1 /*
2  * ipmi_msghandler.c
3  *
4  * Incoming and outgoing message routing for an IPMI interface.
5  *
6  * Author: MontaVista Software, Inc.
7  *         Corey Minyard <minyard@mvista.com>
8  *         source@mvista.com
9  *
10  * Copyright 2002 MontaVista Software Inc.
11  *
12  *  This program is free software; you can redistribute it and/or modify it
13  *  under the terms of the GNU General Public License as published by the
14  *  Free Software Foundation; either version 2 of the License, or (at your
15  *  option) any later version.
16  *
17  *
18  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  *
29  *  You should have received a copy of the GNU General Public License along
30  *  with this program; if not, write to the Free Software Foundation, Inc.,
31  *  675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33 
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 
48 #define PFX "IPMI message handler: "
49 
50 #define IPMI_DRIVER_VERSION "39.2"
51 
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
54 
55 static int initialized;
56 
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
60 
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
63 
64 #define MAX_EVENTS_IN_QUEUE	25
65 
66 /*
67  * Don't let a message sit in a queue forever, always time it with at lest
68  * the max message timer.  This is in milliseconds.
69  */
70 #define MAX_MSG_TIMEOUT		60000
71 
72 /*
73  * The main "user" data structure.
74  */
75 struct ipmi_user {
76 	struct list_head link;
77 
78 	/* Set to "0" when the user is destroyed. */
79 	int valid;
80 
81 	struct kref refcount;
82 
83 	/* The upper layer that handles receive messages. */
84 	struct ipmi_user_hndl *handler;
85 	void             *handler_data;
86 
87 	/* The interface this user is bound to. */
88 	ipmi_smi_t intf;
89 
90 	/* Does this interface receive IPMI events? */
91 	int gets_events;
92 };
93 
94 struct cmd_rcvr {
95 	struct list_head link;
96 
97 	ipmi_user_t   user;
98 	unsigned char netfn;
99 	unsigned char cmd;
100 	unsigned int  chans;
101 
102 	/*
103 	 * This is used to form a linked lised during mass deletion.
104 	 * Since this is in an RCU list, we cannot use the link above
105 	 * or change any data until the RCU period completes.  So we
106 	 * use this next variable during mass deletion so we can have
107 	 * a list and don't have to wait and restart the search on
108 	 * every individual deletion of a command.
109 	 */
110 	struct cmd_rcvr *next;
111 };
112 
113 struct seq_table {
114 	unsigned int         inuse : 1;
115 	unsigned int         broadcast : 1;
116 
117 	unsigned long        timeout;
118 	unsigned long        orig_timeout;
119 	unsigned int         retries_left;
120 
121 	/*
122 	 * To verify on an incoming send message response that this is
123 	 * the message that the response is for, we keep a sequence id
124 	 * and increment it every time we send a message.
125 	 */
126 	long                 seqid;
127 
128 	/*
129 	 * This is held so we can properly respond to the message on a
130 	 * timeout, and it is used to hold the temporary data for
131 	 * retransmission, too.
132 	 */
133 	struct ipmi_recv_msg *recv_msg;
134 };
135 
136 /*
137  * Store the information in a msgid (long) to allow us to find a
138  * sequence table entry from the msgid.
139  */
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
141 
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
143 	do {								\
144 		seq = ((msgid >> 26) & 0x3f);				\
145 		seqid = (msgid & 0x3fffff);				\
146 	} while (0)
147 
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
149 
150 struct ipmi_channel {
151 	unsigned char medium;
152 	unsigned char protocol;
153 
154 	/*
155 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
156 	 * but may be changed by the user.
157 	 */
158 	unsigned char address;
159 
160 	/*
161 	 * My LUN.  This should generally stay the SMS LUN, but just in
162 	 * case...
163 	 */
164 	unsigned char lun;
165 };
166 
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
169 	char                   *name;
170 	struct ipmi_proc_entry *next;
171 };
172 #endif
173 
174 struct bmc_device {
175 	struct platform_device *dev;
176 	struct ipmi_device_id  id;
177 	unsigned char          guid[16];
178 	int                    guid_set;
179 
180 	struct kref	       refcount;
181 
182 	/* bmc device attributes */
183 	struct device_attribute device_id_attr;
184 	struct device_attribute provides_dev_sdrs_attr;
185 	struct device_attribute revision_attr;
186 	struct device_attribute firmware_rev_attr;
187 	struct device_attribute version_attr;
188 	struct device_attribute add_dev_support_attr;
189 	struct device_attribute manufacturer_id_attr;
190 	struct device_attribute product_id_attr;
191 	struct device_attribute guid_attr;
192 	struct device_attribute aux_firmware_rev_attr;
193 };
194 
195 /*
196  * Various statistics for IPMI, these index stats[] in the ipmi_smi
197  * structure.
198  */
199 enum ipmi_stat_indexes {
200 	/* Commands we got from the user that were invalid. */
201 	IPMI_STAT_sent_invalid_commands = 0,
202 
203 	/* Commands we sent to the MC. */
204 	IPMI_STAT_sent_local_commands,
205 
206 	/* Responses from the MC that were delivered to a user. */
207 	IPMI_STAT_handled_local_responses,
208 
209 	/* Responses from the MC that were not delivered to a user. */
210 	IPMI_STAT_unhandled_local_responses,
211 
212 	/* Commands we sent out to the IPMB bus. */
213 	IPMI_STAT_sent_ipmb_commands,
214 
215 	/* Commands sent on the IPMB that had errors on the SEND CMD */
216 	IPMI_STAT_sent_ipmb_command_errs,
217 
218 	/* Each retransmit increments this count. */
219 	IPMI_STAT_retransmitted_ipmb_commands,
220 
221 	/*
222 	 * When a message times out (runs out of retransmits) this is
223 	 * incremented.
224 	 */
225 	IPMI_STAT_timed_out_ipmb_commands,
226 
227 	/*
228 	 * This is like above, but for broadcasts.  Broadcasts are
229 	 * *not* included in the above count (they are expected to
230 	 * time out).
231 	 */
232 	IPMI_STAT_timed_out_ipmb_broadcasts,
233 
234 	/* Responses I have sent to the IPMB bus. */
235 	IPMI_STAT_sent_ipmb_responses,
236 
237 	/* The response was delivered to the user. */
238 	IPMI_STAT_handled_ipmb_responses,
239 
240 	/* The response had invalid data in it. */
241 	IPMI_STAT_invalid_ipmb_responses,
242 
243 	/* The response didn't have anyone waiting for it. */
244 	IPMI_STAT_unhandled_ipmb_responses,
245 
246 	/* Commands we sent out to the IPMB bus. */
247 	IPMI_STAT_sent_lan_commands,
248 
249 	/* Commands sent on the IPMB that had errors on the SEND CMD */
250 	IPMI_STAT_sent_lan_command_errs,
251 
252 	/* Each retransmit increments this count. */
253 	IPMI_STAT_retransmitted_lan_commands,
254 
255 	/*
256 	 * When a message times out (runs out of retransmits) this is
257 	 * incremented.
258 	 */
259 	IPMI_STAT_timed_out_lan_commands,
260 
261 	/* Responses I have sent to the IPMB bus. */
262 	IPMI_STAT_sent_lan_responses,
263 
264 	/* The response was delivered to the user. */
265 	IPMI_STAT_handled_lan_responses,
266 
267 	/* The response had invalid data in it. */
268 	IPMI_STAT_invalid_lan_responses,
269 
270 	/* The response didn't have anyone waiting for it. */
271 	IPMI_STAT_unhandled_lan_responses,
272 
273 	/* The command was delivered to the user. */
274 	IPMI_STAT_handled_commands,
275 
276 	/* The command had invalid data in it. */
277 	IPMI_STAT_invalid_commands,
278 
279 	/* The command didn't have anyone waiting for it. */
280 	IPMI_STAT_unhandled_commands,
281 
282 	/* Invalid data in an event. */
283 	IPMI_STAT_invalid_events,
284 
285 	/* Events that were received with the proper format. */
286 	IPMI_STAT_events,
287 
288 
289 	/* This *must* remain last, add new values above this. */
290 	IPMI_NUM_STATS
291 };
292 
293 
294 #define IPMI_IPMB_NUM_SEQ	64
295 #define IPMI_MAX_CHANNELS       16
296 struct ipmi_smi {
297 	/* What interface number are we? */
298 	int intf_num;
299 
300 	struct kref refcount;
301 
302 	/* Used for a list of interfaces. */
303 	struct list_head link;
304 
305 	/*
306 	 * The list of upper layers that are using me.  seq_lock
307 	 * protects this.
308 	 */
309 	struct list_head users;
310 
311 	/* Information to supply to users. */
312 	unsigned char ipmi_version_major;
313 	unsigned char ipmi_version_minor;
314 
315 	/* Used for wake ups at startup. */
316 	wait_queue_head_t waitq;
317 
318 	struct bmc_device *bmc;
319 	char *my_dev_name;
320 	char *sysfs_name;
321 
322 	/*
323 	 * This is the lower-layer's sender routine.  Note that you
324 	 * must either be holding the ipmi_interfaces_mutex or be in
325 	 * an umpreemptible region to use this.  You must fetch the
326 	 * value into a local variable and make sure it is not NULL.
327 	 */
328 	struct ipmi_smi_handlers *handlers;
329 	void                     *send_info;
330 
331 #ifdef CONFIG_PROC_FS
332 	/* A list of proc entries for this interface. */
333 	struct mutex           proc_entry_lock;
334 	struct ipmi_proc_entry *proc_entries;
335 #endif
336 
337 	/* Driver-model device for the system interface. */
338 	struct device          *si_dev;
339 
340 	/*
341 	 * A table of sequence numbers for this interface.  We use the
342 	 * sequence numbers for IPMB messages that go out of the
343 	 * interface to match them up with their responses.  A routine
344 	 * is called periodically to time the items in this list.
345 	 */
346 	spinlock_t       seq_lock;
347 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
348 	int curr_seq;
349 
350 	/*
351 	 * Messages that were delayed for some reason (out of memory,
352 	 * for instance), will go in here to be processed later in a
353 	 * periodic timer interrupt.
354 	 */
355 	spinlock_t       waiting_msgs_lock;
356 	struct list_head waiting_msgs;
357 
358 	/*
359 	 * The list of command receivers that are registered for commands
360 	 * on this interface.
361 	 */
362 	struct mutex     cmd_rcvrs_mutex;
363 	struct list_head cmd_rcvrs;
364 
365 	/*
366 	 * Events that were queues because no one was there to receive
367 	 * them.
368 	 */
369 	spinlock_t       events_lock; /* For dealing with event stuff. */
370 	struct list_head waiting_events;
371 	unsigned int     waiting_events_count; /* How many events in queue? */
372 	char             delivering_events;
373 	char             event_msg_printed;
374 
375 	/*
376 	 * The event receiver for my BMC, only really used at panic
377 	 * shutdown as a place to store this.
378 	 */
379 	unsigned char event_receiver;
380 	unsigned char event_receiver_lun;
381 	unsigned char local_sel_device;
382 	unsigned char local_event_generator;
383 
384 	/* For handling of maintenance mode. */
385 	int maintenance_mode;
386 	int maintenance_mode_enable;
387 	int auto_maintenance_timeout;
388 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
389 
390 	/*
391 	 * A cheap hack, if this is non-null and a message to an
392 	 * interface comes in with a NULL user, call this routine with
393 	 * it.  Note that the message will still be freed by the
394 	 * caller.  This only works on the system interface.
395 	 */
396 	void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
397 
398 	/*
399 	 * When we are scanning the channels for an SMI, this will
400 	 * tell which channel we are scanning.
401 	 */
402 	int curr_channel;
403 
404 	/* Channel information */
405 	struct ipmi_channel channels[IPMI_MAX_CHANNELS];
406 
407 	/* Proc FS stuff. */
408 	struct proc_dir_entry *proc_dir;
409 	char                  proc_dir_name[10];
410 
411 	atomic_t stats[IPMI_NUM_STATS];
412 
413 	/*
414 	 * run_to_completion duplicate of smb_info, smi_info
415 	 * and ipmi_serial_info structures. Used to decrease numbers of
416 	 * parameters passed by "low" level IPMI code.
417 	 */
418 	int run_to_completion;
419 };
420 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
421 
422 /**
423  * The driver model view of the IPMI messaging driver.
424  */
425 static struct device_driver ipmidriver = {
426 	.name = "ipmi",
427 	.bus = &platform_bus_type
428 };
429 static DEFINE_MUTEX(ipmidriver_mutex);
430 
431 static LIST_HEAD(ipmi_interfaces);
432 static DEFINE_MUTEX(ipmi_interfaces_mutex);
433 
434 /*
435  * List of watchers that want to know when smi's are added and deleted.
436  */
437 static LIST_HEAD(smi_watchers);
438 static DEFINE_MUTEX(smi_watchers_mutex);
439 
440 
441 #define ipmi_inc_stat(intf, stat) \
442 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
443 #define ipmi_get_stat(intf, stat) \
444 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
445 
446 
447 static void free_recv_msg_list(struct list_head *q)
448 {
449 	struct ipmi_recv_msg *msg, *msg2;
450 
451 	list_for_each_entry_safe(msg, msg2, q, link) {
452 		list_del(&msg->link);
453 		ipmi_free_recv_msg(msg);
454 	}
455 }
456 
457 static void free_smi_msg_list(struct list_head *q)
458 {
459 	struct ipmi_smi_msg *msg, *msg2;
460 
461 	list_for_each_entry_safe(msg, msg2, q, link) {
462 		list_del(&msg->link);
463 		ipmi_free_smi_msg(msg);
464 	}
465 }
466 
467 static void clean_up_interface_data(ipmi_smi_t intf)
468 {
469 	int              i;
470 	struct cmd_rcvr  *rcvr, *rcvr2;
471 	struct list_head list;
472 
473 	free_smi_msg_list(&intf->waiting_msgs);
474 	free_recv_msg_list(&intf->waiting_events);
475 
476 	/*
477 	 * Wholesale remove all the entries from the list in the
478 	 * interface and wait for RCU to know that none are in use.
479 	 */
480 	mutex_lock(&intf->cmd_rcvrs_mutex);
481 	INIT_LIST_HEAD(&list);
482 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
483 	mutex_unlock(&intf->cmd_rcvrs_mutex);
484 
485 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
486 		kfree(rcvr);
487 
488 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
489 		if ((intf->seq_table[i].inuse)
490 					&& (intf->seq_table[i].recv_msg))
491 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
492 	}
493 }
494 
495 static void intf_free(struct kref *ref)
496 {
497 	ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
498 
499 	clean_up_interface_data(intf);
500 	kfree(intf);
501 }
502 
503 struct watcher_entry {
504 	int              intf_num;
505 	ipmi_smi_t       intf;
506 	struct list_head link;
507 };
508 
509 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
510 {
511 	ipmi_smi_t intf;
512 	LIST_HEAD(to_deliver);
513 	struct watcher_entry *e, *e2;
514 
515 	mutex_lock(&smi_watchers_mutex);
516 
517 	mutex_lock(&ipmi_interfaces_mutex);
518 
519 	/* Build a list of things to deliver. */
520 	list_for_each_entry(intf, &ipmi_interfaces, link) {
521 		if (intf->intf_num == -1)
522 			continue;
523 		e = kmalloc(sizeof(*e), GFP_KERNEL);
524 		if (!e)
525 			goto out_err;
526 		kref_get(&intf->refcount);
527 		e->intf = intf;
528 		e->intf_num = intf->intf_num;
529 		list_add_tail(&e->link, &to_deliver);
530 	}
531 
532 	/* We will succeed, so add it to the list. */
533 	list_add(&watcher->link, &smi_watchers);
534 
535 	mutex_unlock(&ipmi_interfaces_mutex);
536 
537 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
538 		list_del(&e->link);
539 		watcher->new_smi(e->intf_num, e->intf->si_dev);
540 		kref_put(&e->intf->refcount, intf_free);
541 		kfree(e);
542 	}
543 
544 	mutex_unlock(&smi_watchers_mutex);
545 
546 	return 0;
547 
548  out_err:
549 	mutex_unlock(&ipmi_interfaces_mutex);
550 	mutex_unlock(&smi_watchers_mutex);
551 	list_for_each_entry_safe(e, e2, &to_deliver, link) {
552 		list_del(&e->link);
553 		kref_put(&e->intf->refcount, intf_free);
554 		kfree(e);
555 	}
556 	return -ENOMEM;
557 }
558 EXPORT_SYMBOL(ipmi_smi_watcher_register);
559 
560 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
561 {
562 	mutex_lock(&smi_watchers_mutex);
563 	list_del(&(watcher->link));
564 	mutex_unlock(&smi_watchers_mutex);
565 	return 0;
566 }
567 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
568 
569 /*
570  * Must be called with smi_watchers_mutex held.
