
2063 		       ipmi_get_stat(intf, invalid_ipmb_responses));
2064 	seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2065 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
2066 	seq_printf(m, "sent_lan_commands:           %u\n",
2067 		       ipmi_get_stat(intf, sent_lan_commands));
2068 	seq_printf(m, "sent_lan_command_errs:       %u\n",
2069 		       ipmi_get_stat(intf, sent_lan_command_errs));
2070 	seq_printf(m, "retransmitted_lan_commands:  %u\n",
2071 		       ipmi_get_stat(intf, retransmitted_lan_commands));
2072 	seq_printf(m, "timed_out_lan_commands:      %u\n",
2073 		       ipmi_get_stat(intf, timed_out_lan_commands));
2074 	seq_printf(m, "sent_lan_responses:          %u\n",
2075 		       ipmi_get_stat(intf, sent_lan_responses));
2076 	seq_printf(m, "handled_lan_responses:       %u\n",
2077 		       ipmi_get_stat(intf, handled_lan_responses));
2078 	seq_printf(m, "invalid_lan_responses:       %u\n",
2079 		       ipmi_get_stat(intf, invalid_lan_responses));
2080 	seq_printf(m, "unhandled_lan_responses:     %u\n",
2081 		       ipmi_get_stat(intf, unhandled_lan_responses));
2082 	seq_printf(m, "handled_commands:            %u\n",
2083 		       ipmi_get_stat(intf, handled_commands));
2084 	seq_printf(m, "invalid_commands:            %u\n",
2085 		       ipmi_get_stat(intf, invalid_commands));
2086 	seq_printf(m, "unhandled_commands:          %u\n",
2087 		       ipmi_get_stat(intf, unhandled_commands));
2088 	seq_printf(m, "invalid_events:              %u\n",
2089 		       ipmi_get_stat(intf, invalid_events));
2090 	seq_printf(m, "events:                      %u\n",
2091 		       ipmi_get_stat(intf, events));
2092 	seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2093 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2094 	seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2095 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2096 	return 0;
2097 }
2098 
2099 static int smi_stats_proc_open(struct inode *inode, struct file *file)
2100 {
2101 	return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2102 }
2103 
2104 static const struct file_operations smi_stats_proc_ops = {
2105 	.open		= smi_stats_proc_open,
2106 	.read		= seq_read,
2107 	.llseek		= seq_lseek,
2108 	.release	= single_release,
2109 };
2110 #endif /* CONFIG_PROC_FS */
2111 
2112 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2113 			    const struct file_operations *proc_ops,
2114 			    void *data)
2115 {
2116 	int                    rv = 0;
2117 #ifdef CONFIG_PROC_FS
2118 	struct proc_dir_entry  *file;
2119 	struct ipmi_proc_entry *entry;
2120 
2121 	/* Create a list element. */
2122 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2123 	if (!entry)
2124 		return -ENOMEM;
2125 	entry->name = kstrdup(name, GFP_KERNEL);
2126 	if (!entry->name) {
2127 		kfree(entry);
2128 		return -ENOMEM;
2129 	}
2130 
2131 	file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2132 	if (!file) {
2133 		kfree(entry->name);
2134 		kfree(entry);
2135 		rv = -ENOMEM;
2136 	} else {
2137 		mutex_lock(&smi->proc_entry_lock);
2138 		/* Stick it on the list. */
2139 		entry->next = smi->proc_entries;
2140 		smi->proc_entries = entry;
2141 		mutex_unlock(&smi->proc_entry_lock);
2142 	}
2143 #endif /* CONFIG_PROC_FS */
2144 
2145 	return rv;
2146 }
2147 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2148 
2149 static int add_proc_entries(ipmi_smi_t smi, int num)
2150 {
2151 	int rv = 0;
2152 
2153 #ifdef CONFIG_PROC_FS
2154 	sprintf(smi->proc_dir_name, "%d", num);
2155 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2156 	if (!smi->proc_dir)
2157 		rv = -ENOMEM;
2158 
2159 	if (rv == 0)
2160 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2161 					     &smi_stats_proc_ops,
2162 					     smi);
2163 
2164 	if (rv == 0)
2165 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2166 					     &smi_ipmb_proc_ops,
2167 					     smi);
2168 
2169 	if (rv == 0)
2170 		rv = ipmi_smi_add_proc_entry(smi, "version",
2171 					     &smi_version_proc_ops,
2172 					     smi);
2173 #endif /* CONFIG_PROC_FS */
2174 
2175 	return rv;
2176 }
2177 
2178 static void remove_proc_entries(ipmi_smi_t smi)
2179 {
2180 #ifdef CONFIG_PROC_FS
2181 	struct ipmi_proc_entry *entry;
2182 
2183 	mutex_lock(&smi->proc_entry_lock);
2184 	while (smi->proc_entries) {
2185 		entry = smi->proc_entries;
2186 		smi->proc_entries = entry->next;
2187 
2188 		remove_proc_entry(entry->name, smi->proc_dir);
2189 		kfree(entry->name);
2190 		kfree(entry);
2191 	}
2192 	mutex_unlock(&smi->proc_entry_lock);
2193 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2194 #endif /* CONFIG_PROC_FS */
2195 }
2196 
2197 static int __find_bmc_guid(struct device *dev, void *data)
2198 {
2199 	unsigned char *id = data;
2200 	struct bmc_device *bmc = to_bmc_device(dev);
2201 	return memcmp(bmc->guid, id, 16) == 0;
2202 }
2203 
2204 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2205 					     unsigned char *guid)
2206 {
2207 	struct device *dev;
2208 
2209 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2210 	if (dev)
2211 		return to_bmc_device(dev);
2212 	else
2213 		return NULL;
2214 }
2215 
2216 struct prod_dev_id {
2217 	unsigned int  product_id;
2218 	unsigned char device_id;
2219 };
2220 
2221 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2222 {
2223 	struct prod_dev_id *id = data;
2224 	struct bmc_device *bmc = to_bmc_device(dev);
2225 
2226 	return (bmc->id.product_id == id->product_id
2227 		&& bmc->id.device_id == id->device_id);
2228 }
2229 
2230 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2231 	struct device_driver *drv,
2232 	unsigned int product_id, unsigned char device_id)
2233 {
2234 	struct prod_dev_id id = {
2235 		.product_id = product_id,
2236 		.device_id = device_id,
2237 	};
2238 	struct device *dev;
2239 
2240 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2241 	if (dev)
2242 		return to_bmc_device(dev);
2243 	else
2244 		return NULL;
2245 }
2246 
2247 static ssize_t device_id_show(struct device *dev,
2248 			      struct device_attribute *attr,
2249 			      char *buf)
2250 {
2251 	struct bmc_device *bmc = to_bmc_device(dev);
2252 
2253 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2254 }
2255 DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2256 
2257 static ssize_t provides_device_sdrs_show(struct device *dev,
2258 					 struct device_attribute *attr,
2259 					 char *buf)
2260 {
2261 	struct bmc_device *bmc = to_bmc_device(dev);
2262 
2263 	return snprintf(buf, 10, "%u\n",
2264 			(bmc->id.device_revision & 0x80) >> 7);
2265 }
2266 DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show, NULL);
2267 
2268 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2269 			     char *buf)
2270 {
2271 	struct bmc_device *bmc = to_bmc_device(dev);
2272 
2273 	return snprintf(buf, 20, "%u\n",
2274 			bmc->id.device_revision & 0x0F);
2275 }
2276 DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2277 
2278 static ssize_t firmware_revision_show(struct device *dev,
2279 				      struct device_attribute *attr,
2280 				      char *buf)
2281 {
2282 	struct bmc_device *bmc = to_bmc_device(dev);
2283 
2284 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2285 			bmc->id.firmware_revision_2);
2286 }
2287 DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2288 
2289 static ssize_t ipmi_version_show(struct device *dev,
2290 				 struct device_attribute *attr,
2291 				 char *buf)
2292 {
2293 	struct bmc_device *bmc = to_bmc_device(dev);
2294 
2295 	return snprintf(buf, 20, "%u.%u\n",
2296 			ipmi_version_major(&bmc->id),
2297 			ipmi_version_minor(&bmc->id));
2298 }
2299 DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2300 
2301 static ssize_t add_dev_support_show(struct device *dev,
2302 				    struct device_attribute *attr,
2303 				    char *buf)
2304 {
2305 	struct bmc_device *bmc = to_bmc_device(dev);
2306 
2307 	return snprintf(buf, 10, "0x%02x\n",
2308 			bmc->id.additional_device_support);
2309 }
2310 DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, NULL);
2311 
2312 static ssize_t manufacturer_id_show(struct device *dev,
2313 				    struct device_attribute *attr,
2314 				    char *buf)
2315 {
2316 	struct bmc_device *bmc = to_bmc_device(dev);
2317 
2318 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2319 }
2320 DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2321 
2322 static ssize_t product_id_show(struct device *dev,
2323 			       struct device_attribute *attr,
2324 			       char *buf)
2325 {
2326 	struct bmc_device *bmc = to_bmc_device(dev);
2327 
2328 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2329 }
2330 DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2331 
2332 static ssize_t aux_firmware_rev_show(struct device *dev,
2333 				     struct device_attribute *attr,
2334 				     char *buf)
2335 {
2336 	struct bmc_device *bmc = to_bmc_device(dev);
2337 
2338 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2339 			bmc->id.aux_firmware_revision[3],
2340 			bmc->id.aux_firmware_revision[2],
2341 			bmc->id.aux_firmware_revision[1],
2342 			bmc->id.aux_firmware_revision[0]);
2343 }
2344 DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2345 
2346 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2347 			 char *buf)
2348 {
2349 	struct bmc_device *bmc = to_bmc_device(dev);
2350 
2351 	return snprintf(buf, 100, "%Lx%Lx\n",
2352 			(long long) bmc->guid[0],
2353 			(long long) bmc->guid[8]);
2354 }
2355 DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2356 
2357 static struct attribute *bmc_dev_attrs[] = {
2358 	&dev_attr_device_id.attr,
2359 	&dev_attr_provides_device_sdrs.attr,
2360 	&dev_attr_revision.attr,
2361 	&dev_attr_firmware_revision.attr,
2362 	&dev_attr_ipmi_version.attr,
2363 	&dev_attr_additional_device_support.attr,
2364 	&dev_attr_manufacturer_id.attr,
2365 	&dev_attr_product_id.attr,
2366 	NULL
2367 };
2368 
2369 static struct attribute_group bmc_dev_attr_group = {
