xref: /openbmc/linux/drivers/char/ipmi/ipmi_msghandler.c (revision 519b58bbfa825f042fcf80261cc18e1e35f85ffd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * ipmi_msghandler.c
4  *
5  * Incoming and outgoing message routing for an IPMI interface.
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  */
13 
14 #define pr_fmt(fmt) "IPMI message handler: " fmt
15 #define dev_fmt(fmt) pr_fmt(fmt)
16 
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/panic_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/spinlock.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/ipmi.h>
27 #include <linux/ipmi_smi.h>
28 #include <linux/notifier.h>
29 #include <linux/init.h>
30 #include <linux/proc_fs.h>
31 #include <linux/rcupdate.h>
32 #include <linux/interrupt.h>
33 #include <linux/moduleparam.h>
34 #include <linux/workqueue.h>
35 #include <linux/uuid.h>
36 #include <linux/nospec.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39 
40 #define IPMI_DRIVER_VERSION "39.2"
41 
42 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
43 static int ipmi_init_msghandler(void);
44 static void smi_recv_tasklet(struct tasklet_struct *t);
45 static void handle_new_recv_msgs(struct ipmi_smi *intf);
46 static void need_waiter(struct ipmi_smi *intf);
47 static int handle_one_recv_msg(struct ipmi_smi *intf,
48 			       struct ipmi_smi_msg *msg);
49 
50 static bool initialized;
51 static bool drvregistered;
52 
53 /* Numbers in this enumerator should be mapped to ipmi_panic_event_str */
54 enum ipmi_panic_event_op {
55 	IPMI_SEND_PANIC_EVENT_NONE,
56 	IPMI_SEND_PANIC_EVENT,
57 	IPMI_SEND_PANIC_EVENT_STRING,
58 	IPMI_SEND_PANIC_EVENT_MAX
59 };
60 
61 /* Indices in this array should be mapped to enum ipmi_panic_event_op */
62 static const char *const ipmi_panic_event_str[] = { "none", "event", "string", NULL };
63 
64 #ifdef CONFIG_IPMI_PANIC_STRING
65 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_STRING
66 #elif defined(CONFIG_IPMI_PANIC_EVENT)
67 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT
68 #else
69 #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
70 #endif
71 
72 static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
73 
74 static int panic_op_write_handler(const char *val,
75 				  const struct kernel_param *kp)
76 {
77 	char valcp[16];
78 	int e;
79 
80 	strscpy(valcp, val, sizeof(valcp));
81 	e = match_string(ipmi_panic_event_str, -1, strstrip(valcp));
82 	if (e < 0)
83 		return e;
84 
85 	ipmi_send_panic_event = e;
86 	return 0;
87 }
88 
89 static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
90 {
91 	const char *event_str;
92 
93 	if (ipmi_send_panic_event >= IPMI_SEND_PANIC_EVENT_MAX)
94 		event_str = "???";
95 	else
96 		event_str = ipmi_panic_event_str[ipmi_send_panic_event];
97 
98 	return sprintf(buffer, "%s\n", event_str);
99 }
100 
101 static const struct kernel_param_ops panic_op_ops = {
102 	.set = panic_op_write_handler,
103 	.get = panic_op_read_handler
104 };
105 module_param_cb(panic_op, &panic_op_ops, NULL, 0600);
106 MODULE_PARM_DESC(panic_op, "Sets if the IPMI driver will attempt to store panic information in the event log in the event of a panic.  Set to 'none' for no, 'event' for a single event, or 'string' for a generic event and the panic string in IPMI OEM events.");
107 
108 
109 #define MAX_EVENTS_IN_QUEUE	25
110 
111 /* Remain in auto-maintenance mode for this amount of time (in ms). */
112 static unsigned long maintenance_mode_timeout_ms = 30000;
113 module_param(maintenance_mode_timeout_ms, ulong, 0644);
114 MODULE_PARM_DESC(maintenance_mode_timeout_ms,
115 		 "The time (milliseconds) after the last maintenance message that the connection stays in maintenance mode.");
116 
117 /*
118  * Don't let a message sit in a queue forever, always time it with at lest
119  * the max message timer.  This is in milliseconds.
120  */
121 #define MAX_MSG_TIMEOUT		60000
122 
123 /*
124  * Timeout times below are in milliseconds, and are done off a 1
125  * second timer.  So setting the value to 1000 would mean anything
126  * between 0 and 1000ms.  So really the only reasonable minimum
127  * setting it 2000ms, which is between 1 and 2 seconds.
128  */
129 
130 /* The default timeout for message retries. */
131 static unsigned long default_retry_ms = 2000;
132 module_param(default_retry_ms, ulong, 0644);
133 MODULE_PARM_DESC(default_retry_ms,
134 		 "The time (milliseconds) between retry sends");
135 
136 /* The default timeout for maintenance mode message retries. */
137 static unsigned long default_maintenance_retry_ms = 3000;
138 module_param(default_maintenance_retry_ms, ulong, 0644);
139 MODULE_PARM_DESC(default_maintenance_retry_ms,
140 		 "The time (milliseconds) between retry sends in maintenance mode");
141 
142 /* The default maximum number of retries */
143 static unsigned int default_max_retries = 4;
144 module_param(default_max_retries, uint, 0644);
145 MODULE_PARM_DESC(default_max_retries,
146 		 "The time (milliseconds) between retry sends in maintenance mode");
147 
148 /* The default maximum number of users that may register. */
149 static unsigned int max_users = 30;
150 module_param(max_users, uint, 0644);
151 MODULE_PARM_DESC(max_users,
152 		 "The most users that may use the IPMI stack at one time.");
153 
154 /* The default maximum number of message a user may have outstanding. */
155 static unsigned int max_msgs_per_user = 100;
156 module_param(max_msgs_per_user, uint, 0644);
157 MODULE_PARM_DESC(max_msgs_per_user,
158 		 "The most message a user may have outstanding.");
159 
160 /* Call every ~1000 ms. */
161 #define IPMI_TIMEOUT_TIME	1000
162 
163 /* How many jiffies does it take to get to the timeout time. */
164 #define IPMI_TIMEOUT_JIFFIES	((IPMI_TIMEOUT_TIME * HZ) / 1000)
165 
166 /*
167  * Request events from the queue every second (this is the number of
168  * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
169  * future, IPMI will add a way to know immediately if an event is in
170  * the queue and this silliness can go away.