571  */
572 static void
573 call_smi_watchers(int i, struct device *dev)
574 {
575 	struct ipmi_smi_watcher *w;
576 
577 	list_for_each_entry(w, &smi_watchers, link) {
578 		if (try_module_get(w->owner)) {
579 			w->new_smi(i, dev);
580 			module_put(w->owner);
581 		}
582 	}
583 }
584 
585 static int
586 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
587 {
588 	if (addr1->addr_type != addr2->addr_type)
589 		return 0;
590 
591 	if (addr1->channel != addr2->channel)
592 		return 0;
593 
594 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
595 		struct ipmi_system_interface_addr *smi_addr1
596 		    = (struct ipmi_system_interface_addr *) addr1;
597 		struct ipmi_system_interface_addr *smi_addr2
598 		    = (struct ipmi_system_interface_addr *) addr2;
599 		return (smi_addr1->lun == smi_addr2->lun);
600 	}
601 
602 	if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
603 	    || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
604 		struct ipmi_ipmb_addr *ipmb_addr1
605 		    = (struct ipmi_ipmb_addr *) addr1;
606 		struct ipmi_ipmb_addr *ipmb_addr2
607 		    = (struct ipmi_ipmb_addr *) addr2;
608 
609 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
610 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
611 	}
612 
613 	if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
614 		struct ipmi_lan_addr *lan_addr1
615 			= (struct ipmi_lan_addr *) addr1;
616 		struct ipmi_lan_addr *lan_addr2
617 		    = (struct ipmi_lan_addr *) addr2;
618 
619 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
620 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
621 			&& (lan_addr1->session_handle
622 			    == lan_addr2->session_handle)
623 			&& (lan_addr1->lun == lan_addr2->lun));
624 	}
625 
626 	return 1;
627 }
628 
629 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
630 {
631 	if (len < sizeof(struct ipmi_system_interface_addr))
632 		return -EINVAL;
633 
634 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
635 		if (addr->channel != IPMI_BMC_CHANNEL)
636 			return -EINVAL;
637 		return 0;
638 	}
639 
640 	if ((addr->channel == IPMI_BMC_CHANNEL)
641 	    || (addr->channel >= IPMI_MAX_CHANNELS)
642 	    || (addr->channel < 0))
643 		return -EINVAL;
644 
645 	if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
646 	    || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
647 		if (len < sizeof(struct ipmi_ipmb_addr))
648 			return -EINVAL;
649 		return 0;
650 	}
651 
652 	if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
653 		if (len < sizeof(struct ipmi_lan_addr))
654 			return -EINVAL;
655 		return 0;
656 	}
657 
658 	return -EINVAL;
659 }
660 EXPORT_SYMBOL(ipmi_validate_addr);
661 
662 unsigned int ipmi_addr_length(int addr_type)
663 {
664 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
665 		return sizeof(struct ipmi_system_interface_addr);
666 
667 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
668 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
669 		return sizeof(struct ipmi_ipmb_addr);
670 
671 	if (addr_type == IPMI_LAN_ADDR_TYPE)
672 		return sizeof(struct ipmi_lan_addr);
673 
674 	return 0;
675 }
676 EXPORT_SYMBOL(ipmi_addr_length);
677 
678 static void deliver_response(struct ipmi_recv_msg *msg)
679 {
680 	if (!msg->user) {
681 		ipmi_smi_t    intf = msg->user_msg_data;
682 
683 		/* Special handling for NULL users. */
684 		if (intf->null_user_handler) {
685 			intf->null_user_handler(intf, msg);
686 			ipmi_inc_stat(intf, handled_local_responses);
687 		} else {
688 			/* No handler, so give up. */
689 			ipmi_inc_stat(intf, unhandled_local_responses);
690 		}
691 		ipmi_free_recv_msg(msg);
692 	} else {
693 		ipmi_user_t user = msg->user;
694 		user->handler->ipmi_recv_hndl(msg, user->handler_data);
695 	}
696 }
697 
698 static void
699 deliver_err_response(struct ipmi_recv_msg *msg, int err)
700 {
701 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
702 	msg->msg_data[0] = err;
703 	msg->msg.netfn |= 1; /* Convert to a response. */
704 	msg->msg.data_len = 1;
705 	msg->msg.data = msg->msg_data;
706 	deliver_response(msg);
707 }
708 
709 /*
710  * Find the next sequence number not being used and add the given
711  * message with the given timeout to the sequence table.  This must be
712  * called with the interface's seq_lock held.
713  */
714 static int intf_next_seq(ipmi_smi_t           intf,
715 			 struct ipmi_recv_msg *recv_msg,
716 			 unsigned long        timeout,
717 			 int                  retries,
718 			 int                  broadcast,
719 			 unsigned char        *seq,
720 			 long                 *seqid)
721 {
722 	int          rv = 0;
723 	unsigned int i;
724 
725 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
726 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
727 		if (!intf->seq_table[i].inuse)
728 			break;
729 	}
730 
731 	if (!intf->seq_table[i].inuse) {
732 		intf->seq_table[i].recv_msg = recv_msg;
733 
734 		/*
735 		 * Start with the maximum timeout, when the send response
736 		 * comes in we will start the real timer.
737 		 */
738 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
739 		intf->seq_table[i].orig_timeout = timeout;
740 		intf->seq_table[i].retries_left = retries;
741 		intf->seq_table[i].broadcast = broadcast;
742 		intf->seq_table[i].inuse = 1;
743 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
744 		*seq = i;
745 		*seqid = intf->seq_table[i].seqid;
746 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
747 	} else {
748 		rv = -EAGAIN;
749 	}
750 
751 	return rv;
752 }
753 
754 /*
755  * Return the receive message for the given sequence number and
756  * release the sequence number so it can be reused.  Some other data
757  * is passed in to be sure the message matches up correctly (to help
758  * guard against message coming in after their timeout and the
759  * sequence number being reused).
760  */
761 static int intf_find_seq(ipmi_smi_t           intf,
762 			 unsigned char        seq,
763 			 short                channel,
764 			 unsigned char        cmd,
765 			 unsigned char        netfn,
766 			 struct ipmi_addr     *addr,
767 			 struct ipmi_recv_msg **recv_msg)
768 {
769 	int           rv = -ENODEV;
770 	unsigned long flags;
771 
772 	if (seq >= IPMI_IPMB_NUM_SEQ)
773 		return -EINVAL;
774 
775 	spin_lock_irqsave(&(intf->seq_lock), flags);
776 	if (intf->seq_table[seq].inuse) {
777 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
778 
779 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
780 				&& (msg->msg.netfn == netfn)
781 				&& (ipmi_addr_equal(addr, &(msg->addr)))) {
782 			*recv_msg = msg;
783 			intf->seq_table[seq].inuse = 0;
784 			rv = 0;
785 		}
786 	}
787 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
788 
789 	return rv;
790 }
791 
792 
793 /* Start the timer for a specific sequence table entry. */
794 static int intf_start_seq_timer(ipmi_smi_t intf,
795 				long       msgid)
796 {
797 	int           rv = -ENODEV;
798 	unsigned long flags;
799 	unsigned char seq;
800 	unsigned long seqid;
801 
802 
803 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
804 
805 	spin_lock_irqsave(&(intf->seq_lock), flags);
806 	/*
807 	 * We do this verification because the user can be deleted
808 	 * while a message is outstanding.
809 	 */
810 	if ((intf->seq_table[seq].inuse)
811 				&& (intf->seq_table[seq].seqid == seqid)) {
812 		struct seq_table *ent = &(intf->seq_table[seq]);
813 		ent->timeout = ent->orig_timeout;
814 		rv = 0;
815 	}
816 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
817 
818 	return rv;
819 }
820 
821 /* Got an error for the send message for a specific sequence number. */
822 static int intf_err_seq(ipmi_smi_t   intf,
823 			long         msgid,
824 			unsigned int err)
825 {
826 	int                  rv = -ENODEV;
827 	unsigned long        flags;
828 	unsigned char        seq;
829 	unsigned long        seqid;
830 	struct ipmi_recv_msg *msg = NULL;
831 
832 
833 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
834 
835 	spin_lock_irqsave(&(intf->seq_lock), flags);
836 	/*
837 	 * We do this verification because the user can be deleted
838 	 * while a message is outstanding.
839 	 */
840 	if ((intf->seq_table[seq].inuse)
841 				&& (intf->seq_table[seq].seqid == seqid)) {
842 		struct seq_table *ent = &(intf->seq_table[seq]);
843 
844 		ent->inuse = 0;
845 		msg = ent->recv_msg;
846 		rv = 0;
847 	}
848 	spin_unlock_irqrestore(&(intf->seq_lock), flags);
849 
850 	if (msg)
851 		deliver_err_response(msg, err);
852 
853 	return rv;
854 }
855 
856 
857 int ipmi_create_user(unsigned int          if_num,
858 		     struct ipmi_user_hndl *handler,
859 		     void                  *handler_data,
860 		     ipmi_user_t           *user)
861 {
862 	unsigned long flags;
863 	ipmi_user_t   new_user;
864 	int           rv = 0;
865 	ipmi_smi_t    intf;
866 
867 	/*
868 	 * There is no module usecount here, because it's not
869 	 * required.  Since this can only be used by and called from
870 	 * other modules, they will implicitly use this module, and
871 	 * thus this can't be removed unless the other modules are
872 	 * removed.
873 	 */
874 
875 	if (handler == NULL)
876 		return -EINVAL;
877 
878 	/*
879 	 * Make sure the driver is actually initialized, this handles
880 	 * problems with initialization order.
881 	 */
882 	if (!initialized) {
883 		rv = ipmi_init_msghandler();
884 		if (rv)
885 			return rv;
886 
887 		/*
888 		 * The init code doesn't return an error if it was turned
889 		 * off, but it won't initialize.  Check that.
890 		 */
891 		if (!initialized)
892 			return -ENODEV;
893 	}
894 
895 	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
896 	if (!new_user)
897 		return -ENOMEM;
898 
899 	mutex_lock(&ipmi_interfaces_mutex);
900 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
901 		if (intf->intf_num == if_num)
902 			goto found;
903 	}
904 	/* Not found, return an error */
905 	rv = -EINVAL;
906 	goto out_kfree;
907 
908  found:
909 	/* Note that each existing user holds a refcount to the interface. */
910 	kref_get(&intf->refcount);
911 
912 	kref_init(&new_user->refcount);
913 	new_user->handler = handler;
914 	new_user->handler_data = handler_data;
915 	new_user->intf = intf;
916 	new_user->gets_events = 0;
917 
918 	if (!try_module_get(intf->handlers->owner)) {
919 		rv = -ENODEV;
920 		goto out_kref;
921 	}
922 
923 	if (intf->handlers->inc_usecount) {
924 		rv = intf->handlers->inc_usecount(intf->send_info);
925 		if (rv) {
926 			module_put(intf->handlers->owner);
927 			goto out_kref;
928 		}
929 	}
930 
931 	/*
932 	 * Hold the lock so intf->handlers is guaranteed to be good
933 	 * until now
934 	 */
935 	mutex_unlock(&ipmi_interfaces_mutex);
936 
937 	new_user->valid = 1;
938 	spin_lock_irqsave(&intf->seq_lock, flags);
939 	list_add_rcu(&new_user->link, &intf->users);
940 	spin_unlock_irqrestore(&intf->seq_lock, flags);
941 	*user = new_user;
942 	return 0;
943 
944 out_kref:
945 	kref_put(&intf->refcount, intf_free);
946 out_kfree:
947 	mutex_unlock(&ipmi_interfaces_mutex);
948 	kfree(new_user);
949 	return rv;
950 }
951 EXPORT_SYMBOL(ipmi_create_user);
952 
953 static void free_user(struct kref *ref)
954 {
955 	ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
956 	kfree(user);
957 }
958 
959 int ipmi_destroy_user(ipmi_user_t user)
960 {
961 	ipmi_smi_t       intf = user->intf;
962 	int              i;
963 	unsigned long    flags;
964 	struct cmd_rcvr  *rcvr;
965 	struct cmd_rcvr  *rcvrs = NULL;
966 
967 	user->valid = 0;
968 
969 	/* Remove the user from the interface's sequence table. */
970 	spin_lock_irqsave(&intf->seq_lock, flags);
971 	list_del_rcu(&user->link);
972 
973 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
974 		if (intf->seq_table[i].inuse
975 		    && (intf->seq_table[i].recv_msg->user == user)) {
976 			intf->seq_table[i].inuse = 0;
977 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
978 		}
979 	}
980 	spin_unlock_irqrestore(&intf->seq_lock, flags);
981 
982 	/*
983 	 * Remove the user from the command receiver's table.  First
984 	 * we build a list of everything (not using the standard link,
985 	 * since other things may be using it till we do
986 	 * synchronize_rcu()) then free everything in that list.
987 	 */
988 	mutex_lock(&intf->cmd_rcvrs_mutex);
989 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
990 		if (rcvr->user == user) {
991 			list_del_rcu(&rcvr->link);
992 			rcvr->next = rcvrs;
993 			rcvrs = rcvr;
994 		}
995 	}
996 	mutex_unlock(&intf->cmd_rcvrs_mutex);
997 	synchronize_rcu();
998 	while (rcvrs) {
999 		rcvr = rcvrs;
1000 		rcvrs = rcvr->next;
1001 		kfree(rcvr);
1002 	}
1003 
1004 	mutex_lock(&ipmi_interfaces_mutex);
1005 	if (intf->handlers) {
1006 		module_put(intf->handlers->owner);
1007 		if (intf->handlers->dec_usecount)
1008 			intf->handlers->dec_usecount(intf->send_info);
1009 	}
1010 	mutex_unlock(&ipmi_interfaces_mutex);
1011 
1012 	kref_put(&intf->refcount, intf_free);
1013 
1014 	kref_put(&user->refcount, free_user);
1015 
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL(ipmi_destroy_user);
1019 
1020 void ipmi_get_version(ipmi_user_t   user,
1021 		      unsigned char *major,
1022 		      unsigned char *minor)
1023 {
1024 	*major = user->intf->ipmi_version_major;
1025 	*minor = user->intf->ipmi_version_minor;
1026 }
1027 EXPORT_SYMBOL(ipmi_get_version);
1028 
1029 int ipmi_set_my_address(ipmi_user_t   user,
1030 			unsigned int  channel,
1031 			unsigned char address)
1032 {
1033 	if (channel >= IPMI_MAX_CHANNELS)
1034 		return -EINVAL;
1035 	user->intf->channels[channel].address = address;
1036 	return 0;
1037 }
1038 EXPORT_SYMBOL(ipmi_set_my_address);
1039 
1040 int ipmi_get_my_address(ipmi_user_t   user,
1041 			unsigned int  channel,
1042 			unsigned char *address)
1043 {
1044 	if (channel >= IPMI_MAX_CHANNELS)
1045 		return -EINVAL;
1046 	*address = user->intf->channels[channel].address;
1047 	return 0;
1048 }
1049 EXPORT_SYMBOL(ipmi_get_my_address);
1050 
1051 int ipmi_set_my_LUN(ipmi_user_t   user,
1052 		    unsigned int  channel,
1053 		    unsigned char LUN)
1054 {
1055 	if (channel >= IPMI_MAX_CHANNELS)
1056 		return -EINVAL;
1057 	user->intf->channels[channel].lun = LUN & 0x3;
1058 	return 0;
1059 }
1060 EXPORT_SYMBOL(ipmi_set_my_LUN);
1061 
1062 int ipmi_get_my_LUN(ipmi_user_t   user,
1063 		    unsigned int  channel,
1064 		    unsigned char *address)
1065 {
1066 	if (channel >= IPMI_MAX_CHANNELS)
1067 		return -EINVAL;
1068 	*address = user->intf->channels[channel].lun;
1069 	return 0;
1070 }
1071 EXPORT_SYMBOL(ipmi_get_my_LUN);
1072 
1073 int ipmi_get_maintenance_mode(ipmi_user_t user)
1074 {
1075 	int           mode;
1076 	unsigned long flags;
1077 
1078 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1079 	mode = user->intf->maintenance_mode;
1080 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1081 
1082 	return mode;
1083 }
1084 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1085 
1086 static void maintenance_mode_update(ipmi_smi_t intf)
1087 {
1088 	if (intf->handlers->set_maintenance_mode)
1089 		intf->handlers->set_maintenance_mode(
1090 			intf->send_info, intf->maintenance_mode_enable);
1091 }
1092 
1093 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1094 {
1095 	int           rv = 0;
1096 	unsigned long flags;
1097 	ipmi_smi_t    intf = user->intf;
1098 
1099 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1100 	if (intf->maintenance_mode != mode) {
1101 		switch (mode) {
1102 		case IPMI_MAINTENANCE_MODE_AUTO:
1103 			intf->maintenance_mode = mode;
1104 			intf->maintenance_mode_enable
1105 				= (intf->auto_maintenance_timeout > 0);
1106 			break;
1107 
1108 		case IPMI_MAINTENANCE_MODE_OFF:
1109 			intf->maintenance_mode = mode;
1110 			intf->maintenance_mode_enable = 0;
1111 			break;
1112 
1113 		case IPMI_MAINTENANCE_MODE_ON:
1114 			intf->maintenance_mode = mode;
1115 			intf->maintenance_mode_enable = 1;
1116 			break;
1117 
1118 		default:
1119 			rv = -EINVAL;
1120 			goto out_unlock;
1121 		}
1122 
1123 		maintenance_mode_update(intf);
1124 	}
1125  out_unlock:
1126 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1127 
1128 	return rv;
1129 }
1130 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1131 
1132 int ipmi_set_gets_events(ipmi_user_t user, int val)
1133 {
1134 	unsigned long        flags;
1135 	ipmi_smi_t           intf = user->intf;
1136 	struct ipmi_recv_msg *msg, *msg2;
1137 	struct list_head     msgs;
1138 
1139 	INIT_LIST_HEAD(&msgs);
1140 
1141 	spin_lock_irqsave(&intf->events_lock, flags);
1142 	user->gets_events = val;
1143 
1144 	if (intf->delivering_events)
1145 		/*
1146 		 * Another thread is delivering events for this, so
1147 		 * let it handle any new events.
