1 /* 2 * ipmi_msghandler.c 3 * 4 * Incoming and outgoing message routing for an IPMI interface. 5 * 6 * Author: MontaVista Software, Inc. 7 * Corey Minyard <minyard@mvista.com> 8 * source@mvista.com 9 * 10 * Copyright 2002 MontaVista Software Inc. 11 * 12 * This program is free software; you can redistribute it and/or modify it 13 * under the terms of the GNU General Public License as published by the 14 * Free Software Foundation; either version 2 of the License, or (at your 15 * option) any later version. 16 * 17 * 18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * You should have received a copy of the GNU General Public License along 30 * with this program; if not, write to the Free Software Foundation, Inc., 31 * 675 Mass Ave, Cambridge, MA 02139, USA. 32 */ 33 34 #include <linux/module.h> 35 #include <linux/errno.h> 36 #include <asm/system.h> 37 #include <linux/poll.h> 38 #include <linux/spinlock.h> 39 #include <linux/mutex.h> 40 #include <linux/slab.h> 41 #include <linux/ipmi.h> 42 #include <linux/ipmi_smi.h> 43 #include <linux/notifier.h> 44 #include <linux/init.h> 45 #include <linux/proc_fs.h> 46 #include <linux/rcupdate.h> 47 48 #define PFX "IPMI message handler: " 49 50 #define IPMI_DRIVER_VERSION "39.2" 51 52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); 53 static int ipmi_init_msghandler(void); 54 55 static int initialized; 56 57 #ifdef CONFIG_PROC_FS 58 static struct proc_dir_entry *proc_ipmi_root; 59 #endif /* CONFIG_PROC_FS */ 60 61 /* Remain in auto-maintenance mode for this amount of time (in ms). */ 62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000 63 64 #define MAX_EVENTS_IN_QUEUE 25 65 66 /* 67 * Don't let a message sit in a queue forever, always time it with at lest 68 * the max message timer. This is in milliseconds. 69 */ 70 #define MAX_MSG_TIMEOUT 60000 71 72 /* 73 * The main "user" data structure. 74 */ 75 struct ipmi_user { 76 struct list_head link; 77 78 /* Set to "0" when the user is destroyed. */ 79 int valid; 80 81 struct kref refcount; 82 83 /* The upper layer that handles receive messages. */ 84 struct ipmi_user_hndl *handler; 85 void *handler_data; 86 87 /* The interface this user is bound to. */ 88 ipmi_smi_t intf; 89 90 /* Does this interface receive IPMI events? */ 91 int gets_events; 92 }; 93 94 struct cmd_rcvr { 95 struct list_head link; 96 97 ipmi_user_t user; 98 unsigned char netfn; 99 unsigned char cmd; 100 unsigned int chans; 101 102 /* 103 * This is used to form a linked lised during mass deletion. 104 * Since this is in an RCU list, we cannot use the link above 105 * or change any data until the RCU period completes. So we 106 * use this next variable during mass deletion so we can have 107 * a list and don't have to wait and restart the search on 108 * every individual deletion of a command. 109 */ 110 struct cmd_rcvr *next; 111 }; 112 113 struct seq_table { 114 unsigned int inuse : 1; 115 unsigned int broadcast : 1; 116 117 unsigned long timeout; 118 unsigned long orig_timeout; 119 unsigned int retries_left; 120 121 /* 122 * To verify on an incoming send message response that this is 123 * the message that the response is for, we keep a sequence id 124 * and increment it every time we send a message. 125 */ 126 long seqid; 127 128 /* 129 * This is held so we can properly respond to the message on a 130 * timeout, and it is used to hold the temporary data for 131 * retransmission, too. 132 */ 133 struct ipmi_recv_msg *recv_msg; 134 }; 135 136 /* 137 * Store the information in a msgid (long) to allow us to find a 138 * sequence table entry from the msgid. 139 */ 140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff)) 141 142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \ 143 do { \ 144 seq = ((msgid >> 26) & 0x3f); \ 145 seqid = (msgid & 0x3fffff); \ 146 } while (0) 147 148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff) 149 150 struct ipmi_channel { 151 unsigned char medium; 152 unsigned char protocol; 153 154 /* 155 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR, 156 * but may be changed by the user. 157 */ 158 unsigned char address; 159 160 /* 161 * My LUN. This should generally stay the SMS LUN, but just in 162 * case... 163 */ 164 unsigned char lun; 165 }; 166 167 #ifdef CONFIG_PROC_FS 168 struct ipmi_proc_entry { 169 char *name; 170 struct ipmi_proc_entry *next; 171 }; 172 #endif 173 174 struct bmc_device { 175 struct platform_device *dev; 176 struct ipmi_device_id id; 177 unsigned char guid[16]; 178 int guid_set; 179 180 struct kref refcount; 181 182 /* bmc device attributes */ 183 struct device_attribute device_id_attr; 184 struct device_attribute provides_dev_sdrs_attr; 185 struct device_attribute revision_attr; 186 struct device_attribute firmware_rev_attr; 187 struct device_attribute version_attr; 188 struct device_attribute add_dev_support_attr; 189 struct device_attribute manufacturer_id_attr; 190 struct device_attribute product_id_attr; 191 struct device_attribute guid_attr; 192 struct device_attribute aux_firmware_rev_attr; 193 }; 194 195 /* 196 * Various statistics for IPMI, these index stats[] in the ipmi_smi 197 * structure. 198 */ 199 enum ipmi_stat_indexes { 200 /* Commands we got from the user that were invalid. */ 201 IPMI_STAT_sent_invalid_commands = 0, 202 203 /* Commands we sent to the MC. */ 204 IPMI_STAT_sent_local_commands, 205 206 /* Responses from the MC that were delivered to a user. */ 207 IPMI_STAT_handled_local_responses, 208 209 /* Responses from the MC that were not delivered to a user. */ 210 IPMI_STAT_unhandled_local_responses, 211 212 /* Commands we sent out to the IPMB bus. */ 213 IPMI_STAT_sent_ipmb_commands, 214 215 /* Commands sent on the IPMB that had errors on the SEND CMD */ 216 IPMI_STAT_sent_ipmb_command_errs, 217 218 /* Each retransmit increments this count. */ 219 IPMI_STAT_retransmitted_ipmb_commands, 220 221 /* 222 * When a message times out (runs out of retransmits) this is 223 * incremented. 224 */ 225 IPMI_STAT_timed_out_ipmb_commands, 226 227 /* 228 * This is like above, but for broadcasts. Broadcasts are 229 * *not* included in the above count (they are expected to 230 * time out). 231 */ 232 IPMI_STAT_timed_out_ipmb_broadcasts, 233 234 /* Responses I have sent to the IPMB bus. */ 235 IPMI_STAT_sent_ipmb_responses, 236 237 /* The response was delivered to the user. */ 238 IPMI_STAT_handled_ipmb_responses, 239 240 /* The response had invalid data in it. */ 241 IPMI_STAT_invalid_ipmb_responses, 242 243 /* The response didn't have anyone waiting for it. */ 244 IPMI_STAT_unhandled_ipmb_responses, 245 246 /* Commands we sent out to the IPMB bus. */ 247 IPMI_STAT_sent_lan_commands, 248 249 /* Commands sent on the IPMB that had errors on the SEND CMD */ 250 IPMI_STAT_sent_lan_command_errs, 251 252 /* Each retransmit increments this count. */ 253 IPMI_STAT_retransmitted_lan_commands, 254 255 /* 256 * When a message times out (runs out of retransmits) this is 257 * incremented. 258 */ 259 IPMI_STAT_timed_out_lan_commands, 260 261 /* Responses I have sent to the IPMB bus. */ 262 IPMI_STAT_sent_lan_responses, 263 264 /* The response was delivered to the user. */ 265 IPMI_STAT_handled_lan_responses, 266 267 /* The response had invalid data in it. */ 268 IPMI_STAT_invalid_lan_responses, 269 270 /* The response didn't have anyone waiting for it. */ 271 IPMI_STAT_unhandled_lan_responses, 272 273 /* The command was delivered to the user. */ 274 IPMI_STAT_handled_commands, 275 276 /* The command had invalid data in it. */ 277 IPMI_STAT_invalid_commands, 278 279 /* The command didn't have anyone waiting for it. */ 280 IPMI_STAT_unhandled_commands, 281 282 /* Invalid data in an event. */ 283 IPMI_STAT_invalid_events, 284 285 /* Events that were received with the proper format. */ 286 IPMI_STAT_events, 287 288 /* Retransmissions on IPMB that failed. */ 289 IPMI_STAT_dropped_rexmit_ipmb_commands, 290 291 /* Retransmissions on LAN that failed. */ 292 IPMI_STAT_dropped_rexmit_lan_commands, 293 294 /* This *must* remain last, add new values above this. */ 295 IPMI_NUM_STATS 296 }; 297 298 299 #define IPMI_IPMB_NUM_SEQ 64 300 #define IPMI_MAX_CHANNELS 16 301 struct ipmi_smi { 302 /* What interface number are we? */ 303 int intf_num; 304 305 struct kref refcount; 306 307 /* Used for a list of interfaces. */ 308 struct list_head link; 309 310 /* 311 * The list of upper layers that are using me. seq_lock 312 * protects this. 313 */ 314 struct list_head users; 315 316 /* Information to supply to users. */ 317 unsigned char ipmi_version_major; 318 unsigned char ipmi_version_minor; 319 320 /* Used for wake ups at startup. */ 321 wait_queue_head_t waitq; 322 323 struct bmc_device *bmc; 324 char *my_dev_name; 325 char *sysfs_name; 326 327 /* 328 * This is the lower-layer's sender routine. Note that you 329 * must either be holding the ipmi_interfaces_mutex or be in 330 * an umpreemptible region to use this. You must fetch the 331 * value into a local variable and make sure it is not NULL. 332 */ 333 struct ipmi_smi_handlers *handlers; 334 void *send_info; 335 336 #ifdef CONFIG_PROC_FS 337 /* A list of proc entries for this interface. */ 338 struct mutex proc_entry_lock; 339 struct ipmi_proc_entry *proc_entries; 340 #endif 341 342 /* Driver-model device for the system interface. */ 343 struct device *si_dev; 344 345 /* 346 * A table of sequence numbers for this interface. We use the 347 * sequence numbers for IPMB messages that go out of the 348 * interface to match them up with their responses. A routine 349 * is called periodically to time the items in this list. 350 */ 351 spinlock_t seq_lock; 352 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ]; 353 int curr_seq; 354 355 /* 356 * Messages that were delayed for some reason (out of memory, 357 * for instance), will go in here to be processed later in a 358 * periodic timer interrupt. 359 */ 360 spinlock_t waiting_msgs_lock; 361 struct list_head waiting_msgs; 362 363 /* 364 * The list of command receivers that are registered for commands 365 * on this interface. 366 */ 367 struct mutex cmd_rcvrs_mutex; 368 struct list_head cmd_rcvrs; 369 370 /* 371 * Events that were queues because no one was there to receive 372 * them. 373 */ 374 spinlock_t events_lock; /* For dealing with event stuff. */ 375 struct list_head waiting_events; 376 unsigned int waiting_events_count; /* How many events in queue? */ 377 char delivering_events; 378 char event_msg_printed; 379 380 /* 381 * The event receiver for my BMC, only really used at panic 382 * shutdown as a place to store this. 383 */ 384 unsigned char event_receiver; 385 unsigned char event_receiver_lun; 386 unsigned char local_sel_device; 387 unsigned char local_event_generator; 388 389 /* For handling of maintenance mode. */ 390 int maintenance_mode; 391 int maintenance_mode_enable; 392 int auto_maintenance_timeout; 393 spinlock_t maintenance_mode_lock; /* Used in a timer... */ 394 395 /* 396 * A cheap hack, if this is non-null and a message to an 397 * interface comes in with a NULL user, call this routine with 398 * it. Note that the message will still be freed by the 399 * caller. This only works on the system interface. 400 */ 401 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg); 402 403 /* 404 * When we are scanning the channels for an SMI, this will 405 * tell which channel we are scanning. 406 */ 407 int curr_channel; 408 409 /* Channel information */ 410 struct ipmi_channel channels[IPMI_MAX_CHANNELS]; 411 412 /* Proc FS stuff. */ 413 struct proc_dir_entry *proc_dir; 414 char proc_dir_name[10]; 415 416 atomic_t stats[IPMI_NUM_STATS]; 417 418 /* 419 * run_to_completion duplicate of smb_info, smi_info 420 * and ipmi_serial_info structures. Used to decrease numbers of 421 * parameters passed by "low" level IPMI code. 422 */ 423 int run_to_completion; 424 }; 425 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev) 426 427 /** 428 * The driver model view of the IPMI messaging driver. 429 */ 430 static struct platform_driver ipmidriver = { 431 .driver = { 432 .name = "ipmi", 433 .bus = &platform_bus_type 434 } 435 }; 436 static DEFINE_MUTEX(ipmidriver_mutex); 437 438 static LIST_HEAD(ipmi_interfaces); 439 static DEFINE_MUTEX(ipmi_interfaces_mutex); 440 441 /* 442 * List of watchers that want to know when smi's are added and deleted. 443 */ 444 static LIST_HEAD(smi_watchers); 445 static DEFINE_MUTEX(smi_watchers_mutex); 446 447 448 #define ipmi_inc_stat(intf, stat) \ 449 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat]) 450 #define ipmi_get_stat(intf, stat) \ 451 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat])) 452 453 static int is_lan_addr(struct ipmi_addr *addr) 454 { 455 return addr->addr_type == IPMI_LAN_ADDR_TYPE; 456 } 457 458 static int is_ipmb_addr(struct ipmi_addr *addr) 459 { 460 return addr->addr_type == IPMI_IPMB_ADDR_TYPE; 461 } 462 463 static int is_ipmb_bcast_addr(struct ipmi_addr *addr) 464 { 465 return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE; 466 } 467 468 static void free_recv_msg_list(struct list_head *q) 469 { 470 struct ipmi_recv_msg *msg, *msg2; 471 472 list_for_each_entry_safe(msg, msg2, q, link) { 473 list_del(&msg->link); 474 ipmi_free_recv_msg(msg); 475 } 476 } 477 478 static void free_smi_msg_list(struct list_head *q) 479 { 480 struct ipmi_smi_msg *msg, *msg2; 481 482 list_for_each_entry_safe(msg, msg2, q, link) { 483 list_del(&msg->link); 484 ipmi_free_smi_msg(msg); 485 } 486 } 487 488 static void clean_up_interface_data(ipmi_smi_t intf) 489 { 490 int i; 491 struct cmd_rcvr *rcvr, *rcvr2; 492 struct list_head list; 493 494 free_smi_msg_list(&intf->waiting_msgs); 495 free_recv_msg_list(&intf->waiting_events); 496 497 /* 498 * Wholesale remove all the entries from the list in the 499 * interface and wait for RCU to know that none are in use. 500 */ 501 mutex_lock(&intf->cmd_rcvrs_mutex); 502 INIT_LIST_HEAD(&list); 503 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu); 504 mutex_unlock(&intf->cmd_rcvrs_mutex); 505 506 list_for_each_entry_safe(rcvr, rcvr2, &list, link) 507 kfree(rcvr); 508 509 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 510 if ((intf->seq_table[i].inuse) 511 && (intf->seq_table[i].recv_msg)) 512 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 513 } 514 } 515 516 static void intf_free(struct kref *ref) 517 { 518 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount); 519 520 clean_up_interface_data(intf); 521 kfree(intf); 522 } 523 524 struct watcher_entry { 525 int intf_num; 526 ipmi_smi_t intf; 527 struct list_head link; 528 }; 529 530 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) 531 { 532 ipmi_smi_t intf; 533 LIST_HEAD(to_deliver); 534 struct watcher_entry *e, *e2; 535 536 mutex_lock(&smi_watchers_mutex); 537 538 mutex_lock(&ipmi_interfaces_mutex); 539 540 /* Build a list of things to deliver. */ 541 list_for_each_entry(intf, &ipmi_interfaces, link) { 542 if (intf->intf_num == -1) 543 continue; 544 e = kmalloc(sizeof(*e), GFP_KERNEL); 545 if (!e) 546 goto out_err; 547 kref_get(&intf->refcount); 548 e->intf = intf; 549 e->intf_num = intf->intf_num; 550 list_add_tail(&e->link, &to_deliver); 551 } 552 553 /* We will succeed, so add it to the list. */ 554 list_add(&watcher->link, &smi_watchers); 555 556 mutex_unlock(&ipmi_interfaces_mutex); 557 558 list_for_each_entry_safe(e, e2, &to_deliver, link) { 559 list_del(&e->link); 560 watcher->new_smi(e->intf_num, e->intf->si_dev); 561 kref_put(&e->intf->refcount, intf_free); 562 kfree(e); 563 } 564 565 mutex_unlock(&smi_watchers_mutex); 566 567 return 0; 568 569 out_err: 570 mutex_unlock(&ipmi_interfaces_mutex); 571 mutex_unlock(&smi_watchers_mutex); 572 list_for_each_entry_safe(e, e2, &to_deliver, link) { 