171  */
172 #define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME))
173 
174 /* How long should we cache dynamic device IDs? */
175 #define IPMI_DYN_DEV_ID_EXPIRY	(10 * HZ)
176 
177 /*
178  * The main "user" data structure.
179  */
180 struct ipmi_user {
181 	struct list_head link;
182 
183 	/*
184 	 * Set to NULL when the user is destroyed, a pointer to myself
185 	 * so srcu_dereference can be used on it.
186 	 */
187 	struct ipmi_user *self;
188 	struct srcu_struct release_barrier;
189 
190 	struct kref refcount;
191 
192 	/* The upper layer that handles receive messages. */
193 	const struct ipmi_user_hndl *handler;
194 	void             *handler_data;
195 
196 	/* The interface this user is bound to. */
197 	struct ipmi_smi *intf;
198 
199 	/* Does this interface receive IPMI events? */
200 	bool gets_events;
201 
202 	atomic_t nr_msgs;
203 
204 	/* Free must run in process context for RCU cleanup. */
205 	struct work_struct remove_work;
206 };
207 
208 static struct workqueue_struct *remove_work_wq;
209 
210 static struct ipmi_user *acquire_ipmi_user(struct ipmi_user *user, int *index)
211 	__acquires(user->release_barrier)
212 {
213 	struct ipmi_user *ruser;
214 
215 	*index = srcu_read_lock(&user->release_barrier);
216 	ruser = srcu_dereference(user->self, &user->release_barrier);
217 	if (!ruser)
218 		srcu_read_unlock(&user->release_barrier, *index);
219 	return ruser;
220 }
221 
222 static void release_ipmi_user(struct ipmi_user *user, int index)
223 {
224 	srcu_read_unlock(&user->release_barrier, index);
225 }
226 
227 struct cmd_rcvr {
228 	struct list_head link;
229 
230 	struct ipmi_user *user;
231 	unsigned char netfn;
232 	unsigned char cmd;
233 	unsigned int  chans;
234 
235 	/*
236 	 * This is used to form a linked lised during mass deletion.
237 	 * Since this is in an RCU list, we cannot use the link above
238 	 * or change any data until the RCU period completes.  So we
239 	 * use this next variable during mass deletion so we can have
240 	 * a list and don't have to wait and restart the search on
241 	 * every individual deletion of a command.
242 	 */
243 	struct cmd_rcvr *next;
244 };
245 
246 struct seq_table {
247 	unsigned int         inuse : 1;
248 	unsigned int         broadcast : 1;
249 
250 	unsigned long        timeout;
251 	unsigned long        orig_timeout;
252 	unsigned int         retries_left;
253 
254 	/*
255 	 * To verify on an incoming send message response that this is
256 	 * the message that the response is for, we keep a sequence id
257 	 * and increment it every time we send a message.
258 	 */
259 	long                 seqid;
260 
261 	/*
262 	 * This is held so we can properly respond to the message on a
263 	 * timeout, and it is used to hold the temporary data for
264 	 * retransmission, too.
265 	 */
266 	struct ipmi_recv_msg *recv_msg;
267 };
268 
269 /*
270  * Store the information in a msgid (long) to allow us to find a
271  * sequence table entry from the msgid.
272  */
273 #define STORE_SEQ_IN_MSGID(seq, seqid) \
274 	((((seq) & 0x3f) << 26) | ((seqid) & 0x3ffffff))
275 
276 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
277 	do {								\
278 		seq = (((msgid) >> 26) & 0x3f);				\
279 		seqid = ((msgid) & 0x3ffffff);				\
280 	} while (0)
281 
282 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3ffffff)
283 
284 #define IPMI_MAX_CHANNELS       16
285 struct ipmi_channel {
286 	unsigned char medium;
287 	unsigned char protocol;
288 };
289 
290 struct ipmi_channel_set {
291 	struct ipmi_channel c[IPMI_MAX_CHANNELS];
292 };
293 
294 struct ipmi_my_addrinfo {
295 	/*
296 	 * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
297 	 * but may be changed by the user.
298 	 */
299 	unsigned char address;
300 
301 	/*
302 	 * My LUN.  This should generally stay the SMS LUN, but just in
303 	 * case...
304 	 */
305 	unsigned char lun;
306 };
307 
308 /*
309  * Note that the product id, manufacturer id, guid, and device id are
310  * immutable in this structure, so dyn_mutex is not required for
311  * accessing those.  If those change on a BMC, a new BMC is allocated.
312  */
313 struct bmc_device {
314 	struct platform_device pdev;
315 	struct list_head       intfs; /* Interfaces on this BMC. */
316 	struct ipmi_device_id  id;
317 	struct ipmi_device_id  fetch_id;
318 	int                    dyn_id_set;
319 	unsigned long          dyn_id_expiry;
320 	struct mutex           dyn_mutex; /* Protects id, intfs, & dyn* */
321 	guid_t                 guid;
322 	guid_t                 fetch_guid;
323 	int                    dyn_guid_set;
324 	struct kref	       usecount;
325 	struct work_struct     remove_work;
326 	unsigned char	       cc; /* completion code */
327 };
328 #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
329 
330 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
331 			     struct ipmi_device_id *id,
332 			     bool *guid_set, guid_t *guid);
333 
334 /*
335  * Various statistics for IPMI, these index stats[] in the ipmi_smi
336  * structure.
337  */
338 enum ipmi_stat_indexes {
339 	/* Commands we got from the user that were invalid. */
340 	IPMI_STAT_sent_invalid_commands = 0,
341 
342 	/* Commands we sent to the MC. */
343 	IPMI_STAT_sent_local_commands,
344 
345 	/* Responses from the MC that were delivered to a user. */
346 	IPMI_STAT_handled_local_responses,
347 
348 	/* Responses from the MC that were not delivered to a user. */
349 	IPMI_STAT_unhandled_local_responses,
350 
351 	/* Commands we sent out to the IPMB bus. */
352 	IPMI_STAT_sent_ipmb_commands,
353 
354 	/* Commands sent on the IPMB that had errors on the SEND CMD */
355 	IPMI_STAT_sent_ipmb_command_errs,
356 
357 	/* Each retransmit increments this count. */
358 	IPMI_STAT_retransmitted_ipmb_commands,
359 
360 	/*
361 	 * When a message times out (runs out of retransmits) this is
362 	 * incremented.