2370 	.attrs		= bmc_dev_attrs,
2371 };
2372 
2373 static const struct attribute_group *bmc_dev_attr_groups[] = {
2374 	&bmc_dev_attr_group,
2375 	NULL
2376 };
2377 
2378 static struct device_type bmc_device_type = {
2379 	.groups		= bmc_dev_attr_groups,
2380 };
2381 
2382 static void
2383 release_bmc_device(struct device *dev)
2384 {
2385 	kfree(to_bmc_device(dev));
2386 }
2387 
2388 static void
2389 cleanup_bmc_device(struct kref *ref)
2390 {
2391 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2392 
2393 	if (bmc->id.aux_firmware_revision_set)
2394 		device_remove_file(&bmc->pdev.dev,
2395 				   &bmc->aux_firmware_rev_attr);
2396 	if (bmc->guid_set)
2397 		device_remove_file(&bmc->pdev.dev,
2398 				   &bmc->guid_attr);
2399 
2400 	platform_device_unregister(&bmc->pdev);
2401 }
2402 
2403 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2404 {
2405 	struct bmc_device *bmc = intf->bmc;
2406 
2407 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2408 	if (intf->my_dev_name) {
2409 		sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2410 		kfree(intf->my_dev_name);
2411 		intf->my_dev_name = NULL;
2412 	}
2413 
2414 	mutex_lock(&ipmidriver_mutex);
2415 	kref_put(&bmc->usecount, cleanup_bmc_device);
2416 	intf->bmc = NULL;
2417 	mutex_unlock(&ipmidriver_mutex);
2418 }
2419 
2420 static int create_bmc_files(struct bmc_device *bmc)
2421 {
2422 	int err;
2423 
2424 	if (bmc->id.aux_firmware_revision_set) {
2425 		bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2426 		err = device_create_file(&bmc->pdev.dev,
2427 				   &bmc->aux_firmware_rev_attr);
2428 		if (err)
2429 			goto out;
2430 	}
2431 	if (bmc->guid_set) {
2432 		bmc->guid_attr.attr.name = "guid";
2433 		err = device_create_file(&bmc->pdev.dev,
2434 				   &bmc->guid_attr);
2435 		if (err)
2436 			goto out_aux_firm;
2437 	}
2438 
2439 	return 0;
2440 
2441 out_aux_firm:
2442 	if (bmc->id.aux_firmware_revision_set)
2443 		device_remove_file(&bmc->pdev.dev,
2444 				   &bmc->aux_firmware_rev_attr);
2445 out:
2446 	return err;
2447 }
2448 
2449 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2450 {
2451 	int               rv;
2452 	struct bmc_device *bmc = intf->bmc;
2453 	struct bmc_device *old_bmc;
2454 
2455 	mutex_lock(&ipmidriver_mutex);
2456 
2457 	/*
2458 	 * Try to find if there is an bmc_device struct
2459 	 * representing the interfaced BMC already
2460 	 */
2461 	if (bmc->guid_set)
2462 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2463 	else
2464 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2465 						    bmc->id.product_id,
2466 						    bmc->id.device_id);
2467 
2468 	/*
2469 	 * If there is already an bmc_device, free the new one,
2470 	 * otherwise register the new BMC device
2471 	 */
2472 	if (old_bmc) {
2473 		kfree(bmc);
2474 		intf->bmc = old_bmc;
2475 		bmc = old_bmc;
2476 
2477 		kref_get(&bmc->usecount);
2478 		mutex_unlock(&ipmidriver_mutex);
2479 
2480 		printk(KERN_INFO
2481 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2482 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2483 		       bmc->id.manufacturer_id,
2484 		       bmc->id.product_id,
2485 		       bmc->id.device_id);
2486 	} else {
2487 		unsigned char orig_dev_id = bmc->id.device_id;
2488 		int warn_printed = 0;
2489 
2490 		snprintf(bmc->name, sizeof(bmc->name),
2491 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2492 		bmc->pdev.name = bmc->name;
2493 
2494 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2495 						 bmc->id.product_id,
2496 						 bmc->id.device_id)) {
2497 			if (!warn_printed) {
2498 				printk(KERN_WARNING PFX
2499 				       "This machine has two different BMCs"
2500 				       " with the same product id and device"
2501 				       " id.  This is an error in the"
2502 				       " firmware, but incrementing the"
2503 				       " device id to work around the problem."
2504 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2505 				       bmc->id.product_id, bmc->id.device_id);
2506 				warn_printed = 1;
2507 			}
2508 			bmc->id.device_id++; /* Wraps at 255 */
2509 			if (bmc->id.device_id == orig_dev_id) {
2510 				printk(KERN_ERR PFX
2511 				       "Out of device ids!\n");
2512 				break;
2513 			}
2514 		}
2515 
2516 		bmc->pdev.dev.driver = &ipmidriver.driver;
2517 		bmc->pdev.id = bmc->id.device_id;
2518 		bmc->pdev.dev.release = release_bmc_device;
2519 		bmc->pdev.dev.type = &bmc_device_type;
2520 		kref_init(&bmc->usecount);
2521 
2522 		rv = platform_device_register(&bmc->pdev);
2523 		mutex_unlock(&ipmidriver_mutex);
2524 		if (rv) {
2525 			put_device(&bmc->pdev.dev);
2526 			printk(KERN_ERR
2527 			       "ipmi_msghandler:"
2528 			       " Unable to register bmc device: %d\n",
2529 			       rv);
2530 			/*
2531 			 * Don't go to out_err, you can only do that if
2532 			 * the device is registered already.
2533 			 */
2534 			return rv;
2535 		}
2536 
2537 		rv = create_bmc_files(bmc);
2538 		if (rv) {
2539 			mutex_lock(&ipmidriver_mutex);
2540 			platform_device_unregister(&bmc->pdev);
2541 			mutex_unlock(&ipmidriver_mutex);
2542 
2543 			return rv;
2544 		}
2545 
2546 		dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2547 			 "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2548 			 bmc->id.manufacturer_id,
2549 			 bmc->id.product_id,
2550 			 bmc->id.device_id);
2551 	}
2552 
2553 	/*
2554 	 * create symlink from system interface device to bmc device
2555 	 * and back.
2556 	 */
2557 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2558 	if (rv) {
2559 		printk(KERN_ERR
2560 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2561 		       rv);
2562 		goto out_err;
2563 	}
2564 
2565 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2566 	if (!intf->my_dev_name) {
2567 		rv = -ENOMEM;
2568 		printk(KERN_ERR
2569 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2570 		       rv);
2571 		goto out_err;
2572 	}
2573 
2574 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2575 			       intf->my_dev_name);
2576 	if (rv) {
2577 		kfree(intf->my_dev_name);
2578 		intf->my_dev_name = NULL;
2579 		printk(KERN_ERR
2580 		       "ipmi_msghandler:"
2581 		       " Unable to create symlink to bmc: %d\n",
2582 		       rv);
2583 		goto out_err;
2584 	}
2585 
2586 	return 0;
2587 
2588 out_err:
2589 	ipmi_bmc_unregister(intf);
2590 	return rv;
2591 }
2592 
2593 static int
2594 send_guid_cmd(ipmi_smi_t intf, int chan)
2595 {
2596 	struct kernel_ipmi_msg            msg;
2597 	struct ipmi_system_interface_addr si;
2598 
2599 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2600 	si.channel = IPMI_BMC_CHANNEL;
2601 	si.lun = 0;
2602 
2603 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2604 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2605 	msg.data = NULL;
2606 	msg.data_len = 0;
2607 	return i_ipmi_request(NULL,
2608 			      intf,
2609 			      (struct ipmi_addr *) &si,
2610 			      0,
2611 			      &msg,
2612 			      intf,
2613 			      NULL,
2614 			      NULL,
2615 			      0,
2616 			      intf->channels[0].address,
2617 			      intf->channels[0].lun,
2618 			      -1, 0);
2619 }
2620 
2621 static void
2622 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2623 {
2624 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2625 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2626 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2627 		/* Not for me */
2628 		return;
2629 
2630 	if (msg->msg.data[0] != 0) {
2631 		/* Error from getting the GUID, the BMC doesn't have one. */
2632 		intf->bmc->guid_set = 0;
2633 		goto out;
2634 	}
2635 
2636 	if (msg->msg.data_len < 17) {
2637 		intf->bmc->guid_set = 0;
2638 		printk(KERN_WARNING PFX
2639 		       "guid_handler: The GUID response from the BMC was too"
2640 		       " short, it was %d but should have been 17.  Assuming"
2641 		       " GUID is not available.\n",
2642 		       msg->msg.data_len);
2643 		goto out;
2644 	}
2645 
2646 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2647 	intf->bmc->guid_set = 1;
2648  out:
2649 	wake_up(&intf->waitq);
2650 }
2651 
2652 static void
2653 get_guid(ipmi_smi_t intf)
2654 {
2655 	int rv;
2656 
2657 	intf->bmc->guid_set = 0x2;
2658 	intf->null_user_handler = guid_handler;
2659 	rv = send_guid_cmd(intf, 0);
2660 	if (rv)
2661 		/* Send failed, no GUID available. */
2662 		intf->bmc->guid_set = 0;
2663 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2664 	intf->null_user_handler = NULL;
2665 }
2666 
2667 static int
2668 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2669 {
2670 	struct kernel_ipmi_msg            msg;
2671 	unsigned char                     data[1];
2672 	struct ipmi_system_interface_addr si;
2673 
2674 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2675 	si.channel = IPMI_BMC_CHANNEL;
2676 	si.lun = 0;
2677 
2678 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2679 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2680 	msg.data = data;
2681 	msg.data_len = 1;
2682 	data[0] = chan;
2683 	return i_ipmi_request(NULL,
2684 			      intf,
2685 			      (struct ipmi_addr *) &si,
2686 			      0,
2687 			      &msg,
2688 			      intf,
2689 			      NULL,
2690 			      NULL,
2691 			      0,
2692 			      intf->channels[0].address,
2693 			      intf->channels[0].lun,
2694 			      -1, 0);
2695 }
2696 
2697 static void
2698 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2699 {
2700 	int rv = 0;
2701 	int chan;
2702 
2703 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2704 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2705 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2706 		/* It's the one we want */
2707 		if (msg->msg.data[0] != 0) {
2708 			/* Got an error from the channel, just go on. */
2709 
2710 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2711 				/*
2712 				 * If the MC does not support this
2713 				 * command, that is legal.  We just
2714 				 * assume it has one IPMB at channel
2715 				 * zero.