573 list_del(&e->link); 574 kref_put(&e->intf->refcount, intf_free); 575 kfree(e); 576 } 577 return -ENOMEM; 578 } 579 EXPORT_SYMBOL(ipmi_smi_watcher_register); 580 581 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) 582 { 583 mutex_lock(&smi_watchers_mutex); 584 list_del(&(watcher->link)); 585 mutex_unlock(&smi_watchers_mutex); 586 return 0; 587 } 588 EXPORT_SYMBOL(ipmi_smi_watcher_unregister); 589 590 /* 591 * Must be called with smi_watchers_mutex held. 592 */ 593 static void 594 call_smi_watchers(int i, struct device *dev) 595 { 596 struct ipmi_smi_watcher *w; 597 598 list_for_each_entry(w, &smi_watchers, link) { 599 if (try_module_get(w->owner)) { 600 w->new_smi(i, dev); 601 module_put(w->owner); 602 } 603 } 604 } 605 606 static int 607 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) 608 { 609 if (addr1->addr_type != addr2->addr_type) 610 return 0; 611 612 if (addr1->channel != addr2->channel) 613 return 0; 614 615 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 616 struct ipmi_system_interface_addr *smi_addr1 617 = (struct ipmi_system_interface_addr *) addr1; 618 struct ipmi_system_interface_addr *smi_addr2 619 = (struct ipmi_system_interface_addr *) addr2; 620 return (smi_addr1->lun == smi_addr2->lun); 621 } 622 623 if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) { 624 struct ipmi_ipmb_addr *ipmb_addr1 625 = (struct ipmi_ipmb_addr *) addr1; 626 struct ipmi_ipmb_addr *ipmb_addr2 627 = (struct ipmi_ipmb_addr *) addr2; 628 629 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) 630 && (ipmb_addr1->lun == ipmb_addr2->lun)); 631 } 632 633 if (is_lan_addr(addr1)) { 634 struct ipmi_lan_addr *lan_addr1 635 = (struct ipmi_lan_addr *) addr1; 636 struct ipmi_lan_addr *lan_addr2 637 = (struct ipmi_lan_addr *) addr2; 638 639 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID) 640 && (lan_addr1->local_SWID == lan_addr2->local_SWID) 641 && (lan_addr1->session_handle 642 == lan_addr2->session_handle) 643 && (lan_addr1->lun == lan_addr2->lun)); 644 } 645 646 return 1; 647 } 648 649 int ipmi_validate_addr(struct ipmi_addr *addr, int len) 650 { 651 if (len < sizeof(struct ipmi_system_interface_addr)) 652 return -EINVAL; 653 654 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 655 if (addr->channel != IPMI_BMC_CHANNEL) 656 return -EINVAL; 657 return 0; 658 } 659 660 if ((addr->channel == IPMI_BMC_CHANNEL) 661 || (addr->channel >= IPMI_MAX_CHANNELS) 662 || (addr->channel < 0)) 663 return -EINVAL; 664 665 if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 666 if (len < sizeof(struct ipmi_ipmb_addr)) 667 return -EINVAL; 668 return 0; 669 } 670 671 if (is_lan_addr(addr)) { 672 if (len < sizeof(struct ipmi_lan_addr)) 673 return -EINVAL; 674 return 0; 675 } 676 677 return -EINVAL; 678 } 679 EXPORT_SYMBOL(ipmi_validate_addr); 680 681 unsigned int ipmi_addr_length(int addr_type) 682 { 683 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 684 return sizeof(struct ipmi_system_interface_addr); 685 686 if ((addr_type == IPMI_IPMB_ADDR_TYPE) 687 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) 688 return sizeof(struct ipmi_ipmb_addr); 689 690 if (addr_type == IPMI_LAN_ADDR_TYPE) 691 return sizeof(struct ipmi_lan_addr); 692 693 return 0; 694 } 695 EXPORT_SYMBOL(ipmi_addr_length); 696 697 static void deliver_response(struct ipmi_recv_msg *msg) 698 { 699 if (!msg->user) { 700 ipmi_smi_t intf = msg->user_msg_data; 701 702 /* Special handling for NULL users. */ 703 if (intf->null_user_handler) { 704 intf->null_user_handler(intf, msg); 705 ipmi_inc_stat(intf, handled_local_responses); 706 } else { 707 /* No handler, so give up. */ 708 ipmi_inc_stat(intf, unhandled_local_responses); 709 } 710 ipmi_free_recv_msg(msg); 711 } else { 712 ipmi_user_t user = msg->user; 713 user->handler->ipmi_recv_hndl(msg, user->handler_data); 714 } 715 } 716 717 static void 718 deliver_err_response(struct ipmi_recv_msg *msg, int err) 719 { 720 msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 721 msg->msg_data[0] = err; 722 msg->msg.netfn |= 1; /* Convert to a response. */ 723 msg->msg.data_len = 1; 724 msg->msg.data = msg->msg_data; 725 deliver_response(msg); 726 } 727 728 /* 729 * Find the next sequence number not being used and add the given 730 * message with the given timeout to the sequence table. This must be 731 * called with the interface's seq_lock held. 732 */ 733 static int intf_next_seq(ipmi_smi_t intf, 734 struct ipmi_recv_msg *recv_msg, 735 unsigned long timeout, 736 int retries, 737 int broadcast, 738 unsigned char *seq, 739 long *seqid) 740 { 741 int rv = 0; 742 unsigned int i; 743 744 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq; 745 i = (i+1)%IPMI_IPMB_NUM_SEQ) { 746 if (!intf->seq_table[i].inuse) 747 break; 748 } 749 750 if (!intf->seq_table[i].inuse) { 751 intf->seq_table[i].recv_msg = recv_msg; 752 753 /* 754 * Start with the maximum timeout, when the send response 755 * comes in we will start the real timer. 756 */ 757 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT; 758 intf->seq_table[i].orig_timeout = timeout; 759 intf->seq_table[i].retries_left = retries; 760 intf->seq_table[i].broadcast = broadcast; 761 intf->seq_table[i].inuse = 1; 762 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid); 763 *seq = i; 764 *seqid = intf->seq_table[i].seqid; 765 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; 766 } else { 767 rv = -EAGAIN; 768 } 769 770 return rv; 771 } 772 773 /* 774 * Return the receive message for the given sequence number and 775 * release the sequence number so it can be reused. Some other data 776 * is passed in to be sure the message matches up correctly (to help 777 * guard against message coming in after their timeout and the 778 * sequence number being reused). 779 */ 780 static int intf_find_seq(ipmi_smi_t intf, 781 unsigned char seq, 782 short channel, 783 unsigned char cmd, 784 unsigned char netfn, 785 struct ipmi_addr *addr, 786 struct ipmi_recv_msg **recv_msg) 787 { 788 int rv = -ENODEV; 789 unsigned long flags; 790 791 if (seq >= IPMI_IPMB_NUM_SEQ) 792 return -EINVAL; 793 794 spin_lock_irqsave(&(intf->seq_lock), flags); 795 if (intf->seq_table[seq].inuse) { 796 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; 797 798 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd) 799 && (msg->msg.netfn == netfn) 800 && (ipmi_addr_equal(addr, &(msg->addr)))) { 801 *recv_msg = msg; 802 intf->seq_table[seq].inuse = 0; 803 rv = 0; 804 } 805 } 806 spin_unlock_irqrestore(&(intf->seq_lock), flags); 807 808 return rv; 809 } 810 811 812 /* Start the timer for a specific sequence table entry. */ 813 static int intf_start_seq_timer(ipmi_smi_t intf, 814 long msgid) 815 { 816 int rv = -ENODEV; 817 unsigned long flags; 818 unsigned char seq; 819 unsigned long seqid; 820 821 822 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 823 824 spin_lock_irqsave(&(intf->seq_lock), flags); 825 /* 826 * We do this verification because the user can be deleted 827 * while a message is outstanding. 828 */ 829 if ((intf->seq_table[seq].inuse) 830 && (intf->seq_table[seq].seqid == seqid)) { 831 struct seq_table *ent = &(intf->seq_table[seq]); 832 ent->timeout = ent->orig_timeout; 833 rv = 0; 834 } 835 spin_unlock_irqrestore(&(intf->seq_lock), flags); 836 837 return rv; 838 } 839 840 /* Got an error for the send message for a specific sequence number. */ 841 static int intf_err_seq(ipmi_smi_t intf, 842 long msgid, 843 unsigned int err) 844 { 845 int rv = -ENODEV; 846 unsigned long flags; 847 unsigned char seq; 848 unsigned long seqid; 849 struct ipmi_recv_msg *msg = NULL; 850 851 852 GET_SEQ_FROM_MSGID(msgid, seq, seqid); 853 854 spin_lock_irqsave(&(intf->seq_lock), flags); 855 /* 856 * We do this verification because the user can be deleted 857 * while a message is outstanding. 858 */ 859 if ((intf->seq_table[seq].inuse) 860 && (intf->seq_table[seq].seqid == seqid)) { 861 struct seq_table *ent = &(intf->seq_table[seq]); 862 863 ent->inuse = 0; 864 msg = ent->recv_msg; 865 rv = 0; 866 } 867 spin_unlock_irqrestore(&(intf->seq_lock), flags); 868 869 if (msg) 870 deliver_err_response(msg, err); 871 872 return rv; 873 } 874 875 876 int ipmi_create_user(unsigned int if_num, 877 struct ipmi_user_hndl *handler, 878 void *handler_data, 879 ipmi_user_t *user) 880 { 881 unsigned long flags; 882 ipmi_user_t new_user; 883 int rv = 0; 884 ipmi_smi_t intf; 885 886 /* 887 * There is no module usecount here, because it's not 888 * required. Since this can only be used by and called from 889 * other modules, they will implicitly use this module, and 890 * thus this can't be removed unless the other modules are 891 * removed. 892 */ 893 894 if (handler == NULL) 895 return -EINVAL; 896 897 /* 898 * Make sure the driver is actually initialized, this handles 899 * problems with initialization order. 900 */ 901 if (!initialized) { 902 rv = ipmi_init_msghandler(); 903 if (rv) 904 return rv; 905 906 /* 907 * The init code doesn't return an error if it was turned 908 * off, but it won't initialize. Check that. 909 */ 910 if (!initialized) 911 return -ENODEV; 912 } 913 914 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); 915 if (!new_user) 916 return -ENOMEM; 917 918 mutex_lock(&ipmi_interfaces_mutex); 919 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 920 if (intf->intf_num == if_num) 921 goto found; 922 } 923 /* Not found, return an error */ 924 rv = -EINVAL; 925 goto out_kfree; 926 927 found: 928 /* Note that each existing user holds a refcount to the interface. */ 929 kref_get(&intf->refcount); 930 931 kref_init(&new_user->refcount); 932 new_user->handler = handler; 933 new_user->handler_data = handler_data; 934 new_user->intf = intf; 935 new_user->gets_events = 0; 936 937 if (!try_module_get(intf->handlers->owner)) { 938 rv = -ENODEV; 939 goto out_kref; 940 } 941 942 if (intf->handlers->inc_usecount) { 943 rv = intf->handlers->inc_usecount(intf->send_info); 944 if (rv) { 945 module_put(intf->handlers->owner); 946 goto out_kref; 947 } 948 } 949 950 /* 951 * Hold the lock so intf->handlers is guaranteed to be good 952 * until now 953 */ 954 mutex_unlock(&ipmi_interfaces_mutex); 955 956 new_user->valid = 1; 957 spin_lock_irqsave(&intf->seq_lock, flags); 958 list_add_rcu(&new_user->link, &intf->users); 959 spin_unlock_irqrestore(&intf->seq_lock, flags); 960 *user = new_user; 961 return 0; 962 963 out_kref: 964 kref_put(&intf->refcount, intf_free); 965 out_kfree: 966 mutex_unlock(&ipmi_interfaces_mutex); 967 kfree(new_user); 968 return rv; 969 } 970 EXPORT_SYMBOL(ipmi_create_user); 971 972 static void free_user(struct kref *ref) 973 { 974 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount); 975 kfree(user); 976 } 977 978 int ipmi_destroy_user(ipmi_user_t user) 979 { 980 ipmi_smi_t intf = user->intf; 981 int i; 982 unsigned long flags; 983 struct cmd_rcvr *rcvr; 984 struct cmd_rcvr *rcvrs = NULL; 985 986 user->valid = 0; 987 988 /* Remove the user from the interface's sequence table. */ 989 spin_lock_irqsave(&intf->seq_lock, flags); 990 list_del_rcu(&user->link); 991 992 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 993 if (intf->seq_table[i].inuse 994 && (intf->seq_table[i].recv_msg->user == user)) { 995 intf->seq_table[i].inuse = 0; 996 ipmi_free_recv_msg(intf->seq_table[i].recv_msg); 997 } 998 } 999 spin_unlock_irqrestore(&intf->seq_lock, flags); 1000 1001 /* 1002 * Remove the user from the command receiver's table. First 1003 * we build a list of everything (not using the standard link, 1004 * since other things may be using it till we do 1005 * synchronize_rcu()) then free everything in that list. 1006 */ 1007 mutex_lock(&intf->cmd_rcvrs_mutex); 1008 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1009 if (rcvr->user == user) { 1010 list_del_rcu(&rcvr->link); 1011 rcvr->next = rcvrs; 1012 rcvrs = rcvr; 1013 } 1014 } 1015 mutex_unlock(&intf->cmd_rcvrs_mutex); 1016 synchronize_rcu(); 1017 while (rcvrs) { 1018 rcvr = rcvrs; 1019 rcvrs = rcvr->next; 1020 kfree(rcvr); 1021 } 1022 1023 mutex_lock(&ipmi_interfaces_mutex); 1024 if (intf->handlers) { 1025 module_put(intf->handlers->owner); 1026 if (intf->handlers->dec_usecount) 1027 intf->handlers->dec_usecount(intf->send_info); 1028 } 1029 mutex_unlock(&ipmi_interfaces_mutex); 1030 1031 kref_put(&intf->refcount, intf_free); 1032 1033 kref_put(&user->refcount, free_user); 1034 1035 return 0; 1036 } 1037 EXPORT_SYMBOL(ipmi_destroy_user); 1038 1039 void ipmi_get_version(ipmi_user_t user, 1040 unsigned char *major, 1041 unsigned char *minor) 1042 { 1043 *major = user->intf->ipmi_version_major; 1044 *minor = user->intf->ipmi_version_minor; 1045 } 1046 EXPORT_SYMBOL(ipmi_get_version); 1047 1048 int ipmi_set_my_address(ipmi_user_t user, 1049 unsigned int channel, 1050 unsigned char address) 1051 { 1052 if (channel >= IPMI_MAX_CHANNELS) 1053 return -EINVAL; 1054 user->intf->channels[channel].address = address; 1055 return 0; 1056 } 1057 EXPORT_SYMBOL(ipmi_set_my_address); 1058 1059 int ipmi_get_my_address(ipmi_user_t user, 1060 unsigned int channel, 1061 unsigned char *address) 1062 { 1063 if (channel >= IPMI_MAX_CHANNELS) 1064 return -EINVAL; 1065 *address = user->intf->channels[channel].address; 1066 return 0; 1067 } 1068 EXPORT_SYMBOL(ipmi_get_my_address); 1069 1070 int ipmi_set_my_LUN(ipmi_user_t user, 1071 unsigned int channel, 1072 unsigned char LUN) 1073 { 1074 if (channel >= IPMI_MAX_CHANNELS) 1075 return -EINVAL; 1076 user->intf->channels[channel].lun = LUN & 0x3; 1077 return 0; 1078 } 1079 EXPORT_SYMBOL(ipmi_set_my_LUN); 1080 1081 int ipmi_get_my_LUN(ipmi_user_t user, 1082 unsigned int channel, 1083 unsigned char *address) 1084 { 1085 if (channel >= IPMI_MAX_CHANNELS) 1086 return -EINVAL; 1087 *address = user->intf->channels[channel].lun; 1088 return 0; 1089 } 1090 EXPORT_SYMBOL(ipmi_get_my_LUN); 1091 1092 int ipmi_get_maintenance_mode(ipmi_user_t user) 1093 { 1094 int mode; 1095 unsigned long flags; 1096 1097 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags); 1098 mode = user->intf->maintenance_mode; 1099 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags); 1100 1101 return mode; 1102 } 1103 EXPORT_SYMBOL(ipmi_get_maintenance_mode); 1104 1105 static void maintenance_mode_update(ipmi_smi_t intf) 1106 { 1107 if (intf->handlers->set_maintenance_mode) 1108 intf->handlers->set_maintenance_mode( 1109 intf->send_info, intf->maintenance_mode_enable); 1110 } 1111 1112 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode) 1113 { 1114 int rv = 0; 1115 unsigned long flags; 1116 ipmi_smi_t intf = user->intf; 1117 1118 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1119 if (intf->maintenance_mode != mode) { 1120 switch (mode) { 1121 case IPMI_MAINTENANCE_MODE_AUTO: 1122 intf->maintenance_mode = mode; 1123 intf->maintenance_mode_enable 1124 = (intf->auto_maintenance_timeout > 0); 1125 break; 1126 1127 case IPMI_MAINTENANCE_MODE_OFF: 1128 intf->maintenance_mode = mode; 1129 intf->maintenance_mode_enable = 0; 1130 break; 1131 1132 case IPMI_MAINTENANCE_MODE_ON: 1133 intf->maintenance_mode = mode; 1134 intf->maintenance_mode_enable = 1; 1135 break; 1136 1137 default: 1138 rv = -EINVAL; 1139 goto out_unlock; 1140 } 1141 1142 maintenance_mode_update(intf); 1143 } 1144 out_unlock: 1145 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags); 1146 1147 return rv; 1148 } 1149 EXPORT_SYMBOL(ipmi_set_maintenance_mode); 1150 1151 int ipmi_set_gets_events(ipmi_user_t user, int val) 1152 { 1153 unsigned long flags; 1154 ipmi_smi_t intf = user->intf; 1155 struct ipmi_recv_msg *msg, *msg2; 1156 struct list_head msgs; 1157 1158 INIT_LIST_HEAD(&msgs); 1159 1160 spin_lock_irqsave(&intf->events_lock, flags); 1161 user->gets_events = val; 1162 1163 if (intf->delivering_events) 1164 /* 1165 * Another thread is delivering events for this, so 1166 * let it handle any new events. 