363 	 */
364 	IPMI_STAT_timed_out_ipmb_commands,
365 
366 	/*
367 	 * This is like above, but for broadcasts.  Broadcasts are
368 	 * *not* included in the above count (they are expected to
369 	 * time out).
370 	 */
371 	IPMI_STAT_timed_out_ipmb_broadcasts,
372 
373 	/* Responses I have sent to the IPMB bus. */
374 	IPMI_STAT_sent_ipmb_responses,
375 
376 	/* The response was delivered to the user. */
377 	IPMI_STAT_handled_ipmb_responses,
378 
379 	/* The response had invalid data in it. */
380 	IPMI_STAT_invalid_ipmb_responses,
381 
382 	/* The response didn't have anyone waiting for it. */
383 	IPMI_STAT_unhandled_ipmb_responses,
384 
385 	/* Commands we sent out to the IPMB bus. */
386 	IPMI_STAT_sent_lan_commands,
387 
388 	/* Commands sent on the IPMB that had errors on the SEND CMD */
389 	IPMI_STAT_sent_lan_command_errs,
390 
391 	/* Each retransmit increments this count. */
392 	IPMI_STAT_retransmitted_lan_commands,
393 
394 	/*
395 	 * When a message times out (runs out of retransmits) this is
396 	 * incremented.
397 	 */
398 	IPMI_STAT_timed_out_lan_commands,
399 
400 	/* Responses I have sent to the IPMB bus. */
401 	IPMI_STAT_sent_lan_responses,
402 
403 	/* The response was delivered to the user. */
404 	IPMI_STAT_handled_lan_responses,
405 
406 	/* The response had invalid data in it. */
407 	IPMI_STAT_invalid_lan_responses,
408 
409 	/* The response didn't have anyone waiting for it. */
410 	IPMI_STAT_unhandled_lan_responses,
411 
412 	/* The command was delivered to the user. */
413 	IPMI_STAT_handled_commands,
414 
415 	/* The command had invalid data in it. */
416 	IPMI_STAT_invalid_commands,
417 
418 	/* The command didn't have anyone waiting for it. */
419 	IPMI_STAT_unhandled_commands,
420 
421 	/* Invalid data in an event. */
422 	IPMI_STAT_invalid_events,
423 
424 	/* Events that were received with the proper format. */
425 	IPMI_STAT_events,
426 
427 	/* Retransmissions on IPMB that failed. */
428 	IPMI_STAT_dropped_rexmit_ipmb_commands,
429 
430 	/* Retransmissions on LAN that failed. */
431 	IPMI_STAT_dropped_rexmit_lan_commands,
432 
433 	/* This *must* remain last, add new values above this. */
434 	IPMI_NUM_STATS
435 };
436 
437 
438 #define IPMI_IPMB_NUM_SEQ	64
439 struct ipmi_smi {
440 	struct module *owner;
441 
442 	/* What interface number are we? */
443 	int intf_num;
444 
445 	struct kref refcount;
446 
447 	/* Set when the interface is being unregistered. */
448 	bool in_shutdown;
449 
450 	/* Used for a list of interfaces. */
451 	struct list_head link;
452 
453 	/*
454 	 * The list of upper layers that are using me.  seq_lock write
455 	 * protects this.  Read protection is with srcu.
456 	 */
457 	struct list_head users;
458 	struct srcu_struct users_srcu;
459 	atomic_t nr_users;
460 	struct device_attribute nr_users_devattr;
461 	struct device_attribute nr_msgs_devattr;
462 
463 
464 	/* Used for wake ups at startup. */
465 	wait_queue_head_t waitq;
466 
467 	/*
468 	 * Prevents the interface from being unregistered when the
469 	 * interface is used by being looked up through the BMC
470 	 * structure.
471 	 */
472 	struct mutex bmc_reg_mutex;
473 
474 	struct bmc_device tmp_bmc;
475 	struct bmc_device *bmc;
476 	bool bmc_registered;
477 	struct list_head bmc_link;
478 	char *my_dev_name;
479 	bool in_bmc_register;  /* Handle recursive situations.  Yuck. */
480 	struct work_struct bmc_reg_work;
481 
482 	const struct ipmi_smi_handlers *handlers;
483 	void                     *send_info;
484 
485 	/* Driver-model device for the system interface. */
486 	struct device          *si_dev;
487 
488 	/*
489 	 * A table of sequence numbers for this interface.  We use the
490 	 * sequence numbers for IPMB messages that go out of the
491 	 * interface to match them up with their responses.  A routine
492 	 * is called periodically to time the items in this list.
493 	 */
494 	spinlock_t       seq_lock;
495 	struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
496 	int curr_seq;
497 
498 	/*
499 	 * Messages queued for delivery.  If delivery fails (out of memory
500 	 * for instance), They will stay in here to be processed later in a
501 	 * periodic timer interrupt.  The tasklet is for handling received
502 	 * messages directly from the handler.
503 	 */
504 	spinlock_t       waiting_rcv_msgs_lock;
505 	struct list_head waiting_rcv_msgs;
506 	atomic_t	 watchdog_pretimeouts_to_deliver;
507 	struct tasklet_struct recv_tasklet;
508 
509 	spinlock_t             xmit_msgs_lock;
510 	struct list_head       xmit_msgs;
511 	struct ipmi_smi_msg    *curr_msg;
512 	struct list_head       hp_xmit_msgs;
513 
514 	/*
515 	 * The list of command receivers that are registered for commands
516 	 * on this interface.
517 	 */
518 	struct mutex     cmd_rcvrs_mutex;
519 	struct list_head cmd_rcvrs;
520 
521 	/*
522 	 * Events that were queues because no one was there to receive
523 	 * them.
