1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 
48 #define PFX "IPMI message handler: "
49 
50 #define IPMI_DRIVER_VERSION "39.2"
51 
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
54 
55 static int initialized;
56 
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
60 
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
63 
64 #define MAX_EVENTS_IN_QUEUE	25
65 
66 /*
67  * Don't let a message sit in a queue forever, always time it with at lest
68  * the max message timer.  This is in milliseconds.
69  */
70 #define MAX_MSG_TIMEOUT		60000
71 
72 /*
73  * The main "user" data structure.
74  */
75 struct ipmi_user {
76 	struct list_head link;
77 
78 	/* Set to "0" when the user is destroyed. */
79 	int valid;
80 
81 	struct kref refcount;
82 
83 	/* The upper layer that handles receive messages. */
84 	struct ipmi_user_hndl *handler;
85 	void             *handler_data;
86 
87 	/* The interface this user is bound to. */
88 	ipmi_smi_t intf;
89 
90 	/* Does this interface receive IPMI events? */
91 	int gets_events;
92 };
93 
94 struct cmd_rcvr {
95 	struct list_head link;
96 
97 	ipmi_user_t   user;
98 	unsigned char netfn;
99 	unsigned char cmd;
100 	unsigned int  chans;
101 
102 	/*
103 	 * This is used to form a linked lised during mass deletion.
104 	 * Since this is in an RCU list, we cannot use the link above
105 	 * or change any data until the RCU period completes.  So we
106 	 * use this next variable during mass deletion so we can have
107 	 * a list and don't have to wait and restart the search on
108 	 * every individual deletion of a command.
109 	 */
110 	struct cmd_rcvr *next;
111 };
112 
113 struct seq_table {
114 	unsigned int         inuse : 1;
115 	unsigned int         broadcast : 1;
116 
117 	unsigned long        timeout;
118 	unsigned long        orig_timeout;
119 	unsigned int         retries_left;
120 
121 	/*
122 	 * To verify on an incoming send message response that this is
123 	 * the message that the response is for, we keep a sequence id
124 	 * and increment it every time we send a message.
125 	 */
126 	long                 seqid;
127 
128 	/*
129 	 * This is held so we can properly respond to the message on a
130 	 * timeout, and it is used to hold the temporary data for
131 	 * retransmission, too.
132 	 */
133 	struct ipmi_recv_msg *recv_msg;
134 };
135 
136 /*
137  * Store the information in a msgid (long) to allow us to find a
138  * sequence table entry from the msgid.
139  */
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
141 
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
143 	do {								\
144 		seq = ((msgid >> 26) & 0x3f);				\
145 		seqid = (msgid & 0x3fffff);				\
146 	} while (0)
147 
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
149 
150 struct ipmi_channel {
151 	unsigned char medium;
152 	unsigned char protocol;
153 
154 	/*
155 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
156 	 * but may be changed by the user.
157 	 */
158 	unsigned char address;
159 
160 	/*
161 	 * My LUN.  This should generally stay the SMS LUN, but just in
162 	 * case...
163 	 */
164 	unsigned char lun;
165 };
166 
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
169 	char                   *name;
170 	struct ipmi_proc_entry *next;
171 };
172 #endif
173 
174 struct bmc_device {
175 	struct platform_device *dev;
176 	struct ipmi_device_id  id;
177 	unsigned char          guid[16];
178 	int                    guid_set;
179 
180 	struct kref	       refcount;
181 
182 	/* bmc device attributes */
183 	struct device_attribute device_id_attr;
184 	struct device_attribute provides_dev_sdrs_attr;
185 	struct device_attribute revision_attr;
186 	struct device_attribute firmware_rev_attr;
187 	struct device_attribute version_attr;
188 	struct device_attribute add_dev_support_attr;
189 	struct device_attribute manufacturer_id_attr;
190 	struct device_attribute product_id_attr;
191 	struct device_attribute guid_attr;
192 	struct device_attribute aux_firmware_rev_attr;
193 };
194 
195 /*
196  * Various statistics for IPMI, these index stats[] in the ipmi_smi
197  * structure.
198  */
199 enum ipmi_stat_indexes {
200 	/* Commands we got from the user that were invalid. */
201 	IPMI_STAT_sent_invalid_commands = 0,
202 
203 	/* Commands we sent to the MC. */
204 	IPMI_STAT_sent_local_commands,
205 
206 	/* Responses from the MC that were delivered to a user. */
207 	IPMI_STAT_handled_local_responses,
208 
209 	/* Responses from the MC that were not delivered to a user. */
210 	IPMI_STAT_unhandled_local_responses,
211 
212 	/* Commands we sent out to the IPMB bus. */
213 	IPMI_STAT_sent_ipmb_commands,
214 
215 	/* Commands sent on the IPMB that had errors on the SEND CMD */
216 	IPMI_STAT_sent_ipmb_command_errs,
217 
218 	/* Each retransmit increments this count. */
219 	IPMI_STAT_retransmitted_ipmb_commands,
220 
221 	/*
222 	 * When a message times out (runs out of retransmits) this is
223 	 * incremented.
224 	 */
225 	IPMI_STAT_timed_out_ipmb_commands,
226 
227 	/*
228 	 * This is like above, but for broadcasts.  Broadcasts are
229 	 * *not* included in the above count (they are expected to
230 	 * time out).
231 	 */
232 	IPMI_STAT_timed_out_ipmb_broadcasts,
233 
234 	/* Responses I have sent to the IPMB bus. */
235 	IPMI_STAT_sent_ipmb_responses,
236 
237 	/* The response was delivered to the user. */
238 	IPMI_STAT_handled_ipmb_responses,
239 
240 	/* The response had invalid data in it. */
241 	IPMI_STAT_invalid_ipmb_responses,
242 
243 	/* The response didn't have anyone waiting for it. */
244 	IPMI_STAT_unhandled_ipmb_responses,
245 
246 	/* Commands we sent out to the IPMB bus. */
247 	IPMI_STAT_sent_lan_commands,
248 
249 	/* Commands sent on the IPMB that had errors on the SEND CMD */
250 	IPMI_STAT_sent_lan_command_errs,
251 
252 	/* Each retransmit increments this count. */
253 	IPMI_STAT_retransmitted_lan_commands,
254 
255 	/*
256 	 * When a message times out (runs out of retransmits) this is
257 	 * incremented.
258 	 */
259 	IPMI_STAT_timed_out_lan_commands,
260 
261 	/* Responses I have sent to the IPMB bus. */
262 	IPMI_STAT_sent_lan_responses,
263 
264 	/* The response was delivered to the user. */
265 	IPMI_STAT_handled_lan_responses,
266 
267 	/* The response had invalid data in it. */
268 	IPMI_STAT_invalid_lan_responses,
269 
270 	/* The response didn't have anyone waiting for it. */
271 	IPMI_STAT_unhandled_lan_responses,
272 
273 	/* The command was delivered to the user. */
274 	IPMI_STAT_handled_commands,
275 
276 	/* The command had invalid data in it. */
277 	IPMI_STAT_invalid_commands,
278 
279 	/* The command didn't have anyone waiting for it. */
280 	IPMI_STAT_unhandled_commands,
281 
282 	/* Invalid data in an event. */
283 	IPMI_STAT_invalid_events,
284 
285 	/* Events that were received with the proper format. */
286 	IPMI_STAT_events,
287 
288 	/* Retransmissions on IPMB that failed. */
289 	IPMI_STAT_dropped_rexmit_ipmb_commands,
290 
291 	/* Retransmissions on LAN that failed. */
292 	IPMI_STAT_dropped_rexmit_lan_commands,
293 
294 	/* This *must* remain last, add new values above this. */
295 	IPMI_NUM_STATS
296 };
297 
298 
299 #define IPMI_IPMB_NUM_SEQ	64
300 #define IPMI_MAX_CHANNELS       16
301 struct ipmi_smi {
302 	/* What interface number are we? */
303 	int intf_num;
304 
305 	struct kref refcount;
306 
307 	/* Used for a list of interfaces. */
308 	struct list_head link;
309 
310 	/*
311 	 * The list of upper layers that are using me.  seq_lock
312 	 * protects this.
313 	 */
314 	struct list_head users;
315 
316 	/* Information to supply to users. */
317 	unsigned char ipmi_version_major;
318 	unsigned char ipmi_version_minor;
319 
320 	/* Used for wake ups at startup. */
321 	wait_queue_head_t waitq;
322 
323 	struct bmc_device *bmc;
324 	char *my_dev_name;
325 	char *sysfs_name;
326 
327 	/*
328 	 * This is the lower-layer's sender routine.  Note that you
329 	 * must either be holding the ipmi_interfaces_mutex or be in
330 	 * an umpreemptible region to use this.  You must fetch the
331 	 * value into a local variable and make sure it is not NULL.
332 	 */
333 	struct ipmi_smi_handlers *handlers;
334 	void                     *send_info;
335 
336 #ifdef CONFIG_PROC_FS
337 	/* A list of proc entries for this interface. */
338 	struct mutex           proc_entry_lock;
339 	struct ipmi_proc_entry *proc_entries;
340 #endif
341 
342 	/* Driver-model device for the system interface. */
343 	struct device          *si_dev;
344 
345 	/*
346 	 * A table of sequence numbers for this interface.  We use the
347 	 * sequence numbers for IPMB messages that go out of the
348 	 * interface to match them up with their responses.  A routine
349 	 * is called periodically to time the items in this list.
350 	 */
351 	spinlock_t       seq_lock;
352 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
353 	int curr_seq;
354 
355 	/*
356 	 * Messages that were delayed for some reason (out of memory,
357 	 * for instance), will go in here to be processed later in a
358 	 * periodic timer interrupt.
359 	 */
360 	spinlock_t       waiting_msgs_lock;
361 	struct list_head waiting_msgs;
362 
363 	/*
364 	 * The list of command receivers that are registered for commands
365 	 * on this interface.
366 	 */
367 	struct mutex     cmd_rcvrs_mutex;
368 	struct list_head cmd_rcvrs;
369 
370 	/*
371 	 * Events that were queues because no one was there to receive
372 	 * them.
373 	 */
374 	spinlock_t       events_lock; /* For dealing with event stuff. */
375 	struct list_head waiting_events;
376 	unsigned int     waiting_events_count; /* How many events in queue? */
377 	char             delivering_events;
378 	char             event_msg_printed;
379 
380 	/*
381 	 * The event receiver for my BMC, only really used at panic
382 	 * shutdown as a place to store this.
383 	 */
384 	unsigned char event_receiver;
385 	unsigned char event_receiver_lun;
386 	unsigned char local_sel_device;
387 	unsigned char local_event_generator;
388 
389 	/* For handling of maintenance mode. */
390 	int maintenance_mode;
391 	int maintenance_mode_enable;
392 	int auto_maintenance_timeout;
393 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
394 
395 	/*
396 	 * A cheap hack, if this is non-null and a message to an
397 	 * interface comes in with a NULL user, call this routine with
398 	 * it.  Note that the message will still be freed by the
399 	 * caller.  This only works on the system interface.
400 	 */
401 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
402 
403 	/*
404 	 * When we are scanning the channels for an SMI, this will
405 	 * tell which channel we are scanning.
406 	 */
407 	int curr_channel;
408 
409 	/* Channel information */
410 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
411 
412 	/* Proc FS stuff. */
413 	struct proc_dir_entry *proc_dir;
414 	char                  proc_dir_name[10];
415 
416 	atomic_t stats[IPMI_NUM_STATS];
417 
418 	/*
419 	 * run_to_completion duplicate of smb_info, smi_info
420 	 * and ipmi_serial_info structures. Used to decrease numbers of
421 	 * parameters passed by "low" level IPMI code.
422 	 */
423 	int run_to_completion;
424 };
425 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
426 
427 /**
428  * The driver model view of the IPMI messaging driver.
429  */
430 static struct platform_driver ipmidriver = {
431 	.driver = {
432 		.name = "ipmi",
433 		.bus = &platform_bus_type
434 	}
435 };
436 static DEFINE_MUTEX(ipmidriver_mutex);
437 
438 static LIST_HEAD(ipmi_interfaces);
439 static DEFINE_MUTEX(ipmi_interfaces_mutex);
440 
441 /*
442  * List of watchers that want to know when smi's are added and deleted.
443  */
444 static LIST_HEAD(smi_watchers);
445 static DEFINE_MUTEX(smi_watchers_mutex);
446 
447 
448 #define ipmi_inc_stat(intf, stat) \
449 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
450 #define ipmi_get_stat(intf, stat) \
451 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
452 
453 static int is_lan_addr(struct ipmi_addr *addr)
454 {
455 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
456 }
457 
458 static int is_ipmb_addr(struct ipmi_addr *addr)
459 {
460 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
461 }
462 
463 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
464 {
465 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
466 }
467 
468 static void free_recv_msg_list(struct list_head *q)
469 {
470 	struct ipmi_recv_msg *msg, *msg2;
471 
472 	list_for_each_entry_safe(msg, msg2, q, link) {
473 		list_del(&msg->link);
474 		ipmi_free_recv_msg(msg);
475 	}
476 }
477 
478 static void free_smi_msg_list(struct list_head *q)
479 {
480 	struct ipmi_smi_msg *msg, *msg2;
481 
482 	list_for_each_entry_safe(msg, msg2, q, link) {
483 		list_del(&msg->link);
484 		ipmi_free_smi_msg(msg);
485 	}
486 }
487 
488 static void clean_up_interface_data(ipmi_smi_t intf)
489 {
490 	int              i;
491 	struct cmd_rcvr  *rcvr, *rcvr2;
492 	struct list_head list;
493 
494 	free_smi_msg_list(&intf->waiting_msgs);
495 	free_recv_msg_list(&intf->waiting_events);
496 
497 	/*
498 	 * Wholesale remove all the entries from the list in the
499 	 * interface and wait for RCU to know that none are in use.
500 	 */
501 	mutex_lock(&intf->cmd_rcvrs_mutex);
502 	INIT_LIST_HEAD(&list);
503 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
504 	mutex_unlock(&intf->cmd_rcvrs_mutex);
505 
506 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
507 		kfree(rcvr);
508 
509 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
510 		if ((intf->seq_table[i].inuse)
511 					&& (intf->seq_table[i].recv_msg))
512 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
513 	}
514 }
515 
516 static void intf_free(struct kref *ref)
517 {
518 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
519 
520 	clean_up_interface_data(intf);
521 	kfree(intf);
522 }
523 
524 struct watcher_entry {
525 	int              intf_num;
526 	ipmi_smi_t       intf;
527 	struct list_head link;
528 };
529 
530 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
531 {
532 	ipmi_smi_t intf;
533 	LIST_HEAD(to_deliver);
534 	struct watcher_entry *e, *e2;
535 
536 	mutex_lock(&smi_watchers_mutex);
537 
538 	mutex_lock(&ipmi_interfaces_mutex);
539 
540 	/* Build a list of things to deliver. */
541 	list_for_each_entry(intf, &ipmi_interfaces, link) {
542 		if (intf->intf_num == -1)
543 			continue;
544 		e = kmalloc(sizeof(*e), GFP_KERNEL);
545 		if (!e)
546 			goto out_err;
547 		kref_get(&intf->refcount);
548 		e->intf = intf;
549 		e->intf_num = intf->intf_num;
550 		list_add_tail(&e->link, &to_deliver);
551 	}
552 
553 	/* We will succeed, so add it to the list. */
554 	list_add(&watcher->link, &smi_watchers);
555 
556 	mutex_unlock(&ipmi_interfaces_mutex);
557 
558 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
559 		list_del(&e->link);
560 		watcher->new_smi(e->intf_num, e->intf->si_dev);
561 		kref_put(&e->intf->refcount, intf_free);
562 		kfree(e);
563 	}
564 
565 	mutex_unlock(&smi_watchers_mutex);
566 
567 	return 0;
568 
569  out_err:
570 	mutex_unlock(&ipmi_interfaces_mutex);
571 	mutex_unlock(&smi_watchers_mutex);
572 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
573 		list_del(&e->link);
574 		kref_put(&e->intf->refcount, intf_free);
575 		kfree(e);
576 	}
577 	return -ENOMEM;
578 }
579 EXPORT_SYMBOL(ipmi_smi_watcher_register);
580 
581 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
582 {
583 	mutex_lock(&smi_watchers_mutex);
584 	list_del(&(watcher->link));
585 	mutex_unlock(&smi_watchers_mutex);
586 	return 0;
587 }
588 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
589 
590 /*
591  * Must be called with smi_watchers_mutex held.