1167 */ 1168 goto out; 1169 1170 /* Deliver any queued events. */ 1171 while (user->gets_events && !list_empty(&intf->waiting_events)) { 1172 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link) 1173 list_move_tail(&msg->link, &msgs); 1174 intf->waiting_events_count = 0; 1175 if (intf->event_msg_printed) { 1176 printk(KERN_WARNING PFX "Event queue no longer" 1177 " full\n"); 1178 intf->event_msg_printed = 0; 1179 } 1180 1181 intf->delivering_events = 1; 1182 spin_unlock_irqrestore(&intf->events_lock, flags); 1183 1184 list_for_each_entry_safe(msg, msg2, &msgs, link) { 1185 msg->user = user; 1186 kref_get(&user->refcount); 1187 deliver_response(msg); 1188 } 1189 1190 spin_lock_irqsave(&intf->events_lock, flags); 1191 intf->delivering_events = 0; 1192 } 1193 1194 out: 1195 spin_unlock_irqrestore(&intf->events_lock, flags); 1196 1197 return 0; 1198 } 1199 EXPORT_SYMBOL(ipmi_set_gets_events); 1200 1201 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf, 1202 unsigned char netfn, 1203 unsigned char cmd, 1204 unsigned char chan) 1205 { 1206 struct cmd_rcvr *rcvr; 1207 1208 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1209 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1210 && (rcvr->chans & (1 << chan))) 1211 return rcvr; 1212 } 1213 return NULL; 1214 } 1215 1216 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf, 1217 unsigned char netfn, 1218 unsigned char cmd, 1219 unsigned int chans) 1220 { 1221 struct cmd_rcvr *rcvr; 1222 1223 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) { 1224 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd) 1225 && (rcvr->chans & chans)) 1226 return 0; 1227 } 1228 return 1; 1229 } 1230 1231 int ipmi_register_for_cmd(ipmi_user_t user, 1232 unsigned char netfn, 1233 unsigned char cmd, 1234 unsigned int chans) 1235 { 1236 ipmi_smi_t intf = user->intf; 1237 struct cmd_rcvr *rcvr; 1238 int rv = 0; 1239 1240 1241 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); 1242 if (!rcvr) 1243 return -ENOMEM; 1244 rcvr->cmd = cmd; 1245 rcvr->netfn = netfn; 1246 rcvr->chans = chans; 1247 rcvr->user = user; 1248 1249 mutex_lock(&intf->cmd_rcvrs_mutex); 1250 /* Make sure the command/netfn is not already registered. */ 1251 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) { 1252 rv = -EBUSY; 1253 goto out_unlock; 1254 } 1255 1256 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs); 1257 1258 out_unlock: 1259 mutex_unlock(&intf->cmd_rcvrs_mutex); 1260 if (rv) 1261 kfree(rcvr); 1262 1263 return rv; 1264 } 1265 EXPORT_SYMBOL(ipmi_register_for_cmd); 1266 1267 int ipmi_unregister_for_cmd(ipmi_user_t user, 1268 unsigned char netfn, 1269 unsigned char cmd, 1270 unsigned int chans) 1271 { 1272 ipmi_smi_t intf = user->intf; 1273 struct cmd_rcvr *rcvr; 1274 struct cmd_rcvr *rcvrs = NULL; 1275 int i, rv = -ENOENT; 1276 1277 mutex_lock(&intf->cmd_rcvrs_mutex); 1278 for (i = 0; i < IPMI_NUM_CHANNELS; i++) { 1279 if (((1 << i) & chans) == 0) 1280 continue; 1281 rcvr = find_cmd_rcvr(intf, netfn, cmd, i); 1282 if (rcvr == NULL) 1283 continue; 1284 if (rcvr->user == user) { 1285 rv = 0; 1286 rcvr->chans &= ~chans; 1287 if (rcvr->chans == 0) { 1288 list_del_rcu(&rcvr->link); 1289 rcvr->next = rcvrs; 1290 rcvrs = rcvr; 1291 } 1292 } 1293 } 1294 mutex_unlock(&intf->cmd_rcvrs_mutex); 1295 synchronize_rcu(); 1296 while (rcvrs) { 1297 rcvr = rcvrs; 1298 rcvrs = rcvr->next; 1299 kfree(rcvr); 1300 } 1301 return rv; 1302 } 1303 EXPORT_SYMBOL(ipmi_unregister_for_cmd); 1304 1305 static unsigned char 1306 ipmb_checksum(unsigned char *data, int size) 1307 { 1308 unsigned char csum = 0; 1309 1310 for (; size > 0; size--, data++) 1311 csum += *data; 1312 1313 return -csum; 1314 } 1315 1316 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg, 1317 struct kernel_ipmi_msg *msg, 1318 struct ipmi_ipmb_addr *ipmb_addr, 1319 long msgid, 1320 unsigned char ipmb_seq, 1321 int broadcast, 1322 unsigned char source_address, 1323 unsigned char source_lun) 1324 { 1325 int i = broadcast; 1326 1327 /* Format the IPMB header data. */ 1328 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1329 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1330 smi_msg->data[2] = ipmb_addr->channel; 1331 if (broadcast) 1332 smi_msg->data[3] = 0; 1333 smi_msg->data[i+3] = ipmb_addr->slave_addr; 1334 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); 1335 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); 1336 smi_msg->data[i+6] = source_address; 1337 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; 1338 smi_msg->data[i+8] = msg->cmd; 1339 1340 /* Now tack on the data to the message. */ 1341 if (msg->data_len > 0) 1342 memcpy(&(smi_msg->data[i+9]), msg->data, 1343 msg->data_len); 1344 smi_msg->data_size = msg->data_len + 9; 1345 1346 /* Now calculate the checksum and tack it on. */ 1347 smi_msg->data[i+smi_msg->data_size] 1348 = ipmb_checksum(&(smi_msg->data[i+6]), 1349 smi_msg->data_size-6); 1350 1351 /* 1352 * Add on the checksum size and the offset from the 1353 * broadcast. 1354 */ 1355 smi_msg->data_size += 1 + i; 1356 1357 smi_msg->msgid = msgid; 1358 } 1359 1360 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg, 1361 struct kernel_ipmi_msg *msg, 1362 struct ipmi_lan_addr *lan_addr, 1363 long msgid, 1364 unsigned char ipmb_seq, 1365 unsigned char source_lun) 1366 { 1367 /* Format the IPMB header data. */ 1368 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 1369 smi_msg->data[1] = IPMI_SEND_MSG_CMD; 1370 smi_msg->data[2] = lan_addr->channel; 1371 smi_msg->data[3] = lan_addr->session_handle; 1372 smi_msg->data[4] = lan_addr->remote_SWID; 1373 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3); 1374 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2); 1375 smi_msg->data[7] = lan_addr->local_SWID; 1376 smi_msg->data[8] = (ipmb_seq << 2) | source_lun; 1377 smi_msg->data[9] = msg->cmd; 1378 1379 /* Now tack on the data to the message. */ 1380 if (msg->data_len > 0) 1381 memcpy(&(smi_msg->data[10]), msg->data, 1382 msg->data_len); 1383 smi_msg->data_size = msg->data_len + 10; 1384 1385 /* Now calculate the checksum and tack it on. */ 1386 smi_msg->data[smi_msg->data_size] 1387 = ipmb_checksum(&(smi_msg->data[7]), 1388 smi_msg->data_size-7); 1389 1390 /* 1391 * Add on the checksum size and the offset from the 1392 * broadcast. 1393 */ 1394 smi_msg->data_size += 1; 1395 1396 smi_msg->msgid = msgid; 1397 } 1398 1399 /* 1400 * Separate from ipmi_request so that the user does not have to be 1401 * supplied in certain circumstances (mainly at panic time). If 1402 * messages are supplied, they will be freed, even if an error 1403 * occurs. 1404 */ 1405 static int i_ipmi_request(ipmi_user_t user, 1406 ipmi_smi_t intf, 1407 struct ipmi_addr *addr, 1408 long msgid, 1409 struct kernel_ipmi_msg *msg, 1410 void *user_msg_data, 1411 void *supplied_smi, 1412 struct ipmi_recv_msg *supplied_recv, 1413 int priority, 1414 unsigned char source_address, 1415 unsigned char source_lun, 1416 int retries, 1417 unsigned int retry_time_ms) 1418 { 1419 int rv = 0; 1420 struct ipmi_smi_msg *smi_msg; 1421 struct ipmi_recv_msg *recv_msg; 1422 unsigned long flags; 1423 struct ipmi_smi_handlers *handlers; 1424 1425 1426 if (supplied_recv) 1427 recv_msg = supplied_recv; 1428 else { 1429 recv_msg = ipmi_alloc_recv_msg(); 1430 if (recv_msg == NULL) 1431 return -ENOMEM; 1432 } 1433 recv_msg->user_msg_data = user_msg_data; 1434 1435 if (supplied_smi) 1436 smi_msg = (struct ipmi_smi_msg *) supplied_smi; 1437 else { 1438 smi_msg = ipmi_alloc_smi_msg(); 1439 if (smi_msg == NULL) { 1440 ipmi_free_recv_msg(recv_msg); 1441 return -ENOMEM; 1442 } 1443 } 1444 1445 rcu_read_lock(); 1446 handlers = intf->handlers; 1447 if (!handlers) { 1448 rv = -ENODEV; 1449 goto out_err; 1450 } 1451 1452 recv_msg->user = user; 1453 if (user) 1454 kref_get(&user->refcount); 1455 recv_msg->msgid = msgid; 1456 /* 1457 * Store the message to send in the receive message so timeout 1458 * responses can get the proper response data. 1459 */ 1460 recv_msg->msg = *msg; 1461 1462 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { 1463 struct ipmi_system_interface_addr *smi_addr; 1464 1465 if (msg->netfn & 1) { 1466 /* Responses are not allowed to the SMI. */ 1467 rv = -EINVAL; 1468 goto out_err; 1469 } 1470 1471 smi_addr = (struct ipmi_system_interface_addr *) addr; 1472 if (smi_addr->lun > 3) { 1473 ipmi_inc_stat(intf, sent_invalid_commands); 1474 rv = -EINVAL; 1475 goto out_err; 1476 } 1477 1478 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr)); 1479 1480 if ((msg->netfn == IPMI_NETFN_APP_REQUEST) 1481 && ((msg->cmd == IPMI_SEND_MSG_CMD) 1482 || (msg->cmd == IPMI_GET_MSG_CMD) 1483 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) { 1484 /* 1485 * We don't let the user do these, since we manage 1486 * the sequence numbers. 1487 */ 1488 ipmi_inc_stat(intf, sent_invalid_commands); 1489 rv = -EINVAL; 1490 goto out_err; 1491 } 1492 1493 if (((msg->netfn == IPMI_NETFN_APP_REQUEST) 1494 && ((msg->cmd == IPMI_COLD_RESET_CMD) 1495 || (msg->cmd == IPMI_WARM_RESET_CMD))) 1496 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) { 1497 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 1498 intf->auto_maintenance_timeout 1499 = IPMI_MAINTENANCE_MODE_TIMEOUT; 1500 if (!intf->maintenance_mode 1501 && !intf->maintenance_mode_enable) { 1502 intf->maintenance_mode_enable = 1; 1503 maintenance_mode_update(intf); 1504 } 1505 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 1506 flags); 1507 } 1508 1509 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { 1510 ipmi_inc_stat(intf, sent_invalid_commands); 1511 rv = -EMSGSIZE; 1512 goto out_err; 1513 } 1514 1515 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); 1516 smi_msg->data[1] = msg->cmd; 1517 smi_msg->msgid = msgid; 1518 smi_msg->user_data = recv_msg; 1519 if (msg->data_len > 0) 1520 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); 1521 smi_msg->data_size = msg->data_len + 2; 1522 ipmi_inc_stat(intf, sent_local_commands); 1523 } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) { 1524 struct ipmi_ipmb_addr *ipmb_addr; 1525 unsigned char ipmb_seq; 1526 long seqid; 1527 int broadcast = 0; 1528 1529 if (addr->channel >= IPMI_MAX_CHANNELS) { 1530 ipmi_inc_stat(intf, sent_invalid_commands); 1531 rv = -EINVAL; 1532 goto out_err; 1533 } 1534 1535 if (intf->channels[addr->channel].medium 1536 != IPMI_CHANNEL_MEDIUM_IPMB) { 1537 ipmi_inc_stat(intf, sent_invalid_commands); 1538 rv = -EINVAL; 1539 goto out_err; 1540 } 1541 1542 if (retries < 0) { 1543 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) 1544 retries = 0; /* Don't retry broadcasts. */ 1545 else 1546 retries = 4; 1547 } 1548 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { 1549 /* 1550 * Broadcasts add a zero at the beginning of the 1551 * message, but otherwise is the same as an IPMB 1552 * address. 1553 */ 1554 addr->addr_type = IPMI_IPMB_ADDR_TYPE; 1555 broadcast = 1; 1556 } 1557 1558 1559 /* Default to 1 second retries. */ 1560 if (retry_time_ms == 0) 1561 retry_time_ms = 1000; 1562 1563 /* 1564 * 9 for the header and 1 for the checksum, plus 1565 * possibly one for the broadcast. 1566 */ 1567 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) { 1568 ipmi_inc_stat(intf, sent_invalid_commands); 1569 rv = -EMSGSIZE; 1570 goto out_err; 1571 } 1572 1573 ipmb_addr = (struct ipmi_ipmb_addr *) addr; 1574 if (ipmb_addr->lun > 3) { 1575 ipmi_inc_stat(intf, sent_invalid_commands); 1576 rv = -EINVAL; 1577 goto out_err; 1578 } 1579 1580 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr)); 1581 1582 if (recv_msg->msg.netfn & 0x1) { 1583 /* 1584 * It's a response, so use the user's sequence 1585 * from msgid. 1586 */ 1587 ipmi_inc_stat(intf, sent_ipmb_responses); 1588 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid, 1589 msgid, broadcast, 1590 source_address, source_lun); 1591 1592 /* 1593 * Save the receive message so we can use it 1594 * to deliver the response. 1595 */ 1596 smi_msg->user_data = recv_msg; 1597 } else { 1598 /* It's a command, so get a sequence for it. */ 1599 1600 spin_lock_irqsave(&(intf->seq_lock), flags); 1601 1602 /* 1603 * Create a sequence number with a 1 second 1604 * timeout and 4 retries. 1605 */ 1606 rv = intf_next_seq(intf, 1607 recv_msg, 1608 retry_time_ms, 1609 retries, 1610 broadcast, 1611 &ipmb_seq, 1612 &seqid); 1613 if (rv) { 1614 /* 1615 * We have used up all the sequence numbers, 1616 * probably, so abort. 1617 */ 1618 spin_unlock_irqrestore(&(intf->seq_lock), 1619 flags); 1620 goto out_err; 1621 } 1622 1623 ipmi_inc_stat(intf, sent_ipmb_commands); 1624 1625 /* 1626 * Store the sequence number in the message, 1627 * so that when the send message response 1628 * comes back we can start the timer. 1629 */ 1630 format_ipmb_msg(smi_msg, msg, ipmb_addr, 1631 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1632 ipmb_seq, broadcast, 1633 source_address, source_lun); 1634 1635 /* 1636 * Copy the message into the recv message data, so we 1637 * can retransmit it later if necessary. 1638 */ 1639 memcpy(recv_msg->msg_data, smi_msg->data, 1640 smi_msg->data_size); 1641 recv_msg->msg.data = recv_msg->msg_data; 1642 recv_msg->msg.data_len = smi_msg->data_size; 1643 1644 /* 1645 * We don't unlock until here, because we need 1646 * to copy the completed message into the 1647 * recv_msg before we release the lock. 1648 * Otherwise, race conditions may bite us. I 1649 * know that's pretty paranoid, but I prefer 1650 * to be correct. 1651 */ 1652 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1653 } 1654 } else if (is_lan_addr(addr)) { 1655 struct ipmi_lan_addr *lan_addr; 1656 unsigned char ipmb_seq; 1657 long seqid; 1658 1659 if (addr->channel >= IPMI_MAX_CHANNELS) { 1660 ipmi_inc_stat(intf, sent_invalid_commands); 1661 rv = -EINVAL; 1662 goto out_err; 1663 } 1664 1665 if ((intf->channels[addr->channel].medium 1666 != IPMI_CHANNEL_MEDIUM_8023LAN) 1667 && (intf->channels[addr->channel].medium 1668 != IPMI_CHANNEL_MEDIUM_ASYNC)) { 1669 ipmi_inc_stat(intf, sent_invalid_commands); 1670 rv = -EINVAL; 1671 goto out_err; 1672 } 1673 1674 retries = 4; 1675 1676 /* Default to 1 second retries. */ 1677 if (retry_time_ms == 0) 1678 retry_time_ms = 1000; 1679 1680 /* 11 for the header and 1 for the checksum. */ 1681 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) { 1682 ipmi_inc_stat(intf, sent_invalid_commands); 1683 rv = -EMSGSIZE; 1684 goto out_err; 1685 } 1686 1687 lan_addr = (struct ipmi_lan_addr *) addr; 1688 if (lan_addr->lun > 3) { 1689 ipmi_inc_stat(intf, sent_invalid_commands); 1690 rv = -EINVAL; 1691 goto out_err; 1692 } 1693 1694 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr)); 1695 1696 if (recv_msg->msg.netfn & 0x1) { 1697 /* 1698 * It's a response, so use the user's sequence 1699 * from msgid. 1700 */ 1701 ipmi_inc_stat(intf, sent_lan_responses); 1702 format_lan_msg(smi_msg, msg, lan_addr, msgid, 1703 msgid, source_lun); 1704 1705 /* 1706 * Save the receive message so we can use it 1707 * to deliver the response. 1708 */ 1709 smi_msg->user_data = recv_msg; 1710 } else { 1711 /* It's a command, so get a sequence for it. */ 1712 1713 spin_lock_irqsave(&(intf->seq_lock), flags); 1714 1715 /* 1716 * Create a sequence number with a 1 second 1717 * timeout and 4 retries. 1718 */ 1719 rv = intf_next_seq(intf, 1720 recv_msg, 1721 retry_time_ms, 1722 retries, 1723 0, 1724 &ipmb_seq, 1725 &seqid); 1726 if (rv) { 1727 /* 1728 * We have used up all the sequence numbers, 1729 * probably, so abort. 