1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <linux/poll.h> 37 #include <linux/sched.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/mutex.h> 41 #include <linux/slab.h> 42 #include <linux/ipmi.h> 43 #include <linux/ipmi_smi.h> 44 #include <linux/notifier.h> 45 #include <linux/init.h> 46 #include <linux/proc_fs.h> 47 #include <linux/rcupdate.h> 48 #include <linux/interrupt.h> 49 #include <linux/moduleparam.h> 50 #include <linux/workqueue.h> 51 #include <linux/uuid.h> 52 53 #define PFX "IPMI message handler: " 54 55 #define IPMI_DRIVER_VERSION "39.2" 56 57 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 58 static int ipmi_init_msghandler(void); 59 static void smi_recv_tasklet(unsigned long); 60 static void handle_new_recv_msgs(ipmi_smi_t intf); 61 static void need_waiter(ipmi_smi_t intf); 62 static int handle_one_recv_msg(ipmi_smi_t intf, 63 struct ipmi_smi_msg *msg); 64 65 static int initialized; 66 67 enum ipmi_panic_event_op { 68 IPMI_SEND_PANIC_EVENT_NONE, 69 IPMI_SEND_PANIC_EVENT, 70 IPMI_SEND_PANIC_EVENT_STRING 71 }; 72 #ifdef CONFIG_IPMI_PANIC_STRING 73 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING 74 #elif defined(CONFIG_IPMI_PANIC_EVENT) 75 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT 76 #else 77 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE 78 #endif 79 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT; 80 81 static int panic_op_write_handler(const char *val, 82 const struct kernel_param *kp) 83 { 84 char valcp[16]; 85 char *s; 86 87 strncpy(valcp, val, 15); 88 valcp[15] = '\0'; 89 90 s = strstrip(valcp); 91 92 if (strcmp(s, "none") == 0) 93 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_NONE; 94 else if (strcmp(s, "event") == 0) 95 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT; 96 else if (strcmp(s, "string") == 0) 97 ipmi_send_panic_event = IPMI_SEND_PANIC_EVENT_STRING; 98 else 99 return -EINVAL; 100 101 return 0; 102 } 103 104 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp) 105 { 106 switch (ipmi_send_panic_event) { 107 case IPMI_SEND_PANIC_EVENT_NONE: 108 strcpy(buffer, "none"); 109 break; 110 111 case IPMI_SEND_PANIC_EVENT: 112 strcpy(buffer, "event"); 113 break; 114 115 case IPMI_SEND_PANIC_EVENT_STRING: 116 strcpy(buffer, "string"); 117 break; 118 119 default: 120 strcpy(buffer, "???"); 121 break; 122 } 123 124 return strlen(buffer); 125 } 126 127 static const struct kernel_param_ops panic_op_ops = { 128 .set = panic_op_write_handler, 129 .get = panic_op_read_handler 130 }; 131 module_param_cb(panic_op, &panic_op_ops, NULL, 0600); 132 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic. Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events."); 133 134 135 #ifdef CONFIG_IPMI_PROC_INTERFACE 136 static struct proc_dir_entry *proc_ipmi_root; 137 #endif /* CONFIG_IPMI_PROC_INTERFACE */ 138 139 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 140 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 141 142 #define MAX_EVENTS_IN_QUEUE 25 143 144 /* 145 * Don't let a message sit in a queue forever, always time it with at lest 146 * the max message timer. This is in milliseconds. 147 */ 148 #define MAX_MSG_TIMEOUT 60000 149 150 /* Call every ~1000 ms. */ 151 #define IPMI_TIMEOUT_TIME 1000 152 153 /* How many jiffies does it take to get to the timeout time. */ 154 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 155 156 /* 157 * Request events from the queue every second (this is the number of 158 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 159 * future, IPMI will add a way to know immediately if an event is in 160 * the queue and this silliness can go away. 161 */ 162 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 163 164 /* How long should we cache dynamic device IDs? */ 165 #define IPMI_DYN_DEV_ID_EXPIRY (10 * HZ) 166 167 /* 168 * The main "user" data structure. 169 */ 170 struct ipmi_user { 171 struct list_head link; 172 173 /* Set to false when the user is destroyed. */ 174 bool valid; 175 176 struct kref refcount; 177 178 /* The upper layer that handles receive messages. */ 179 const struct ipmi_user_hndl *handler; 180 void *handler_data; 181 182 /* The interface this user is bound to. */ 183 ipmi_smi_t intf; 184 185 /* Does this interface receive IPMI events? */ 186 bool gets_events; 187 }; 188 189 struct cmd_rcvr { 190 struct list_head link; 191 192 ipmi_user_t user; 193 unsigned char netfn; 194 unsigned char cmd; 195 unsigned int chans; 196 197 /* 198 * This is used to form a linked lised during mass deletion. 199 * Since this is in an RCU list, we cannot use the link above 200 * or change any data until the RCU period completes. So we 201 * use this next variable during mass deletion so we can have 202 * a list and don't have to wait and restart the search on 203 * every individual deletion of a command. 204 */ 205 struct cmd_rcvr *next; 206 }; 207 208 struct seq_table { 209 unsigned int inuse : 1; 210 unsigned int broadcast : 1; 211 212 unsigned long timeout; 213 unsigned long orig_timeout; 214 unsigned int retries_left; 215 216 /* 217 * To verify on an incoming send message response that this is 218 * the message that the response is for, we keep a sequence id 219 * and increment it every time we send a message. 220 */ 221 long seqid; 222 223 /* 224 * This is held so we can properly respond to the message on a 225 * timeout, and it is used to hold the temporary data for 226 * retransmission, too. 227 */ 228 struct ipmi_recv_msg *recv_msg; 229 }; 230 231 /* 232 * Store the information in a msgid (long) to allow us to find a 233 * sequence table entry from the msgid. 234 */ 235 #define STORE_SEQ_IN_MSGID(seq, seqid) \ 236 ((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff)) 237 238 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 239 do { \ 240 seq = (((msgid) >> 26) & 0x3f); \ 241 seqid = ((msgid) & 0x3ffffff); \ 242 } while (0) 243 244 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff) 245 246 #define IPMI_MAX_CHANNELS 16 247 struct ipmi_channel { 248 unsigned char medium; 249 unsigned char protocol; 250 }; 251 252 struct ipmi_channel_set { 253 struct ipmi_channel c[IPMI_MAX_CHANNELS]; 254 }; 255 256 struct ipmi_my_addrinfo { 257 /* 258 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 259 * but may be changed by the user. 260 */ 261 unsigned char address; 262 263 /* 264 * My LUN. This should generally stay the SMS LUN, but just in 265 * case... 266 */ 267 unsigned char lun; 268 }; 269 270 #ifdef CONFIG_IPMI_PROC_INTERFACE 271 struct ipmi_proc_entry { 272 char *name; 273 struct ipmi_proc_entry *next; 274 }; 275 #endif 276 277 /* 278 * Note that the product id, manufacturer id, guid, and device id are 279 * immutable in this structure, so dyn_mutex is not required for 280 * accessing those. If those change on a BMC, a new BMC is allocated. 281 */ 282 struct bmc_device { 283 struct platform_device pdev; 284 struct list_head intfs; /* Interfaces on this BMC. */ 285 struct ipmi_device_id id; 286 struct ipmi_device_id fetch_id; 287 int dyn_id_set; 288 unsigned long dyn_id_expiry; 289 struct mutex dyn_mutex; /* Protects id, intfs, & dyn* */ 290 guid_t guid; 291 guid_t fetch_guid; 292 int dyn_guid_set; 293 struct kref usecount; 294 struct work_struct remove_work; 295 }; 296 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) 297 298 static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc, 299 struct ipmi_device_id *id, 300 bool *guid_set, guid_t *guid); 301 302 /* 303 * Various statistics for IPMI, these index stats[] in the ipmi_smi 304 * structure. 305 */ 306 enum ipmi_stat_indexes { 307 /* Commands we got from the user that were invalid. */ 308 IPMI_STAT_sent_invalid_commands = 0, 309 310 /* Commands we sent to the MC. */ 311 IPMI_STAT_sent_local_commands, 312 313 /* Responses from the MC that were delivered to a user. */ 314 IPMI_STAT_handled_local_responses, 315 316 /* Responses from the MC that were not delivered to a user. */ 317 IPMI_STAT_unhandled_local_responses, 318 319 /* Commands we sent out to the IPMB bus. */ 320 IPMI_STAT_sent_ipmb_commands, 321 322 /* Commands sent on the IPMB that had errors on the SEND CMD */ 323 IPMI_STAT_sent_ipmb_command_errs, 324 325 /* Each retransmit increments this count. */ 326 IPMI_STAT_retransmitted_ipmb_commands, 327 328 /* 329 * When a message times out (runs out of retransmits) this is 330 * incremented. 331 */ 332 IPMI_STAT_timed_out_ipmb_commands, 333 334 /* 335 * This is like above, but for broadcasts. Broadcasts are 336 * *not* included in the above count (they are expected to 337 * time out). 338 */ 339 IPMI_STAT_timed_out_ipmb_broadcasts, 340 341 /* Responses I have sent to the IPMB bus. */ 342 IPMI_STAT_sent_ipmb_responses, 343 344 /* The response was delivered to the user. */ 345 IPMI_STAT_handled_ipmb_responses, 346 347 /* The response had invalid data in it. */ 348 IPMI_STAT_invalid_ipmb_responses, 349 350 /* The response didn't have anyone waiting for it. */ 351 IPMI_STAT_unhandled_ipmb_responses, 352 353 /* Commands we sent out to the IPMB bus. */ 354 IPMI_STAT_sent_lan_commands, 355 356 /* Commands sent on the IPMB that had errors on the SEND CMD */ 357 IPMI_STAT_sent_lan_command_errs, 358 359 /* Each retransmit increments this count. */ 360 IPMI_STAT_retransmitted_lan_commands, 361 362 /* 363 * When a message times out (runs out of retransmits) this is 364 * incremented. 365 */ 366 IPMI_STAT_timed_out_lan_commands, 367 368 /* Responses I have sent to the IPMB bus. */ 369 IPMI_STAT_sent_lan_responses, 370 371 /* The response was delivered to the user. */ 372 IPMI_STAT_handled_lan_responses, 373 374 /* The response had invalid data in it. */ 375 IPMI_STAT_invalid_lan_responses, 376 377 /* The response didn't have anyone waiting for it. */ 378 IPMI_STAT_unhandled_lan_responses, 379 380 /* The command was delivered to the user. */ 381 IPMI_STAT_handled_commands, 382 383 /* The command had invalid data in it. */ 384 IPMI_STAT_invalid_commands, 385 386 /* The command didn't have anyone waiting for it. */ 387 IPMI_STAT_unhandled_commands, 388 389 /* Invalid data in an event. */ 390 IPMI_STAT_invalid_events, 391 392 /* Events that were received with the proper format. */ 393 IPMI_STAT_events, 394 395 /* Retransmissions on IPMB that failed. */ 396 IPMI_STAT_dropped_rexmit_ipmb_commands, 397 398 /* Retransmissions on LAN that failed. */ 399 IPMI_STAT_dropped_rexmit_lan_commands, 400 401 /* This *must* remain last, add new values above this. */ 402 IPMI_NUM_STATS 403 }; 404 405 406 #define IPMI_IPMB_NUM_SEQ 64 407 struct ipmi_smi { 408 /* What interface number are we? */ 409 int intf_num; 410 411 struct kref refcount; 412 413 /* Set when the interface is being unregistered. */ 414 bool in_shutdown; 415 416 /* Used for a list of interfaces. */ 417 struct list_head link; 418 419 /* 420 * The list of upper layers that are using me. seq_lock 421 * protects this. 422 */ 423 struct list_head users; 424 425 /* Used for wake ups at startup. */ 426 wait_queue_head_t waitq; 427 428 /* 429 * Prevents the interface from being unregistered when the 430 * interface is used by being looked up through the BMC 431 * structure. 432 */ 433 struct mutex bmc_reg_mutex; 434 435 struct bmc_device tmp_bmc; 436 struct bmc_device *bmc; 437 bool bmc_registered; 438 struct list_head bmc_link; 439 char *my_dev_name; 440 bool in_bmc_register; /* Handle recursive situations. Yuck. */ 441 struct work_struct bmc_reg_work; 442 443 /* 444 * This is the lower-layer's sender routine. Note that you 445 * must either be holding the ipmi_interfaces_mutex or be in 446 * an umpreemptible region to use this. You must fetch the 447 * value into a local variable and make sure it is not NULL. 448 */ 449 const struct ipmi_smi_handlers *handlers; 450 void *send_info; 451 452 #ifdef CONFIG_IPMI_PROC_INTERFACE 453 /* A list of proc entries for this interface. */ 454 struct mutex proc_entry_lock; 455 struct ipmi_proc_entry *proc_entries; 456 457 struct proc_dir_entry *proc_dir; 458 char proc_dir_name[10]; 459 #endif 460 461 /* Driver-model device for the system interface. */ 462 struct device *si_dev; 463 464 /* 465 * A table of sequence numbers for this interface. We use the 466 * sequence numbers for IPMB messages that go out of the 467 * interface to match them up with their responses. A routine 468 * is called periodically to time the items in this list. 469 */ 470 spinlock_t seq_lock; 471 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 472 int curr_seq; 473 474 /* 475 * Messages queued for delivery. If delivery fails (out of memory 476 * for instance), They will stay in here to be processed later in a 477 * periodic timer interrupt. The tasklet is for handling received 478 * messages directly from the handler. 479 */ 480 spinlock_t waiting_rcv_msgs_lock; 481 struct list_head waiting_rcv_msgs; 482 atomic_t watchdog_pretimeouts_to_deliver; 483 struct tasklet_struct recv_tasklet; 484 485 spinlock_t xmit_msgs_lock; 486 struct list_head xmit_msgs; 487 struct ipmi_smi_msg *curr_msg; 488 struct list_head hp_xmit_msgs; 489 490 /* 491 * The list of command receivers that are registered for commands 492 * on this interface. 493 */ 494 struct mutex cmd_rcvrs_mutex; 495 struct list_head cmd_rcvrs; 496 497 /* 498 * Events that were queues because no one was there to receive 499 * them. 500 */ 501 spinlock_t events_lock; /* For dealing with event stuff. */ 502 struct list_head waiting_events; 503 unsigned int waiting_events_count; /* How many events in queue? */ 504 char delivering_events; 505 char event_msg_printed; 506 atomic_t event_waiters; 507 unsigned int ticks_to_req_ev; 508 int last_needs_timer; 509 510 /* 511 * The event receiver for my BMC, only really used at panic 512 * shutdown as a place to store this. 513 */ 514 unsigned char event_receiver; 515 unsigned char event_receiver_lun; 516 unsigned char local_sel_device; 517 unsigned char local_event_generator; 518 519 /* For handling of maintenance mode. */ 520 int maintenance_mode; 521 bool maintenance_mode_enable; 522 int auto_maintenance_timeout; 523 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 524 525 /* 526 * A cheap hack, if this is non-null and a message to an 527 * interface comes in with a NULL user, call this routine with 528 * it. Note that the message will still be freed by the 529 * caller. This only works on the system interface. 530 * 531 * Protected by bmc_reg_mutex. 532 */ 533 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 534 535 /* 536 * When we are scanning the channels for an SMI, this will 537 * tell which channel we are scanning. 538 */ 539 int curr_channel; 540 541 /* Channel information */ 542 struct ipmi_channel_set *channel_list; 543 unsigned int curr_working_cset; /* First index into the following. */ 544 struct ipmi_channel_set wchannels[2]; 545 struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS]; 546 bool channels_ready; 547 548 atomic_t stats[IPMI_NUM_STATS]; 549 550 /* 551 * run_to_completion duplicate of smb_info, smi_info 552 * and ipmi_serial_info structures. Used to decrease numbers of 553 * parameters passed by "low" level IPMI code. 554 */ 555 int run_to_completion; 556 }; 557 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 558 559 static void __get_guid(ipmi_smi_t intf); 560 static void __ipmi_bmc_unregister(ipmi_smi_t intf); 561 static int __ipmi_bmc_register(ipmi_smi_t intf, 562 struct ipmi_device_id *id, 563 bool guid_set, guid_t *guid, int intf_num); 564 static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id); 565 566 567 /** 568 * The driver model view of the IPMI messaging driver. 569 */ 570 static struct platform_driver ipmidriver = { 571 .driver = { 572 .name = "ipmi", 573 .bus = &platform_bus_type 574 } 575 }; 576 /* 577 * This mutex keeps us from adding the same BMC twice. 578 */ 579 static DEFINE_MUTEX(ipmidriver_mutex); 580 581 static LIST_HEAD(ipmi_interfaces); 582 static DEFINE_MUTEX(ipmi_interfaces_mutex); 583 584 /* 585 * List of watchers that want to know when smi's are added and deleted. 