592  */
593 static void
594 call_smi_watchers(int i, struct device *dev)
595 {
596 	struct ipmi_smi_watcher *w;
597 
598 	list_for_each_entry(w, &smi_watchers, link) {
599 		if (try_module_get(w->owner)) {
600 			w->new_smi(i, dev);
601 			module_put(w->owner);
602 		}
603 	}
604 }
605 
606 static int
607 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
608 {
609 	if (addr1->addr_type != addr2->addr_type)
610 		return 0;
611 
612 	if (addr1->channel != addr2->channel)
613 		return 0;
614 
615 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
616 		struct ipmi_system_interface_addr *smi_addr1
617 		    = (struct ipmi_system_interface_addr *) addr1;
618 		struct ipmi_system_interface_addr *smi_addr2
619 		    = (struct ipmi_system_interface_addr *) addr2;
620 		return (smi_addr1->lun == smi_addr2->lun);
621 	}
622 
623 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
624 		struct ipmi_ipmb_addr *ipmb_addr1
625 		    = (struct ipmi_ipmb_addr *) addr1;
626 		struct ipmi_ipmb_addr *ipmb_addr2
627 		    = (struct ipmi_ipmb_addr *) addr2;
628 
629 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
630 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
631 	}
632 
633 	if (is_lan_addr(addr1)) {
634 		struct ipmi_lan_addr *lan_addr1
635 			= (struct ipmi_lan_addr *) addr1;
636 		struct ipmi_lan_addr *lan_addr2
637 		    = (struct ipmi_lan_addr *) addr2;
638 
639 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
640 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
641 			&& (lan_addr1->session_handle
642 			    == lan_addr2->session_handle)
643 			&& (lan_addr1->lun == lan_addr2->lun));
644 	}
645 
646 	return 1;
647 }
648 
649 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
650 {
651 	if (len < sizeof(struct ipmi_system_interface_addr))
652 		return -EINVAL;
653 
654 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
655 		if (addr->channel != IPMI_BMC_CHANNEL)
656 			return -EINVAL;
657 		return 0;
658 	}
659 
660 	if ((addr->channel == IPMI_BMC_CHANNEL)
661 	    || (addr->channel >= IPMI_MAX_CHANNELS)
662 	    || (addr->channel < 0))
663 		return -EINVAL;
664 
665 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
666 		if (len < sizeof(struct ipmi_ipmb_addr))
667 			return -EINVAL;
668 		return 0;
669 	}
670 
671 	if (is_lan_addr(addr)) {
672 		if (len < sizeof(struct ipmi_lan_addr))
673 			return -EINVAL;
674 		return 0;
675 	}
676 
677 	return -EINVAL;
678 }
679 EXPORT_SYMBOL(ipmi_validate_addr);
680 
681 unsigned int ipmi_addr_length(int addr_type)
682 {
683 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
684 		return sizeof(struct ipmi_system_interface_addr);
685 
686 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
687 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
688 		return sizeof(struct ipmi_ipmb_addr);
689 
690 	if (addr_type == IPMI_LAN_ADDR_TYPE)
691 		return sizeof(struct ipmi_lan_addr);
692 
693 	return 0;
694 }
695 EXPORT_SYMBOL(ipmi_addr_length);
696 
697 static void deliver_response(struct ipmi_recv_msg *msg)
698 {
699 	if (!msg->user) {
700 		ipmi_smi_t    intf = msg->user_msg_data;
701 
702 		/* Special handling for NULL users. */
703 		if (intf->null_user_handler) {
704 			intf->null_user_handler(intf, msg);
705 			ipmi_inc_stat(intf, handled_local_responses);
706 		} else {
707 			/* No handler, so give up. */
708 			ipmi_inc_stat(intf, unhandled_local_responses);
709 		}
710 		ipmi_free_recv_msg(msg);
711 	} else {
712 		ipmi_user_t user = msg->user;
713 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
714 	}
715 }
716 
717 static void
718 deliver_err_response(struct ipmi_recv_msg *msg, int err)
719 {
720 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
721 	msg->msg_data[0] = err;
722 	msg->msg.netfn |= 1; /* Convert to a response. */
723 	msg->msg.data_len = 1;
724 	msg->msg.data = msg->msg_data;
725 	deliver_response(msg);
726 }
727 
728 /*
729  * Find the next sequence number not being used and add the given
730  * message with the given timeout to the sequence table.  This must be
731  * called with the interface's seq_lock held.
732  */
733 static int intf_next_seq(ipmi_smi_t           intf,
734 			 struct ipmi_recv_msg *recv_msg,
735 			 unsigned long        timeout,
736 			 int                  retries,
737 			 int                  broadcast,
738 			 unsigned char        *seq,
739 			 long                 *seqid)
740 {
741 	int          rv = 0;
742 	unsigned int i;
743 
744 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
745 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
746 		if (!intf->seq_table[i].inuse)
747 			break;
748 	}
749 
750 	if (!intf->seq_table[i].inuse) {
751 		intf->seq_table[i].recv_msg = recv_msg;
752 
753 		/*
754 		 * Start with the maximum timeout, when the send response
755 		 * comes in we will start the real timer.
756 		 */
757 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
758 		intf->seq_table[i].orig_timeout = timeout;
759 		intf->seq_table[i].retries_left = retries;
760 		intf->seq_table[i].broadcast = broadcast;
761 		intf->seq_table[i].inuse = 1;
762 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
763 		*seq = i;
764 		*seqid = intf->seq_table[i].seqid;
765 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
766 	} else {
767 		rv = -EAGAIN;
768 	}
769 
770 	return rv;
771 }
772 
773 /*
774  * Return the receive message for the given sequence number and
775  * release the sequence number so it can be reused.  Some other data
776  * is passed in to be sure the message matches up correctly (to help
777  * guard against message coming in after their timeout and the
778  * sequence number being reused).
779  */
780 static int intf_find_seq(ipmi_smi_t           intf,
781 			 unsigned char        seq,
782 			 short                channel,
783 			 unsigned char        cmd,
784 			 unsigned char        netfn,
785 			 struct ipmi_addr     *addr,
786 			 struct ipmi_recv_msg **recv_msg)
787 {
788 	int           rv = -ENODEV;
789 	unsigned long flags;
790 
791 	if (seq >= IPMI_IPMB_NUM_SEQ)
792 		return -EINVAL;
793 
794 	spin_lock_irqsave(&(intf->seq_lock), flags);
795 	if (intf->seq_table[seq].inuse) {
796 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
797 
798 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
799 				&& (msg->msg.netfn == netfn)
800 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
801 			*recv_msg = msg;
802 			intf->seq_table[seq].inuse = 0;
803 			rv = 0;
804 		}
805 	}
806 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
807 
808 	return rv;
809 }
810 
811 
812 /* Start the timer for a specific sequence table entry. */
813 static int intf_start_seq_timer(ipmi_smi_t intf,
814 				long       msgid)
815 {
816 	int           rv = -ENODEV;
817 	unsigned long flags;
818 	unsigned char seq;
819 	unsigned long seqid;
820 
821 
822 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
823 
824 	spin_lock_irqsave(&(intf->seq_lock), flags);
825 	/*
826 	 * We do this verification because the user can be deleted
827 	 * while a message is outstanding.
828 	 */
829 	if ((intf->seq_table[seq].inuse)
830 				&& (intf->seq_table[seq].seqid == seqid)) {
831 		struct seq_table *ent = &(intf->seq_table[seq]);
832 		ent->timeout = ent->orig_timeout;
833 		rv = 0;
834 	}
835 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
836 
837 	return rv;
838 }
839 
840 /* Got an error for the send message for a specific sequence number. */
841 static int intf_err_seq(ipmi_smi_t   intf,
842 			long         msgid,
843 			unsigned int err)
844 {
845 	int                  rv = -ENODEV;
846 	unsigned long        flags;
847 	unsigned char        seq;
848 	unsigned long        seqid;
849 	struct ipmi_recv_msg *msg = NULL;
850 
851 
852 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
853 
854 	spin_lock_irqsave(&(intf->seq_lock), flags);
855 	/*
856 	 * We do this verification because the user can be deleted
857 	 * while a message is outstanding.
858 	 */
859 	if ((intf->seq_table[seq].inuse)
860 				&& (intf->seq_table[seq].seqid == seqid)) {
861 		struct seq_table *ent = &(intf->seq_table[seq]);
862 
863 		ent->inuse = 0;
864 		msg = ent->recv_msg;
865 		rv = 0;
866 	}
867 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
868 
869 	if (msg)
870 		deliver_err_response(msg, err);
871 
872 	return rv;
873 }
874 
875 
876 int ipmi_create_user(unsigned int          if_num,
877 		     struct ipmi_user_hndl *handler,
878 		     void                  *handler_data,
879 		     ipmi_user_t           *user)
880 {
881 	unsigned long flags;
882 	ipmi_user_t   new_user;
883 	int           rv = 0;
884 	ipmi_smi_t    intf;
885 
886 	/*
887 	 * There is no module usecount here, because it's not
888 	 * required.  Since this can only be used by and called from
889 	 * other modules, they will implicitly use this module, and
890 	 * thus this can't be removed unless the other modules are
891 	 * removed.
892 	 */
893 
894 	if (handler == NULL)
895 		return -EINVAL;
896 
897 	/*
898 	 * Make sure the driver is actually initialized, this handles
899 	 * problems with initialization order.
900 	 */
901 	if (!initialized) {
902 		rv = ipmi_init_msghandler();
903 		if (rv)
904 			return rv;
905 
906 		/*
907 		 * The init code doesn't return an error if it was turned
908 		 * off, but it won't initialize.  Check that.
909 		 */
910 		if (!initialized)
911 			return -ENODEV;
912 	}
913 
914 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
915 	if (!new_user)
916 		return -ENOMEM;
917 
918 	mutex_lock(&ipmi_interfaces_mutex);
919 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
920 		if (intf->intf_num == if_num)
921 			goto found;
922 	}
923 	/* Not found, return an error */
924 	rv = -EINVAL;
925 	goto out_kfree;
926 
927  found:
928 	/* Note that each existing user holds a refcount to the interface. */
929 	kref_get(&intf->refcount);
930 
931 	kref_init(&new_user->refcount);
932 	new_user->handler = handler;
933 	new_user->handler_data = handler_data;
934 	new_user->intf = intf;
935 	new_user->gets_events = 0;
936 
937 	if (!try_module_get(intf->handlers->owner)) {
938 		rv = -ENODEV;
939 		goto out_kref;
940 	}
941 
942 	if (intf->handlers->inc_usecount) {
943 		rv = intf->handlers->inc_usecount(intf->send_info);
944 		if (rv) {
945 			module_put(intf->handlers->owner);
946 			goto out_kref;
947 		}
948 	}
949 
950 	/*
951 	 * Hold the lock so intf->handlers is guaranteed to be good
952 	 * until now
953 	 */
954 	mutex_unlock(&ipmi_interfaces_mutex);
955 
956 	new_user->valid = 1;
957 	spin_lock_irqsave(&intf->seq_lock, flags);
958 	list_add_rcu(&new_user->link, &intf->users);
959 	spin_unlock_irqrestore(&intf->seq_lock, flags);
960 	*user = new_user;
961 	return 0;
962 
963 out_kref:
964 	kref_put(&intf->refcount, intf_free);
965 out_kfree:
966 	mutex_unlock(&ipmi_interfaces_mutex);
967 	kfree(new_user);
968 	return rv;
969 }
970 EXPORT_SYMBOL(ipmi_create_user);
971 
972 static void free_user(struct kref *ref)
973 {
974 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
975 	kfree(user);
976 }
977 
978 int ipmi_destroy_user(ipmi_user_t user)
979 {
980 	ipmi_smi_t       intf = user->intf;
981 	int              i;
982 	unsigned long    flags;
983 	struct cmd_rcvr  *rcvr;
984 	struct cmd_rcvr  *rcvrs = NULL;
985 
986 	user->valid = 0;
987 
988 	/* Remove the user from the interface's sequence table. */
989 	spin_lock_irqsave(&intf->seq_lock, flags);
990 	list_del_rcu(&user->link);
991 
992 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
993 		if (intf->seq_table[i].inuse
994 		    && (intf->seq_table[i].recv_msg->user == user)) {
995 			intf->seq_table[i].inuse = 0;
996 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
997 		}
998 	}
999 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1000 
1001 	/*
1002 	 * Remove the user from the command receiver's table.  First
1003 	 * we build a list of everything (not using the standard link,
1004 	 * since other things may be using it till we do
1005 	 * synchronize_rcu()) then free everything in that list.
1006 	 */
1007 	mutex_lock(&intf->cmd_rcvrs_mutex);
1008 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1009 		if (rcvr->user == user) {
1010 			list_del_rcu(&rcvr->link);
1011 			rcvr->next = rcvrs;
1012 			rcvrs = rcvr;
1013 		}
1014 	}
1015 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1016 	synchronize_rcu();
1017 	while (rcvrs) {
1018 		rcvr = rcvrs;
1019 		rcvrs = rcvr->next;
1020 		kfree(rcvr);
1021 	}
1022 
1023 	mutex_lock(&ipmi_interfaces_mutex);
1024 	if (intf->handlers) {
1025 		module_put(intf->handlers->owner);
1026 		if (intf->handlers->dec_usecount)
1027 			intf->handlers->dec_usecount(intf->send_info);
1028 	}
1029 	mutex_unlock(&ipmi_interfaces_mutex);
1030 
1031 	kref_put(&intf->refcount, intf_free);
1032 
1033 	kref_put(&user->refcount, free_user);
1034 
1035 	return 0;
1036 }
1037 EXPORT_SYMBOL(ipmi_destroy_user);
1038 
1039 void ipmi_get_version(ipmi_user_t   user,
1040 		      unsigned char *major,
1041 		      unsigned char *minor)
1042 {
1043 	*major = user->intf->ipmi_version_major;
1044 	*minor = user->intf->ipmi_version_minor;
1045 }
1046 EXPORT_SYMBOL(ipmi_get_version);
1047 
1048 int ipmi_set_my_address(ipmi_user_t   user,
1049 			unsigned int  channel,
1050 			unsigned char address)
1051 {
1052 	if (channel >= IPMI_MAX_CHANNELS)
1053 		return -EINVAL;
1054 	user->intf->channels[channel].address = address;
1055 	return 0;
1056 }
1057 EXPORT_SYMBOL(ipmi_set_my_address);
1058 
1059 int ipmi_get_my_address(ipmi_user_t   user,
1060 			unsigned int  channel,
1061 			unsigned char *address)
1062 {
1063 	if (channel >= IPMI_MAX_CHANNELS)
1064 		return -EINVAL;
1065 	*address = user->intf->channels[channel].address;
1066 	return 0;
1067 }
1068 EXPORT_SYMBOL(ipmi_get_my_address);
1069 
1070 int ipmi_set_my_LUN(ipmi_user_t   user,
1071 		    unsigned int  channel,
1072 		    unsigned char LUN)
1073 {
1074 	if (channel >= IPMI_MAX_CHANNELS)
1075 		return -EINVAL;
1076 	user->intf->channels[channel].lun = LUN & 0x3;
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL(ipmi_set_my_LUN);
1080 
1081 int ipmi_get_my_LUN(ipmi_user_t   user,
1082 		    unsigned int  channel,
1083 		    unsigned char *address)
1084 {
1085 	if (channel >= IPMI_MAX_CHANNELS)
1086 		return -EINVAL;
1087 	*address = user->intf->channels[channel].lun;
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL(ipmi_get_my_LUN);
1091 
1092 int ipmi_get_maintenance_mode(ipmi_user_t user)
1093 {
1094 	int           mode;
1095 	unsigned long flags;
1096 
1097 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1098 	mode = user->intf->maintenance_mode;
1099 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1100 
1101 	return mode;
1102 }
1103 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1104 
1105 static void maintenance_mode_update(ipmi_smi_t intf)
1106 {
1107 	if (intf->handlers->set_maintenance_mode)
1108 		intf->handlers->set_maintenance_mode(
1109 			intf->send_info, intf->maintenance_mode_enable);
1110 }
1111 
1112 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1113 {
1114 	int           rv = 0;
1115 	unsigned long flags;
1116 	ipmi_smi_t    intf = user->intf;
1117 
1118 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1119 	if (intf->maintenance_mode != mode) {
1120 		switch (mode) {
1121 		case IPMI_MAINTENANCE_MODE_AUTO:
1122 			intf->maintenance_mode = mode;
1123 			intf->maintenance_mode_enable
1124 				= (intf->auto_maintenance_timeout > 0);
1125 			break;
1126 
1127 		case IPMI_MAINTENANCE_MODE_OFF:
1128 			intf->maintenance_mode = mode;
1129 			intf->maintenance_mode_enable = 0;
1130 			break;
1131 
1132 		case IPMI_MAINTENANCE_MODE_ON:
1133 			intf->maintenance_mode = mode;
1134 			intf->maintenance_mode_enable = 1;
1135 			break;
1136 
1137 		default:
1138 			rv = -EINVAL;
1139 			goto out_unlock;
1140 		}
1141 
1142 		maintenance_mode_update(intf);
1143 	}
1144  out_unlock:
1145 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1146 
1147 	return rv;
1148 }
1149 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1150 
1151 int ipmi_set_gets_events(ipmi_user_t user, int val)
1152 {
1153 	unsigned long        flags;
1154 	ipmi_smi_t           intf = user->intf;
1155 	struct ipmi_recv_msg *msg, *msg2;
1156 	struct list_head     msgs;
1157 
1158 	INIT_LIST_HEAD(&msgs);
1159 
1160 	spin_lock_irqsave(&intf->events_lock, flags);
1161 	user->gets_events = val;
1162 
1163 	if (intf->delivering_events)
1164 		/*
1165 		 * Another thread is delivering events for this, so
1166 		 * let it handle any new events.