1730 */ 1731 spin_unlock_irqrestore(&(intf->seq_lock), 1732 flags); 1733 goto out_err; 1734 } 1735 1736 ipmi_inc_stat(intf, sent_lan_commands); 1737 1738 /* 1739 * Store the sequence number in the message, 1740 * so that when the send message response 1741 * comes back we can start the timer. 1742 */ 1743 format_lan_msg(smi_msg, msg, lan_addr, 1744 STORE_SEQ_IN_MSGID(ipmb_seq, seqid), 1745 ipmb_seq, source_lun); 1746 1747 /* 1748 * Copy the message into the recv message data, so we 1749 * can retransmit it later if necessary. 1750 */ 1751 memcpy(recv_msg->msg_data, smi_msg->data, 1752 smi_msg->data_size); 1753 recv_msg->msg.data = recv_msg->msg_data; 1754 recv_msg->msg.data_len = smi_msg->data_size; 1755 1756 /* 1757 * We don't unlock until here, because we need 1758 * to copy the completed message into the 1759 * recv_msg before we release the lock. 1760 * Otherwise, race conditions may bite us. I 1761 * know that's pretty paranoid, but I prefer 1762 * to be correct. 1763 */ 1764 spin_unlock_irqrestore(&(intf->seq_lock), flags); 1765 } 1766 } else { 1767 /* Unknown address type. */ 1768 ipmi_inc_stat(intf, sent_invalid_commands); 1769 rv = -EINVAL; 1770 goto out_err; 1771 } 1772 1773 #ifdef DEBUG_MSGING 1774 { 1775 int m; 1776 for (m = 0; m < smi_msg->data_size; m++) 1777 printk(" %2.2x", smi_msg->data[m]); 1778 printk("\n"); 1779 } 1780 #endif 1781 1782 handlers->sender(intf->send_info, smi_msg, priority); 1783 rcu_read_unlock(); 1784 1785 return 0; 1786 1787 out_err: 1788 rcu_read_unlock(); 1789 ipmi_free_smi_msg(smi_msg); 1790 ipmi_free_recv_msg(recv_msg); 1791 return rv; 1792 } 1793 1794 static int check_addr(ipmi_smi_t intf, 1795 struct ipmi_addr *addr, 1796 unsigned char *saddr, 1797 unsigned char *lun) 1798 { 1799 if (addr->channel >= IPMI_MAX_CHANNELS) 1800 return -EINVAL; 1801 *lun = intf->channels[addr->channel].lun; 1802 *saddr = intf->channels[addr->channel].address; 1803 return 0; 1804 } 1805 1806 int ipmi_request_settime(ipmi_user_t user, 1807 struct ipmi_addr *addr, 1808 long msgid, 1809 struct kernel_ipmi_msg *msg, 1810 void *user_msg_data, 1811 int priority, 1812 int retries, 1813 unsigned int retry_time_ms) 1814 { 1815 unsigned char saddr, lun; 1816 int rv; 1817 1818 if (!user) 1819 return -EINVAL; 1820 rv = check_addr(user->intf, addr, &saddr, &lun); 1821 if (rv) 1822 return rv; 1823 return i_ipmi_request(user, 1824 user->intf, 1825 addr, 1826 msgid, 1827 msg, 1828 user_msg_data, 1829 NULL, NULL, 1830 priority, 1831 saddr, 1832 lun, 1833 retries, 1834 retry_time_ms); 1835 } 1836 EXPORT_SYMBOL(ipmi_request_settime); 1837 1838 int ipmi_request_supply_msgs(ipmi_user_t user, 1839 struct ipmi_addr *addr, 1840 long msgid, 1841 struct kernel_ipmi_msg *msg, 1842 void *user_msg_data, 1843 void *supplied_smi, 1844 struct ipmi_recv_msg *supplied_recv, 1845 int priority) 1846 { 1847 unsigned char saddr, lun; 1848 int rv; 1849 1850 if (!user) 1851 return -EINVAL; 1852 rv = check_addr(user->intf, addr, &saddr, &lun); 1853 if (rv) 1854 return rv; 1855 return i_ipmi_request(user, 1856 user->intf, 1857 addr, 1858 msgid, 1859 msg, 1860 user_msg_data, 1861 supplied_smi, 1862 supplied_recv, 1863 priority, 1864 saddr, 1865 lun, 1866 -1, 0); 1867 } 1868 EXPORT_SYMBOL(ipmi_request_supply_msgs); 1869 1870 #ifdef CONFIG_PROC_FS 1871 static int ipmb_file_read_proc(char *page, char **start, off_t off, 1872 int count, int *eof, void *data) 1873 { 1874 char *out = (char *) page; 1875 ipmi_smi_t intf = data; 1876 int i; 1877 int rv = 0; 1878 1879 for (i = 0; i < IPMI_MAX_CHANNELS; i++) 1880 rv += sprintf(out+rv, "%x ", intf->channels[i].address); 1881 out[rv-1] = '\n'; /* Replace the final space with a newline */ 1882 out[rv] = '\0'; 1883 rv++; 1884 return rv; 1885 } 1886 1887 static int version_file_read_proc(char *page, char **start, off_t off, 1888 int count, int *eof, void *data) 1889 { 1890 char *out = (char *) page; 1891 ipmi_smi_t intf = data; 1892 1893 return sprintf(out, "%u.%u\n", 1894 ipmi_version_major(&intf->bmc->id), 1895 ipmi_version_minor(&intf->bmc->id)); 1896 } 1897 1898 static int stat_file_read_proc(char *page, char **start, off_t off, 1899 int count, int *eof, void *data) 1900 { 1901 char *out = (char *) page; 1902 ipmi_smi_t intf = data; 1903 1904 out += sprintf(out, "sent_invalid_commands: %u\n", 1905 ipmi_get_stat(intf, sent_invalid_commands)); 1906 out += sprintf(out, "sent_local_commands: %u\n", 1907 ipmi_get_stat(intf, sent_local_commands)); 1908 out += sprintf(out, "handled_local_responses: %u\n", 1909 ipmi_get_stat(intf, handled_local_responses)); 1910 out += sprintf(out, "unhandled_local_responses: %u\n", 1911 ipmi_get_stat(intf, unhandled_local_responses)); 1912 out += sprintf(out, "sent_ipmb_commands: %u\n", 1913 ipmi_get_stat(intf, sent_ipmb_commands)); 1914 out += sprintf(out, "sent_ipmb_command_errs: %u\n", 1915 ipmi_get_stat(intf, sent_ipmb_command_errs)); 1916 out += sprintf(out, "retransmitted_ipmb_commands: %u\n", 1917 ipmi_get_stat(intf, retransmitted_ipmb_commands)); 1918 out += sprintf(out, "timed_out_ipmb_commands: %u\n", 1919 ipmi_get_stat(intf, timed_out_ipmb_commands)); 1920 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n", 1921 ipmi_get_stat(intf, timed_out_ipmb_broadcasts)); 1922 out += sprintf(out, "sent_ipmb_responses: %u\n", 1923 ipmi_get_stat(intf, sent_ipmb_responses)); 1924 out += sprintf(out, "handled_ipmb_responses: %u\n", 1925 ipmi_get_stat(intf, handled_ipmb_responses)); 1926 out += sprintf(out, "invalid_ipmb_responses: %u\n", 1927 ipmi_get_stat(intf, invalid_ipmb_responses)); 1928 out += sprintf(out, "unhandled_ipmb_responses: %u\n", 1929 ipmi_get_stat(intf, unhandled_ipmb_responses)); 1930 out += sprintf(out, "sent_lan_commands: %u\n", 1931 ipmi_get_stat(intf, sent_lan_commands)); 1932 out += sprintf(out, "sent_lan_command_errs: %u\n", 1933 ipmi_get_stat(intf, sent_lan_command_errs)); 1934 out += sprintf(out, "retransmitted_lan_commands: %u\n", 1935 ipmi_get_stat(intf, retransmitted_lan_commands)); 1936 out += sprintf(out, "timed_out_lan_commands: %u\n", 1937 ipmi_get_stat(intf, timed_out_lan_commands)); 1938 out += sprintf(out, "sent_lan_responses: %u\n", 1939 ipmi_get_stat(intf, sent_lan_responses)); 1940 out += sprintf(out, "handled_lan_responses: %u\n", 1941 ipmi_get_stat(intf, handled_lan_responses)); 1942 out += sprintf(out, "invalid_lan_responses: %u\n", 1943 ipmi_get_stat(intf, invalid_lan_responses)); 1944 out += sprintf(out, "unhandled_lan_responses: %u\n", 1945 ipmi_get_stat(intf, unhandled_lan_responses)); 1946 out += sprintf(out, "handled_commands: %u\n", 1947 ipmi_get_stat(intf, handled_commands)); 1948 out += sprintf(out, "invalid_commands: %u\n", 1949 ipmi_get_stat(intf, invalid_commands)); 1950 out += sprintf(out, "unhandled_commands: %u\n", 1951 ipmi_get_stat(intf, unhandled_commands)); 1952 out += sprintf(out, "invalid_events: %u\n", 1953 ipmi_get_stat(intf, invalid_events)); 1954 out += sprintf(out, "events: %u\n", 1955 ipmi_get_stat(intf, events)); 1956 out += sprintf(out, "failed rexmit LAN msgs: %u\n", 1957 ipmi_get_stat(intf, dropped_rexmit_lan_commands)); 1958 out += sprintf(out, "failed rexmit IPMB msgs: %u\n", 1959 ipmi_get_stat(intf, dropped_rexmit_ipmb_commands)); 1960 1961 return (out - ((char *) page)); 1962 } 1963 #endif /* CONFIG_PROC_FS */ 1964 1965 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name, 1966 read_proc_t *read_proc, 1967 void *data) 1968 { 1969 int rv = 0; 1970 #ifdef CONFIG_PROC_FS 1971 struct proc_dir_entry *file; 1972 struct ipmi_proc_entry *entry; 1973 1974 /* Create a list element. */ 1975 entry = kmalloc(sizeof(*entry), GFP_KERNEL); 1976 if (!entry) 1977 return -ENOMEM; 1978 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL); 1979 if (!entry->name) { 1980 kfree(entry); 1981 return -ENOMEM; 1982 } 1983 strcpy(entry->name, name); 1984 1985 file = create_proc_entry(name, 0, smi->proc_dir); 1986 if (!file) { 1987 kfree(entry->name); 1988 kfree(entry); 1989 rv = -ENOMEM; 1990 } else { 1991 file->data = data; 1992 file->read_proc = read_proc; 1993 1994 mutex_lock(&smi->proc_entry_lock); 1995 /* Stick it on the list. */ 1996 entry->next = smi->proc_entries; 1997 smi->proc_entries = entry; 1998 mutex_unlock(&smi->proc_entry_lock); 1999 } 2000 #endif /* CONFIG_PROC_FS */ 2001 2002 return rv; 2003 } 2004 EXPORT_SYMBOL(ipmi_smi_add_proc_entry); 2005 2006 static int add_proc_entries(ipmi_smi_t smi, int num) 2007 { 2008 int rv = 0; 2009 2010 #ifdef CONFIG_PROC_FS 2011 sprintf(smi->proc_dir_name, "%d", num); 2012 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root); 2013 if (!smi->proc_dir) 2014 rv = -ENOMEM; 2015 2016 if (rv == 0) 2017 rv = ipmi_smi_add_proc_entry(smi, "stats", 2018 stat_file_read_proc, 2019 smi); 2020 2021 if (rv == 0) 2022 rv = ipmi_smi_add_proc_entry(smi, "ipmb", 2023 ipmb_file_read_proc, 2024 smi); 2025 2026 if (rv == 0) 2027 rv = ipmi_smi_add_proc_entry(smi, "version", 2028 version_file_read_proc, 2029 smi); 2030 #endif /* CONFIG_PROC_FS */ 2031 2032 return rv; 2033 } 2034 2035 static void remove_proc_entries(ipmi_smi_t smi) 2036 { 2037 #ifdef CONFIG_PROC_FS 2038 struct ipmi_proc_entry *entry; 2039 2040 mutex_lock(&smi->proc_entry_lock); 2041 while (smi->proc_entries) { 2042 entry = smi->proc_entries; 2043 smi->proc_entries = entry->next; 2044 2045 remove_proc_entry(entry->name, smi->proc_dir); 2046 kfree(entry->name); 2047 kfree(entry); 2048 } 2049 mutex_unlock(&smi->proc_entry_lock); 2050 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root); 2051 #endif /* CONFIG_PROC_FS */ 2052 } 2053 2054 static int __find_bmc_guid(struct device *dev, void *data) 2055 { 2056 unsigned char *id = data; 2057 struct bmc_device *bmc = dev_get_drvdata(dev); 2058 return memcmp(bmc->guid, id, 16) == 0; 2059 } 2060 2061 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv, 2062 unsigned char *guid) 2063 { 2064 struct device *dev; 2065 2066 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid); 2067 if (dev) 2068 return dev_get_drvdata(dev); 2069 else 2070 return NULL; 2071 } 2072 2073 struct prod_dev_id { 2074 unsigned int product_id; 2075 unsigned char device_id; 2076 }; 2077 2078 static int __find_bmc_prod_dev_id(struct device *dev, void *data) 2079 { 2080 struct prod_dev_id *id = data; 2081 struct bmc_device *bmc = dev_get_drvdata(dev); 2082 2083 return (bmc->id.product_id == id->product_id 2084 && bmc->id.device_id == id->device_id); 2085 } 2086 2087 static struct bmc_device *ipmi_find_bmc_prod_dev_id( 2088 struct device_driver *drv, 2089 unsigned int product_id, unsigned char device_id) 2090 { 2091 struct prod_dev_id id = { 2092 .product_id = product_id, 2093 .device_id = device_id, 2094 }; 2095 struct device *dev; 2096 2097 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id); 2098 if (dev) 2099 return dev_get_drvdata(dev); 2100 else 2101 return NULL; 2102 } 2103 2104 static ssize_t device_id_show(struct device *dev, 2105 struct device_attribute *attr, 2106 char *buf) 2107 { 2108 struct bmc_device *bmc = dev_get_drvdata(dev); 2109 2110 return snprintf(buf, 10, "%u\n", bmc->id.device_id); 2111 } 2112 2113 static ssize_t provides_dev_sdrs_show(struct device *dev, 2114 struct device_attribute *attr, 2115 char *buf) 2116 { 2117 struct bmc_device *bmc = dev_get_drvdata(dev); 2118 2119 return snprintf(buf, 10, "%u\n", 2120 (bmc->id.device_revision & 0x80) >> 7); 2121 } 2122 2123 static ssize_t revision_show(struct device *dev, struct device_attribute *attr, 2124 char *buf) 2125 { 2126 struct bmc_device *bmc = dev_get_drvdata(dev); 2127 2128 return snprintf(buf, 20, "%u\n", 2129 bmc->id.device_revision & 0x0F); 2130 } 2131 2132 static ssize_t firmware_rev_show(struct device *dev, 2133 struct device_attribute *attr, 2134 char *buf) 2135 { 2136 struct bmc_device *bmc = dev_get_drvdata(dev); 2137 2138 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1, 2139 bmc->id.firmware_revision_2); 2140 } 2141 2142 static ssize_t ipmi_version_show(struct device *dev, 2143 struct device_attribute *attr, 2144 char *buf) 2145 { 2146 struct bmc_device *bmc = dev_get_drvdata(dev); 2147 2148 return snprintf(buf, 20, "%u.%u\n", 2149 ipmi_version_major(&bmc->id), 2150 ipmi_version_minor(&bmc->id)); 2151 } 2152 2153 static ssize_t add_dev_support_show(struct device *dev, 2154 struct device_attribute *attr, 2155 char *buf) 2156 { 2157 struct bmc_device *bmc = dev_get_drvdata(dev); 2158 2159 return snprintf(buf, 10, "0x%02x\n", 2160 bmc->id.additional_device_support); 2161 } 2162 2163 static ssize_t manufacturer_id_show(struct device *dev, 2164 struct device_attribute *attr, 2165 char *buf) 2166 { 2167 struct bmc_device *bmc = dev_get_drvdata(dev); 2168 2169 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id); 2170 } 2171 2172 static ssize_t product_id_show(struct device *dev, 2173 struct device_attribute *attr, 2174 char *buf) 2175 { 2176 struct bmc_device *bmc = dev_get_drvdata(dev); 2177 2178 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id); 2179 } 2180 2181 static ssize_t aux_firmware_rev_show(struct device *dev, 2182 struct device_attribute *attr, 2183 char *buf) 2184 { 2185 struct bmc_device *bmc = dev_get_drvdata(dev); 2186 2187 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n", 2188 bmc->id.aux_firmware_revision[3], 2189 bmc->id.aux_firmware_revision[2], 2190 bmc->id.aux_firmware_revision[1], 2191 bmc->id.aux_firmware_revision[0]); 2192 } 2193 2194 static ssize_t guid_show(struct device *dev, struct device_attribute *attr, 2195 char *buf) 2196 { 2197 struct bmc_device *bmc = dev_get_drvdata(dev); 2198 2199 return snprintf(buf, 100, "%Lx%Lx\n", 2200 (long long) bmc->guid[0], 2201 (long long) bmc->guid[8]); 2202 } 2203 2204 static void remove_files(struct bmc_device *bmc) 2205 { 2206 if (!bmc->dev) 2207 return; 2208 2209 device_remove_file(&bmc->dev->dev, 2210 &bmc->device_id_attr); 2211 device_remove_file(&bmc->dev->dev, 2212 &bmc->provides_dev_sdrs_attr); 2213 device_remove_file(&bmc->dev->dev, 2214 &bmc->revision_attr); 2215 device_remove_file(&bmc->dev->dev, 2216 &bmc->firmware_rev_attr); 2217 device_remove_file(&bmc->dev->dev, 2218 &bmc->version_attr); 2219 device_remove_file(&bmc->dev->dev, 2220 &bmc->add_dev_support_attr); 2221 device_remove_file(&bmc->dev->dev, 2222 &bmc->manufacturer_id_attr); 2223 device_remove_file(&bmc->dev->dev, 2224 &bmc->product_id_attr); 2225 2226 if (bmc->id.aux_firmware_revision_set) 2227 device_remove_file(&bmc->dev->dev, 2228 &bmc->aux_firmware_rev_attr); 2229 if (bmc->guid_set) 2230 device_remove_file(&bmc->dev->dev, 2231 &bmc->guid_attr); 2232 } 2233 2234 static void 2235 cleanup_bmc_device(struct kref *ref) 2236 { 2237 struct bmc_device *bmc; 2238 2239 bmc = container_of(ref, struct bmc_device, refcount); 2240 2241 remove_files(bmc); 2242 platform_device_unregister(bmc->dev); 2243 kfree(bmc); 2244 } 2245 2246 static void ipmi_bmc_unregister(ipmi_smi_t intf) 2247 { 2248 struct bmc_device *bmc = intf->bmc; 2249 2250 if (intf->sysfs_name) { 2251 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name); 2252 kfree(intf->sysfs_name); 2253 intf->sysfs_name = NULL; 2254 } 2255 if (intf->my_dev_name) { 2256 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name); 2257 kfree(intf->my_dev_name); 2258 intf->my_dev_name = NULL; 2259 } 2260 2261 mutex_lock(&ipmidriver_mutex); 2262 kref_put(&bmc->refcount, cleanup_bmc_device); 2263 intf->bmc = NULL; 2264 mutex_unlock(&ipmidriver_mutex); 2265 } 2266 2267 static int create_files(struct bmc_device *bmc) 2268 { 2269 int err; 2270 2271 bmc->device_id_attr.attr.name = "device_id"; 2272 bmc->device_id_attr.attr.mode = S_IRUGO; 2273 bmc->device_id_attr.show = device_id_show; 2274 2275 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs"; 2276 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO; 2277 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show; 2278 