1148 		 */
1149 		goto out;
1150 
1151 	/* Deliver any queued events. */
1152 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1153 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1154 			list_move_tail(&msg->link, &msgs);
1155 		intf->waiting_events_count = 0;
1156 		if (intf->event_msg_printed) {
1157 			printk(KERN_WARNING PFX "Event queue no longer"
1158 			       " full\n");
1159 			intf->event_msg_printed = 0;
1160 		}
1161 
1162 		intf->delivering_events = 1;
1163 		spin_unlock_irqrestore(&intf->events_lock, flags);
1164 
1165 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1166 			msg->user = user;
1167 			kref_get(&user->refcount);
1168 			deliver_response(msg);
1169 		}
1170 
1171 		spin_lock_irqsave(&intf->events_lock, flags);
1172 		intf->delivering_events = 0;
1173 	}
1174 
1175  out:
1176 	spin_unlock_irqrestore(&intf->events_lock, flags);
1177 
1178 	return 0;
1179 }
1180 EXPORT_SYMBOL(ipmi_set_gets_events);
1181 
1182 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1183 				      unsigned char netfn,
1184 				      unsigned char cmd,
1185 				      unsigned char chan)
1186 {
1187 	struct cmd_rcvr *rcvr;
1188 
1189 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1190 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1191 					&& (rcvr->chans & (1 << chan)))
1192 			return rcvr;
1193 	}
1194 	return NULL;
1195 }
1196 
1197 static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1198 				 unsigned char netfn,
1199 				 unsigned char cmd,
1200 				 unsigned int  chans)
1201 {
1202 	struct cmd_rcvr *rcvr;
1203 
1204 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1205 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1206 					&& (rcvr->chans & chans))
1207 			return 0;
1208 	}
1209 	return 1;
1210 }
1211 
1212 int ipmi_register_for_cmd(ipmi_user_t   user,
1213 			  unsigned char netfn,
1214 			  unsigned char cmd,
1215 			  unsigned int  chans)
1216 {
1217 	ipmi_smi_t      intf = user->intf;
1218 	struct cmd_rcvr *rcvr;
1219 	int             rv = 0;
1220 
1221 
1222 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1223 	if (!rcvr)
1224 		return -ENOMEM;
1225 	rcvr->cmd = cmd;
1226 	rcvr->netfn = netfn;
1227 	rcvr->chans = chans;
1228 	rcvr->user = user;
1229 
1230 	mutex_lock(&intf->cmd_rcvrs_mutex);
1231 	/* Make sure the command/netfn is not already registered. */
1232 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1233 		rv = -EBUSY;
1234 		goto out_unlock;
1235 	}
1236 
1237 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1238 
1239  out_unlock:
1240 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1241 	if (rv)
1242 		kfree(rcvr);
1243 
1244 	return rv;
1245 }
1246 EXPORT_SYMBOL(ipmi_register_for_cmd);
1247 
1248 int ipmi_unregister_for_cmd(ipmi_user_t   user,
1249 			    unsigned char netfn,
1250 			    unsigned char cmd,
1251 			    unsigned int  chans)
1252 {
1253 	ipmi_smi_t      intf = user->intf;
1254 	struct cmd_rcvr *rcvr;
1255 	struct cmd_rcvr *rcvrs = NULL;
1256 	int i, rv = -ENOENT;
1257 
1258 	mutex_lock(&intf->cmd_rcvrs_mutex);
1259 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1260 		if (((1 << i) & chans) == 0)
1261 			continue;
1262 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1263 		if (rcvr == NULL)
1264 			continue;
1265 		if (rcvr->user == user) {
1266 			rv = 0;
1267 			rcvr->chans &= ~chans;
1268 			if (rcvr->chans == 0) {
1269 				list_del_rcu(&rcvr->link);
1270 				rcvr->next = rcvrs;
1271 				rcvrs = rcvr;
1272 			}
1273 		}
1274 	}
1275 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1276 	synchronize_rcu();
1277 	while (rcvrs) {
1278 		rcvr = rcvrs;
1279 		rcvrs = rcvr->next;
1280 		kfree(rcvr);
1281 	}
1282 	return rv;
1283 }
1284 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1285 
1286 static unsigned char
1287 ipmb_checksum(unsigned char *data, int size)
1288 {
1289 	unsigned char csum = 0;
1290 
1291 	for (; size > 0; size--, data++)
1292 		csum += *data;
1293 
1294 	return -csum;
1295 }
1296 
1297 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1298 				   struct kernel_ipmi_msg *msg,
1299 				   struct ipmi_ipmb_addr *ipmb_addr,
1300 				   long                  msgid,
1301 				   unsigned char         ipmb_seq,
1302 				   int                   broadcast,
1303 				   unsigned char         source_address,
1304 				   unsigned char         source_lun)
1305 {
1306 	int i = broadcast;
1307 
1308 	/* Format the IPMB header data. */
1309 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1310 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1311 	smi_msg->data[2] = ipmb_addr->channel;
1312 	if (broadcast)
1313 		smi_msg->data[3] = 0;
1314 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1315 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1316 	smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1317 	smi_msg->data[i+6] = source_address;
1318 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1319 	smi_msg->data[i+8] = msg->cmd;
1320 
1321 	/* Now tack on the data to the message. */
1322 	if (msg->data_len > 0)
1323 		memcpy(&(smi_msg->data[i+9]), msg->data,
1324 		       msg->data_len);
1325 	smi_msg->data_size = msg->data_len + 9;
1326 
1327 	/* Now calculate the checksum and tack it on. */
1328 	smi_msg->data[i+smi_msg->data_size]
1329 		= ipmb_checksum(&(smi_msg->data[i+6]),
1330 				smi_msg->data_size-6);
1331 
1332 	/*
1333 	 * Add on the checksum size and the offset from the
1334 	 * broadcast.
1335 	 */
1336 	smi_msg->data_size += 1 + i;
1337 
1338 	smi_msg->msgid = msgid;
1339 }
1340 
1341 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1342 				  struct kernel_ipmi_msg *msg,
1343 				  struct ipmi_lan_addr  *lan_addr,
1344 				  long                  msgid,
1345 				  unsigned char         ipmb_seq,
1346 				  unsigned char         source_lun)
1347 {
1348 	/* Format the IPMB header data. */
1349 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1350 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1351 	smi_msg->data[2] = lan_addr->channel;
1352 	smi_msg->data[3] = lan_addr->session_handle;
1353 	smi_msg->data[4] = lan_addr->remote_SWID;
1354 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1355 	smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1356 	smi_msg->data[7] = lan_addr->local_SWID;
1357 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1358 	smi_msg->data[9] = msg->cmd;
1359 
1360 	/* Now tack on the data to the message. */
1361 	if (msg->data_len > 0)
1362 		memcpy(&(smi_msg->data[10]), msg->data,
1363 		       msg->data_len);
1364 	smi_msg->data_size = msg->data_len + 10;
1365 
1366 	/* Now calculate the checksum and tack it on. */
1367 	smi_msg->data[smi_msg->data_size]
1368 		= ipmb_checksum(&(smi_msg->data[7]),
1369 				smi_msg->data_size-7);
1370 
1371 	/*
1372 	 * Add on the checksum size and the offset from the
1373 	 * broadcast.
1374 	 */
1375 	smi_msg->data_size += 1;
1376 
1377 	smi_msg->msgid = msgid;
1378 }
1379 
1380 /*
1381  * Separate from ipmi_request so that the user does not have to be
1382  * supplied in certain circumstances (mainly at panic time).  If
1383  * messages are supplied, they will be freed, even if an error
1384  * occurs.
1385  */
1386 static int i_ipmi_request(ipmi_user_t          user,
1387 			  ipmi_smi_t           intf,
1388 			  struct ipmi_addr     *addr,
1389 			  long                 msgid,
1390 			  struct kernel_ipmi_msg *msg,
1391 			  void                 *user_msg_data,
1392 			  void                 *supplied_smi,
1393 			  struct ipmi_recv_msg *supplied_recv,
1394 			  int                  priority,
1395 			  unsigned char        source_address,
1396 			  unsigned char        source_lun,
1397 			  int                  retries,
1398 			  unsigned int         retry_time_ms)
1399 {
1400 	int                      rv = 0;
1401 	struct ipmi_smi_msg      *smi_msg;
1402 	struct ipmi_recv_msg     *recv_msg;
1403 	unsigned long            flags;
1404 	struct ipmi_smi_handlers *handlers;
1405 
1406 
1407 	if (supplied_recv)
1408 		recv_msg = supplied_recv;
1409 	else {
1410 		recv_msg = ipmi_alloc_recv_msg();
1411 		if (recv_msg == NULL)
1412 			return -ENOMEM;
1413 	}
1414 	recv_msg->user_msg_data = user_msg_data;
1415 
1416 	if (supplied_smi)
1417 		smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1418 	else {
1419 		smi_msg = ipmi_alloc_smi_msg();
1420 		if (smi_msg == NULL) {
1421 			ipmi_free_recv_msg(recv_msg);
1422 			return -ENOMEM;
1423 		}
1424 	}
1425 
1426 	rcu_read_lock();
1427 	handlers = intf->handlers;
1428 	if (!handlers) {
1429 		rv = -ENODEV;
1430 		goto out_err;
1431 	}
1432 
1433 	recv_msg->user = user;
1434 	if (user)
1435 		kref_get(&user->refcount);
1436 	recv_msg->msgid = msgid;
1437 	/*
1438 	 * Store the message to send in the receive message so timeout
1439 	 * responses can get the proper response data.
1440 	 */
1441 	recv_msg->msg = *msg;
1442 
1443 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1444 		struct ipmi_system_interface_addr *smi_addr;
1445 
1446 		if (msg->netfn & 1) {
1447 			/* Responses are not allowed to the SMI. */
1448 			rv = -EINVAL;
1449 			goto out_err;
1450 		}
1451 
1452 		smi_addr = (struct ipmi_system_interface_addr *) addr;
1453 		if (smi_addr->lun > 3) {
1454 			ipmi_inc_stat(intf, sent_invalid_commands);
1455 			rv = -EINVAL;
1456 			goto out_err;
1457 		}
1458 
1459 		memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1460 
1461 		if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1462 		    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1463 			|| (msg->cmd == IPMI_GET_MSG_CMD)
1464 			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1465 			/*
1466 			 * We don't let the user do these, since we manage
1467 			 * the sequence numbers.
1468 			 */
1469 			ipmi_inc_stat(intf, sent_invalid_commands);
1470 			rv = -EINVAL;
1471 			goto out_err;
1472 		}
1473 
1474 		if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1475 		      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1476 			  || (msg->cmd == IPMI_WARM_RESET_CMD)))
1477 		     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1478 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1479 			intf->auto_maintenance_timeout
1480 				= IPMI_MAINTENANCE_MODE_TIMEOUT;
1481 			if (!intf->maintenance_mode
1482 			    && !intf->maintenance_mode_enable) {
1483 				intf->maintenance_mode_enable = 1;
1484 				maintenance_mode_update(intf);
1485 			}
1486 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1487 					       flags);
1488 		}
1489 
1490 		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1491 			ipmi_inc_stat(intf, sent_invalid_commands);
1492 			rv = -EMSGSIZE;
1493 			goto out_err;
1494 		}
1495 
1496 		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1497 		smi_msg->data[1] = msg->cmd;
1498 		smi_msg->msgid = msgid;
1499 		smi_msg->user_data = recv_msg;
1500 		if (msg->data_len > 0)
1501 			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1502 		smi_msg->data_size = msg->data_len + 2;
1503 		ipmi_inc_stat(intf, sent_local_commands);
1504 	} else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1505 		   || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
1506 		struct ipmi_ipmb_addr *ipmb_addr;
1507 		unsigned char         ipmb_seq;
1508 		long                  seqid;
1509 		int                   broadcast = 0;
1510 
1511 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1512 			ipmi_inc_stat(intf, sent_invalid_commands);
1513 			rv = -EINVAL;
1514 			goto out_err;
1515 		}
1516 
1517 		if (intf->channels[addr->channel].medium
1518 					!= IPMI_CHANNEL_MEDIUM_IPMB) {
1519 			ipmi_inc_stat(intf, sent_invalid_commands);
1520 			rv = -EINVAL;
1521 			goto out_err;
1522 		}
1523 
1524 		if (retries < 0) {
1525 		    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1526 			retries = 0; /* Don't retry broadcasts. */
1527 		    else
1528 			retries = 4;
1529 		}
1530 		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1531 		    /*
1532 		     * Broadcasts add a zero at the beginning of the
1533 		     * message, but otherwise is the same as an IPMB
1534 		     * address.
1535 		     */
1536 		    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1537 		    broadcast = 1;
1538 		}
1539 
1540 
1541 		/* Default to 1 second retries. */
1542 		if (retry_time_ms == 0)
1543 		    retry_time_ms = 1000;
1544 
1545 		/*
1546 		 * 9 for the header and 1 for the checksum, plus
1547 		 * possibly one for the broadcast.
1548 		 */
1549 		if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1550 			ipmi_inc_stat(intf, sent_invalid_commands);
1551 			rv = -EMSGSIZE;
1552 			goto out_err;
1553 		}
1554 
1555 		ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1556 		if (ipmb_addr->lun > 3) {
1557 			ipmi_inc_stat(intf, sent_invalid_commands);
1558 			rv = -EINVAL;
1559 			goto out_err;
1560 		}
1561 
1562 		memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1563 
1564 		if (recv_msg->msg.netfn & 0x1) {
1565 			/*
1566 			 * It's a response, so use the user's sequence
1567 			 * from msgid.
1568 			 */
1569 			ipmi_inc_stat(intf, sent_ipmb_responses);
1570 			format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1571 					msgid, broadcast,
1572 					source_address, source_lun);
1573 
1574 			/*
1575 			 * Save the receive message so we can use it
1576 			 * to deliver the response.
1577 			 */
1578 			smi_msg->user_data = recv_msg;
1579 		} else {
1580 			/* It's a command, so get a sequence for it. */
1581 
1582 			spin_lock_irqsave(&(intf->seq_lock), flags);
1583 
1584 			ipmi_inc_stat(intf, sent_ipmb_commands);
1585 
1586 			/*
1587 			 * Create a sequence number with a 1 second
1588 			 * timeout and 4 retries.
1589 			 */
1590 			rv = intf_next_seq(intf,
1591 					   recv_msg,
1592 					   retry_time_ms,
1593 					   retries,
1594 					   broadcast,
1595 					   &ipmb_seq,
1596 					   &seqid);
1597 			if (rv) {
1598 				/*
1599 				 * We have used up all the sequence numbers,
1600 				 * probably, so abort.
1601 				 */
1602 				spin_unlock_irqrestore(&(intf->seq_lock),
1603 						       flags);
1604 				goto out_err;
1605 			}
1606 
1607 			/*
1608 			 * Store the sequence number in the message,
1609 			 * so that when the send message response
1610 			 * comes back we can start the timer.
1611 			 */
1612 			format_ipmb_msg(smi_msg, msg, ipmb_addr,
1613 					STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1614 					ipmb_seq, broadcast,
1615 					source_address, source_lun);
1616 
1617 			/*
1618 			 * Copy the message into the recv message data, so we
1619 			 * can retransmit it later if necessary.
1620 			 */
1621 			memcpy(recv_msg->msg_data, smi_msg->data,
1622 			       smi_msg->data_size);
1623 			recv_msg->msg.data = recv_msg->msg_data;
1624 			recv_msg->msg.data_len = smi_msg->data_size;
1625 
1626 			/*
1627 			 * We don't unlock until here, because we need
1628 			 * to copy the completed message into the
1629 			 * recv_msg before we release the lock.
1630 			 * Otherwise, race conditions may bite us.  I
1631 			 * know that's pretty paranoid, but I prefer
1632 			 * to be correct.
1633 			 */
1634 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1635 		}
1636 	} else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1637 		struct ipmi_lan_addr  *lan_addr;
1638 		unsigned char         ipmb_seq;
1639 		long                  seqid;
1640 
1641 		if (addr->channel >= IPMI_MAX_CHANNELS) {
1642 			ipmi_inc_stat(intf, sent_invalid_commands);
1643 			rv = -EINVAL;
1644 			goto out_err;
1645 		}
1646 
1647 		if ((intf->channels[addr->channel].medium
1648 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
1649 		    && (intf->channels[addr->channel].medium
1650 				!= IPMI_CHANNEL_MEDIUM_ASYNC)) {
1651 			ipmi_inc_stat(intf, sent_invalid_commands);
1652 			rv = -EINVAL;
1653 			goto out_err;
1654 		}
1655 
1656 		retries = 4;
1657 
1658 		/* Default to 1 second retries. */
1659 		if (retry_time_ms == 0)
1660 		    retry_time_ms = 1000;
1661 
1662 		/* 11 for the header and 1 for the checksum. */
1663 		if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1664 			ipmi_inc_stat(intf, sent_invalid_commands);
1665 			rv = -EMSGSIZE;
1666 			goto out_err;
1667 		}
1668 
1669 		lan_addr = (struct ipmi_lan_addr *) addr;
1670 		if (lan_addr->lun > 3) {
1671 			ipmi_inc_stat(intf, sent_invalid_commands);
1672 			rv = -EINVAL;
1673 			goto out_err;
1674 		}
1675 
1676 		memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1677 
1678 		if (recv_msg->msg.netfn & 0x1) {
1679 			/*
1680 			 * It's a response, so use the user's sequence
1681 			 * from msgid.
1682 			 */
1683 			ipmi_inc_stat(intf, sent_lan_responses);
1684 			format_lan_msg(smi_msg, msg, lan_addr, msgid,
1685 				       msgid, source_lun);
1686 
1687 			/*
1688 			 * Save the receive message so we can use it
1689 			 * to deliver the response.
1690 			 */
1691 			smi_msg->user_data = recv_msg;
1692 		} else {
1693 			/* It's a command, so get a sequence for it. */
1694 
1695 			spin_lock_irqsave(&(intf->seq_lock), flags);
1696 
1697 			ipmi_inc_stat(intf, sent_lan_commands);
1698 
1699 			/*
1700 			 * Create a sequence number with a 1 second
1701 			 * timeout and 4 retries.
1702 			 */
1703 			rv = intf_next_seq(intf,
1704 					   recv_msg,
1705 					   retry_time_ms,
1706 					   retries,
1707 					   0,
1708 					   &ipmb_seq,
1709 					   &seqid);
1710 			if (rv) {
1711 				/*
1712 				 * We have used up all the sequence numbers,
1713 				 * probably, so abort.