1167 		 */
1168 		goto out;
1169 
1170 	/* Deliver any queued events. */
1171 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1172 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1173 			list_move_tail(&msg->link, &msgs);
1174 		intf->waiting_events_count = 0;
1175 		if (intf->event_msg_printed) {
1176 			printk(KERN_WARNING PFX "Event queue no longer"
1177 			       " full\n");
1178 			intf->event_msg_printed = 0;
1179 		}
1180 
1181 		intf->delivering_events = 1;
1182 		spin_unlock_irqrestore(&intf->events_lock, flags);
1183 
1184 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1185 			msg->user = user;
1186 			kref_get(&user->refcount);
1187 			deliver_response(msg);
1188 		}
1189 
1190 		spin_lock_irqsave(&intf->events_lock, flags);
1191 		intf->delivering_events = 0;
1192 	}
1193 
1194  out:
1195 	spin_unlock_irqrestore(&intf->events_lock, flags);
1196 
1197 	return 0;
1198 }
1199 EXPORT_SYMBOL(ipmi_set_gets_events);
1200 
1201 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1202 				      unsigned char netfn,
1203 				      unsigned char cmd,
1204 				      unsigned char chan)
1205 {
1206 	struct cmd_rcvr *rcvr;
1207 
1208 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1209 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1210 					&& (rcvr->chans & (1 << chan)))
1211 			return rcvr;
1212 	}
1213 	return NULL;
1214 }
1215 
1216 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1217 				 unsigned char netfn,
1218 				 unsigned char cmd,
1219 				 unsigned int  chans)
1220 {
1221 	struct cmd_rcvr *rcvr;
1222 
1223 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1224 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1225 					&& (rcvr->chans & chans))
1226 			return 0;
1227 	}
1228 	return 1;
1229 }
1230 
1231 int ipmi_register_for_cmd(ipmi_user_t   user,
1232 			  unsigned char netfn,
1233 			  unsigned char cmd,
1234 			  unsigned int  chans)
1235 {
1236 	ipmi_smi_t      intf = user->intf;
1237 	struct cmd_rcvr *rcvr;
1238 	int             rv = 0;
1239 
1240 
1241 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1242 	if (!rcvr)
1243 		return -ENOMEM;
1244 	rcvr->cmd = cmd;
1245 	rcvr->netfn = netfn;
1246 	rcvr->chans = chans;
1247 	rcvr->user = user;
1248 
1249 	mutex_lock(&intf->cmd_rcvrs_mutex);
1250 	/* Make sure the command/netfn is not already registered. */
1251 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1252 		rv = -EBUSY;
1253 		goto out_unlock;
1254 	}
1255 
1256 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1257 
1258  out_unlock:
1259 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1260 	if (rv)
1261 		kfree(rcvr);
1262 
1263 	return rv;
1264 }
1265 EXPORT_SYMBOL(ipmi_register_for_cmd);
1266 
1267 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1268 			    unsigned char netfn,
1269 			    unsigned char cmd,
1270 			    unsigned int  chans)
1271 {
1272 	ipmi_smi_t      intf = user->intf;
1273 	struct cmd_rcvr *rcvr;
1274 	struct cmd_rcvr *rcvrs = NULL;
1275 	int i, rv = -ENOENT;
1276 
1277 	mutex_lock(&intf->cmd_rcvrs_mutex);
1278 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1279 		if (((1 << i) & chans) == 0)
1280 			continue;
1281 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1282 		if (rcvr == NULL)
1283 			continue;
1284 		if (rcvr->user == user) {
1285 			rv = 0;
1286 			rcvr->chans &= ~chans;
1287 			if (rcvr->chans == 0) {
1288 				list_del_rcu(&rcvr->link);
1289 				rcvr->next = rcvrs;
1290 				rcvrs = rcvr;
1291 			}
1292 		}
1293 	}
1294 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1295 	synchronize_rcu();
1296 	while (rcvrs) {
1297 		rcvr = rcvrs;
1298 		rcvrs = rcvr->next;
1299 		kfree(rcvr);
1300 	}
1301 	return rv;
1302 }
1303 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1304 
1305 static unsigned char
1306 ipmb_checksum(unsigned char *data, int size)
1307 {
1308 	unsigned char csum = 0;
1309 
1310 	for (; size > 0; size--, data++)
1311 		csum += *data;
1312 
1313 	return -csum;
1314 }
1315 
1316 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1317 				   struct kernel_ipmi_msg *msg,
1318 				   struct ipmi_ipmb_addr *ipmb_addr,
1319 				   long                  msgid,
1320 				   unsigned char         ipmb_seq,
1321 				   int                   broadcast,
1322 				   unsigned char         source_address,
1323 				   unsigned char         source_lun)
1324 {
1325 	int i = broadcast;
1326 
1327 	/* Format the IPMB header data. */
1328 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1329 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1330 	smi_msg->data[2] = ipmb_addr->channel;
1331 	if (broadcast)
1332 		smi_msg->data[3] = 0;
1333 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1334 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1335 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1336 	smi_msg->data[i+6] = source_address;
1337 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1338 	smi_msg->data[i+8] = msg->cmd;
1339 
1340 	/* Now tack on the data to the message. */
1341 	if (msg->data_len > 0)
1342 		memcpy(&(smi_msg->data[i+9]), msg->data,
1343 		       msg->data_len);
1344 	smi_msg->data_size = msg->data_len + 9;
1345 
1346 	/* Now calculate the checksum and tack it on. */
1347 	smi_msg->data[i+smi_msg->data_size]
1348 		= ipmb_checksum(&(smi_msg->data[i+6]),
1349 				smi_msg->data_size-6);
1350 
1351 	/*
1352 	 * Add on the checksum size and the offset from the
1353 	 * broadcast.
1354 	 */
1355 	smi_msg->data_size += 1 + i;
1356 
1357 	smi_msg->msgid = msgid;
1358 }
1359 
1360 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1361 				  struct kernel_ipmi_msg *msg,
1362 				  struct ipmi_lan_addr  *lan_addr,
1363 				  long                  msgid,
1364 				  unsigned char         ipmb_seq,
1365 				  unsigned char         source_lun)
1366 {
1367 	/* Format the IPMB header data. */
1368 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1369 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1370 	smi_msg->data[2] = lan_addr->channel;
1371 	smi_msg->data[3] = lan_addr->session_handle;
1372 	smi_msg->data[4] = lan_addr->remote_SWID;
1373 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1374 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1375 	smi_msg->data[7] = lan_addr->local_SWID;
1376 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1377 	smi_msg->data[9] = msg->cmd;
1378 
1379 	/* Now tack on the data to the message. */
1380 	if (msg->data_len > 0)
1381 		memcpy(&(smi_msg->data[10]), msg->data,
1382 		       msg->data_len);
1383 	smi_msg->data_size = msg->data_len + 10;
1384 
1385 	/* Now calculate the checksum and tack it on. */
1386 	smi_msg->data[smi_msg->data_size]
1387 		= ipmb_checksum(&(smi_msg->data[7]),
1388 				smi_msg->data_size-7);
1389 
1390 	/*
1391 	 * Add on the checksum size and the offset from the
1392 	 * broadcast.
1393 	 */
1394 	smi_msg->data_size += 1;
1395 
1396 	smi_msg->msgid = msgid;
1397 }
1398 
1399 /*
1400  * Separate from ipmi_request so that the user does not have to be
1401  * supplied in certain circumstances (mainly at panic time).  If
1402  * messages are supplied, they will be freed, even if an error
1403  * occurs.
1404  */
1405 static int i_ipmi_request(ipmi_user_t          user,
1406 			  ipmi_smi_t           intf,
1407 			  struct ipmi_addr     *addr,
1408 			  long                 msgid,
1409 			  struct kernel_ipmi_msg *msg,
1410 			  void                 *user_msg_data,
1411 			  void                 *supplied_smi,
1412 			  struct ipmi_recv_msg *supplied_recv,
1413 			  int                  priority,
1414 			  unsigned char        source_address,
1415 			  unsigned char        source_lun,
1416 			  int                  retries,
1417 			  unsigned int         retry_time_ms)
1418 {
1419 	int                      rv = 0;
1420 	struct ipmi_smi_msg      *smi_msg;
1421 	struct ipmi_recv_msg     *recv_msg;
1422 	unsigned long            flags;
1423 	struct ipmi_smi_handlers *handlers;
1424 
1425 
1426 	if (supplied_recv)
1427 		recv_msg = supplied_recv;
1428 	else {
1429 		recv_msg = ipmi_alloc_recv_msg();
1430 		if (recv_msg == NULL)
1431 			return -ENOMEM;
1432 	}
1433 	recv_msg->user_msg_data = user_msg_data;
1434 
1435 	if (supplied_smi)
1436 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1437 	else {
1438 		smi_msg = ipmi_alloc_smi_msg();
1439 		if (smi_msg == NULL) {
1440 			ipmi_free_recv_msg(recv_msg);
1441 			return -ENOMEM;
1442 		}
1443 	}
1444 
1445 	rcu_read_lock();
1446 	handlers = intf->handlers;
1447 	if (!handlers) {
1448 		rv = -ENODEV;
1449 		goto out_err;
1450 	}
1451 
1452 	recv_msg->user = user;
1453 	if (user)
1454 		kref_get(&user->refcount);
1455 	recv_msg->msgid = msgid;
1456 	/*
1457 	 * Store the message to send in the receive message so timeout
1458 	 * responses can get the proper response data.
1459 	 */
1460 	recv_msg->msg = *msg;
1461 
1462 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1463 		struct ipmi_system_interface_addr *smi_addr;
1464 
1465 		if (msg->netfn & 1) {
1466 			/* Responses are not allowed to the SMI. */
1467 			rv = -EINVAL;
1468 			goto out_err;
1469 		}
1470 
1471 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1472 		if (smi_addr->lun > 3) {
1473 			ipmi_inc_stat(intf, sent_invalid_commands);
1474 			rv = -EINVAL;
1475 			goto out_err;
1476 		}
1477 
1478 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1479 
1480 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1481 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1482 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1483 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1484 			/*
1485 			 * We don't let the user do these, since we manage
1486 			 * the sequence numbers.
1487 			 */
1488 			ipmi_inc_stat(intf, sent_invalid_commands);
1489 			rv = -EINVAL;
1490 			goto out_err;
1491 		}
1492 
1493 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1494 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1495 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1496 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1497 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1498 			intf->auto_maintenance_timeout
1499 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1500 			if (!intf->maintenance_mode
1501 			    && !intf->maintenance_mode_enable) {
1502 				intf->maintenance_mode_enable = 1;
1503 				maintenance_mode_update(intf);
1504 			}
1505 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1506 					       flags);
1507 		}
1508 
1509 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1510 			ipmi_inc_stat(intf, sent_invalid_commands);
1511 			rv = -EMSGSIZE;
1512 			goto out_err;
1513 		}
1514 
1515 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1516 		smi_msg->data[1] = msg->cmd;
1517 		smi_msg->msgid = msgid;
1518 		smi_msg->user_data = recv_msg;
1519 		if (msg->data_len > 0)
1520 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1521 		smi_msg->data_size = msg->data_len + 2;
1522 		ipmi_inc_stat(intf, sent_local_commands);
1523 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1524 		struct ipmi_ipmb_addr *ipmb_addr;
1525 		unsigned char         ipmb_seq;
1526 		long                  seqid;
1527 		int                   broadcast = 0;
1528 
1529 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1530 			ipmi_inc_stat(intf, sent_invalid_commands);
1531 			rv = -EINVAL;
1532 			goto out_err;
1533 		}
1534 
1535 		if (intf->channels[addr->channel].medium
1536 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1537 			ipmi_inc_stat(intf, sent_invalid_commands);
1538 			rv = -EINVAL;
1539 			goto out_err;
1540 		}
1541 
1542 		if (retries < 0) {
1543 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1544 			retries = 0; /* Don't retry broadcasts. */
1545 		    else
1546 			retries = 4;
1547 		}
1548 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1549 		    /*
1550 		     * Broadcasts add a zero at the beginning of the
1551 		     * message, but otherwise is the same as an IPMB
1552 		     * address.
1553 		     */
1554 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1555 		    broadcast = 1;
1556 		}
1557 
1558 
1559 		/* Default to 1 second retries. */
1560 		if (retry_time_ms == 0)
1561 		    retry_time_ms = 1000;
1562 
1563 		/*
1564 		 * 9 for the header and 1 for the checksum, plus
1565 		 * possibly one for the broadcast.
1566 		 */
1567 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1568 			ipmi_inc_stat(intf, sent_invalid_commands);
1569 			rv = -EMSGSIZE;
1570 			goto out_err;
1571 		}
1572 
1573 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1574 		if (ipmb_addr->lun > 3) {
1575 			ipmi_inc_stat(intf, sent_invalid_commands);
1576 			rv = -EINVAL;
1577 			goto out_err;
1578 		}
1579 
1580 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1581 
1582 		if (recv_msg->msg.netfn & 0x1) {
1583 			/*
1584 			 * It's a response, so use the user's sequence
1585 			 * from msgid.
1586 			 */
1587 			ipmi_inc_stat(intf, sent_ipmb_responses);
1588 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1589 					msgid, broadcast,
1590 					source_address, source_lun);
1591 
1592 			/*
1593 			 * Save the receive message so we can use it
1594 			 * to deliver the response.
1595 			 */
1596 			smi_msg->user_data = recv_msg;
1597 		} else {
1598 			/* It's a command, so get a sequence for it. */
1599 
1600 			spin_lock_irqsave(&(intf->seq_lock), flags);
1601 
1602 			/*
1603 			 * Create a sequence number with a 1 second
1604 			 * timeout and 4 retries.
1605 			 */
1606 			rv = intf_next_seq(intf,
1607 					   recv_msg,
1608 					   retry_time_ms,
1609 					   retries,
1610 					   broadcast,
1611 					   &ipmb_seq,
1612 					   &seqid);
1613 			if (rv) {
1614 				/*
1615 				 * We have used up all the sequence numbers,
1616 				 * probably, so abort.
1617 				 */
1618 				spin_unlock_irqrestore(&(intf->seq_lock),
1619 						       flags);
1620 				goto out_err;
1621 			}
1622 
1623 			ipmi_inc_stat(intf, sent_ipmb_commands);
1624 
1625 			/*
1626 			 * Store the sequence number in the message,
1627 			 * so that when the send message response
1628 			 * comes back we can start the timer.
1629 			 */
1630 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1631 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1632 					ipmb_seq, broadcast,
1633 					source_address, source_lun);
1634 
1635 			/*
1636 			 * Copy the message into the recv message data, so we
1637 			 * can retransmit it later if necessary.
1638 			 */
1639 			memcpy(recv_msg->msg_data, smi_msg->data,
1640 			       smi_msg->data_size);
1641 			recv_msg->msg.data = recv_msg->msg_data;
1642 			recv_msg->msg.data_len = smi_msg->data_size;
1643 
1644 			/*
1645 			 * We don't unlock until here, because we need
1646 			 * to copy the completed message into the
1647 			 * recv_msg before we release the lock.
1648 			 * Otherwise, race conditions may bite us.  I
1649 			 * know that's pretty paranoid, but I prefer
1650 			 * to be correct.
1651 			 */
1652 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1653 		}
1654 	} else if (is_lan_addr(addr)) {
1655 		struct ipmi_lan_addr  *lan_addr;
1656 		unsigned char         ipmb_seq;
1657 		long                  seqid;
1658 
1659 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1660 			ipmi_inc_stat(intf, sent_invalid_commands);
1661 			rv = -EINVAL;
1662 			goto out_err;
1663 		}
1664 
1665 		if ((intf->channels[addr->channel].medium
1666 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1667 		    && (intf->channels[addr->channel].medium
1668 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1669 			ipmi_inc_stat(intf, sent_invalid_commands);
1670 			rv = -EINVAL;
1671 			goto out_err;
1672 		}
1673 
1674 		retries = 4;
1675 
1676 		/* Default to 1 second retries. */
1677 		if (retry_time_ms == 0)
1678 		    retry_time_ms = 1000;
1679 
1680 		/* 11 for the header and 1 for the checksum. */
1681 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1682 			ipmi_inc_stat(intf, sent_invalid_commands);
1683 			rv = -EMSGSIZE;
1684 			goto out_err;
1685 		}
1686 
1687 		lan_addr = (struct ipmi_lan_addr *) addr;
1688 		if (lan_addr->lun > 3) {
1689 			ipmi_inc_stat(intf, sent_invalid_commands);
1690 			rv = -EINVAL;
1691 			goto out_err;
1692 		}
1693 
1694 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1695 
1696 		if (recv_msg->msg.netfn & 0x1) {
1697 			/*
1698 			 * It's a response, so use the user's sequence
1699 			 * from msgid.
1700 			 */
1701 			ipmi_inc_stat(intf, sent_lan_responses);
1702 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1703 				       msgid, source_lun);
1704 
1705 			/*
1706 			 * Save the receive message so we can use it
1707 			 * to deliver the response.
1708 			 */
1709 			smi_msg->user_data = recv_msg;
1710 		} else {
1711 			/* It's a command, so get a sequence for it. */
1712 
1713 			spin_lock_irqsave(&(intf->seq_lock), flags);
1714 
1715 			/*
1716 			 * Create a sequence number with a 1 second
1717 			 * timeout and 4 retries.
1718 			 */
1719 			rv = intf_next_seq(intf,
1720 					   recv_msg,
1721 					   retry_time_ms,
1722 					   retries,
1723 					   0,
1724 					   &ipmb_seq,
1725 					   &seqid);
1726 			if (rv) {
1727 				/*
1728 				 * We have used up all the sequence numbers,
1729 				 * probably, so abort.
1730 				 */
1731 				spin_unlock_irqrestore(&(intf->seq_lock),
1732 						       flags);
1733 				goto out_err;
1734 			}
1735 
1736 			ipmi_inc_stat(intf, sent_lan_commands);
1737 
1738 			/*
1739 			 * Store the sequence number in the message,
1740 			 * so that when the send message response
1741 			 * comes back we can start the timer.
1742 			 */
1743 			format_lan_msg(smi_msg, msg, lan_addr,
1744 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1745 				       ipmb_seq, source_lun);
1746 
1747 			/*
1748 			 * Copy the message into the recv message data, so we
1749 			 * can retransmit it later if necessary.
1750 			 */
1751 			memcpy(recv_msg->msg_data, smi_msg->data,
1752 			       smi_msg->data_size);
1753 			recv_msg->msg.data = recv_msg->msg_data;
1754 			recv_msg->msg.data_len = smi_msg->data_size;
1755 
1756 			/*
1757 			 * We don't unlock until here, because we need
1758 			 * to copy the completed message into the
1759 			 * recv_msg before we release the lock.
1760 			 * Otherwise, race conditions may bite us.  I
1761 			 * know that's pretty paranoid, but I prefer
1762 			 * to be correct.