586 */ 587 static LIST_HEAD(smi_watchers); 588 static DEFINE_MUTEX(smi_watchers_mutex); 589 590 #define ipmi_inc_stat(intf, stat) \ 591 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 592 #define ipmi_get_stat(intf, stat) \ 593 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 594 595 static const char * const addr_src_to_str[] = { 596 "invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI", 597 "device-tree", "platform" 598 }; 599 600 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src) 601 { 602 if (src >= SI_LAST) 603 src = 0; /* Invalid */ 604 return addr_src_to_str[src]; 605 } 606 EXPORT_SYMBOL(ipmi_addr_src_to_str); 607 608 static int is_lan_addr(struct ipmi_addr *addr) 609 { 610 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 611 } 612 613 static int is_ipmb_addr(struct ipmi_addr *addr) 614 { 615 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 616 } 617 618 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 619 { 620 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 621 } 622 623 static void free_recv_msg_list(struct list_head *q) 624 { 625 struct ipmi_recv_msg *msg, *msg2; 626 627 list_for_each_entry_safe(msg, msg2, q, link) { 628 list_del(&msg->link); 629 ipmi_free_recv_msg(msg); 630 } 631 } 632 633 static void free_smi_msg_list(struct list_head *q) 634 { 635 struct ipmi_smi_msg *msg, *msg2; 636 637 list_for_each_entry_safe(msg, msg2, q, link) { 638 list_del(&msg->link); 639 ipmi_free_smi_msg(msg); 640 } 641 } 642 643 static void clean_up_interface_data(ipmi_smi_t intf) 644 { 645 int i; 646 struct cmd_rcvr *rcvr, *rcvr2; 647 struct list_head list; 648 649 tasklet_kill(&intf->recv_tasklet); 650 651 free_smi_msg_list(&intf->waiting_rcv_msgs); 652 free_recv_msg_list(&intf->waiting_events); 653 654 /* 655 * Wholesale remove all the entries from the list in the 656 * interface and wait for RCU to know that none are in use. 657 */ 658 mutex_lock(&intf->cmd_rcvrs_mutex); 659 INIT_LIST_HEAD(&list); 660 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 661 mutex_unlock(&intf->cmd_rcvrs_mutex); 662 663 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 664 kfree(rcvr); 665 666 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 667 if ((intf->seq_table[i].inuse) 668 && (intf->seq_table[i].recv_msg)) 669 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 670 } 671 } 672 673 static void intf_free(struct kref *ref) 674 { 675 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 676 677 clean_up_interface_data(intf); 678 kfree(intf); 679 } 680 681 struct watcher_entry { 682 int intf_num; 683 ipmi_smi_t intf; 684 struct list_head link; 685 }; 686 687 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 688 { 689 ipmi_smi_t intf; 690 LIST_HEAD(to_deliver); 691 struct watcher_entry *e, *e2; 692 693 mutex_lock(&smi_watchers_mutex); 694 695 mutex_lock(&ipmi_interfaces_mutex); 696 697 /* Build a list of things to deliver. */ 698 list_for_each_entry(intf, &ipmi_interfaces, link) { 699 if (intf->intf_num == -1) 700 continue; 701 e = kmalloc(sizeof(*e), GFP_KERNEL); 702 if (!e) 703 goto out_err; 704 kref_get(&intf->refcount); 705 e->intf = intf; 706 e->intf_num = intf->intf_num; 707 list_add_tail(&e->link, &to_deliver); 708 } 709 710 /* We will succeed, so add it to the list. */ 711 list_add(&watcher->link, &smi_watchers); 712 713 mutex_unlock(&ipmi_interfaces_mutex); 714 715 list_for_each_entry_safe(e, e2, &to_deliver, link) { 716 list_del(&e->link); 717 watcher->new_smi(e->intf_num, e->intf->si_dev); 718 kref_put(&e->intf->refcount, intf_free); 719 kfree(e); 720 } 721 722 mutex_unlock(&smi_watchers_mutex); 723 724 return 0; 725 726 out_err: 727 mutex_unlock(&ipmi_interfaces_mutex); 728 mutex_unlock(&smi_watchers_mutex); 729 list_for_each_entry_safe(e, e2, &to_deliver, link) { 730 list_del(&e->link); 731 kref_put(&e->intf->refcount, intf_free); 732 kfree(e); 733 } 734 return -ENOMEM; 735 } 736 EXPORT_SYMBOL(ipmi_smi_watcher_register); 737 738 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 739 { 740 mutex_lock(&smi_watchers_mutex); 741 list_del(&(watcher->link)); 742 mutex_unlock(&smi_watchers_mutex); 743 return 0; 744 } 745 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 746 747 /* 748 * Must be called with smi_watchers_mutex held. 749 */ 750 static void 751 call_smi_watchers(int i, struct device *dev) 752 { 753 struct ipmi_smi_watcher *w; 754 755 list_for_each_entry(w, &smi_watchers, link) { 756 if (try_module_get(w->owner)) { 757 w->new_smi(i, dev); 758 module_put(w->owner); 759 } 760 } 761 } 762 763 static int 764 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 765 { 766 if (addr1->addr_type != addr2->addr_type) 767 return 0; 768 769 if (addr1->channel != addr2->channel) 770 return 0; 771 772 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 773 struct ipmi_system_interface_addr *smi_addr1 774 = (struct ipmi_system_interface_addr *) addr1; 775 struct ipmi_system_interface_addr *smi_addr2 776 = (struct ipmi_system_interface_addr *) addr2; 777 return (smi_addr1->lun == smi_addr2->lun); 778 } 779 780 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 781 struct ipmi_ipmb_addr *ipmb_addr1 782 = (struct ipmi_ipmb_addr *) addr1; 783 struct ipmi_ipmb_addr *ipmb_addr2 784 = (struct ipmi_ipmb_addr *) addr2; 785 786 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 787 && (ipmb_addr1->lun == ipmb_addr2->lun)); 788 } 789 790 if (is_lan_addr(addr1)) { 791 struct ipmi_lan_addr *lan_addr1 792 = (struct ipmi_lan_addr *) addr1; 793 struct ipmi_lan_addr *lan_addr2 794 = (struct ipmi_lan_addr *) addr2; 795 796 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 797 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 798 && (lan_addr1->session_handle 799 == lan_addr2->session_handle) 800 && (lan_addr1->lun == lan_addr2->lun)); 801 } 802 803 return 1; 804 } 805 806 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 807 { 808 if (len < sizeof(struct ipmi_system_interface_addr)) 809 return -EINVAL; 810 811 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 812 if (addr->channel != IPMI_BMC_CHANNEL) 813 return -EINVAL; 814 return 0; 815 } 816 817 if ((addr->channel == IPMI_BMC_CHANNEL) 818 || (addr->channel >= IPMI_MAX_CHANNELS) 819 || (addr->channel < 0)) 820 return -EINVAL; 821 822 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 823 if (len < sizeof(struct ipmi_ipmb_addr)) 824 return -EINVAL; 825 return 0; 826 } 827 828 if (is_lan_addr(addr)) { 829 if (len < sizeof(struct ipmi_lan_addr)) 830 return -EINVAL; 831 return 0; 832 } 833 834 return -EINVAL; 835 } 836 EXPORT_SYMBOL(ipmi_validate_addr); 837 838 unsigned int ipmi_addr_length(int addr_type) 839 { 840 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 841 return sizeof(struct ipmi_system_interface_addr); 842 843 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 844 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 845 return sizeof(struct ipmi_ipmb_addr); 846 847 if (addr_type == IPMI_LAN_ADDR_TYPE) 848 return sizeof(struct ipmi_lan_addr); 849 850 return 0; 851 } 852 EXPORT_SYMBOL(ipmi_addr_length); 853 854 static void deliver_response(struct ipmi_recv_msg *msg) 855 { 856 if (!msg->user) { 857 ipmi_smi_t intf = msg->user_msg_data; 858 859 /* Special handling for NULL users. */ 860 if (intf->null_user_handler) { 861 intf->null_user_handler(intf, msg); 862 ipmi_inc_stat(intf, handled_local_responses); 863 } else { 864 /* No handler, so give up. */ 865 ipmi_inc_stat(intf, unhandled_local_responses); 866 } 867 ipmi_free_recv_msg(msg); 868 } else if (!oops_in_progress) { 869 /* 870 * If we are running in the panic context, calling the 871 * receive handler doesn't much meaning and has a deadlock 872 * risk. At this moment, simply skip it in that case. 873 */ 874 875 ipmi_user_t user = msg->user; 876 user->handler->ipmi_recv_hndl(msg, user->handler_data); 877 } 878 } 879 880 static void 881 deliver_err_response(struct ipmi_recv_msg *msg, int err) 882 { 883 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 884 msg->msg_data[0] = err; 885 msg->msg.netfn |= 1; /* Convert to a response. */ 886 msg->msg.data_len = 1; 887 msg->msg.data = msg->msg_data; 888 deliver_response(msg); 889 } 890 891 /* 892 * Find the next sequence number not being used and add the given 893 * message with the given timeout to the sequence table. This must be 894 * called with the interface's seq_lock held. 895 */ 896 static int intf_next_seq(ipmi_smi_t intf, 897 struct ipmi_recv_msg *recv_msg, 898 unsigned long timeout, 899 int retries, 900 int broadcast, 901 unsigned char *seq, 902 long *seqid) 903 { 904 int rv = 0; 905 unsigned int i; 906 907 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 908 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 909 if (!intf->seq_table[i].inuse) 910 break; 911 } 912 913 if (!intf->seq_table[i].inuse) { 914 intf->seq_table[i].recv_msg = recv_msg; 915 916 /* 917 * Start with the maximum timeout, when the send response 918 * comes in we will start the real timer. 919 */ 920 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 921 intf->seq_table[i].orig_timeout = timeout; 922 intf->seq_table[i].retries_left = retries; 923 intf->seq_table[i].broadcast = broadcast; 924 intf->seq_table[i].inuse = 1; 925 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 926 *seq = i; 927 *seqid = intf->seq_table[i].seqid; 928 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 929 need_waiter(intf); 930 } else { 931 rv = -EAGAIN; 932 } 933 934 return rv; 935 } 936 937 /* 938 * Return the receive message for the given sequence number and 939 * release the sequence number so it can be reused. Some other data 940 * is passed in to be sure the message matches up correctly (to help 941 * guard against message coming in after their timeout and the 942 * sequence number being reused). 943 */ 944 static int intf_find_seq(ipmi_smi_t intf, 945 unsigned char seq, 946 short channel, 947 unsigned char cmd, 948 unsigned char netfn, 949 struct ipmi_addr *addr, 950 struct ipmi_recv_msg **recv_msg) 951 { 952 int rv = -ENODEV; 953 unsigned long flags; 954 955 if (seq >= IPMI_IPMB_NUM_SEQ) 956 return -EINVAL; 957 958 spin_lock_irqsave(&(intf->seq_lock), flags); 959 if (intf->seq_table[seq].inuse) { 960 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 961 962 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 963 && (msg->msg.netfn == netfn) 964 && (ipmi_addr_equal(addr, &(msg->addr)))) { 965 *recv_msg = msg; 966 intf->seq_table[seq].inuse = 0; 967 rv = 0; 968 } 969 } 970 spin_unlock_irqrestore(&(intf->seq_lock), flags); 971 972 return rv; 973 } 974 975 976 /* Start the timer for a specific sequence table entry. */ 977 static int intf_start_seq_timer(ipmi_smi_t intf, 978 long msgid) 979 { 980 int rv = -ENODEV; 981 unsigned long flags; 982 unsigned char seq; 983 unsigned long seqid; 984 985 986 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 987 988 spin_lock_irqsave(&(intf->seq_lock), flags); 989 /* 990 * We do this verification because the user can be deleted 991 * while a message is outstanding. 992 */ 993 if ((intf->seq_table[seq].inuse) 994 && (intf->seq_table[seq].seqid == seqid)) { 995 struct seq_table *ent = &(intf->seq_table[seq]); 996 ent->timeout = ent->orig_timeout; 997 rv = 0; 998 } 999 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1000 1001 return rv; 1002 } 1003 1004 /* Got an error for the send message for a specific sequence number. */ 1005 static int intf_err_seq(ipmi_smi_t intf, 1006 long msgid, 1007 unsigned int err) 1008 { 1009 int rv = -ENODEV; 1010 unsigned long flags; 1011 unsigned char seq; 1012 unsigned long seqid; 1013 struct ipmi_recv_msg *msg = NULL; 1014 1015 1016 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 1017 1018 spin_lock_irqsave(&(intf->seq_lock), flags); 1019 /* 1020 * We do this verification because the user can be deleted 1021 * while a message is outstanding. 1022 */ 1023 if ((intf->seq_table[seq].inuse) 1024 && (intf->seq_table[seq].seqid == seqid)) { 1025 struct seq_table *ent = &(intf->seq_table[seq]); 1026 1027 ent->inuse = 0; 1028 msg = ent->recv_msg; 1029 rv = 0; 1030 } 1031 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1032 1033 if (msg) 1034 deliver_err_response(msg, err); 1035 1036 return rv; 1037 } 1038 1039 1040 int ipmi_create_user(unsigned int if_num, 1041 const struct ipmi_user_hndl *handler, 1042 void *handler_data, 1043 ipmi_user_t *user) 1044 { 1045 unsigned long flags; 1046 ipmi_user_t new_user; 1047 int rv = 0; 1048 ipmi_smi_t intf; 1049 1050 /* 1051 * There is no module usecount here, because it's not 1052 * required. Since this can only be used by and called from 1053 * other modules, they will implicitly use this module, and 1054 * thus this can't be removed unless the other modules are 1055 * removed. 1056 */ 1057 1058 if (handler == NULL) 1059 return -EINVAL; 1060 1061 /* 1062 * Make sure the driver is actually initialized, this handles 1063 * problems with initialization order. 1064 */ 1065 if (!initialized) { 1066 rv = ipmi_init_msghandler(); 1067 if (rv) 1068 return rv; 1069 1070 /* 1071 * The init code doesn't return an error if it was turned 1072 * off, but it won't initialize. Check that. 1073 */ 1074 if (!initialized) 1075 return -ENODEV; 1076 } 1077 1078 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 1079 if (!new_user) 1080 return -ENOMEM; 1081 1082 mutex_lock(&ipmi_interfaces_mutex); 1083 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1084 if (intf->intf_num == if_num) 1085 goto found; 1086 } 1087 /* Not found, return an error */ 1088 rv = -EINVAL; 1089 goto out_kfree; 1090 1091 found: 1092 /* Note that each existing user holds a refcount to the interface. */ 1093 kref_get(&intf->refcount); 1094 1095 kref_init(&new_user->refcount); 1096 new_user->handler = handler; 1097 new_user->handler_data = handler_data; 1098 new_user->intf = intf; 1099 new_user->gets_events = false; 1100 1101 if (!try_module_get(intf->handlers->owner)) { 1102 rv = -ENODEV; 1103 goto out_kref; 1104 } 1105 1106 if (intf->handlers->inc_usecount) { 1107 rv = intf->handlers->inc_usecount(intf->send_info); 1108 if (rv) { 1109 module_put(intf->handlers->owner); 1110 goto out_kref; 1111 } 1112 } 1113 1114 /* 1115 * Hold the lock so intf->handlers is guaranteed to be good 1116 * until now 1117 */ 1118 mutex_unlock(&ipmi_interfaces_mutex); 1119 1120 new_user->valid = true; 1121 spin_lock_irqsave(&intf->seq_lock, flags); 1122 list_add_rcu(&new_user->link, &intf->users); 1123 spin_unlock_irqrestore(&intf->seq_lock, flags); 1124 if (handler->ipmi_watchdog_pretimeout) { 1125 /* User wants pretimeouts, so make sure to watch for them. */ 1126 if (atomic_inc_return(&intf->event_waiters) == 1) 1127 need_waiter(intf); 1128 } 1129 *user = new_user; 1130 return 0; 1131 1132 out_kref: 1133 kref_put(&intf->refcount, intf_free); 1134 out_kfree: 1135 mutex_unlock(&ipmi_interfaces_mutex); 1136 kfree(new_user); 1137 return rv; 1138 } 1139 EXPORT_SYMBOL(ipmi_create_user); 1140 1141 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data) 1142 { 1143 int rv = 0; 1144 ipmi_smi_t intf; 1145 const struct ipmi_smi_handlers *handlers; 1146 1147 mutex_lock(&ipmi_interfaces_mutex); 1148 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 1149 if (intf->intf_num == if_num) 1150 goto found; 1151 } 1152 /* Not found, return an error */ 1153 rv = -EINVAL; 1154 mutex_unlock(&ipmi_interfaces_mutex); 1155 return rv; 1156 1157 found: 1158 handlers = intf->handlers; 1159 rv = -ENOSYS; 1160 if (handlers->get_smi_info) 1161 rv = handlers->get_smi_info(intf->send_info, data); 1162 mutex_unlock(&ipmi_interfaces_mutex); 1163 1164 return rv; 1165 } 1166 EXPORT_SYMBOL(ipmi_get_smi_info); 1167 1168 static void free_user(struct kref *ref) 1169 { 1170 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 1171 kfree(user); 1172 } 1173 1174 int ipmi_destroy_user(ipmi_user_t user) 1175 { 1176 ipmi_smi_t intf = user->intf; 1177 int i; 1178 unsigned long flags; 1179 struct cmd_rcvr *rcvr; 1180 struct cmd_rcvr *rcvrs = NULL; 1181 1182 user->valid = false; 1183 1184 if (user->handler->ipmi_watchdog_pretimeout) 1185 atomic_dec(&intf->event_waiters); 1186 1187 if (user->gets_events) 1188 atomic_dec(&intf->event_waiters); 1189 1190 /* Remove the user from the interface's sequence table. */ 1191 spin_lock_irqsave(&intf->seq_lock, flags); 1192 list_del_rcu(&user->link); 1193 1194 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 1195 if (intf->seq_table[i].inuse 1196 && (intf->seq_table[i].recv_msg->user == user)) { 1197 intf->seq_table[i].inuse = 0; 1198 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 1199 } 1200 } 1201 spin_unlock_irqrestore(&intf->seq_lock, flags); 1202 1203 /* 1204 * Remove the user from the command receiver's table. First 1205 * we build a list of everything (not using the standard link, 1206 * since other things may be using it till we do 1207 * synchronize_rcu()) then free everything in that list. 1208 */ 1209 mutex_lock(&intf->cmd_rcvrs_mutex); 1210 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1211 if (rcvr->user == user) { 1212 list_del_rcu(&rcvr->link); 1213 rcvr->next = rcvrs; 1214 rcvrs = rcvr; 1215 } 1216 } 1217 mutex_unlock(&intf->cmd_rcvrs_mutex); 1218 synchronize_rcu(); 1219 while (rcvrs) { 1220 rcvr = rcvrs; 1221 rcvrs = rcvr->next; 1222 kfree(rcvr); 1223 } 1224 1225 mutex_lock(&ipmi_interfaces_mutex); 1226 if (intf->handlers) { 1227 module_put(intf->handlers->owner); 1228 if (intf->handlers->dec_usecount) 1229 intf->handlers->dec_usecount(intf->send_info); 1230 } 1231 mutex_unlock(&ipmi_interfaces_mutex); 1232 1233 kref_put(&intf->refcount, intf_free); 1234 1235 kref_put(&user->refcount, free_user); 1236 1237 return 0; 1238 } 1239 EXPORT_SYMBOL(ipmi_destroy_user); 1240 1241 int ipmi_get_version(ipmi_user_t user, 1242 unsigned char *major, 1243 unsigned char *minor) 1244 { 1245 struct ipmi_device_id id; 1246 int rv; 1247 1248 rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL); 1249 if (rv) 1250 return rv; 1251 1252 *major = ipmi_version_major(&id); 1253 *minor = ipmi_version_minor(&id); 1254 1255 return 0; 1256 } 1257 EXPORT_SYMBOL(ipmi_get_version); 1258 1259 int ipmi_set_my_address(ipmi_user_t user, 1260 unsigned int channel, 1261 unsigned char address) 1262 { 1263 if (channel >= IPMI_MAX_CHANNELS) 1264 return -EINVAL; 1265 user->intf->addrinfo[channel].address = address; 1266 return 0; 1267 } 1268 EXPORT_SYMBOL(ipmi_set_my_address); 1269 1270 int ipmi_get_my_address(ipmi_user_t user, 1271 unsigned int channel, 1272 unsigned char *address) 1273 { 1274 if (channel >= IPMI_MAX_CHANNELS) 1275 return -EINVAL; 1276 *address = user->intf->addrinfo[channel].address; 1277 return 0; 1278 } 1279 EXPORT_SYMBOL(ipmi_get_my_address); 1280 1281 int ipmi_set_my_LUN(ipmi_user_t user, 1282 unsigned int channel, 1283 unsigned char LUN) 1284 { 1285 if (channel >= IPMI_MAX_CHANNELS) 1286 return -EINVAL; 1287 user->intf->addrinfo[channel].lun = LUN & 0x3; 1288 return 0; 1289 } 1290 EXPORT_SYMBOL(ipmi_set_my_LUN); 1291 1292 int ipmi_get_my_LUN(ipmi_user_t user, 1293 unsigned int channel, 1294 unsigned char *address) 1295 { 1296 if (channel >= IPMI_MAX_CHANNELS) 1297 return -EINVAL; 1298 *address = user->intf->addrinfo[channel].lun; 1299 return 0; 1300 } 1301 EXPORT_SYMBOL(ipmi_get_my_LUN); 1302 1303 int ipmi_get_maintenance_mode(ipmi_user_t user) 1304 { 1305 int mode; 1306 unsigned long flags; 1307 1308 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1309 mode = user->intf->maintenance_mode; 1310 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1311 1312 return mode; 1313 } 1314 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1315 1316 static void maintenance_mode_update(ipmi_smi_t intf) 1317 { 1318 if (intf->handlers->set_maintenance_mode) 1319 intf->handlers->set_maintenance_mode( 1320 intf->send_info, intf->maintenance_mode_enable); 1321 } 1322 1323 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1324 { 1325 int rv = 0; 1326 unsigned long flags; 1327 ipmi_smi_t intf = user->intf; 1328 1329 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1330 if (intf->maintenance_mode != mode) { 1331 switch (mode) { 1332 case IPMI_MAINTENANCE_MODE_AUTO: 1333 intf->maintenance_mode_enable 1334 = (intf->auto_maintenance_timeout > 0); 1335 break; 1336 1337 case IPMI_MAINTENANCE_MODE_OFF: 1338 intf->maintenance_mode_enable = false; 1339 break; 1340 1341 case IPMI_MAINTENANCE_MODE_ON: 1342 intf->maintenance_mode_enable = true; 1343 break; 1344 1345 default: 1346 rv = -EINVAL; 1347 goto out_unlock; 1348 } 1349 intf->maintenance_mode = mode; 1350 1351 maintenance_mode_update(intf); 1352 } 1353 out_unlock: 1354 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1355 1356 return rv; 1357 } 1358 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1359 1360 int ipmi_set_gets_events(ipmi_user_t user, bool val) 1361 { 1362 unsigned long flags; 1363 ipmi_smi_t intf = user->intf; 1364 struct ipmi_recv_msg *msg, *msg2; 1365 struct list_head msgs; 1366 1367 INIT_LIST_HEAD(&msgs); 1368 1369 spin_lock_irqsave(&intf->events_lock, flags); 1370 if (user->gets_events == val) 1371 goto out; 1372 1373 user->gets_events = val; 1374 1375 if (val) { 1376 if (atomic_inc_return(&intf->event_waiters) == 1) 1377 need_waiter(intf); 1378 } else { 1379 atomic_dec(&intf->event_waiters); 1380 } 1381 1382 if (intf->delivering_events) 1383 /* 1384 * Another thread is delivering events for this, so 1385 * let it handle any new events. 