2279 bmc->revision_attr.attr.name = "revision"; 2280 bmc->revision_attr.attr.mode = S_IRUGO; 2281 bmc->revision_attr.show = revision_show; 2282 2283 bmc->firmware_rev_attr.attr.name = "firmware_revision"; 2284 bmc->firmware_rev_attr.attr.mode = S_IRUGO; 2285 bmc->firmware_rev_attr.show = firmware_rev_show; 2286 2287 bmc->version_attr.attr.name = "ipmi_version"; 2288 bmc->version_attr.attr.mode = S_IRUGO; 2289 bmc->version_attr.show = ipmi_version_show; 2290 2291 bmc->add_dev_support_attr.attr.name = "additional_device_support"; 2292 bmc->add_dev_support_attr.attr.mode = S_IRUGO; 2293 bmc->add_dev_support_attr.show = add_dev_support_show; 2294 2295 bmc->manufacturer_id_attr.attr.name = "manufacturer_id"; 2296 bmc->manufacturer_id_attr.attr.mode = S_IRUGO; 2297 bmc->manufacturer_id_attr.show = manufacturer_id_show; 2298 2299 bmc->product_id_attr.attr.name = "product_id"; 2300 bmc->product_id_attr.attr.mode = S_IRUGO; 2301 bmc->product_id_attr.show = product_id_show; 2302 2303 bmc->guid_attr.attr.name = "guid"; 2304 bmc->guid_attr.attr.mode = S_IRUGO; 2305 bmc->guid_attr.show = guid_show; 2306 2307 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision"; 2308 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO; 2309 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show; 2310 2311 err = device_create_file(&bmc->dev->dev, 2312 &bmc->device_id_attr); 2313 if (err) 2314 goto out; 2315 err = device_create_file(&bmc->dev->dev, 2316 &bmc->provides_dev_sdrs_attr); 2317 if (err) 2318 goto out_devid; 2319 err = device_create_file(&bmc->dev->dev, 2320 &bmc->revision_attr); 2321 if (err) 2322 goto out_sdrs; 2323 err = device_create_file(&bmc->dev->dev, 2324 &bmc->firmware_rev_attr); 2325 if (err) 2326 goto out_rev; 2327 err = device_create_file(&bmc->dev->dev, 2328 &bmc->version_attr); 2329 if (err) 2330 goto out_firm; 2331 err = device_create_file(&bmc->dev->dev, 2332 &bmc->add_dev_support_attr); 2333 if (err) 2334 goto out_version; 2335 err = device_create_file(&bmc->dev->dev, 2336 &bmc->manufacturer_id_attr); 2337 if (err) 2338 goto out_add_dev; 2339 err = device_create_file(&bmc->dev->dev, 2340 &bmc->product_id_attr); 2341 if (err) 2342 goto out_manu; 2343 if (bmc->id.aux_firmware_revision_set) { 2344 err = device_create_file(&bmc->dev->dev, 2345 &bmc->aux_firmware_rev_attr); 2346 if (err) 2347 goto out_prod_id; 2348 } 2349 if (bmc->guid_set) { 2350 err = device_create_file(&bmc->dev->dev, 2351 &bmc->guid_attr); 2352 if (err) 2353 goto out_aux_firm; 2354 } 2355 2356 return 0; 2357 2358 out_aux_firm: 2359 if (bmc->id.aux_firmware_revision_set) 2360 device_remove_file(&bmc->dev->dev, 2361 &bmc->aux_firmware_rev_attr); 2362 out_prod_id: 2363 device_remove_file(&bmc->dev->dev, 2364 &bmc->product_id_attr); 2365 out_manu: 2366 device_remove_file(&bmc->dev->dev, 2367 &bmc->manufacturer_id_attr); 2368 out_add_dev: 2369 device_remove_file(&bmc->dev->dev, 2370 &bmc->add_dev_support_attr); 2371 out_version: 2372 device_remove_file(&bmc->dev->dev, 2373 &bmc->version_attr); 2374 out_firm: 2375 device_remove_file(&bmc->dev->dev, 2376 &bmc->firmware_rev_attr); 2377 out_rev: 2378 device_remove_file(&bmc->dev->dev, 2379 &bmc->revision_attr); 2380 out_sdrs: 2381 device_remove_file(&bmc->dev->dev, 2382 &bmc->provides_dev_sdrs_attr); 2383 out_devid: 2384 device_remove_file(&bmc->dev->dev, 2385 &bmc->device_id_attr); 2386 out: 2387 return err; 2388 } 2389 2390 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum, 2391 const char *sysfs_name) 2392 { 2393 int rv; 2394 struct bmc_device *bmc = intf->bmc; 2395 struct bmc_device *old_bmc; 2396 int size; 2397 char dummy[1]; 2398 2399 mutex_lock(&ipmidriver_mutex); 2400 2401 /* 2402 * Try to find if there is an bmc_device struct 2403 * representing the interfaced BMC already 2404 */ 2405 if (bmc->guid_set) 2406 old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid); 2407 else 2408 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2409 bmc->id.product_id, 2410 bmc->id.device_id); 2411 2412 /* 2413 * If there is already an bmc_device, free the new one, 2414 * otherwise register the new BMC device 2415 */ 2416 if (old_bmc) { 2417 kfree(bmc); 2418 intf->bmc = old_bmc; 2419 bmc = old_bmc; 2420 2421 kref_get(&bmc->refcount); 2422 mutex_unlock(&ipmidriver_mutex); 2423 2424 printk(KERN_INFO 2425 "ipmi: interfacing existing BMC (man_id: 0x%6.6x," 2426 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2427 bmc->id.manufacturer_id, 2428 bmc->id.product_id, 2429 bmc->id.device_id); 2430 } else { 2431 char name[14]; 2432 unsigned char orig_dev_id = bmc->id.device_id; 2433 int warn_printed = 0; 2434 2435 snprintf(name, sizeof(name), 2436 "ipmi_bmc.%4.4x", bmc->id.product_id); 2437 2438 while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver, 2439 bmc->id.product_id, 2440 bmc->id.device_id)) { 2441 if (!warn_printed) { 2442 printk(KERN_WARNING PFX 2443 "This machine has two different BMCs" 2444 " with the same product id and device" 2445 " id. This is an error in the" 2446 " firmware, but incrementing the" 2447 " device id to work around the problem." 2448 " Prod ID = 0x%x, Dev ID = 0x%x\n", 2449 bmc->id.product_id, bmc->id.device_id); 2450 warn_printed = 1; 2451 } 2452 bmc->id.device_id++; /* Wraps at 255 */ 2453 if (bmc->id.device_id == orig_dev_id) { 2454 printk(KERN_ERR PFX 2455 "Out of device ids!\n"); 2456 break; 2457 } 2458 } 2459 2460 bmc->dev = platform_device_alloc(name, bmc->id.device_id); 2461 if (!bmc->dev) { 2462 mutex_unlock(&ipmidriver_mutex); 2463 printk(KERN_ERR 2464 "ipmi_msghandler:" 2465 " Unable to allocate platform device\n"); 2466 return -ENOMEM; 2467 } 2468 bmc->dev->dev.driver = &ipmidriver.driver; 2469 dev_set_drvdata(&bmc->dev->dev, bmc); 2470 kref_init(&bmc->refcount); 2471 2472 rv = platform_device_add(bmc->dev); 2473 mutex_unlock(&ipmidriver_mutex); 2474 if (rv) { 2475 platform_device_put(bmc->dev); 2476 bmc->dev = NULL; 2477 printk(KERN_ERR 2478 "ipmi_msghandler:" 2479 " Unable to register bmc device: %d\n", 2480 rv); 2481 /* 2482 * Don't go to out_err, you can only do that if 2483 * the device is registered already. 2484 */ 2485 return rv; 2486 } 2487 2488 rv = create_files(bmc); 2489 if (rv) { 2490 mutex_lock(&ipmidriver_mutex); 2491 platform_device_unregister(bmc->dev); 2492 mutex_unlock(&ipmidriver_mutex); 2493 2494 return rv; 2495 } 2496 2497 printk(KERN_INFO 2498 "ipmi: Found new BMC (man_id: 0x%6.6x, " 2499 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n", 2500 bmc->id.manufacturer_id, 2501 bmc->id.product_id, 2502 bmc->id.device_id); 2503 } 2504 2505 /* 2506 * create symlink from system interface device to bmc device 2507 * and back. 2508 */ 2509 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL); 2510 if (!intf->sysfs_name) { 2511 rv = -ENOMEM; 2512 printk(KERN_ERR 2513 "ipmi_msghandler: allocate link to BMC: %d\n", 2514 rv); 2515 goto out_err; 2516 } 2517 2518 rv = sysfs_create_link(&intf->si_dev->kobj, 2519 &bmc->dev->dev.kobj, intf->sysfs_name); 2520 if (rv) { 2521 kfree(intf->sysfs_name); 2522 intf->sysfs_name = NULL; 2523 printk(KERN_ERR 2524 "ipmi_msghandler: Unable to create bmc symlink: %d\n", 2525 rv); 2526 goto out_err; 2527 } 2528 2529 size = snprintf(dummy, 0, "ipmi%d", ifnum); 2530 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL); 2531 if (!intf->my_dev_name) { 2532 kfree(intf->sysfs_name); 2533 intf->sysfs_name = NULL; 2534 rv = -ENOMEM; 2535 printk(KERN_ERR 2536 "ipmi_msghandler: allocate link from BMC: %d\n", 2537 rv); 2538 goto out_err; 2539 } 2540 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum); 2541 2542 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj, 2543 intf->my_dev_name); 2544 if (rv) { 2545 kfree(intf->sysfs_name); 2546 intf->sysfs_name = NULL; 2547 kfree(intf->my_dev_name); 2548 intf->my_dev_name = NULL; 2549 printk(KERN_ERR 2550 "ipmi_msghandler:" 2551 " Unable to create symlink to bmc: %d\n", 2552 rv); 2553 goto out_err; 2554 } 2555 2556 return 0; 2557 2558 out_err: 2559 ipmi_bmc_unregister(intf); 2560 return rv; 2561 } 2562 2563 static int 2564 send_guid_cmd(ipmi_smi_t intf, int chan) 2565 { 2566 struct kernel_ipmi_msg msg; 2567 struct ipmi_system_interface_addr si; 2568 2569 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2570 si.channel = IPMI_BMC_CHANNEL; 2571 si.lun = 0; 2572 2573 msg.netfn = IPMI_NETFN_APP_REQUEST; 2574 msg.cmd = IPMI_GET_DEVICE_GUID_CMD; 2575 msg.data = NULL; 2576 msg.data_len = 0; 2577 return i_ipmi_request(NULL, 2578 intf, 2579 (struct ipmi_addr *) &si, 2580 0, 2581 &msg, 2582 intf, 2583 NULL, 2584 NULL, 2585 0, 2586 intf->channels[0].address, 2587 intf->channels[0].lun, 2588 -1, 0); 2589 } 2590 2591 static void 2592 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2593 { 2594 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2595 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE) 2596 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD)) 2597 /* Not for me */ 2598 return; 2599 2600 if (msg->msg.data[0] != 0) { 2601 /* Error from getting the GUID, the BMC doesn't have one. */ 2602 intf->bmc->guid_set = 0; 2603 goto out; 2604 } 2605 2606 if (msg->msg.data_len < 17) { 2607 intf->bmc->guid_set = 0; 2608 printk(KERN_WARNING PFX 2609 "guid_handler: The GUID response from the BMC was too" 2610 " short, it was %d but should have been 17. Assuming" 2611 " GUID is not available.\n", 2612 msg->msg.data_len); 2613 goto out; 2614 } 2615 2616 memcpy(intf->bmc->guid, msg->msg.data, 16); 2617 intf->bmc->guid_set = 1; 2618 out: 2619 wake_up(&intf->waitq); 2620 } 2621 2622 static void 2623 get_guid(ipmi_smi_t intf) 2624 { 2625 int rv; 2626 2627 intf->bmc->guid_set = 0x2; 2628 intf->null_user_handler = guid_handler; 2629 rv = send_guid_cmd(intf, 0); 2630 if (rv) 2631 /* Send failed, no GUID available. */ 2632 intf->bmc->guid_set = 0; 2633 wait_event(intf->waitq, intf->bmc->guid_set != 2); 2634 intf->null_user_handler = NULL; 2635 } 2636 2637 static int 2638 send_channel_info_cmd(ipmi_smi_t intf, int chan) 2639 { 2640 struct kernel_ipmi_msg msg; 2641 unsigned char data[1]; 2642 struct ipmi_system_interface_addr si; 2643 2644 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 2645 si.channel = IPMI_BMC_CHANNEL; 2646 si.lun = 0; 2647 2648 msg.netfn = IPMI_NETFN_APP_REQUEST; 2649 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD; 2650 msg.data = data; 2651 msg.data_len = 1; 2652 data[0] = chan; 2653 return i_ipmi_request(NULL, 2654 intf, 2655 (struct ipmi_addr *) &si, 2656 0, 2657 &msg, 2658 intf, 2659 NULL, 2660 NULL, 2661 0, 2662 intf->channels[0].address, 2663 intf->channels[0].lun, 2664 -1, 0); 2665 } 2666 2667 static void 2668 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 2669 { 2670 int rv = 0; 2671 int chan; 2672 2673 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 2674 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 2675 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) { 2676 /* It's the one we want */ 2677 if (msg->msg.data[0] != 0) { 2678 /* Got an error from the channel, just go on. */ 2679 2680 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { 2681 /* 2682 * If the MC does not support this 2683 * command, that is legal. We just 2684 * assume it has one IPMB at channel 2685 * zero. 2686 */ 2687 intf->channels[0].medium 2688 = IPMI_CHANNEL_MEDIUM_IPMB; 2689 intf->channels[0].protocol 2690 = IPMI_CHANNEL_PROTOCOL_IPMB; 2691 rv = -ENOSYS; 2692 2693 intf->curr_channel = IPMI_MAX_CHANNELS; 2694 wake_up(&intf->waitq); 2695 goto out; 2696 } 2697 goto next_channel; 2698 } 2699 if (msg->msg.data_len < 4) { 2700 /* Message not big enough, just go on. */ 2701 goto next_channel; 2702 } 2703 chan = intf->curr_channel; 2704 intf->channels[chan].medium = msg->msg.data[2] & 0x7f; 2705 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f; 2706 2707 next_channel: 2708 intf->curr_channel++; 2709 if (intf->curr_channel >= IPMI_MAX_CHANNELS) 2710 wake_up(&intf->waitq); 2711 else 2712 rv = send_channel_info_cmd(intf, intf->curr_channel); 2713 2714 if (rv) { 2715 /* Got an error somehow, just give up. */ 2716 intf->curr_channel = IPMI_MAX_CHANNELS; 2717 wake_up(&intf->waitq); 2718 2719 printk(KERN_WARNING PFX 2720 "Error sending channel information: %d\n", 2721 rv); 2722 } 2723 } 2724 out: 2725 return; 2726 } 2727 2728 void ipmi_poll_interface(ipmi_user_t user) 2729 { 2730 ipmi_smi_t intf = user->intf; 2731 2732 if (intf->handlers->poll) 2733 intf->handlers->poll(intf->send_info); 2734 } 2735 EXPORT_SYMBOL(ipmi_poll_interface); 2736 2737 int ipmi_register_smi(struct ipmi_smi_handlers *handlers, 2738 void *send_info, 2739 struct ipmi_device_id *device_id, 2740 struct device *si_dev, 2741 const char *sysfs_name, 2742 unsigned char slave_addr) 2743 { 2744 int i, j; 2745 int rv; 2746 ipmi_smi_t intf; 2747 ipmi_smi_t tintf; 2748 struct list_head *link; 2749 2750 /* 2751 * Make sure the driver is actually initialized, this handles 2752 * problems with initialization order. 2753 */ 2754 if (!initialized) { 2755 rv = ipmi_init_msghandler(); 2756 if (rv) 2757 return rv; 2758 /* 2759 * The init code doesn't return an error if it was turned 2760 * off, but it won't initialize. Check that. 2761 */ 2762 if (!initialized) 2763 return -ENODEV; 2764 } 2765 2766 intf = kzalloc(sizeof(*intf), GFP_KERNEL); 2767 if (!intf) 2768 return -ENOMEM; 2769 2770 intf->ipmi_version_major = ipmi_version_major(device_id); 2771 intf->ipmi_version_minor = ipmi_version_minor(device_id); 2772 2773 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL); 2774 if (!intf->bmc) { 2775 kfree(intf); 2776 return -ENOMEM; 2777 } 2778 intf->intf_num = -1; /* Mark it invalid for now. */ 2779 kref_init(&intf->refcount); 2780 intf->bmc->id = *device_id; 2781 intf->si_dev = si_dev; 2782 for (j = 0; j < IPMI_MAX_CHANNELS; j++) { 2783 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR; 2784 intf->channels[j].lun = 2; 2785 } 2786 if (slave_addr != 0) 2787 intf->channels[0].address = slave_addr; 2788 INIT_LIST_HEAD(&intf->users); 2789 intf->handlers = handlers; 2790 intf->send_info = send_info; 2791 spin_lock_init(&intf->seq_lock); 2792 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) { 2793 intf->seq_table[j].inuse = 0; 2794 intf->seq_table[j].seqid = 0; 2795 } 2796 intf->curr_seq = 0; 2797 #ifdef CONFIG_PROC_FS 2798 mutex_init(&intf->proc_entry_lock); 2799 #endif 2800 spin_lock_init(&intf->waiting_msgs_lock); 2801 INIT_LIST_HEAD(&intf->waiting_msgs); 2802 spin_lock_init(&intf->events_lock); 2803 INIT_LIST_HEAD(&intf->waiting_events); 2804 intf->waiting_events_count = 0; 2805 mutex_init(&intf->cmd_rcvrs_mutex); 2806 spin_lock_init(&intf->maintenance_mode_lock); 2807 INIT_LIST_HEAD(&intf->cmd_rcvrs); 2808 init_waitqueue_head(&intf->waitq); 2809 for (i = 0; i < IPMI_NUM_STATS; i++) 2810 atomic_set(&intf->stats[i], 0); 2811 2812 intf->proc_dir = NULL; 2813 2814 mutex_lock(&smi_watchers_mutex); 2815 mutex_lock(&ipmi_interfaces_mutex); 2816 /* Look for a hole in the numbers. */ 2817 i = 0; 2818 link = &ipmi_interfaces; 2819 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) { 2820 if (tintf->intf_num != i) { 2821 link = &tintf->link; 2822 break; 2823 } 2824 i++; 2825 } 2826 /* Add the new interface in numeric order. */ 2827 if (i == 0) 2828 list_add_rcu(&intf->link, &ipmi_interfaces); 2829 else 2830 list_add_tail_rcu(&intf->link, link); 2831 2832 rv = handlers->start_processing(send_info, intf); 2833 if (rv) 2834 goto out; 2835 2836 get_guid(intf); 2837 2838 if ((intf->ipmi_version_major > 1) 2839 || ((intf->ipmi_version_major == 1) 2840 && (intf->ipmi_version_minor >= 5))) { 2841 /* 2842 * Start scanning the channels to see what is 2843 * available. 