1763 			 */
1764 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1765 		}
1766 	} else {
1767 	    /* Unknown address type. */
1768 		ipmi_inc_stat(intf, sent_invalid_commands);
1769 		rv = -EINVAL;
1770 		goto out_err;
1771 	}
1772 
1773 #ifdef DEBUG_MSGING
1774 	{
1775 		int m;
1776 		for (m = 0; m < smi_msg->data_size; m++)
1777 			printk(" %2.2x", smi_msg->data[m]);
1778 		printk("\n");
1779 	}
1780 #endif
1781 
1782 	handlers->sender(intf->send_info, smi_msg, priority);
1783 	rcu_read_unlock();
1784 
1785 	return 0;
1786 
1787  out_err:
1788 	rcu_read_unlock();
1789 	ipmi_free_smi_msg(smi_msg);
1790 	ipmi_free_recv_msg(recv_msg);
1791 	return rv;
1792 }
1793 
1794 static int check_addr(ipmi_smi_t       intf,
1795 		      struct ipmi_addr *addr,
1796 		      unsigned char    *saddr,
1797 		      unsigned char    *lun)
1798 {
1799 	if (addr->channel >= IPMI_MAX_CHANNELS)
1800 		return -EINVAL;
1801 	*lun = intf->channels[addr->channel].lun;
1802 	*saddr = intf->channels[addr->channel].address;
1803 	return 0;
1804 }
1805 
1806 int ipmi_request_settime(ipmi_user_t      user,
1807 			 struct ipmi_addr *addr,
1808 			 long             msgid,
1809 			 struct kernel_ipmi_msg  *msg,
1810 			 void             *user_msg_data,
1811 			 int              priority,
1812 			 int              retries,
1813 			 unsigned int     retry_time_ms)
1814 {
1815 	unsigned char saddr, lun;
1816 	int           rv;
1817 
1818 	if (!user)
1819 		return -EINVAL;
1820 	rv = check_addr(user->intf, addr, &saddr, &lun);
1821 	if (rv)
1822 		return rv;
1823 	return i_ipmi_request(user,
1824 			      user->intf,
1825 			      addr,
1826 			      msgid,
1827 			      msg,
1828 			      user_msg_data,
1829 			      NULL, NULL,
1830 			      priority,
1831 			      saddr,
1832 			      lun,
1833 			      retries,
1834 			      retry_time_ms);
1835 }
1836 EXPORT_SYMBOL(ipmi_request_settime);
1837 
1838 int ipmi_request_supply_msgs(ipmi_user_t          user,
1839 			     struct ipmi_addr     *addr,
1840 			     long                 msgid,
1841 			     struct kernel_ipmi_msg *msg,
1842 			     void                 *user_msg_data,
1843 			     void                 *supplied_smi,
1844 			     struct ipmi_recv_msg *supplied_recv,
1845 			     int                  priority)
1846 {
1847 	unsigned char saddr, lun;
1848 	int           rv;
1849 
1850 	if (!user)
1851 		return -EINVAL;
1852 	rv = check_addr(user->intf, addr, &saddr, &lun);
1853 	if (rv)
1854 		return rv;
1855 	return i_ipmi_request(user,
1856 			      user->intf,
1857 			      addr,
1858 			      msgid,
1859 			      msg,
1860 			      user_msg_data,
1861 			      supplied_smi,
1862 			      supplied_recv,
1863 			      priority,
1864 			      saddr,
1865 			      lun,
1866 			      -1, 0);
1867 }
1868 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1869 
1870 #ifdef CONFIG_PROC_FS
1871 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1872 			       int count, int *eof, void *data)
1873 {
1874 	char       *out = (char *) page;
1875 	ipmi_smi_t intf = data;
1876 	int        i;
1877 	int        rv = 0;
1878 
1879 	for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1880 		rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1881 	out[rv-1] = '\n'; /* Replace the final space with a newline */
1882 	out[rv] = '\0';
1883 	rv++;
1884 	return rv;
1885 }
1886 
1887 static int version_file_read_proc(char *page, char **start, off_t off,
1888 				  int count, int *eof, void *data)
1889 {
1890 	char       *out = (char *) page;
1891 	ipmi_smi_t intf = data;
1892 
1893 	return sprintf(out, "%u.%u\n",
1894 		       ipmi_version_major(&intf->bmc->id),
1895 		       ipmi_version_minor(&intf->bmc->id));
1896 }
1897 
1898 static int stat_file_read_proc(char *page, char **start, off_t off,
1899 			       int count, int *eof, void *data)
1900 {
1901 	char       *out = (char *) page;
1902 	ipmi_smi_t intf = data;
1903 
1904 	out += sprintf(out, "sent_invalid_commands:       %u\n",
1905 		       ipmi_get_stat(intf, sent_invalid_commands));
1906 	out += sprintf(out, "sent_local_commands:         %u\n",
1907 		       ipmi_get_stat(intf, sent_local_commands));
1908 	out += sprintf(out, "handled_local_responses:     %u\n",
1909 		       ipmi_get_stat(intf, handled_local_responses));
1910 	out += sprintf(out, "unhandled_local_responses:   %u\n",
1911 		       ipmi_get_stat(intf, unhandled_local_responses));
1912 	out += sprintf(out, "sent_ipmb_commands:          %u\n",
1913 		       ipmi_get_stat(intf, sent_ipmb_commands));
1914 	out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1915 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
1916 	out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1917 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
1918 	out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1919 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
1920 	out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1921 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1922 	out += sprintf(out, "sent_ipmb_responses:         %u\n",
1923 		       ipmi_get_stat(intf, sent_ipmb_responses));
1924 	out += sprintf(out, "handled_ipmb_responses:      %u\n",
1925 		       ipmi_get_stat(intf, handled_ipmb_responses));
1926 	out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1927 		       ipmi_get_stat(intf, invalid_ipmb_responses));
1928 	out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1929 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
1930 	out += sprintf(out, "sent_lan_commands:           %u\n",
1931 		       ipmi_get_stat(intf, sent_lan_commands));
1932 	out += sprintf(out, "sent_lan_command_errs:       %u\n",
1933 		       ipmi_get_stat(intf, sent_lan_command_errs));
1934 	out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1935 		       ipmi_get_stat(intf, retransmitted_lan_commands));
1936 	out += sprintf(out, "timed_out_lan_commands:      %u\n",
1937 		       ipmi_get_stat(intf, timed_out_lan_commands));
1938 	out += sprintf(out, "sent_lan_responses:          %u\n",
1939 		       ipmi_get_stat(intf, sent_lan_responses));
1940 	out += sprintf(out, "handled_lan_responses:       %u\n",
1941 		       ipmi_get_stat(intf, handled_lan_responses));
1942 	out += sprintf(out, "invalid_lan_responses:       %u\n",
1943 		       ipmi_get_stat(intf, invalid_lan_responses));
1944 	out += sprintf(out, "unhandled_lan_responses:     %u\n",
1945 		       ipmi_get_stat(intf, unhandled_lan_responses));
1946 	out += sprintf(out, "handled_commands:            %u\n",
1947 		       ipmi_get_stat(intf, handled_commands));
1948 	out += sprintf(out, "invalid_commands:            %u\n",
1949 		       ipmi_get_stat(intf, invalid_commands));
1950 	out += sprintf(out, "unhandled_commands:          %u\n",
1951 		       ipmi_get_stat(intf, unhandled_commands));
1952 	out += sprintf(out, "invalid_events:              %u\n",
1953 		       ipmi_get_stat(intf, invalid_events));
1954 	out += sprintf(out, "events:                      %u\n",
1955 		       ipmi_get_stat(intf, events));
1956 	out += sprintf(out, "failed rexmit LAN msgs:      %u\n",
1957 		       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
1958 	out += sprintf(out, "failed rexmit IPMB msgs:     %u\n",
1959 		       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
1960 
1961 	return (out - ((char *) page));
1962 }
1963 #endif /* CONFIG_PROC_FS */
1964 
1965 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1966 			    read_proc_t *read_proc,
1967 			    void *data)
1968 {
1969 	int                    rv = 0;
1970 #ifdef CONFIG_PROC_FS
1971 	struct proc_dir_entry  *file;
1972 	struct ipmi_proc_entry *entry;
1973 
1974 	/* Create a list element. */
1975 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1976 	if (!entry)
1977 		return -ENOMEM;
1978 	entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1979 	if (!entry->name) {
1980 		kfree(entry);
1981 		return -ENOMEM;
1982 	}
1983 	strcpy(entry->name, name);
1984 
1985 	file = create_proc_entry(name, 0, smi->proc_dir);
1986 	if (!file) {
1987 		kfree(entry->name);
1988 		kfree(entry);
1989 		rv = -ENOMEM;
1990 	} else {
1991 		file->data = data;
1992 		file->read_proc = read_proc;
1993 
1994 		mutex_lock(&smi->proc_entry_lock);
1995 		/* Stick it on the list. */
1996 		entry->next = smi->proc_entries;
1997 		smi->proc_entries = entry;
1998 		mutex_unlock(&smi->proc_entry_lock);
1999 	}
2000 #endif /* CONFIG_PROC_FS */
2001 
2002 	return rv;
2003 }
2004 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2005 
2006 static int add_proc_entries(ipmi_smi_t smi, int num)
2007 {
2008 	int rv = 0;
2009 
2010 #ifdef CONFIG_PROC_FS
2011 	sprintf(smi->proc_dir_name, "%d", num);
2012 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2013 	if (!smi->proc_dir)
2014 		rv = -ENOMEM;
2015 
2016 	if (rv == 0)
2017 		rv = ipmi_smi_add_proc_entry(smi, "stats",
2018 					     stat_file_read_proc,
2019 					     smi);
2020 
2021 	if (rv == 0)
2022 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2023 					     ipmb_file_read_proc,
2024 					     smi);
2025 
2026 	if (rv == 0)
2027 		rv = ipmi_smi_add_proc_entry(smi, "version",
2028 					     version_file_read_proc,
2029 					     smi);
2030 #endif /* CONFIG_PROC_FS */
2031 
2032 	return rv;
2033 }
2034 
2035 static void remove_proc_entries(ipmi_smi_t smi)
2036 {
2037 #ifdef CONFIG_PROC_FS
2038 	struct ipmi_proc_entry *entry;
2039 
2040 	mutex_lock(&smi->proc_entry_lock);
2041 	while (smi->proc_entries) {
2042 		entry = smi->proc_entries;
2043 		smi->proc_entries = entry->next;
2044 
2045 		remove_proc_entry(entry->name, smi->proc_dir);
2046 		kfree(entry->name);
2047 		kfree(entry);
2048 	}
2049 	mutex_unlock(&smi->proc_entry_lock);
2050 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2051 #endif /* CONFIG_PROC_FS */
2052 }
2053 
2054 static int __find_bmc_guid(struct device *dev, void *data)
2055 {
2056 	unsigned char *id = data;
2057 	struct bmc_device *bmc = dev_get_drvdata(dev);
2058 	return memcmp(bmc->guid, id, 16) == 0;
2059 }
2060 
2061 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2062 					     unsigned char *guid)
2063 {
2064 	struct device *dev;
2065 
2066 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2067 	if (dev)
2068 		return dev_get_drvdata(dev);
2069 	else
2070 		return NULL;
2071 }
2072 
2073 struct prod_dev_id {
2074 	unsigned int  product_id;
2075 	unsigned char device_id;
2076 };
2077 
2078 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2079 {
2080 	struct prod_dev_id *id = data;
2081 	struct bmc_device *bmc = dev_get_drvdata(dev);
2082 
2083 	return (bmc->id.product_id == id->product_id
2084 		&& bmc->id.device_id == id->device_id);
2085 }
2086 
2087 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2088 	struct device_driver *drv,
2089 	unsigned int product_id, unsigned char device_id)
2090 {
2091 	struct prod_dev_id id = {
2092 		.product_id = product_id,
2093 		.device_id = device_id,
2094 	};
2095 	struct device *dev;
2096 
2097 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2098 	if (dev)
2099 		return dev_get_drvdata(dev);
2100 	else
2101 		return NULL;
2102 }
2103 
2104 static ssize_t device_id_show(struct device *dev,
2105 			      struct device_attribute *attr,
2106 			      char *buf)
2107 {
2108 	struct bmc_device *bmc = dev_get_drvdata(dev);
2109 
2110 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2111 }
2112 
2113 static ssize_t provides_dev_sdrs_show(struct device *dev,
2114 				      struct device_attribute *attr,
2115 				      char *buf)
2116 {
2117 	struct bmc_device *bmc = dev_get_drvdata(dev);
2118 
2119 	return snprintf(buf, 10, "%u\n",
2120 			(bmc->id.device_revision & 0x80) >> 7);
2121 }
2122 
2123 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2124 			     char *buf)
2125 {
2126 	struct bmc_device *bmc = dev_get_drvdata(dev);
2127 
2128 	return snprintf(buf, 20, "%u\n",
2129 			bmc->id.device_revision & 0x0F);
2130 }
2131 
2132 static ssize_t firmware_rev_show(struct device *dev,
2133 				 struct device_attribute *attr,
2134 				 char *buf)
2135 {
2136 	struct bmc_device *bmc = dev_get_drvdata(dev);
2137 
2138 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2139 			bmc->id.firmware_revision_2);
2140 }
2141 
2142 static ssize_t ipmi_version_show(struct device *dev,
2143 				 struct device_attribute *attr,
2144 				 char *buf)
2145 {
2146 	struct bmc_device *bmc = dev_get_drvdata(dev);
2147 
2148 	return snprintf(buf, 20, "%u.%u\n",
2149 			ipmi_version_major(&bmc->id),
2150 			ipmi_version_minor(&bmc->id));
2151 }
2152 
2153 static ssize_t add_dev_support_show(struct device *dev,
2154 				    struct device_attribute *attr,
2155 				    char *buf)
2156 {
2157 	struct bmc_device *bmc = dev_get_drvdata(dev);
2158 
2159 	return snprintf(buf, 10, "0x%02x\n",
2160 			bmc->id.additional_device_support);
2161 }
2162 
2163 static ssize_t manufacturer_id_show(struct device *dev,
2164 				    struct device_attribute *attr,
2165 				    char *buf)
2166 {
2167 	struct bmc_device *bmc = dev_get_drvdata(dev);
2168 
2169 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2170 }
2171 
2172 static ssize_t product_id_show(struct device *dev,
2173 			       struct device_attribute *attr,
2174 			       char *buf)
2175 {
2176 	struct bmc_device *bmc = dev_get_drvdata(dev);
2177 
2178 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2179 }
2180 
2181 static ssize_t aux_firmware_rev_show(struct device *dev,
2182 				     struct device_attribute *attr,
2183 				     char *buf)
2184 {
2185 	struct bmc_device *bmc = dev_get_drvdata(dev);
2186 
2187 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2188 			bmc->id.aux_firmware_revision[3],
2189 			bmc->id.aux_firmware_revision[2],
2190 			bmc->id.aux_firmware_revision[1],
2191 			bmc->id.aux_firmware_revision[0]);
2192 }
2193 
2194 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2195 			 char *buf)
2196 {
2197 	struct bmc_device *bmc = dev_get_drvdata(dev);
2198 
2199 	return snprintf(buf, 100, "%Lx%Lx\n",
2200 			(long long) bmc->guid[0],
2201 			(long long) bmc->guid[8]);
2202 }
2203 
2204 static void remove_files(struct bmc_device *bmc)
2205 {
2206 	if (!bmc->dev)
2207 		return;
2208 
2209 	device_remove_file(&bmc->dev->dev,
2210 			   &bmc->device_id_attr);
2211 	device_remove_file(&bmc->dev->dev,
2212 			   &bmc->provides_dev_sdrs_attr);
2213 	device_remove_file(&bmc->dev->dev,
2214 			   &bmc->revision_attr);
2215 	device_remove_file(&bmc->dev->dev,
2216 			   &bmc->firmware_rev_attr);
2217 	device_remove_file(&bmc->dev->dev,
2218 			   &bmc->version_attr);
2219 	device_remove_file(&bmc->dev->dev,
2220 			   &bmc->add_dev_support_attr);
2221 	device_remove_file(&bmc->dev->dev,
2222 			   &bmc->manufacturer_id_attr);
2223 	device_remove_file(&bmc->dev->dev,
2224 			   &bmc->product_id_attr);
2225 
2226 	if (bmc->id.aux_firmware_revision_set)
2227 		device_remove_file(&bmc->dev->dev,
2228 				   &bmc->aux_firmware_rev_attr);
2229 	if (bmc->guid_set)
2230 		device_remove_file(&bmc->dev->dev,
2231 				   &bmc->guid_attr);
2232 }
2233 
2234 static void
2235 cleanup_bmc_device(struct kref *ref)
2236 {
2237 	struct bmc_device *bmc;
2238 
2239 	bmc = container_of(ref, struct bmc_device, refcount);
2240 
2241 	remove_files(bmc);
2242 	platform_device_unregister(bmc->dev);
2243 	kfree(bmc);
2244 }
2245 
2246 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2247 {
2248 	struct bmc_device *bmc = intf->bmc;
2249 
2250 	if (intf->sysfs_name) {
2251 		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2252 		kfree(intf->sysfs_name);
2253 		intf->sysfs_name = NULL;
2254 	}
2255 	if (intf->my_dev_name) {
2256 		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2257 		kfree(intf->my_dev_name);
2258 		intf->my_dev_name = NULL;
2259 	}
2260 
2261 	mutex_lock(&ipmidriver_mutex);
2262 	kref_put(&bmc->refcount, cleanup_bmc_device);
2263 	intf->bmc = NULL;
2264 	mutex_unlock(&ipmidriver_mutex);
2265 }
2266 
2267 static int create_files(struct bmc_device *bmc)
2268 {
2269 	int err;
2270 
2271 	bmc->device_id_attr.attr.name = "device_id";
2272 	bmc->device_id_attr.attr.mode = S_IRUGO;
2273 	bmc->device_id_attr.show = device_id_show;
2274 
2275 	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2276 	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2277 	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2278 
2279 	bmc->revision_attr.attr.name = "revision";
2280 	bmc->revision_attr.attr.mode = S_IRUGO;
2281 	bmc->revision_attr.show = revision_show;
2282 
2283 	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2284 	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2285 	bmc->firmware_rev_attr.show = firmware_rev_show;
2286 
2287 	bmc->version_attr.attr.name = "ipmi_version";
2288 	bmc->version_attr.attr.mode = S_IRUGO;