1386 */ 1387 goto out; 1388 1389 /* Deliver any queued events. */ 1390 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1391 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1392 list_move_tail(&msg->link, &msgs); 1393 intf->waiting_events_count = 0; 1394 if (intf->event_msg_printed) { 1395 dev_warn(intf->si_dev, 1396 PFX "Event queue no longer full\n"); 1397 intf->event_msg_printed = 0; 1398 } 1399 1400 intf->delivering_events = 1; 1401 spin_unlock_irqrestore(&intf->events_lock, flags); 1402 1403 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1404 msg->user = user; 1405 kref_get(&user->refcount); 1406 deliver_response(msg); 1407 } 1408 1409 spin_lock_irqsave(&intf->events_lock, flags); 1410 intf->delivering_events = 0; 1411 } 1412 1413 out: 1414 spin_unlock_irqrestore(&intf->events_lock, flags); 1415 1416 return 0; 1417 } 1418 EXPORT_SYMBOL(ipmi_set_gets_events); 1419 1420 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1421 unsigned char netfn, 1422 unsigned char cmd, 1423 unsigned char chan) 1424 { 1425 struct cmd_rcvr *rcvr; 1426 1427 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1428 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1429 && (rcvr->chans & (1 << chan))) 1430 return rcvr; 1431 } 1432 return NULL; 1433 } 1434 1435 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1436 unsigned char netfn, 1437 unsigned char cmd, 1438 unsigned int chans) 1439 { 1440 struct cmd_rcvr *rcvr; 1441 1442 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1443 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1444 && (rcvr->chans & chans)) 1445 return 0; 1446 } 1447 return 1; 1448 } 1449 1450 int ipmi_register_for_cmd(ipmi_user_t user, 1451 unsigned char netfn, 1452 unsigned char cmd, 1453 unsigned int chans) 1454 { 1455 ipmi_smi_t intf = user->intf; 1456 struct cmd_rcvr *rcvr; 1457 int rv = 0; 1458 1459 1460 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1461 if (!rcvr) 1462 return -ENOMEM; 1463 rcvr->cmd = cmd; 1464 rcvr->netfn = netfn; 1465 rcvr->chans = chans; 1466 rcvr->user = user; 1467 1468 mutex_lock(&intf->cmd_rcvrs_mutex); 1469 /* Make sure the command/netfn is not already registered. */ 1470 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1471 rv = -EBUSY; 1472 goto out_unlock; 1473 } 1474 1475 if (atomic_inc_return(&intf->event_waiters) == 1) 1476 need_waiter(intf); 1477 1478 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1479 1480 out_unlock: 1481 mutex_unlock(&intf->cmd_rcvrs_mutex); 1482 if (rv) 1483 kfree(rcvr); 1484 1485 return rv; 1486 } 1487 EXPORT_SYMBOL(ipmi_register_for_cmd); 1488 1489 int ipmi_unregister_for_cmd(ipmi_user_t user, 1490 unsigned char netfn, 1491 unsigned char cmd, 1492 unsigned int chans) 1493 { 1494 ipmi_smi_t intf = user->intf; 1495 struct cmd_rcvr *rcvr; 1496 struct cmd_rcvr *rcvrs = NULL; 1497 int i, rv = -ENOENT; 1498 1499 mutex_lock(&intf->cmd_rcvrs_mutex); 1500 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1501 if (((1 << i) & chans) == 0) 1502 continue; 1503 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1504 if (rcvr == NULL) 1505 continue; 1506 if (rcvr->user == user) { 1507 rv = 0; 1508 rcvr->chans &= ~chans; 1509 if (rcvr->chans == 0) { 1510 list_del_rcu(&rcvr->link); 1511 rcvr->next = rcvrs; 1512 rcvrs = rcvr; 1513 } 1514 } 1515 } 1516 mutex_unlock(&intf->cmd_rcvrs_mutex); 1517 synchronize_rcu(); 1518 while (rcvrs) { 1519 atomic_dec(&intf->event_waiters); 1520 rcvr = rcvrs; 1521 rcvrs = rcvr->next; 1522 kfree(rcvr); 1523 } 1524 return rv; 1525 } 1526 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1527 1528 static unsigned char 1529 ipmb_checksum(unsigned char *data, int size) 1530 { 1531 unsigned char csum = 0; 1532 1533 for (; size > 0; size--, data++) 1534 csum += *data; 1535 1536 return -csum; 1537 } 1538 1539 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1540 struct kernel_ipmi_msg *msg, 1541 struct ipmi_ipmb_addr *ipmb_addr, 1542 long msgid, 1543 unsigned char ipmb_seq, 1544 int broadcast, 1545 unsigned char source_address, 1546 unsigned char source_lun) 1547 { 1548 int i = broadcast; 1549 1550 /* Format the IPMB header data. */ 1551 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1552 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1553 smi_msg->data[2] = ipmb_addr->channel; 1554 if (broadcast) 1555 smi_msg->data[3] = 0; 1556 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1557 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1558 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1559 smi_msg->data[i+6] = source_address; 1560 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1561 smi_msg->data[i+8] = msg->cmd; 1562 1563 /* Now tack on the data to the message. */ 1564 if (msg->data_len > 0) 1565 memcpy(&(smi_msg->data[i+9]), msg->data, 1566 msg->data_len); 1567 smi_msg->data_size = msg->data_len + 9; 1568 1569 /* Now calculate the checksum and tack it on. */ 1570 smi_msg->data[i+smi_msg->data_size] 1571 = ipmb_checksum(&(smi_msg->data[i+6]), 1572 smi_msg->data_size-6); 1573 1574 /* 1575 * Add on the checksum size and the offset from the 1576 * broadcast. 1577 */ 1578 smi_msg->data_size += 1 + i; 1579 1580 smi_msg->msgid = msgid; 1581 } 1582 1583 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1584 struct kernel_ipmi_msg *msg, 1585 struct ipmi_lan_addr *lan_addr, 1586 long msgid, 1587 unsigned char ipmb_seq, 1588 unsigned char source_lun) 1589 { 1590 /* Format the IPMB header data. */ 1591 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1592 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1593 smi_msg->data[2] = lan_addr->channel; 1594 smi_msg->data[3] = lan_addr->session_handle; 1595 smi_msg->data[4] = lan_addr->remote_SWID; 1596 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1597 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1598 smi_msg->data[7] = lan_addr->local_SWID; 1599 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1600 smi_msg->data[9] = msg->cmd; 1601 1602 /* Now tack on the data to the message. */ 1603 if (msg->data_len > 0) 1604 memcpy(&(smi_msg->data[10]), msg->data, 1605 msg->data_len); 1606 smi_msg->data_size = msg->data_len + 10; 1607 1608 /* Now calculate the checksum and tack it on. */ 1609 smi_msg->data[smi_msg->data_size] 1610 = ipmb_checksum(&(smi_msg->data[7]), 1611 smi_msg->data_size-7); 1612 1613 /* 1614 * Add on the checksum size and the offset from the 1615 * broadcast. 1616 */ 1617 smi_msg->data_size += 1; 1618 1619 smi_msg->msgid = msgid; 1620 } 1621 1622 static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf, 1623 struct ipmi_smi_msg *smi_msg, 1624 int priority) 1625 { 1626 if (intf->curr_msg) { 1627 if (priority > 0) 1628 list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs); 1629 else 1630 list_add_tail(&smi_msg->link, &intf->xmit_msgs); 1631 smi_msg = NULL; 1632 } else { 1633 intf->curr_msg = smi_msg; 1634 } 1635 1636 return smi_msg; 1637 } 1638 1639 1640 static void smi_send(ipmi_smi_t intf, const struct ipmi_smi_handlers *handlers, 1641 struct ipmi_smi_msg *smi_msg, int priority) 1642 { 1643 int run_to_completion = intf->run_to_completion; 1644 1645 if (run_to_completion) { 1646 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1647 } else { 1648 unsigned long flags; 1649 1650 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 1651 smi_msg = smi_add_send_msg(intf, smi_msg, priority); 1652 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 1653 } 1654 1655 if (smi_msg) 1656 handlers->sender(intf->send_info, smi_msg); 1657 } 1658 1659 /* 1660 * Separate from ipmi_request so that the user does not have to be 1661 * supplied in certain circumstances (mainly at panic time). If 1662 * messages are supplied, they will be freed, even if an error 1663 * occurs. 1664 */ 1665 static int i_ipmi_request(ipmi_user_t user, 1666 ipmi_smi_t intf, 1667 struct ipmi_addr *addr, 1668 long msgid, 1669 struct kernel_ipmi_msg *msg, 1670 void *user_msg_data, 1671 void *supplied_smi, 1672 struct ipmi_recv_msg *supplied_recv, 1673 int priority, 1674 unsigned char source_address, 1675 unsigned char source_lun, 1676 int retries, 1677 unsigned int retry_time_ms) 1678 { 1679 int rv = 0; 1680 struct ipmi_smi_msg *smi_msg; 1681 struct ipmi_recv_msg *recv_msg; 1682 unsigned long flags; 1683 1684 1685 if (supplied_recv) 1686 recv_msg = supplied_recv; 1687 else { 1688 recv_msg = ipmi_alloc_recv_msg(); 1689 if (recv_msg == NULL) 1690 return -ENOMEM; 1691 } 1692 recv_msg->user_msg_data = user_msg_data; 1693 1694 if (supplied_smi) 1695 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1696 else { 1697 smi_msg = ipmi_alloc_smi_msg(); 1698 if (smi_msg == NULL) { 1699 ipmi_free_recv_msg(recv_msg); 1700 return -ENOMEM; 1701 } 1702 } 1703 1704 rcu_read_lock(); 1705 if (intf->in_shutdown) { 1706 rv = -ENODEV; 1707 goto out_err; 1708 } 1709 1710 recv_msg->user = user; 1711 if (user) 1712 kref_get(&user->refcount); 1713 recv_msg->msgid = msgid; 1714 /* 1715 * Store the message to send in the receive message so timeout 1716 * responses can get the proper response data. 1717 */ 1718 recv_msg->msg = *msg; 1719 1720 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1721 struct ipmi_system_interface_addr *smi_addr; 1722 1723 if (msg->netfn & 1) { 1724 /* Responses are not allowed to the SMI. */ 1725 rv = -EINVAL; 1726 goto out_err; 1727 } 1728 1729 smi_addr = (struct ipmi_system_interface_addr *) addr; 1730 if (smi_addr->lun > 3) { 1731 ipmi_inc_stat(intf, sent_invalid_commands); 1732 rv = -EINVAL; 1733 goto out_err; 1734 } 1735 1736 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1737 1738 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1739 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1740 || (msg->cmd == IPMI_GET_MSG_CMD) 1741 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1742 /* 1743 * We don't let the user do these, since we manage 1744 * the sequence numbers. 1745 */ 1746 ipmi_inc_stat(intf, sent_invalid_commands); 1747 rv = -EINVAL; 1748 goto out_err; 1749 } 1750 1751 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1752 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1753 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1754 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1755 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1756 intf->auto_maintenance_timeout 1757 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1758 if (!intf->maintenance_mode 1759 && !intf->maintenance_mode_enable) { 1760 intf->maintenance_mode_enable = true; 1761 maintenance_mode_update(intf); 1762 } 1763 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1764 flags); 1765 } 1766 1767 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1768 ipmi_inc_stat(intf, sent_invalid_commands); 1769 rv = -EMSGSIZE; 1770 goto out_err; 1771 } 1772 1773 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1774 smi_msg->data[1] = msg->cmd; 1775 smi_msg->msgid = msgid; 1776 smi_msg->user_data = recv_msg; 1777 if (msg->data_len > 0) 1778 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1779 smi_msg->data_size = msg->data_len + 2; 1780 ipmi_inc_stat(intf, sent_local_commands); 1781 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1782 struct ipmi_ipmb_addr *ipmb_addr; 1783 unsigned char ipmb_seq; 1784 long seqid; 1785 int broadcast = 0; 1786 struct ipmi_channel *chans; 1787 1788 if (addr->channel >= IPMI_MAX_CHANNELS) { 1789 ipmi_inc_stat(intf, sent_invalid_commands); 1790 rv = -EINVAL; 1791 goto out_err; 1792 } 1793 1794 chans = READ_ONCE(intf->channel_list)->c; 1795 1796 if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) { 1797 ipmi_inc_stat(intf, sent_invalid_commands); 1798 rv = -EINVAL; 1799 goto out_err; 1800 } 1801 1802 if (retries < 0) { 1803 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1804 retries = 0; /* Don't retry broadcasts. */ 1805 else 1806 retries = 4; 1807 } 1808 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1809 /* 1810 * Broadcasts add a zero at the beginning of the 1811 * message, but otherwise is the same as an IPMB 1812 * address. 1813 */ 1814 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1815 broadcast = 1; 1816 } 1817 1818 1819 /* Default to 1 second retries. */ 1820 if (retry_time_ms == 0) 1821 retry_time_ms = 1000; 1822 1823 /* 1824 * 9 for the header and 1 for the checksum, plus 1825 * possibly one for the broadcast. 1826 */ 1827 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1828 ipmi_inc_stat(intf, sent_invalid_commands); 1829 rv = -EMSGSIZE; 1830 goto out_err; 1831 } 1832 1833 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1834 if (ipmb_addr->lun > 3) { 1835 ipmi_inc_stat(intf, sent_invalid_commands); 1836 rv = -EINVAL; 1837 goto out_err; 1838 } 1839 1840 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1841 1842 if (recv_msg->msg.netfn & 0x1) { 1843 /* 1844 * It's a response, so use the user's sequence 1845 * from msgid. 1846 */ 1847 ipmi_inc_stat(intf, sent_ipmb_responses); 1848 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1849 msgid, broadcast, 1850 source_address, source_lun); 1851 1852 /* 1853 * Save the receive message so we can use it 1854 * to deliver the response. 1855 */ 1856 smi_msg->user_data = recv_msg; 1857 } else { 1858 /* It's a command, so get a sequence for it. */ 1859 1860 spin_lock_irqsave(&(intf->seq_lock), flags); 1861 1862 /* 1863 * Create a sequence number with a 1 second 1864 * timeout and 4 retries. 1865 */ 1866 rv = intf_next_seq(intf, 1867 recv_msg, 1868 retry_time_ms, 1869 retries, 1870 broadcast, 1871 &ipmb_seq, 1872 &seqid); 1873 if (rv) { 1874 /* 1875 * We have used up all the sequence numbers, 1876 * probably, so abort. 1877 */ 1878 spin_unlock_irqrestore(&(intf->seq_lock), 1879 flags); 1880 goto out_err; 1881 } 1882 1883 ipmi_inc_stat(intf, sent_ipmb_commands); 1884 1885 /* 1886 * Store the sequence number in the message, 1887 * so that when the send message response 1888 * comes back we can start the timer. 1889 */ 1890 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1891 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1892 ipmb_seq, broadcast, 1893 source_address, source_lun); 1894 1895 /* 1896 * Copy the message into the recv message data, so we 1897 * can retransmit it later if necessary. 1898 */ 1899 memcpy(recv_msg->msg_data, smi_msg->data, 1900 smi_msg->data_size); 1901 recv_msg->msg.data = recv_msg->msg_data; 1902 recv_msg->msg.data_len = smi_msg->data_size; 1903 1904 /* 1905 * We don't unlock until here, because we need 1906 * to copy the completed message into the 1907 * recv_msg before we release the lock. 1908 * Otherwise, race conditions may bite us. I 1909 * know that's pretty paranoid, but I prefer 1910 * to be correct. 1911 */ 1912 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1913 } 1914 } else if (is_lan_addr(addr)) { 1915 struct ipmi_lan_addr *lan_addr; 1916 unsigned char ipmb_seq; 1917 long seqid; 1918 struct ipmi_channel *chans; 1919 1920 if (addr->channel >= IPMI_MAX_CHANNELS) { 1921 ipmi_inc_stat(intf, sent_invalid_commands); 1922 rv = -EINVAL; 1923 goto out_err; 1924 } 1925 1926 chans = READ_ONCE(intf->channel_list)->c; 1927 1928 if ((chans[addr->channel].medium 1929 != IPMI_CHANNEL_MEDIUM_8023LAN) 1930 && (chans[addr->channel].medium 1931 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1932 ipmi_inc_stat(intf, sent_invalid_commands); 1933 rv = -EINVAL; 1934 goto out_err; 1935 } 1936 1937 retries = 4; 1938 1939 /* Default to 1 second retries. */ 1940 if (retry_time_ms == 0) 1941 retry_time_ms = 1000; 1942 1943 /* 11 for the header and 1 for the checksum. */ 1944 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1945 ipmi_inc_stat(intf, sent_invalid_commands); 1946 rv = -EMSGSIZE; 1947 goto out_err; 1948 } 1949 1950 lan_addr = (struct ipmi_lan_addr *) addr; 1951 if (lan_addr->lun > 3) { 1952 ipmi_inc_stat(intf, sent_invalid_commands); 1953 rv = -EINVAL; 1954 goto out_err; 1955 } 1956 1957 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1958 1959 if (recv_msg->msg.netfn & 0x1) { 1960 /* 1961 * It's a response, so use the user's sequence 1962 * from msgid. 1963 */ 1964 ipmi_inc_stat(intf, sent_lan_responses); 1965 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1966 msgid, source_lun); 1967 1968 /* 1969 * Save the receive message so we can use it 1970 * to deliver the response. 1971 */ 1972 smi_msg->user_data = recv_msg; 1973 } else { 1974 /* It's a command, so get a sequence for it. */ 1975 1976 spin_lock_irqsave(&(intf->seq_lock), flags); 1977 1978 /* 1979 * Create a sequence number with a 1 second 1980 * timeout and 4 retries. 1981 */ 1982 rv = intf_next_seq(intf, 1983 recv_msg, 1984 retry_time_ms, 1985 retries, 1986 0, 1987 &ipmb_seq, 1988 &seqid); 1989 if (rv) { 1990 /* 1991 * We have used up all the sequence numbers, 1992 * probably, so abort. 1993 */ 1994 spin_unlock_irqrestore(&(intf->seq_lock), 1995 flags); 1996 goto out_err; 1997 } 1998 1999 ipmi_inc_stat(intf, sent_lan_commands); 2000 2001 /* 2002 * Store the sequence number in the message, 2003 * so that when the send message response 2004 * comes back we can start the timer. 2005 */ 2006 format_lan_msg(smi_msg, msg, lan_addr, 2007 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 2008 ipmb_seq, source_lun); 2009 2010 /* 2011 * Copy the message into the recv message data, so we 2012 * can retransmit it later if necessary. 2013 */ 2014 memcpy(recv_msg->msg_data, smi_msg->data, 2015 smi_msg->data_size); 2016 recv_msg->msg.data = recv_msg->msg_data; 2017 recv_msg->msg.data_len = smi_msg->data_size; 2018 2019 /* 2020 * We don't unlock until here, because we need 2021 * to copy the completed message into the 2022 * recv_msg before we release the lock. 2023 * Otherwise, race conditions may bite us. I 2024 * know that's pretty paranoid, but I prefer 2025 * to be correct. 