2716 				 */
2717 				intf->channels[0].medium
2718 					= IPMI_CHANNEL_MEDIUM_IPMB;
2719 				intf->channels[0].protocol
2720 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2721 
2722 				intf->curr_channel = IPMI_MAX_CHANNELS;
2723 				wake_up(&intf->waitq);
2724 				goto out;
2725 			}
2726 			goto next_channel;
2727 		}
2728 		if (msg->msg.data_len < 4) {
2729 			/* Message not big enough, just go on. */
2730 			goto next_channel;
2731 		}
2732 		chan = intf->curr_channel;
2733 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2734 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2735 
2736  next_channel:
2737 		intf->curr_channel++;
2738 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2739 			wake_up(&intf->waitq);
2740 		else
2741 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2742 
2743 		if (rv) {
2744 			/* Got an error somehow, just give up. */
2745 			printk(KERN_WARNING PFX
2746 			       "Error sending channel information for channel"
2747 			       " %d: %d\n", intf->curr_channel, rv);
2748 
2749 			intf->curr_channel = IPMI_MAX_CHANNELS;
2750 			wake_up(&intf->waitq);
2751 		}
2752 	}
2753  out:
2754 	return;
2755 }
2756 
2757 static void ipmi_poll(ipmi_smi_t intf)
2758 {
2759 	if (intf->handlers->poll)
2760 		intf->handlers->poll(intf->send_info);
2761 	/* In case something came in */
2762 	handle_new_recv_msgs(intf);
2763 }
2764 
2765 void ipmi_poll_interface(ipmi_user_t user)
2766 {
2767 	ipmi_poll(user->intf);
2768 }
2769 EXPORT_SYMBOL(ipmi_poll_interface);
2770 
2771 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2772 		      void		       *send_info,
2773 		      struct ipmi_device_id    *device_id,
2774 		      struct device            *si_dev,
2775 		      unsigned char            slave_addr)
2776 {
2777 	int              i, j;
2778 	int              rv;
2779 	ipmi_smi_t       intf;
2780 	ipmi_smi_t       tintf;
2781 	struct list_head *link;
2782 
2783 	/*
2784 	 * Make sure the driver is actually initialized, this handles
2785 	 * problems with initialization order.
2786 	 */
2787 	if (!initialized) {
2788 		rv = ipmi_init_msghandler();
2789 		if (rv)
2790 			return rv;
2791 		/*
2792 		 * The init code doesn't return an error if it was turned
2793 		 * off, but it won't initialize.  Check that.
2794 		 */
2795 		if (!initialized)
2796 			return -ENODEV;
2797 	}
2798 
2799 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2800 	if (!intf)
2801 		return -ENOMEM;
2802 
2803 	intf->ipmi_version_major = ipmi_version_major(device_id);
2804 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2805 
2806 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2807 	if (!intf->bmc) {
2808 		kfree(intf);
2809 		return -ENOMEM;
2810 	}
2811 	intf->intf_num = -1; /* Mark it invalid for now. */
2812 	kref_init(&intf->refcount);
2813 	intf->bmc->id = *device_id;
2814 	intf->si_dev = si_dev;
2815 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2816 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2817 		intf->channels[j].lun = 2;
2818 	}
2819 	if (slave_addr != 0)
2820 		intf->channels[0].address = slave_addr;
2821 	INIT_LIST_HEAD(&intf->users);
2822 	intf->handlers = handlers;
2823 	intf->send_info = send_info;
2824 	spin_lock_init(&intf->seq_lock);
2825 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2826 		intf->seq_table[j].inuse = 0;
2827 		intf->seq_table[j].seqid = 0;
2828 	}
2829 	intf->curr_seq = 0;
2830 #ifdef CONFIG_PROC_FS
2831 	mutex_init(&intf->proc_entry_lock);
2832 #endif
2833 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
2834 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2835 	tasklet_init(&intf->recv_tasklet,
2836 		     smi_recv_tasklet,
2837 		     (unsigned long) intf);
2838 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2839 	spin_lock_init(&intf->xmit_msgs_lock);
2840 	INIT_LIST_HEAD(&intf->xmit_msgs);
2841 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2842 	spin_lock_init(&intf->events_lock);
2843 	atomic_set(&intf->event_waiters, 0);
2844 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2845 	INIT_LIST_HEAD(&intf->waiting_events);
2846 	intf->waiting_events_count = 0;
2847 	mutex_init(&intf->cmd_rcvrs_mutex);
2848 	spin_lock_init(&intf->maintenance_mode_lock);
2849 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2850 	init_waitqueue_head(&intf->waitq);
2851 	for (i = 0; i < IPMI_NUM_STATS; i++)
2852 		atomic_set(&intf->stats[i], 0);
2853 
2854 	intf->proc_dir = NULL;
2855 
2856 	mutex_lock(&smi_watchers_mutex);
2857 	mutex_lock(&ipmi_interfaces_mutex);
2858 	/* Look for a hole in the numbers. */
2859 	i = 0;
2860 	link = &ipmi_interfaces;
2861 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2862 		if (tintf->intf_num != i) {
2863 			link = &tintf->link;
2864 			break;
2865 		}
2866 		i++;
2867 	}
2868 	/* Add the new interface in numeric order. */
2869 	if (i == 0)
2870 		list_add_rcu(&intf->link, &ipmi_interfaces);
2871 	else
2872 		list_add_tail_rcu(&intf->link, link);
2873 
2874 	rv = handlers->start_processing(send_info, intf);
2875 	if (rv)
2876 		goto out;
2877 
2878 	get_guid(intf);
2879 
2880 	if ((intf->ipmi_version_major > 1)
2881 			|| ((intf->ipmi_version_major == 1)
2882 			    && (intf->ipmi_version_minor >= 5))) {
2883 		/*
2884 		 * Start scanning the channels to see what is
2885 		 * available.
2886 		 */
2887 		intf->null_user_handler = channel_handler;
2888 		intf->curr_channel = 0;
2889 		rv = send_channel_info_cmd(intf, 0);
2890 		if (rv) {
2891 			printk(KERN_WARNING PFX
2892 			       "Error sending channel information for channel"
2893 			       " 0, %d\n", rv);
2894 			goto out;
2895 		}
2896 
2897 		/* Wait for the channel info to be read. */
2898 		wait_event(intf->waitq,
2899 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2900 		intf->null_user_handler = NULL;
2901 	} else {
2902 		/* Assume a single IPMB channel at zero. */
2903 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2904 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2905 		intf->curr_channel = IPMI_MAX_CHANNELS;
2906 	}
2907 
2908 	if (rv == 0)
2909 		rv = add_proc_entries(intf, i);
2910 
2911 	rv = ipmi_bmc_register(intf, i);
2912 
2913  out:
2914 	if (rv) {
2915 		if (intf->proc_dir)
2916 			remove_proc_entries(intf);
2917 		intf->handlers = NULL;
2918 		list_del_rcu(&intf->link);
2919 		mutex_unlock(&ipmi_interfaces_mutex);
2920 		mutex_unlock(&smi_watchers_mutex);
2921 		synchronize_rcu();
2922 		kref_put(&intf->refcount, intf_free);
2923 	} else {
2924 		/*
2925 		 * Keep memory order straight for RCU readers.  Make
2926 		 * sure everything else is committed to memory before
2927 		 * setting intf_num to mark the interface valid.
2928 		 */
2929 		smp_wmb();
2930 		intf->intf_num = i;
2931 		mutex_unlock(&ipmi_interfaces_mutex);
2932 		/* After this point the interface is legal to use. */
2933 		call_smi_watchers(i, intf->si_dev);
2934 		mutex_unlock(&smi_watchers_mutex);
2935 	}
2936 
2937 	return rv;
2938 }
2939 EXPORT_SYMBOL(ipmi_register_smi);
2940 
2941 static void deliver_smi_err_response(ipmi_smi_t intf,
2942 				     struct ipmi_smi_msg *msg,
2943 				     unsigned char err)
2944 {
2945 	msg->rsp[0] = msg->data[0] | 4;
2946 	msg->rsp[1] = msg->data[1];
2947 	msg->rsp[2] = err;
2948 	msg->rsp_size = 3;
2949 	/* It's an error, so it will never requeue, no need to check return. */
2950 	handle_one_recv_msg(intf, msg);
2951 }
2952 
2953 static void cleanup_smi_msgs(ipmi_smi_t intf)
2954 {
2955 	int              i;
2956 	struct seq_table *ent;
2957 	struct ipmi_smi_msg *msg;
2958 	struct list_head *entry;
2959 	struct list_head tmplist;
2960 
2961 	/* Clear out our transmit queues and hold the messages. */
2962 	INIT_LIST_HEAD(&tmplist);
2963 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2964 	list_splice_tail(&intf->xmit_msgs, &tmplist);
2965 
2966 	/* Current message first, to preserve order */
2967 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2968 		/* Wait for the message to clear out. */
2969 		schedule_timeout(1);
2970 	}
2971 
2972 	/* No need for locks, the interface is down. */
2973 
2974 	/*
2975 	 * Return errors for all pending messages in queue and in the
2976 	 * tables waiting for remote responses.
2977 	 */
2978 	while (!list_empty(&tmplist)) {
2979 		entry = tmplist.next;
2980 		list_del(entry);
2981 		msg = list_entry(entry, struct ipmi_smi_msg, link);
2982 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2983 	}
2984 
2985 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2986 		ent = &(intf->seq_table[i]);
2987 		if (!ent->inuse)
2988 			continue;
2989 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2990 	}
2991 }
2992 
2993 int ipmi_unregister_smi(ipmi_smi_t intf)
2994 {
2995 	struct ipmi_smi_watcher *w;
2996 	int intf_num = intf->intf_num;
2997 	ipmi_user_t user;
2998 
2999 	ipmi_bmc_unregister(intf);
3000 
3001 	mutex_lock(&smi_watchers_mutex);
3002 	mutex_lock(&ipmi_interfaces_mutex);
3003 	intf->intf_num = -1;
3004 	intf->in_shutdown = true;
3005 	list_del_rcu(&intf->link);
3006 	mutex_unlock(&ipmi_interfaces_mutex);
3007 	synchronize_rcu();
3008 
3009 	cleanup_smi_msgs(intf);
3010 
3011 	/* Clean up the effects of users on the lower-level software. */
3012 	mutex_lock(&ipmi_interfaces_mutex);
3013 	rcu_read_lock();
3014 	list_for_each_entry_rcu(user, &intf->users, link) {
3015 		module_put(intf->handlers->owner);
3016 		if (intf->handlers->dec_usecount)
3017 			intf->handlers->dec_usecount(intf->send_info);
3018 	}
3019 	rcu_read_unlock();
3020 	intf->handlers = NULL;
3021 	mutex_unlock(&ipmi_interfaces_mutex);
3022 
3023 	remove_proc_entries(intf);
3024 
3025 	/*
3026 	 * Call all the watcher interfaces to tell them that
3027 	 * an interface is gone.