2289 	bmc->version_attr.show = ipmi_version_show;
2290 
2291 	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2292 	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2293 	bmc->add_dev_support_attr.show = add_dev_support_show;
2294 
2295 	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2296 	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2297 	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2298 
2299 	bmc->product_id_attr.attr.name = "product_id";
2300 	bmc->product_id_attr.attr.mode = S_IRUGO;
2301 	bmc->product_id_attr.show = product_id_show;
2302 
2303 	bmc->guid_attr.attr.name = "guid";
2304 	bmc->guid_attr.attr.mode = S_IRUGO;
2305 	bmc->guid_attr.show = guid_show;
2306 
2307 	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2308 	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2309 	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2310 
2311 	err = device_create_file(&bmc->dev->dev,
2312 			   &bmc->device_id_attr);
2313 	if (err)
2314 		goto out;
2315 	err = device_create_file(&bmc->dev->dev,
2316 			   &bmc->provides_dev_sdrs_attr);
2317 	if (err)
2318 		goto out_devid;
2319 	err = device_create_file(&bmc->dev->dev,
2320 			   &bmc->revision_attr);
2321 	if (err)
2322 		goto out_sdrs;
2323 	err = device_create_file(&bmc->dev->dev,
2324 			   &bmc->firmware_rev_attr);
2325 	if (err)
2326 		goto out_rev;
2327 	err = device_create_file(&bmc->dev->dev,
2328 			   &bmc->version_attr);
2329 	if (err)
2330 		goto out_firm;
2331 	err = device_create_file(&bmc->dev->dev,
2332 			   &bmc->add_dev_support_attr);
2333 	if (err)
2334 		goto out_version;
2335 	err = device_create_file(&bmc->dev->dev,
2336 			   &bmc->manufacturer_id_attr);
2337 	if (err)
2338 		goto out_add_dev;
2339 	err = device_create_file(&bmc->dev->dev,
2340 			   &bmc->product_id_attr);
2341 	if (err)
2342 		goto out_manu;
2343 	if (bmc->id.aux_firmware_revision_set) {
2344 		err = device_create_file(&bmc->dev->dev,
2345 				   &bmc->aux_firmware_rev_attr);
2346 		if (err)
2347 			goto out_prod_id;
2348 	}
2349 	if (bmc->guid_set) {
2350 		err = device_create_file(&bmc->dev->dev,
2351 				   &bmc->guid_attr);
2352 		if (err)
2353 			goto out_aux_firm;
2354 	}
2355 
2356 	return 0;
2357 
2358 out_aux_firm:
2359 	if (bmc->id.aux_firmware_revision_set)
2360 		device_remove_file(&bmc->dev->dev,
2361 				   &bmc->aux_firmware_rev_attr);
2362 out_prod_id:
2363 	device_remove_file(&bmc->dev->dev,
2364 			   &bmc->product_id_attr);
2365 out_manu:
2366 	device_remove_file(&bmc->dev->dev,
2367 			   &bmc->manufacturer_id_attr);
2368 out_add_dev:
2369 	device_remove_file(&bmc->dev->dev,
2370 			   &bmc->add_dev_support_attr);
2371 out_version:
2372 	device_remove_file(&bmc->dev->dev,
2373 			   &bmc->version_attr);
2374 out_firm:
2375 	device_remove_file(&bmc->dev->dev,
2376 			   &bmc->firmware_rev_attr);
2377 out_rev:
2378 	device_remove_file(&bmc->dev->dev,
2379 			   &bmc->revision_attr);
2380 out_sdrs:
2381 	device_remove_file(&bmc->dev->dev,
2382 			   &bmc->provides_dev_sdrs_attr);
2383 out_devid:
2384 	device_remove_file(&bmc->dev->dev,
2385 			   &bmc->device_id_attr);
2386 out:
2387 	return err;
2388 }
2389 
2390 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2391 			     const char *sysfs_name)
2392 {
2393 	int               rv;
2394 	struct bmc_device *bmc = intf->bmc;
2395 	struct bmc_device *old_bmc;
2396 	int               size;
2397 	char              dummy[1];
2398 
2399 	mutex_lock(&ipmidriver_mutex);
2400 
2401 	/*
2402 	 * Try to find if there is an bmc_device struct
2403 	 * representing the interfaced BMC already
2404 	 */
2405 	if (bmc->guid_set)
2406 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2407 	else
2408 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2409 						    bmc->id.product_id,
2410 						    bmc->id.device_id);
2411 
2412 	/*
2413 	 * If there is already an bmc_device, free the new one,
2414 	 * otherwise register the new BMC device
2415 	 */
2416 	if (old_bmc) {
2417 		kfree(bmc);
2418 		intf->bmc = old_bmc;
2419 		bmc = old_bmc;
2420 
2421 		kref_get(&bmc->refcount);
2422 		mutex_unlock(&ipmidriver_mutex);
2423 
2424 		printk(KERN_INFO
2425 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2426 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2427 		       bmc->id.manufacturer_id,
2428 		       bmc->id.product_id,
2429 		       bmc->id.device_id);
2430 	} else {
2431 		char name[14];
2432 		unsigned char orig_dev_id = bmc->id.device_id;
2433 		int warn_printed = 0;
2434 
2435 		snprintf(name, sizeof(name),
2436 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2437 
2438 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2439 						 bmc->id.product_id,
2440 						 bmc->id.device_id)) {
2441 			if (!warn_printed) {
2442 				printk(KERN_WARNING PFX
2443 				       "This machine has two different BMCs"
2444 				       " with the same product id and device"
2445 				       " id.  This is an error in the"
2446 				       " firmware, but incrementing the"
2447 				       " device id to work around the problem."
2448 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2449 				       bmc->id.product_id, bmc->id.device_id);
2450 				warn_printed = 1;
2451 			}
2452 			bmc->id.device_id++; /* Wraps at 255 */
2453 			if (bmc->id.device_id == orig_dev_id) {
2454 				printk(KERN_ERR PFX
2455 				       "Out of device ids!\n");
2456 				break;
2457 			}
2458 		}
2459 
2460 		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2461 		if (!bmc->dev) {
2462 			mutex_unlock(&ipmidriver_mutex);
2463 			printk(KERN_ERR
2464 			       "ipmi_msghandler:"
2465 			       " Unable to allocate platform device\n");
2466 			return -ENOMEM;
2467 		}
2468 		bmc->dev->dev.driver = &ipmidriver.driver;
2469 		dev_set_drvdata(&bmc->dev->dev, bmc);
2470 		kref_init(&bmc->refcount);
2471 
2472 		rv = platform_device_add(bmc->dev);
2473 		mutex_unlock(&ipmidriver_mutex);
2474 		if (rv) {
2475 			platform_device_put(bmc->dev);
2476 			bmc->dev = NULL;
2477 			printk(KERN_ERR
2478 			       "ipmi_msghandler:"
2479 			       " Unable to register bmc device: %d\n",
2480 			       rv);
2481 			/*
2482 			 * Don't go to out_err, you can only do that if
2483 			 * the device is registered already.
2484 			 */
2485 			return rv;
2486 		}
2487 
2488 		rv = create_files(bmc);
2489 		if (rv) {
2490 			mutex_lock(&ipmidriver_mutex);
2491 			platform_device_unregister(bmc->dev);
2492 			mutex_unlock(&ipmidriver_mutex);
2493 
2494 			return rv;
2495 		}
2496 
2497 		printk(KERN_INFO
2498 		       "ipmi: Found new BMC (man_id: 0x%6.6x, "
2499 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2500 		       bmc->id.manufacturer_id,
2501 		       bmc->id.product_id,
2502 		       bmc->id.device_id);
2503 	}
2504 
2505 	/*
2506 	 * create symlink from system interface device to bmc device
2507 	 * and back.
2508 	 */
2509 	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2510 	if (!intf->sysfs_name) {
2511 		rv = -ENOMEM;
2512 		printk(KERN_ERR
2513 		       "ipmi_msghandler: allocate link to BMC: %d\n",
2514 		       rv);
2515 		goto out_err;
2516 	}
2517 
2518 	rv = sysfs_create_link(&intf->si_dev->kobj,
2519 			       &bmc->dev->dev.kobj, intf->sysfs_name);
2520 	if (rv) {
2521 		kfree(intf->sysfs_name);
2522 		intf->sysfs_name = NULL;
2523 		printk(KERN_ERR
2524 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2525 		       rv);
2526 		goto out_err;
2527 	}
2528 
2529 	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2530 	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2531 	if (!intf->my_dev_name) {
2532 		kfree(intf->sysfs_name);
2533 		intf->sysfs_name = NULL;
2534 		rv = -ENOMEM;
2535 		printk(KERN_ERR
2536 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2537 		       rv);
2538 		goto out_err;
2539 	}
2540 	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2541 
2542 	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2543 			       intf->my_dev_name);
2544 	if (rv) {
2545 		kfree(intf->sysfs_name);
2546 		intf->sysfs_name = NULL;
2547 		kfree(intf->my_dev_name);
2548 		intf->my_dev_name = NULL;
2549 		printk(KERN_ERR
2550 		       "ipmi_msghandler:"
2551 		       " Unable to create symlink to bmc: %d\n",
2552 		       rv);
2553 		goto out_err;
2554 	}
2555 
2556 	return 0;
2557 
2558 out_err:
2559 	ipmi_bmc_unregister(intf);
2560 	return rv;
2561 }
2562 
2563 static int
2564 send_guid_cmd(ipmi_smi_t intf, int chan)
2565 {
2566 	struct kernel_ipmi_msg            msg;
2567 	struct ipmi_system_interface_addr si;
2568 
2569 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2570 	si.channel = IPMI_BMC_CHANNEL;
2571 	si.lun = 0;
2572 
2573 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2574 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2575 	msg.data = NULL;
2576 	msg.data_len = 0;
2577 	return i_ipmi_request(NULL,
2578 			      intf,
2579 			      (struct ipmi_addr *) &si,
2580 			      0,
2581 			      &msg,
2582 			      intf,
2583 			      NULL,
2584 			      NULL,
2585 			      0,
2586 			      intf->channels[0].address,
2587 			      intf->channels[0].lun,
2588 			      -1, 0);
2589 }
2590 
2591 static void
2592 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2593 {
2594 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2595 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2596 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2597 		/* Not for me */
2598 		return;
2599 
2600 	if (msg->msg.data[0] != 0) {
2601 		/* Error from getting the GUID, the BMC doesn't have one. */
2602 		intf->bmc->guid_set = 0;
2603 		goto out;
2604 	}
2605 
2606 	if (msg->msg.data_len < 17) {
2607 		intf->bmc->guid_set = 0;
2608 		printk(KERN_WARNING PFX
2609 		       "guid_handler: The GUID response from the BMC was too"
2610 		       " short, it was %d but should have been 17.  Assuming"
2611 		       " GUID is not available.\n",
2612 		       msg->msg.data_len);
2613 		goto out;
2614 	}
2615 
2616 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2617 	intf->bmc->guid_set = 1;
2618  out:
2619 	wake_up(&intf->waitq);
2620 }
2621 
2622 static void
2623 get_guid(ipmi_smi_t intf)
2624 {
2625 	int rv;
2626 
2627 	intf->bmc->guid_set = 0x2;
2628 	intf->null_user_handler = guid_handler;
2629 	rv = send_guid_cmd(intf, 0);
2630 	if (rv)
2631 		/* Send failed, no GUID available. */
2632 		intf->bmc->guid_set = 0;
2633 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2634 	intf->null_user_handler = NULL;
2635 }
2636 
2637 static int
2638 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2639 {
2640 	struct kernel_ipmi_msg            msg;
2641 	unsigned char                     data[1];
2642 	struct ipmi_system_interface_addr si;
2643 
2644 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2645 	si.channel = IPMI_BMC_CHANNEL;
2646 	si.lun = 0;
2647 
2648 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2649 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2650 	msg.data = data;
2651 	msg.data_len = 1;
2652 	data[0] = chan;
2653 	return i_ipmi_request(NULL,
2654 			      intf,
2655 			      (struct ipmi_addr *) &si,
2656 			      0,
2657 			      &msg,
2658 			      intf,
2659 			      NULL,
2660 			      NULL,
2661 			      0,
2662 			      intf->channels[0].address,
2663 			      intf->channels[0].lun,
2664 			      -1, 0);
2665 }
2666 
2667 static void
2668 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2669 {
2670 	int rv = 0;
2671 	int chan;
2672 
2673 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2674 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2675 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2676 		/* It's the one we want */
2677 		if (msg->msg.data[0] != 0) {
2678 			/* Got an error from the channel, just go on. */
2679 
2680 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2681 				/*
2682 				 * If the MC does not support this
2683 				 * command, that is legal.  We just
2684 				 * assume it has one IPMB at channel
2685 				 * zero.
2686 				 */
2687 				intf->channels[0].medium
2688 					= IPMI_CHANNEL_MEDIUM_IPMB;
2689 				intf->channels[0].protocol
2690 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2691 				rv = -ENOSYS;
2692 
2693 				intf->curr_channel = IPMI_MAX_CHANNELS;
2694 				wake_up(&intf->waitq);
2695 				goto out;
2696 			}
2697 			goto next_channel;
2698 		}
2699 		if (msg->msg.data_len < 4) {
2700 			/* Message not big enough, just go on. */
2701 			goto next_channel;
2702 		}
2703 		chan = intf->curr_channel;
2704 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2705 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2706 
2707  next_channel:
2708 		intf->curr_channel++;
2709 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2710 			wake_up(&intf->waitq);
2711 		else
2712 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2713 
2714 		if (rv) {
2715 			/* Got an error somehow, just give up. */
2716 			intf->curr_channel = IPMI_MAX_CHANNELS;
2717 			wake_up(&intf->waitq);
2718 
2719 			printk(KERN_WARNING PFX
2720 			       "Error sending channel information: %d\n",
2721 			       rv);
2722 		}
2723 	}
2724  out:
2725 	return;
2726 }
2727 
2728 void ipmi_poll_interface(ipmi_user_t user)
2729 {
2730 	ipmi_smi_t intf = user->intf;
2731 
2732 	if (intf->handlers->poll)
2733 		intf->handlers->poll(intf->send_info);
2734 }
2735 EXPORT_SYMBOL(ipmi_poll_interface);
2736 
2737 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2738 		      void		       *send_info,
2739 		      struct ipmi_device_id    *device_id,
2740 		      struct device            *si_dev,
2741 		      const char               *sysfs_name,
2742 		      unsigned char            slave_addr)
2743 {
2744 	int              i, j;
2745 	int              rv;
2746 	ipmi_smi_t       intf;
2747 	ipmi_smi_t       tintf;
2748 	struct list_head *link;
2749 
2750 	/*
2751 	 * Make sure the driver is actually initialized, this handles
2752 	 * problems with initialization order.
2753 	 */
2754 	if (!initialized) {
2755 		rv = ipmi_init_msghandler();
2756 		if (rv)
2757 			return rv;
2758 		/*
2759 		 * The init code doesn't return an error if it was turned
2760 		 * off, but it won't initialize.  Check that.
2761 		 */
2762 		if (!initialized)
2763 			return -ENODEV;
2764 	}
2765 
2766 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2767 	if (!intf)
2768 		return -ENOMEM;
2769 
2770 	intf->ipmi_version_major = ipmi_version_major(device_id);
2771 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2772 
2773 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2774 	if (!intf->bmc) {
2775 		kfree(intf);
2776 		return -ENOMEM;
2777 	}
2778 	intf->intf_num = -1; /* Mark it invalid for now. */
2779 	kref_init(&intf->refcount);
2780 	intf->bmc->id = *device_id;
2781 	intf->si_dev = si_dev;
2782 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2783 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2784 		intf->channels[j].lun = 2;
2785 	}
2786 	if (slave_addr != 0)
2787 		intf->channels[0].address = slave_addr;
2788 	INIT_LIST_HEAD(&intf->users);
2789 	intf->handlers = handlers;
2790 	intf->send_info = send_info;
2791 	spin_lock_init(&intf->seq_lock);
2792 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2793 		intf->seq_table[j].inuse = 0;
2794 		intf->seq_table[j].seqid = 0;
2795 	}
2796 	intf->curr_seq = 0;
2797 #ifdef CONFIG_PROC_FS
2798 	mutex_init(&intf->proc_entry_lock);
2799 #endif
2800 	spin_lock_init(&intf->waiting_msgs_lock);
2801 	INIT_LIST_HEAD(&intf->waiting_msgs);
2802 	spin_lock_init(&intf->events_lock);
2803 	INIT_LIST_HEAD(&intf->waiting_events);
2804 	intf->waiting_events_count = 0;
2805 	mutex_init(&intf->cmd_rcvrs_mutex);
2806 	spin_lock_init(&intf->maintenance_mode_lock);
2807 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2808 	init_waitqueue_head(&intf->waitq);
2809 	for (i = 0; i < IPMI_NUM_STATS; i++)
2810 		atomic_set(&intf->stats[i], 0);
2811 
2812 	intf->proc_dir = NULL;
2813 
2814 	mutex_lock(&smi_watchers_mutex);
2815 	mutex_lock(&ipmi_interfaces_mutex);
2816 	/* Look for a hole in the numbers. */
2817 	i = 0;
2818 	link = &ipmi_interfaces;
2819 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2820 		if (tintf->intf_num != i) {
2821 			link = &tintf->link;
2822 			break;
2823 		}
2824 		i++;
2825 	}
2826 	/* Add the new interface in numeric order. */
2827 	if (i == 0)
2828 		list_add_rcu(&intf->link, &ipmi_interfaces);
2829 	else
2830 		list_add_tail_rcu(&intf->link, link);
2831 
2832 	rv = handlers->start_processing(send_info, intf);
2833 	if (rv)
2834 		goto out;
2835 
2836 	get_guid(intf);
2837 
2838 	if ((intf->ipmi_version_major > 1)
2839 			|| ((intf->ipmi_version_major == 1)
2840 			    && (intf->ipmi_version_minor >= 5))) {
2841 		/*
2842 		 * Start scanning the channels to see what is
2843 		 * available.