524 	 */
525 	spinlock_t       events_lock; /* For dealing with event stuff. */
526 	struct list_head waiting_events;
527 	unsigned int     waiting_events_count; /* How many events in queue? */
528 	char             delivering_events;
529 	char             event_msg_printed;
530 
531 	/* How many users are waiting for events? */
532 	atomic_t         event_waiters;
533 	unsigned int     ticks_to_req_ev;
534 
535 	spinlock_t       watch_lock; /* For dealing with watch stuff below. */
536 
537 	/* How many users are waiting for commands? */
538 	unsigned int     command_waiters;
539 
540 	/* How many users are waiting for watchdogs? */
541 	unsigned int     watchdog_waiters;
542 
543 	/* How many users are waiting for message responses? */
544 	unsigned int     response_waiters;
545 
546 	/*
547 	 * Tells what the lower layer has last been asked to watch for,
548 	 * messages and/or watchdogs.  Protected by watch_lock.
549 	 */
550 	unsigned int     last_watch_mask;
551 
552 	/*
553 	 * The event receiver for my BMC, only really used at panic
554 	 * shutdown as a place to store this.
555 	 */
556 	unsigned char event_receiver;
557 	unsigned char event_receiver_lun;
558 	unsigned char local_sel_device;
559 	unsigned char local_event_generator;
560 
561 	/* For handling of maintenance mode. */
562 	int maintenance_mode;
563 	bool maintenance_mode_enable;
564 	int auto_maintenance_timeout;
565 	spinlock_t maintenance_mode_lock; /* Used in a timer... */
566 
567 	/*
568 	 * If we are doing maintenance on something on IPMB, extend
569 	 * the timeout time to avoid timeouts writing firmware and
570 	 * such.
571 	 */
572 	int ipmb_maintenance_mode_timeout;
573 
574 	/*
575 	 * A cheap hack, if this is non-null and a message to an
576 	 * interface comes in with a NULL user, call this routine with
577 	 * it.  Note that the message will still be freed by the
578 	 * caller.  This only works on the system interface.
579 	 *
580 	 * Protected by bmc_reg_mutex.
581 	 */
582 	void (*null_user_handler)(struct ipmi_smi *intf,
583 				  struct ipmi_recv_msg *msg);
584 
585 	/*
586 	 * When we are scanning the channels for an SMI, this will
587 	 * tell which channel we are scanning.
588 	 */
589 	int curr_channel;
590 
591 	/* Channel information */
592 	struct ipmi_channel_set *channel_list;
593 	unsigned int curr_working_cset; /* First index into the following. */
594 	struct ipmi_channel_set wchannels[2];
595 	struct ipmi_my_addrinfo addrinfo[IPMI_MAX_CHANNELS];
596 	bool channels_ready;
597 
598 	atomic_t stats[IPMI_NUM_STATS];
599 
600 	/*
601 	 * run_to_completion duplicate of smb_info, smi_info
602 	 * and ipmi_serial_info structures. Used to decrease numbers of
603 	 * parameters passed by "low" level IPMI code.
604 	 */
605 	int run_to_completion;
606 };
607 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
608 
609 static void __get_guid(struct ipmi_smi *intf);
610 static void __ipmi_bmc_unregister(struct ipmi_smi *intf);
611 static int __ipmi_bmc_register(struct ipmi_smi *intf,
612 			       struct ipmi_device_id *id,
613 			       bool guid_set, guid_t *guid, int intf_num);
614 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id);
615 
616 
617 /**
618  * The driver model view of the IPMI messaging driver.
619  */
620 static struct platform_driver ipmidriver = {
621 	.driver = {
622 		.name = "ipmi",
623 		.bus = &platform_bus_type
624 	}
625 };
626 /*
627  * This mutex keeps us from adding the same BMC twice.
628  */
629 static DEFINE_MUTEX(ipmidriver_mutex);
630 
631 static LIST_HEAD(ipmi_interfaces);
632 static DEFINE_MUTEX(ipmi_interfaces_mutex);
633 #define ipmi_interfaces_mutex_held() \
634 	lockdep_is_held(&ipmi_interfaces_mutex)
635 static struct srcu_struct ipmi_interfaces_srcu;
636 
637 /*
638  * List of watchers that want to know when smi's are added and deleted.
639  */
640 static LIST_HEAD(smi_watchers);
641 static DEFINE_MUTEX(smi_watchers_mutex);
642 
643 #define ipmi_inc_stat(intf, stat) \
644 	atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
645 #define ipmi_get_stat(intf, stat) \
646 	((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
647 
648 static const char * const addr_src_to_str[] = {
649 	"invalid", "hotmod", "hardcoded", "SPMI", "ACPI", "SMBIOS", "PCI",
650 	"device-tree", "platform"
651 };
652 
653 const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
654 {
655 	if (src >= SI_LAST)
656 		src = 0; /* Invalid */
657 	return addr_src_to_str[src];
658 }
659 EXPORT_SYMBOL(ipmi_addr_src_to_str);
660 
661 static int is_lan_addr(struct ipmi_addr *addr)
662 {
663 	return addr->addr_type == IPMI_LAN_ADDR_TYPE;
664 }
665 
666 static int is_ipmb_addr(struct ipmi_addr *addr)
667 {
668 	return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
669 }
670 
671 static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
672 {
673 	return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
674 }
675 
676 static int is_ipmb_direct_addr(struct ipmi_addr *addr)
677 {
678 	return addr->addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE;
679 }
680 
681 static void free_recv_msg_list(struct list_head *q)
682 {
683 	struct ipmi_recv_msg *msg, *msg2;
684 
685 	list_for_each_entry_safe(msg, msg2, q, link) {
686 		list_del(&msg->link);
687 		ipmi_free_recv_msg(msg);
688 	}
689 }
690 
691 static void free_smi_msg_list(struct list_head *q)
692 {
693 	struct ipmi_smi_msg *msg, *msg2;
694 
695 	list_for_each_entry_safe(msg, msg2, q, link) {
696 		list_del(&msg->link);
697 		ipmi_free_smi_msg(msg);
698 	}
699 }
700 
701 static void clean_up_interface_data(struct ipmi_smi *intf)
702 {
703 	int              i;
704 	struct cmd_rcvr  *rcvr, *rcvr2;
705 	struct list_head list;
706 
707 	tasklet_kill(&intf->recv_tasklet);
708 
709 	free_smi_msg_list(&intf->waiting_rcv_msgs);
710 	free_recv_msg_list(&intf->waiting_events);
711 
712 	/*
713 	 * Wholesale remove all the entries from the list in the
714 	 * interface and wait for RCU to know that none are in use.