1714 				 */
1715 				spin_unlock_irqrestore(&(intf->seq_lock),
1716 						       flags);
1717 				goto out_err;
1718 			}
1719 
1720 			/*
1721 			 * Store the sequence number in the message,
1722 			 * so that when the send message response
1723 			 * comes back we can start the timer.
1724 			 */
1725 			format_lan_msg(smi_msg, msg, lan_addr,
1726 				       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1727 				       ipmb_seq, source_lun);
1728 
1729 			/*
1730 			 * Copy the message into the recv message data, so we
1731 			 * can retransmit it later if necessary.
1732 			 */
1733 			memcpy(recv_msg->msg_data, smi_msg->data,
1734 			       smi_msg->data_size);
1735 			recv_msg->msg.data = recv_msg->msg_data;
1736 			recv_msg->msg.data_len = smi_msg->data_size;
1737 
1738 			/*
1739 			 * We don't unlock until here, because we need
1740 			 * to copy the completed message into the
1741 			 * recv_msg before we release the lock.
1742 			 * Otherwise, race conditions may bite us.  I
1743 			 * know that's pretty paranoid, but I prefer
1744 			 * to be correct.
1745 			 */
1746 			spin_unlock_irqrestore(&(intf->seq_lock), flags);
1747 		}
1748 	} else {
1749 	    /* Unknown address type. */
1750 		ipmi_inc_stat(intf, sent_invalid_commands);
1751 		rv = -EINVAL;
1752 		goto out_err;
1753 	}
1754 
1755 #ifdef DEBUG_MSGING
1756 	{
1757 		int m;
1758 		for (m = 0; m < smi_msg->data_size; m++)
1759 			printk(" %2.2x", smi_msg->data[m]);
1760 		printk("\n");
1761 	}
1762 #endif
1763 
1764 	handlers->sender(intf->send_info, smi_msg, priority);
1765 	rcu_read_unlock();
1766 
1767 	return 0;
1768 
1769  out_err:
1770 	rcu_read_unlock();
1771 	ipmi_free_smi_msg(smi_msg);
1772 	ipmi_free_recv_msg(recv_msg);
1773 	return rv;
1774 }
1775 
1776 static int check_addr(ipmi_smi_t       intf,
1777 		      struct ipmi_addr *addr,
1778 		      unsigned char    *saddr,
1779 		      unsigned char    *lun)
1780 {
1781 	if (addr->channel >= IPMI_MAX_CHANNELS)
1782 		return -EINVAL;
1783 	*lun = intf->channels[addr->channel].lun;
1784 	*saddr = intf->channels[addr->channel].address;
1785 	return 0;
1786 }
1787 
1788 int ipmi_request_settime(ipmi_user_t      user,
1789 			 struct ipmi_addr *addr,
1790 			 long             msgid,
1791 			 struct kernel_ipmi_msg  *msg,
1792 			 void             *user_msg_data,
1793 			 int              priority,
1794 			 int              retries,
1795 			 unsigned int     retry_time_ms)
1796 {
1797 	unsigned char saddr, lun;
1798 	int           rv;
1799 
1800 	if (!user)
1801 		return -EINVAL;
1802 	rv = check_addr(user->intf, addr, &saddr, &lun);
1803 	if (rv)
1804 		return rv;
1805 	return i_ipmi_request(user,
1806 			      user->intf,
1807 			      addr,
1808 			      msgid,
1809 			      msg,
1810 			      user_msg_data,
1811 			      NULL, NULL,
1812 			      priority,
1813 			      saddr,
1814 			      lun,
1815 			      retries,
1816 			      retry_time_ms);
1817 }
1818 EXPORT_SYMBOL(ipmi_request_settime);
1819 
1820 int ipmi_request_supply_msgs(ipmi_user_t          user,
1821 			     struct ipmi_addr     *addr,
1822 			     long                 msgid,
1823 			     struct kernel_ipmi_msg *msg,
1824 			     void                 *user_msg_data,
1825 			     void                 *supplied_smi,
1826 			     struct ipmi_recv_msg *supplied_recv,
1827 			     int                  priority)
1828 {
1829 	unsigned char saddr, lun;
1830 	int           rv;
1831 
1832 	if (!user)
1833 		return -EINVAL;
1834 	rv = check_addr(user->intf, addr, &saddr, &lun);
1835 	if (rv)
1836 		return rv;
1837 	return i_ipmi_request(user,
1838 			      user->intf,
1839 			      addr,
1840 			      msgid,
1841 			      msg,
1842 			      user_msg_data,
1843 			      supplied_smi,
1844 			      supplied_recv,
1845 			      priority,
1846 			      saddr,
1847 			      lun,
1848 			      -1, 0);
1849 }
1850 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1851 
1852 #ifdef CONFIG_PROC_FS
1853 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1854 			       int count, int *eof, void *data)
1855 {
1856 	char       *out = (char *) page;
1857 	ipmi_smi_t intf = data;
1858 	int        i;
1859 	int        rv = 0;
1860 
1861 	for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1862 		rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1863 	out[rv-1] = '\n'; /* Replace the final space with a newline */
1864 	out[rv] = '\0';
1865 	rv++;
1866 	return rv;
1867 }
1868 
1869 static int version_file_read_proc(char *page, char **start, off_t off,
1870 				  int count, int *eof, void *data)
1871 {
1872 	char       *out = (char *) page;
1873 	ipmi_smi_t intf = data;
1874 
1875 	return sprintf(out, "%u.%u\n",
1876 		       ipmi_version_major(&intf->bmc->id),
1877 		       ipmi_version_minor(&intf->bmc->id));
1878 }
1879 
1880 static int stat_file_read_proc(char *page, char **start, off_t off,
1881 			       int count, int *eof, void *data)
1882 {
1883 	char       *out = (char *) page;
1884 	ipmi_smi_t intf = data;
1885 
1886 	out += sprintf(out, "sent_invalid_commands:       %u\n",
1887 		       ipmi_get_stat(intf, sent_invalid_commands));
1888 	out += sprintf(out, "sent_local_commands:         %u\n",
1889 		       ipmi_get_stat(intf, sent_local_commands));
1890 	out += sprintf(out, "handled_local_responses:     %u\n",
1891 		       ipmi_get_stat(intf, handled_local_responses));
1892 	out += sprintf(out, "unhandled_local_responses:   %u\n",
1893 		       ipmi_get_stat(intf, unhandled_local_responses));
1894 	out += sprintf(out, "sent_ipmb_commands:          %u\n",
1895 		       ipmi_get_stat(intf, sent_ipmb_commands));
1896 	out += sprintf(out, "sent_ipmb_command_errs:      %u\n",
1897 		       ipmi_get_stat(intf, sent_ipmb_command_errs));
1898 	out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1899 		       ipmi_get_stat(intf, retransmitted_ipmb_commands));
1900 	out += sprintf(out, "timed_out_ipmb_commands:     %u\n",
1901 		       ipmi_get_stat(intf, timed_out_ipmb_commands));
1902 	out += sprintf(out, "timed_out_ipmb_broadcasts:   %u\n",
1903 		       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1904 	out += sprintf(out, "sent_ipmb_responses:         %u\n",
1905 		       ipmi_get_stat(intf, sent_ipmb_responses));
1906 	out += sprintf(out, "handled_ipmb_responses:      %u\n",
1907 		       ipmi_get_stat(intf, handled_ipmb_responses));
1908 	out += sprintf(out, "invalid_ipmb_responses:      %u\n",
1909 		       ipmi_get_stat(intf, invalid_ipmb_responses));
1910 	out += sprintf(out, "unhandled_ipmb_responses:    %u\n",
1911 		       ipmi_get_stat(intf, unhandled_ipmb_responses));
1912 	out += sprintf(out, "sent_lan_commands:           %u\n",
1913 		       ipmi_get_stat(intf, sent_lan_commands));
1914 	out += sprintf(out, "sent_lan_command_errs:       %u\n",
1915 		       ipmi_get_stat(intf, sent_lan_command_errs));
1916 	out += sprintf(out, "retransmitted_lan_commands:  %u\n",
1917 		       ipmi_get_stat(intf, retransmitted_lan_commands));
1918 	out += sprintf(out, "timed_out_lan_commands:      %u\n",
1919 		       ipmi_get_stat(intf, timed_out_lan_commands));
1920 	out += sprintf(out, "sent_lan_responses:          %u\n",
1921 		       ipmi_get_stat(intf, sent_lan_responses));
1922 	out += sprintf(out, "handled_lan_responses:       %u\n",
1923 		       ipmi_get_stat(intf, handled_lan_responses));
1924 	out += sprintf(out, "invalid_lan_responses:       %u\n",
1925 		       ipmi_get_stat(intf, invalid_lan_responses));
1926 	out += sprintf(out, "unhandled_lan_responses:     %u\n",
1927 		       ipmi_get_stat(intf, unhandled_lan_responses));
1928 	out += sprintf(out, "handled_commands:            %u\n",
1929 		       ipmi_get_stat(intf, handled_commands));
1930 	out += sprintf(out, "invalid_commands:            %u\n",
1931 		       ipmi_get_stat(intf, invalid_commands));
1932 	out += sprintf(out, "unhandled_commands:          %u\n",
1933 		       ipmi_get_stat(intf, unhandled_commands));
1934 	out += sprintf(out, "invalid_events:              %u\n",
1935 		       ipmi_get_stat(intf, invalid_events));
1936 	out += sprintf(out, "events:                      %u\n",
1937 		       ipmi_get_stat(intf, events));
1938 
1939 	return (out - ((char *) page));
1940 }
1941 #endif /* CONFIG_PROC_FS */
1942 
1943 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1944 			    read_proc_t *read_proc,
1945 			    void *data, struct module *owner)
1946 {
1947 	int                    rv = 0;
1948 #ifdef CONFIG_PROC_FS
1949 	struct proc_dir_entry  *file;
1950 	struct ipmi_proc_entry *entry;
1951 
1952 	/* Create a list element. */
1953 	entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1954 	if (!entry)
1955 		return -ENOMEM;
1956 	entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1957 	if (!entry->name) {
1958 		kfree(entry);
1959 		return -ENOMEM;
1960 	}
1961 	strcpy(entry->name, name);
1962 
1963 	file = create_proc_entry(name, 0, smi->proc_dir);
1964 	if (!file) {
1965 		kfree(entry->name);
1966 		kfree(entry);
1967 		rv = -ENOMEM;
1968 	} else {
1969 		file->data = data;
1970 		file->read_proc = read_proc;
1971 		file->owner = owner;
1972 
1973 		mutex_lock(&smi->proc_entry_lock);
1974 		/* Stick it on the list. */
1975 		entry->next = smi->proc_entries;
1976 		smi->proc_entries = entry;
1977 		mutex_unlock(&smi->proc_entry_lock);
1978 	}
1979 #endif /* CONFIG_PROC_FS */
1980 
1981 	return rv;
1982 }
1983 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
1984 
1985 static int add_proc_entries(ipmi_smi_t smi, int num)
1986 {
1987 	int rv = 0;
1988 
1989 #ifdef CONFIG_PROC_FS
1990 	sprintf(smi->proc_dir_name, "%d", num);
1991 	smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1992 	if (!smi->proc_dir)
1993 		rv = -ENOMEM;
1994 	else
1995 		smi->proc_dir->owner = THIS_MODULE;
1996 
1997 	if (rv == 0)
1998 		rv = ipmi_smi_add_proc_entry(smi, "stats",
1999 					     stat_file_read_proc,
2000 					     smi, THIS_MODULE);
2001 
2002 	if (rv == 0)
2003 		rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2004 					     ipmb_file_read_proc,
2005 					     smi, THIS_MODULE);
2006 
2007 	if (rv == 0)
2008 		rv = ipmi_smi_add_proc_entry(smi, "version",
2009 					     version_file_read_proc,
2010 					     smi, THIS_MODULE);
2011 #endif /* CONFIG_PROC_FS */
2012 
2013 	return rv;
2014 }
2015 
2016 static void remove_proc_entries(ipmi_smi_t smi)
2017 {
2018 #ifdef CONFIG_PROC_FS
2019 	struct ipmi_proc_entry *entry;
2020 
2021 	mutex_lock(&smi->proc_entry_lock);
2022 	while (smi->proc_entries) {
2023 		entry = smi->proc_entries;
2024 		smi->proc_entries = entry->next;
2025 
2026 		remove_proc_entry(entry->name, smi->proc_dir);
2027 		kfree(entry->name);
2028 		kfree(entry);
2029 	}
2030 	mutex_unlock(&smi->proc_entry_lock);
2031 	remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2032 #endif /* CONFIG_PROC_FS */
2033 }
2034 
2035 static int __find_bmc_guid(struct device *dev, void *data)
2036 {
2037 	unsigned char *id = data;
2038 	struct bmc_device *bmc = dev_get_drvdata(dev);
2039 	return memcmp(bmc->guid, id, 16) == 0;
2040 }
2041 
2042 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2043 					     unsigned char *guid)
2044 {
2045 	struct device *dev;
2046 
2047 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2048 	if (dev)
2049 		return dev_get_drvdata(dev);
2050 	else
2051 		return NULL;
2052 }
2053 
2054 struct prod_dev_id {
2055 	unsigned int  product_id;
2056 	unsigned char device_id;
2057 };
2058 
2059 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2060 {
2061 	struct prod_dev_id *id = data;
2062 	struct bmc_device *bmc = dev_get_drvdata(dev);
2063 
2064 	return (bmc->id.product_id == id->product_id
2065 		&& bmc->id.device_id == id->device_id);
2066 }
2067 
2068 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2069 	struct device_driver *drv,
2070 	unsigned int product_id, unsigned char device_id)
2071 {
2072 	struct prod_dev_id id = {
2073 		.product_id = product_id,
2074 		.device_id = device_id,
2075 	};
2076 	struct device *dev;
2077 
2078 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2079 	if (dev)
2080 		return dev_get_drvdata(dev);
2081 	else
2082 		return NULL;
2083 }
2084 
2085 static ssize_t device_id_show(struct device *dev,
2086 			      struct device_attribute *attr,
2087 			      char *buf)
2088 {
2089 	struct bmc_device *bmc = dev_get_drvdata(dev);
2090 
2091 	return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2092 }
2093 
2094 static ssize_t provides_dev_sdrs_show(struct device *dev,
2095 				      struct device_attribute *attr,
2096 				      char *buf)
2097 {
2098 	struct bmc_device *bmc = dev_get_drvdata(dev);
2099 
2100 	return snprintf(buf, 10, "%u\n",
2101 			(bmc->id.device_revision & 0x80) >> 7);
2102 }
2103 
2104 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2105 			     char *buf)
2106 {
2107 	struct bmc_device *bmc = dev_get_drvdata(dev);
2108 
2109 	return snprintf(buf, 20, "%u\n",
2110 			bmc->id.device_revision & 0x0F);
2111 }
2112 
2113 static ssize_t firmware_rev_show(struct device *dev,
2114 				 struct device_attribute *attr,
2115 				 char *buf)
2116 {
2117 	struct bmc_device *bmc = dev_get_drvdata(dev);
2118 
2119 	return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2120 			bmc->id.firmware_revision_2);
2121 }
2122 
2123 static ssize_t ipmi_version_show(struct device *dev,
2124 				 struct device_attribute *attr,
2125 				 char *buf)
2126 {
2127 	struct bmc_device *bmc = dev_get_drvdata(dev);
2128 
2129 	return snprintf(buf, 20, "%u.%u\n",
2130 			ipmi_version_major(&bmc->id),
2131 			ipmi_version_minor(&bmc->id));
2132 }
2133 
2134 static ssize_t add_dev_support_show(struct device *dev,
2135 				    struct device_attribute *attr,
2136 				    char *buf)
2137 {
2138 	struct bmc_device *bmc = dev_get_drvdata(dev);
2139 
2140 	return snprintf(buf, 10, "0x%02x\n",
2141 			bmc->id.additional_device_support);
2142 }
2143 
2144 static ssize_t manufacturer_id_show(struct device *dev,
2145 				    struct device_attribute *attr,
2146 				    char *buf)
2147 {
2148 	struct bmc_device *bmc = dev_get_drvdata(dev);
2149 
2150 	return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2151 }
2152 
2153 static ssize_t product_id_show(struct device *dev,
2154 			       struct device_attribute *attr,
2155 			       char *buf)
2156 {
2157 	struct bmc_device *bmc = dev_get_drvdata(dev);
2158 
2159 	return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2160 }
2161 
2162 static ssize_t aux_firmware_rev_show(struct device *dev,
2163 				     struct device_attribute *attr,
2164 				     char *buf)
2165 {
2166 	struct bmc_device *bmc = dev_get_drvdata(dev);
2167 
2168 	return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2169 			bmc->id.aux_firmware_revision[3],
2170 			bmc->id.aux_firmware_revision[2],
2171 			bmc->id.aux_firmware_revision[1],
2172 			bmc->id.aux_firmware_revision[0]);
2173 }
2174 
2175 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2176 			 char *buf)
2177 {
2178 	struct bmc_device *bmc = dev_get_drvdata(dev);
2179 
2180 	return snprintf(buf, 100, "%Lx%Lx\n",
2181 			(long long) bmc->guid[0],
2182 			(long long) bmc->guid[8]);
2183 }
2184 
2185 static void remove_files(struct bmc_device *bmc)
2186 {
2187 	if (!bmc->dev)
2188 		return;
2189 
2190 	device_remove_file(&bmc->dev->dev,
2191 			   &bmc->device_id_attr);
2192 	device_remove_file(&bmc->dev->dev,
2193 			   &bmc->provides_dev_sdrs_attr);
2194 	device_remove_file(&bmc->dev->dev,
2195 			   &bmc->revision_attr);
2196 	device_remove_file(&bmc->dev->dev,
2197 			   &bmc->firmware_rev_attr);
2198 	device_remove_file(&bmc->dev->dev,
2199 			   &bmc->version_attr);
2200 	device_remove_file(&bmc->dev->dev,
2201 			   &bmc->add_dev_support_attr);
2202 	device_remove_file(&bmc->dev->dev,
2203 			   &bmc->manufacturer_id_attr);
2204 	device_remove_file(&bmc->dev->dev,
2205 			   &bmc->product_id_attr);
2206 
2207 	if (bmc->id.aux_firmware_revision_set)