2026 */ 2027 spin_unlock_irqrestore(&(intf->seq_lock), flags); 2028 } 2029 } else { 2030 /* Unknown address type. */ 2031 ipmi_inc_stat(intf, sent_invalid_commands); 2032 rv = -EINVAL; 2033 goto out_err; 2034 } 2035 2036 #ifdef DEBUG_MSGING 2037 { 2038 int m; 2039 for (m = 0; m < smi_msg->data_size; m++) 2040 printk(" %2.2x", smi_msg->data[m]); 2041 printk("\n"); 2042 } 2043 #endif 2044 2045 smi_send(intf, intf->handlers, smi_msg, priority); 2046 rcu_read_unlock(); 2047 2048 return 0; 2049 2050 out_err: 2051 rcu_read_unlock(); 2052 ipmi_free_smi_msg(smi_msg); 2053 ipmi_free_recv_msg(recv_msg); 2054 return rv; 2055 } 2056 2057 static int check_addr(ipmi_smi_t intf, 2058 struct ipmi_addr *addr, 2059 unsigned char *saddr, 2060 unsigned char *lun) 2061 { 2062 if (addr->channel >= IPMI_MAX_CHANNELS) 2063 return -EINVAL; 2064 *lun = intf->addrinfo[addr->channel].lun; 2065 *saddr = intf->addrinfo[addr->channel].address; 2066 return 0; 2067 } 2068 2069 int ipmi_request_settime(ipmi_user_t user, 2070 struct ipmi_addr *addr, 2071 long msgid, 2072 struct kernel_ipmi_msg *msg, 2073 void *user_msg_data, 2074 int priority, 2075 int retries, 2076 unsigned int retry_time_ms) 2077 { 2078 unsigned char saddr = 0, lun = 0; 2079 int rv; 2080 2081 if (!user) 2082 return -EINVAL; 2083 rv = check_addr(user->intf, addr, &saddr, &lun); 2084 if (rv) 2085 return rv; 2086 return i_ipmi_request(user, 2087 user->intf, 2088 addr, 2089 msgid, 2090 msg, 2091 user_msg_data, 2092 NULL, NULL, 2093 priority, 2094 saddr, 2095 lun, 2096 retries, 2097 retry_time_ms); 2098 } 2099 EXPORT_SYMBOL(ipmi_request_settime); 2100 2101 int ipmi_request_supply_msgs(ipmi_user_t user, 2102 struct ipmi_addr *addr, 2103 long msgid, 2104 struct kernel_ipmi_msg *msg, 2105 void *user_msg_data, 2106 void *supplied_smi, 2107 struct ipmi_recv_msg *supplied_recv, 2108 int priority) 2109 { 2110 unsigned char saddr = 0, lun = 0; 2111 int rv; 2112 2113 if (!user) 2114 return -EINVAL; 2115 rv = check_addr(user->intf, addr, &saddr, &lun); 2116 if (rv) 2117 return rv; 2118 return i_ipmi_request(user, 2119 user->intf, 2120 addr, 2121 msgid, 2122 msg, 2123 user_msg_data, 2124 supplied_smi, 2125 supplied_recv, 2126 priority, 2127 saddr, 2128 lun, 2129 -1, 0); 2130 } 2131 EXPORT_SYMBOL(ipmi_request_supply_msgs); 2132 2133 static void bmc_device_id_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2134 { 2135 int rv; 2136 2137 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2138 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2139 || (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) { 2140 dev_warn(intf->si_dev, 2141 PFX "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n", 2142 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd); 2143 return; 2144 } 2145 2146 rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd, 2147 msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id); 2148 if (rv) { 2149 dev_warn(intf->si_dev, 2150 PFX "device id demangle failed: %d\n", rv); 2151 intf->bmc->dyn_id_set = 0; 2152 } else { 2153 /* 2154 * Make sure the id data is available before setting 2155 * dyn_id_set. 2156 */ 2157 smp_wmb(); 2158 intf->bmc->dyn_id_set = 1; 2159 } 2160 2161 wake_up(&intf->waitq); 2162 } 2163 2164 static int 2165 send_get_device_id_cmd(ipmi_smi_t intf) 2166 { 2167 struct ipmi_system_interface_addr si; 2168 struct kernel_ipmi_msg msg; 2169 2170 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2171 si.channel = IPMI_BMC_CHANNEL; 2172 si.lun = 0; 2173 2174 msg.netfn = IPMI_NETFN_APP_REQUEST; 2175 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 2176 msg.data = NULL; 2177 msg.data_len = 0; 2178 2179 return i_ipmi_request(NULL, 2180 intf, 2181 (struct ipmi_addr *) &si, 2182 0, 2183 &msg, 2184 intf, 2185 NULL, 2186 NULL, 2187 0, 2188 intf->addrinfo[0].address, 2189 intf->addrinfo[0].lun, 2190 -1, 0); 2191 } 2192 2193 static int __get_device_id(ipmi_smi_t intf, struct bmc_device *bmc) 2194 { 2195 int rv; 2196 2197 bmc->dyn_id_set = 2; 2198 2199 intf->null_user_handler = bmc_device_id_handler; 2200 2201 rv = send_get_device_id_cmd(intf); 2202 if (rv) 2203 return rv; 2204 2205 wait_event(intf->waitq, bmc->dyn_id_set != 2); 2206 2207 if (!bmc->dyn_id_set) 2208 rv = -EIO; /* Something went wrong in the fetch. */ 2209 2210 /* dyn_id_set makes the id data available. */ 2211 smp_rmb(); 2212 2213 intf->null_user_handler = NULL; 2214 2215 return rv; 2216 } 2217 2218 /* 2219 * Fetch the device id for the bmc/interface. You must pass in either 2220 * bmc or intf, this code will get the other one. If the data has 2221 * been recently fetched, this will just use the cached data. Otherwise 2222 * it will run a new fetch. 2223 * 2224 * Except for the first time this is called (in ipmi_register_smi()), 2225 * this will always return good data; 2226 */ 2227 static int __bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc, 2228 struct ipmi_device_id *id, 2229 bool *guid_set, guid_t *guid, int intf_num) 2230 { 2231 int rv = 0; 2232 int prev_dyn_id_set, prev_guid_set; 2233 bool intf_set = intf != NULL; 2234 2235 if (!intf) { 2236 mutex_lock(&bmc->dyn_mutex); 2237 retry_bmc_lock: 2238 if (list_empty(&bmc->intfs)) { 2239 mutex_unlock(&bmc->dyn_mutex); 2240 return -ENOENT; 2241 } 2242 intf = list_first_entry(&bmc->intfs, struct ipmi_smi, 2243 bmc_link); 2244 kref_get(&intf->refcount); 2245 mutex_unlock(&bmc->dyn_mutex); 2246 mutex_lock(&intf->bmc_reg_mutex); 2247 mutex_lock(&bmc->dyn_mutex); 2248 if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi, 2249 bmc_link)) { 2250 mutex_unlock(&intf->bmc_reg_mutex); 2251 kref_put(&intf->refcount, intf_free); 2252 goto retry_bmc_lock; 2253 } 2254 } else { 2255 mutex_lock(&intf->bmc_reg_mutex); 2256 bmc = intf->bmc; 2257 mutex_lock(&bmc->dyn_mutex); 2258 kref_get(&intf->refcount); 2259 } 2260 2261 /* If we have a valid and current ID, just return that. */ 2262 if (intf->in_bmc_register || 2263 (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry))) 2264 goto out_noprocessing; 2265 2266 prev_guid_set = bmc->dyn_guid_set; 2267 __get_guid(intf); 2268 2269 prev_dyn_id_set = bmc->dyn_id_set; 2270 rv = __get_device_id(intf, bmc); 2271 if (rv) 2272 goto out; 2273 2274 /* 2275 * The guid, device id, manufacturer id, and product id should 2276 * not change on a BMC. If it does we have to do some dancing. 2277 */ 2278 if (!intf->bmc_registered 2279 || (!prev_guid_set && bmc->dyn_guid_set) 2280 || (!prev_dyn_id_set && bmc->dyn_id_set) 2281 || (prev_guid_set && bmc->dyn_guid_set 2282 && !guid_equal(&bmc->guid, &bmc->fetch_guid)) 2283 || bmc->id.device_id != bmc->fetch_id.device_id 2284 || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id 2285 || bmc->id.product_id != bmc->fetch_id.product_id) { 2286 struct ipmi_device_id id = bmc->fetch_id; 2287 int guid_set = bmc->dyn_guid_set; 2288 guid_t guid; 2289 2290 guid = bmc->fetch_guid; 2291 mutex_unlock(&bmc->dyn_mutex); 2292 2293 __ipmi_bmc_unregister(intf); 2294 /* Fill in the temporary BMC for good measure. */ 2295 intf->bmc->id = id; 2296 intf->bmc->dyn_guid_set = guid_set; 2297 intf->bmc->guid = guid; 2298 if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num)) 2299 need_waiter(intf); /* Retry later on an error. */ 2300 else 2301 __scan_channels(intf, &id); 2302 2303 2304 if (!intf_set) { 2305 /* 2306 * We weren't given the interface on the 2307 * command line, so restart the operation on 2308 * the next interface for the BMC. 2309 */ 2310 mutex_unlock(&intf->bmc_reg_mutex); 2311 mutex_lock(&bmc->dyn_mutex); 2312 goto retry_bmc_lock; 2313 } 2314 2315 /* We have a new BMC, set it up. */ 2316 bmc = intf->bmc; 2317 mutex_lock(&bmc->dyn_mutex); 2318 goto out_noprocessing; 2319 } else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id))) 2320 /* Version info changes, scan the channels again. */ 2321 __scan_channels(intf, &bmc->fetch_id); 2322 2323 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 2324 2325 out: 2326 if (rv && prev_dyn_id_set) { 2327 rv = 0; /* Ignore failures if we have previous data. */ 2328 bmc->dyn_id_set = prev_dyn_id_set; 2329 } 2330 if (!rv) { 2331 bmc->id = bmc->fetch_id; 2332 if (bmc->dyn_guid_set) 2333 bmc->guid = bmc->fetch_guid; 2334 else if (prev_guid_set) 2335 /* 2336 * The guid used to be valid and it failed to fetch, 2337 * just use the cached value. 2338 */ 2339 bmc->dyn_guid_set = prev_guid_set; 2340 } 2341 out_noprocessing: 2342 if (!rv) { 2343 if (id) 2344 *id = bmc->id; 2345 2346 if (guid_set) 2347 *guid_set = bmc->dyn_guid_set; 2348 2349 if (guid && bmc->dyn_guid_set) 2350 *guid = bmc->guid; 2351 } 2352 2353 mutex_unlock(&bmc->dyn_mutex); 2354 mutex_unlock(&intf->bmc_reg_mutex); 2355 2356 kref_put(&intf->refcount, intf_free); 2357 return rv; 2358 } 2359 2360 static int bmc_get_device_id(ipmi_smi_t intf, struct bmc_device *bmc, 2361 struct ipmi_device_id *id, 2362 bool *guid_set, guid_t *guid) 2363 { 2364 return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1); 2365 } 2366 2367 #ifdef CONFIG_IPMI_PROC_INTERFACE 2368 static int smi_ipmb_proc_show(struct seq_file *m, void *v) 2369 { 2370 ipmi_smi_t intf = m->private; 2371 int i; 2372 2373 seq_printf(m, "%x", intf->addrinfo[0].address); 2374 for (i = 1; i < IPMI_MAX_CHANNELS; i++) 2375 seq_printf(m, " %x", intf->addrinfo[i].address); 2376 seq_putc(m, '\n'); 2377 2378 return 0; 2379 } 2380 2381 static int smi_ipmb_proc_open(struct inode *inode, struct file *file) 2382 { 2383 return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode)); 2384 } 2385 2386 static const struct file_operations smi_ipmb_proc_ops = { 2387 .open = smi_ipmb_proc_open, 2388 .read = seq_read, 2389 .llseek = seq_lseek, 2390 .release = single_release, 2391 }; 2392 2393 static int smi_version_proc_show(struct seq_file *m, void *v) 2394 { 2395 ipmi_smi_t intf = m->private; 2396 struct ipmi_device_id id; 2397 int rv; 2398 2399 rv = bmc_get_device_id(intf, NULL, &id, NULL, NULL); 2400 if (rv) 2401 return rv; 2402 2403 seq_printf(m, "%u.%u\n", 2404 ipmi_version_major(&id), 2405 ipmi_version_minor(&id)); 2406 2407 return 0; 2408 } 2409 2410 static int smi_version_proc_open(struct inode *inode, struct file *file) 2411 { 2412 return single_open(file, smi_version_proc_show, PDE_DATA(inode)); 2413 } 2414 2415 static const struct file_operations smi_version_proc_ops = { 2416 .open = smi_version_proc_open, 2417 .read = seq_read, 2418 .llseek = seq_lseek, 2419 .release = single_release, 2420 }; 2421 2422 static int smi_stats_proc_show(struct seq_file *m, void *v) 2423 { 2424 ipmi_smi_t intf = m->private; 2425 2426 seq_printf(m, "sent_invalid_commands: %u\n", 2427 ipmi_get_stat(intf, sent_invalid_commands)); 2428 seq_printf(m, "sent_local_commands: %u\n", 2429 ipmi_get_stat(intf, sent_local_commands)); 2430 seq_printf(m, "handled_local_responses: %u\n", 2431 ipmi_get_stat(intf, handled_local_responses)); 2432 seq_printf(m, "unhandled_local_responses: %u\n", 2433 ipmi_get_stat(intf, unhandled_local_responses)); 2434 seq_printf(m, "sent_ipmb_commands: %u\n", 2435 ipmi_get_stat(intf, sent_ipmb_commands)); 2436 seq_printf(m, "sent_ipmb_command_errs: %u\n", 2437 ipmi_get_stat(intf, sent_ipmb_command_errs)); 2438 seq_printf(m, "retransmitted_ipmb_commands: %u\n", 2439 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 2440 seq_printf(m, "timed_out_ipmb_commands: %u\n", 2441 ipmi_get_stat(intf, timed_out_ipmb_commands)); 2442 seq_printf(m, "timed_out_ipmb_broadcasts: %u\n", 2443 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 2444 seq_printf(m, "sent_ipmb_responses: %u\n", 2445 ipmi_get_stat(intf, sent_ipmb_responses)); 2446 seq_printf(m, "handled_ipmb_responses: %u\n", 2447 ipmi_get_stat(intf, handled_ipmb_responses)); 2448 seq_printf(m, "invalid_ipmb_responses: %u\n", 2449 ipmi_get_stat(intf, invalid_ipmb_responses)); 2450 seq_printf(m, "unhandled_ipmb_responses: %u\n", 2451 ipmi_get_stat(intf, unhandled_ipmb_responses)); 2452 seq_printf(m, "sent_lan_commands: %u\n", 2453 ipmi_get_stat(intf, sent_lan_commands)); 2454 seq_printf(m, "sent_lan_command_errs: %u\n", 2455 ipmi_get_stat(intf, sent_lan_command_errs)); 2456 seq_printf(m, "retransmitted_lan_commands: %u\n", 2457 ipmi_get_stat(intf, retransmitted_lan_commands)); 2458 seq_printf(m, "timed_out_lan_commands: %u\n", 2459 ipmi_get_stat(intf, timed_out_lan_commands)); 2460 seq_printf(m, "sent_lan_responses: %u\n", 2461 ipmi_get_stat(intf, sent_lan_responses)); 2462 seq_printf(m, "handled_lan_responses: %u\n", 2463 ipmi_get_stat(intf, handled_lan_responses)); 2464 seq_printf(m, "invalid_lan_responses: %u\n", 2465 ipmi_get_stat(intf, invalid_lan_responses)); 2466 seq_printf(m, "unhandled_lan_responses: %u\n", 2467 ipmi_get_stat(intf, unhandled_lan_responses)); 2468 seq_printf(m, "handled_commands: %u\n", 2469 ipmi_get_stat(intf, handled_commands)); 2470 seq_printf(m, "invalid_commands: %u\n", 2471 ipmi_get_stat(intf, invalid_commands)); 2472 seq_printf(m, "unhandled_commands: %u\n", 2473 ipmi_get_stat(intf, unhandled_commands)); 2474 seq_printf(m, "invalid_events: %u\n", 2475 ipmi_get_stat(intf, invalid_events)); 2476 seq_printf(m, "events: %u\n", 2477 ipmi_get_stat(intf, events)); 2478 seq_printf(m, "failed rexmit LAN msgs: %u\n", 2479 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 2480 seq_printf(m, "failed rexmit IPMB msgs: %u\n", 2481 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 2482 return 0; 2483 } 2484 2485 static int smi_stats_proc_open(struct inode *inode, struct file *file) 2486 { 2487 return single_open(file, smi_stats_proc_show, PDE_DATA(inode)); 2488 } 2489 2490 static const struct file_operations smi_stats_proc_ops = { 2491 .open = smi_stats_proc_open, 2492 .read = seq_read, 2493 .llseek = seq_lseek, 2494 .release = single_release, 2495 }; 2496 2497 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 2498 const struct file_operations *proc_ops, 2499 void *data) 2500 { 2501 int rv = 0; 2502 struct proc_dir_entry *file; 2503 struct ipmi_proc_entry *entry; 2504 2505 /* Create a list element. */ 2506 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 2507 if (!entry) 2508 return -ENOMEM; 2509 entry->name = kstrdup(name, GFP_KERNEL); 2510 if (!entry->name) { 2511 kfree(entry); 2512 return -ENOMEM; 2513 } 2514 2515 file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data); 2516 if (!file) { 2517 kfree(entry->name); 2518 kfree(entry); 2519 rv = -ENOMEM; 2520 } else { 2521 mutex_lock(&smi->proc_entry_lock); 2522 /* Stick it on the list. */ 2523 entry->next = smi->proc_entries; 2524 smi->proc_entries = entry; 2525 mutex_unlock(&smi->proc_entry_lock); 2526 } 2527 2528 return rv; 2529 } 2530 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2531 2532 static int add_proc_entries(ipmi_smi_t smi, int num) 2533 { 2534 int rv = 0; 2535 2536 sprintf(smi->proc_dir_name, "%d", num); 2537 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2538 if (!smi->proc_dir) 2539 rv = -ENOMEM; 2540 2541 if (rv == 0) 2542 rv = ipmi_smi_add_proc_entry(smi, "stats", 2543 &smi_stats_proc_ops, 2544 smi); 2545 2546 if (rv == 0) 2547 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2548 &smi_ipmb_proc_ops, 2549 smi); 2550 2551 if (rv == 0) 2552 rv = ipmi_smi_add_proc_entry(smi, "version", 2553 &smi_version_proc_ops, 2554 smi); 2555 2556 return rv; 2557 } 2558 2559 static void remove_proc_entries(ipmi_smi_t smi) 2560 { 2561 struct ipmi_proc_entry *entry; 2562 2563 mutex_lock(&smi->proc_entry_lock); 2564 while (smi->proc_entries) { 2565 entry = smi->proc_entries; 2566 smi->proc_entries = entry->next; 2567 2568 remove_proc_entry(entry->name, smi->proc_dir); 2569 kfree(entry->name); 2570 kfree(entry); 2571 } 2572 mutex_unlock(&smi->proc_entry_lock); 2573 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2574 } 2575 #endif /* CONFIG_IPMI_PROC_INTERFACE */ 2576 2577 static ssize_t device_id_show(struct device *dev, 2578 struct device_attribute *attr, 2579 char *buf) 2580 { 2581 struct bmc_device *bmc = to_bmc_device(dev); 2582 struct ipmi_device_id id; 2583 int rv; 2584 2585 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2586 if (rv) 2587 return rv; 2588 2589 return snprintf(buf, 10, "%u\n", id.device_id); 2590 } 2591 static DEVICE_ATTR_RO(device_id); 2592 2593 static ssize_t provides_device_sdrs_show(struct device *dev, 2594 struct device_attribute *attr, 2595 char *buf) 2596 { 2597 struct bmc_device *bmc = to_bmc_device(dev); 2598 struct ipmi_device_id id; 2599 int rv; 2600 2601 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2602 if (rv) 2603 return rv; 2604 2605 return snprintf(buf, 10, "%u\n", (id.device_revision & 0x80) >> 7); 2606 } 2607 static DEVICE_ATTR_RO(provides_device_sdrs); 2608 2609 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2610 char *buf) 2611 { 2612 struct bmc_device *bmc = to_bmc_device(dev); 2613 struct ipmi_device_id id; 2614 int rv; 2615 2616 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2617 if (rv) 2618 return rv; 2619 2620 return snprintf(buf, 20, "%u\n", id.device_revision & 0x0F); 2621 } 2622 static DEVICE_ATTR_RO(revision); 2623 2624 static ssize_t firmware_revision_show(struct device *dev, 2625 struct device_attribute *attr, 2626 char *buf) 2627 { 2628 struct bmc_device *bmc = to_bmc_device(dev); 2629 struct ipmi_device_id id; 2630 int rv; 2631 2632 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2633 if (rv) 2634 return rv; 2635 2636 return snprintf(buf, 20, "%u.%x\n", id.firmware_revision_1, 2637 id.firmware_revision_2); 2638 } 2639 static DEVICE_ATTR_RO(firmware_revision); 2640 2641 static ssize_t ipmi_version_show(struct device *dev, 2642 struct device_attribute *attr, 2643 char *buf) 2644 { 2645 struct bmc_device *bmc = to_bmc_device(dev); 2646 struct ipmi_device_id id; 2647 int rv; 2648 2649 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2650 if (rv) 2651 return rv; 2652 2653 return snprintf(buf, 20, "%u.