715 	 */
716 	mutex_lock(&intf->cmd_rcvrs_mutex);
717 	INIT_LIST_HEAD(&list);
718 	list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
719 	mutex_unlock(&intf->cmd_rcvrs_mutex);
720 
721 	list_for_each_entry_safe(rcvr, rcvr2, &list, link)
722 		kfree(rcvr);
723 
724 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
725 		if ((intf->seq_table[i].inuse)
726 					&& (intf->seq_table[i].recv_msg))
727 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
728 	}
729 }
730 
731 static void intf_free(struct kref *ref)
732 {
733 	struct ipmi_smi *intf = container_of(ref, struct ipmi_smi, refcount);
734 
735 	clean_up_interface_data(intf);
736 	kfree(intf);
737 }
738 
739 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
740 {
741 	struct ipmi_smi *intf;
742 	int index, rv;
743 
744 	/*
745 	 * Make sure the driver is actually initialized, this handles
746 	 * problems with initialization order.
747 	 */
748 	rv = ipmi_init_msghandler();
749 	if (rv)
750 		return rv;
751 
752 	mutex_lock(&smi_watchers_mutex);
753 
754 	list_add(&watcher->link, &smi_watchers);
755 
756 	index = srcu_read_lock(&ipmi_interfaces_srcu);
757 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link,
758 			lockdep_is_held(&smi_watchers_mutex)) {
759 		int intf_num = READ_ONCE(intf->intf_num);
760 
761 		if (intf_num == -1)
762 			continue;
763 		watcher->new_smi(intf_num, intf->si_dev);
764 	}
765 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
766 
767 	mutex_unlock(&smi_watchers_mutex);
768 
769 	return 0;
770 }
771 EXPORT_SYMBOL(ipmi_smi_watcher_register);
772 
773 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
774 {
775 	mutex_lock(&smi_watchers_mutex);
776 	list_del(&watcher->link);
777 	mutex_unlock(&smi_watchers_mutex);
778 	return 0;
779 }
780 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
781 
782 /*
783  * Must be called with smi_watchers_mutex held.
784  */
785 static void
786 call_smi_watchers(int i, struct device *dev)
787 {
788 	struct ipmi_smi_watcher *w;
789 
790 	mutex_lock(&smi_watchers_mutex);
791 	list_for_each_entry(w, &smi_watchers, link) {
792 		if (try_module_get(w->owner)) {
793 			w->new_smi(i, dev);
794 			module_put(w->owner);
795 		}
796 	}
797 	mutex_unlock(&smi_watchers_mutex);
798 }
799 
800 static int
801 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
802 {
803 	if (addr1->addr_type != addr2->addr_type)
804 		return 0;
805 
806 	if (addr1->channel != addr2->channel)
807 		return 0;
808 
809 	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
810 		struct ipmi_system_interface_addr *smi_addr1
811 		    = (struct ipmi_system_interface_addr *) addr1;
812 		struct ipmi_system_interface_addr *smi_addr2
813 		    = (struct ipmi_system_interface_addr *) addr2;
814 		return (smi_addr1->lun == smi_addr2->lun);
815 	}
816 
817 	if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
818 		struct ipmi_ipmb_addr *ipmb_addr1
819 		    = (struct ipmi_ipmb_addr *) addr1;
820 		struct ipmi_ipmb_addr *ipmb_addr2
821 		    = (struct ipmi_ipmb_addr *) addr2;
822 
823 		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
824 			&& (ipmb_addr1->lun == ipmb_addr2->lun));
825 	}
826 
827 	if (is_ipmb_direct_addr(addr1)) {
828 		struct ipmi_ipmb_direct_addr *daddr1
829 			= (struct ipmi_ipmb_direct_addr *) addr1;
830 		struct ipmi_ipmb_direct_addr *daddr2
831 			= (struct ipmi_ipmb_direct_addr *) addr2;
832 
833 		return daddr1->slave_addr == daddr2->slave_addr &&
834 			daddr1->rq_lun == daddr2->rq_lun &&
835 			daddr1->rs_lun == daddr2->rs_lun;
836 	}
837 
838 	if (is_lan_addr(addr1)) {
839 		struct ipmi_lan_addr *lan_addr1
840 			= (struct ipmi_lan_addr *) addr1;
841 		struct ipmi_lan_addr *lan_addr2
842 		    = (struct ipmi_lan_addr *) addr2;
843 
844 		return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
845 			&& (lan_addr1->local_SWID == lan_addr2->local_SWID)
846 			&& (lan_addr1->session_handle
847 			    == lan_addr2->session_handle)
848 			&& (lan_addr1->lun == lan_addr2->lun));
849 	}
850 
851 	return 1;
852 }
853 
854 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
855 {
856 	if (len < sizeof(struct ipmi_system_interface_addr))
857 		return -EINVAL;
858 
859 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
860 		if (addr->channel != IPMI_BMC_CHANNEL)
861 			return -EINVAL;
862 		return 0;
863 	}
864 
865 	if ((addr->channel == IPMI_BMC_CHANNEL)
866 	    || (addr->channel >= IPMI_MAX_CHANNELS)
867 	    || (addr->channel < 0))
868 		return -EINVAL;
869 
870 	if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
871 		if (len < sizeof(struct ipmi_ipmb_addr))
872 			return -EINVAL;
873 		return 0;
874 	}
875 
876 	if (is_ipmb_direct_addr(addr)) {
877 		struct ipmi_ipmb_direct_addr *daddr = (void *) addr;
878 
879 		if (addr->channel != 0)
880 			return -EINVAL;
881 		if (len < sizeof(struct ipmi_ipmb_direct_addr))
882 			return -EINVAL;
883 
884 		if (daddr->slave_addr & 0x01)
885 			return -EINVAL;
886 		if (daddr->rq_lun >= 4)
887 			return -EINVAL;
888 		if (daddr->rs_lun >= 4)
889 			return -EINVAL;
890 		return 0;
891 	}
892 
893 	if (is_lan_addr(addr)) {
894 		if (len < sizeof(struct ipmi_lan_addr))
895 			return -EINVAL;
896 		return 0;
897 	}
898 
899 	return -EINVAL;
900 }
901 EXPORT_SYMBOL(ipmi_validate_addr);
902 
903 unsigned int ipmi_addr_length(int addr_type)
904 {
905 	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
906 		return sizeof(struct ipmi_system_interface_addr);
907 
908 	if ((addr_type == IPMI_IPMB_ADDR_TYPE)
909 			|| (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
910 		return sizeof(struct ipmi_ipmb_addr);
911 
912 	if (addr_type == IPMI_IPMB_DIRECT_ADDR_TYPE)
913 		return sizeof(struct ipmi_ipmb_direct_addr);
914 
915 	if (addr_type == IPMI_LAN_ADDR_TYPE)
916 		return sizeof(struct ipmi_lan_addr);
917 
918 	return 0;
919 }
920 EXPORT_SYMBOL(ipmi_addr_length);
921 
922 static int deliver_response(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
923 {
924 	int rv = 0;
925 
926 	if (!msg->user) {
927 		/* Special handling for NULL users. */
928 		if (intf->null_user_handler) {
929 			intf->null_user_handler(intf, msg);
930 		} else {
931 			/* No handler, so give up. */
932 			rv = -EINVAL;
933 		}
934 		ipmi_free_recv_msg(msg);
935 	} else if (oops_in_progress) {
936 		/*
937 		 * If we are running in the panic context, calling the
938 		 * receive handler doesn't much meaning and has a deadlock
939 		 * risk.  At this moment, simply skip it in that case.