2844 */ 2845 intf->null_user_handler = channel_handler; 2846 intf->curr_channel = 0; 2847 rv = send_channel_info_cmd(intf, 0); 2848 if (rv) 2849 goto out; 2850 2851 /* Wait for the channel info to be read. */ 2852 wait_event(intf->waitq, 2853 intf->curr_channel >= IPMI_MAX_CHANNELS); 2854 intf->null_user_handler = NULL; 2855 } else { 2856 /* Assume a single IPMB channel at zero. */ 2857 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB; 2858 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB; 2859 intf->curr_channel = IPMI_MAX_CHANNELS; 2860 } 2861 2862 if (rv == 0) 2863 rv = add_proc_entries(intf, i); 2864 2865 rv = ipmi_bmc_register(intf, i, sysfs_name); 2866 2867 out: 2868 if (rv) { 2869 if (intf->proc_dir) 2870 remove_proc_entries(intf); 2871 intf->handlers = NULL; 2872 list_del_rcu(&intf->link); 2873 mutex_unlock(&ipmi_interfaces_mutex); 2874 mutex_unlock(&smi_watchers_mutex); 2875 synchronize_rcu(); 2876 kref_put(&intf->refcount, intf_free); 2877 } else { 2878 /* 2879 * Keep memory order straight for RCU readers. Make 2880 * sure everything else is committed to memory before 2881 * setting intf_num to mark the interface valid. 2882 */ 2883 smp_wmb(); 2884 intf->intf_num = i; 2885 mutex_unlock(&ipmi_interfaces_mutex); 2886 /* After this point the interface is legal to use. */ 2887 call_smi_watchers(i, intf->si_dev); 2888 mutex_unlock(&smi_watchers_mutex); 2889 } 2890 2891 return rv; 2892 } 2893 EXPORT_SYMBOL(ipmi_register_smi); 2894 2895 static void cleanup_smi_msgs(ipmi_smi_t intf) 2896 { 2897 int i; 2898 struct seq_table *ent; 2899 2900 /* No need for locks, the interface is down. */ 2901 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) { 2902 ent = &(intf->seq_table[i]); 2903 if (!ent->inuse) 2904 continue; 2905 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED); 2906 } 2907 } 2908 2909 int ipmi_unregister_smi(ipmi_smi_t intf) 2910 { 2911 struct ipmi_smi_watcher *w; 2912 int intf_num = intf->intf_num; 2913 2914 ipmi_bmc_unregister(intf); 2915 2916 mutex_lock(&smi_watchers_mutex); 2917 mutex_lock(&ipmi_interfaces_mutex); 2918 intf->intf_num = -1; 2919 intf->handlers = NULL; 2920 list_del_rcu(&intf->link); 2921 mutex_unlock(&ipmi_interfaces_mutex); 2922 synchronize_rcu(); 2923 2924 cleanup_smi_msgs(intf); 2925 2926 remove_proc_entries(intf); 2927 2928 /* 2929 * Call all the watcher interfaces to tell them that 2930 * an interface is gone. 2931 */ 2932 list_for_each_entry(w, &smi_watchers, link) 2933 w->smi_gone(intf_num); 2934 mutex_unlock(&smi_watchers_mutex); 2935 2936 kref_put(&intf->refcount, intf_free); 2937 return 0; 2938 } 2939 EXPORT_SYMBOL(ipmi_unregister_smi); 2940 2941 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf, 2942 struct ipmi_smi_msg *msg) 2943 { 2944 struct ipmi_ipmb_addr ipmb_addr; 2945 struct ipmi_recv_msg *recv_msg; 2946 2947 /* 2948 * This is 11, not 10, because the response must contain a 2949 * completion code. 2950 */ 2951 if (msg->rsp_size < 11) { 2952 /* Message not big enough, just ignore it. */ 2953 ipmi_inc_stat(intf, invalid_ipmb_responses); 2954 return 0; 2955 } 2956 2957 if (msg->rsp[2] != 0) { 2958 /* An error getting the response, just ignore it. */ 2959 return 0; 2960 } 2961 2962 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; 2963 ipmb_addr.slave_addr = msg->rsp[6]; 2964 ipmb_addr.channel = msg->rsp[3] & 0x0f; 2965 ipmb_addr.lun = msg->rsp[7] & 3; 2966 2967 /* 2968 * It's a response from a remote entity. Look up the sequence 2969 * number and handle the response. 2970 */ 2971 if (intf_find_seq(intf, 2972 msg->rsp[7] >> 2, 2973 msg->rsp[3] & 0x0f, 2974 msg->rsp[8], 2975 (msg->rsp[4] >> 2) & (~1), 2976 (struct ipmi_addr *) &(ipmb_addr), 2977 &recv_msg)) { 2978 /* 2979 * We were unable to find the sequence number, 2980 * so just nuke the message. 2981 */ 2982 ipmi_inc_stat(intf, unhandled_ipmb_responses); 2983 return 0; 2984 } 2985 2986 memcpy(recv_msg->msg_data, 2987 &(msg->rsp[9]), 2988 msg->rsp_size - 9); 2989 /* 2990 * The other fields matched, so no need to set them, except 2991 * for netfn, which needs to be the response that was 2992 * returned, not the request value. 2993 */ 2994 recv_msg->msg.netfn = msg->rsp[4] >> 2; 2995 recv_msg->msg.data = recv_msg->msg_data; 2996 recv_msg->msg.data_len = msg->rsp_size - 10; 2997 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 2998 ipmi_inc_stat(intf, handled_ipmb_responses); 2999 deliver_response(recv_msg); 3000 3001 return 0; 3002 } 3003 3004 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf, 3005 struct ipmi_smi_msg *msg) 3006 { 3007 struct cmd_rcvr *rcvr; 3008 int rv = 0; 3009 unsigned char netfn; 3010 unsigned char cmd; 3011 unsigned char chan; 3012 ipmi_user_t user = NULL; 3013 struct ipmi_ipmb_addr *ipmb_addr; 3014 struct ipmi_recv_msg *recv_msg; 3015 struct ipmi_smi_handlers *handlers; 3016 3017 if (msg->rsp_size < 10) { 3018 /* Message not big enough, just ignore it. */ 3019 ipmi_inc_stat(intf, invalid_commands); 3020 return 0; 3021 } 3022 3023 if (msg->rsp[2] != 0) { 3024 /* An error getting the response, just ignore it. */ 3025 return 0; 3026 } 3027 3028 netfn = msg->rsp[4] >> 2; 3029 cmd = msg->rsp[8]; 3030 chan = msg->rsp[3] & 0xf; 3031 3032 rcu_read_lock(); 3033 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3034 if (rcvr) { 3035 user = rcvr->user; 3036 kref_get(&user->refcount); 3037 } else 3038 user = NULL; 3039 rcu_read_unlock(); 3040 3041 if (user == NULL) { 3042 /* We didn't find a user, deliver an error response. */ 3043 ipmi_inc_stat(intf, unhandled_commands); 3044 3045 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); 3046 msg->data[1] = IPMI_SEND_MSG_CMD; 3047 msg->data[2] = msg->rsp[3]; 3048 msg->data[3] = msg->rsp[6]; 3049 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3); 3050 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); 3051 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address; 3052 /* rqseq/lun */ 3053 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3); 3054 msg->data[8] = msg->rsp[8]; /* cmd */ 3055 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; 3056 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); 3057 msg->data_size = 11; 3058 3059 #ifdef DEBUG_MSGING 3060 { 3061 int m; 3062 printk("Invalid command:"); 3063 for (m = 0; m < msg->data_size; m++) 3064 printk(" %2.2x", msg->data[m]); 3065 printk("\n"); 3066 } 3067 #endif 3068 rcu_read_lock(); 3069 handlers = intf->handlers; 3070 if (handlers) { 3071 handlers->sender(intf->send_info, msg, 0); 3072 /* 3073 * We used the message, so return the value 3074 * that causes it to not be freed or 3075 * queued. 3076 */ 3077 rv = -1; 3078 } 3079 rcu_read_unlock(); 3080 } else { 3081 /* Deliver the message to the user. */ 3082 ipmi_inc_stat(intf, handled_commands); 3083 3084 recv_msg = ipmi_alloc_recv_msg(); 3085 if (!recv_msg) { 3086 /* 3087 * We couldn't allocate memory for the 3088 * message, so requeue it for handling 3089 * later. 3090 */ 3091 rv = 1; 3092 kref_put(&user->refcount, free_user); 3093 } else { 3094 /* Extract the source address from the data. */ 3095 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; 3096 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; 3097 ipmb_addr->slave_addr = msg->rsp[6]; 3098 ipmb_addr->lun = msg->rsp[7] & 3; 3099 ipmb_addr->channel = msg->rsp[3] & 0xf; 3100 3101 /* 3102 * Extract the rest of the message information 3103 * from the IPMB header. 3104 */ 3105 recv_msg->user = user; 3106 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3107 recv_msg->msgid = msg->rsp[7] >> 2; 3108 recv_msg->msg.netfn = msg->rsp[4] >> 2; 3109 recv_msg->msg.cmd = msg->rsp[8]; 3110 recv_msg->msg.data = recv_msg->msg_data; 3111 3112 /* 3113 * We chop off 10, not 9 bytes because the checksum 3114 * at the end also needs to be removed. 3115 */ 3116 recv_msg->msg.data_len = msg->rsp_size - 10; 3117 memcpy(recv_msg->msg_data, 3118 &(msg->rsp[9]), 3119 msg->rsp_size - 10); 3120 deliver_response(recv_msg); 3121 } 3122 } 3123 3124 return rv; 3125 } 3126 3127 static int handle_lan_get_msg_rsp(ipmi_smi_t intf, 3128 struct ipmi_smi_msg *msg) 3129 { 3130 struct ipmi_lan_addr lan_addr; 3131 struct ipmi_recv_msg *recv_msg; 3132 3133 3134 /* 3135 * This is 13, not 12, because the response must contain a 3136 * completion code. 3137 */ 3138 if (msg->rsp_size < 13) { 3139 /* Message not big enough, just ignore it. */ 3140 ipmi_inc_stat(intf, invalid_lan_responses); 3141 return 0; 3142 } 3143 3144 if (msg->rsp[2] != 0) { 3145 /* An error getting the response, just ignore it. */ 3146 return 0; 3147 } 3148 3149 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE; 3150 lan_addr.session_handle = msg->rsp[4]; 3151 lan_addr.remote_SWID = msg->rsp[8]; 3152 lan_addr.local_SWID = msg->rsp[5]; 3153 lan_addr.channel = msg->rsp[3] & 0x0f; 3154 lan_addr.privilege = msg->rsp[3] >> 4; 3155 lan_addr.lun = msg->rsp[9] & 3; 3156 3157 /* 3158 * It's a response from a remote entity. Look up the sequence 3159 * number and handle the response. 3160 */ 3161 if (intf_find_seq(intf, 3162 msg->rsp[9] >> 2, 3163 msg->rsp[3] & 0x0f, 3164 msg->rsp[10], 3165 (msg->rsp[6] >> 2) & (~1), 3166 (struct ipmi_addr *) &(lan_addr), 3167 &recv_msg)) { 3168 /* 3169 * We were unable to find the sequence number, 3170 * so just nuke the message. 3171 */ 3172 ipmi_inc_stat(intf, unhandled_lan_responses); 3173 return 0; 3174 } 3175 3176 memcpy(recv_msg->msg_data, 3177 &(msg->rsp[11]), 3178 msg->rsp_size - 11); 3179 /* 3180 * The other fields matched, so no need to set them, except 3181 * for netfn, which needs to be the response that was 3182 * returned, not the request value. 3183 */ 3184 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3185 recv_msg->msg.data = recv_msg->msg_data; 3186 recv_msg->msg.data_len = msg->rsp_size - 12; 3187 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3188 ipmi_inc_stat(intf, handled_lan_responses); 3189 deliver_response(recv_msg); 3190 3191 return 0; 3192 } 3193 3194 static int handle_lan_get_msg_cmd(ipmi_smi_t intf, 3195 struct ipmi_smi_msg *msg) 3196 { 3197 struct cmd_rcvr *rcvr; 3198 int rv = 0; 3199 unsigned char netfn; 3200 unsigned char cmd; 3201 unsigned char chan; 3202 ipmi_user_t user = NULL; 3203 struct ipmi_lan_addr *lan_addr; 3204 struct ipmi_recv_msg *recv_msg; 3205 3206 if (msg->rsp_size < 12) { 3207 /* Message not big enough, just ignore it. */ 3208 ipmi_inc_stat(intf, invalid_commands); 3209 return 0; 3210 } 3211 3212 if (msg->rsp[2] != 0) { 3213 /* An error getting the response, just ignore it. */ 3214 return 0; 3215 } 3216 3217 netfn = msg->rsp[6] >> 2; 3218 cmd = msg->rsp[10]; 3219 chan = msg->rsp[3] & 0xf; 3220 3221 rcu_read_lock(); 3222 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3223 if (rcvr) { 3224 user = rcvr->user; 3225 kref_get(&user->refcount); 3226 } else 3227 user = NULL; 3228 rcu_read_unlock(); 3229 3230 if (user == NULL) { 3231 /* We didn't find a user, just give up. */ 3232 ipmi_inc_stat(intf, unhandled_commands); 3233 3234 /* 3235 * Don't do anything with these messages, just allow 3236 * them to be freed. 3237 */ 3238 rv = 0; 3239 } else { 3240 /* Deliver the message to the user. */ 3241 ipmi_inc_stat(intf, handled_commands); 3242 3243 recv_msg = ipmi_alloc_recv_msg(); 3244 if (!recv_msg) { 3245 /* 3246 * We couldn't allocate memory for the 3247 * message, so requeue it for handling later. 3248 */ 3249 rv = 1; 3250 kref_put(&user->refcount, free_user); 3251 } else { 3252 /* Extract the source address from the data. */ 3253 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr; 3254 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE; 3255 lan_addr->session_handle = msg->rsp[4]; 3256 lan_addr->remote_SWID = msg->rsp[8]; 3257 lan_addr->local_SWID = msg->rsp[5]; 3258 lan_addr->lun = msg->rsp[9] & 3; 3259 lan_addr->channel = msg->rsp[3] & 0xf; 3260 lan_addr->privilege = msg->rsp[3] >> 4; 3261 3262 /* 3263 * Extract the rest of the message information 3264 * from the IPMB header. 3265 */ 3266 recv_msg->user = user; 3267 recv_msg->recv_type = IPMI_CMD_RECV_TYPE; 3268 recv_msg->msgid = msg->rsp[9] >> 2; 3269 recv_msg->msg.netfn = msg->rsp[6] >> 2; 3270 recv_msg->msg.cmd = msg->rsp[10]; 3271 recv_msg->msg.data = recv_msg->msg_data; 3272 3273 /* 3274 * We chop off 12, not 11 bytes because the checksum 3275 * at the end also needs to be removed. 3276 */ 3277 recv_msg->msg.data_len = msg->rsp_size - 12; 3278 memcpy(recv_msg->msg_data, 3279 &(msg->rsp[11]), 3280 msg->rsp_size - 12); 3281 deliver_response(recv_msg); 3282 } 3283 } 3284 3285 return rv; 3286 } 3287 3288 /* 3289 * This routine will handle "Get Message" command responses with 3290 * channels that use an OEM Medium. The message format belongs to 3291 * the OEM. See IPMI 2.0 specification, Chapter 6 and 3292 * Chapter 22, sections 22.6 and 22.24 for more details. 3293 */ 3294 static int handle_oem_get_msg_cmd(ipmi_smi_t intf, 3295 struct ipmi_smi_msg *msg) 3296 { 3297 struct cmd_rcvr *rcvr; 3298 int rv = 0; 3299 unsigned char netfn; 3300 unsigned char cmd; 3301 unsigned char chan; 3302 ipmi_user_t user = NULL; 3303 struct ipmi_system_interface_addr *smi_addr; 3304 struct ipmi_recv_msg *recv_msg; 3305 3306 /* 3307 * We expect the OEM SW to perform error checking 3308 * so we just do some basic sanity checks 3309 */ 3310 if (msg->rsp_size < 4) { 3311 /* Message not big enough, just ignore it. */ 3312 ipmi_inc_stat(intf, invalid_commands); 3313 return 0; 3314 } 3315 3316 if (msg->rsp[2] != 0) { 3317 /* An error getting the response, just ignore it. */ 3318 return 0; 3319 } 3320 3321 /* 3322 * This is an OEM Message so the OEM needs to know how 3323 * handle the message. We do no interpretation. 3324 */ 3325 netfn = msg->rsp[0] >> 2; 3326 cmd = msg->rsp[1]; 3327 chan = msg->rsp[3] & 0xf; 3328 3329 rcu_read_lock(); 3330 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan); 3331 if (rcvr) { 3332 user = rcvr->user; 3333 kref_get(&user->refcount); 3334 } else 3335 user = NULL; 3336 rcu_read_unlock(); 3337 3338 if (user == NULL) { 3339 /* We didn't find a user, just give up. */ 3340 ipmi_inc_stat(intf, unhandled_commands); 3341 3342 /* 3343 * Don't do anything with these messages, just allow 3344 * them to be freed. 3345 */ 3346 3347 rv = 0; 3348 } else { 3349 /* Deliver the message to the user. */ 3350 ipmi_inc_stat(intf, handled_commands); 3351 3352 recv_msg = ipmi_alloc_recv_msg(); 3353 if (!recv_msg) { 3354 /* 3355 * We couldn't allocate memory for the 3356 * message, so requeue it for handling 3357 * later. 3358 */ 3359 rv = 1; 3360 kref_put(&user->refcount, free_user); 3361 } else { 3362 /* 3363 * OEM Messages are expected to be delivered via 3364 * the system interface to SMS software. We might 3365 * need to visit this again depending on OEM 3366 * requirements 3367 */ 3368 smi_addr = ((struct ipmi_system_interface_addr *) 3369 &(recv_msg->addr)); 3370 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3371 smi_addr->channel = IPMI_BMC_CHANNEL; 3372 smi_addr->lun = msg->rsp[0] & 3; 3373 3374 recv_msg->user = user; 3375 recv_msg->user_msg_data = NULL; 3376 recv_msg->recv_type = IPMI_OEM_RECV_TYPE; 3377 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3378 recv_msg->msg.cmd = msg->rsp[1]; 3379 recv_msg->msg.data = recv_msg->msg_data; 3380 3381 /* 3382 * The message starts at byte 4 which follows the 3383 * the Channel Byte in the "GET MESSAGE" command 3384 */ 3385 recv_msg->msg.data_len = msg->rsp_size - 4; 3386 memcpy(recv_msg->msg_data, 3387 &(msg->rsp[4]), 3388 msg->rsp_size - 4); 3389 deliver_response(recv_msg); 3390 } 3391 } 3392 3393 return rv; 3394 } 3395 3396 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, 3397 struct ipmi_smi_msg *msg) 3398 { 3399 struct ipmi_system_interface_addr *smi_addr; 3400 3401 recv_msg->msgid = 0; 3402 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); 3403 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3404 smi_addr->channel = IPMI_BMC_CHANNEL; 3405 smi_addr->lun = msg->rsp[0] & 3; 3406 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; 3407 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3408 recv_msg->msg.cmd = msg->rsp[1]; 3409 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); 3410 recv_msg->msg.data = recv_msg->msg_data; 3411 recv_msg->msg.data_len = msg->rsp_size - 3; 3412 } 3413 3414 static int handle_read_event_rsp(ipmi_smi_t intf, 3415 struct ipmi_smi_msg *msg) 3416 { 3417 struct ipmi_recv_msg *recv_msg, *recv_msg2; 3418 struct list_head msgs; 3419 ipmi_user_t user; 3420 int rv = 0; 3421 int deliver_count = 0; 3422 unsigned long flags; 3423 3424 if (msg->rsp_size < 19) { 3425 /* Message is too small to be an IPMB event. */ 3426 ipmi_inc_stat(intf, invalid_events); 3427 return 0; 3428 } 3429 3430 if (msg->rsp[2] != 0) { 3431 /* An error getting the event, just ignore it. */ 3432 return 0; 3433 } 3434 3435 INIT_LIST_HEAD(&msgs); 3436 3437 spin_lock_irqsave(&intf->events_lock, flags); 3438 3439 ipmi_inc_stat(intf, events); 3440 3441 /* 3442 * Allocate and fill in one message for every user that is 3443 * getting events. 