%u\n", 2654 ipmi_version_major(&id), 2655 ipmi_version_minor(&id)); 2656 } 2657 static DEVICE_ATTR_RO(ipmi_version); 2658 2659 static ssize_t add_dev_support_show(struct device *dev, 2660 struct device_attribute *attr, 2661 char *buf) 2662 { 2663 struct bmc_device *bmc = to_bmc_device(dev); 2664 struct ipmi_device_id id; 2665 int rv; 2666 2667 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2668 if (rv) 2669 return rv; 2670 2671 return snprintf(buf, 10, "0x%02x\n", id.additional_device_support); 2672 } 2673 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show, 2674 NULL); 2675 2676 static ssize_t manufacturer_id_show(struct device *dev, 2677 struct device_attribute *attr, 2678 char *buf) 2679 { 2680 struct bmc_device *bmc = to_bmc_device(dev); 2681 struct ipmi_device_id id; 2682 int rv; 2683 2684 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2685 if (rv) 2686 return rv; 2687 2688 return snprintf(buf, 20, "0x%6.6x\n", id.manufacturer_id); 2689 } 2690 static DEVICE_ATTR_RO(manufacturer_id); 2691 2692 static ssize_t product_id_show(struct device *dev, 2693 struct device_attribute *attr, 2694 char *buf) 2695 { 2696 struct bmc_device *bmc = to_bmc_device(dev); 2697 struct ipmi_device_id id; 2698 int rv; 2699 2700 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2701 if (rv) 2702 return rv; 2703 2704 return snprintf(buf, 10, "0x%4.4x\n", id.product_id); 2705 } 2706 static DEVICE_ATTR_RO(product_id); 2707 2708 static ssize_t aux_firmware_rev_show(struct device *dev, 2709 struct device_attribute *attr, 2710 char *buf) 2711 { 2712 struct bmc_device *bmc = to_bmc_device(dev); 2713 struct ipmi_device_id id; 2714 int rv; 2715 2716 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2717 if (rv) 2718 return rv; 2719 2720 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2721 id.aux_firmware_revision[3], 2722 id.aux_firmware_revision[2], 2723 id.aux_firmware_revision[1], 2724 id.aux_firmware_revision[0]); 2725 } 2726 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL); 2727 2728 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2729 char *buf) 2730 { 2731 struct bmc_device *bmc = to_bmc_device(dev); 2732 bool guid_set; 2733 guid_t guid; 2734 int rv; 2735 2736 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid); 2737 if (rv) 2738 return rv; 2739 if (!guid_set) 2740 return -ENOENT; 2741 2742 return snprintf(buf, 38, "%pUl\n", guid.b); 2743 } 2744 static DEVICE_ATTR_RO(guid); 2745 2746 static struct attribute *bmc_dev_attrs[] = { 2747 &dev_attr_device_id.attr, 2748 &dev_attr_provides_device_sdrs.attr, 2749 &dev_attr_revision.attr, 2750 &dev_attr_firmware_revision.attr, 2751 &dev_attr_ipmi_version.attr, 2752 &dev_attr_additional_device_support.attr, 2753 &dev_attr_manufacturer_id.attr, 2754 &dev_attr_product_id.attr, 2755 &dev_attr_aux_firmware_revision.attr, 2756 &dev_attr_guid.attr, 2757 NULL 2758 }; 2759 2760 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj, 2761 struct attribute *attr, int idx) 2762 { 2763 struct device *dev = kobj_to_dev(kobj); 2764 struct bmc_device *bmc = to_bmc_device(dev); 2765 umode_t mode = attr->mode; 2766 int rv; 2767 2768 if (attr == &dev_attr_aux_firmware_revision.attr) { 2769 struct ipmi_device_id id; 2770 2771 rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL); 2772 return (!rv && id.aux_firmware_revision_set) ? mode : 0; 2773 } 2774 if (attr == &dev_attr_guid.attr) { 2775 bool guid_set; 2776 2777 rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL); 2778 return (!rv && guid_set) ? mode : 0; 2779 } 2780 return mode; 2781 } 2782 2783 static const struct attribute_group bmc_dev_attr_group = { 2784 .attrs = bmc_dev_attrs, 2785 .is_visible = bmc_dev_attr_is_visible, 2786 }; 2787 2788 static const struct attribute_group *bmc_dev_attr_groups[] = { 2789 &bmc_dev_attr_group, 2790 NULL 2791 }; 2792 2793 static const struct device_type bmc_device_type = { 2794 .groups = bmc_dev_attr_groups, 2795 }; 2796 2797 static int __find_bmc_guid(struct device *dev, void *data) 2798 { 2799 guid_t *guid = data; 2800 struct bmc_device *bmc; 2801 int rv; 2802 2803 if (dev->type != &bmc_device_type) 2804 return 0; 2805 2806 bmc = to_bmc_device(dev); 2807 rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid); 2808 if (rv) 2809 rv = kref_get_unless_zero(&bmc->usecount); 2810 return rv; 2811 } 2812 2813 /* 2814 * Returns with the bmc's usecount incremented, if it is non-NULL. 2815 */ 2816 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2817 guid_t *guid) 2818 { 2819 struct device *dev; 2820 struct bmc_device *bmc = NULL; 2821 2822 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2823 if (dev) { 2824 bmc = to_bmc_device(dev); 2825 put_device(dev); 2826 } 2827 return bmc; 2828 } 2829 2830 struct prod_dev_id { 2831 unsigned int product_id; 2832 unsigned char device_id; 2833 }; 2834 2835 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2836 { 2837 struct prod_dev_id *cid = data; 2838 struct bmc_device *bmc; 2839 int rv; 2840 2841 if (dev->type != &bmc_device_type) 2842 return 0; 2843 2844 bmc = to_bmc_device(dev); 2845 rv = (bmc->id.product_id == cid->product_id 2846 && bmc->id.device_id == cid->device_id); 2847 if (rv) 2848 rv = kref_get_unless_zero(&bmc->usecount); 2849 return rv; 2850 } 2851 2852 /* 2853 * Returns with the bmc's usecount incremented, if it is non-NULL. 2854 */ 2855 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2856 struct device_driver *drv, 2857 unsigned int product_id, unsigned char device_id) 2858 { 2859 struct prod_dev_id id = { 2860 .product_id = product_id, 2861 .device_id = device_id, 2862 }; 2863 struct device *dev; 2864 struct bmc_device *bmc = NULL; 2865 2866 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2867 if (dev) { 2868 bmc = to_bmc_device(dev); 2869 put_device(dev); 2870 } 2871 return bmc; 2872 } 2873 2874 static DEFINE_IDA(ipmi_bmc_ida); 2875 2876 static void 2877 release_bmc_device(struct device *dev) 2878 { 2879 kfree(to_bmc_device(dev)); 2880 } 2881 2882 static void cleanup_bmc_work(struct work_struct *work) 2883 { 2884 struct bmc_device *bmc = container_of(work, struct bmc_device, 2885 remove_work); 2886 int id = bmc->pdev.id; /* Unregister overwrites id */ 2887 2888 platform_device_unregister(&bmc->pdev); 2889 ida_simple_remove(&ipmi_bmc_ida, id); 2890 } 2891 2892 static void 2893 cleanup_bmc_device(struct kref *ref) 2894 { 2895 struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount); 2896 2897 /* 2898 * Remove the platform device in a work queue to avoid issues 2899 * with removing the device attributes while reading a device 2900 * attribute. 2901 */ 2902 schedule_work(&bmc->remove_work); 2903 } 2904 2905 /* 2906 * Must be called with intf->bmc_reg_mutex held. 2907 */ 2908 static void __ipmi_bmc_unregister(ipmi_smi_t intf) 2909 { 2910 struct bmc_device *bmc = intf->bmc; 2911 2912 if (!intf->bmc_registered) 2913 return; 2914 2915 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 2916 sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name); 2917 kfree(intf->my_dev_name); 2918 intf->my_dev_name = NULL; 2919 2920 mutex_lock(&bmc->dyn_mutex); 2921 list_del(&intf->bmc_link); 2922 mutex_unlock(&bmc->dyn_mutex); 2923 intf->bmc = &intf->tmp_bmc; 2924 kref_put(&bmc->usecount, cleanup_bmc_device); 2925 intf->bmc_registered = false; 2926 } 2927 2928 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2929 { 2930 mutex_lock(&intf->bmc_reg_mutex); 2931 __ipmi_bmc_unregister(intf); 2932 mutex_unlock(&intf->bmc_reg_mutex); 2933 } 2934 2935 /* 2936 * Must be called with intf->bmc_reg_mutex held. 2937 */ 2938 static int __ipmi_bmc_register(ipmi_smi_t intf, 2939 struct ipmi_device_id *id, 2940 bool guid_set, guid_t *guid, int intf_num) 2941 { 2942 int rv; 2943 struct bmc_device *bmc; 2944 struct bmc_device *old_bmc; 2945 2946 /* 2947 * platform_device_register() can cause bmc_reg_mutex to 2948 * be claimed because of the is_visible functions of 2949 * the attributes. Eliminate possible recursion and 2950 * release the lock. 2951 */ 2952 intf->in_bmc_register = true; 2953 mutex_unlock(&intf->bmc_reg_mutex); 2954 2955 /* 2956 * Try to find if there is an bmc_device struct 2957 * representing the interfaced BMC already 2958 */ 2959 mutex_lock(&ipmidriver_mutex); 2960 if (guid_set) 2961 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid); 2962 else 2963 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2964 id->product_id, 2965 id->device_id); 2966 2967 /* 2968 * If there is already an bmc_device, free the new one, 2969 * otherwise register the new BMC device 2970 */ 2971 if (old_bmc) { 2972 bmc = old_bmc; 2973 /* 2974 * Note: old_bmc already has usecount incremented by 2975 * the BMC find functions. 2976 */ 2977 intf->bmc = old_bmc; 2978 mutex_lock(&bmc->dyn_mutex); 2979 list_add_tail(&intf->bmc_link, &bmc->intfs); 2980 mutex_unlock(&bmc->dyn_mutex); 2981 2982 dev_info(intf->si_dev, 2983 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2984 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2985 bmc->id.manufacturer_id, 2986 bmc->id.product_id, 2987 bmc->id.device_id); 2988 } else { 2989 bmc = kzalloc(sizeof(*bmc), GFP_KERNEL); 2990 if (!bmc) { 2991 rv = -ENOMEM; 2992 goto out; 2993 } 2994 INIT_LIST_HEAD(&bmc->intfs); 2995 mutex_init(&bmc->dyn_mutex); 2996 INIT_WORK(&bmc->remove_work, cleanup_bmc_work); 2997 2998 bmc->id = *id; 2999 bmc->dyn_id_set = 1; 3000 bmc->dyn_guid_set = guid_set; 3001 bmc->guid = *guid; 3002 bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY; 3003 3004 bmc->pdev.name = "ipmi_bmc"; 3005 3006 rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL); 3007 if (rv < 0) 3008 goto out; 3009 bmc->pdev.dev.driver = &ipmidriver.driver; 3010 bmc->pdev.id = rv; 3011 bmc->pdev.dev.release = release_bmc_device; 3012 bmc->pdev.dev.type = &bmc_device_type; 3013 kref_init(&bmc->usecount); 3014 3015 intf->bmc = bmc; 3016 mutex_lock(&bmc->dyn_mutex); 3017 list_add_tail(&intf->bmc_link, &bmc->intfs); 3018 mutex_unlock(&bmc->dyn_mutex); 3019 3020 rv = platform_device_register(&bmc->pdev); 3021 if (rv) { 3022 dev_err(intf->si_dev, 3023 PFX " Unable to register bmc device: %d\n", 3024 rv); 3025 goto out_list_del; 3026 } 3027 3028 dev_info(intf->si_dev, 3029 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 3030 bmc->id.manufacturer_id, 3031 bmc->id.product_id, 3032 bmc->id.device_id); 3033 } 3034 3035 /* 3036 * create symlink from system interface device to bmc device 3037 * and back. 3038 */ 3039 rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc"); 3040 if (rv) { 3041 dev_err(intf->si_dev, 3042 PFX "Unable to create bmc symlink: %d\n", rv); 3043 goto out_put_bmc; 3044 } 3045 3046 if (intf_num == -1) 3047 intf_num = intf->intf_num; 3048 intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num); 3049 if (!intf->my_dev_name) { 3050 rv = -ENOMEM; 3051 dev_err(intf->si_dev, 3052 PFX "Unable to allocate link from BMC: %d\n", rv); 3053 goto out_unlink1; 3054 } 3055 3056 rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj, 3057 intf->my_dev_name); 3058 if (rv) { 3059 kfree(intf->my_dev_name); 3060 intf->my_dev_name = NULL; 3061 dev_err(intf->si_dev, 3062 PFX "Unable to create symlink to bmc: %d\n", rv); 3063 goto out_free_my_dev_name; 3064 } 3065 3066 intf->bmc_registered = true; 3067 3068 out: 3069 mutex_unlock(&ipmidriver_mutex); 3070 mutex_lock(&intf->bmc_reg_mutex); 3071 intf->in_bmc_register = false; 3072 return rv; 3073 3074 3075 out_free_my_dev_name: 3076 kfree(intf->my_dev_name); 3077 intf->my_dev_name = NULL; 3078 3079 out_unlink1: 3080 sysfs_remove_link(&intf->si_dev->kobj, "bmc"); 3081 3082 out_put_bmc: 3083 mutex_lock(&bmc->dyn_mutex); 3084 list_del(&intf->bmc_link); 3085 mutex_unlock(&bmc->dyn_mutex); 3086 intf->bmc = &intf->tmp_bmc; 3087 kref_put(&bmc->usecount, cleanup_bmc_device); 3088 goto out; 3089 3090 out_list_del: 3091 mutex_lock(&bmc->dyn_mutex); 3092 list_del(&intf->bmc_link); 3093 mutex_unlock(&bmc->dyn_mutex); 3094 intf->bmc = &intf->tmp_bmc; 3095 put_device(&bmc->pdev.dev); 3096 goto out; 3097 } 3098 3099 static int 3100 send_guid_cmd(ipmi_smi_t intf, int chan) 3101 { 3102 struct kernel_ipmi_msg msg; 3103 struct ipmi_system_interface_addr si; 3104 3105 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3106 si.channel = IPMI_BMC_CHANNEL; 3107 si.lun = 0; 3108 3109 msg.netfn = IPMI_NETFN_APP_REQUEST; 3110 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 3111 msg.data = NULL; 3112 msg.data_len = 0; 3113 return i_ipmi_request(NULL, 3114 intf, 3115 (struct ipmi_addr *) &si, 3116 0, 3117 &msg, 3118 intf, 3119 NULL, 3120 NULL, 3121 0, 3122 intf->addrinfo[0].address, 3123 intf->addrinfo[0].lun, 3124 -1, 0); 3125 } 3126 3127 static void guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 3128 { 3129 struct bmc_device *bmc = intf->bmc; 3130 3131 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3132 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 3133 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 3134 /* Not for me */ 3135 return; 3136 3137 if (msg->msg.data[0] != 0) { 3138 /* Error from getting the GUID, the BMC doesn't have one. */ 3139 bmc->dyn_guid_set = 0; 3140 goto out; 3141 } 3142 3143 if (msg->msg.data_len < 17) { 3144 bmc->dyn_guid_set = 0; 3145 dev_warn(intf->si_dev, 3146 PFX "The GUID response from the BMC was too short, it was %d but should have been 17. Assuming GUID is not available.\n", 3147 msg->msg.data_len); 3148 goto out; 3149 } 3150 3151 memcpy(bmc->fetch_guid.b, msg->msg.data + 1, 16); 3152 /* 3153 * Make sure the guid data is available before setting 3154 * dyn_guid_set. 3155 */ 3156 smp_wmb(); 3157 bmc->dyn_guid_set = 1; 3158 out: 3159 wake_up(&intf->waitq); 3160 } 3161 3162 static void __get_guid(ipmi_smi_t intf) 3163 { 3164 int rv; 3165 struct bmc_device *bmc = intf->bmc; 3166 3167 bmc->dyn_guid_set = 2; 3168 intf->null_user_handler = guid_handler; 3169 rv = send_guid_cmd(intf, 0); 3170 if (rv) 3171 /* Send failed, no GUID available. */ 3172 bmc->dyn_guid_set = 0; 3173 3174 wait_event(intf->waitq, bmc->dyn_guid_set != 2); 3175 3176 /* dyn_guid_set makes the guid data available. */ 3177 smp_rmb(); 3178 3179 intf->null_user_handler = NULL; 3180 } 3181 3182 static int 3183 send_channel_info_cmd(ipmi_smi_t intf, int chan) 3184 { 3185 struct kernel_ipmi_msg msg; 3186 unsigned char data[1]; 3187 struct ipmi_system_interface_addr si; 3188 3189 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3190 si.channel = IPMI_BMC_CHANNEL; 3191 si.lun = 0; 3192 3193 msg.netfn = IPMI_NETFN_APP_REQUEST; 3194 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 3195 msg.data = data; 3196 msg.data_len = 1; 3197 data[0] = chan; 3198 return i_ipmi_request(NULL, 3199 intf, 3200 (struct ipmi_addr *) &si, 3201 0, 3202 &msg, 3203 intf, 3204 NULL, 3205 NULL, 3206 0, 3207 intf->addrinfo[0].address, 3208 intf->addrinfo[0].lun, 3209 -1, 0); 3210 } 3211 3212 static void 3213 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 3214 { 3215 int rv = 0; 3216 int ch; 3217 unsigned int set = intf->curr_working_cset; 3218 struct ipmi_channel *chans; 3219 3220 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 3221 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 3222 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 3223 /* It's the one we want */ 3224 if (msg->msg.data[0] != 0) { 3225 /* Got an error from the channel, just go on. */ 3226 3227 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 3228 /* 3229 * If the MC does not support this 3230 * command, that is legal. We just 3231 * assume it has one IPMB at channel 3232 * zero. 3233 */ 3234 intf->wchannels[set].c[0].medium 3235 = IPMI_CHANNEL_MEDIUM_IPMB; 3236 intf->wchannels[set].c[0].protocol 3237 = IPMI_CHANNEL_PROTOCOL_IPMB; 3238 3239 intf->channel_list = intf->wchannels + set; 3240 intf->channels_ready = true; 3241 wake_up(&intf->waitq); 3242 goto out; 3243 } 3244 goto next_channel; 3245 } 3246 if (msg->msg.data_len < 4) { 3247 /* Message not big enough, just go on. */ 3248 goto next_channel; 3249 } 3250 ch = intf->curr_channel; 3251 chans = intf->wchannels[set].c; 3252 chans[ch].medium = msg->msg.data[2] & 0x7f; 3253 chans[ch].protocol = msg->msg.data[3] & 0x1f; 3254 3255 next_channel: 3256 intf->curr_channel++; 3257 if (intf->curr_channel >= IPMI_MAX_CHANNELS) { 3258 intf->channel_list = intf->wchannels + set; 3259 intf->channels_ready = true; 3260 wake_up(&intf->waitq); 3261 } else { 3262 intf->channel_list = intf->wchannels + set; 3263 intf->channels_ready = true; 3264 rv = send_channel_info_cmd(intf, intf->curr_channel); 3265 } 3266 3267 if (rv) { 3268 /* Got an error somehow, just give up. */ 3269 dev_warn(intf->si_dev, 3270 PFX "Error sending channel information for channel %d: %d\n", 3271 intf->curr_channel, rv); 3272 3273 intf->channel_list = intf->wchannels + set; 3274 intf->channels_ready = true; 3275 wake_up(&intf->waitq); 3276 } 3277 } 3278 out: 3279 return; 3280 } 3281 3282 /* 3283 * Must be holding intf->bmc_reg_mutex to call this. 3284 */ 3285 static int __scan_channels(ipmi_smi_t intf, struct ipmi_device_id *id) 3286 { 3287 int rv; 3288 3289 if (ipmi_version_major(id) > 1 3290 || (ipmi_version_major(id) == 1 3291 && ipmi_version_minor(id) >= 5)) { 3292 unsigned int set; 3293 3294 /* 3295 * Start scanning the channels to see what is 3296 * available. 3297 */ 3298 set = !intf->curr_working_cset; 3299 intf->curr_working_cset = set; 3300 memset(&intf->wchannels[set], 0, 3301 sizeof(struct ipmi_channel_set)); 3302 3303 intf->null_user_handler = channel_handler; 3304 intf->curr_channel = 0; 3305 rv = send_channel_info_cmd(intf, 0); 3306 if (rv) { 3307 dev_warn(intf->si_dev, 3308 "Error sending channel information for channel 0, %d\n", 3309 rv); 3310 return -EIO; 3311 } 3312 3313 /* Wait for the channel info to be read. */ 3314 wait_event(intf->waitq, intf->channels_ready); 3315 intf->null_user_handler = NULL; 3316 } else { 3317 unsigned int set = intf->curr_working_cset; 3318 3319 /* Assume a single IPMB channel at zero. */ 3320 intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 3321 intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 3322 intf->channel_list = intf->wchannels + set; 3323 intf->channels_ready = true; 3324 } 3325 3326 return 0; 3327 } 3328 3329 static void ipmi_poll(ipmi_smi_t intf) 3330 { 3331 if (intf->handlers->poll) 3332 intf->handlers->poll(intf->send_info); 3333 /* In case something came in */ 3334 handle_new_recv_msgs(intf); 3335 } 3336 3337 void ipmi_poll_interface(ipmi_user_t user) 3338 { 3339 ipmi_poll(user->intf); 3340 } 3341 EXPORT_SYMBOL(ipmi_poll_interface); 3342 3343 static void redo_bmc_reg(struct work_struct *work) 3344 { 3345 ipmi_smi_t intf = container_of(work, struct ipmi_smi, bmc_reg_work); 3346 3347 if (!intf->in_shutdown) 3348 bmc_get_device_id(intf, NULL, NULL, NULL, NULL); 3349 3350 kref_put(&intf->refcount, intf_free); 3351 } 3352 3353 int ipmi_register_smi(const struct ipmi_smi_handlers *handlers, 3354 void *send_info, 3355 struct device *si_dev, 3356 unsigned char slave_addr) 3357 { 3358 int i, j; 3359 int rv; 3360 ipmi_smi_t intf; 3361 ipmi_smi_t tintf; 3362 struct list_head *link; 3363 struct ipmi_device_id id; 3364 3365 /* 3366 * Make sure the driver is actually initialized, this handles 3367 * problems with initialization order. 