940 		 */
941 		ipmi_free_recv_msg(msg);
942 		atomic_dec(&msg->user->nr_msgs);
943 	} else {
944 		int index;
945 		struct ipmi_user *user = acquire_ipmi_user(msg->user, &index);
946 
947 		if (user) {
948 			atomic_dec(&user->nr_msgs);
949 			user->handler->ipmi_recv_hndl(msg, user->handler_data);
950 			release_ipmi_user(user, index);
951 		} else {
952 			/* User went away, give up. */
953 			ipmi_free_recv_msg(msg);
954 			rv = -EINVAL;
955 		}
956 	}
957 
958 	return rv;
959 }
960 
961 static void deliver_local_response(struct ipmi_smi *intf,
962 				   struct ipmi_recv_msg *msg)
963 {
964 	if (deliver_response(intf, msg))
965 		ipmi_inc_stat(intf, unhandled_local_responses);
966 	else
967 		ipmi_inc_stat(intf, handled_local_responses);
968 }
969 
970 static void deliver_err_response(struct ipmi_smi *intf,
971 				 struct ipmi_recv_msg *msg, int err)
972 {
973 	msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
974 	msg->msg_data[0] = err;
975 	msg->msg.netfn |= 1; /* Convert to a response. */
976 	msg->msg.data_len = 1;
977 	msg->msg.data = msg->msg_data;
978 	deliver_local_response(intf, msg);
979 }
980 
981 static void smi_add_watch(struct ipmi_smi *intf, unsigned int flags)
982 {
983 	unsigned long iflags;
984 
985 	if (!intf->handlers->set_need_watch)
986 		return;
987 
988 	spin_lock_irqsave(&intf->watch_lock, iflags);
989 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
990 		intf->response_waiters++;
991 
992 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
993 		intf->watchdog_waiters++;
994 
995 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
996 		intf->command_waiters++;
997 
998 	if ((intf->last_watch_mask & flags) != flags) {
999 		intf->last_watch_mask |= flags;
1000 		intf->handlers->set_need_watch(intf->send_info,
1001 					       intf->last_watch_mask);
1002 	}
1003 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1004 }
1005 
1006 static void smi_remove_watch(struct ipmi_smi *intf, unsigned int flags)
1007 {
1008 	unsigned long iflags;
1009 
1010 	if (!intf->handlers->set_need_watch)
1011 		return;
1012 
1013 	spin_lock_irqsave(&intf->watch_lock, iflags);
1014 	if (flags & IPMI_WATCH_MASK_CHECK_MESSAGES)
1015 		intf->response_waiters--;
1016 
1017 	if (flags & IPMI_WATCH_MASK_CHECK_WATCHDOG)
1018 		intf->watchdog_waiters--;
1019 
1020 	if (flags & IPMI_WATCH_MASK_CHECK_COMMANDS)
1021 		intf->command_waiters--;
1022 
1023 	flags = 0;
1024 	if (intf->response_waiters)
1025 		flags |= IPMI_WATCH_MASK_CHECK_MESSAGES;
1026 	if (intf->watchdog_waiters)
1027 		flags |= IPMI_WATCH_MASK_CHECK_WATCHDOG;
1028 	if (intf->command_waiters)
1029 		flags |= IPMI_WATCH_MASK_CHECK_COMMANDS;
1030 
1031 	if (intf->last_watch_mask != flags) {
1032 		intf->last_watch_mask = flags;
1033 		intf->handlers->set_need_watch(intf->send_info,
1034 					       intf->last_watch_mask);
1035 	}
1036 	spin_unlock_irqrestore(&intf->watch_lock, iflags);
1037 }
1038 
1039 /*
1040  * Find the next sequence number not being used and add the given
1041  * message with the given timeout to the sequence table.  This must be
1042  * called with the interface's seq_lock held.
1043  */
1044 static int intf_next_seq(struct ipmi_smi      *intf,
1045 			 struct ipmi_recv_msg *recv_msg,
1046 			 unsigned long        timeout,
1047 			 int                  retries,
1048 			 int                  broadcast,
1049 			 unsigned char        *seq,
1050 			 long                 *seqid)
1051 {
1052 	int          rv = 0;
1053 	unsigned int i;
1054 
1055 	if (timeout == 0)
1056 		timeout = default_retry_ms;
1057 	if (retries < 0)
1058 		retries = default_max_retries;
1059 
1060 	for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
1061 					i = (i+1)%IPMI_IPMB_NUM_SEQ) {
1062 		if (!intf->seq_table[i].inuse)
1063 			break;
1064 	}
1065 
1066 	if (!intf->seq_table[i].inuse) {
1067 		intf->seq_table[i].recv_msg = recv_msg;
1068 
1069 		/*
1070 		 * Start with the maximum timeout, when the send response
1071 		 * comes in we will start the real timer.