3028 	 */
3029 	list_for_each_entry(w, &smi_watchers, link)
3030 		w->smi_gone(intf_num);
3031 	mutex_unlock(&smi_watchers_mutex);
3032 
3033 	kref_put(&intf->refcount, intf_free);
3034 	return 0;
3035 }
3036 EXPORT_SYMBOL(ipmi_unregister_smi);
3037 
3038 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3039 				   struct ipmi_smi_msg *msg)
3040 {
3041 	struct ipmi_ipmb_addr ipmb_addr;
3042 	struct ipmi_recv_msg  *recv_msg;
3043 
3044 	/*
3045 	 * This is 11, not 10, because the response must contain a
3046 	 * completion code.
3047 	 */
3048 	if (msg->rsp_size < 11) {
3049 		/* Message not big enough, just ignore it. */
3050 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3051 		return 0;
3052 	}
3053 
3054 	if (msg->rsp[2] != 0) {
3055 		/* An error getting the response, just ignore it. */
3056 		return 0;
3057 	}
3058 
3059 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3060 	ipmb_addr.slave_addr = msg->rsp[6];
3061 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3062 	ipmb_addr.lun = msg->rsp[7] & 3;
3063 
3064 	/*
3065 	 * It's a response from a remote entity.  Look up the sequence
3066 	 * number and handle the response.
3067 	 */
3068 	if (intf_find_seq(intf,
3069 			  msg->rsp[7] >> 2,
3070 			  msg->rsp[3] & 0x0f,
3071 			  msg->rsp[8],
3072 			  (msg->rsp[4] >> 2) & (~1),
3073 			  (struct ipmi_addr *) &(ipmb_addr),
3074 			  &recv_msg)) {
3075 		/*
3076 		 * We were unable to find the sequence number,
3077 		 * so just nuke the message.
3078 		 */
3079 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3080 		return 0;
3081 	}
3082 
3083 	memcpy(recv_msg->msg_data,
3084 	       &(msg->rsp[9]),
3085 	       msg->rsp_size - 9);
3086 	/*
3087 	 * The other fields matched, so no need to set them, except
3088 	 * for netfn, which needs to be the response that was
3089 	 * returned, not the request value.
3090 	 */
3091 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3092 	recv_msg->msg.data = recv_msg->msg_data;
3093 	recv_msg->msg.data_len = msg->rsp_size - 10;
3094 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3095 	ipmi_inc_stat(intf, handled_ipmb_responses);
3096 	deliver_response(recv_msg);
3097 
3098 	return 0;
3099 }
3100 
3101 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3102 				   struct ipmi_smi_msg *msg)
3103 {
3104 	struct cmd_rcvr          *rcvr;
3105 	int                      rv = 0;
3106 	unsigned char            netfn;
3107 	unsigned char            cmd;
3108 	unsigned char            chan;
3109 	ipmi_user_t              user = NULL;
3110 	struct ipmi_ipmb_addr    *ipmb_addr;
3111 	struct ipmi_recv_msg     *recv_msg;
3112 
3113 	if (msg->rsp_size < 10) {
3114 		/* Message not big enough, just ignore it. */
3115 		ipmi_inc_stat(intf, invalid_commands);
3116 		return 0;
3117 	}
3118 
3119 	if (msg->rsp[2] != 0) {
3120 		/* An error getting the response, just ignore it. */
3121 		return 0;
3122 	}
3123 
3124 	netfn = msg->rsp[4] >> 2;
3125 	cmd = msg->rsp[8];
3126 	chan = msg->rsp[3] & 0xf;
3127 
3128 	rcu_read_lock();
3129 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3130 	if (rcvr) {
3131 		user = rcvr->user;
3132 		kref_get(&user->refcount);
3133 	} else
3134 		user = NULL;
3135 	rcu_read_unlock();
3136 
3137 	if (user == NULL) {
3138 		/* We didn't find a user, deliver an error response. */
3139 		ipmi_inc_stat(intf, unhandled_commands);
3140 
3141 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3142 		msg->data[1] = IPMI_SEND_MSG_CMD;
3143 		msg->data[2] = msg->rsp[3];
3144 		msg->data[3] = msg->rsp[6];
3145 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3146 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3147 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3148 		/* rqseq/lun */
3149 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3150 		msg->data[8] = msg->rsp[8]; /* cmd */
3151 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3152 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3153 		msg->data_size = 11;
3154 
3155 #ifdef DEBUG_MSGING
3156 	{
3157 		int m;
3158 		printk("Invalid command:");
3159 		for (m = 0; m < msg->data_size; m++)
3160 			printk(" %2.2x", msg->data[m]);
3161 		printk("\n");
3162 	}
3163 #endif
3164 		rcu_read_lock();
3165 		if (!intf->in_shutdown) {
3166 			smi_send(intf, intf->handlers, msg, 0);
3167 			/*
3168 			 * We used the message, so return the value
3169 			 * that causes it to not be freed or
3170 			 * queued.
3171 			 */
3172 			rv = -1;
3173 		}
3174 		rcu_read_unlock();
3175 	} else {
3176 		/* Deliver the message to the user. */
3177 		ipmi_inc_stat(intf, handled_commands);
3178 
3179 		recv_msg = ipmi_alloc_recv_msg();
3180 		if (!recv_msg) {
3181 			/*
3182 			 * We couldn't allocate memory for the
3183 			 * message, so requeue it for handling
3184 			 * later.
3185 			 */
3186 			rv = 1;
3187 			kref_put(&user->refcount, free_user);
3188 		} else {
3189 			/* Extract the source address from the data. */
3190 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3191 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3192 			ipmb_addr->slave_addr = msg->rsp[6];
3193 			ipmb_addr->lun = msg->rsp[7] & 3;
3194 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3195 
3196 			/*
3197 			 * Extract the rest of the message information
3198 			 * from the IPMB header.
3199 			 */
3200 			recv_msg->user = user;
3201 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3202 			recv_msg->msgid = msg->rsp[7] >> 2;
3203 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3204 			recv_msg->msg.cmd = msg->rsp[8];
3205 			recv_msg->msg.data = recv_msg->msg_data;
3206 
3207 			/*
3208 			 * We chop off 10, not 9 bytes because the checksum
3209 			 * at the end also needs to be removed.
3210 			 */
3211 			recv_msg->msg.data_len = msg->rsp_size - 10;
3212 			memcpy(recv_msg->msg_data,
3213 			       &(msg->rsp[9]),
3214 			       msg->rsp_size - 10);
3215 			deliver_response(recv_msg);
3216 		}
3217 	}
3218 
3219 	return rv;
3220 }
3221 
3222 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3223 				  struct ipmi_smi_msg *msg)
3224 {
3225 	struct ipmi_lan_addr  lan_addr;
3226 	struct ipmi_recv_msg  *recv_msg;
3227 
3228 
3229 	/*
3230 	 * This is 13, not 12, because the response must contain a
3231 	 * completion code.
3232 	 */
3233 	if (msg->rsp_size < 13) {
3234 		/* Message not big enough, just ignore it. */
3235 		ipmi_inc_stat(intf, invalid_lan_responses);
3236 		return 0;
3237 	}
3238 
3239 	if (msg->rsp[2] != 0) {
3240 		/* An error getting the response, just ignore it. */
3241 		return 0;
3242 	}
3243 
3244 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3245 	lan_addr.session_handle = msg->rsp[4];
3246 	lan_addr.remote_SWID = msg->rsp[8];
3247 	lan_addr.local_SWID = msg->rsp[5];
3248 	lan_addr.channel = msg->rsp[3] & 0x0f;
3249 	lan_addr.privilege = msg->rsp[3] >> 4;
3250 	lan_addr.lun = msg->rsp[9] & 3;
3251 
3252 	/*
3253 	 * It's a response from a remote entity.  Look up the sequence
3254 	 * number and handle the response.
3255 	 */
3256 	if (intf_find_seq(intf,
3257 			  msg->rsp[9] >> 2,
3258 			  msg->rsp[3] & 0x0f,
3259 			  msg->rsp[10],
3260 			  (msg->rsp[6] >> 2) & (~1),
3261 			  (struct ipmi_addr *) &(lan_addr),
3262 			  &recv_msg)) {
3263 		/*
3264 		 * We were unable to find the sequence number,
3265 		 * so just nuke the message.
3266 		 */
3267 		ipmi_inc_stat(intf, unhandled_lan_responses);
3268 		return 0;
3269 	}
3270 
3271 	memcpy(recv_msg->msg_data,
3272 	       &(msg->rsp[11]),
3273 	       msg->rsp_size - 11);
3274 	/*
3275 	 * The other fields matched, so no need to set them, except
3276 	 * for netfn, which needs to be the response that was
3277 	 * returned, not the request value.
3278 	 */
3279 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3280 	recv_msg->msg.data = recv_msg->msg_data;
3281 	recv_msg->msg.data_len = msg->rsp_size - 12;
3282 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3283 	ipmi_inc_stat(intf, handled_lan_responses);
3284 	deliver_response(recv_msg);
3285 
3286 	return 0;
3287 }
3288 
3289 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3290 				  struct ipmi_smi_msg *msg)
3291 {
3292 	struct cmd_rcvr          *rcvr;
3293 	int                      rv = 0;
3294 	unsigned char            netfn;
3295 	unsigned char            cmd;
3296 	unsigned char            chan;
3297 	ipmi_user_t              user = NULL;
3298 	struct ipmi_lan_addr     *lan_addr;
3299 	struct ipmi_recv_msg     *recv_msg;
3300 
3301 	if (msg->rsp_size < 12) {
3302 		/* Message not big enough, just ignore it. */
3303 		ipmi_inc_stat(intf, invalid_commands);
3304 		return 0;
3305 	}
3306 
3307 	if (msg->rsp[2] != 0) {
3308 		/* An error getting the response, just ignore it. */
3309 		return 0;
3310 	}
3311 
3312 	netfn = msg->rsp[6] >> 2;
3313 	cmd = msg->rsp[10];
3314 	chan = msg->rsp[3] & 0xf;
3315 
3316 	rcu_read_lock();
3317 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3318 	if (rcvr) {
3319 		user = rcvr->user;
3320 		kref_get(&user->refcount);
3321 	} else
3322 		user = NULL;
3323 	rcu_read_unlock();
3324 
3325 	if (user == NULL) {
3326 		/* We didn't find a user, just give up. */
3327 		ipmi_inc_stat(intf, unhandled_commands);
3328 
3329 		/*
3330 		 * Don't do anything with these messages, just allow
3331 		 * them to be freed.