2844 		 */
2845 		intf->null_user_handler = channel_handler;
2846 		intf->curr_channel = 0;
2847 		rv = send_channel_info_cmd(intf, 0);
2848 		if (rv)
2849 			goto out;
2850 
2851 		/* Wait for the channel info to be read. */
2852 		wait_event(intf->waitq,
2853 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2854 		intf->null_user_handler = NULL;
2855 	} else {
2856 		/* Assume a single IPMB channel at zero. */
2857 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2858 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2859 		intf->curr_channel = IPMI_MAX_CHANNELS;
2860 	}
2861 
2862 	if (rv == 0)
2863 		rv = add_proc_entries(intf, i);
2864 
2865 	rv = ipmi_bmc_register(intf, i, sysfs_name);
2866 
2867  out:
2868 	if (rv) {
2869 		if (intf->proc_dir)
2870 			remove_proc_entries(intf);
2871 		intf->handlers = NULL;
2872 		list_del_rcu(&intf->link);
2873 		mutex_unlock(&ipmi_interfaces_mutex);
2874 		mutex_unlock(&smi_watchers_mutex);
2875 		synchronize_rcu();
2876 		kref_put(&intf->refcount, intf_free);
2877 	} else {
2878 		/*
2879 		 * Keep memory order straight for RCU readers.  Make
2880 		 * sure everything else is committed to memory before
2881 		 * setting intf_num to mark the interface valid.
2882 		 */
2883 		smp_wmb();
2884 		intf->intf_num = i;
2885 		mutex_unlock(&ipmi_interfaces_mutex);
2886 		/* After this point the interface is legal to use. */
2887 		call_smi_watchers(i, intf->si_dev);
2888 		mutex_unlock(&smi_watchers_mutex);
2889 	}
2890 
2891 	return rv;
2892 }
2893 EXPORT_SYMBOL(ipmi_register_smi);
2894 
2895 static void cleanup_smi_msgs(ipmi_smi_t intf)
2896 {
2897 	int              i;
2898 	struct seq_table *ent;
2899 
2900 	/* No need for locks, the interface is down. */
2901 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2902 		ent = &(intf->seq_table[i]);
2903 		if (!ent->inuse)
2904 			continue;
2905 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2906 	}
2907 }
2908 
2909 int ipmi_unregister_smi(ipmi_smi_t intf)
2910 {
2911 	struct ipmi_smi_watcher *w;
2912 	int    intf_num = intf->intf_num;
2913 
2914 	ipmi_bmc_unregister(intf);
2915 
2916 	mutex_lock(&smi_watchers_mutex);
2917 	mutex_lock(&ipmi_interfaces_mutex);
2918 	intf->intf_num = -1;
2919 	intf->handlers = NULL;
2920 	list_del_rcu(&intf->link);
2921 	mutex_unlock(&ipmi_interfaces_mutex);
2922 	synchronize_rcu();
2923 
2924 	cleanup_smi_msgs(intf);
2925 
2926 	remove_proc_entries(intf);
2927 
2928 	/*
2929 	 * Call all the watcher interfaces to tell them that
2930 	 * an interface is gone.
2931 	 */
2932 	list_for_each_entry(w, &smi_watchers, link)
2933 		w->smi_gone(intf_num);
2934 	mutex_unlock(&smi_watchers_mutex);
2935 
2936 	kref_put(&intf->refcount, intf_free);
2937 	return 0;
2938 }
2939 EXPORT_SYMBOL(ipmi_unregister_smi);
2940 
2941 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2942 				   struct ipmi_smi_msg *msg)
2943 {
2944 	struct ipmi_ipmb_addr ipmb_addr;
2945 	struct ipmi_recv_msg  *recv_msg;
2946 
2947 	/*
2948 	 * This is 11, not 10, because the response must contain a
2949 	 * completion code.
2950 	 */
2951 	if (msg->rsp_size < 11) {
2952 		/* Message not big enough, just ignore it. */
2953 		ipmi_inc_stat(intf, invalid_ipmb_responses);
2954 		return 0;
2955 	}
2956 
2957 	if (msg->rsp[2] != 0) {
2958 		/* An error getting the response, just ignore it. */
2959 		return 0;
2960 	}
2961 
2962 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2963 	ipmb_addr.slave_addr = msg->rsp[6];
2964 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
2965 	ipmb_addr.lun = msg->rsp[7] & 3;
2966 
2967 	/*
2968 	 * It's a response from a remote entity.  Look up the sequence
2969 	 * number and handle the response.
2970 	 */
2971 	if (intf_find_seq(intf,
2972 			  msg->rsp[7] >> 2,
2973 			  msg->rsp[3] & 0x0f,
2974 			  msg->rsp[8],
2975 			  (msg->rsp[4] >> 2) & (~1),
2976 			  (struct ipmi_addr *) &(ipmb_addr),
2977 			  &recv_msg)) {
2978 		/*
2979 		 * We were unable to find the sequence number,
2980 		 * so just nuke the message.
2981 		 */
2982 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
2983 		return 0;
2984 	}
2985 
2986 	memcpy(recv_msg->msg_data,
2987 	       &(msg->rsp[9]),
2988 	       msg->rsp_size - 9);
2989 	/*
2990 	 * The other fields matched, so no need to set them, except
2991 	 * for netfn, which needs to be the response that was
2992 	 * returned, not the request value.
2993 	 */
2994 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
2995 	recv_msg->msg.data = recv_msg->msg_data;
2996 	recv_msg->msg.data_len = msg->rsp_size - 10;
2997 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2998 	ipmi_inc_stat(intf, handled_ipmb_responses);
2999 	deliver_response(recv_msg);
3000 
3001 	return 0;
3002 }
3003 
3004 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3005 				   struct ipmi_smi_msg *msg)
3006 {
3007 	struct cmd_rcvr          *rcvr;
3008 	int                      rv = 0;
3009 	unsigned char            netfn;
3010 	unsigned char            cmd;
3011 	unsigned char            chan;
3012 	ipmi_user_t              user = NULL;
3013 	struct ipmi_ipmb_addr    *ipmb_addr;
3014 	struct ipmi_recv_msg     *recv_msg;
3015 	struct ipmi_smi_handlers *handlers;
3016 
3017 	if (msg->rsp_size < 10) {
3018 		/* Message not big enough, just ignore it. */
3019 		ipmi_inc_stat(intf, invalid_commands);
3020 		return 0;
3021 	}
3022 
3023 	if (msg->rsp[2] != 0) {
3024 		/* An error getting the response, just ignore it. */
3025 		return 0;
3026 	}
3027 
3028 	netfn = msg->rsp[4] >> 2;
3029 	cmd = msg->rsp[8];
3030 	chan = msg->rsp[3] & 0xf;
3031 
3032 	rcu_read_lock();
3033 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3034 	if (rcvr) {
3035 		user = rcvr->user;
3036 		kref_get(&user->refcount);
3037 	} else
3038 		user = NULL;
3039 	rcu_read_unlock();
3040 
3041 	if (user == NULL) {
3042 		/* We didn't find a user, deliver an error response. */
3043 		ipmi_inc_stat(intf, unhandled_commands);
3044 
3045 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3046 		msg->data[1] = IPMI_SEND_MSG_CMD;
3047 		msg->data[2] = msg->rsp[3];
3048 		msg->data[3] = msg->rsp[6];
3049 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3050 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3051 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3052 		/* rqseq/lun */
3053 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3054 		msg->data[8] = msg->rsp[8]; /* cmd */
3055 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3056 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3057 		msg->data_size = 11;
3058 
3059 #ifdef DEBUG_MSGING
3060 	{
3061 		int m;
3062 		printk("Invalid command:");
3063 		for (m = 0; m < msg->data_size; m++)
3064 			printk(" %2.2x", msg->data[m]);
3065 		printk("\n");
3066 	}
3067 #endif
3068 		rcu_read_lock();
3069 		handlers = intf->handlers;
3070 		if (handlers) {
3071 			handlers->sender(intf->send_info, msg, 0);
3072 			/*
3073 			 * We used the message, so return the value
3074 			 * that causes it to not be freed or
3075 			 * queued.
3076 			 */
3077 			rv = -1;
3078 		}
3079 		rcu_read_unlock();
3080 	} else {
3081 		/* Deliver the message to the user. */
3082 		ipmi_inc_stat(intf, handled_commands);
3083 
3084 		recv_msg = ipmi_alloc_recv_msg();
3085 		if (!recv_msg) {
3086 			/*
3087 			 * We couldn't allocate memory for the
3088 			 * message, so requeue it for handling
3089 			 * later.
3090 			 */
3091 			rv = 1;
3092 			kref_put(&user->refcount, free_user);
3093 		} else {
3094 			/* Extract the source address from the data. */
3095 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3096 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3097 			ipmb_addr->slave_addr = msg->rsp[6];
3098 			ipmb_addr->lun = msg->rsp[7] & 3;
3099 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3100 
3101 			/*
3102 			 * Extract the rest of the message information
3103 			 * from the IPMB header.
3104 			 */
3105 			recv_msg->user = user;
3106 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3107 			recv_msg->msgid = msg->rsp[7] >> 2;
3108 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3109 			recv_msg->msg.cmd = msg->rsp[8];
3110 			recv_msg->msg.data = recv_msg->msg_data;
3111 
3112 			/*
3113 			 * We chop off 10, not 9 bytes because the checksum
3114 			 * at the end also needs to be removed.
3115 			 */
3116 			recv_msg->msg.data_len = msg->rsp_size - 10;
3117 			memcpy(recv_msg->msg_data,
3118 			       &(msg->rsp[9]),
3119 			       msg->rsp_size - 10);
3120 			deliver_response(recv_msg);
3121 		}
3122 	}
3123 
3124 	return rv;
3125 }
3126 
3127 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3128 				  struct ipmi_smi_msg *msg)
3129 {
3130 	struct ipmi_lan_addr  lan_addr;
3131 	struct ipmi_recv_msg  *recv_msg;
3132 
3133 
3134 	/*
3135 	 * This is 13, not 12, because the response must contain a
3136 	 * completion code.
3137 	 */
3138 	if (msg->rsp_size < 13) {
3139 		/* Message not big enough, just ignore it. */
3140 		ipmi_inc_stat(intf, invalid_lan_responses);
3141 		return 0;
3142 	}
3143 
3144 	if (msg->rsp[2] != 0) {
3145 		/* An error getting the response, just ignore it. */
3146 		return 0;
3147 	}
3148 
3149 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3150 	lan_addr.session_handle = msg->rsp[4];
3151 	lan_addr.remote_SWID = msg->rsp[8];
3152 	lan_addr.local_SWID = msg->rsp[5];
3153 	lan_addr.channel = msg->rsp[3] & 0x0f;
3154 	lan_addr.privilege = msg->rsp[3] >> 4;
3155 	lan_addr.lun = msg->rsp[9] & 3;
3156 
3157 	/*
3158 	 * It's a response from a remote entity.  Look up the sequence
3159 	 * number and handle the response.
3160 	 */
3161 	if (intf_find_seq(intf,
3162 			  msg->rsp[9] >> 2,
3163 			  msg->rsp[3] & 0x0f,
3164 			  msg->rsp[10],
3165 			  (msg->rsp[6] >> 2) & (~1),
3166 			  (struct ipmi_addr *) &(lan_addr),
3167 			  &recv_msg)) {
3168 		/*
3169 		 * We were unable to find the sequence number,
3170 		 * so just nuke the message.
3171 		 */
3172 		ipmi_inc_stat(intf, unhandled_lan_responses);
3173 		return 0;
3174 	}
3175 
3176 	memcpy(recv_msg->msg_data,
3177 	       &(msg->rsp[11]),
3178 	       msg->rsp_size - 11);
3179 	/*
3180 	 * The other fields matched, so no need to set them, except
3181 	 * for netfn, which needs to be the response that was
3182 	 * returned, not the request value.
3183 	 */
3184 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3185 	recv_msg->msg.data = recv_msg->msg_data;
3186 	recv_msg->msg.data_len = msg->rsp_size - 12;
3187 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3188 	ipmi_inc_stat(intf, handled_lan_responses);
3189 	deliver_response(recv_msg);
3190 
3191 	return 0;
3192 }
3193 
3194 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3195 				  struct ipmi_smi_msg *msg)
3196 {
3197 	struct cmd_rcvr          *rcvr;
3198 	int                      rv = 0;
3199 	unsigned char            netfn;
3200 	unsigned char            cmd;
3201 	unsigned char            chan;
3202 	ipmi_user_t              user = NULL;
3203 	struct ipmi_lan_addr     *lan_addr;
3204 	struct ipmi_recv_msg     *recv_msg;
3205 
3206 	if (msg->rsp_size < 12) {
3207 		/* Message not big enough, just ignore it. */
3208 		ipmi_inc_stat(intf, invalid_commands);
3209 		return 0;
3210 	}
3211 
3212 	if (msg->rsp[2] != 0) {
3213 		/* An error getting the response, just ignore it. */
3214 		return 0;
3215 	}
3216 
3217 	netfn = msg->rsp[6] >> 2;
3218 	cmd = msg->rsp[10];
3219 	chan = msg->rsp[3] & 0xf;
3220 
3221 	rcu_read_lock();
3222 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3223 	if (rcvr) {
3224 		user = rcvr->user;
3225 		kref_get(&user->refcount);
3226 	} else
3227 		user = NULL;
3228 	rcu_read_unlock();
3229 
3230 	if (user == NULL) {
3231 		/* We didn't find a user, just give up. */
3232 		ipmi_inc_stat(intf, unhandled_commands);
3233 
3234 		/*
3235 		 * Don't do anything with these messages, just allow
3236 		 * them to be freed.
3237 		 */
3238 		rv = 0;
3239 	} else {
3240 		/* Deliver the message to the user. */
3241 		ipmi_inc_stat(intf, handled_commands);
3242 
3243 		recv_msg = ipmi_alloc_recv_msg();
3244 		if (!recv_msg) {
3245 			/*
3246 			 * We couldn't allocate memory for the
3247 			 * message, so requeue it for handling later.
3248 			 */
3249 			rv = 1;
3250 			kref_put(&user->refcount, free_user);
3251 		} else {
3252 			/* Extract the source address from the data. */
3253 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3254 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3255 			lan_addr->session_handle = msg->rsp[4];
3256 			lan_addr->remote_SWID = msg->rsp[8];
3257 			lan_addr->local_SWID = msg->rsp[5];
3258 			lan_addr->lun = msg->rsp[9] & 3;
3259 			lan_addr->channel = msg->rsp[3] & 0xf;
3260 			lan_addr->privilege = msg->rsp[3] >> 4;
3261 
3262 			/*
3263 			 * Extract the rest of the message information
3264 			 * from the IPMB header.
3265 			 */
3266 			recv_msg->user = user;
3267 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3268 			recv_msg->msgid = msg->rsp[9] >> 2;
3269 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3270 			recv_msg->msg.cmd = msg->rsp[10];
3271 			recv_msg->msg.data = recv_msg->msg_data;
3272 
3273 			/*
3274 			 * We chop off 12, not 11 bytes because the checksum
3275 			 * at the end also needs to be removed.
3276 			 */
3277 			recv_msg->msg.data_len = msg->rsp_size - 12;
3278 			memcpy(recv_msg->msg_data,
3279 			       &(msg->rsp[11]),
3280 			       msg->rsp_size - 12);
3281 			deliver_response(recv_msg);
3282 		}
3283 	}
3284 
3285 	return rv;
3286 }
3287 
3288 /*
3289  * This routine will handle "Get Message" command responses with
3290  * channels that use an OEM Medium. The message format belongs to
3291  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3292  * Chapter 22, sections 22.6 and 22.24 for more details.
3293  */
3294 static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3295 				  struct ipmi_smi_msg *msg)
3296 {
3297 	struct cmd_rcvr       *rcvr;
3298 	int                   rv = 0;
3299 	unsigned char         netfn;
3300 	unsigned char         cmd;
3301 	unsigned char         chan;
3302 	ipmi_user_t           user = NULL;
3303 	struct ipmi_system_interface_addr *smi_addr;
3304 	struct ipmi_recv_msg  *recv_msg;
3305 
3306 	/*
3307 	 * We expect the OEM SW to perform error checking
3308 	 * so we just do some basic sanity checks
3309 	 */
3310 	if (msg->rsp_size < 4) {
3311 		/* Message not big enough, just ignore it. */
3312 		ipmi_inc_stat(intf, invalid_commands);
3313 		return 0;
3314 	}
3315 
3316 	if (msg->rsp[2] != 0) {
3317 		/* An error getting the response, just ignore it. */
3318 		return 0;
3319 	}
3320 
3321 	/*
3322 	 * This is an OEM Message so the OEM needs to know how
3323 	 * handle the message. We do no interpretation.
3324 	 */
3325 	netfn = msg->rsp[0] >> 2;
3326 	cmd = msg->rsp[1];
3327 	chan = msg->rsp[3] & 0xf;
3328 
3329 	rcu_read_lock();
3330 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3331 	if (rcvr) {
3332 		user = rcvr->user;
3333 		kref_get(&user->refcount);
3334 	} else
3335 		user = NULL;
3336 	rcu_read_unlock();
3337 
3338 	if (user == NULL) {
3339 		/* We didn't find a user, just give up. */
3340 		ipmi_inc_stat(intf, unhandled_commands);
3341 
3342 		/*
3343 		 * Don't do anything with these messages, just allow
3344 		 * them to be freed.