2208 		device_remove_file(&bmc->dev->dev,
2209 				   &bmc->aux_firmware_rev_attr);
2210 	if (bmc->guid_set)
2211 		device_remove_file(&bmc->dev->dev,
2212 				   &bmc->guid_attr);
2213 }
2214 
2215 static void
2216 cleanup_bmc_device(struct kref *ref)
2217 {
2218 	struct bmc_device *bmc;
2219 
2220 	bmc = container_of(ref, struct bmc_device, refcount);
2221 
2222 	remove_files(bmc);
2223 	platform_device_unregister(bmc->dev);
2224 	kfree(bmc);
2225 }
2226 
2227 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2228 {
2229 	struct bmc_device *bmc = intf->bmc;
2230 
2231 	if (intf->sysfs_name) {
2232 		sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2233 		kfree(intf->sysfs_name);
2234 		intf->sysfs_name = NULL;
2235 	}
2236 	if (intf->my_dev_name) {
2237 		sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2238 		kfree(intf->my_dev_name);
2239 		intf->my_dev_name = NULL;
2240 	}
2241 
2242 	mutex_lock(&ipmidriver_mutex);
2243 	kref_put(&bmc->refcount, cleanup_bmc_device);
2244 	intf->bmc = NULL;
2245 	mutex_unlock(&ipmidriver_mutex);
2246 }
2247 
2248 static int create_files(struct bmc_device *bmc)
2249 {
2250 	int err;
2251 
2252 	bmc->device_id_attr.attr.name = "device_id";
2253 	bmc->device_id_attr.attr.mode = S_IRUGO;
2254 	bmc->device_id_attr.show = device_id_show;
2255 
2256 	bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2257 	bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2258 	bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2259 
2260 	bmc->revision_attr.attr.name = "revision";
2261 	bmc->revision_attr.attr.mode = S_IRUGO;
2262 	bmc->revision_attr.show = revision_show;
2263 
2264 	bmc->firmware_rev_attr.attr.name = "firmware_revision";
2265 	bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2266 	bmc->firmware_rev_attr.show = firmware_rev_show;
2267 
2268 	bmc->version_attr.attr.name = "ipmi_version";
2269 	bmc->version_attr.attr.mode = S_IRUGO;
2270 	bmc->version_attr.show = ipmi_version_show;
2271 
2272 	bmc->add_dev_support_attr.attr.name = "additional_device_support";
2273 	bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2274 	bmc->add_dev_support_attr.show = add_dev_support_show;
2275 
2276 	bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2277 	bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2278 	bmc->manufacturer_id_attr.show = manufacturer_id_show;
2279 
2280 	bmc->product_id_attr.attr.name = "product_id";
2281 	bmc->product_id_attr.attr.mode = S_IRUGO;
2282 	bmc->product_id_attr.show = product_id_show;
2283 
2284 	bmc->guid_attr.attr.name = "guid";
2285 	bmc->guid_attr.attr.mode = S_IRUGO;
2286 	bmc->guid_attr.show = guid_show;
2287 
2288 	bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2289 	bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2290 	bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2291 
2292 	err = device_create_file(&bmc->dev->dev,
2293 			   &bmc->device_id_attr);
2294 	if (err)
2295 		goto out;
2296 	err = device_create_file(&bmc->dev->dev,
2297 			   &bmc->provides_dev_sdrs_attr);
2298 	if (err)
2299 		goto out_devid;
2300 	err = device_create_file(&bmc->dev->dev,
2301 			   &bmc->revision_attr);
2302 	if (err)
2303 		goto out_sdrs;
2304 	err = device_create_file(&bmc->dev->dev,
2305 			   &bmc->firmware_rev_attr);
2306 	if (err)
2307 		goto out_rev;
2308 	err = device_create_file(&bmc->dev->dev,
2309 			   &bmc->version_attr);
2310 	if (err)
2311 		goto out_firm;
2312 	err = device_create_file(&bmc->dev->dev,
2313 			   &bmc->add_dev_support_attr);
2314 	if (err)
2315 		goto out_version;
2316 	err = device_create_file(&bmc->dev->dev,
2317 			   &bmc->manufacturer_id_attr);
2318 	if (err)
2319 		goto out_add_dev;
2320 	err = device_create_file(&bmc->dev->dev,
2321 			   &bmc->product_id_attr);
2322 	if (err)
2323 		goto out_manu;
2324 	if (bmc->id.aux_firmware_revision_set) {
2325 		err = device_create_file(&bmc->dev->dev,
2326 				   &bmc->aux_firmware_rev_attr);
2327 		if (err)
2328 			goto out_prod_id;
2329 	}
2330 	if (bmc->guid_set) {
2331 		err = device_create_file(&bmc->dev->dev,
2332 				   &bmc->guid_attr);
2333 		if (err)
2334 			goto out_aux_firm;
2335 	}
2336 
2337 	return 0;
2338 
2339 out_aux_firm:
2340 	if (bmc->id.aux_firmware_revision_set)
2341 		device_remove_file(&bmc->dev->dev,
2342 				   &bmc->aux_firmware_rev_attr);
2343 out_prod_id:
2344 	device_remove_file(&bmc->dev->dev,
2345 			   &bmc->product_id_attr);
2346 out_manu:
2347 	device_remove_file(&bmc->dev->dev,
2348 			   &bmc->manufacturer_id_attr);
2349 out_add_dev:
2350 	device_remove_file(&bmc->dev->dev,
2351 			   &bmc->add_dev_support_attr);
2352 out_version:
2353 	device_remove_file(&bmc->dev->dev,
2354 			   &bmc->version_attr);
2355 out_firm:
2356 	device_remove_file(&bmc->dev->dev,
2357 			   &bmc->firmware_rev_attr);
2358 out_rev:
2359 	device_remove_file(&bmc->dev->dev,
2360 			   &bmc->revision_attr);
2361 out_sdrs:
2362 	device_remove_file(&bmc->dev->dev,
2363 			   &bmc->provides_dev_sdrs_attr);
2364 out_devid:
2365 	device_remove_file(&bmc->dev->dev,
2366 			   &bmc->device_id_attr);
2367 out:
2368 	return err;
2369 }
2370 
2371 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2372 			     const char *sysfs_name)
2373 {
2374 	int               rv;
2375 	struct bmc_device *bmc = intf->bmc;
2376 	struct bmc_device *old_bmc;
2377 	int               size;
2378 	char              dummy[1];
2379 
2380 	mutex_lock(&ipmidriver_mutex);
2381 
2382 	/*
2383 	 * Try to find if there is an bmc_device struct
2384 	 * representing the interfaced BMC already
2385 	 */
2386 	if (bmc->guid_set)
2387 		old_bmc = ipmi_find_bmc_guid(&ipmidriver, bmc->guid);
2388 	else
2389 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver,
2390 						    bmc->id.product_id,
2391 						    bmc->id.device_id);
2392 
2393 	/*
2394 	 * If there is already an bmc_device, free the new one,
2395 	 * otherwise register the new BMC device
2396 	 */
2397 	if (old_bmc) {
2398 		kfree(bmc);
2399 		intf->bmc = old_bmc;
2400 		bmc = old_bmc;
2401 
2402 		kref_get(&bmc->refcount);
2403 		mutex_unlock(&ipmidriver_mutex);
2404 
2405 		printk(KERN_INFO
2406 		       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2407 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2408 		       bmc->id.manufacturer_id,
2409 		       bmc->id.product_id,
2410 		       bmc->id.device_id);
2411 	} else {
2412 		char name[14];
2413 		unsigned char orig_dev_id = bmc->id.device_id;
2414 		int warn_printed = 0;
2415 
2416 		snprintf(name, sizeof(name),
2417 			 "ipmi_bmc.%4.4x", bmc->id.product_id);
2418 
2419 		while (ipmi_find_bmc_prod_dev_id(&ipmidriver,
2420 						 bmc->id.product_id,
2421 						 bmc->id.device_id)) {
2422 			if (!warn_printed) {
2423 				printk(KERN_WARNING PFX
2424 				       "This machine has two different BMCs"
2425 				       " with the same product id and device"
2426 				       " id.  This is an error in the"
2427 				       " firmware, but incrementing the"
2428 				       " device id to work around the problem."
2429 				       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2430 				       bmc->id.product_id, bmc->id.device_id);
2431 				warn_printed = 1;
2432 			}
2433 			bmc->id.device_id++; /* Wraps at 255 */
2434 			if (bmc->id.device_id == orig_dev_id) {
2435 				printk(KERN_ERR PFX
2436 				       "Out of device ids!\n");
2437 				break;
2438 			}
2439 		}
2440 
2441 		bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2442 		if (!bmc->dev) {
2443 			mutex_unlock(&ipmidriver_mutex);
2444 			printk(KERN_ERR
2445 			       "ipmi_msghandler:"
2446 			       " Unable to allocate platform device\n");
2447 			return -ENOMEM;
2448 		}
2449 		bmc->dev->dev.driver = &ipmidriver;
2450 		dev_set_drvdata(&bmc->dev->dev, bmc);
2451 		kref_init(&bmc->refcount);
2452 
2453 		rv = platform_device_add(bmc->dev);
2454 		mutex_unlock(&ipmidriver_mutex);
2455 		if (rv) {
2456 			platform_device_put(bmc->dev);
2457 			bmc->dev = NULL;
2458 			printk(KERN_ERR
2459 			       "ipmi_msghandler:"
2460 			       " Unable to register bmc device: %d\n",
2461 			       rv);
2462 			/*
2463 			 * Don't go to out_err, you can only do that if
2464 			 * the device is registered already.
2465 			 */
2466 			return rv;
2467 		}
2468 
2469 		rv = create_files(bmc);
2470 		if (rv) {
2471 			mutex_lock(&ipmidriver_mutex);
2472 			platform_device_unregister(bmc->dev);
2473 			mutex_unlock(&ipmidriver_mutex);
2474 
2475 			return rv;
2476 		}
2477 
2478 		printk(KERN_INFO
2479 		       "ipmi: Found new BMC (man_id: 0x%6.6x, "
2480 		       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2481 		       bmc->id.manufacturer_id,
2482 		       bmc->id.product_id,
2483 		       bmc->id.device_id);
2484 	}
2485 
2486 	/*
2487 	 * create symlink from system interface device to bmc device
2488 	 * and back.
2489 	 */
2490 	intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2491 	if (!intf->sysfs_name) {
2492 		rv = -ENOMEM;
2493 		printk(KERN_ERR
2494 		       "ipmi_msghandler: allocate link to BMC: %d\n",
2495 		       rv);
2496 		goto out_err;
2497 	}
2498 
2499 	rv = sysfs_create_link(&intf->si_dev->kobj,
2500 			       &bmc->dev->dev.kobj, intf->sysfs_name);
2501 	if (rv) {
2502 		kfree(intf->sysfs_name);
2503 		intf->sysfs_name = NULL;
2504 		printk(KERN_ERR
2505 		       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2506 		       rv);
2507 		goto out_err;
2508 	}
2509 
2510 	size = snprintf(dummy, 0, "ipmi%d", ifnum);
2511 	intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2512 	if (!intf->my_dev_name) {
2513 		kfree(intf->sysfs_name);
2514 		intf->sysfs_name = NULL;
2515 		rv = -ENOMEM;
2516 		printk(KERN_ERR
2517 		       "ipmi_msghandler: allocate link from BMC: %d\n",
2518 		       rv);
2519 		goto out_err;
2520 	}
2521 	snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2522 
2523 	rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2524 			       intf->my_dev_name);
2525 	if (rv) {
2526 		kfree(intf->sysfs_name);
2527 		intf->sysfs_name = NULL;
2528 		kfree(intf->my_dev_name);
2529 		intf->my_dev_name = NULL;
2530 		printk(KERN_ERR
2531 		       "ipmi_msghandler:"
2532 		       " Unable to create symlink to bmc: %d\n",
2533 		       rv);
2534 		goto out_err;
2535 	}
2536 
2537 	return 0;
2538 
2539 out_err:
2540 	ipmi_bmc_unregister(intf);
2541 	return rv;
2542 }
2543 
2544 static int
2545 send_guid_cmd(ipmi_smi_t intf, int chan)
2546 {
2547 	struct kernel_ipmi_msg            msg;
2548 	struct ipmi_system_interface_addr si;
2549 
2550 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2551 	si.channel = IPMI_BMC_CHANNEL;
2552 	si.lun = 0;
2553 
2554 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2555 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2556 	msg.data = NULL;
2557 	msg.data_len = 0;
2558 	return i_ipmi_request(NULL,
2559 			      intf,
2560 			      (struct ipmi_addr *) &si,
2561 			      0,
2562 			      &msg,
2563 			      intf,
2564 			      NULL,
2565 			      NULL,
2566 			      0,
2567 			      intf->channels[0].address,
2568 			      intf->channels[0].lun,
2569 			      -1, 0);
2570 }
2571 
2572 static void
2573 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2574 {
2575 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2576 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2577 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2578 		/* Not for me */
2579 		return;
2580 
2581 	if (msg->msg.data[0] != 0) {
2582 		/* Error from getting the GUID, the BMC doesn't have one. */
2583 		intf->bmc->guid_set = 0;
2584 		goto out;
2585 	}
2586 
2587 	if (msg->msg.data_len < 17) {
2588 		intf->bmc->guid_set = 0;
2589 		printk(KERN_WARNING PFX
2590 		       "guid_handler: The GUID response from the BMC was too"
2591 		       " short, it was %d but should have been 17.  Assuming"
2592 		       " GUID is not available.\n",
2593 		       msg->msg.data_len);
2594 		goto out;
2595 	}
2596 
2597 	memcpy(intf->bmc->guid, msg->msg.data, 16);
2598 	intf->bmc->guid_set = 1;
2599  out:
2600 	wake_up(&intf->waitq);
2601 }
2602 
2603 static void
2604 get_guid(ipmi_smi_t intf)
2605 {
2606 	int rv;
2607 
2608 	intf->bmc->guid_set = 0x2;
2609 	intf->null_user_handler = guid_handler;
2610 	rv = send_guid_cmd(intf, 0);
2611 	if (rv)
2612 		/* Send failed, no GUID available. */
2613 		intf->bmc->guid_set = 0;
2614 	wait_event(intf->waitq, intf->bmc->guid_set != 2);
2615 	intf->null_user_handler = NULL;
2616 }
2617 
2618 static int
2619 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2620 {
2621 	struct kernel_ipmi_msg            msg;
2622 	unsigned char                     data[1];
2623 	struct ipmi_system_interface_addr si;
2624 
2625 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2626 	si.channel = IPMI_BMC_CHANNEL;
2627 	si.lun = 0;
2628 
2629 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2630 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2631 	msg.data = data;
2632 	msg.data_len = 1;
2633 	data[0] = chan;
2634 	return i_ipmi_request(NULL,
2635 			      intf,
2636 			      (struct ipmi_addr *) &si,
2637 			      0,
2638 			      &msg,
2639 			      intf,
2640 			      NULL,
2641 			      NULL,
2642 			      0,
2643 			      intf->channels[0].address,
2644 			      intf->channels[0].lun,
2645 			      -1, 0);
2646 }
2647 
2648 static void
2649 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2650 {
2651 	int rv = 0;
2652 	int chan;
2653 
2654 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2655 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2656 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2657 		/* It's the one we want */
2658 		if (msg->msg.data[0] != 0) {
2659 			/* Got an error from the channel, just go on. */
2660 
2661 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2662 				/*
2663 				 * If the MC does not support this
2664 				 * command, that is legal.  We just
2665 				 * assume it has one IPMB at channel
2666 				 * zero.
2667 				 */
2668 				intf->channels[0].medium
2669 					= IPMI_CHANNEL_MEDIUM_IPMB;
2670 				intf->channels[0].protocol
2671 					= IPMI_CHANNEL_PROTOCOL_IPMB;
2672 				rv = -ENOSYS;
2673 
2674 				intf->curr_channel = IPMI_MAX_CHANNELS;
2675 				wake_up(&intf->waitq);
2676 				goto out;
2677 			}
2678 			goto next_channel;
2679 		}
2680 		if (msg->msg.data_len < 4) {
2681 			/* Message not big enough, just go on. */
2682 			goto next_channel;
2683 		}
2684 		chan = intf->curr_channel;
2685 		intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2686 		intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2687 
2688  next_channel:
2689 		intf->curr_channel++;
2690 		if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2691 			wake_up(&intf->waitq);
2692 		else
2693 			rv = send_channel_info_cmd(intf, intf->curr_channel);
2694 
2695 		if (rv) {
2696 			/* Got an error somehow, just give up. */
2697 			intf->curr_channel = IPMI_MAX_CHANNELS;
2698 			wake_up(&intf->waitq);
2699 
2700 			printk(KERN_WARNING PFX
2701 			       "Error sending channel information: %d\n",
2702 			       rv);
2703 		}
2704 	}
2705  out:
2706 	return;
2707 }
2708 
2709 void ipmi_poll_interface(ipmi_user_t user)
2710 {
2711 	ipmi_smi_t intf = user->intf;
2712 
2713 	if (intf->handlers->poll)
2714 		intf->handlers->poll(intf->send_info);
2715 }
2716 EXPORT_SYMBOL(ipmi_poll_interface);
2717 
2718 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2719 		      void		       *send_info,
2720 		      struct ipmi_device_id    *device_id,
2721 		      struct device            *si_dev,
2722 		      const char               *sysfs_name,
2723 		      unsigned char            slave_addr)
2724 {
2725 	int              i, j;
2726 	int              rv;
2727 	ipmi_smi_t       intf;
2728 	ipmi_smi_t       tintf;
2729 	struct list_head *link;
2730 
2731 	/*
2732 	 * Make sure the driver is actually initialized, this handles
2733 	 * problems with initialization order.