3444 */ 3445 rcu_read_lock(); 3446 list_for_each_entry_rcu(user, &intf->users, link) { 3447 if (!user->gets_events) 3448 continue; 3449 3450 recv_msg = ipmi_alloc_recv_msg(); 3451 if (!recv_msg) { 3452 rcu_read_unlock(); 3453 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, 3454 link) { 3455 list_del(&recv_msg->link); 3456 ipmi_free_recv_msg(recv_msg); 3457 } 3458 /* 3459 * We couldn't allocate memory for the 3460 * message, so requeue it for handling 3461 * later. 3462 */ 3463 rv = 1; 3464 goto out; 3465 } 3466 3467 deliver_count++; 3468 3469 copy_event_into_recv_msg(recv_msg, msg); 3470 recv_msg->user = user; 3471 kref_get(&user->refcount); 3472 list_add_tail(&(recv_msg->link), &msgs); 3473 } 3474 rcu_read_unlock(); 3475 3476 if (deliver_count) { 3477 /* Now deliver all the messages. */ 3478 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) { 3479 list_del(&recv_msg->link); 3480 deliver_response(recv_msg); 3481 } 3482 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { 3483 /* 3484 * No one to receive the message, put it in queue if there's 3485 * not already too many things in the queue. 3486 */ 3487 recv_msg = ipmi_alloc_recv_msg(); 3488 if (!recv_msg) { 3489 /* 3490 * We couldn't allocate memory for the 3491 * message, so requeue it for handling 3492 * later. 3493 */ 3494 rv = 1; 3495 goto out; 3496 } 3497 3498 copy_event_into_recv_msg(recv_msg, msg); 3499 list_add_tail(&(recv_msg->link), &(intf->waiting_events)); 3500 intf->waiting_events_count++; 3501 } else if (!intf->event_msg_printed) { 3502 /* 3503 * There's too many things in the queue, discard this 3504 * message. 3505 */ 3506 printk(KERN_WARNING PFX "Event queue full, discarding" 3507 " incoming events\n"); 3508 intf->event_msg_printed = 1; 3509 } 3510 3511 out: 3512 spin_unlock_irqrestore(&(intf->events_lock), flags); 3513 3514 return rv; 3515 } 3516 3517 static int handle_bmc_rsp(ipmi_smi_t intf, 3518 struct ipmi_smi_msg *msg) 3519 { 3520 struct ipmi_recv_msg *recv_msg; 3521 struct ipmi_user *user; 3522 3523 recv_msg = (struct ipmi_recv_msg *) msg->user_data; 3524 if (recv_msg == NULL) { 3525 printk(KERN_WARNING 3526 "IPMI message received with no owner. This\n" 3527 "could be because of a malformed message, or\n" 3528 "because of a hardware error. Contact your\n" 3529 "hardware vender for assistance\n"); 3530 return 0; 3531 } 3532 3533 user = recv_msg->user; 3534 /* Make sure the user still exists. */ 3535 if (user && !user->valid) { 3536 /* The user for the message went away, so give up. */ 3537 ipmi_inc_stat(intf, unhandled_local_responses); 3538 ipmi_free_recv_msg(recv_msg); 3539 } else { 3540 struct ipmi_system_interface_addr *smi_addr; 3541 3542 ipmi_inc_stat(intf, handled_local_responses); 3543 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; 3544 recv_msg->msgid = msg->msgid; 3545 smi_addr = ((struct ipmi_system_interface_addr *) 3546 &(recv_msg->addr)); 3547 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 3548 smi_addr->channel = IPMI_BMC_CHANNEL; 3549 smi_addr->lun = msg->rsp[0] & 3; 3550 recv_msg->msg.netfn = msg->rsp[0] >> 2; 3551 recv_msg->msg.cmd = msg->rsp[1]; 3552 memcpy(recv_msg->msg_data, 3553 &(msg->rsp[2]), 3554 msg->rsp_size - 2); 3555 recv_msg->msg.data = recv_msg->msg_data; 3556 recv_msg->msg.data_len = msg->rsp_size - 2; 3557 deliver_response(recv_msg); 3558 } 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * Handle a new message. Return 1 if the message should be requeued, 3565 * 0 if the message should be freed, or -1 if the message should not 3566 * be freed or requeued. 3567 */ 3568 static int handle_new_recv_msg(ipmi_smi_t intf, 3569 struct ipmi_smi_msg *msg) 3570 { 3571 int requeue; 3572 int chan; 3573 3574 #ifdef DEBUG_MSGING 3575 int m; 3576 printk("Recv:"); 3577 for (m = 0; m < msg->rsp_size; m++) 3578 printk(" %2.2x", msg->rsp[m]); 3579 printk("\n"); 3580 #endif 3581 if (msg->rsp_size < 2) { 3582 /* Message is too small to be correct. */ 3583 printk(KERN_WARNING PFX "BMC returned to small a message" 3584 " for netfn %x cmd %x, got %d bytes\n", 3585 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size); 3586 3587 /* Generate an error response for the message. */ 3588 msg->rsp[0] = msg->data[0] | (1 << 2); 3589 msg->rsp[1] = msg->data[1]; 3590 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3591 msg->rsp_size = 3; 3592 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1)) 3593 || (msg->rsp[1] != msg->data[1])) { 3594 /* 3595 * The NetFN and Command in the response is not even 3596 * marginally correct. 3597 */ 3598 printk(KERN_WARNING PFX "BMC returned incorrect response," 3599 " expected netfn %x cmd %x, got netfn %x cmd %x\n", 3600 (msg->data[0] >> 2) | 1, msg->data[1], 3601 msg->rsp[0] >> 2, msg->rsp[1]); 3602 3603 /* Generate an error response for the message. */ 3604 msg->rsp[0] = msg->data[0] | (1 << 2); 3605 msg->rsp[1] = msg->data[1]; 3606 msg->rsp[2] = IPMI_ERR_UNSPECIFIED; 3607 msg->rsp_size = 3; 3608 } 3609 3610 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3611 && (msg->rsp[1] == IPMI_SEND_MSG_CMD) 3612 && (msg->user_data != NULL)) { 3613 /* 3614 * It's a response to a response we sent. For this we 3615 * deliver a send message response to the user. 3616 */ 3617 struct ipmi_recv_msg *recv_msg = msg->user_data; 3618 3619 requeue = 0; 3620 if (msg->rsp_size < 2) 3621 /* Message is too small to be correct. */ 3622 goto out; 3623 3624 chan = msg->data[2] & 0x0f; 3625 if (chan >= IPMI_MAX_CHANNELS) 3626 /* Invalid channel number */ 3627 goto out; 3628 3629 if (!recv_msg) 3630 goto out; 3631 3632 /* Make sure the user still exists. */ 3633 if (!recv_msg->user || !recv_msg->user->valid) 3634 goto out; 3635 3636 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE; 3637 recv_msg->msg.data = recv_msg->msg_data; 3638 recv_msg->msg.data_len = 1; 3639 recv_msg->msg_data[0] = msg->rsp[2]; 3640 deliver_response(recv_msg); 3641 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3642 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) { 3643 /* It's from the receive queue. */ 3644 chan = msg->rsp[3] & 0xf; 3645 if (chan >= IPMI_MAX_CHANNELS) { 3646 /* Invalid channel number */ 3647 requeue = 0; 3648 goto out; 3649 } 3650 3651 /* 3652 * We need to make sure the channels have been initialized. 3653 * The channel_handler routine will set the "curr_channel" 3654 * equal to or greater than IPMI_MAX_CHANNELS when all the 3655 * channels for this interface have been initialized. 3656 */ 3657 if (intf->curr_channel < IPMI_MAX_CHANNELS) { 3658 requeue = 0; /* Throw the message away */ 3659 goto out; 3660 } 3661 3662 switch (intf->channels[chan].medium) { 3663 case IPMI_CHANNEL_MEDIUM_IPMB: 3664 if (msg->rsp[4] & 0x04) { 3665 /* 3666 * It's a response, so find the 3667 * requesting message and send it up. 3668 */ 3669 requeue = handle_ipmb_get_msg_rsp(intf, msg); 3670 } else { 3671 /* 3672 * It's a command to the SMS from some other 3673 * entity. Handle that. 3674 */ 3675 requeue = handle_ipmb_get_msg_cmd(intf, msg); 3676 } 3677 break; 3678 3679 case IPMI_CHANNEL_MEDIUM_8023LAN: 3680 case IPMI_CHANNEL_MEDIUM_ASYNC: 3681 if (msg->rsp[6] & 0x04) { 3682 /* 3683 * It's a response, so find the 3684 * requesting message and send it up. 3685 */ 3686 requeue = handle_lan_get_msg_rsp(intf, msg); 3687 } else { 3688 /* 3689 * It's a command to the SMS from some other 3690 * entity. Handle that. 3691 */ 3692 requeue = handle_lan_get_msg_cmd(intf, msg); 3693 } 3694 break; 3695 3696 default: 3697 /* Check for OEM Channels. Clients had better 3698 register for these commands. */ 3699 if ((intf->channels[chan].medium 3700 >= IPMI_CHANNEL_MEDIUM_OEM_MIN) 3701 && (intf->channels[chan].medium 3702 <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) { 3703 requeue = handle_oem_get_msg_cmd(intf, msg); 3704 } else { 3705 /* 3706 * We don't handle the channel type, so just 3707 * free the message. 3708 */ 3709 requeue = 0; 3710 } 3711 } 3712 3713 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2)) 3714 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) { 3715 /* It's an asyncronous event. */ 3716 requeue = handle_read_event_rsp(intf, msg); 3717 } else { 3718 /* It's a response from the local BMC. */ 3719 requeue = handle_bmc_rsp(intf, msg); 3720 } 3721 3722 out: 3723 return requeue; 3724 } 3725 3726 /* Handle a new message from the lower layer. */ 3727 void ipmi_smi_msg_received(ipmi_smi_t intf, 3728 struct ipmi_smi_msg *msg) 3729 { 3730 unsigned long flags = 0; /* keep us warning-free. */ 3731 int rv; 3732 int run_to_completion; 3733 3734 3735 if ((msg->data_size >= 2) 3736 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2)) 3737 && (msg->data[1] == IPMI_SEND_MSG_CMD) 3738 && (msg->user_data == NULL)) { 3739 /* 3740 * This is the local response to a command send, start 3741 * the timer for these. The user_data will not be 3742 * NULL if this is a response send, and we will let 3743 * response sends just go through. 3744 */ 3745 3746 /* 3747 * Check for errors, if we get certain errors (ones 3748 * that mean basically we can try again later), we 3749 * ignore them and start the timer. Otherwise we 3750 * report the error immediately. 3751 */ 3752 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0) 3753 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR) 3754 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR) 3755 && (msg->rsp[2] != IPMI_BUS_ERR) 3756 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) { 3757 int chan = msg->rsp[3] & 0xf; 3758 3759 /* Got an error sending the message, handle it. */ 3760 if (chan >= IPMI_MAX_CHANNELS) 3761 ; /* This shouldn't happen */ 3762 else if ((intf->channels[chan].medium 3763 == IPMI_CHANNEL_MEDIUM_8023LAN) 3764 || (intf->channels[chan].medium 3765 == IPMI_CHANNEL_MEDIUM_ASYNC)) 3766 ipmi_inc_stat(intf, sent_lan_command_errs); 3767 else 3768 ipmi_inc_stat(intf, sent_ipmb_command_errs); 3769 intf_err_seq(intf, msg->msgid, msg->rsp[2]); 3770 } else 3771 /* The message was sent, start the timer. */ 3772 intf_start_seq_timer(intf, msg->msgid); 3773 3774 ipmi_free_smi_msg(msg); 3775 goto out; 3776 } 3777 3778 /* 3779 * To preserve message order, if the list is not empty, we 3780 * tack this message onto the end of the list. 3781 */ 3782 run_to_completion = intf->run_to_completion; 3783 if (!run_to_completion) 3784 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3785 if (!list_empty(&intf->waiting_msgs)) { 3786 list_add_tail(&msg->link, &intf->waiting_msgs); 3787 if (!run_to_completion) 3788 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3789 goto out; 3790 } 3791 if (!run_to_completion) 3792 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3793 3794 rv = handle_new_recv_msg(intf, msg); 3795 if (rv > 0) { 3796 /* 3797 * Could not handle the message now, just add it to a 3798 * list to handle later. 3799 */ 3800 run_to_completion = intf->run_to_completion; 3801 if (!run_to_completion) 3802 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3803 list_add_tail(&msg->link, &intf->waiting_msgs); 3804 if (!run_to_completion) 3805 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3806 } else if (rv == 0) { 3807 ipmi_free_smi_msg(msg); 3808 } 3809 3810 out: 3811 return; 3812 } 3813 EXPORT_SYMBOL(ipmi_smi_msg_received); 3814 3815 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) 3816 { 3817 ipmi_user_t user; 3818 3819 rcu_read_lock(); 3820 list_for_each_entry_rcu(user, &intf->users, link) { 3821 if (!user->handler->ipmi_watchdog_pretimeout) 3822 continue; 3823 3824 user->handler->ipmi_watchdog_pretimeout(user->handler_data); 3825 } 3826 rcu_read_unlock(); 3827 } 3828 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); 3829 3830 static struct ipmi_smi_msg * 3831 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg, 3832 unsigned char seq, long seqid) 3833 { 3834 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg(); 3835 if (!smi_msg) 3836 /* 3837 * If we can't allocate the message, then just return, we 3838 * get 4 retries, so this should be ok. 3839 */ 3840 return NULL; 3841 3842 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len); 3843 smi_msg->data_size = recv_msg->msg.data_len; 3844 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid); 3845 3846 #ifdef DEBUG_MSGING 3847 { 3848 int m; 3849 printk("Resend: "); 3850 for (m = 0; m < smi_msg->data_size; m++) 3851 printk(" %2.2x", smi_msg->data[m]); 3852 printk("\n"); 3853 } 3854 #endif 3855 return smi_msg; 3856 } 3857 3858 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent, 3859 struct list_head *timeouts, long timeout_period, 3860 int slot, unsigned long *flags) 3861 { 3862 struct ipmi_recv_msg *msg; 3863 struct ipmi_smi_handlers *handlers; 3864 3865 if (intf->intf_num == -1) 3866 return; 3867 3868 if (!ent->inuse) 3869 return; 3870 3871 ent->timeout -= timeout_period; 3872 if (ent->timeout > 0) 3873 return; 3874 3875 if (ent->retries_left == 0) { 3876 /* The message has used all its retries. */ 3877 ent->inuse = 0; 3878 msg = ent->recv_msg; 3879 list_add_tail(&msg->link, timeouts); 3880 if (ent->broadcast) 3881 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts); 3882 else if (is_lan_addr(&ent->recv_msg->addr)) 3883 ipmi_inc_stat(intf, timed_out_lan_commands); 3884 else 3885 ipmi_inc_stat(intf, timed_out_ipmb_commands); 3886 } else { 3887 struct ipmi_smi_msg *smi_msg; 3888 /* More retries, send again. */ 3889 3890 /* 3891 * Start with the max timer, set to normal timer after 3892 * the message is sent. 3893 */ 3894 ent->timeout = MAX_MSG_TIMEOUT; 3895 ent->retries_left--; 3896 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot, 3897 ent->seqid); 3898 if (!smi_msg) { 3899 if (is_lan_addr(&ent->recv_msg->addr)) 3900 ipmi_inc_stat(intf, 3901 dropped_rexmit_lan_commands); 3902 else 3903 ipmi_inc_stat(intf, 3904 dropped_rexmit_ipmb_commands); 3905 return; 3906 } 3907 3908 spin_unlock_irqrestore(&intf->seq_lock, *flags); 3909 3910 /* 3911 * Send the new message. We send with a zero 3912 * priority. It timed out, I doubt time is that 3913 * critical now, and high priority messages are really 3914 * only for messages to the local MC, which don't get 3915 * resent. 