3345 		 */
3346 
3347 		rv = 0;
3348 	} else {
3349 		/* Deliver the message to the user. */
3350 		ipmi_inc_stat(intf, handled_commands);
3351 
3352 		recv_msg = ipmi_alloc_recv_msg();
3353 		if (!recv_msg) {
3354 			/*
3355 			 * We couldn't allocate memory for the
3356 			 * message, so requeue it for handling
3357 			 * later.
3358 			 */
3359 			rv = 1;
3360 			kref_put(&user->refcount, free_user);
3361 		} else {
3362 			/*
3363 			 * OEM Messages are expected to be delivered via
3364 			 * the system interface to SMS software.  We might
3365 			 * need to visit this again depending on OEM
3366 			 * requirements
3367 			 */
3368 			smi_addr = ((struct ipmi_system_interface_addr *)
3369 				    &(recv_msg->addr));
3370 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3371 			smi_addr->channel = IPMI_BMC_CHANNEL;
3372 			smi_addr->lun = msg->rsp[0] & 3;
3373 
3374 			recv_msg->user = user;
3375 			recv_msg->user_msg_data = NULL;
3376 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3377 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
3378 			recv_msg->msg.cmd = msg->rsp[1];
3379 			recv_msg->msg.data = recv_msg->msg_data;
3380 
3381 			/*
3382 			 * The message starts at byte 4 which follows the
3383 			 * the Channel Byte in the "GET MESSAGE" command
3384 			 */
3385 			recv_msg->msg.data_len = msg->rsp_size - 4;
3386 			memcpy(recv_msg->msg_data,
3387 			       &(msg->rsp[4]),
3388 			       msg->rsp_size - 4);
3389 			deliver_response(recv_msg);
3390 		}
3391 	}
3392 
3393 	return rv;
3394 }
3395 
3396 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3397 				     struct ipmi_smi_msg  *msg)
3398 {
3399 	struct ipmi_system_interface_addr *smi_addr;
3400 
3401 	recv_msg->msgid = 0;
3402 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3403 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3404 	smi_addr->channel = IPMI_BMC_CHANNEL;
3405 	smi_addr->lun = msg->rsp[0] & 3;
3406 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3407 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3408 	recv_msg->msg.cmd = msg->rsp[1];
3409 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3410 	recv_msg->msg.data = recv_msg->msg_data;
3411 	recv_msg->msg.data_len = msg->rsp_size - 3;
3412 }
3413 
3414 static int handle_read_event_rsp(ipmi_smi_t          intf,
3415 				 struct ipmi_smi_msg *msg)
3416 {
3417 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3418 	struct list_head     msgs;
3419 	ipmi_user_t          user;
3420 	int                  rv = 0;
3421 	int                  deliver_count = 0;
3422 	unsigned long        flags;
3423 
3424 	if (msg->rsp_size < 19) {
3425 		/* Message is too small to be an IPMB event. */
3426 		ipmi_inc_stat(intf, invalid_events);
3427 		return 0;
3428 	}
3429 
3430 	if (msg->rsp[2] != 0) {
3431 		/* An error getting the event, just ignore it. */
3432 		return 0;
3433 	}
3434 
3435 	INIT_LIST_HEAD(&msgs);
3436 
3437 	spin_lock_irqsave(&intf->events_lock, flags);
3438 
3439 	ipmi_inc_stat(intf, events);
3440 
3441 	/*
3442 	 * Allocate and fill in one message for every user that is
3443 	 * getting events.
3444 	 */
3445 	rcu_read_lock();
3446 	list_for_each_entry_rcu(user, &intf->users, link) {
3447 		if (!user->gets_events)
3448 			continue;
3449 
3450 		recv_msg = ipmi_alloc_recv_msg();
3451 		if (!recv_msg) {
3452 			rcu_read_unlock();
3453 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3454 						 link) {
3455 				list_del(&recv_msg->link);
3456 				ipmi_free_recv_msg(recv_msg);
3457 			}
3458 			/*
3459 			 * We couldn't allocate memory for the
3460 			 * message, so requeue it for handling
3461 			 * later.
3462 			 */
3463 			rv = 1;
3464 			goto out;
3465 		}
3466 
3467 		deliver_count++;
3468 
3469 		copy_event_into_recv_msg(recv_msg, msg);
3470 		recv_msg->user = user;
3471 		kref_get(&user->refcount);
3472 		list_add_tail(&(recv_msg->link), &msgs);
3473 	}
3474 	rcu_read_unlock();
3475 
3476 	if (deliver_count) {
3477 		/* Now deliver all the messages. */
3478 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3479 			list_del(&recv_msg->link);
3480 			deliver_response(recv_msg);
3481 		}
3482 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3483 		/*
3484 		 * No one to receive the message, put it in queue if there's
3485 		 * not already too many things in the queue.
3486 		 */
3487 		recv_msg = ipmi_alloc_recv_msg();
3488 		if (!recv_msg) {
3489 			/*
3490 			 * We couldn't allocate memory for the
3491 			 * message, so requeue it for handling
3492 			 * later.
3493 			 */
3494 			rv = 1;
3495 			goto out;
3496 		}
3497 
3498 		copy_event_into_recv_msg(recv_msg, msg);
3499 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3500 		intf->waiting_events_count++;
3501 	} else if (!intf->event_msg_printed) {
3502 		/*
3503 		 * There's too many things in the queue, discard this
3504 		 * message.
3505 		 */
3506 		printk(KERN_WARNING PFX "Event queue full, discarding"
3507 		       " incoming events\n");
3508 		intf->event_msg_printed = 1;
3509 	}
3510 
3511  out:
3512 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3513 
3514 	return rv;
3515 }
3516 
3517 static int handle_bmc_rsp(ipmi_smi_t          intf,
3518 			  struct ipmi_smi_msg *msg)
3519 {
3520 	struct ipmi_recv_msg *recv_msg;
3521 	struct ipmi_user     *user;
3522 
3523 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3524 	if (recv_msg == NULL) {
3525 		printk(KERN_WARNING
3526 		       "IPMI message received with no owner. This\n"
3527 		       "could be because of a malformed message, or\n"
3528 		       "because of a hardware error.  Contact your\n"
3529 		       "hardware vender for assistance\n");
3530 		return 0;
3531 	}
3532 
3533 	user = recv_msg->user;
3534 	/* Make sure the user still exists. */
3535 	if (user && !user->valid) {
3536 		/* The user for the message went away, so give up. */
3537 		ipmi_inc_stat(intf, unhandled_local_responses);
3538 		ipmi_free_recv_msg(recv_msg);
3539 	} else {
3540 		struct ipmi_system_interface_addr *smi_addr;
3541 
3542 		ipmi_inc_stat(intf, handled_local_responses);
3543 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3544 		recv_msg->msgid = msg->msgid;
3545 		smi_addr = ((struct ipmi_system_interface_addr *)
3546 			    &(recv_msg->addr));
3547 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3548 		smi_addr->channel = IPMI_BMC_CHANNEL;
3549 		smi_addr->lun = msg->rsp[0] & 3;
3550 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3551 		recv_msg->msg.cmd = msg->rsp[1];
3552 		memcpy(recv_msg->msg_data,
3553 		       &(msg->rsp[2]),
3554 		       msg->rsp_size - 2);
3555 		recv_msg->msg.data = recv_msg->msg_data;
3556 		recv_msg->msg.data_len = msg->rsp_size - 2;
3557 		deliver_response(recv_msg);
3558 	}
3559 
3560 	return 0;
3561 }
3562 
3563 /*
3564  * Handle a new message.  Return 1 if the message should be requeued,
3565  * 0 if the message should be freed, or -1 if the message should not
3566  * be freed or requeued.
3567  */
3568 static int handle_new_recv_msg(ipmi_smi_t          intf,
3569 			       struct ipmi_smi_msg *msg)
3570 {
3571 	int requeue;
3572 	int chan;
3573 
3574 #ifdef DEBUG_MSGING
3575 	int m;
3576 	printk("Recv:");
3577 	for (m = 0; m < msg->rsp_size; m++)
3578 		printk(" %2.2x", msg->rsp[m]);
3579 	printk("\n");
3580 #endif
3581 	if (msg->rsp_size < 2) {
3582 		/* Message is too small to be correct. */
3583 		printk(KERN_WARNING PFX "BMC returned to small a message"
3584 		       " for netfn %x cmd %x, got %d bytes\n",
3585 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3586 
3587 		/* Generate an error response for the message. */
3588 		msg->rsp[0] = msg->data[0] | (1 << 2);
3589 		msg->rsp[1] = msg->data[1];
3590 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3591 		msg->rsp_size = 3;
3592 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3593 		   || (msg->rsp[1] != msg->data[1])) {
3594 		/*
3595 		 * The NetFN and Command in the response is not even
3596 		 * marginally correct.
3597 		 */
3598 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3599 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3600 		       (msg->data[0] >> 2) | 1, msg->data[1],
3601 		       msg->rsp[0] >> 2, msg->rsp[1]);
3602 
3603 		/* Generate an error response for the message. */
3604 		msg->rsp[0] = msg->data[0] | (1 << 2);
3605 		msg->rsp[1] = msg->data[1];
3606 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3607 		msg->rsp_size = 3;
3608 	}
3609 
3610 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3611 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3612 	    && (msg->user_data != NULL)) {
3613 		/*
3614 		 * It's a response to a response we sent.  For this we
3615 		 * deliver a send message response to the user.
3616 		 */
3617 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3618 
3619 		requeue = 0;
3620 		if (msg->rsp_size < 2)
3621 			/* Message is too small to be correct. */
3622 			goto out;
3623 
3624 		chan = msg->data[2] & 0x0f;
3625 		if (chan >= IPMI_MAX_CHANNELS)
3626 			/* Invalid channel number */
3627 			goto out;
3628 
3629 		if (!recv_msg)
3630 			goto out;
3631 
3632 		/* Make sure the user still exists. */
3633 		if (!recv_msg->user || !recv_msg->user->valid)
3634 			goto out;
3635 
3636 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3637 		recv_msg->msg.data = recv_msg->msg_data;
3638 		recv_msg->msg.data_len = 1;
3639 		recv_msg->msg_data[0] = msg->rsp[2];
3640 		deliver_response(recv_msg);
3641 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3642 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3643 		/* It's from the receive queue. */
3644 		chan = msg->rsp[3] & 0xf;
3645 		if (chan >= IPMI_MAX_CHANNELS) {
3646 			/* Invalid channel number */
3647 			requeue = 0;
3648 			goto out;
3649 		}
3650 
3651 		/*
3652 		 * We need to make sure the channels have been initialized.
3653 		 * The channel_handler routine will set the "curr_channel"
3654 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
3655 		 * channels for this interface have been initialized.
3656 		 */
3657 		if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3658 			requeue = 0; /* Throw the message away */
3659 			goto out;
3660 		}
3661 
3662 		switch (intf->channels[chan].medium) {
3663 		case IPMI_CHANNEL_MEDIUM_IPMB:
3664 			if (msg->rsp[4] & 0x04) {
3665 				/*
3666 				 * It's a response, so find the
3667 				 * requesting message and send it up.
3668 				 */
3669 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3670 			} else {
3671 				/*
3672 				 * It's a command to the SMS from some other
3673 				 * entity.  Handle that.
3674 				 */
3675 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3676 			}
3677 			break;
3678 
3679 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3680 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3681 			if (msg->rsp[6] & 0x04) {
3682 				/*
3683 				 * It's a response, so find the
3684 				 * requesting message and send it up.
3685 				 */
3686 				requeue = handle_lan_get_msg_rsp(intf, msg);
3687 			} else {
3688 				/*
3689 				 * It's a command to the SMS from some other
3690 				 * entity.  Handle that.
3691 				 */
3692 				requeue = handle_lan_get_msg_cmd(intf, msg);
3693 			}
3694 			break;
3695 
3696 		default:
3697 			/* Check for OEM Channels.  Clients had better
3698 			   register for these commands. */
3699 			if ((intf->channels[chan].medium
3700 			     >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3701 			    && (intf->channels[chan].medium
3702 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3703 				requeue = handle_oem_get_msg_cmd(intf, msg);
3704 			} else {
3705 				/*
3706 				 * We don't handle the channel type, so just
3707 				 * free the message.
3708 				 */
3709 				requeue = 0;
3710 			}
3711 		}
3712 
3713 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3714 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3715 		/* It's an asyncronous event. */
3716 		requeue = handle_read_event_rsp(intf, msg);
3717 	} else {
3718 		/* It's a response from the local BMC. */
3719 		requeue = handle_bmc_rsp(intf, msg);
3720 	}
3721 
3722  out:
3723 	return requeue;
3724 }
3725 
3726 /* Handle a new message from the lower layer. */
3727 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3728 			   struct ipmi_smi_msg *msg)
3729 {
3730 	unsigned long flags = 0; /* keep us warning-free. */
3731 	int           rv;
3732 	int           run_to_completion;
3733 
3734 
3735 	if ((msg->data_size >= 2)
3736 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3737 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3738 	    && (msg->user_data == NULL)) {
3739 		/*
3740 		 * This is the local response to a command send, start
3741 		 * the timer for these.  The user_data will not be
3742 		 * NULL if this is a response send, and we will let
3743 		 * response sends just go through.
3744 		 */
3745 
3746 		/*
3747 		 * Check for errors, if we get certain errors (ones
3748 		 * that mean basically we can try again later), we
3749 		 * ignore them and start the timer.  Otherwise we
3750 		 * report the error immediately.
3751 		 */
3752 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3753 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3754 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3755 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3756 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3757 			int chan = msg->rsp[3] & 0xf;
3758 
3759 			/* Got an error sending the message, handle it. */
3760 			if (chan >= IPMI_MAX_CHANNELS)
3761 				; /* This shouldn't happen */
3762 			else if ((intf->channels[chan].medium
3763 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3764 				 || (intf->channels[chan].medium
3765 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3766 				ipmi_inc_stat(intf, sent_lan_command_errs);
3767 			else
3768 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3769 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3770 		} else
3771 			/* The message was sent, start the timer. */
3772 			intf_start_seq_timer(intf, msg->msgid);
3773 
3774 		ipmi_free_smi_msg(msg);
3775 		goto out;
3776 	}
3777 
3778 	/*
3779 	 * To preserve message order, if the list is not empty, we
3780 	 * tack this message onto the end of the list.
3781 	 */
3782 	run_to_completion = intf->run_to_completion;
3783 	if (!run_to_completion)
3784 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3785 	if (!list_empty(&intf->waiting_msgs)) {
3786 		list_add_tail(&msg->link, &intf->waiting_msgs);
3787 		if (!run_to_completion)
3788 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3789 		goto out;
3790 	}
3791 	if (!run_to_completion)
3792 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3793 
3794 	rv = handle_new_recv_msg(intf, msg);
3795 	if (rv > 0) {
3796 		/*
3797 		 * Could not handle the message now, just add it to a
3798 		 * list to handle later.
3799 		 */
3800 		run_to_completion = intf->run_to_completion;
3801 		if (!run_to_completion)
3802 			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3803 		list_add_tail(&msg->link, &intf->waiting_msgs);
3804 		if (!run_to_completion)
3805 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3806 	} else if (rv == 0) {
3807 		ipmi_free_smi_msg(msg);
3808 	}
3809 
3810  out:
3811 	return;
3812 }
3813 EXPORT_SYMBOL(ipmi_smi_msg_received);
3814 
3815 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3816 {
3817 	ipmi_user_t user;
3818 
3819 	rcu_read_lock();
3820 	list_for_each_entry_rcu(user, &intf->users, link) {
3821 		if (!user->handler->ipmi_watchdog_pretimeout)
3822 			continue;
3823 
3824 		user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3825 	}
3826 	rcu_read_unlock();
3827 }
3828 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3829 
3830 static struct ipmi_smi_msg *
3831 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3832 		  unsigned char seq, long seqid)
3833 {
3834 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3835 	if (!smi_msg)
3836 		/*
3837 		 * If we can't allocate the message, then just return, we
3838 		 * get 4 retries, so this should be ok.
3839 		 */
3840 		return NULL;
3841 
3842 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3843 	smi_msg->data_size = recv_msg->msg.data_len;
3844 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3845 
3846 #ifdef DEBUG_MSGING
3847 	{
3848 		int m;
3849 		printk("Resend: ");
3850 		for (m = 0; m < smi_msg->data_size; m++)
3851 			printk(" %2.2x", smi_msg->data[m]);
3852 		printk("\n");
3853 	}
3854 #endif
3855 	return smi_msg;
3856 }
3857 
3858 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3859 			      struct list_head *timeouts, long timeout_period,
3860 			      int slot, unsigned long *flags)
3861 {
3862 	struct ipmi_recv_msg     *msg;
3863 	struct ipmi_smi_handlers *handlers;
3864 
3865 	if (intf->intf_num == -1)
3866 		return;
3867 
3868 	if (!ent->inuse)
3869 		return;
3870 
3871 	ent->timeout -= timeout_period;
3872 	if (ent->timeout > 0)
3873 		return;
3874 
3875 	if (ent->retries_left == 0) {
3876 		/* The message has used all its retries. */
3877 		ent->inuse = 0;
3878 		msg = ent->recv_msg;
3879 		list_add_tail(&msg->link, timeouts);
3880 		if (ent->broadcast)
3881 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3882 		else if (is_lan_addr(&ent->recv_msg->addr))
3883 			ipmi_inc_stat(intf, timed_out_lan_commands);
3884 		else
3885 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
3886 	} else {
3887 		struct ipmi_smi_msg *smi_msg;
3888 		/* More retries, send again. */
3889 
3890 		/*
3891 		 * Start with the max timer, set to normal timer after
3892 		 * the message is sent.