3368 */ 3369 if (!initialized) { 3370 rv = ipmi_init_msghandler(); 3371 if (rv) 3372 return rv; 3373 /* 3374 * The init code doesn't return an error if it was turned 3375 * off, but it won't initialize. Check that. 3376 */ 3377 if (!initialized) 3378 return -ENODEV; 3379 } 3380 3381 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 3382 if (!intf) 3383 return -ENOMEM; 3384 3385 intf->bmc = &intf->tmp_bmc; 3386 INIT_LIST_HEAD(&intf->bmc->intfs); 3387 mutex_init(&intf->bmc->dyn_mutex); 3388 INIT_LIST_HEAD(&intf->bmc_link); 3389 mutex_init(&intf->bmc_reg_mutex); 3390 intf->intf_num = -1; /* Mark it invalid for now. */ 3391 kref_init(&intf->refcount); 3392 INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg); 3393 intf->si_dev = si_dev; 3394 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 3395 intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR; 3396 intf->addrinfo[j].lun = 2; 3397 } 3398 if (slave_addr != 0) 3399 intf->addrinfo[0].address = slave_addr; 3400 INIT_LIST_HEAD(&intf->users); 3401 intf->handlers = handlers; 3402 intf->send_info = send_info; 3403 spin_lock_init(&intf->seq_lock); 3404 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 3405 intf->seq_table[j].inuse = 0; 3406 intf->seq_table[j].seqid = 0; 3407 } 3408 intf->curr_seq = 0; 3409 #ifdef CONFIG_IPMI_PROC_INTERFACE 3410 mutex_init(&intf->proc_entry_lock); 3411 #endif 3412 spin_lock_init(&intf->waiting_rcv_msgs_lock); 3413 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 3414 tasklet_init(&intf->recv_tasklet, 3415 smi_recv_tasklet, 3416 (unsigned long) intf); 3417 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); 3418 spin_lock_init(&intf->xmit_msgs_lock); 3419 INIT_LIST_HEAD(&intf->xmit_msgs); 3420 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 3421 spin_lock_init(&intf->events_lock); 3422 atomic_set(&intf->event_waiters, 0); 3423 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 3424 INIT_LIST_HEAD(&intf->waiting_events); 3425 intf->waiting_events_count = 0; 3426 mutex_init(&intf->cmd_rcvrs_mutex); 3427 spin_lock_init(&intf->maintenance_mode_lock); 3428 INIT_LIST_HEAD(&intf->cmd_rcvrs); 3429 init_waitqueue_head(&intf->waitq); 3430 for (i = 0; i < IPMI_NUM_STATS; i++) 3431 atomic_set(&intf->stats[i], 0); 3432 3433 #ifdef CONFIG_IPMI_PROC_INTERFACE 3434 intf->proc_dir = NULL; 3435 #endif 3436 3437 mutex_lock(&smi_watchers_mutex); 3438 mutex_lock(&ipmi_interfaces_mutex); 3439 /* Look for a hole in the numbers. */ 3440 i = 0; 3441 link = &ipmi_interfaces; 3442 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 3443 if (tintf->intf_num != i) { 3444 link = &tintf->link; 3445 break; 3446 } 3447 i++; 3448 } 3449 /* Add the new interface in numeric order. */ 3450 if (i == 0) 3451 list_add_rcu(&intf->link, &ipmi_interfaces); 3452 else 3453 list_add_tail_rcu(&intf->link, link); 3454 3455 rv = handlers->start_processing(send_info, intf); 3456 if (rv) 3457 goto out; 3458 3459 rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i); 3460 if (rv) { 3461 dev_err(si_dev, "Unable to get the device id: %d\n", rv); 3462 goto out; 3463 } 3464 3465 mutex_lock(&intf->bmc_reg_mutex); 3466 rv = __scan_channels(intf, &id); 3467 mutex_unlock(&intf->bmc_reg_mutex); 3468 if (rv) 3469 goto out; 3470 3471 #ifdef CONFIG_IPMI_PROC_INTERFACE 3472 rv = add_proc_entries(intf, i); 3473 #endif 3474 3475 out: 3476 if (rv) { 3477 ipmi_bmc_unregister(intf); 3478 #ifdef CONFIG_IPMI_PROC_INTERFACE 3479 if (intf->proc_dir) 3480 remove_proc_entries(intf); 3481 #endif 3482 intf->handlers = NULL; 3483 list_del_rcu(&intf->link); 3484 mutex_unlock(&ipmi_interfaces_mutex); 3485 mutex_unlock(&smi_watchers_mutex); 3486 synchronize_rcu(); 3487 kref_put(&intf->refcount, intf_free); 3488 } else { 3489 /* 3490 * Keep memory order straight for RCU readers. Make 3491 * sure everything else is committed to memory before 3492 * setting intf_num to mark the interface valid. 3493 */ 3494 smp_wmb(); 3495 intf->intf_num = i; 3496 mutex_unlock(&ipmi_interfaces_mutex); 3497 /* After this point the interface is legal to use. */ 3498 call_smi_watchers(i, intf->si_dev); 3499 mutex_unlock(&smi_watchers_mutex); 3500 } 3501 3502 return rv; 3503 } 3504 EXPORT_SYMBOL(ipmi_register_smi); 3505 3506 static void deliver_smi_err_response(ipmi_smi_t intf, 3507 struct ipmi_smi_msg *msg, 3508 unsigned char err) 3509 { 3510 msg->rsp[0] = msg->data[0] | 4; 3511 msg->rsp[1] = msg->data[1]; 3512 msg->rsp[2] = err; 3513 msg->rsp_size = 3; 3514 /* It's an error, so it will never requeue, no need to check return. */ 3515 handle_one_recv_msg(intf, msg); 3516 } 3517 3518 static void cleanup_smi_msgs(ipmi_smi_t intf) 3519 { 3520 int i; 3521 struct seq_table *ent; 3522 struct ipmi_smi_msg *msg; 3523 struct list_head *entry; 3524 struct list_head tmplist; 3525 3526 /* Clear out our transmit queues and hold the messages. */ 3527 INIT_LIST_HEAD(&tmplist); 3528 list_splice_tail(&intf->hp_xmit_msgs, &tmplist); 3529 list_splice_tail(&intf->xmit_msgs, &tmplist); 3530 3531 /* Current message first, to preserve order */ 3532 while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) { 3533 /* Wait for the message to clear out. */ 3534 schedule_timeout(1); 3535 } 3536 3537 /* No need for locks, the interface is down. */ 3538 3539 /* 3540 * Return errors for all pending messages in queue and in the 3541 * tables waiting for remote responses. 3542 */ 3543 while (!list_empty(&tmplist)) { 3544 entry = tmplist.next; 3545 list_del(entry); 3546 msg = list_entry(entry, struct ipmi_smi_msg, link); 3547 deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED); 3548 } 3549 3550 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 3551 ent = &(intf->seq_table[i]); 3552 if (!ent->inuse) 3553 continue; 3554 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 3555 } 3556 } 3557 3558 int ipmi_unregister_smi(ipmi_smi_t intf) 3559 { 3560 struct ipmi_smi_watcher *w; 3561 int intf_num = intf->intf_num; 3562 ipmi_user_t user; 3563 3564 mutex_lock(&smi_watchers_mutex); 3565 mutex_lock(&ipmi_interfaces_mutex); 3566 intf->intf_num = -1; 3567 intf->in_shutdown = true; 3568 list_del_rcu(&intf->link); 3569 mutex_unlock(&ipmi_interfaces_mutex); 3570 synchronize_rcu(); 3571 3572 cleanup_smi_msgs(intf); 3573 3574 /* Clean up the effects of users on the lower-level software. */ 3575 mutex_lock(&ipmi_interfaces_mutex); 3576 rcu_read_lock(); 3577 list_for_each_entry_rcu(user, &intf->users, link) { 3578 module_put(intf->handlers->owner); 3579 if (intf->handlers->dec_usecount) 3580 intf->handlers->dec_usecount(intf->send_info); 3581 } 3582 rcu_read_unlock(); 3583 intf->handlers = NULL; 3584 mutex_unlock(&ipmi_interfaces_mutex); 3585 3586 #ifdef CONFIG_IPMI_PROC_INTERFACE 3587 remove_proc_entries(intf); 3588 #endif 3589 ipmi_bmc_unregister(intf); 3590 3591 /* 3592 * Call all the watcher interfaces to tell them that 3593 * an interface is gone. 3594 */ 3595 list_for_each_entry(w, &smi_watchers, link) 3596 w->smi_gone(intf_num); 3597 mutex_unlock(&smi_watchers_mutex); 3598 3599 kref_put(&intf->refcount, intf_free); 3600 return 0; 3601 } 3602 EXPORT_SYMBOL(ipmi_unregister_smi); 3603 3604 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 3605 struct ipmi_smi_msg *msg) 3606 { 3607 struct ipmi_ipmb_addr ipmb_addr; 3608 struct ipmi_recv_msg *recv_msg; 3609 3610 /* 3611 * This is 11, not 10, because the response must contain a 3612 * completion code. 3613 */ 3614 if (msg->rsp_size < 11) { 3615 /* Message not big enough, just ignore it. */ 3616 ipmi_inc_stat(intf, invalid_ipmb_responses); 3617 return 0; 3618 } 3619 3620 if (msg->rsp[2] != 0) { 3621 /* An error getting the response, just ignore it. */ 3622 return 0; 3623 } 3624 3625 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 3626 ipmb_addr.slave_addr = msg->rsp[6]; 3627 ipmb_addr.channel = msg->rsp[3] & 0x0f; 3628 ipmb_addr.lun = msg->rsp[7] & 3; 3629 3630 /* 3631 * It's a response from a remote entity. Look up the sequence 3632 * number and handle the response. 3633 */ 3634 if (intf_find_seq(intf, 3635 msg->rsp[7] >> 2, 3636 msg->rsp[3] & 0x0f, 3637 msg->rsp[8], 3638 (msg->rsp[4] >> 2) & (~1), 3639 (struct ipmi_addr *) &(ipmb_addr), 3640 &recv_msg)) { 3641 /* 3642 * We were unable to find the sequence number, 3643 * so just nuke the message. 3644 */ 3645 ipmi_inc_stat(intf, unhandled_ipmb_responses); 3646 return 0; 3647 } 3648 3649 memcpy(recv_msg->msg_data, 3650 &(msg->rsp[9]), 3651 msg->rsp_size - 9); 3652 /* 3653 * The other fields matched, so no need to set them, except 3654 * for netfn, which needs to be the response that was 3655 * returned, not the request value. 3656 */ 3657 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3658 recv_msg->msg.data = recv_msg->msg_data; 3659 recv_msg->msg.data_len = msg->rsp_size - 10; 3660 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3661 ipmi_inc_stat(intf, handled_ipmb_responses); 3662 deliver_response(recv_msg); 3663 3664 return 0; 3665 } 3666 3667 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3668 struct ipmi_smi_msg *msg) 3669 { 3670 struct cmd_rcvr *rcvr; 3671 int rv = 0; 3672 unsigned char netfn; 3673 unsigned char cmd; 3674 unsigned char chan; 3675 ipmi_user_t user = NULL; 3676 struct ipmi_ipmb_addr *ipmb_addr; 3677 struct ipmi_recv_msg *recv_msg; 3678 3679 if (msg->rsp_size < 10) { 3680 /* Message not big enough, just ignore it. */ 3681 ipmi_inc_stat(intf, invalid_commands); 3682 return 0; 3683 } 3684 3685 if (msg->rsp[2] != 0) { 3686 /* An error getting the response, just ignore it. */ 3687 return 0; 3688 } 3689 3690 netfn = msg->rsp[4] >> 2; 3691 cmd = msg->rsp[8]; 3692 chan = msg->rsp[3] & 0xf; 3693 3694 rcu_read_lock(); 3695 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3696 if (rcvr) { 3697 user = rcvr->user; 3698 kref_get(&user->refcount); 3699 } else 3700 user = NULL; 3701 rcu_read_unlock(); 3702 3703 if (user == NULL) { 3704 /* We didn't find a user, deliver an error response. */ 3705 ipmi_inc_stat(intf, unhandled_commands); 3706 3707 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3708 msg->data[1] = IPMI_SEND_MSG_CMD; 3709 msg->data[2] = msg->rsp[3]; 3710 msg->data[3] = msg->rsp[6]; 3711 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3712 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3713 msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address; 3714 /* rqseq/lun */ 3715 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3716 msg->data[8] = msg->rsp[8]; /* cmd */ 3717 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3718 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3719 msg->data_size = 11; 3720 3721 #ifdef DEBUG_MSGING 3722 { 3723 int m; 3724 printk("Invalid command:"); 3725 for (m = 0; m < msg->data_size; m++) 3726 printk(" %2.2x", msg->data[m]); 3727 printk("\n"); 3728 } 3729 #endif 3730 rcu_read_lock(); 3731 if (!intf->in_shutdown) { 3732 smi_send(intf, intf->handlers, msg, 0); 3733 /* 3734 * We used the message, so return the value 3735 * that causes it to not be freed or 3736 * queued. 3737 */ 3738 rv = -1; 3739 } 3740 rcu_read_unlock(); 3741 } else { 3742 /* Deliver the message to the user. */ 3743 ipmi_inc_stat(intf, handled_commands); 3744 3745 recv_msg = ipmi_alloc_recv_msg(); 3746 if (!recv_msg) { 3747 /* 3748 * We couldn't allocate memory for the 3749 * message, so requeue it for handling 3750 * later. 3751 */ 3752 rv = 1; 3753 kref_put(&user->refcount, free_user); 3754 } else { 3755 /* Extract the source address from the data. */ 3756 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3757 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3758 ipmb_addr->slave_addr = msg->rsp[6]; 3759 ipmb_addr->lun = msg->rsp[7] & 3; 3760 ipmb_addr->channel = msg->rsp[3] & 0xf; 3761 3762 /* 3763 * Extract the rest of the message information 3764 * from the IPMB header. 3765 */ 3766 recv_msg->user = user; 3767 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3768 recv_msg->msgid = msg->rsp[7] >> 2; 3769 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3770 recv_msg->msg.cmd = msg->rsp[8]; 3771 recv_msg->msg.data = recv_msg->msg_data; 3772 3773 /* 3774 * We chop off 10, not 9 bytes because the checksum 3775 * at the end also needs to be removed. 3776 */ 3777 recv_msg->msg.data_len = msg->rsp_size - 10; 3778 memcpy(recv_msg->msg_data, 3779 &(msg->rsp[9]), 3780 msg->rsp_size - 10); 3781 deliver_response(recv_msg); 3782 } 3783 } 3784 3785 return rv; 3786 } 3787 3788 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3789 struct ipmi_smi_msg *msg) 3790 { 3791 struct ipmi_lan_addr lan_addr; 3792 struct ipmi_recv_msg *recv_msg; 3793 3794 3795 /* 3796 * This is 13, not 12, because the response must contain a 3797 * completion code. 3798 */ 3799 if (msg->rsp_size < 13) { 3800 /* Message not big enough, just ignore it. */ 3801 ipmi_inc_stat(intf, invalid_lan_responses); 3802 return 0; 3803 } 3804 3805 if (msg->rsp[2] != 0) { 3806 /* An error getting the response, just ignore it. */ 3807 return 0; 3808 } 3809 3810 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3811 lan_addr.session_handle = msg->rsp[4]; 3812 lan_addr.remote_SWID = msg->rsp[8]; 3813 lan_addr.local_SWID = msg->rsp[5]; 3814 lan_addr.channel = msg->rsp[3] & 0x0f; 3815 lan_addr.privilege = msg->rsp[3] >> 4; 3816 lan_addr.lun = msg->rsp[9] & 3; 3817 3818 /* 3819 * It's a response from a remote entity. Look up the sequence 3820 * number and handle the response. 3821 */ 3822 if (intf_find_seq(intf, 3823 msg->rsp[9] >> 2, 3824 msg->rsp[3] & 0x0f, 3825 msg->rsp[10], 3826 (msg->rsp[6] >> 2) & (~1), 3827 (struct ipmi_addr *) &(lan_addr), 3828 &recv_msg)) { 3829 /* 3830 * We were unable to find the sequence number, 3831 * so just nuke the message. 3832 */ 3833 ipmi_inc_stat(intf, unhandled_lan_responses); 3834 return 0; 3835 } 3836 3837 memcpy(recv_msg->msg_data, 3838 &(msg->rsp[11]), 3839 msg->rsp_size - 11); 3840 /* 3841 * The other fields matched, so no need to set them, except 3842 * for netfn, which needs to be the response that was 3843 * returned, not the request value. 3844 */ 3845 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3846 recv_msg->msg.data = recv_msg->msg_data; 3847 recv_msg->msg.data_len = msg->rsp_size - 12; 3848 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3849 ipmi_inc_stat(intf, handled_lan_responses); 3850 deliver_response(recv_msg); 3851 3852 return 0; 3853 } 3854 3855 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3856 struct ipmi_smi_msg *msg) 3857 { 3858 struct cmd_rcvr *rcvr; 3859 int rv = 0; 3860 unsigned char netfn; 3861 unsigned char cmd; 3862 unsigned char chan; 3863 ipmi_user_t user = NULL; 3864 struct ipmi_lan_addr *lan_addr; 3865 struct ipmi_recv_msg *recv_msg; 3866 3867 if (msg->rsp_size < 12) { 3868 /* Message not big enough, just ignore it. */ 3869 ipmi_inc_stat(intf, invalid_commands); 3870 return 0; 3871 } 3872 3873 if (msg->rsp[2] != 0) { 3874 /* An error getting the response, just ignore it. */ 3875 return 0; 3876 } 3877 3878 netfn = msg->rsp[6] >> 2; 3879 cmd = msg->rsp[10]; 3880 chan = msg->rsp[3] & 0xf; 3881 3882 rcu_read_lock(); 3883 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3884 if (rcvr) { 3885 user = rcvr->user; 3886 kref_get(&user->refcount); 3887 } else 3888 user = NULL; 3889 rcu_read_unlock(); 3890 3891 if (user == NULL) { 3892 /* We didn't find a user, just give up. */ 3893 ipmi_inc_stat(intf, unhandled_commands); 3894 3895 /* 3896 * Don't do anything with these messages, just allow 3897 * them to be freed. 3898 */ 3899 rv = 0; 3900 } else { 3901 /* Deliver the message to the user. */ 3902 ipmi_inc_stat(intf, handled_commands); 3903 3904 recv_msg = ipmi_alloc_recv_msg(); 3905 if (!recv_msg) { 3906 /* 3907 * We couldn't allocate memory for the 3908 * message, so requeue it for handling later. 3909 */ 3910 rv = 1; 3911 kref_put(&user->refcount, free_user); 3912 } else { 3913 /* Extract the source address from the data. */ 3914 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3915 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3916 lan_addr->session_handle = msg->rsp[4]; 3917 lan_addr->remote_SWID = msg->rsp[8]; 3918 lan_addr->local_SWID = msg->rsp[5]; 3919 lan_addr->lun = msg->rsp[9] & 3; 3920 lan_addr->channel = msg->rsp[3] & 0xf; 3921 lan_addr->privilege = msg->rsp[3] >> 4; 3922 3923 /* 3924 * Extract the rest of the message information 3925 * from the IPMB header. 3926 */ 3927 recv_msg->user = user; 3928 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3929 recv_msg->msgid = msg->rsp[9] >> 2; 3930 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3931 recv_msg->msg.cmd = msg->rsp[10]; 3932 recv_msg->msg.data = recv_msg->msg_data; 3933 3934 /* 3935 * We chop off 12, not 11 bytes because the checksum 3936 * at the end also needs to be removed. 3937 */ 3938 recv_msg->msg.data_len = msg->rsp_size - 12; 3939 memcpy(recv_msg->msg_data, 3940 &(msg->rsp[11]), 3941 msg->rsp_size - 12); 3942 deliver_response(recv_msg); 3943 } 3944 } 3945 3946 return rv; 3947 } 3948 3949 /* 3950 * This routine will handle "Get Message" command responses with 3951 * channels that use an OEM Medium. The message format belongs to 3952 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3953 * Chapter 22, sections 22.6 and 22.24 for more details. 3954 */ 3955 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3956 struct ipmi_smi_msg *msg) 3957 { 3958 struct cmd_rcvr *rcvr; 3959 int rv = 0; 3960 unsigned char netfn; 3961 unsigned char cmd; 3962 unsigned char chan; 3963 ipmi_user_t user = NULL; 3964 struct ipmi_system_interface_addr *smi_addr; 3965 struct ipmi_recv_msg *recv_msg; 3966 3967 /* 3968 * We expect the OEM SW to perform error checking 3969 * so we just do some basic sanity checks 3970 */ 3971 if (msg->rsp_size < 4) { 3972 /* Message not big enough, just ignore it. */ 3973 ipmi_inc_stat(intf, invalid_commands); 3974 return 0; 3975 } 3976 3977 if (msg->rsp[2] != 0) { 3978 /* An error getting the response, just ignore it. */ 3979 return 0; 3980 } 3981 3982 /* 3983 * This is an OEM Message so the OEM needs to know how 3984 * handle the message. We do no interpretation. 