2734 	 */
2735 	if (!initialized) {
2736 		rv = ipmi_init_msghandler();
2737 		if (rv)
2738 			return rv;
2739 		/*
2740 		 * The init code doesn't return an error if it was turned
2741 		 * off, but it won't initialize.  Check that.
2742 		 */
2743 		if (!initialized)
2744 			return -ENODEV;
2745 	}
2746 
2747 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2748 	if (!intf)
2749 		return -ENOMEM;
2750 
2751 	intf->ipmi_version_major = ipmi_version_major(device_id);
2752 	intf->ipmi_version_minor = ipmi_version_minor(device_id);
2753 
2754 	intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2755 	if (!intf->bmc) {
2756 		kfree(intf);
2757 		return -ENOMEM;
2758 	}
2759 	intf->intf_num = -1; /* Mark it invalid for now. */
2760 	kref_init(&intf->refcount);
2761 	intf->bmc->id = *device_id;
2762 	intf->si_dev = si_dev;
2763 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2764 		intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2765 		intf->channels[j].lun = 2;
2766 	}
2767 	if (slave_addr != 0)
2768 		intf->channels[0].address = slave_addr;
2769 	INIT_LIST_HEAD(&intf->users);
2770 	intf->handlers = handlers;
2771 	intf->send_info = send_info;
2772 	spin_lock_init(&intf->seq_lock);
2773 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2774 		intf->seq_table[j].inuse = 0;
2775 		intf->seq_table[j].seqid = 0;
2776 	}
2777 	intf->curr_seq = 0;
2778 #ifdef CONFIG_PROC_FS
2779 	mutex_init(&intf->proc_entry_lock);
2780 #endif
2781 	spin_lock_init(&intf->waiting_msgs_lock);
2782 	INIT_LIST_HEAD(&intf->waiting_msgs);
2783 	spin_lock_init(&intf->events_lock);
2784 	INIT_LIST_HEAD(&intf->waiting_events);
2785 	intf->waiting_events_count = 0;
2786 	mutex_init(&intf->cmd_rcvrs_mutex);
2787 	spin_lock_init(&intf->maintenance_mode_lock);
2788 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
2789 	init_waitqueue_head(&intf->waitq);
2790 	for (i = 0; i < IPMI_NUM_STATS; i++)
2791 		atomic_set(&intf->stats[i], 0);
2792 
2793 	intf->proc_dir = NULL;
2794 
2795 	mutex_lock(&smi_watchers_mutex);
2796 	mutex_lock(&ipmi_interfaces_mutex);
2797 	/* Look for a hole in the numbers. */
2798 	i = 0;
2799 	link = &ipmi_interfaces;
2800 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2801 		if (tintf->intf_num != i) {
2802 			link = &tintf->link;
2803 			break;
2804 		}
2805 		i++;
2806 	}
2807 	/* Add the new interface in numeric order. */
2808 	if (i == 0)
2809 		list_add_rcu(&intf->link, &ipmi_interfaces);
2810 	else
2811 		list_add_tail_rcu(&intf->link, link);
2812 
2813 	rv = handlers->start_processing(send_info, intf);
2814 	if (rv)
2815 		goto out;
2816 
2817 	get_guid(intf);
2818 
2819 	if ((intf->ipmi_version_major > 1)
2820 			|| ((intf->ipmi_version_major == 1)
2821 			    && (intf->ipmi_version_minor >= 5))) {
2822 		/*
2823 		 * Start scanning the channels to see what is
2824 		 * available.
2825 		 */
2826 		intf->null_user_handler = channel_handler;
2827 		intf->curr_channel = 0;
2828 		rv = send_channel_info_cmd(intf, 0);
2829 		if (rv)
2830 			goto out;
2831 
2832 		/* Wait for the channel info to be read. */
2833 		wait_event(intf->waitq,
2834 			   intf->curr_channel >= IPMI_MAX_CHANNELS);
2835 		intf->null_user_handler = NULL;
2836 	} else {
2837 		/* Assume a single IPMB channel at zero. */
2838 		intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2839 		intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2840 	}
2841 
2842 	if (rv == 0)
2843 		rv = add_proc_entries(intf, i);
2844 
2845 	rv = ipmi_bmc_register(intf, i, sysfs_name);
2846 
2847  out:
2848 	if (rv) {
2849 		if (intf->proc_dir)
2850 			remove_proc_entries(intf);
2851 		intf->handlers = NULL;
2852 		list_del_rcu(&intf->link);
2853 		mutex_unlock(&ipmi_interfaces_mutex);
2854 		mutex_unlock(&smi_watchers_mutex);
2855 		synchronize_rcu();
2856 		kref_put(&intf->refcount, intf_free);
2857 	} else {
2858 		/*
2859 		 * Keep memory order straight for RCU readers.  Make
2860 		 * sure everything else is committed to memory before
2861 		 * setting intf_num to mark the interface valid.
2862 		 */
2863 		smp_wmb();
2864 		intf->intf_num = i;
2865 		mutex_unlock(&ipmi_interfaces_mutex);
2866 		/* After this point the interface is legal to use. */
2867 		call_smi_watchers(i, intf->si_dev);
2868 		mutex_unlock(&smi_watchers_mutex);
2869 	}
2870 
2871 	return rv;
2872 }
2873 EXPORT_SYMBOL(ipmi_register_smi);
2874 
2875 static void cleanup_smi_msgs(ipmi_smi_t intf)
2876 {
2877 	int              i;
2878 	struct seq_table *ent;
2879 
2880 	/* No need for locks, the interface is down. */
2881 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2882 		ent = &(intf->seq_table[i]);
2883 		if (!ent->inuse)
2884 			continue;
2885 		deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2886 	}
2887 }
2888 
2889 int ipmi_unregister_smi(ipmi_smi_t intf)
2890 {
2891 	struct ipmi_smi_watcher *w;
2892 	int    intf_num = intf->intf_num;
2893 
2894 	ipmi_bmc_unregister(intf);
2895 
2896 	mutex_lock(&smi_watchers_mutex);
2897 	mutex_lock(&ipmi_interfaces_mutex);
2898 	intf->intf_num = -1;
2899 	intf->handlers = NULL;
2900 	list_del_rcu(&intf->link);
2901 	mutex_unlock(&ipmi_interfaces_mutex);
2902 	synchronize_rcu();
2903 
2904 	cleanup_smi_msgs(intf);
2905 
2906 	remove_proc_entries(intf);
2907 
2908 	/*
2909 	 * Call all the watcher interfaces to tell them that
2910 	 * an interface is gone.
2911 	 */
2912 	list_for_each_entry(w, &smi_watchers, link)
2913 		w->smi_gone(intf_num);
2914 	mutex_unlock(&smi_watchers_mutex);
2915 
2916 	kref_put(&intf->refcount, intf_free);
2917 	return 0;
2918 }
2919 EXPORT_SYMBOL(ipmi_unregister_smi);
2920 
2921 static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
2922 				   struct ipmi_smi_msg *msg)
2923 {
2924 	struct ipmi_ipmb_addr ipmb_addr;
2925 	struct ipmi_recv_msg  *recv_msg;
2926 
2927 	/*
2928 	 * This is 11, not 10, because the response must contain a
2929 	 * completion code.
2930 	 */
2931 	if (msg->rsp_size < 11) {
2932 		/* Message not big enough, just ignore it. */
2933 		ipmi_inc_stat(intf, invalid_ipmb_responses);
2934 		return 0;
2935 	}
2936 
2937 	if (msg->rsp[2] != 0) {
2938 		/* An error getting the response, just ignore it. */
2939 		return 0;
2940 	}
2941 
2942 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2943 	ipmb_addr.slave_addr = msg->rsp[6];
2944 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
2945 	ipmb_addr.lun = msg->rsp[7] & 3;
2946 
2947 	/*
2948 	 * It's a response from a remote entity.  Look up the sequence
2949 	 * number and handle the response.
2950 	 */
2951 	if (intf_find_seq(intf,
2952 			  msg->rsp[7] >> 2,
2953 			  msg->rsp[3] & 0x0f,
2954 			  msg->rsp[8],
2955 			  (msg->rsp[4] >> 2) & (~1),
2956 			  (struct ipmi_addr *) &(ipmb_addr),
2957 			  &recv_msg)) {
2958 		/*
2959 		 * We were unable to find the sequence number,
2960 		 * so just nuke the message.
2961 		 */
2962 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
2963 		return 0;
2964 	}
2965 
2966 	memcpy(recv_msg->msg_data,
2967 	       &(msg->rsp[9]),
2968 	       msg->rsp_size - 9);
2969 	/*
2970 	 * The other fields matched, so no need to set them, except
2971 	 * for netfn, which needs to be the response that was
2972 	 * returned, not the request value.
2973 	 */
2974 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
2975 	recv_msg->msg.data = recv_msg->msg_data;
2976 	recv_msg->msg.data_len = msg->rsp_size - 10;
2977 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2978 	ipmi_inc_stat(intf, handled_ipmb_responses);
2979 	deliver_response(recv_msg);
2980 
2981 	return 0;
2982 }
2983 
2984 static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
2985 				   struct ipmi_smi_msg *msg)
2986 {
2987 	struct cmd_rcvr          *rcvr;
2988 	int                      rv = 0;
2989 	unsigned char            netfn;
2990 	unsigned char            cmd;
2991 	unsigned char            chan;
2992 	ipmi_user_t              user = NULL;
2993 	struct ipmi_ipmb_addr    *ipmb_addr;
2994 	struct ipmi_recv_msg     *recv_msg;
2995 	struct ipmi_smi_handlers *handlers;
2996 
2997 	if (msg->rsp_size < 10) {
2998 		/* Message not big enough, just ignore it. */
2999 		ipmi_inc_stat(intf, invalid_commands);
3000 		return 0;
3001 	}
3002 
3003 	if (msg->rsp[2] != 0) {
3004 		/* An error getting the response, just ignore it. */
3005 		return 0;
3006 	}
3007 
3008 	netfn = msg->rsp[4] >> 2;
3009 	cmd = msg->rsp[8];
3010 	chan = msg->rsp[3] & 0xf;
3011 
3012 	rcu_read_lock();
3013 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3014 	if (rcvr) {
3015 		user = rcvr->user;
3016 		kref_get(&user->refcount);
3017 	} else
3018 		user = NULL;
3019 	rcu_read_unlock();
3020 
3021 	if (user == NULL) {
3022 		/* We didn't find a user, deliver an error response. */
3023 		ipmi_inc_stat(intf, unhandled_commands);
3024 
3025 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3026 		msg->data[1] = IPMI_SEND_MSG_CMD;
3027 		msg->data[2] = msg->rsp[3];
3028 		msg->data[3] = msg->rsp[6];
3029 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3030 		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3031 		msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3032 		/* rqseq/lun */
3033 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3034 		msg->data[8] = msg->rsp[8]; /* cmd */
3035 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3036 		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3037 		msg->data_size = 11;
3038 
3039 #ifdef DEBUG_MSGING
3040 	{
3041 		int m;
3042 		printk("Invalid command:");
3043 		for (m = 0; m < msg->data_size; m++)
3044 			printk(" %2.2x", msg->data[m]);
3045 		printk("\n");
3046 	}
3047 #endif
3048 		rcu_read_lock();
3049 		handlers = intf->handlers;
3050 		if (handlers) {
3051 			handlers->sender(intf->send_info, msg, 0);
3052 			/*
3053 			 * We used the message, so return the value
3054 			 * that causes it to not be freed or
3055 			 * queued.
3056 			 */
3057 			rv = -1;
3058 		}
3059 		rcu_read_unlock();
3060 	} else {
3061 		/* Deliver the message to the user. */
3062 		ipmi_inc_stat(intf, handled_commands);
3063 
3064 		recv_msg = ipmi_alloc_recv_msg();
3065 		if (!recv_msg) {
3066 			/*
3067 			 * We couldn't allocate memory for the
3068 			 * message, so requeue it for handling
3069 			 * later.
3070 			 */
3071 			rv = 1;
3072 			kref_put(&user->refcount, free_user);
3073 		} else {
3074 			/* Extract the source address from the data. */
3075 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3076 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3077 			ipmb_addr->slave_addr = msg->rsp[6];
3078 			ipmb_addr->lun = msg->rsp[7] & 3;
3079 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3080 
3081 			/*
3082 			 * Extract the rest of the message information
3083 			 * from the IPMB header.
3084 			 */
3085 			recv_msg->user = user;
3086 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3087 			recv_msg->msgid = msg->rsp[7] >> 2;
3088 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3089 			recv_msg->msg.cmd = msg->rsp[8];
3090 			recv_msg->msg.data = recv_msg->msg_data;
3091 
3092 			/*
3093 			 * We chop off 10, not 9 bytes because the checksum
3094 			 * at the end also needs to be removed.
3095 			 */
3096 			recv_msg->msg.data_len = msg->rsp_size - 10;
3097 			memcpy(recv_msg->msg_data,
3098 			       &(msg->rsp[9]),
3099 			       msg->rsp_size - 10);
3100 			deliver_response(recv_msg);
3101 		}
3102 	}
3103 
3104 	return rv;
3105 }
3106 
3107 static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3108 				  struct ipmi_smi_msg *msg)
3109 {
3110 	struct ipmi_lan_addr  lan_addr;
3111 	struct ipmi_recv_msg  *recv_msg;
3112 
3113 
3114 	/*
3115 	 * This is 13, not 12, because the response must contain a
3116 	 * completion code.
3117 	 */
3118 	if (msg->rsp_size < 13) {
3119 		/* Message not big enough, just ignore it. */
3120 		ipmi_inc_stat(intf, invalid_lan_responses);
3121 		return 0;
3122 	}
3123 
3124 	if (msg->rsp[2] != 0) {
3125 		/* An error getting the response, just ignore it. */
3126 		return 0;
3127 	}
3128 
3129 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3130 	lan_addr.session_handle = msg->rsp[4];
3131 	lan_addr.remote_SWID = msg->rsp[8];
3132 	lan_addr.local_SWID = msg->rsp[5];
3133 	lan_addr.channel = msg->rsp[3] & 0x0f;
3134 	lan_addr.privilege = msg->rsp[3] >> 4;
3135 	lan_addr.lun = msg->rsp[9] & 3;
3136 
3137 	/*
3138 	 * It's a response from a remote entity.  Look up the sequence
3139 	 * number and handle the response.
3140 	 */
3141 	if (intf_find_seq(intf,
3142 			  msg->rsp[9] >> 2,
3143 			  msg->rsp[3] & 0x0f,
3144 			  msg->rsp[10],
3145 			  (msg->rsp[6] >> 2) & (~1),
3146 			  (struct ipmi_addr *) &(lan_addr),
3147 			  &recv_msg)) {
3148 		/*
3149 		 * We were unable to find the sequence number,
3150 		 * so just nuke the message.
3151 		 */
3152 		ipmi_inc_stat(intf, unhandled_lan_responses);
3153 		return 0;
3154 	}
3155 
3156 	memcpy(recv_msg->msg_data,
3157 	       &(msg->rsp[11]),
3158 	       msg->rsp_size - 11);
3159 	/*
3160 	 * The other fields matched, so no need to set them, except
3161 	 * for netfn, which needs to be the response that was
3162 	 * returned, not the request value.
3163 	 */
3164 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
3165 	recv_msg->msg.data = recv_msg->msg_data;
3166 	recv_msg->msg.data_len = msg->rsp_size - 12;
3167 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3168 	ipmi_inc_stat(intf, handled_lan_responses);
3169 	deliver_response(recv_msg);
3170 
3171 	return 0;
3172 }
3173 
3174 static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3175 				  struct ipmi_smi_msg *msg)
3176 {
3177 	struct cmd_rcvr          *rcvr;
3178 	int                      rv = 0;
3179 	unsigned char            netfn;
3180 	unsigned char            cmd;
3181 	unsigned char            chan;
3182 	ipmi_user_t              user = NULL;
3183 	struct ipmi_lan_addr     *lan_addr;
3184 	struct ipmi_recv_msg     *recv_msg;
3185 
3186 	if (msg->rsp_size < 12) {
3187 		/* Message not big enough, just ignore it. */
3188 		ipmi_inc_stat(intf, invalid_commands);
3189 		return 0;
3190 	}
3191 
3192 	if (msg->rsp[2] != 0) {
3193 		/* An error getting the response, just ignore it. */
3194 		return 0;
3195 	}
3196 
3197 	netfn = msg->rsp[6] >> 2;
3198 	cmd = msg->rsp[10];
3199 	chan = msg->rsp[3] & 0xf;
3200 
3201 	rcu_read_lock();
3202 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3203 	if (rcvr) {
3204 		user = rcvr->user;
3205 		kref_get(&user->refcount);
3206 	} else
3207 		user = NULL;
3208 	rcu_read_unlock();
3209 
3210 	if (user == NULL) {
3211 		/* We didn't find a user, just give up. */
3212 		ipmi_inc_stat(intf, unhandled_commands);
3213 
3214 		/*
3215 		 * Don't do anything with these messages, just allow
3216 		 * them to be freed.
3217 		 */
3218 		rv = 0;
3219 	} else {
3220 		/* Deliver the message to the user. */
3221 		ipmi_inc_stat(intf, handled_commands);
3222 
3223 		recv_msg = ipmi_alloc_recv_msg();
3224 		if (!recv_msg) {
3225 			/*
3226 			 * We couldn't allocate memory for the
3227 			 * message, so requeue it for handling later.