3332 		 */
3333 		rv = 0;
3334 	} else {
3335 		/* Deliver the message to the user. */
3336 		ipmi_inc_stat(intf, handled_commands);
3337 
3338 		recv_msg = ipmi_alloc_recv_msg();
3339 		if (!recv_msg) {
3340 			/*
3341 			 * We couldn't allocate memory for the
3342 			 * message, so requeue it for handling later.
3343 			 */
3344 			rv = 1;
3345 			kref_put(&user->refcount, free_user);
3346 		} else {
3347 			/* Extract the source address from the data. */
3348 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3349 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3350 			lan_addr->session_handle = msg->rsp[4];
3351 			lan_addr->remote_SWID = msg->rsp[8];
3352 			lan_addr->local_SWID = msg->rsp[5];
3353 			lan_addr->lun = msg->rsp[9] & 3;
3354 			lan_addr->channel = msg->rsp[3] & 0xf;
3355 			lan_addr->privilege = msg->rsp[3] >> 4;
3356 
3357 			/*
3358 			 * Extract the rest of the message information
3359 			 * from the IPMB header.
3360 			 */
3361 			recv_msg->user = user;
3362 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3363 			recv_msg->msgid = msg->rsp[9] >> 2;
3364 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3365 			recv_msg->msg.cmd = msg->rsp[10];
3366 			recv_msg->msg.data = recv_msg->msg_data;
3367 
3368 			/*
3369 			 * We chop off 12, not 11 bytes because the checksum
3370 			 * at the end also needs to be removed.
3371 			 */
3372 			recv_msg->msg.data_len = msg->rsp_size - 12;
3373 			memcpy(recv_msg->msg_data,
3374 			       &(msg->rsp[11]),
3375 			       msg->rsp_size - 12);
3376 			deliver_response(recv_msg);
3377 		}
3378 	}
3379 
3380 	return rv;
3381 }
3382 
3383 /*
3384  * This routine will handle "Get Message" command responses with
3385  * channels that use an OEM Medium. The message format belongs to
3386  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3387  * Chapter 22, sections 22.6 and 22.24 for more details.
3388  */
3389 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3390 				  struct ipmi_smi_msg *msg)
3391 {
3392 	struct cmd_rcvr       *rcvr;
3393 	int                   rv = 0;
3394 	unsigned char         netfn;
3395 	unsigned char         cmd;
3396 	unsigned char         chan;
3397 	ipmi_user_t           user = NULL;
3398 	struct ipmi_system_interface_addr *smi_addr;
3399 	struct ipmi_recv_msg  *recv_msg;
3400 
3401 	/*
3402 	 * We expect the OEM SW to perform error checking
3403 	 * so we just do some basic sanity checks
3404 	 */
3405 	if (msg->rsp_size < 4) {
3406 		/* Message not big enough, just ignore it. */
3407 		ipmi_inc_stat(intf, invalid_commands);
3408 		return 0;
3409 	}
3410 
3411 	if (msg->rsp[2] != 0) {
3412 		/* An error getting the response, just ignore it. */
3413 		return 0;
3414 	}
3415 
3416 	/*
3417 	 * This is an OEM Message so the OEM needs to know how
3418 	 * handle the message. We do no interpretation.
3419 	 */
3420 	netfn = msg->rsp[0] >> 2;
3421 	cmd = msg->rsp[1];
3422 	chan = msg->rsp[3] & 0xf;
3423 
3424 	rcu_read_lock();
3425 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3426 	if (rcvr) {
3427 		user = rcvr->user;
3428 		kref_get(&user->refcount);
3429 	} else
3430 		user = NULL;
3431 	rcu_read_unlock();
3432 
3433 	if (user == NULL) {
3434 		/* We didn't find a user, just give up. */
3435 		ipmi_inc_stat(intf, unhandled_commands);
3436 
3437 		/*
3438 		 * Don't do anything with these messages, just allow
3439 		 * them to be freed.
3440 		 */
3441 
3442 		rv = 0;
3443 	} else {
3444 		/* Deliver the message to the user. */
3445 		ipmi_inc_stat(intf, handled_commands);
3446 
3447 		recv_msg = ipmi_alloc_recv_msg();
3448 		if (!recv_msg) {
3449 			/*
3450 			 * We couldn't allocate memory for the
3451 			 * message, so requeue it for handling
3452 			 * later.
3453 			 */
3454 			rv = 1;
3455 			kref_put(&user->refcount, free_user);
3456 		} else {
3457 			/*
3458 			 * OEM Messages are expected to be delivered via
3459 			 * the system interface to SMS software.  We might
3460 			 * need to visit this again depending on OEM
3461 			 * requirements
3462 			 */
3463 			smi_addr = ((struct ipmi_system_interface_addr *)
3464 				    &(recv_msg->addr));
3465 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3466 			smi_addr->channel = IPMI_BMC_CHANNEL;
3467 			smi_addr->lun = msg->rsp[0] & 3;
3468 
3469 			recv_msg->user = user;
3470 			recv_msg->user_msg_data = NULL;
3471 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3472 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3473 			recv_msg->msg.cmd = msg->rsp[1];
3474 			recv_msg->msg.data = recv_msg->msg_data;
3475 
3476 			/*
3477 			 * The message starts at byte 4 which follows the
3478 			 * the Channel Byte in the "GET MESSAGE" command
3479 			 */
3480 			recv_msg->msg.data_len = msg->rsp_size - 4;
3481 			memcpy(recv_msg->msg_data,
3482 			       &(msg->rsp[4]),
3483 			       msg->rsp_size - 4);
3484 			deliver_response(recv_msg);
3485 		}
3486 	}
3487 
3488 	return rv;
3489 }
3490 
3491 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3492 				     struct ipmi_smi_msg  *msg)
3493 {
3494 	struct ipmi_system_interface_addr *smi_addr;
3495 
3496 	recv_msg->msgid = 0;
3497 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3498 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3499 	smi_addr->channel = IPMI_BMC_CHANNEL;
3500 	smi_addr->lun = msg->rsp[0] & 3;
3501 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3502 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3503 	recv_msg->msg.cmd = msg->rsp[1];
3504 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3505 	recv_msg->msg.data = recv_msg->msg_data;
3506 	recv_msg->msg.data_len = msg->rsp_size - 3;
3507 }
3508 
3509 static int handle_read_event_rsp(ipmi_smi_t          intf,
3510 				 struct ipmi_smi_msg *msg)
3511 {
3512 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3513 	struct list_head     msgs;
3514 	ipmi_user_t          user;
3515 	int                  rv = 0;
3516 	int                  deliver_count = 0;
3517 	unsigned long        flags;
3518 
3519 	if (msg->rsp_size < 19) {
3520 		/* Message is too small to be an IPMB event. */
3521 		ipmi_inc_stat(intf, invalid_events);
3522 		return 0;
3523 	}
3524 
3525 	if (msg->rsp[2] != 0) {
3526 		/* An error getting the event, just ignore it. */
3527 		return 0;
3528 	}
3529 
3530 	INIT_LIST_HEAD(&msgs);
3531 
3532 	spin_lock_irqsave(&intf->events_lock, flags);
3533 
3534 	ipmi_inc_stat(intf, events);
3535 
3536 	/*
3537 	 * Allocate and fill in one message for every user that is
3538 	 * getting events.
3539 	 */
3540 	rcu_read_lock();
3541 	list_for_each_entry_rcu(user, &intf->users, link) {
3542 		if (!user->gets_events)
3543 			continue;
3544 
3545 		recv_msg = ipmi_alloc_recv_msg();
3546 		if (!recv_msg) {
3547 			rcu_read_unlock();
3548 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3549 						 link) {
3550 				list_del(&recv_msg->link);
3551 				ipmi_free_recv_msg(recv_msg);
3552 			}
3553 			/*
3554 			 * We couldn't allocate memory for the
3555 			 * message, so requeue it for handling
3556 			 * later.
3557 			 */
3558 			rv = 1;
3559 			goto out;
3560 		}
3561 
3562 		deliver_count++;
3563 
3564 		copy_event_into_recv_msg(recv_msg, msg);
3565 		recv_msg->user = user;
3566 		kref_get(&user->refcount);
3567 		list_add_tail(&(recv_msg->link), &msgs);
3568 	}
3569 	rcu_read_unlock();
3570 
3571 	if (deliver_count) {
3572 		/* Now deliver all the messages. */
3573 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3574 			list_del(&recv_msg->link);
3575 			deliver_response(recv_msg);
3576 		}
3577 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3578 		/*
3579 		 * No one to receive the message, put it in queue if there's
3580 		 * not already too many things in the queue.
3581 		 */
3582 		recv_msg = ipmi_alloc_recv_msg();
3583 		if (!recv_msg) {
3584 			/*
3585 			 * We couldn't allocate memory for the
3586 			 * message, so requeue it for handling
3587 			 * later.
3588 			 */
3589 			rv = 1;
3590 			goto out;
3591 		}
3592 
3593 		copy_event_into_recv_msg(recv_msg, msg);
3594 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3595 		intf->waiting_events_count++;
3596 	} else if (!intf->event_msg_printed) {
3597 		/*
3598 		 * There's too many things in the queue, discard this
3599 		 * message.