3985 */ 3986 netfn = msg->rsp[0] >> 2; 3987 cmd = msg->rsp[1]; 3988 chan = msg->rsp[3] & 0xf; 3989 3990 rcu_read_lock(); 3991 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3992 if (rcvr) { 3993 user = rcvr->user; 3994 kref_get(&user->refcount); 3995 } else 3996 user = NULL; 3997 rcu_read_unlock(); 3998 3999 if (user == NULL) { 4000 /* We didn't find a user, just give up. */ 4001 ipmi_inc_stat(intf, unhandled_commands); 4002 4003 /* 4004 * Don't do anything with these messages, just allow 4005 * them to be freed. 4006 */ 4007 4008 rv = 0; 4009 } else { 4010 /* Deliver the message to the user. */ 4011 ipmi_inc_stat(intf, handled_commands); 4012 4013 recv_msg = ipmi_alloc_recv_msg(); 4014 if (!recv_msg) { 4015 /* 4016 * We couldn't allocate memory for the 4017 * message, so requeue it for handling 4018 * later. 4019 */ 4020 rv = 1; 4021 kref_put(&user->refcount, free_user); 4022 } else { 4023 /* 4024 * OEM Messages are expected to be delivered via 4025 * the system interface to SMS software. We might 4026 * need to visit this again depending on OEM 4027 * requirements 4028 */ 4029 smi_addr = ((struct ipmi_system_interface_addr *) 4030 &(recv_msg->addr)); 4031 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4032 smi_addr->channel = IPMI_BMC_CHANNEL; 4033 smi_addr->lun = msg->rsp[0] & 3; 4034 4035 recv_msg->user = user; 4036 recv_msg->user_msg_data = NULL; 4037 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 4038 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4039 recv_msg->msg.cmd = msg->rsp[1]; 4040 recv_msg->msg.data = recv_msg->msg_data; 4041 4042 /* 4043 * The message starts at byte 4 which follows the 4044 * the Channel Byte in the "GET MESSAGE" command 4045 */ 4046 recv_msg->msg.data_len = msg->rsp_size - 4; 4047 memcpy(recv_msg->msg_data, 4048 &(msg->rsp[4]), 4049 msg->rsp_size - 4); 4050 deliver_response(recv_msg); 4051 } 4052 } 4053 4054 return rv; 4055 } 4056 4057 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 4058 struct ipmi_smi_msg *msg) 4059 { 4060 struct ipmi_system_interface_addr *smi_addr; 4061 4062 recv_msg->msgid = 0; 4063 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 4064 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4065 smi_addr->channel = IPMI_BMC_CHANNEL; 4066 smi_addr->lun = msg->rsp[0] & 3; 4067 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 4068 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4069 recv_msg->msg.cmd = msg->rsp[1]; 4070 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 4071 recv_msg->msg.data = recv_msg->msg_data; 4072 recv_msg->msg.data_len = msg->rsp_size - 3; 4073 } 4074 4075 static int handle_read_event_rsp(ipmi_smi_t intf, 4076 struct ipmi_smi_msg *msg) 4077 { 4078 struct ipmi_recv_msg *recv_msg, *recv_msg2; 4079 struct list_head msgs; 4080 ipmi_user_t user; 4081 int rv = 0; 4082 int deliver_count = 0; 4083 unsigned long flags; 4084 4085 if (msg->rsp_size < 19) { 4086 /* Message is too small to be an IPMB event. */ 4087 ipmi_inc_stat(intf, invalid_events); 4088 return 0; 4089 } 4090 4091 if (msg->rsp[2] != 0) { 4092 /* An error getting the event, just ignore it. */ 4093 return 0; 4094 } 4095 4096 INIT_LIST_HEAD(&msgs); 4097 4098 spin_lock_irqsave(&intf->events_lock, flags); 4099 4100 ipmi_inc_stat(intf, events); 4101 4102 /* 4103 * Allocate and fill in one message for every user that is 4104 * getting events. 4105 */ 4106 rcu_read_lock(); 4107 list_for_each_entry_rcu(user, &intf->users, link) { 4108 if (!user->gets_events) 4109 continue; 4110 4111 recv_msg = ipmi_alloc_recv_msg(); 4112 if (!recv_msg) { 4113 rcu_read_unlock(); 4114 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 4115 link) { 4116 list_del(&recv_msg->link); 4117 ipmi_free_recv_msg(recv_msg); 4118 } 4119 /* 4120 * We couldn't allocate memory for the 4121 * message, so requeue it for handling 4122 * later. 4123 */ 4124 rv = 1; 4125 goto out; 4126 } 4127 4128 deliver_count++; 4129 4130 copy_event_into_recv_msg(recv_msg, msg); 4131 recv_msg->user = user; 4132 kref_get(&user->refcount); 4133 list_add_tail(&(recv_msg->link), &msgs); 4134 } 4135 rcu_read_unlock(); 4136 4137 if (deliver_count) { 4138 /* Now deliver all the messages. */ 4139 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 4140 list_del(&recv_msg->link); 4141 deliver_response(recv_msg); 4142 } 4143 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 4144 /* 4145 * No one to receive the message, put it in queue if there's 4146 * not already too many things in the queue. 4147 */ 4148 recv_msg = ipmi_alloc_recv_msg(); 4149 if (!recv_msg) { 4150 /* 4151 * We couldn't allocate memory for the 4152 * message, so requeue it for handling 4153 * later. 4154 */ 4155 rv = 1; 4156 goto out; 4157 } 4158 4159 copy_event_into_recv_msg(recv_msg, msg); 4160 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 4161 intf->waiting_events_count++; 4162 } else if (!intf->event_msg_printed) { 4163 /* 4164 * There's too many things in the queue, discard this 4165 * message. 4166 */ 4167 dev_warn(intf->si_dev, 4168 PFX "Event queue full, discarding incoming events\n"); 4169 intf->event_msg_printed = 1; 4170 } 4171 4172 out: 4173 spin_unlock_irqrestore(&(intf->events_lock), flags); 4174 4175 return rv; 4176 } 4177 4178 static int handle_bmc_rsp(ipmi_smi_t intf, 4179 struct ipmi_smi_msg *msg) 4180 { 4181 struct ipmi_recv_msg *recv_msg; 4182 struct ipmi_user *user; 4183 4184 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 4185 if (recv_msg == NULL) { 4186 dev_warn(intf->si_dev, 4187 "IPMI message received with no owner. This could be because of a malformed message, or because of a hardware error. Contact your hardware vender for assistance\n"); 4188 return 0; 4189 } 4190 4191 user = recv_msg->user; 4192 /* Make sure the user still exists. */ 4193 if (user && !user->valid) { 4194 /* The user for the message went away, so give up. */ 4195 ipmi_inc_stat(intf, unhandled_local_responses); 4196 ipmi_free_recv_msg(recv_msg); 4197 } else { 4198 struct ipmi_system_interface_addr *smi_addr; 4199 4200 ipmi_inc_stat(intf, handled_local_responses); 4201 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 4202 recv_msg->msgid = msg->msgid; 4203 smi_addr = ((struct ipmi_system_interface_addr *) 4204 &(recv_msg->addr)); 4205 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4206 smi_addr->channel = IPMI_BMC_CHANNEL; 4207 smi_addr->lun = msg->rsp[0] & 3; 4208 recv_msg->msg.netfn = msg->rsp[0] >> 2; 4209 recv_msg->msg.cmd = msg->rsp[1]; 4210 memcpy(recv_msg->msg_data, 4211 &(msg->rsp[2]), 4212 msg->rsp_size - 2); 4213 recv_msg->msg.data = recv_msg->msg_data; 4214 recv_msg->msg.data_len = msg->rsp_size - 2; 4215 deliver_response(recv_msg); 4216 } 4217 4218 return 0; 4219 } 4220 4221 /* 4222 * Handle a received message. Return 1 if the message should be requeued, 4223 * 0 if the message should be freed, or -1 if the message should not 4224 * be freed or requeued. 4225 */ 4226 static int handle_one_recv_msg(ipmi_smi_t intf, 4227 struct ipmi_smi_msg *msg) 4228 { 4229 int requeue; 4230 int chan; 4231 4232 #ifdef DEBUG_MSGING 4233 int m; 4234 printk("Recv:"); 4235 for (m = 0; m < msg->rsp_size; m++) 4236 printk(" %2.2x", msg->rsp[m]); 4237 printk("\n"); 4238 #endif 4239 if (msg->rsp_size < 2) { 4240 /* Message is too small to be correct. */ 4241 dev_warn(intf->si_dev, 4242 PFX "BMC returned to small a message for netfn %x cmd %x, got %d bytes\n", 4243 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 4244 4245 /* Generate an error response for the message. */ 4246 msg->rsp[0] = msg->data[0] | (1 << 2); 4247 msg->rsp[1] = msg->data[1]; 4248 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 4249 msg->rsp_size = 3; 4250 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 4251 || (msg->rsp[1] != msg->data[1])) { 4252 /* 4253 * The NetFN and Command in the response is not even 4254 * marginally correct. 4255 */ 4256 dev_warn(intf->si_dev, 4257 PFX "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n", 4258 (msg->data[0] >> 2) | 1, msg->data[1], 4259 msg->rsp[0] >> 2, msg->rsp[1]); 4260 4261 /* Generate an error response for the message. */ 4262 msg->rsp[0] = msg->data[0] | (1 << 2); 4263 msg->rsp[1] = msg->data[1]; 4264 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 4265 msg->rsp_size = 3; 4266 } 4267 4268 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4269 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 4270 && (msg->user_data != NULL)) { 4271 /* 4272 * It's a response to a response we sent. For this we 4273 * deliver a send message response to the user. 4274 */ 4275 struct ipmi_recv_msg *recv_msg = msg->user_data; 4276 4277 requeue = 0; 4278 if (msg->rsp_size < 2) 4279 /* Message is too small to be correct. */ 4280 goto out; 4281 4282 chan = msg->data[2] & 0x0f; 4283 if (chan >= IPMI_MAX_CHANNELS) 4284 /* Invalid channel number */ 4285 goto out; 4286 4287 if (!recv_msg) 4288 goto out; 4289 4290 /* Make sure the user still exists. */ 4291 if (!recv_msg->user || !recv_msg->user->valid) 4292 goto out; 4293 4294 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 4295 recv_msg->msg.data = recv_msg->msg_data; 4296 recv_msg->msg.data_len = 1; 4297 recv_msg->msg_data[0] = msg->rsp[2]; 4298 deliver_response(recv_msg); 4299 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4300 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 4301 struct ipmi_channel *chans; 4302 4303 /* It's from the receive queue. */ 4304 chan = msg->rsp[3] & 0xf; 4305 if (chan >= IPMI_MAX_CHANNELS) { 4306 /* Invalid channel number */ 4307 requeue = 0; 4308 goto out; 4309 } 4310 4311 /* 4312 * We need to make sure the channels have been initialized. 4313 * The channel_handler routine will set the "curr_channel" 4314 * equal to or greater than IPMI_MAX_CHANNELS when all the 4315 * channels for this interface have been initialized. 4316 */ 4317 if (!intf->channels_ready) { 4318 requeue = 0; /* Throw the message away */ 4319 goto out; 4320 } 4321 4322 chans = READ_ONCE(intf->channel_list)->c; 4323 4324 switch (chans[chan].medium) { 4325 case IPMI_CHANNEL_MEDIUM_IPMB: 4326 if (msg->rsp[4] & 0x04) { 4327 /* 4328 * It's a response, so find the 4329 * requesting message and send it up. 4330 */ 4331 requeue = handle_ipmb_get_msg_rsp(intf, msg); 4332 } else { 4333 /* 4334 * It's a command to the SMS from some other 4335 * entity. Handle that. 4336 */ 4337 requeue = handle_ipmb_get_msg_cmd(intf, msg); 4338 } 4339 break; 4340 4341 case IPMI_CHANNEL_MEDIUM_8023LAN: 4342 case IPMI_CHANNEL_MEDIUM_ASYNC: 4343 if (msg->rsp[6] & 0x04) { 4344 /* 4345 * It's a response, so find the 4346 * requesting message and send it up. 4347 */ 4348 requeue = handle_lan_get_msg_rsp(intf, msg); 4349 } else { 4350 /* 4351 * It's a command to the SMS from some other 4352 * entity. Handle that. 4353 */ 4354 requeue = handle_lan_get_msg_cmd(intf, msg); 4355 } 4356 break; 4357 4358 default: 4359 /* Check for OEM Channels. Clients had better 4360 register for these commands. */ 4361 if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 4362 && (chans[chan].medium 4363 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 4364 requeue = handle_oem_get_msg_cmd(intf, msg); 4365 } else { 4366 /* 4367 * We don't handle the channel type, so just 4368 * free the message. 4369 */ 4370 requeue = 0; 4371 } 4372 } 4373 4374 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 4375 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 4376 /* It's an asynchronous event. */ 4377 requeue = handle_read_event_rsp(intf, msg); 4378 } else { 4379 /* It's a response from the local BMC. */ 4380 requeue = handle_bmc_rsp(intf, msg); 4381 } 4382 4383 out: 4384 return requeue; 4385 } 4386 4387 /* 4388 * If there are messages in the queue or pretimeouts, handle them. 4389 */ 4390 static void handle_new_recv_msgs(ipmi_smi_t intf) 4391 { 4392 struct ipmi_smi_msg *smi_msg; 4393 unsigned long flags = 0; 4394 int rv; 4395 int run_to_completion = intf->run_to_completion; 4396 4397 /* See if any waiting messages need to be processed. */ 4398 if (!run_to_completion) 4399 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4400 while (!list_empty(&intf->waiting_rcv_msgs)) { 4401 smi_msg = list_entry(intf->waiting_rcv_msgs.next, 4402 struct ipmi_smi_msg, link); 4403 list_del(&smi_msg->link); 4404 if (!run_to_completion) 4405 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4406 flags); 4407 rv = handle_one_recv_msg(intf, smi_msg); 4408 if (!run_to_completion) 4409 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4410 if (rv > 0) { 4411 /* 4412 * To preserve message order, quit if we 4413 * can't handle a message. Add the message 4414 * back at the head, this is safe because this 4415 * tasklet is the only thing that pulls the 4416 * messages. 4417 */ 4418 list_add(&smi_msg->link, &intf->waiting_rcv_msgs); 4419 break; 4420 } else { 4421 if (rv == 0) 4422 /* Message handled */ 4423 ipmi_free_smi_msg(smi_msg); 4424 /* If rv < 0, fatal error, del but don't free. */ 4425 } 4426 } 4427 if (!run_to_completion) 4428 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags); 4429 4430 /* 4431 * If the pretimout count is non-zero, decrement one from it and 4432 * deliver pretimeouts to all the users. 4433 */ 4434 if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) { 4435 ipmi_user_t user; 4436 4437 rcu_read_lock(); 4438 list_for_each_entry_rcu(user, &intf->users, link) { 4439 if (user->handler->ipmi_watchdog_pretimeout) 4440 user->handler->ipmi_watchdog_pretimeout( 4441 user->handler_data); 4442 } 4443 rcu_read_unlock(); 4444 } 4445 } 4446 4447 static void smi_recv_tasklet(unsigned long val) 4448 { 4449 unsigned long flags = 0; /* keep us warning-free. */ 4450 ipmi_smi_t intf = (ipmi_smi_t) val; 4451 int run_to_completion = intf->run_to_completion; 4452 struct ipmi_smi_msg *newmsg = NULL; 4453 4454 /* 4455 * Start the next message if available. 4456 * 4457 * Do this here, not in the actual receiver, because we may deadlock 4458 * because the lower layer is allowed to hold locks while calling 4459 * message delivery. 4460 */ 4461 4462 rcu_read_lock(); 4463 4464 if (!run_to_completion) 4465 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4466 if (intf->curr_msg == NULL && !intf->in_shutdown) { 4467 struct list_head *entry = NULL; 4468 4469 /* Pick the high priority queue first. */ 4470 if (!list_empty(&intf->hp_xmit_msgs)) 4471 entry = intf->hp_xmit_msgs.next; 4472 else if (!list_empty(&intf->xmit_msgs)) 4473 entry = intf->xmit_msgs.next; 4474 4475 if (entry) { 4476 list_del(entry); 4477 newmsg = list_entry(entry, struct ipmi_smi_msg, link); 4478 intf->curr_msg = newmsg; 4479 } 4480 } 4481 if (!run_to_completion) 4482 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4483 if (newmsg) 4484 intf->handlers->sender(intf->send_info, newmsg); 4485 4486 rcu_read_unlock(); 4487 4488 handle_new_recv_msgs(intf); 4489 } 4490 4491 /* Handle a new message from the lower layer. */ 4492 void ipmi_smi_msg_received(ipmi_smi_t intf, 4493 struct ipmi_smi_msg *msg) 4494 { 4495 unsigned long flags = 0; /* keep us warning-free. */ 4496 int run_to_completion = intf->run_to_completion; 4497 4498 if ((msg->data_size >= 2) 4499 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 4500 && (msg->data[1] == IPMI_SEND_MSG_CMD) 4501 && (msg->user_data == NULL)) { 4502 4503 if (intf->in_shutdown) 4504 goto free_msg; 4505 4506 /* 4507 * This is the local response to a command send, start 4508 * the timer for these. The user_data will not be 4509 * NULL if this is a response send, and we will let 4510 * response sends just go through. 4511 */ 4512 4513 /* 4514 * Check for errors, if we get certain errors (ones 4515 * that mean basically we can try again later), we 4516 * ignore them and start the timer. Otherwise we 4517 * report the error immediately. 4518 */ 4519 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 4520 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 4521 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 4522 && (msg->rsp[2] != IPMI_BUS_ERR) 4523 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 4524 int ch = msg->rsp[3] & 0xf; 4525 struct ipmi_channel *chans; 4526 4527 /* Got an error sending the message, handle it. */ 4528 4529 chans = READ_ONCE(intf->channel_list)->c; 4530 if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN) 4531 || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC)) 4532 ipmi_inc_stat(intf, sent_lan_command_errs); 4533 else 4534 ipmi_inc_stat(intf, sent_ipmb_command_errs); 4535 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 4536 } else 4537 /* The message was sent, start the timer. */ 4538 intf_start_seq_timer(intf, msg->msgid); 4539 4540 free_msg: 4541 ipmi_free_smi_msg(msg); 4542 } else { 4543 /* 4544 * To preserve message order, we keep a queue and deliver from 4545 * a tasklet. 