3228 			 */
3229 			rv = 1;
3230 			kref_put(&user->refcount, free_user);
3231 		} else {
3232 			/* Extract the source address from the data. */
3233 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3234 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3235 			lan_addr->session_handle = msg->rsp[4];
3236 			lan_addr->remote_SWID = msg->rsp[8];
3237 			lan_addr->local_SWID = msg->rsp[5];
3238 			lan_addr->lun = msg->rsp[9] & 3;
3239 			lan_addr->channel = msg->rsp[3] & 0xf;
3240 			lan_addr->privilege = msg->rsp[3] >> 4;
3241 
3242 			/*
3243 			 * Extract the rest of the message information
3244 			 * from the IPMB header.
3245 			 */
3246 			recv_msg->user = user;
3247 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3248 			recv_msg->msgid = msg->rsp[9] >> 2;
3249 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
3250 			recv_msg->msg.cmd = msg->rsp[10];
3251 			recv_msg->msg.data = recv_msg->msg_data;
3252 
3253 			/*
3254 			 * We chop off 12, not 11 bytes because the checksum
3255 			 * at the end also needs to be removed.
3256 			 */
3257 			recv_msg->msg.data_len = msg->rsp_size - 12;
3258 			memcpy(recv_msg->msg_data,
3259 			       &(msg->rsp[11]),
3260 			       msg->rsp_size - 12);
3261 			deliver_response(recv_msg);
3262 		}
3263 	}
3264 
3265 	return rv;
3266 }
3267 
3268 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3269 				     struct ipmi_smi_msg  *msg)
3270 {
3271 	struct ipmi_system_interface_addr *smi_addr;
3272 
3273 	recv_msg->msgid = 0;
3274 	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3275 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3276 	smi_addr->channel = IPMI_BMC_CHANNEL;
3277 	smi_addr->lun = msg->rsp[0] & 3;
3278 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3279 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
3280 	recv_msg->msg.cmd = msg->rsp[1];
3281 	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3282 	recv_msg->msg.data = recv_msg->msg_data;
3283 	recv_msg->msg.data_len = msg->rsp_size - 3;
3284 }
3285 
3286 static int handle_read_event_rsp(ipmi_smi_t          intf,
3287 				 struct ipmi_smi_msg *msg)
3288 {
3289 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
3290 	struct list_head     msgs;
3291 	ipmi_user_t          user;
3292 	int                  rv = 0;
3293 	int                  deliver_count = 0;
3294 	unsigned long        flags;
3295 
3296 	if (msg->rsp_size < 19) {
3297 		/* Message is too small to be an IPMB event. */
3298 		ipmi_inc_stat(intf, invalid_events);
3299 		return 0;
3300 	}
3301 
3302 	if (msg->rsp[2] != 0) {
3303 		/* An error getting the event, just ignore it. */
3304 		return 0;
3305 	}
3306 
3307 	INIT_LIST_HEAD(&msgs);
3308 
3309 	spin_lock_irqsave(&intf->events_lock, flags);
3310 
3311 	ipmi_inc_stat(intf, events);
3312 
3313 	/*
3314 	 * Allocate and fill in one message for every user that is
3315 	 * getting events.
3316 	 */
3317 	rcu_read_lock();
3318 	list_for_each_entry_rcu(user, &intf->users, link) {
3319 		if (!user->gets_events)
3320 			continue;
3321 
3322 		recv_msg = ipmi_alloc_recv_msg();
3323 		if (!recv_msg) {
3324 			rcu_read_unlock();
3325 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3326 						 link) {
3327 				list_del(&recv_msg->link);
3328 				ipmi_free_recv_msg(recv_msg);
3329 			}
3330 			/*
3331 			 * We couldn't allocate memory for the
3332 			 * message, so requeue it for handling
3333 			 * later.
3334 			 */
3335 			rv = 1;
3336 			goto out;
3337 		}
3338 
3339 		deliver_count++;
3340 
3341 		copy_event_into_recv_msg(recv_msg, msg);
3342 		recv_msg->user = user;
3343 		kref_get(&user->refcount);
3344 		list_add_tail(&(recv_msg->link), &msgs);
3345 	}
3346 	rcu_read_unlock();
3347 
3348 	if (deliver_count) {
3349 		/* Now deliver all the messages. */
3350 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3351 			list_del(&recv_msg->link);
3352 			deliver_response(recv_msg);
3353 		}
3354 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3355 		/*
3356 		 * No one to receive the message, put it in queue if there's
3357 		 * not already too many things in the queue.
3358 		 */
3359 		recv_msg = ipmi_alloc_recv_msg();
3360 		if (!recv_msg) {
3361 			/*
3362 			 * We couldn't allocate memory for the
3363 			 * message, so requeue it for handling
3364 			 * later.
3365 			 */
3366 			rv = 1;
3367 			goto out;
3368 		}
3369 
3370 		copy_event_into_recv_msg(recv_msg, msg);
3371 		list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3372 		intf->waiting_events_count++;
3373 	} else if (!intf->event_msg_printed) {
3374 		/*
3375 		 * There's too many things in the queue, discard this
3376 		 * message.
3377 		 */
3378 		printk(KERN_WARNING PFX "Event queue full, discarding"
3379 		       " incoming events\n");
3380 		intf->event_msg_printed = 1;
3381 	}
3382 
3383  out:
3384 	spin_unlock_irqrestore(&(intf->events_lock), flags);
3385 
3386 	return rv;
3387 }
3388 
3389 static int handle_bmc_rsp(ipmi_smi_t          intf,
3390 			  struct ipmi_smi_msg *msg)
3391 {
3392 	struct ipmi_recv_msg *recv_msg;
3393 	struct ipmi_user     *user;
3394 
3395 	recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3396 	if (recv_msg == NULL) {
3397 		printk(KERN_WARNING
3398 		       "IPMI message received with no owner. This\n"
3399 		       "could be because of a malformed message, or\n"
3400 		       "because of a hardware error.  Contact your\n"
3401 		       "hardware vender for assistance\n");
3402 		return 0;
3403 	}
3404 
3405 	user = recv_msg->user;
3406 	/* Make sure the user still exists. */
3407 	if (user && !user->valid) {
3408 		/* The user for the message went away, so give up. */
3409 		ipmi_inc_stat(intf, unhandled_local_responses);
3410 		ipmi_free_recv_msg(recv_msg);
3411 	} else {
3412 		struct ipmi_system_interface_addr *smi_addr;
3413 
3414 		ipmi_inc_stat(intf, handled_local_responses);
3415 		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3416 		recv_msg->msgid = msg->msgid;
3417 		smi_addr = ((struct ipmi_system_interface_addr *)
3418 			    &(recv_msg->addr));
3419 		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3420 		smi_addr->channel = IPMI_BMC_CHANNEL;
3421 		smi_addr->lun = msg->rsp[0] & 3;
3422 		recv_msg->msg.netfn = msg->rsp[0] >> 2;
3423 		recv_msg->msg.cmd = msg->rsp[1];
3424 		memcpy(recv_msg->msg_data,
3425 		       &(msg->rsp[2]),
3426 		       msg->rsp_size - 2);
3427 		recv_msg->msg.data = recv_msg->msg_data;
3428 		recv_msg->msg.data_len = msg->rsp_size - 2;
3429 		deliver_response(recv_msg);
3430 	}
3431 
3432 	return 0;
3433 }
3434 
3435 /*
3436  * Handle a new message.  Return 1 if the message should be requeued,
3437  * 0 if the message should be freed, or -1 if the message should not
3438  * be freed or requeued.
3439  */
3440 static int handle_new_recv_msg(ipmi_smi_t          intf,
3441 			       struct ipmi_smi_msg *msg)
3442 {
3443 	int requeue;
3444 	int chan;
3445 
3446 #ifdef DEBUG_MSGING
3447 	int m;
3448 	printk("Recv:");
3449 	for (m = 0; m < msg->rsp_size; m++)
3450 		printk(" %2.2x", msg->rsp[m]);
3451 	printk("\n");
3452 #endif
3453 	if (msg->rsp_size < 2) {
3454 		/* Message is too small to be correct. */
3455 		printk(KERN_WARNING PFX "BMC returned to small a message"
3456 		       " for netfn %x cmd %x, got %d bytes\n",
3457 		       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3458 
3459 		/* Generate an error response for the message. */
3460 		msg->rsp[0] = msg->data[0] | (1 << 2);
3461 		msg->rsp[1] = msg->data[1];
3462 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3463 		msg->rsp_size = 3;
3464 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3465 		   || (msg->rsp[1] != msg->data[1])) {
3466 		/*
3467 		 * The NetFN and Command in the response is not even
3468 		 * marginally correct.
3469 		 */
3470 		printk(KERN_WARNING PFX "BMC returned incorrect response,"
3471 		       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3472 		       (msg->data[0] >> 2) | 1, msg->data[1],
3473 		       msg->rsp[0] >> 2, msg->rsp[1]);
3474 
3475 		/* Generate an error response for the message. */
3476 		msg->rsp[0] = msg->data[0] | (1 << 2);
3477 		msg->rsp[1] = msg->data[1];
3478 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3479 		msg->rsp_size = 3;
3480 	}
3481 
3482 	if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3483 	    && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3484 	    && (msg->user_data != NULL)) {
3485 		/*
3486 		 * It's a response to a response we sent.  For this we
3487 		 * deliver a send message response to the user.
3488 		 */
3489 		struct ipmi_recv_msg     *recv_msg = msg->user_data;
3490 
3491 		requeue = 0;
3492 		if (msg->rsp_size < 2)
3493 			/* Message is too small to be correct. */
3494 			goto out;
3495 
3496 		chan = msg->data[2] & 0x0f;
3497 		if (chan >= IPMI_MAX_CHANNELS)
3498 			/* Invalid channel number */
3499 			goto out;
3500 
3501 		if (!recv_msg)
3502 			goto out;
3503 
3504 		/* Make sure the user still exists. */
3505 		if (!recv_msg->user || !recv_msg->user->valid)
3506 			goto out;
3507 
3508 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3509 		recv_msg->msg.data = recv_msg->msg_data;
3510 		recv_msg->msg.data_len = 1;
3511 		recv_msg->msg_data[0] = msg->rsp[2];
3512 		deliver_response(recv_msg);
3513 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3514 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3515 		/* It's from the receive queue. */
3516 		chan = msg->rsp[3] & 0xf;
3517 		if (chan >= IPMI_MAX_CHANNELS) {
3518 			/* Invalid channel number */
3519 			requeue = 0;
3520 			goto out;
3521 		}
3522 
3523 		switch (intf->channels[chan].medium) {
3524 		case IPMI_CHANNEL_MEDIUM_IPMB:
3525 			if (msg->rsp[4] & 0x04) {
3526 				/*
3527 				 * It's a response, so find the
3528 				 * requesting message and send it up.
3529 				 */
3530 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
3531 			} else {
3532 				/*
3533 				 * It's a command to the SMS from some other
3534 				 * entity.  Handle that.
3535 				 */
3536 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
3537 			}
3538 			break;
3539 
3540 		case IPMI_CHANNEL_MEDIUM_8023LAN:
3541 		case IPMI_CHANNEL_MEDIUM_ASYNC:
3542 			if (msg->rsp[6] & 0x04) {
3543 				/*
3544 				 * It's a response, so find the
3545 				 * requesting message and send it up.
3546 				 */
3547 				requeue = handle_lan_get_msg_rsp(intf, msg);
3548 			} else {
3549 				/*
3550 				 * It's a command to the SMS from some other
3551 				 * entity.  Handle that.
3552 				 */
3553 				requeue = handle_lan_get_msg_cmd(intf, msg);
3554 			}
3555 			break;
3556 
3557 		default:
3558 			/*
3559 			 * We don't handle the channel type, so just
3560 			 * free the message.
3561 			 */
3562 			requeue = 0;
3563 		}
3564 
3565 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3566 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3567 		/* It's an asyncronous event. */
3568 		requeue = handle_read_event_rsp(intf, msg);
3569 	} else {
3570 		/* It's a response from the local BMC. */
3571 		requeue = handle_bmc_rsp(intf, msg);
3572 	}
3573 
3574  out:
3575 	return requeue;
3576 }
3577 
3578 /* Handle a new message from the lower layer. */
3579 void ipmi_smi_msg_received(ipmi_smi_t          intf,
3580 			   struct ipmi_smi_msg *msg)
3581 {
3582 	unsigned long flags = 0; /* keep us warning-free. */
3583 	int           rv;
3584 	int           run_to_completion;
3585 
3586 
3587 	if ((msg->data_size >= 2)
3588 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3589 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
3590 	    && (msg->user_data == NULL)) {
3591 		/*
3592 		 * This is the local response to a command send, start
3593 		 * the timer for these.  The user_data will not be
3594 		 * NULL if this is a response send, and we will let
3595 		 * response sends just go through.
3596 		 */
3597 
3598 		/*
3599 		 * Check for errors, if we get certain errors (ones
3600 		 * that mean basically we can try again later), we
3601 		 * ignore them and start the timer.  Otherwise we
3602 		 * report the error immediately.
3603 		 */
3604 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3605 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3606 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3607 		    && (msg->rsp[2] != IPMI_BUS_ERR)
3608 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3609 			int chan = msg->rsp[3] & 0xf;
3610 
3611 			/* Got an error sending the message, handle it. */
3612 			if (chan >= IPMI_MAX_CHANNELS)
3613 				; /* This shouldn't happen */
3614 			else if ((intf->channels[chan].medium
3615 				  == IPMI_CHANNEL_MEDIUM_8023LAN)
3616 				 || (intf->channels[chan].medium
3617 				     == IPMI_CHANNEL_MEDIUM_ASYNC))
3618 				ipmi_inc_stat(intf, sent_lan_command_errs);
3619 			else
3620 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
3621 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3622 		} else
3623 			/* The message was sent, start the timer. */
3624 			intf_start_seq_timer(intf, msg->msgid);
3625 
3626 		ipmi_free_smi_msg(msg);
3627 		goto out;
3628 	}
3629 
3630 	/*
3631 	 * To preserve message order, if the list is not empty, we
3632 	 * tack this message onto the end of the list.
3633 	 */
3634 	run_to_completion = intf->run_to_completion;
3635 	if (!run_to_completion)
3636 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3637 	if (!list_empty(&intf->waiting_msgs)) {
3638 		list_add_tail(&msg->link, &intf->waiting_msgs);
3639 		if (!run_to_completion)
3640 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3641 		goto out;
3642 	}
3643 	if (!run_to_completion)
3644 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3645 
3646 	rv = handle_new_recv_msg(intf, msg);
3647 	if (rv > 0) {
3648 		/*
3649 		 * Could not handle the message now, just add it to a
3650 		 * list to handle later.
3651 		 */
3652 		run_to_completion = intf->run_to_completion;
3653 		if (!run_to_completion)
3654 			spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3655 		list_add_tail(&msg->link, &intf->waiting_msgs);
3656 		if (!run_to_completion)
3657 			spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3658 	} else if (rv == 0) {
3659 		ipmi_free_smi_msg(msg);
3660 	}
3661 
3662  out:
3663 	return;
3664 }
3665 EXPORT_SYMBOL(ipmi_smi_msg_received);
3666 
3667 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3668 {
3669 	ipmi_user_t user;
3670 
3671 	rcu_read_lock();
3672 	list_for_each_entry_rcu(user, &intf->users, link) {
3673 		if (!user->handler->ipmi_watchdog_pretimeout)
3674 			continue;
3675 
3676 		user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3677 	}
3678 	rcu_read_unlock();
3679 }
3680 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3681 
3682 static struct ipmi_smi_msg *
3683 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3684 		  unsigned char seq, long seqid)
3685 {
3686 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3687 	if (!smi_msg)
3688 		/*
3689 		 * If we can't allocate the message, then just return, we
3690 		 * get 4 retries, so this should be ok.
3691 		 */
3692 		return NULL;
3693 
3694 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3695 	smi_msg->data_size = recv_msg->msg.data_len;
3696 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3697 
3698 #ifdef DEBUG_MSGING
3699 	{
3700 		int m;
3701 		printk("Resend: ");
3702 		for (m = 0; m < smi_msg->data_size; m++)
3703 			printk(" %2.2x", smi_msg->data[m]);
3704 		printk("\n");
3705 	}
3706 #endif
3707 	return smi_msg;
3708 }
3709 
3710 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3711 			      struct list_head *timeouts, long timeout_period,
3712 			      int slot, unsigned long *flags)
3713 {
3714 	struct ipmi_recv_msg     *msg;
3715 	struct ipmi_smi_handlers *handlers;
3716 
3717 	if (intf->intf_num == -1)
3718 		return;
3719 
3720 	if (!ent->inuse)
3721 		return;
3722 
3723 	ent->timeout -= timeout_period;
3724 	if (ent->timeout > 0)
3725 		return;
3726 
3727 	if (ent->retries_left == 0) {
3728 		/* The message has used all its retries. */
3729 		ent->inuse = 0;
3730 		msg = ent->recv_msg;
3731 		list_add_tail(&msg->link, timeouts);
3732 		if (ent->broadcast)
3733 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3734 		else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3735 			ipmi_inc_stat(intf, timed_out_lan_commands);
3736 		else
3737 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
3738 	} else {
3739 		struct ipmi_smi_msg *smi_msg;
3740 		/* More retries, send again. */
3741 
3742 		/*
3743 		 * Start with the max timer, set to normal timer after
3744 		 * the message is sent.