3600 		 */
3601 		printk(KERN_WARNING PFX "Event queue full, discarding"
3602 		       " incoming events\n");
3603 		intf->event_msg_printed = 1;
3604 	}
3605 
3606  out:
3607 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3608 
3609 	return rv;
3610 }
3611 
3612 static int handle_bmc_rsp(ipmi_smi_t          intf,
3613 			  struct ipmi_smi_msg *msg)
3614 {
3615 	struct ipmi_recv_msg *recv_msg;
3616 	struct ipmi_user     *user;
3617 
3618 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3619 	if (recv_msg == NULL) {
3620 		printk(KERN_WARNING
3621 		       "IPMI message received with no owner. This\n"
3622 		       "could be because of a malformed message, or\n"
3623 		       "because of a hardware error.  Contact your\n"
3624 		       "hardware vender for assistance\n");
3625 		return 0;
3626 	}
3627 
3628 	user = recv_msg->user;
3629 	/* Make sure the user still exists. */
3630 	if (user && !user->valid) {
3631 		/* The user for the message went away, so give up. */
3632 		ipmi_inc_stat(intf, unhandled_local_responses);
3633 		ipmi_free_recv_msg(recv_msg);
3634 	} else {
3635 		struct ipmi_system_interface_addr *smi_addr;
3636 
3637 		ipmi_inc_stat(intf, handled_local_responses);
3638 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3639 		recv_msg->msgid = msg->msgid;
3640 		smi_addr = ((struct ipmi_system_interface_addr *)
3641 			    &(recv_msg->addr));
3642 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3643 		smi_addr->channel = IPMI_BMC_CHANNEL;
3644 		smi_addr->lun = msg->rsp[0] & 3;
3645 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3646 		recv_msg->msg.cmd = msg->rsp[1];
3647 		memcpy(recv_msg->msg_data,
3648 		       &(msg->rsp[2]),
3649 		       msg->rsp_size - 2);
3650 		recv_msg->msg.data = recv_msg->msg_data;
3651 		recv_msg->msg.data_len = msg->rsp_size - 2;
3652 		deliver_response(recv_msg);
3653 	}
3654 
3655 	return 0;
3656 }
3657 
3658 /*
3659  * Handle a received message.  Return 1 if the message should be requeued,
3660  * 0 if the message should be freed, or -1 if the message should not
3661  * be freed or requeued.
3662  */
3663 static int handle_one_recv_msg(ipmi_smi_t          intf,
3664 			       struct ipmi_smi_msg *msg)
3665 {
3666 	int requeue;
3667 	int chan;
3668 
3669 #ifdef DEBUG_MSGING
3670 	int m;
3671 	printk("Recv:");
3672 	for (m = 0; m < msg->rsp_size; m++)
3673 		printk(" %2.2x", msg->rsp[m]);
3674 	printk("\n");
3675 #endif
3676 	if (msg->rsp_size < 2) {
3677 		/* Message is too small to be correct. */
3678 		printk(KERN_WARNING PFX "BMC returned to small a message"
3679 		       " for netfn %x cmd %x, got %d bytes\n",
3680 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3681 
3682 		/* Generate an error response for the message. */
3683 		msg->rsp[0] = msg->data[0] | (1 << 2);
3684 		msg->rsp[1] = msg->data[1];
3685 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3686 		msg->rsp_size = 3;
3687 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3688 		   || (msg->rsp[1] != msg->data[1])) {
3689 		/*
3690 		 * The NetFN and Command in the response is not even
3691 		 * marginally correct.
3692 		 */
3693 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3694 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3695 		       (msg->data[0] >> 2) | 1, msg->data[1],
3696 		       msg->rsp[0] >> 2, msg->rsp[1]);
3697 
3698 		/* Generate an error response for the message. */
3699 		msg->rsp[0] = msg->data[0] | (1 << 2);
3700 		msg->rsp[1] = msg->data[1];
3701 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3702 		msg->rsp_size = 3;
3703 	}
3704 
3705 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3706 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3707 	    && (msg->user_data != NULL)) {
3708 		/*
3709 		 * It's a response to a response we sent.  For this we
3710 		 * deliver a send message response to the user.
3711 		 */
3712 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3713 
3714 		requeue = 0;
3715 		if (msg->rsp_size < 2)
3716 			/* Message is too small to be correct. */
3717 			goto out;
3718 
3719 		chan = msg->data[2] & 0x0f;
3720 		if (chan >= IPMI_MAX_CHANNELS)
3721 			/* Invalid channel number */
3722 			goto out;
3723 
3724 		if (!recv_msg)
3725 			goto out;
3726 
3727 		/* Make sure the user still exists. */
3728 		if (!recv_msg->user || !recv_msg->user->valid)
3729 			goto out;
3730 
3731 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3732 		recv_msg->msg.data = recv_msg->msg_data;
3733 		recv_msg->msg.data_len = 1;
3734 		recv_msg->msg_data[0] = msg->rsp[2];
3735 		deliver_response(recv_msg);
3736 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3737 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3738 		/* It's from the receive queue. */
3739 		chan = msg->rsp[3] & 0xf;
3740 		if (chan >= IPMI_MAX_CHANNELS) {
3741 			/* Invalid channel number */
3742 			requeue = 0;
3743 			goto out;
3744 		}
3745 
3746 		/*
3747 		 * We need to make sure the channels have been initialized.
3748 		 * The channel_handler routine will set the "curr_channel"
3749 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3750 		 * channels for this interface have been initialized.
3751 		 */
3752 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3753 			requeue = 0; /* Throw the message away */
3754 			goto out;
3755 		}
3756 
3757 		switch (intf->channels[chan].medium) {
3758 		case IPMI_CHANNEL_MEDIUM_IPMB:
3759 			if (msg->rsp[4] & 0x04) {
3760 				/*
3761 				 * It's a response, so find the
3762 				 * requesting message and send it up.
3763 				 */
3764 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3765 			} else {
3766 				/*
3767 				 * It's a command to the SMS from some other
3768 				 * entity.  Handle that.
3769 				 */
3770 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3771 			}
3772 			break;
3773 
3774 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3775 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3776 			if (msg->rsp[6] & 0x04) {
3777 				/*
3778 				 * It's a response, so find the
3779 				 * requesting message and send it up.
3780 				 */
3781 				requeue = handle_lan_get_msg_rsp(intf, msg);
3782 			} else {
3783 				/*
3784 				 * It's a command to the SMS from some other
3785 				 * entity.  Handle that.
3786 				 */
3787 				requeue = handle_lan_get_msg_cmd(intf, msg);
3788 			}
3789 			break;
3790 
3791 		default:
3792 			/* Check for OEM Channels.  Clients had better
3793 			   register for these commands. */
3794 			if ((intf->channels[chan].medium
3795 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3796 			    && (intf->channels[chan].medium
3797 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3798 				requeue = handle_oem_get_msg_cmd(intf, msg);
3799 			} else {
3800 				/*
3801 				 * We don't handle the channel type, so just
3802 				 * free the message.
3803 				 */
3804 				requeue = 0;
3805 			}
3806 		}
3807 
3808 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3809 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3810 		/* It's an asynchronous event. */
3811 		requeue = handle_read_event_rsp(intf, msg);
3812 	} else {
3813 		/* It's a response from the local BMC. */
3814 		requeue = handle_bmc_rsp(intf, msg);
3815 	}
3816 
3817  out:
3818 	return requeue;
3819 }
3820 
3821 /*
3822  * If there are messages in the queue or pretimeouts, handle them.
3823  */
3824 static void handle_new_recv_msgs(ipmi_smi_t intf)
3825 {
3826 	struct ipmi_smi_msg  *smi_msg;
3827 	unsigned long        flags = 0;
3828 	int                  rv;
3829 	int                  run_to_completion = intf->run_to_completion;
3830 
3831 	/* See if any waiting messages need to be processed. */
3832 	if (!run_to_completion)
3833 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3834 	while (!list_empty(&intf->waiting_rcv_msgs)) {
3835 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3836 				     struct ipmi_smi_msg, link);
3837 		if (!run_to_completion)
3838 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3839 					       flags);
3840 		rv = handle_one_recv_msg(intf, smi_msg);
3841 		if (!run_to_completion)
3842 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3843 		if (rv > 0) {
3844 			/*
3845 			 * To preserve message order, quit if we
3846 			 * can't handle a message.
3847 			 */
3848 			break;
3849 		} else {
3850 			list_del(&smi_msg->link);
3851 			if (rv == 0)
3852 				/* Message handled */
3853 				ipmi_free_smi_msg(smi_msg);
3854 			/* If rv < 0, fatal error, del but don't free. */
3855 		}
3856 	}
3857 	if (!run_to_completion)
3858 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3859 
3860 	/*
3861 	 * If the pretimout count is non-zero, decrement one from it and
3862 	 * deliver pretimeouts to all the users.
3863 	 */
3864 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3865 		ipmi_user_t user;
3866 
3867 		rcu_read_lock();
3868 		list_for_each_entry_rcu(user, &intf->users, link) {
3869 			if (user->handler->ipmi_watchdog_pretimeout)
3870 				user->handler->ipmi_watchdog_pretimeout(
3871 					user->handler_data);
3872 		}
3873 		rcu_read_unlock();
3874 	}
3875 }
3876 
3877 static void smi_recv_tasklet(unsigned long val)
3878 {
3879 	unsigned long flags = 0; /* keep us warning-free. */
3880 	ipmi_smi_t intf = (ipmi_smi_t) val;
3881 	int run_to_completion = intf->run_to_completion;
3882 	struct ipmi_smi_msg *newmsg = NULL;
3883 
3884 	/*
3885 	 * Start the next message if available.
3886 	 *
3887 	 * Do this here, not in the actual receiver, because we may deadlock
3888 	 * because the lower layer is allowed to hold locks while calling
3889 	 * message delivery.
3890 	 */
3891 	if (!run_to_completion)
3892 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3893 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
3894 		struct list_head *entry = NULL;
3895 
3896 		/* Pick the high priority queue first. */
3897 		if (!list_empty(&intf->hp_xmit_msgs))
3898 			entry = intf->hp_xmit_msgs.next;
3899 		else if (!list_empty(&intf->xmit_msgs))
3900 			entry = intf->xmit_msgs.next;
3901 
3902 		if (entry) {
3903 			list_del(entry);
3904 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3905 			intf->curr_msg = newmsg;
3906 		}
3907 	}
3908 	if (!run_to_completion)
3909 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3910 	if (newmsg)
3911 		intf->handlers->sender(intf->send_info, newmsg);
3912 
3913 	handle_new_recv_msgs(intf);
3914 }
3915 
3916 /* Handle a new message from the lower layer. */
3917 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3918 			   struct ipmi_smi_msg *msg)
3919 {
3920 	unsigned long flags = 0; /* keep us warning-free. */
3921 	int run_to_completion = intf->run_to_completion;
3922 
3923 	if ((msg->data_size >= 2)
3924 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3925 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3926 	    && (msg->user_data == NULL)) {
3927 
3928 		if (intf->in_shutdown)
3929 			goto free_msg;
3930 
3931 		/*
3932 		 * This is the local response to a command send, start
3933 		 * the timer for these.  The user_data will not be
3934 		 * NULL if this is a response send, and we will let
3935 		 * response sends just go through.
3936 		 */
3937 
3938 		/*
3939 		 * Check for errors, if we get certain errors (ones
3940 		 * that mean basically we can try again later), we
3941 		 * ignore them and start the timer.  Otherwise we
3942 		 * report the error immediately.