3893 		 */
3894 		ent->timeout = MAX_MSG_TIMEOUT;
3895 		ent->retries_left--;
3896 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3897 					    ent->seqid);
3898 		if (!smi_msg) {
3899 			if (is_lan_addr(&ent->recv_msg->addr))
3900 				ipmi_inc_stat(intf,
3901 					      dropped_rexmit_lan_commands);
3902 			else
3903 				ipmi_inc_stat(intf,
3904 					      dropped_rexmit_ipmb_commands);
3905 			return;
3906 		}
3907 
3908 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
3909 
3910 		/*
3911 		 * Send the new message.  We send with a zero
3912 		 * priority.  It timed out, I doubt time is that
3913 		 * critical now, and high priority messages are really
3914 		 * only for messages to the local MC, which don't get
3915 		 * resent.
3916 		 */
3917 		handlers = intf->handlers;
3918 		if (handlers) {
3919 			if (is_lan_addr(&ent->recv_msg->addr))
3920 				ipmi_inc_stat(intf,
3921 					      retransmitted_lan_commands);
3922 			else
3923 				ipmi_inc_stat(intf,
3924 					      retransmitted_ipmb_commands);
3925 
3926 			intf->handlers->sender(intf->send_info,
3927 					       smi_msg, 0);
3928 		} else
3929 			ipmi_free_smi_msg(smi_msg);
3930 
3931 		spin_lock_irqsave(&intf->seq_lock, *flags);
3932 	}
3933 }
3934 
3935 static void ipmi_timeout_handler(long timeout_period)
3936 {
3937 	ipmi_smi_t           intf;
3938 	struct list_head     timeouts;
3939 	struct ipmi_recv_msg *msg, *msg2;
3940 	struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3941 	unsigned long        flags;
3942 	int                  i;
3943 
3944 	rcu_read_lock();
3945 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3946 		/* See if any waiting messages need to be processed. */
3947 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3948 		list_for_each_entry_safe(smi_msg, smi_msg2,
3949 					 &intf->waiting_msgs, link) {
3950 			if (!handle_new_recv_msg(intf, smi_msg)) {
3951 				list_del(&smi_msg->link);
3952 				ipmi_free_smi_msg(smi_msg);
3953 			} else {
3954 				/*
3955 				 * To preserve message order, quit if we
3956 				 * can't handle a message.
3957 				 */
3958 				break;
3959 			}
3960 		}
3961 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3962 
3963 		/*
3964 		 * Go through the seq table and find any messages that
3965 		 * have timed out, putting them in the timeouts
3966 		 * list.
3967 		 */
3968 		INIT_LIST_HEAD(&timeouts);
3969 		spin_lock_irqsave(&intf->seq_lock, flags);
3970 		for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3971 			check_msg_timeout(intf, &(intf->seq_table[i]),
3972 					  &timeouts, timeout_period, i,
3973 					  &flags);
3974 		spin_unlock_irqrestore(&intf->seq_lock, flags);
3975 
3976 		list_for_each_entry_safe(msg, msg2, &timeouts, link)
3977 			deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3978 
3979 		/*
3980 		 * Maintenance mode handling.  Check the timeout
3981 		 * optimistically before we claim the lock.  It may
3982 		 * mean a timeout gets missed occasionally, but that
3983 		 * only means the timeout gets extended by one period
3984 		 * in that case.  No big deal, and it avoids the lock
3985 		 * most of the time.
3986 		 */
3987 		if (intf->auto_maintenance_timeout > 0) {
3988 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3989 			if (intf->auto_maintenance_timeout > 0) {
3990 				intf->auto_maintenance_timeout
3991 					-= timeout_period;
3992 				if (!intf->maintenance_mode
3993 				    && (intf->auto_maintenance_timeout <= 0)) {
3994 					intf->maintenance_mode_enable = 0;
3995 					maintenance_mode_update(intf);
3996 				}
3997 			}
3998 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3999 					       flags);
4000 		}
4001 	}
4002 	rcu_read_unlock();
4003 }
4004 
4005 static void ipmi_request_event(void)
4006 {
4007 	ipmi_smi_t               intf;
4008 	struct ipmi_smi_handlers *handlers;
4009 
4010 	rcu_read_lock();
4011 	/*
4012 	 * Called from the timer, no need to check if handlers is
4013 	 * valid.
4014 	 */
4015 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4016 		/* No event requests when in maintenance mode. */
4017 		if (intf->maintenance_mode_enable)
4018 			continue;
4019 
4020 		handlers = intf->handlers;
4021 		if (handlers)
4022 			handlers->request_events(intf->send_info);
4023 	}
4024 	rcu_read_unlock();
4025 }
4026 
4027 static struct timer_list ipmi_timer;
4028 
4029 /* Call every ~100 ms. */
4030 #define IPMI_TIMEOUT_TIME	100
4031 
4032 /* How many jiffies does it take to get to the timeout time. */
4033 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
4034 
4035 /*
4036  * Request events from the queue every second (this is the number of
4037  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
4038  * future, IPMI will add a way to know immediately if an event is in
4039  * the queue and this silliness can go away.
4040  */
4041 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
4042 
4043 static atomic_t stop_operation;
4044 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4045 
4046 static void ipmi_timeout(unsigned long data)
4047 {
4048 	if (atomic_read(&stop_operation))
4049 		return;
4050 
4051 	ticks_to_req_ev--;
4052 	if (ticks_to_req_ev == 0) {
4053 		ipmi_request_event();
4054 		ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4055 	}
4056 
4057 	ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
4058 
4059 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4060 }
4061 
4062 
4063 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4064 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4065 
4066 /* FIXME - convert these to slabs. */
4067 static void free_smi_msg(struct ipmi_smi_msg *msg)
4068 {
4069 	atomic_dec(&smi_msg_inuse_count);
4070 	kfree(msg);
4071 }
4072 
4073 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4074 {
4075 	struct ipmi_smi_msg *rv;
4076 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4077 	if (rv) {
4078 		rv->done = free_smi_msg;
4079 		rv->user_data = NULL;
4080 		atomic_inc(&smi_msg_inuse_count);
4081 	}
4082 	return rv;
4083 }
4084 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4085 
4086 static void free_recv_msg(struct ipmi_recv_msg *msg)
4087 {
4088 	atomic_dec(&recv_msg_inuse_count);
4089 	kfree(msg);
4090 }
4091 
4092 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4093 {
4094 	struct ipmi_recv_msg *rv;
4095 
4096 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4097 	if (rv) {
4098 		rv->user = NULL;
4099 		rv->done = free_recv_msg;
4100 		atomic_inc(&recv_msg_inuse_count);
4101 	}
4102 	return rv;
4103 }
4104 
4105 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4106 {
4107 	if (msg->user)
4108 		kref_put(&msg->user->refcount, free_user);
4109 	msg->done(msg);
4110 }
4111 EXPORT_SYMBOL(ipmi_free_recv_msg);
4112 
4113 #ifdef CONFIG_IPMI_PANIC_EVENT
4114 
4115 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4116 {
4117 }
4118 
4119 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4120 {
4121 }
4122 
4123 #ifdef CONFIG_IPMI_PANIC_STRING
4124 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4125 {
4126 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4127 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4128 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4129 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4130 		/* A get event receiver command, save it. */
4131 		intf->event_receiver = msg->msg.data[1];
4132 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4133 	}
4134 }
4135 
4136 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4137 {
4138 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4139 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4140 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4141 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4142 		/*
4143 		 * A get device id command, save if we are an event
4144 		 * receiver or generator.
4145 		 */
4146 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4147 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4148 	}
4149 }
4150 #endif
4151 
4152 static void send_panic_events(char *str)
4153 {
4154 	struct kernel_ipmi_msg            msg;
4155 	ipmi_smi_t                        intf;
4156 	unsigned char                     data[16];
4157 	struct ipmi_system_interface_addr *si;
4158 	struct ipmi_addr                  addr;
4159 	struct ipmi_smi_msg               smi_msg;
4160 	struct ipmi_recv_msg              recv_msg;
4161 
4162 	si = (struct ipmi_system_interface_addr *) &addr;
4163 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4164 	si->channel = IPMI_BMC_CHANNEL;
4165 	si->lun = 0;
4166 
4167 	/* Fill in an event telling that we have failed. */
4168 	msg.netfn = 0x04; /* Sensor or Event. */
4169 	msg.cmd = 2; /* Platform event command. */
4170 	msg.data = data;
4171 	msg.data_len = 8;
4172 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4173 	data[1] = 0x03; /* This is for IPMI 1.0. */
4174 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4175 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4176 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4177 
4178 	/*
4179 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4180 	 * to make the panic events more useful.
4181 	 */
4182 	if (str) {
4183 		data[3] = str[0];
4184 		data[6] = str[1];
4185 		data[7] = str[2];
4186 	}
4187 
4188 	smi_msg.done = dummy_smi_done_handler;
4189 	recv_msg.done = dummy_recv_done_handler;
4190 
4191 	/* For every registered interface, send the event. */
4192 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4193 		if (!intf->handlers)
4194 			/* Interface is not ready. */
4195 			continue;
4196 
4197 		intf->run_to_completion = 1;
4198 		/* Send the event announcing the panic. */
4199 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4200 		i_ipmi_request(NULL,
4201 			       intf,
4202 			       &addr,
4203 			       0,
4204 			       &msg,
4205 			       intf,
4206 			       &smi_msg,
4207 			       &recv_msg,
4208 			       0,
4209 			       intf->channels[0].address,
4210 			       intf->channels[0].lun,
4211 			       0, 1); /* Don't retry, and don't wait. */
4212 	}
4213 
4214 #ifdef CONFIG_IPMI_PANIC_STRING
4215 	/*
4216 	 * On every interface, dump a bunch of OEM event holding the
4217 	 * string.
4218 	 */
4219 	if (!str)
4220 		return;
4221 
4222 	/* For every registered interface, send the event. */
4223 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4224 		char                  *p = str;
4225 		struct ipmi_ipmb_addr *ipmb;
4226 		int                   j;
4227 
4228 		if (intf->intf_num == -1)
4229 			/* Interface was not ready yet. */
4230 			continue;
4231 
4232 		/*
4233 		 * intf_num is used as an marker to tell if the
4234 		 * interface is valid.  Thus we need a read barrier to
4235 		 * make sure data fetched before checking intf_num
4236 		 * won't be used.
4237 		 */
4238 		smp_rmb();
4239 
4240 		/*
4241 		 * First job here is to figure out where to send the
4242 		 * OEM events.  There's no way in IPMI to send OEM
4243 		 * events using an event send command, so we have to
4244 		 * find the SEL to put them in and stick them in
4245 		 * there.
4246 		 */
4247 
4248 		/* Get capabilities from the get device id. */
4249 		intf->local_sel_device = 0;
4250 		intf->local_event_generator = 0;
4251 		intf->event_receiver = 0;
4252 
4253 		/* Request the device info from the local MC. */
4254 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4255 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4256 		msg.data = NULL;
4257 		msg.data_len = 0;
4258 		intf->null_user_handler = device_id_fetcher;
4259 		i_ipmi_request(NULL,
4260 			       intf,
4261 			       &addr,
4262 			       0,
4263 			       &msg,
4264 			       intf,
4265 			       &smi_msg,
4266 			       &recv_msg,
4267 			       0,
4268 			       intf->channels[0].address,
4269 			       intf->channels[0].lun,
4270 			       0, 1); /* Don't retry, and don't wait. */
4271 
4272 		if (intf->local_event_generator) {
4273 			/* Request the event receiver from the local MC. */
4274 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4275 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4276 			msg.data = NULL;
4277 			msg.data_len = 0;
4278 			intf->null_user_handler = event_receiver_fetcher;
4279 			i_ipmi_request(NULL,
4280 				       intf,
4281 				       &addr,
4282 				       0,
4283 				       &msg,
4284 				       intf,
4285 				       &smi_msg,
4286 				       &recv_msg,
4287 				       0,
4288 				       intf->channels[0].address,
4289 				       intf->channels[0].lun,
4290 				       0, 1); /* no retry, and no wait. */
4291 		}
4292 		intf->null_user_handler = NULL;
4293 
4294 		/*
4295 		 * Validate the event receiver.  The low bit must not
4296 		 * be 1 (it must be a valid IPMB address), it cannot
4297 		 * be zero, and it must not be my address.
4298 		 */
4299 		if (((intf->event_receiver & 1) == 0)
4300 		    && (intf->event_receiver != 0)
4301 		    && (intf->event_receiver != intf->channels[0].address)) {
4302 			/*
4303 			 * The event receiver is valid, send an IPMB
4304 			 * message.
4305 			 */
4306 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4307 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4308 			ipmb->channel = 0; /* FIXME - is this right? */
4309 			ipmb->lun = intf->event_receiver_lun;
4310 			ipmb->slave_addr = intf->event_receiver;
4311 		} else if (intf->local_sel_device) {
4312 			/*
4313 			 * The event receiver was not valid (or was
4314 			 * me), but I am an SEL device, just dump it
4315 			 * in my SEL.
4316 			 */
4317 			si = (struct ipmi_system_interface_addr *) &addr;
4318 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4319 			si->channel = IPMI_BMC_CHANNEL;
4320 			si->lun = 0;
4321 		} else
4322 			continue; /* No where to send the event. */
4323 
4324 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4325 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4326 		msg.data = data;
4327 		msg.data_len = 16;
4328 
4329 		j = 0;
4330 		while (*p) {
4331 			int size = strlen(p);
4332 
4333 			if (size > 11)
4334 				size = 11;
4335 			data[0] = 0;
4336 			data[1] = 0;
4337 			data[2] = 0xf0; /* OEM event without timestamp. */
4338 			data[3] = intf->channels[0].address;
4339 			data[4] = j++; /* sequence # */
4340 			/*
4341 			 * Always give 11 bytes, so strncpy will fill
4342 			 * it with zeroes for me.
4343 			 */
4344 			strncpy(data+5, p, 11);
4345 			p += size;
4346 
4347 			i_ipmi_request(NULL,
4348 				       intf,
4349 				       &addr,
4350 				       0,
4351 				       &msg,
4352 				       intf,
4353 				       &smi_msg,
4354 				       &recv_msg,
4355 				       0,
4356 				       intf->channels[0].address,
4357 				       intf->channels[0].lun,
4358 				       0, 1); /* no retry, and no wait. */
4359 		}
4360 	}
4361 #endif /* CONFIG_IPMI_PANIC_STRING */
4362 }
4363 #endif /* CONFIG_IPMI_PANIC_EVENT */
4364 
4365 static int has_panicked;
4366 
4367 static int panic_event(struct notifier_block *this,
4368 		       unsigned long         event,
4369 		       void                  *ptr)
4370 {
4371 	ipmi_smi_t intf;
4372 
4373 	if (has_panicked)
4374 		return NOTIFY_DONE;
4375 	has_panicked = 1;
4376 
4377 	/* For every registered interface, set it to run to completion. */
4378 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4379 		if (!intf->handlers)
4380 			/* Interface is not ready. */
4381 			continue;
4382 
4383 		intf->run_to_completion = 1;
4384 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4385 	}
4386 
4387 #ifdef CONFIG_IPMI_PANIC_EVENT
4388 	send_panic_events(ptr);
4389 #endif
4390 
4391 	return NOTIFY_DONE;
4392 }
4393 
4394 static struct notifier_block panic_block = {
4395 	.notifier_call	= panic_event,
4396 	.next		= NULL,
4397 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4398 };
4399 
4400 static int ipmi_init_msghandler(void)
4401 {
4402 	int rv;
4403 
4404 	if (initialized)
4405 		return 0;
4406 
4407 	rv = driver_register(&ipmidriver.driver);
4408 	if (rv) {
4409 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4410 		return rv;
4411 	}
4412 
4413 	printk(KERN_INFO "ipmi message handler version "
4414 	       IPMI_DRIVER_VERSION "\n");
4415 
4416 #ifdef CONFIG_PROC_FS
4417 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4418 	if (!proc_ipmi_root) {
4419 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4420 	    return -ENOMEM;
4421 	}
4422 
4423 #endif /* CONFIG_PROC_FS */
4424 
4425 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4426 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4427 
4428 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4429 
4430 	initialized = 1;
4431 
4432 	return 0;
4433 }
4434 
4435 static __init int ipmi_init_msghandler_mod(void)
4436 {
4437 	ipmi_init_msghandler();
4438 	return 0;
4439 }
4440 
4441 static __exit void cleanup_ipmi(void)
4442 {
4443 	int count;
4444 
4445 	if (!initialized)
4446 		return;
4447 
4448 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4449 
4450 	/*
4451 	 * This can't be called if any interfaces exist, so no worry
4452 	 * about shutting down the interfaces.
4453 	 */
4454 
4455 	/*
4456 	 * Tell the timer to stop, then wait for it to stop.  This
4457 	 * avoids problems with race conditions removing the timer
4458 	 * here.
4459 	 */
4460 	atomic_inc(&stop_operation);
4461 	del_timer_sync(&ipmi_timer);
4462 
4463 #ifdef CONFIG_PROC_FS
4464 	remove_proc_entry(proc_ipmi_root->name, NULL);
4465 #endif /* CONFIG_PROC_FS */
4466 
4467 	driver_unregister(&ipmidriver.driver);
4468 
4469 	initialized = 0;
4470 
4471 	/* Check for buffer leaks. */
4472 	count = atomic_read(&smi_msg_inuse_count);
4473 	if (count != 0)
4474 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4475 		       count);
4476 	count = atomic_read(&recv_msg_inuse_count);
4477 	if (count != 0)
4478 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4479 		       count);
4480 }
4481 module_exit(cleanup_ipmi);
4482 
4483 module_init(ipmi_init_msghandler_mod);
4484 MODULE_LICENSE("GPL");
4485 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4486 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4487 		   " interface.");
4488 MODULE_VERSION(IPMI_DRIVER_VERSION);
4489