3745 		 */
3746 		ent->timeout = MAX_MSG_TIMEOUT;
3747 		ent->retries_left--;
3748 		if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3749 			ipmi_inc_stat(intf, retransmitted_lan_commands);
3750 		else
3751 			ipmi_inc_stat(intf, retransmitted_ipmb_commands);
3752 
3753 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3754 					    ent->seqid);
3755 		if (!smi_msg)
3756 			return;
3757 
3758 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
3759 
3760 		/*
3761 		 * Send the new message.  We send with a zero
3762 		 * priority.  It timed out, I doubt time is that
3763 		 * critical now, and high priority messages are really
3764 		 * only for messages to the local MC, which don't get
3765 		 * resent.
3766 		 */
3767 		handlers = intf->handlers;
3768 		if (handlers)
3769 			intf->handlers->sender(intf->send_info,
3770 					       smi_msg, 0);
3771 		else
3772 			ipmi_free_smi_msg(smi_msg);
3773 
3774 		spin_lock_irqsave(&intf->seq_lock, *flags);
3775 	}
3776 }
3777 
3778 static void ipmi_timeout_handler(long timeout_period)
3779 {
3780 	ipmi_smi_t           intf;
3781 	struct list_head     timeouts;
3782 	struct ipmi_recv_msg *msg, *msg2;
3783 	struct ipmi_smi_msg  *smi_msg, *smi_msg2;
3784 	unsigned long        flags;
3785 	int                  i;
3786 
3787 	rcu_read_lock();
3788 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3789 		/* See if any waiting messages need to be processed. */
3790 		spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3791 		list_for_each_entry_safe(smi_msg, smi_msg2,
3792 					 &intf->waiting_msgs, link) {
3793 			if (!handle_new_recv_msg(intf, smi_msg)) {
3794 				list_del(&smi_msg->link);
3795 				ipmi_free_smi_msg(smi_msg);
3796 			} else {
3797 				/*
3798 				 * To preserve message order, quit if we
3799 				 * can't handle a message.
3800 				 */
3801 				break;
3802 			}
3803 		}
3804 		spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3805 
3806 		/*
3807 		 * Go through the seq table and find any messages that
3808 		 * have timed out, putting them in the timeouts
3809 		 * list.
3810 		 */
3811 		INIT_LIST_HEAD(&timeouts);
3812 		spin_lock_irqsave(&intf->seq_lock, flags);
3813 		for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3814 			check_msg_timeout(intf, &(intf->seq_table[i]),
3815 					  &timeouts, timeout_period, i,
3816 					  &flags);
3817 		spin_unlock_irqrestore(&intf->seq_lock, flags);
3818 
3819 		list_for_each_entry_safe(msg, msg2, &timeouts, link)
3820 			deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3821 
3822 		/*
3823 		 * Maintenance mode handling.  Check the timeout
3824 		 * optimistically before we claim the lock.  It may
3825 		 * mean a timeout gets missed occasionally, but that
3826 		 * only means the timeout gets extended by one period
3827 		 * in that case.  No big deal, and it avoids the lock
3828 		 * most of the time.
3829 		 */
3830 		if (intf->auto_maintenance_timeout > 0) {
3831 			spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3832 			if (intf->auto_maintenance_timeout > 0) {
3833 				intf->auto_maintenance_timeout
3834 					-= timeout_period;
3835 				if (!intf->maintenance_mode
3836 				    && (intf->auto_maintenance_timeout <= 0)) {
3837 					intf->maintenance_mode_enable = 0;
3838 					maintenance_mode_update(intf);
3839 				}
3840 			}
3841 			spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3842 					       flags);
3843 		}
3844 	}
3845 	rcu_read_unlock();
3846 }
3847 
3848 static void ipmi_request_event(void)
3849 {
3850 	ipmi_smi_t               intf;
3851 	struct ipmi_smi_handlers *handlers;
3852 
3853 	rcu_read_lock();
3854 	/*
3855 	 * Called from the timer, no need to check if handlers is
3856 	 * valid.
3857 	 */
3858 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3859 		/* No event requests when in maintenance mode. */
3860 		if (intf->maintenance_mode_enable)
3861 			continue;
3862 
3863 		handlers = intf->handlers;
3864 		if (handlers)
3865 			handlers->request_events(intf->send_info);
3866 	}
3867 	rcu_read_unlock();
3868 }
3869 
3870 static struct timer_list ipmi_timer;
3871 
3872 /* Call every ~100 ms. */
3873 #define IPMI_TIMEOUT_TIME	100
3874 
3875 /* How many jiffies does it take to get to the timeout time. */
3876 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
3877 
3878 /*
3879  * Request events from the queue every second (this is the number of
3880  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
3881  * future, IPMI will add a way to know immediately if an event is in
3882  * the queue and this silliness can go away.
3883  */
3884 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
3885 
3886 static atomic_t stop_operation;
3887 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3888 
3889 static void ipmi_timeout(unsigned long data)
3890 {
3891 	if (atomic_read(&stop_operation))
3892 		return;
3893 
3894 	ticks_to_req_ev--;
3895 	if (ticks_to_req_ev == 0) {
3896 		ipmi_request_event();
3897 		ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3898 	}
3899 
3900 	ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3901 
3902 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3903 }
3904 
3905 
3906 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3907 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3908 
3909 /* FIXME - convert these to slabs. */
3910 static void free_smi_msg(struct ipmi_smi_msg *msg)
3911 {
3912 	atomic_dec(&smi_msg_inuse_count);
3913 	kfree(msg);
3914 }
3915 
3916 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3917 {
3918 	struct ipmi_smi_msg *rv;
3919 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3920 	if (rv) {
3921 		rv->done = free_smi_msg;
3922 		rv->user_data = NULL;
3923 		atomic_inc(&smi_msg_inuse_count);
3924 	}
3925 	return rv;
3926 }
3927 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
3928 
3929 static void free_recv_msg(struct ipmi_recv_msg *msg)
3930 {
3931 	atomic_dec(&recv_msg_inuse_count);
3932 	kfree(msg);
3933 }
3934 
3935 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3936 {
3937 	struct ipmi_recv_msg *rv;
3938 
3939 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3940 	if (rv) {
3941 		rv->user = NULL;
3942 		rv->done = free_recv_msg;
3943 		atomic_inc(&recv_msg_inuse_count);
3944 	}
3945 	return rv;
3946 }
3947 
3948 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3949 {
3950 	if (msg->user)
3951 		kref_put(&msg->user->refcount, free_user);
3952 	msg->done(msg);
3953 }
3954 EXPORT_SYMBOL(ipmi_free_recv_msg);
3955 
3956 #ifdef CONFIG_IPMI_PANIC_EVENT
3957 
3958 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3959 {
3960 }
3961 
3962 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3963 {
3964 }
3965 
3966 #ifdef CONFIG_IPMI_PANIC_STRING
3967 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3968 {
3969 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3970 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3971 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3972 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3973 		/* A get event receiver command, save it. */
3974 		intf->event_receiver = msg->msg.data[1];
3975 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3976 	}
3977 }
3978 
3979 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3980 {
3981 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3982 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3983 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3984 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3985 		/*
3986 		 * A get device id command, save if we are an event
3987 		 * receiver or generator.
3988 		 */
3989 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3990 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3991 	}
3992 }
3993 #endif
3994 
3995 static void send_panic_events(char *str)
3996 {
3997 	struct kernel_ipmi_msg            msg;
3998 	ipmi_smi_t                        intf;
3999 	unsigned char                     data[16];
4000 	struct ipmi_system_interface_addr *si;
4001 	struct ipmi_addr                  addr;
4002 	struct ipmi_smi_msg               smi_msg;
4003 	struct ipmi_recv_msg              recv_msg;
4004 
4005 	si = (struct ipmi_system_interface_addr *) &addr;
4006 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4007 	si->channel = IPMI_BMC_CHANNEL;
4008 	si->lun = 0;
4009 
4010 	/* Fill in an event telling that we have failed. */
4011 	msg.netfn = 0x04; /* Sensor or Event. */
4012 	msg.cmd = 2; /* Platform event command. */
4013 	msg.data = data;
4014 	msg.data_len = 8;
4015 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4016 	data[1] = 0x03; /* This is for IPMI 1.0. */
4017 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4018 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4019 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4020 
4021 	/*
4022 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
4023 	 * to make the panic events more useful.
4024 	 */
4025 	if (str) {
4026 		data[3] = str[0];
4027 		data[6] = str[1];
4028 		data[7] = str[2];
4029 	}
4030 
4031 	smi_msg.done = dummy_smi_done_handler;
4032 	recv_msg.done = dummy_recv_done_handler;
4033 
4034 	/* For every registered interface, send the event. */
4035 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4036 		if (!intf->handlers)
4037 			/* Interface is not ready. */
4038 			continue;
4039 
4040 		intf->run_to_completion = 1;
4041 		/* Send the event announcing the panic. */
4042 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4043 		i_ipmi_request(NULL,
4044 			       intf,
4045 			       &addr,
4046 			       0,
4047 			       &msg,
4048 			       intf,
4049 			       &smi_msg,
4050 			       &recv_msg,
4051 			       0,
4052 			       intf->channels[0].address,
4053 			       intf->channels[0].lun,
4054 			       0, 1); /* Don't retry, and don't wait. */
4055 	}
4056 
4057 #ifdef CONFIG_IPMI_PANIC_STRING
4058 	/*
4059 	 * On every interface, dump a bunch of OEM event holding the
4060 	 * string.
4061 	 */
4062 	if (!str)
4063 		return;
4064 
4065 	/* For every registered interface, send the event. */
4066 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4067 		char                  *p = str;
4068 		struct ipmi_ipmb_addr *ipmb;
4069 		int                   j;
4070 
4071 		if (intf->intf_num == -1)
4072 			/* Interface was not ready yet. */
4073 			continue;
4074 
4075 		/*
4076 		 * intf_num is used as an marker to tell if the
4077 		 * interface is valid.  Thus we need a read barrier to
4078 		 * make sure data fetched before checking intf_num
4079 		 * won't be used.
4080 		 */
4081 		smp_rmb();
4082 
4083 		/*
4084 		 * First job here is to figure out where to send the
4085 		 * OEM events.  There's no way in IPMI to send OEM
4086 		 * events using an event send command, so we have to
4087 		 * find the SEL to put them in and stick them in
4088 		 * there.
4089 		 */
4090 
4091 		/* Get capabilities from the get device id. */
4092 		intf->local_sel_device = 0;
4093 		intf->local_event_generator = 0;
4094 		intf->event_receiver = 0;
4095 
4096 		/* Request the device info from the local MC. */
4097 		msg.netfn = IPMI_NETFN_APP_REQUEST;
4098 		msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4099 		msg.data = NULL;
4100 		msg.data_len = 0;
4101 		intf->null_user_handler = device_id_fetcher;
4102 		i_ipmi_request(NULL,
4103 			       intf,
4104 			       &addr,
4105 			       0,
4106 			       &msg,
4107 			       intf,
4108 			       &smi_msg,
4109 			       &recv_msg,
4110 			       0,
4111 			       intf->channels[0].address,
4112 			       intf->channels[0].lun,
4113 			       0, 1); /* Don't retry, and don't wait. */
4114 
4115 		if (intf->local_event_generator) {
4116 			/* Request the event receiver from the local MC. */
4117 			msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4118 			msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4119 			msg.data = NULL;
4120 			msg.data_len = 0;
4121 			intf->null_user_handler = event_receiver_fetcher;
4122 			i_ipmi_request(NULL,
4123 				       intf,
4124 				       &addr,
4125 				       0,
4126 				       &msg,
4127 				       intf,
4128 				       &smi_msg,
4129 				       &recv_msg,
4130 				       0,
4131 				       intf->channels[0].address,
4132 				       intf->channels[0].lun,
4133 				       0, 1); /* no retry, and no wait. */
4134 		}
4135 		intf->null_user_handler = NULL;
4136 
4137 		/*
4138 		 * Validate the event receiver.  The low bit must not
4139 		 * be 1 (it must be a valid IPMB address), it cannot
4140 		 * be zero, and it must not be my address.
4141 		 */
4142 		if (((intf->event_receiver & 1) == 0)
4143 		    && (intf->event_receiver != 0)
4144 		    && (intf->event_receiver != intf->channels[0].address)) {
4145 			/*
4146 			 * The event receiver is valid, send an IPMB
4147 			 * message.
4148 			 */
4149 			ipmb = (struct ipmi_ipmb_addr *) &addr;
4150 			ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4151 			ipmb->channel = 0; /* FIXME - is this right? */
4152 			ipmb->lun = intf->event_receiver_lun;
4153 			ipmb->slave_addr = intf->event_receiver;
4154 		} else if (intf->local_sel_device) {
4155 			/*
4156 			 * The event receiver was not valid (or was
4157 			 * me), but I am an SEL device, just dump it
4158 			 * in my SEL.
4159 			 */
4160 			si = (struct ipmi_system_interface_addr *) &addr;
4161 			si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4162 			si->channel = IPMI_BMC_CHANNEL;
4163 			si->lun = 0;
4164 		} else
4165 			continue; /* No where to send the event. */
4166 
4167 		msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4168 		msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4169 		msg.data = data;
4170 		msg.data_len = 16;
4171 
4172 		j = 0;
4173 		while (*p) {
4174 			int size = strlen(p);
4175 
4176 			if (size > 11)
4177 				size = 11;
4178 			data[0] = 0;
4179 			data[1] = 0;
4180 			data[2] = 0xf0; /* OEM event without timestamp. */
4181 			data[3] = intf->channels[0].address;
4182 			data[4] = j++; /* sequence # */
4183 			/*
4184 			 * Always give 11 bytes, so strncpy will fill
4185 			 * it with zeroes for me.
4186 			 */
4187 			strncpy(data+5, p, 11);
4188 			p += size;
4189 
4190 			i_ipmi_request(NULL,
4191 				       intf,
4192 				       &addr,
4193 				       0,
4194 				       &msg,
4195 				       intf,
4196 				       &smi_msg,
4197 				       &recv_msg,
4198 				       0,
4199 				       intf->channels[0].address,
4200 				       intf->channels[0].lun,
4201 				       0, 1); /* no retry, and no wait. */
4202 		}
4203 	}
4204 #endif /* CONFIG_IPMI_PANIC_STRING */
4205 }
4206 #endif /* CONFIG_IPMI_PANIC_EVENT */
4207 
4208 static int has_panicked;
4209 
4210 static int panic_event(struct notifier_block *this,
4211 		       unsigned long         event,
4212 		       void                  *ptr)
4213 {
4214 	ipmi_smi_t intf;
4215 
4216 	if (has_panicked)
4217 		return NOTIFY_DONE;
4218 	has_panicked = 1;
4219 
4220 	/* For every registered interface, set it to run to completion. */
4221 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4222 		if (!intf->handlers)
4223 			/* Interface is not ready. */
4224 			continue;
4225 
4226 		intf->run_to_completion = 1;
4227 		intf->handlers->set_run_to_completion(intf->send_info, 1);
4228 	}
4229 
4230 #ifdef CONFIG_IPMI_PANIC_EVENT
4231 	send_panic_events(ptr);
4232 #endif
4233 
4234 	return NOTIFY_DONE;
4235 }
4236 
4237 static struct notifier_block panic_block = {
4238 	.notifier_call	= panic_event,
4239 	.next		= NULL,
4240 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
4241 };
4242 
4243 static int ipmi_init_msghandler(void)
4244 {
4245 	int rv;
4246 
4247 	if (initialized)
4248 		return 0;
4249 
4250 	rv = driver_register(&ipmidriver);
4251 	if (rv) {
4252 		printk(KERN_ERR PFX "Could not register IPMI driver\n");
4253 		return rv;
4254 	}
4255 
4256 	printk(KERN_INFO "ipmi message handler version "
4257 	       IPMI_DRIVER_VERSION "\n");
4258 
4259 #ifdef CONFIG_PROC_FS
4260 	proc_ipmi_root = proc_mkdir("ipmi", NULL);
4261 	if (!proc_ipmi_root) {
4262 	    printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4263 	    return -ENOMEM;
4264 	}
4265 
4266 	proc_ipmi_root->owner = THIS_MODULE;
4267 #endif /* CONFIG_PROC_FS */
4268 
4269 	setup_timer(&ipmi_timer, ipmi_timeout, 0);
4270 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4271 
4272 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4273 
4274 	initialized = 1;
4275 
4276 	return 0;
4277 }
4278 
4279 static __init int ipmi_init_msghandler_mod(void)
4280 {
4281 	ipmi_init_msghandler();
4282 	return 0;
4283 }
4284 
4285 static __exit void cleanup_ipmi(void)
4286 {
4287 	int count;
4288 
4289 	if (!initialized)
4290 		return;
4291 
4292 	atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4293 
4294 	/*
4295 	 * This can't be called if any interfaces exist, so no worry
4296 	 * about shutting down the interfaces.
4297 	 */
4298 
4299 	/*
4300 	 * Tell the timer to stop, then wait for it to stop.  This
4301 	 * avoids problems with race conditions removing the timer
4302 	 * here.
4303 	 */
4304 	atomic_inc(&stop_operation);
4305 	del_timer_sync(&ipmi_timer);
4306 
4307 #ifdef CONFIG_PROC_FS
4308 	remove_proc_entry(proc_ipmi_root->name, NULL);
4309 #endif /* CONFIG_PROC_FS */
4310 
4311 	driver_unregister(&ipmidriver);
4312 
4313 	initialized = 0;
4314 
4315 	/* Check for buffer leaks. */
4316 	count = atomic_read(&smi_msg_inuse_count);
4317 	if (count != 0)
4318 		printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4319 		       count);
4320 	count = atomic_read(&recv_msg_inuse_count);
4321 	if (count != 0)
4322 		printk(KERN_WARNING PFX "recv message count %d at exit\n",
4323 		       count);
4324 }
4325 module_exit(cleanup_ipmi);
4326 
4327 module_init(ipmi_init_msghandler_mod);
4328 MODULE_LICENSE("GPL");
4329 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4330 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4331 		   " interface.");
4332 MODULE_VERSION(IPMI_DRIVER_VERSION);
4333