3943 		 */
3944 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3945 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3946 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3947 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3948 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3949 			int chan = msg->rsp[3] & 0xf;
3950 
3951 			/* Got an error sending the message, handle it. */
3952 			if (chan >= IPMI_MAX_CHANNELS)
3953 				; /* This shouldn't happen */
3954 			else if ((intf->channels[chan].medium
3955 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3956 				 || (intf->channels[chan].medium
3957 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3958 				ipmi_inc_stat(intf, sent_lan_command_errs);
3959 			else
3960 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3961 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3962 		} else
3963 			/* The message was sent, start the timer. */
3964 			intf_start_seq_timer(intf, msg->msgid);
3965 
3966 free_msg:
3967 		ipmi_free_smi_msg(msg);
3968 	} else {
3969 		/*
3970 		 * To preserve message order, we keep a queue and deliver from
3971 		 * a tasklet.
3972 		 */
3973 		if (!run_to_completion)
3974 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3975 		list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3976 		if (!run_to_completion)
3977 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3978 					       flags);
3979 	}
3980 
3981 	if (!run_to_completion)
3982 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3983 	if (msg == intf->curr_msg)
3984 		intf->curr_msg = NULL;
3985 	if (!run_to_completion)
3986 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3987 
3988 	if (run_to_completion)
3989 		smi_recv_tasklet((unsigned long) intf);
3990 	else
3991 		tasklet_schedule(&intf->recv_tasklet);
3992 }
3993 EXPORT_SYMBOL(ipmi_smi_msg_received);
3994 
3995 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3996 {
3997 	if (intf->in_shutdown)
3998 		return;
3999 
4000 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4001 	tasklet_schedule(&intf->recv_tasklet);
4002 }
4003 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4004 
4005 static struct ipmi_smi_msg *
4006 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
4007 		  unsigned char seq, long seqid)
4008 {
4009 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4010 	if (!smi_msg)
4011 		/*
4012 		 * If we can't allocate the message, then just return, we
4013 		 * get 4 retries, so this should be ok.
4014 		 */
4015 		return NULL;
4016 
4017 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4018 	smi_msg->data_size = recv_msg->msg.data_len;
4019 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4020 
4021 #ifdef DEBUG_MSGING
4022 	{
4023 		int m;
4024 		printk("Resend: ");
4025 		for (m = 0; m < smi_msg->data_size; m++)
4026 			printk(" %2.2x", smi_msg->data[m]);
4027 		printk("\n");
4028 	}
4029 #endif
4030 	return smi_msg;
4031 }
4032 
4033 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4034 			      struct list_head *timeouts, long timeout_period,
4035 			      int slot, unsigned long *flags,
4036 			      unsigned int *waiting_msgs)
4037 {
4038 	struct ipmi_recv_msg     *msg;
4039 	struct ipmi_smi_handlers *handlers;
4040 
4041 	if (intf->in_shutdown)
4042 		return;
4043 
4044 	if (!ent->inuse)
4045 		return;
4046 
4047 	ent->timeout -= timeout_period;
4048 	if (ent->timeout > 0) {
4049 		(*waiting_msgs)++;
4050 		return;
4051 	}
4052 
4053 	if (ent->retries_left == 0) {
4054 		/* The message has used all its retries. */
4055 		ent->inuse = 0;
4056 		msg = ent->recv_msg;
4057 		list_add_tail(&msg->link, timeouts);
4058 		if (ent->broadcast)
4059 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4060 		else if (is_lan_addr(&ent->recv_msg->addr))
4061 			ipmi_inc_stat(intf, timed_out_lan_commands);
4062 		else
4063 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4064 	} else {
4065 		struct ipmi_smi_msg *smi_msg;
4066 		/* More retries, send again. */
4067 
4068 		(*waiting_msgs)++;
4069 
4070 		/*
4071 		 * Start with the max timer, set to normal timer after
4072 		 * the message is sent.
4073 		 */
4074 		ent->timeout = MAX_MSG_TIMEOUT;
4075 		ent->retries_left--;
4076 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4077 					    ent->seqid);
4078 		if (!smi_msg) {
4079 			if (is_lan_addr(&ent->recv_msg->addr))
4080 				ipmi_inc_stat(intf,
4081 					      dropped_rexmit_lan_commands);
4082 			else
4083 				ipmi_inc_stat(intf,
4084 					      dropped_rexmit_ipmb_commands);
4085 			return;
4086 		}
4087 
4088 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4089 
4090 		/*
4091 		 * Send the new message.  We send with a zero
4092 		 * priority.  It timed out, I doubt time is that
4093 		 * critical now, and high priority messages are really
4094 		 * only for messages to the local MC, which don't get
4095 		 * resent.
4096 		 */
4097 		handlers = intf->handlers;
4098 		if (handlers) {
4099 			if (is_lan_addr(&ent->recv_msg->addr))
4100 				ipmi_inc_stat(intf,
4101 					      retransmitted_lan_commands);
4102 			else
4103 				ipmi_inc_stat(intf,
4104 					      retransmitted_ipmb_commands);
4105 
4106 			smi_send(intf, intf->handlers, smi_msg, 0);
4107 		} else
4108 			ipmi_free_smi_msg(smi_msg);
4109 
4110 		spin_lock_irqsave(&intf->seq_lock, *flags);
4111 	}
4112 }
4113 
4114 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4115 {
4116 	struct list_head     timeouts;
4117 	struct ipmi_recv_msg *msg, *msg2;
4118 	unsigned long        flags;
4119 	int                  i;
4120 	unsigned int         waiting_msgs = 0;
4121 
4122 	/*
4123 	 * Go through the seq table and find any messages that
4124 	 * have timed out, putting them in the timeouts
4125 	 * list.
4126 	 */
4127 	INIT_LIST_HEAD(&timeouts);
4128 	spin_lock_irqsave(&intf->seq_lock, flags);
4129 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4130 		check_msg_timeout(intf, &(intf->seq_table[i]),
4131 				  &timeouts, timeout_period, i,
4132 				  &flags, &waiting_msgs);
4133 	spin_unlock_irqrestore(&intf->seq_lock, flags);
4134 
4135 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
4136 		deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4137 
4138 	/*
4139 	 * Maintenance mode handling.  Check the timeout
4140 	 * optimistically before we claim the lock.  It may
4141 	 * mean a timeout gets missed occasionally, but that
4142 	 * only means the timeout gets extended by one period
4143 	 * in that case.  No big deal, and it avoids the lock
4144 	 * most of the time.
4145 	 */
4146 	if (intf->auto_maintenance_timeout > 0) {
4147 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4148 		if (intf->auto_maintenance_timeout > 0) {
4149 			intf->auto_maintenance_timeout
4150 				-= timeout_period;
4151 			if (!intf->maintenance_mode
4152 			    && (intf->auto_maintenance_timeout <= 0)) {
4153 				intf->maintenance_mode_enable = false;
4154 				maintenance_mode_update(intf);
4155 			}
4156 		}
4157 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4158 				       flags);
4159 	}
4160 
4161 	tasklet_schedule(&intf->recv_tasklet);
4162 
4163 	return waiting_msgs;
4164 }
4165 
4166 static void ipmi_request_event(ipmi_smi_t intf)
4167 {
4168 	/* No event requests when in maintenance mode. */
4169 	if (intf->maintenance_mode_enable)
4170 		return;
4171 
4172 	if (!intf->in_shutdown)
4173 		intf->handlers->request_events(intf->send_info);
4174 }
4175 
4176 static struct timer_list ipmi_timer;
4177 
4178 static atomic_t stop_operation;
4179 
4180 static void ipmi_timeout(unsigned long data)
4181 {
4182 	ipmi_smi_t intf;
4183 	int nt = 0;
4184 
4185 	if (atomic_read(&stop_operation))
4186 		return;
4187 
4188 	rcu_read_lock();
4189 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4190 		int lnt = 0;
4191 
4192 		if (atomic_read(&intf->event_waiters)) {
4193 			intf->ticks_to_req_ev--;
4194 			if (intf->ticks_to_req_ev == 0) {
4195 				ipmi_request_event(intf);
4196 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4197 			}
4198 			lnt++;
4199 		}
4200 
4201 		lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4202 
4203 		lnt = !!lnt;
4204 		if (lnt != intf->last_needs_timer &&
4205 					intf->handlers->set_need_watch)
4206 			intf->handlers->set_need_watch(intf->send_info, lnt);
4207 		intf->last_needs_timer = lnt;
4208 
4209 		nt += lnt;
4210 	}
4211 	rcu_read_unlock();
4212 
4213 	if (nt)
4214 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4215 }
4216 
4217 static void need_waiter(ipmi_smi_t intf)
4218 {
4219 	/* Racy, but worst case we start the timer twice. */
4220 	if (!timer_pending(&ipmi_timer))
4221 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4222 }
4223 
4224 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4225 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4226 
4227 /* FIXME - convert these to slabs. */
4228 static void free_smi_msg(struct ipmi_smi_msg *msg)
4229 {
4230 	atomic_dec(&smi_msg_inuse_count);
4231 	kfree(msg);
4232 }
4233 
4234 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4235 {
4236 	struct ipmi_smi_msg *rv;
4237 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4238 	if (rv) {
4239 		rv->done = free_smi_msg;
4240 		rv->user_data = NULL;
4241 		atomic_inc(&smi_msg_inuse_count);
4242 	}
4243 	return rv;
4244 }
4245 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4246 
4247 static void free_recv_msg(struct ipmi_recv_msg *msg)
4248 {
4249 	atomic_dec(&recv_msg_inuse_count);
4250 	kfree(msg);
4251 }
4252 
4253 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4254 {
4255 	struct ipmi_recv_msg *rv;
4256 
4257 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4258 	if (rv) {
4259 		rv->user = NULL;
4260 		rv->done = free_recv_msg;
4261 		atomic_inc(&recv_msg_inuse_count);
4262 	}
4263 	return rv;
4264 }
4265 
4266 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4267 {
4268 	if (msg->user)
4269 		kref_put(&msg->user->refcount, free_user);
4270 	msg->done(msg);
4271 }
4272 EXPORT_SYMBOL(ipmi_free_recv_msg);
4273 
4274 #ifdef CONFIG_IPMI_PANIC_EVENT
4275 
4276 static atomic_t panic_done_count = ATOMIC_INIT(0);
4277 
4278 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4279 {
4280 	atomic_dec(&panic_done_count);
4281 }
4282 
4283 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4284 {
4285 	atomic_dec(&panic_done_count);
4286 }
4287 
4288 /*
4289  * Inside a panic, send a message and wait for a response.