1072 		 */
1073 		intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
1074 		intf->seq_table[i].orig_timeout = timeout;
1075 		intf->seq_table[i].retries_left = retries;
1076 		intf->seq_table[i].broadcast = broadcast;
1077 		intf->seq_table[i].inuse = 1;
1078 		intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
1079 		*seq = i;
1080 		*seqid = intf->seq_table[i].seqid;
1081 		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
1082 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1083 		need_waiter(intf);
1084 	} else {
1085 		rv = -EAGAIN;
1086 	}
1087 
1088 	return rv;
1089 }
1090 
1091 /*
1092  * Return the receive message for the given sequence number and
1093  * release the sequence number so it can be reused.  Some other data
1094  * is passed in to be sure the message matches up correctly (to help
1095  * guard against message coming in after their timeout and the
1096  * sequence number being reused).
1097  */
1098 static int intf_find_seq(struct ipmi_smi      *intf,
1099 			 unsigned char        seq,
1100 			 short                channel,
1101 			 unsigned char        cmd,
1102 			 unsigned char        netfn,
1103 			 struct ipmi_addr     *addr,
1104 			 struct ipmi_recv_msg **recv_msg)
1105 {
1106 	int           rv = -ENODEV;
1107 	unsigned long flags;
1108 
1109 	if (seq >= IPMI_IPMB_NUM_SEQ)
1110 		return -EINVAL;
1111 
1112 	spin_lock_irqsave(&intf->seq_lock, flags);
1113 	if (intf->seq_table[seq].inuse) {
1114 		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
1115 
1116 		if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
1117 				&& (msg->msg.netfn == netfn)
1118 				&& (ipmi_addr_equal(addr, &msg->addr))) {
1119 			*recv_msg = msg;
1120 			intf->seq_table[seq].inuse = 0;
1121 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1122 			rv = 0;
1123 		}
1124 	}
1125 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1126 
1127 	return rv;
1128 }
1129 
1130 
1131 /* Start the timer for a specific sequence table entry. */
1132 static int intf_start_seq_timer(struct ipmi_smi *intf,
1133 				long       msgid)
1134 {
1135 	int           rv = -ENODEV;
1136 	unsigned long flags;
1137 	unsigned char seq;
1138 	unsigned long seqid;
1139 
1140 
1141 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1142 
1143 	spin_lock_irqsave(&intf->seq_lock, flags);
1144 	/*
1145 	 * We do this verification because the user can be deleted
1146 	 * while a message is outstanding.
1147 	 */
1148 	if ((intf->seq_table[seq].inuse)
1149 				&& (intf->seq_table[seq].seqid == seqid)) {
1150 		struct seq_table *ent = &intf->seq_table[seq];
1151 		ent->timeout = ent->orig_timeout;
1152 		rv = 0;
1153 	}
1154 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1155 
1156 	return rv;
1157 }
1158 
1159 /* Got an error for the send message for a specific sequence number. */
1160 static int intf_err_seq(struct ipmi_smi *intf,
1161 			long         msgid,
1162 			unsigned int err)
1163 {
1164 	int                  rv = -ENODEV;
1165 	unsigned long        flags;
1166 	unsigned char        seq;
1167 	unsigned long        seqid;
1168 	struct ipmi_recv_msg *msg = NULL;
1169 
1170 
1171 	GET_SEQ_FROM_MSGID(msgid, seq, seqid);
1172 
1173 	spin_lock_irqsave(&intf->seq_lock, flags);
1174 	/*
1175 	 * We do this verification because the user can be deleted
1176 	 * while a message is outstanding.
1177 	 */
1178 	if ((intf->seq_table[seq].inuse)
1179 				&& (intf->seq_table[seq].seqid == seqid)) {
1180 		struct seq_table *ent = &intf->seq_table[seq];
1181 
1182 		ent->inuse = 0;
1183 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1184 		msg = ent->recv_msg;
1185 		rv = 0;
1186 	}
1187 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1188 
1189 	if (msg)
1190 		deliver_err_response(intf, msg, err);
1191 
1192 	return rv;
1193 }
1194 
1195 static void free_user_work(struct work_struct *work)
1196 {
1197 	struct ipmi_user *user = container_of(work, struct ipmi_user,
1198 					      remove_work);
1199 
1200 	cleanup_srcu_struct(&user->release_barrier);
1201 	vfree(user);
1202 }
1203 
1204 int ipmi_create_user(unsigned int          if_num,
1205 		     const struct ipmi_user_hndl *handler,
1206 		     void                  *handler_data,
1207 		     struct ipmi_user      **user)
1208 {
1209 	unsigned long flags;
1210 	struct ipmi_user *new_user;
1211 	int           rv, index;
1212 	struct ipmi_smi *intf;
1213 
1214 	/*
1215 	 * There is no module usecount here, because it's not
1216 	 * required.  Since this can only be used by and called from
1217 	 * other modules, they will implicitly use this module, and
1218 	 * thus this can't be removed unless the other modules are
1219 	 * removed.
1220 	 */
1221 
1222 	if (handler == NULL)
1223 		return -EINVAL;
1224 
1225 	/*
1226 	 * Make sure the driver is actually initialized, this handles
1227 	 * problems with initialization order.