4546 */ 4547 if (!run_to_completion) 4548 spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags); 4549 list_add_tail(&msg->link, &intf->waiting_rcv_msgs); 4550 if (!run_to_completion) 4551 spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, 4552 flags); 4553 } 4554 4555 if (!run_to_completion) 4556 spin_lock_irqsave(&intf->xmit_msgs_lock, flags); 4557 /* 4558 * We can get an asynchronous event or receive message in addition 4559 * to commands we send. 4560 */ 4561 if (msg == intf->curr_msg) 4562 intf->curr_msg = NULL; 4563 if (!run_to_completion) 4564 spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); 4565 4566 if (run_to_completion) 4567 smi_recv_tasklet((unsigned long) intf); 4568 else 4569 tasklet_schedule(&intf->recv_tasklet); 4570 } 4571 EXPORT_SYMBOL(ipmi_smi_msg_received); 4572 4573 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 4574 { 4575 if (intf->in_shutdown) 4576 return; 4577 4578 atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1); 4579 tasklet_schedule(&intf->recv_tasklet); 4580 } 4581 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 4582 4583 static struct ipmi_smi_msg * 4584 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 4585 unsigned char seq, long seqid) 4586 { 4587 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 4588 if (!smi_msg) 4589 /* 4590 * If we can't allocate the message, then just return, we 4591 * get 4 retries, so this should be ok. 4592 */ 4593 return NULL; 4594 4595 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 4596 smi_msg->data_size = recv_msg->msg.data_len; 4597 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 4598 4599 #ifdef DEBUG_MSGING 4600 { 4601 int m; 4602 printk("Resend: "); 4603 for (m = 0; m < smi_msg->data_size; m++) 4604 printk(" %2.2x", smi_msg->data[m]); 4605 printk("\n"); 4606 } 4607 #endif 4608 return smi_msg; 4609 } 4610 4611 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 4612 struct list_head *timeouts, 4613 unsigned long timeout_period, 4614 int slot, unsigned long *flags, 4615 unsigned int *waiting_msgs) 4616 { 4617 struct ipmi_recv_msg *msg; 4618 const struct ipmi_smi_handlers *handlers; 4619 4620 if (intf->in_shutdown) 4621 return; 4622 4623 if (!ent->inuse) 4624 return; 4625 4626 if (timeout_period < ent->timeout) { 4627 ent->timeout -= timeout_period; 4628 (*waiting_msgs)++; 4629 return; 4630 } 4631 4632 if (ent->retries_left == 0) { 4633 /* The message has used all its retries. */ 4634 ent->inuse = 0; 4635 msg = ent->recv_msg; 4636 list_add_tail(&msg->link, timeouts); 4637 if (ent->broadcast) 4638 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 4639 else if (is_lan_addr(&ent->recv_msg->addr)) 4640 ipmi_inc_stat(intf, timed_out_lan_commands); 4641 else 4642 ipmi_inc_stat(intf, timed_out_ipmb_commands); 4643 } else { 4644 struct ipmi_smi_msg *smi_msg; 4645 /* More retries, send again. */ 4646 4647 (*waiting_msgs)++; 4648 4649 /* 4650 * Start with the max timer, set to normal timer after 4651 * the message is sent. 4652 */ 4653 ent->timeout = MAX_MSG_TIMEOUT; 4654 ent->retries_left--; 4655 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 4656 ent->seqid); 4657 if (!smi_msg) { 4658 if (is_lan_addr(&ent->recv_msg->addr)) 4659 ipmi_inc_stat(intf, 4660 dropped_rexmit_lan_commands); 4661 else 4662 ipmi_inc_stat(intf, 4663 dropped_rexmit_ipmb_commands); 4664 return; 4665 } 4666 4667 spin_unlock_irqrestore(&intf->seq_lock, *flags); 4668 4669 /* 4670 * Send the new message. We send with a zero 4671 * priority. It timed out, I doubt time is that 4672 * critical now, and high priority messages are really 4673 * only for messages to the local MC, which don't get 4674 * resent. 4675 */ 4676 handlers = intf->handlers; 4677 if (handlers) { 4678 if (is_lan_addr(&ent->recv_msg->addr)) 4679 ipmi_inc_stat(intf, 4680 retransmitted_lan_commands); 4681 else 4682 ipmi_inc_stat(intf, 4683 retransmitted_ipmb_commands); 4684 4685 smi_send(intf, handlers, smi_msg, 0); 4686 } else 4687 ipmi_free_smi_msg(smi_msg); 4688 4689 spin_lock_irqsave(&intf->seq_lock, *flags); 4690 } 4691 } 4692 4693 static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, 4694 unsigned long timeout_period) 4695 { 4696 struct list_head timeouts; 4697 struct ipmi_recv_msg *msg, *msg2; 4698 unsigned long flags; 4699 int i; 4700 unsigned int waiting_msgs = 0; 4701 4702 if (!intf->bmc_registered) { 4703 kref_get(&intf->refcount); 4704 if (!schedule_work(&intf->bmc_reg_work)) { 4705 kref_put(&intf->refcount, intf_free); 4706 waiting_msgs++; 4707 } 4708 } 4709 4710 /* 4711 * Go through the seq table and find any messages that 4712 * have timed out, putting them in the timeouts 4713 * list. 4714 */ 4715 INIT_LIST_HEAD(&timeouts); 4716 spin_lock_irqsave(&intf->seq_lock, flags); 4717 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 4718 check_msg_timeout(intf, &(intf->seq_table[i]), 4719 &timeouts, timeout_period, i, 4720 &flags, &waiting_msgs); 4721 spin_unlock_irqrestore(&intf->seq_lock, flags); 4722 4723 list_for_each_entry_safe(msg, msg2, &timeouts, link) 4724 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 4725 4726 /* 4727 * Maintenance mode handling. Check the timeout 4728 * optimistically before we claim the lock. It may 4729 * mean a timeout gets missed occasionally, but that 4730 * only means the timeout gets extended by one period 4731 * in that case. No big deal, and it avoids the lock 4732 * most of the time. 4733 */ 4734 if (intf->auto_maintenance_timeout > 0) { 4735 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 4736 if (intf->auto_maintenance_timeout > 0) { 4737 intf->auto_maintenance_timeout 4738 -= timeout_period; 4739 if (!intf->maintenance_mode 4740 && (intf->auto_maintenance_timeout <= 0)) { 4741 intf->maintenance_mode_enable = false; 4742 maintenance_mode_update(intf); 4743 } 4744 } 4745 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 4746 flags); 4747 } 4748 4749 tasklet_schedule(&intf->recv_tasklet); 4750 4751 return waiting_msgs; 4752 } 4753 4754 static void ipmi_request_event(ipmi_smi_t intf) 4755 { 4756 /* No event requests when in maintenance mode. */ 4757 if (intf->maintenance_mode_enable) 4758 return; 4759 4760 if (!intf->in_shutdown) 4761 intf->handlers->request_events(intf->send_info); 4762 } 4763 4764 static struct timer_list ipmi_timer; 4765 4766 static atomic_t stop_operation; 4767 4768 static void ipmi_timeout(struct timer_list *unused) 4769 { 4770 ipmi_smi_t intf; 4771 int nt = 0; 4772 4773 if (atomic_read(&stop_operation)) 4774 return; 4775 4776 rcu_read_lock(); 4777 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4778 int lnt = 0; 4779 4780 if (atomic_read(&intf->event_waiters)) { 4781 intf->ticks_to_req_ev--; 4782 if (intf->ticks_to_req_ev == 0) { 4783 ipmi_request_event(intf); 4784 intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4785 } 4786 lnt++; 4787 } 4788 4789 lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME); 4790 4791 lnt = !!lnt; 4792 if (lnt != intf->last_needs_timer && 4793 intf->handlers->set_need_watch) 4794 intf->handlers->set_need_watch(intf->send_info, lnt); 4795 intf->last_needs_timer = lnt; 4796 4797 nt += lnt; 4798 } 4799 rcu_read_unlock(); 4800 4801 if (nt) 4802 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4803 } 4804 4805 static void need_waiter(ipmi_smi_t intf) 4806 { 4807 /* Racy, but worst case we start the timer twice. */ 4808 if (!timer_pending(&ipmi_timer)) 4809 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4810 } 4811 4812 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4813 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4814 4815 static void free_smi_msg(struct ipmi_smi_msg *msg) 4816 { 4817 atomic_dec(&smi_msg_inuse_count); 4818 kfree(msg); 4819 } 4820 4821 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4822 { 4823 struct ipmi_smi_msg *rv; 4824 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4825 if (rv) { 4826 rv->done = free_smi_msg; 4827 rv->user_data = NULL; 4828 atomic_inc(&smi_msg_inuse_count); 4829 } 4830 return rv; 4831 } 4832 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4833 4834 static void free_recv_msg(struct ipmi_recv_msg *msg) 4835 { 4836 atomic_dec(&recv_msg_inuse_count); 4837 kfree(msg); 4838 } 4839 4840 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4841 { 4842 struct ipmi_recv_msg *rv; 4843 4844 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4845 if (rv) { 4846 rv->user = NULL; 4847 rv->done = free_recv_msg; 4848 atomic_inc(&recv_msg_inuse_count); 4849 } 4850 return rv; 4851 } 4852 4853 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4854 { 4855 if (msg->user) 4856 kref_put(&msg->user->refcount, free_user); 4857 msg->done(msg); 4858 } 4859 EXPORT_SYMBOL(ipmi_free_recv_msg); 4860 4861 static atomic_t panic_done_count = ATOMIC_INIT(0); 4862 4863 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4864 { 4865 atomic_dec(&panic_done_count); 4866 } 4867 4868 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4869 { 4870 atomic_dec(&panic_done_count); 4871 } 4872 4873 /* 4874 * Inside a panic, send a message and wait for a response. 4875 */ 4876 static void ipmi_panic_request_and_wait(ipmi_smi_t intf, 4877 struct ipmi_addr *addr, 4878 struct kernel_ipmi_msg *msg) 4879 { 4880 struct ipmi_smi_msg smi_msg; 4881 struct ipmi_recv_msg recv_msg; 4882 int rv; 4883 4884 smi_msg.done = dummy_smi_done_handler; 4885 recv_msg.done = dummy_recv_done_handler; 4886 atomic_add(2, &panic_done_count); 4887 rv = i_ipmi_request(NULL, 4888 intf, 4889 addr, 4890 0, 4891 msg, 4892 intf, 4893 &smi_msg, 4894 &recv_msg, 4895 0, 4896 intf->addrinfo[0].address, 4897 intf->addrinfo[0].lun, 4898 0, 1); /* Don't retry, and don't wait. */ 4899 if (rv) 4900 atomic_sub(2, &panic_done_count); 4901 else if (intf->handlers->flush_messages) 4902 intf->handlers->flush_messages(intf->send_info); 4903 4904 while (atomic_read(&panic_done_count) != 0) 4905 ipmi_poll(intf); 4906 } 4907 4908 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4909 { 4910 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4911 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4912 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4913 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4914 /* A get event receiver command, save it. */ 4915 intf->event_receiver = msg->msg.data[1]; 4916 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4917 } 4918 } 4919 4920 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4921 { 4922 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4923 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4924 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4925 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4926 /* 4927 * A get device id command, save if we are an event 4928 * receiver or generator. 4929 */ 4930 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4931 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4932 } 4933 } 4934 4935 static void send_panic_events(char *str) 4936 { 4937 struct kernel_ipmi_msg msg; 4938 ipmi_smi_t intf; 4939 unsigned char data[16]; 4940 struct ipmi_system_interface_addr *si; 4941 struct ipmi_addr addr; 4942 4943 if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE) 4944 return; 4945 4946 si = (struct ipmi_system_interface_addr *) &addr; 4947 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4948 si->channel = IPMI_BMC_CHANNEL; 4949 si->lun = 0; 4950 4951 /* Fill in an event telling that we have failed. */ 4952 msg.netfn = 0x04; /* Sensor or Event. */ 4953 msg.cmd = 2; /* Platform event command. */ 4954 msg.data = data; 4955 msg.data_len = 8; 4956 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4957 data[1] = 0x03; /* This is for IPMI 1.0. */ 4958 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4959 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4960 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4961 4962 /* 4963 * Put a few breadcrumbs in. Hopefully later we can add more things 4964 * to make the panic events more useful. 4965 */ 4966 if (str) { 4967 data[3] = str[0]; 4968 data[6] = str[1]; 4969 data[7] = str[2]; 4970 } 4971 4972 /* For every registered interface, send the event. */ 4973 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4974 if (!intf->handlers || !intf->handlers->poll) 4975 /* Interface is not ready or can't run at panic time. */ 4976 continue; 4977 4978 /* Send the event announcing the panic. */ 4979 ipmi_panic_request_and_wait(intf, &addr, &msg); 4980 } 4981 4982 /* 4983 * On every interface, dump a bunch of OEM event holding the 4984 * string. 4985 */ 4986 if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str) 4987 return; 4988 4989 /* For every registered interface, send the event. */ 4990 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4991 char *p = str; 4992 struct ipmi_ipmb_addr *ipmb; 4993 int j; 4994 4995 if (intf->intf_num == -1) 4996 /* Interface was not ready yet. */ 4997 continue; 4998 4999 /* 5000 * intf_num is used as an marker to tell if the 5001 * interface is valid. Thus we need a read barrier to 5002 * make sure data fetched before checking intf_num 5003 * won't be used. 5004 */ 5005 smp_rmb(); 5006 5007 /* 5008 * First job here is to figure out where to send the 5009 * OEM events. There's no way in IPMI to send OEM 5010 * events using an event send command, so we have to 5011 * find the SEL to put them in and stick them in 5012 * there. 5013 */ 5014 5015 /* Get capabilities from the get device id. */ 5016 intf->local_sel_device = 0; 5017 intf->local_event_generator = 0; 5018 intf->event_receiver = 0; 5019 5020 /* Request the device info from the local MC. */ 5021 msg.netfn = IPMI_NETFN_APP_REQUEST; 5022 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 5023 msg.data = NULL; 5024 msg.data_len = 0; 5025 intf->null_user_handler = device_id_fetcher; 5026 ipmi_panic_request_and_wait(intf, &addr, &msg); 5027 5028 if (intf->local_event_generator) { 5029 /* Request the event receiver from the local MC. */ 5030 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 5031 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 5032 msg.data = NULL; 5033 msg.data_len = 0; 5034 intf->null_user_handler = event_receiver_fetcher; 5035 ipmi_panic_request_and_wait(intf, &addr, &msg); 5036 } 5037 intf->null_user_handler = NULL; 5038 5039 /* 5040 * Validate the event receiver. The low bit must not 5041 * be 1 (it must be a valid IPMB address), it cannot 5042 * be zero, and it must not be my address. 5043 */ 5044 if (((intf->event_receiver & 1) == 0) 5045 && (intf->event_receiver != 0) 5046 && (intf->event_receiver != intf->addrinfo[0].address)) { 5047 /* 5048 * The event receiver is valid, send an IPMB 5049 * message. 5050 */ 5051 ipmb = (struct ipmi_ipmb_addr *) &addr; 5052 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 5053 ipmb->channel = 0; /* FIXME - is this right? */ 5054 ipmb->lun = intf->event_receiver_lun; 5055 ipmb->slave_addr = intf->event_receiver; 5056 } else if (intf->local_sel_device) { 5057 /* 5058 * The event receiver was not valid (or was 5059 * me), but I am an SEL device, just dump it 5060 * in my SEL. 5061 */ 5062 si = (struct ipmi_system_interface_addr *) &addr; 5063 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 5064 si->channel = IPMI_BMC_CHANNEL; 5065 si->lun = 0; 5066 } else 5067 continue; /* No where to send the event. */ 5068 5069 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 5070 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 5071 msg.data = data; 5072 msg.data_len = 16; 5073 5074 j = 0; 5075 while (*p) { 5076 int size = strlen(p); 5077 5078 if (size > 11) 5079 size = 11; 5080 data[0] = 0; 5081 data[1] = 0; 5082 data[2] = 0xf0; /* OEM event without timestamp. */ 5083 data[3] = intf->addrinfo[0].address; 5084 data[4] = j++; /* sequence # */ 5085 /* 5086 * Always give 11 bytes, so strncpy will fill 5087 * it with zeroes for me. 5088 */ 5089 strncpy(data+5, p, 11); 5090 p += size; 5091 5092 ipmi_panic_request_and_wait(intf, &addr, &msg); 5093 } 5094 } 5095 } 5096 5097 static int has_panicked; 5098 5099 static int panic_event(struct notifier_block *this, 5100 unsigned long event, 5101 void *ptr) 5102 { 5103 ipmi_smi_t intf; 5104 5105 if (has_panicked) 5106 return NOTIFY_DONE; 5107 has_panicked = 1; 5108 5109 /* For every registered interface, set it to run to completion. */ 5110 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 5111 if (!intf->handlers) 5112 /* Interface is not ready. */ 5113 continue; 5114 5115 /* 5116 * If we were interrupted while locking xmit_msgs_lock or 5117 * waiting_rcv_msgs_lock, the corresponding list may be 5118 * corrupted. In this case, drop items on the list for 5119 * the safety. 5120 */ 5121 if (!spin_trylock(&intf->xmit_msgs_lock)) { 5122 INIT_LIST_HEAD(&intf->xmit_msgs); 5123 INIT_LIST_HEAD(&intf->hp_xmit_msgs); 5124 } else 5125 spin_unlock(&intf->xmit_msgs_lock); 5126 5127 if (!spin_trylock(&intf->waiting_rcv_msgs_lock)) 5128 INIT_LIST_HEAD(&intf->waiting_rcv_msgs); 5129 else 5130 spin_unlock(&intf->waiting_rcv_msgs_lock); 5131 5132 intf->run_to_completion = 1; 5133 if (intf->handlers->set_run_to_completion) 5134 intf->handlers->set_run_to_completion(intf->send_info, 5135 1); 5136 } 5137 5138 send_panic_events(ptr); 5139 5140 return NOTIFY_DONE; 5141 } 5142 5143 static struct notifier_block panic_block = { 5144 .notifier_call = panic_event, 5145 .next = NULL, 5146 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 5147 }; 5148 5149 static int ipmi_init_msghandler(void) 5150 { 5151 int rv; 5152 5153 if (initialized) 5154 return 0; 5155 5156 rv = driver_register(&ipmidriver.driver); 5157 if (rv) { 5158 pr_err(PFX "Could not register IPMI driver\n"); 5159 return rv; 5160 } 5161 5162 pr_info("ipmi message handler version " IPMI_DRIVER_VERSION "\n"); 5163 5164 #ifdef CONFIG_IPMI_PROC_INTERFACE 5165 proc_ipmi_root = proc_mkdir("ipmi", NULL); 5166 if (!proc_ipmi_root) { 5167 pr_err(PFX "Unable to create IPMI proc dir"); 5168 driver_unregister(&ipmidriver.driver); 5169 return -ENOMEM; 5170 } 5171 5172 #endif /* CONFIG_IPMI_PROC_INTERFACE */ 5173 5174 timer_setup(&ipmi_timer, ipmi_timeout, 0); 5175 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 5176 5177 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 5178 5179 initialized = 1; 5180 5181 return 0; 5182 } 5183 5184 static int __init ipmi_init_msghandler_mod(void) 5185 { 5186 ipmi_init_msghandler(); 5187 return 0; 5188 } 5189 5190 static void __exit cleanup_ipmi(void) 5191 { 5192 int count; 5193 5194 if (!initialized) 5195 return; 5196 5197 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 5198 5199 /* 5200 * This can't be called if any interfaces exist, so no worry 5201 * about shutting down the interfaces. 5202 */ 5203 5204 /* 5205 * Tell the timer to stop, then wait for it to stop. This 5206 * avoids problems with race conditions removing the timer 5207 * here. 5208 */ 5209 atomic_inc(&stop_operation); 5210 del_timer_sync(&ipmi_timer); 5211 5212 #ifdef CONFIG_IPMI_PROC_INTERFACE 5213 proc_remove(proc_ipmi_root); 5214 #endif /* CONFIG_IPMI_PROC_INTERFACE */ 5215 5216 driver_unregister(&ipmidriver.driver); 5217 5218 initialized = 0; 5219 5220 /* Check for buffer leaks. */ 5221 count = atomic_read(&smi_msg_inuse_count); 5222 if (count != 0) 5223 pr_warn(PFX "SMI message count %d at exit\n", count); 5224 count = atomic_read(&recv_msg_inuse_count); 5225 if (count != 0) 5226 pr_warn(PFX "recv message count %d at exit\n", count); 5227 } 5228 module_exit(cleanup_ipmi); 5229 5230 module_init(ipmi_init_msghandler_mod); 5231 MODULE_LICENSE("GPL"); 5232 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 5233 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 5234 " interface."); 5235 MODULE_VERSION(IPMI_DRIVER_VERSION); 5236 MODULE_SOFTDEP("post: ipmi_devintf"); 5237