4290  */
4291 static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4292 					struct ipmi_addr     *addr,
4293 					struct kernel_ipmi_msg *msg)
4294 {
4295 	struct ipmi_smi_msg  smi_msg;
4296 	struct ipmi_recv_msg recv_msg;
4297 	int rv;
4298 
4299 	smi_msg.done = dummy_smi_done_handler;
4300 	recv_msg.done = dummy_recv_done_handler;
4301 	atomic_add(2, &panic_done_count);
4302 	rv = i_ipmi_request(NULL,
4303 			    intf,
4304 			    addr,
4305 			    0,
4306 			    msg,
4307 			    intf,
4308 			    &smi_msg,
4309 			    &recv_msg,
4310 			    0,
4311 			    intf->channels[0].address,
4312 			    intf->channels[0].lun,
4313 			    0, 1); /* Don't retry, and don't wait. */
4314 	if (rv)
4315 		atomic_sub(2, &panic_done_count);
4316 	while (atomic_read(&panic_done_count) != 0)
4317 		ipmi_poll(intf);
4318 }
4319 
4320 #ifdef CONFIG_IPMI_PANIC_STRING
4321 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4322 {
4323 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4324 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4325 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4326 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4327 		/* A get event receiver command, save it. */
4328 		intf->event_receiver = msg->msg.data[1];
4329 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4330 	}
4331 }
4332 
4333 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4334 {
4335 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4336 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4337 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4338 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4339 		/*
4340 		 * A get device id command, save if we are an event
4341 		 * receiver or generator.
4342 		 */
4343 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4344 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4345 	}
4346 }
4347 #endif
4348 
4349 static void send_panic_events(char *str)
4350 {
4351 	struct kernel_ipmi_msg            msg;
4352 	ipmi_smi_t                        intf;
4353 	unsigned char                     data[16];
4354 	struct ipmi_system_interface_addr *si;
4355 	struct ipmi_addr                  addr;
4356 
4357 	si = (struct ipmi_system_interface_addr *) &addr;
4358 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4359 	si->channel = IPMI_BMC_CHANNEL;
4360 	si->lun = 0;
4361 
4362 	/* Fill in an event telling that we have failed. */
4363 	msg.netfn = 0x04; /* Sensor or Event. */
4364 	msg.cmd = 2; /* Platform event command. */
4365 	msg.data = data;
4366 	msg.data_len = 8;
4367 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4368 	data[1] = 0x03; /* This is for IPMI 1.0. */
4369 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4370 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4371 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4372 
4373 	/*
4374 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4375 	 * to make the panic events more useful.
4376 	 */
4377 	if (str) {
4378 		data[3] = str[0];
4379 		data[6] = str[1];
4380 		data[7] = str[2];
4381 	}
4382 
4383 	/* For every registered interface, send the event. */
4384 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4385 		if (!intf->handlers)
4386 			/* Interface is not ready. */
4387 			continue;
4388 
4389 		intf->run_to_completion = 1;
4390 		/* Send the event announcing the panic. */
4391 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4392 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4393 	}
4394 
4395 #ifdef CONFIG_IPMI_PANIC_STRING
4396 	/*
4397 	 * On every interface, dump a bunch of OEM event holding the
4398 	 * string.
4399 	 */
4400 	if (!str)
4401 		return;
4402 
4403 	/* For every registered interface, send the event. */
4404 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4405 		char                  *p = str;
4406 		struct ipmi_ipmb_addr *ipmb;
4407 		int                   j;
4408 
4409 		if (intf->intf_num == -1)
4410 			/* Interface was not ready yet. */
4411 			continue;
4412 
4413 		/*
4414 		 * intf_num is used as an marker to tell if the
4415 		 * interface is valid.  Thus we need a read barrier to
4416 		 * make sure data fetched before checking intf_num
4417 		 * won't be used.
4418 		 */
4419 		smp_rmb();
4420 
4421 		/*
4422 		 * First job here is to figure out where to send the
4423 		 * OEM events.  There's no way in IPMI to send OEM
4424 		 * events using an event send command, so we have to
4425 		 * find the SEL to put them in and stick them in
4426 		 * there.
4427 		 */
4428 
4429 		/* Get capabilities from the get device id. */
4430 		intf->local_sel_device = 0;
4431 		intf->local_event_generator = 0;
4432 		intf->event_receiver = 0;
4433 
4434 		/* Request the device info from the local MC. */
4435 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4436 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4437 		msg.data = NULL;
4438 		msg.data_len = 0;
4439 		intf->null_user_handler = device_id_fetcher;
4440 		ipmi_panic_request_and_wait(intf, &addr, &msg);
4441 
4442 		if (intf->local_event_generator) {
4443 			/* Request the event receiver from the local MC. */
4444 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4445 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4446 			msg.data = NULL;
4447 			msg.data_len = 0;
4448 			intf->null_user_handler = event_receiver_fetcher;
4449 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4450 		}
4451 		intf->null_user_handler = NULL;
4452 
4453 		/*
4454 		 * Validate the event receiver.  The low bit must not
4455 		 * be 1 (it must be a valid IPMB address), it cannot
4456 		 * be zero, and it must not be my address.
4457 		 */
4458 		if (((intf->event_receiver & 1) == 0)
4459 		    && (intf->event_receiver != 0)
4460 		    && (intf->event_receiver != intf->channels[0].address)) {
4461 			/*
4462 			 * The event receiver is valid, send an IPMB
4463 			 * message.
4464 			 */
4465 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4466 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4467 			ipmb->channel = 0; /* FIXME - is this right? */
4468 			ipmb->lun = intf->event_receiver_lun;
4469 			ipmb->slave_addr = intf->event_receiver;
4470 		} else if (intf->local_sel_device) {
4471 			/*
4472 			 * The event receiver was not valid (or was
4473 			 * me), but I am an SEL device, just dump it
4474 			 * in my SEL.
4475 			 */
4476 			si = (struct ipmi_system_interface_addr *) &addr;
4477 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4478 			si->channel = IPMI_BMC_CHANNEL;
4479 			si->lun = 0;
4480 		} else
4481 			continue; /* No where to send the event. */
4482 
4483 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4484 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4485 		msg.data = data;
4486 		msg.data_len = 16;
4487 
4488 		j = 0;
4489 		while (*p) {
4490 			int size = strlen(p);
4491 
4492 			if (size > 11)
4493 				size = 11;
4494 			data[0] = 0;
4495 			data[1] = 0;
4496 			data[2] = 0xf0; /* OEM event without timestamp. */
4497 			data[3] = intf->channels[0].address;
4498 			data[4] = j++; /* sequence # */
4499 			/*
4500 			 * Always give 11 bytes, so strncpy will fill
4501 			 * it with zeroes for me.
4502 			 */
4503 			strncpy(data+5, p, 11);
4504 			p += size;
4505 
4506 			ipmi_panic_request_and_wait(intf, &addr, &msg);
4507 		}
4508 	}
4509 #endif /* CONFIG_IPMI_PANIC_STRING */
4510 }
4511 #endif /* CONFIG_IPMI_PANIC_EVENT */
4512 
4513 static int has_panicked;
4514 
4515 static int panic_event(struct notifier_block *this,
4516 		       unsigned long         event,
4517 		       void                  *ptr)
4518 {
4519 	ipmi_smi_t intf;
4520 
4521 	if (has_panicked)
4522 		return NOTIFY_DONE;
4523 	has_panicked = 1;
4524 
4525 	/* For every registered interface, set it to run to completion. */
4526 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4527 		if (!intf->handlers)
4528 			/* Interface is not ready. */
4529 			continue;
4530 
4531 		intf->run_to_completion = 1;
4532 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4533 	}
4534 
4535 #ifdef CONFIG_IPMI_PANIC_EVENT
4536 	send_panic_events(ptr);
4537 #endif
4538 
4539 	return NOTIFY_DONE;
4540 }
4541 
4542 static struct notifier_block panic_block = {
4543 	.notifier_call	= panic_event,
4544 	.next		= NULL,
4545 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4546 };
4547 
4548 static int ipmi_init_msghandler(void)
4549 {
4550 	int rv;
4551 
4552 	if (initialized)
4553 		return 0;
4554 
4555 	rv = driver_register(&ipmidriver.driver);
4556 	if (rv) {
4557 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4558 		return rv;
4559 	}
4560 
4561 	printk(KERN_INFO "ipmi message handler version "
4562 	       IPMI_DRIVER_VERSION "\n");
4563 
4564 #ifdef CONFIG_PROC_FS
4565 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4566 	if (!proc_ipmi_root) {
4567 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4568 	    driver_unregister(&ipmidriver.driver);
4569 	    return -ENOMEM;
4570 	}
4571 
4572 #endif /* CONFIG_PROC_FS */
4573 
4574 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4575 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4576 
4577 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4578 
4579 	initialized = 1;
4580 
4581 	return 0;
4582 }
4583 
4584 static int __init ipmi_init_msghandler_mod(void)
4585 {
4586 	ipmi_init_msghandler();
4587 	return 0;
4588 }
4589 
4590 static void __exit cleanup_ipmi(void)
4591 {
4592 	int count;
4593 
4594 	if (!initialized)
4595 		return;
4596 
4597 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4598 
4599 	/*
4600 	 * This can't be called if any interfaces exist, so no worry
4601 	 * about shutting down the interfaces.
4602 	 */
4603 
4604 	/*
4605 	 * Tell the timer to stop, then wait for it to stop.  This
4606 	 * avoids problems with race conditions removing the timer
4607 	 * here.
4608 	 */
4609 	atomic_inc(&stop_operation);
4610 	del_timer_sync(&ipmi_timer);
4611 
4612 #ifdef CONFIG_PROC_FS
4613 	proc_remove(proc_ipmi_root);
4614 #endif /* CONFIG_PROC_FS */
4615 
4616 	driver_unregister(&ipmidriver.driver);
4617 
4618 	initialized = 0;
4619 
4620 	/* Check for buffer leaks. */
4621 	count = atomic_read(&smi_msg_inuse_count);
4622 	if (count != 0)
4623 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4624 		       count);
4625 	count = atomic_read(&recv_msg_inuse_count);
4626 	if (count != 0)
4627 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4628 		       count);
4629 }
4630 module_exit(cleanup_ipmi);
4631 
4632 module_init(ipmi_init_msghandler_mod);
4633 MODULE_LICENSE("GPL");
4634 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4635 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4636 		   " interface.");
4637 MODULE_VERSION(IPMI_DRIVER_VERSION);
4638