3916 */ 3917 handlers = intf->handlers; 3918 if (handlers) { 3919 if (is_lan_addr(&ent->recv_msg->addr)) 3920 ipmi_inc_stat(intf, 3921 retransmitted_lan_commands); 3922 else 3923 ipmi_inc_stat(intf, 3924 retransmitted_ipmb_commands); 3925 3926 intf->handlers->sender(intf->send_info, 3927 smi_msg, 0); 3928 } else 3929 ipmi_free_smi_msg(smi_msg); 3930 3931 spin_lock_irqsave(&intf->seq_lock, *flags); 3932 } 3933 } 3934 3935 static void ipmi_timeout_handler(long timeout_period) 3936 { 3937 ipmi_smi_t intf; 3938 struct list_head timeouts; 3939 struct ipmi_recv_msg *msg, *msg2; 3940 struct ipmi_smi_msg *smi_msg, *smi_msg2; 3941 unsigned long flags; 3942 int i; 3943 3944 rcu_read_lock(); 3945 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 3946 /* See if any waiting messages need to be processed. */ 3947 spin_lock_irqsave(&intf->waiting_msgs_lock, flags); 3948 list_for_each_entry_safe(smi_msg, smi_msg2, 3949 &intf->waiting_msgs, link) { 3950 if (!handle_new_recv_msg(intf, smi_msg)) { 3951 list_del(&smi_msg->link); 3952 ipmi_free_smi_msg(smi_msg); 3953 } else { 3954 /* 3955 * To preserve message order, quit if we 3956 * can't handle a message. 3957 */ 3958 break; 3959 } 3960 } 3961 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags); 3962 3963 /* 3964 * Go through the seq table and find any messages that 3965 * have timed out, putting them in the timeouts 3966 * list. 3967 */ 3968 INIT_LIST_HEAD(&timeouts); 3969 spin_lock_irqsave(&intf->seq_lock, flags); 3970 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) 3971 check_msg_timeout(intf, &(intf->seq_table[i]), 3972 &timeouts, timeout_period, i, 3973 &flags); 3974 spin_unlock_irqrestore(&intf->seq_lock, flags); 3975 3976 list_for_each_entry_safe(msg, msg2, &timeouts, link) 3977 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE); 3978 3979 /* 3980 * Maintenance mode handling. Check the timeout 3981 * optimistically before we claim the lock. It may 3982 * mean a timeout gets missed occasionally, but that 3983 * only means the timeout gets extended by one period 3984 * in that case. No big deal, and it avoids the lock 3985 * most of the time. 3986 */ 3987 if (intf->auto_maintenance_timeout > 0) { 3988 spin_lock_irqsave(&intf->maintenance_mode_lock, flags); 3989 if (intf->auto_maintenance_timeout > 0) { 3990 intf->auto_maintenance_timeout 3991 -= timeout_period; 3992 if (!intf->maintenance_mode 3993 && (intf->auto_maintenance_timeout <= 0)) { 3994 intf->maintenance_mode_enable = 0; 3995 maintenance_mode_update(intf); 3996 } 3997 } 3998 spin_unlock_irqrestore(&intf->maintenance_mode_lock, 3999 flags); 4000 } 4001 } 4002 rcu_read_unlock(); 4003 } 4004 4005 static void ipmi_request_event(void) 4006 { 4007 ipmi_smi_t intf; 4008 struct ipmi_smi_handlers *handlers; 4009 4010 rcu_read_lock(); 4011 /* 4012 * Called from the timer, no need to check if handlers is 4013 * valid. 4014 */ 4015 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4016 /* No event requests when in maintenance mode. */ 4017 if (intf->maintenance_mode_enable) 4018 continue; 4019 4020 handlers = intf->handlers; 4021 if (handlers) 4022 handlers->request_events(intf->send_info); 4023 } 4024 rcu_read_unlock(); 4025 } 4026 4027 static struct timer_list ipmi_timer; 4028 4029 /* Call every ~100 ms. */ 4030 #define IPMI_TIMEOUT_TIME 100 4031 4032 /* How many jiffies does it take to get to the timeout time. */ 4033 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000) 4034 4035 /* 4036 * Request events from the queue every second (this is the number of 4037 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the 4038 * future, IPMI will add a way to know immediately if an event is in 4039 * the queue and this silliness can go away. 4040 */ 4041 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME)) 4042 4043 static atomic_t stop_operation; 4044 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4045 4046 static void ipmi_timeout(unsigned long data) 4047 { 4048 if (atomic_read(&stop_operation)) 4049 return; 4050 4051 ticks_to_req_ev--; 4052 if (ticks_to_req_ev == 0) { 4053 ipmi_request_event(); 4054 ticks_to_req_ev = IPMI_REQUEST_EV_TIME; 4055 } 4056 4057 ipmi_timeout_handler(IPMI_TIMEOUT_TIME); 4058 4059 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4060 } 4061 4062 4063 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0); 4064 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0); 4065 4066 /* FIXME - convert these to slabs. */ 4067 static void free_smi_msg(struct ipmi_smi_msg *msg) 4068 { 4069 atomic_dec(&smi_msg_inuse_count); 4070 kfree(msg); 4071 } 4072 4073 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) 4074 { 4075 struct ipmi_smi_msg *rv; 4076 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); 4077 if (rv) { 4078 rv->done = free_smi_msg; 4079 rv->user_data = NULL; 4080 atomic_inc(&smi_msg_inuse_count); 4081 } 4082 return rv; 4083 } 4084 EXPORT_SYMBOL(ipmi_alloc_smi_msg); 4085 4086 static void free_recv_msg(struct ipmi_recv_msg *msg) 4087 { 4088 atomic_dec(&recv_msg_inuse_count); 4089 kfree(msg); 4090 } 4091 4092 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) 4093 { 4094 struct ipmi_recv_msg *rv; 4095 4096 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); 4097 if (rv) { 4098 rv->user = NULL; 4099 rv->done = free_recv_msg; 4100 atomic_inc(&recv_msg_inuse_count); 4101 } 4102 return rv; 4103 } 4104 4105 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) 4106 { 4107 if (msg->user) 4108 kref_put(&msg->user->refcount, free_user); 4109 msg->done(msg); 4110 } 4111 EXPORT_SYMBOL(ipmi_free_recv_msg); 4112 4113 #ifdef CONFIG_IPMI_PANIC_EVENT 4114 4115 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) 4116 { 4117 } 4118 4119 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) 4120 { 4121 } 4122 4123 #ifdef CONFIG_IPMI_PANIC_STRING 4124 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4125 { 4126 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4127 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE) 4128 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD) 4129 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4130 /* A get event receiver command, save it. */ 4131 intf->event_receiver = msg->msg.data[1]; 4132 intf->event_receiver_lun = msg->msg.data[2] & 0x3; 4133 } 4134 } 4135 4136 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg) 4137 { 4138 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) 4139 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE) 4140 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD) 4141 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) { 4142 /* 4143 * A get device id command, save if we are an event 4144 * receiver or generator. 4145 */ 4146 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1; 4147 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1; 4148 } 4149 } 4150 #endif 4151 4152 static void send_panic_events(char *str) 4153 { 4154 struct kernel_ipmi_msg msg; 4155 ipmi_smi_t intf; 4156 unsigned char data[16]; 4157 struct ipmi_system_interface_addr *si; 4158 struct ipmi_addr addr; 4159 struct ipmi_smi_msg smi_msg; 4160 struct ipmi_recv_msg recv_msg; 4161 4162 si = (struct ipmi_system_interface_addr *) &addr; 4163 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4164 si->channel = IPMI_BMC_CHANNEL; 4165 si->lun = 0; 4166 4167 /* Fill in an event telling that we have failed. */ 4168 msg.netfn = 0x04; /* Sensor or Event. */ 4169 msg.cmd = 2; /* Platform event command. */ 4170 msg.data = data; 4171 msg.data_len = 8; 4172 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */ 4173 data[1] = 0x03; /* This is for IPMI 1.0. */ 4174 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ 4175 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ 4176 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ 4177 4178 /* 4179 * Put a few breadcrumbs in. Hopefully later we can add more things 4180 * to make the panic events more useful. 4181 */ 4182 if (str) { 4183 data[3] = str[0]; 4184 data[6] = str[1]; 4185 data[7] = str[2]; 4186 } 4187 4188 smi_msg.done = dummy_smi_done_handler; 4189 recv_msg.done = dummy_recv_done_handler; 4190 4191 /* For every registered interface, send the event. */ 4192 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4193 if (!intf->handlers) 4194 /* Interface is not ready. */ 4195 continue; 4196 4197 intf->run_to_completion = 1; 4198 /* Send the event announcing the panic. */ 4199 intf->handlers->set_run_to_completion(intf->send_info, 1); 4200 i_ipmi_request(NULL, 4201 intf, 4202 &addr, 4203 0, 4204 &msg, 4205 intf, 4206 &smi_msg, 4207 &recv_msg, 4208 0, 4209 intf->channels[0].address, 4210 intf->channels[0].lun, 4211 0, 1); /* Don't retry, and don't wait. */ 4212 } 4213 4214 #ifdef CONFIG_IPMI_PANIC_STRING 4215 /* 4216 * On every interface, dump a bunch of OEM event holding the 4217 * string. 4218 */ 4219 if (!str) 4220 return; 4221 4222 /* For every registered interface, send the event. */ 4223 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4224 char *p = str; 4225 struct ipmi_ipmb_addr *ipmb; 4226 int j; 4227 4228 if (intf->intf_num == -1) 4229 /* Interface was not ready yet. */ 4230 continue; 4231 4232 /* 4233 * intf_num is used as an marker to tell if the 4234 * interface is valid. Thus we need a read barrier to 4235 * make sure data fetched before checking intf_num 4236 * won't be used. 4237 */ 4238 smp_rmb(); 4239 4240 /* 4241 * First job here is to figure out where to send the 4242 * OEM events. There's no way in IPMI to send OEM 4243 * events using an event send command, so we have to 4244 * find the SEL to put them in and stick them in 4245 * there. 4246 */ 4247 4248 /* Get capabilities from the get device id. */ 4249 intf->local_sel_device = 0; 4250 intf->local_event_generator = 0; 4251 intf->event_receiver = 0; 4252 4253 /* Request the device info from the local MC. */ 4254 msg.netfn = IPMI_NETFN_APP_REQUEST; 4255 msg.cmd = IPMI_GET_DEVICE_ID_CMD; 4256 msg.data = NULL; 4257 msg.data_len = 0; 4258 intf->null_user_handler = device_id_fetcher; 4259 i_ipmi_request(NULL, 4260 intf, 4261 &addr, 4262 0, 4263 &msg, 4264 intf, 4265 &smi_msg, 4266 &recv_msg, 4267 0, 4268 intf->channels[0].address, 4269 intf->channels[0].lun, 4270 0, 1); /* Don't retry, and don't wait. */ 4271 4272 if (intf->local_event_generator) { 4273 /* Request the event receiver from the local MC. */ 4274 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST; 4275 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD; 4276 msg.data = NULL; 4277 msg.data_len = 0; 4278 intf->null_user_handler = event_receiver_fetcher; 4279 i_ipmi_request(NULL, 4280 intf, 4281 &addr, 4282 0, 4283 &msg, 4284 intf, 4285 &smi_msg, 4286 &recv_msg, 4287 0, 4288 intf->channels[0].address, 4289 intf->channels[0].lun, 4290 0, 1); /* no retry, and no wait. */ 4291 } 4292 intf->null_user_handler = NULL; 4293 4294 /* 4295 * Validate the event receiver. The low bit must not 4296 * be 1 (it must be a valid IPMB address), it cannot 4297 * be zero, and it must not be my address. 4298 */ 4299 if (((intf->event_receiver & 1) == 0) 4300 && (intf->event_receiver != 0) 4301 && (intf->event_receiver != intf->channels[0].address)) { 4302 /* 4303 * The event receiver is valid, send an IPMB 4304 * message. 4305 */ 4306 ipmb = (struct ipmi_ipmb_addr *) &addr; 4307 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE; 4308 ipmb->channel = 0; /* FIXME - is this right? */ 4309 ipmb->lun = intf->event_receiver_lun; 4310 ipmb->slave_addr = intf->event_receiver; 4311 } else if (intf->local_sel_device) { 4312 /* 4313 * The event receiver was not valid (or was 4314 * me), but I am an SEL device, just dump it 4315 * in my SEL. 4316 */ 4317 si = (struct ipmi_system_interface_addr *) &addr; 4318 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; 4319 si->channel = IPMI_BMC_CHANNEL; 4320 si->lun = 0; 4321 } else 4322 continue; /* No where to send the event. */ 4323 4324 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */ 4325 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD; 4326 msg.data = data; 4327 msg.data_len = 16; 4328 4329 j = 0; 4330 while (*p) { 4331 int size = strlen(p); 4332 4333 if (size > 11) 4334 size = 11; 4335 data[0] = 0; 4336 data[1] = 0; 4337 data[2] = 0xf0; /* OEM event without timestamp. */ 4338 data[3] = intf->channels[0].address; 4339 data[4] = j++; /* sequence # */ 4340 /* 4341 * Always give 11 bytes, so strncpy will fill 4342 * it with zeroes for me. 4343 */ 4344 strncpy(data+5, p, 11); 4345 p += size; 4346 4347 i_ipmi_request(NULL, 4348 intf, 4349 &addr, 4350 0, 4351 &msg, 4352 intf, 4353 &smi_msg, 4354 &recv_msg, 4355 0, 4356 intf->channels[0].address, 4357 intf->channels[0].lun, 4358 0, 1); /* no retry, and no wait. */ 4359 } 4360 } 4361 #endif /* CONFIG_IPMI_PANIC_STRING */ 4362 } 4363 #endif /* CONFIG_IPMI_PANIC_EVENT */ 4364 4365 static int has_panicked; 4366 4367 static int panic_event(struct notifier_block *this, 4368 unsigned long event, 4369 void *ptr) 4370 { 4371 ipmi_smi_t intf; 4372 4373 if (has_panicked) 4374 return NOTIFY_DONE; 4375 has_panicked = 1; 4376 4377 /* For every registered interface, set it to run to completion. */ 4378 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) { 4379 if (!intf->handlers) 4380 /* Interface is not ready. */ 4381 continue; 4382 4383 intf->run_to_completion = 1; 4384 intf->handlers->set_run_to_completion(intf->send_info, 1); 4385 } 4386 4387 #ifdef CONFIG_IPMI_PANIC_EVENT 4388 send_panic_events(ptr); 4389 #endif 4390 4391 return NOTIFY_DONE; 4392 } 4393 4394 static struct notifier_block panic_block = { 4395 .notifier_call = panic_event, 4396 .next = NULL, 4397 .priority = 200 /* priority: INT_MAX >= x >= 0 */ 4398 }; 4399 4400 static int ipmi_init_msghandler(void) 4401 { 4402 int rv; 4403 4404 if (initialized) 4405 return 0; 4406 4407 rv = driver_register(&ipmidriver.driver); 4408 if (rv) { 4409 printk(KERN_ERR PFX "Could not register IPMI driver\n"); 4410 return rv; 4411 } 4412 4413 printk(KERN_INFO "ipmi message handler version " 4414 IPMI_DRIVER_VERSION "\n"); 4415 4416 #ifdef CONFIG_PROC_FS 4417 proc_ipmi_root = proc_mkdir("ipmi", NULL); 4418 if (!proc_ipmi_root) { 4419 printk(KERN_ERR PFX "Unable to create IPMI proc dir"); 4420 return -ENOMEM; 4421 } 4422 4423 #endif /* CONFIG_PROC_FS */ 4424 4425 setup_timer(&ipmi_timer, ipmi_timeout, 0); 4426 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES); 4427 4428 atomic_notifier_chain_register(&panic_notifier_list, &panic_block); 4429 4430 initialized = 1; 4431 4432 return 0; 4433 } 4434 4435 static __init int ipmi_init_msghandler_mod(void) 4436 { 4437 ipmi_init_msghandler(); 4438 return 0; 4439 } 4440 4441 static __exit void cleanup_ipmi(void) 4442 { 4443 int count; 4444 4445 if (!initialized) 4446 return; 4447 4448 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block); 4449 4450 /* 4451 * This can't be called if any interfaces exist, so no worry 4452 * about shutting down the interfaces. 4453 */ 4454 4455 /* 4456 * Tell the timer to stop, then wait for it to stop. This 4457 * avoids problems with race conditions removing the timer 4458 * here. 4459 */ 4460 atomic_inc(&stop_operation); 4461 del_timer_sync(&ipmi_timer); 4462 4463 #ifdef CONFIG_PROC_FS 4464 remove_proc_entry(proc_ipmi_root->name, NULL); 4465 #endif /* CONFIG_PROC_FS */ 4466 4467 driver_unregister(&ipmidriver.driver); 4468 4469 initialized = 0; 4470 4471 /* Check for buffer leaks. */ 4472 count = atomic_read(&smi_msg_inuse_count); 4473 if (count != 0) 4474 printk(KERN_WARNING PFX "SMI message count %d at exit\n", 4475 count); 4476 count = atomic_read(&recv_msg_inuse_count); 4477 if (count != 0) 4478 printk(KERN_WARNING PFX "recv message count %d at exit\n", 4479 count); 4480 } 4481 module_exit(cleanup_ipmi); 4482 4483 module_init(ipmi_init_msghandler_mod); 4484 MODULE_LICENSE("GPL"); 4485 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>"); 4486 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI" 4487 " interface."); 4488 MODULE_VERSION(IPMI_DRIVER_VERSION); 4489