1228 	 */
1229 	rv = ipmi_init_msghandler();
1230 	if (rv)
1231 		return rv;
1232 
1233 	new_user = vzalloc(sizeof(*new_user));
1234 	if (!new_user)
1235 		return -ENOMEM;
1236 
1237 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1238 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1239 		if (intf->intf_num == if_num)
1240 			goto found;
1241 	}
1242 	/* Not found, return an error */
1243 	rv = -EINVAL;
1244 	goto out_kfree;
1245 
1246  found:
1247 	if (atomic_add_return(1, &intf->nr_users) > max_users) {
1248 		rv = -EBUSY;
1249 		goto out_kfree;
1250 	}
1251 
1252 	INIT_WORK(&new_user->remove_work, free_user_work);
1253 
1254 	rv = init_srcu_struct(&new_user->release_barrier);
1255 	if (rv)
1256 		goto out_kfree;
1257 
1258 	if (!try_module_get(intf->owner)) {
1259 		rv = -ENODEV;
1260 		goto out_kfree;
1261 	}
1262 
1263 	/* Note that each existing user holds a refcount to the interface. */
1264 	kref_get(&intf->refcount);
1265 
1266 	atomic_set(&new_user->nr_msgs, 0);
1267 	kref_init(&new_user->refcount);
1268 	new_user->handler = handler;
1269 	new_user->handler_data = handler_data;
1270 	new_user->intf = intf;
1271 	new_user->gets_events = false;
1272 
1273 	rcu_assign_pointer(new_user->self, new_user);
1274 	spin_lock_irqsave(&intf->seq_lock, flags);
1275 	list_add_rcu(&new_user->link, &intf->users);
1276 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1277 	if (handler->ipmi_watchdog_pretimeout)
1278 		/* User wants pretimeouts, so make sure to watch for them. */
1279 		smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1280 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1281 	*user = new_user;
1282 	return 0;
1283 
1284 out_kfree:
1285 	atomic_dec(&intf->nr_users);
1286 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1287 	vfree(new_user);
1288 	return rv;
1289 }
1290 EXPORT_SYMBOL(ipmi_create_user);
1291 
1292 int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1293 {
1294 	int rv, index;
1295 	struct ipmi_smi *intf;
1296 
1297 	index = srcu_read_lock(&ipmi_interfaces_srcu);
1298 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1299 		if (intf->intf_num == if_num)
1300 			goto found;
1301 	}
1302 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1303 
1304 	/* Not found, return an error */
1305 	return -EINVAL;
1306 
1307 found:
1308 	if (!intf->handlers->get_smi_info)
1309 		rv = -ENOTTY;
1310 	else
1311 		rv = intf->handlers->get_smi_info(intf->send_info, data);
1312 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
1313 
1314 	return rv;
1315 }
1316 EXPORT_SYMBOL(ipmi_get_smi_info);
1317 
1318 static void free_user(struct kref *ref)
1319 {
1320 	struct ipmi_user *user = container_of(ref, struct ipmi_user, refcount);
1321 
1322 	/* SRCU cleanup must happen in task context. */
1323 	queue_work(remove_work_wq, &user->remove_work);
1324 }
1325 
1326 static void _ipmi_destroy_user(struct ipmi_user *user)
1327 {
1328 	struct ipmi_smi  *intf = user->intf;
1329 	int              i;
1330 	unsigned long    flags;
1331 	struct cmd_rcvr  *rcvr;
1332 	struct cmd_rcvr  *rcvrs = NULL;
1333 
1334 	if (!acquire_ipmi_user(user, &i)) {
1335 		/*
1336 		 * The user has already been cleaned up, just make sure
1337 		 * nothing is using it and return.
1338 		 */
1339 		synchronize_srcu(&user->release_barrier);
1340 		return;
1341 	}
1342 
1343 	rcu_assign_pointer(user->self, NULL);
1344 	release_ipmi_user(user, i);
1345 
1346 	synchronize_srcu(&user->release_barrier);
1347 
1348 	if (user->handler->shutdown)
1349 		user->handler->shutdown(user->handler_data);
1350 
1351 	if (user->handler->ipmi_watchdog_pretimeout)
1352 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_WATCHDOG);
1353 
1354 	if (user->gets_events)
1355 		atomic_dec(&intf->event_waiters);
1356 
1357 	/* Remove the user from the interface's sequence table. */
1358 	spin_lock_irqsave(&intf->seq_lock, flags);
1359 	list_del_rcu(&user->link);
1360 	atomic_dec(&intf->nr_users);
1361 
1362 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1363 		if (intf->seq_table[i].inuse
1364 		    && (intf->seq_table[i].recv_msg->user == user)) {
1365 			intf->seq_table[i].inuse = 0;
1366 			smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
1367 			ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1368 		}
1369 	}
1370 	spin_unlock_irqrestore(&intf->seq_lock, flags);
1371 
1372 	/*
1373 	 * Remove the user from the command receiver's table.  First
1374 	 * we build a list of everything (not using the standard link,
1375 	 * since other things may be using it till we do
1376 	 * synchronize_srcu()) then free everything in that list.
1377 	 */
1378 	mutex_lock(&intf->cmd_rcvrs_mutex);
1379 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1380 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1381 		if (rcvr->user == user) {
1382 			list_del_rcu(&rcvr->link);
1383 			rcvr->next = rcvrs;
1384 			rcvrs = rcvr;
1385 		}
1386 	}
1387 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1388 	synchronize_rcu();
1389 	while (rcvrs) {
1390 		rcvr = rcvrs;
1391 		rcvrs = rcvr->next;
1392 		kfree(rcvr);
1393 	}
1394 
1395 	kref_put(&intf->refcount, intf_free);
1396 	module_put(intf->owner);
1397 }
1398 
1399 int ipmi_destroy_user(struct ipmi_user *user)
1400 {
1401 	_ipmi_destroy_user(user);
1402 
1403 	kref_put(&user->refcount, free_user);
1404 
1405 	return 0;
1406 }
1407 EXPORT_SYMBOL(ipmi_destroy_user);
1408 
1409 int ipmi_get_version(struct ipmi_user *user,
1410 		     unsigned char *major,
1411 		     unsigned char *minor)
1412 {
1413 	struct ipmi_device_id id;
1414 	int rv, index;
1415 
1416 	user = acquire_ipmi_user(user, &index);
1417 	if (!user)
1418 		return -ENODEV;
1419 
1420 	rv = bmc_get_device_id(user->intf, NULL, &id, NULL, NULL);
1421 	if (!rv) {
1422 		*major = ipmi_version_major(&id);
1423 		*minor = ipmi_version_minor(&id);
1424 	}
1425 	release_ipmi_user(user, index);
1426 
1427 	return rv;
1428 }
1429 EXPORT_SYMBOL(ipmi_get_version);
1430 
1431 int ipmi_set_my_address(struct ipmi_user *user,
1432 			unsigned int  channel,
1433 			unsigned char address)
1434 {
1435 	int index, rv = 0;
1436 
1437 	user = acquire_ipmi_user(user, &index);
1438 	if (!user)
1439 		return -ENODEV;
1440 
1441 	if (channel >= IPMI_MAX_CHANNELS) {
1442 		rv = -EINVAL;
1443 	} else {
1444 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1445 		user->intf->addrinfo[channel].address = address;
1446 	}
1447 	release_ipmi_user(user, index);
1448 
1449 	return rv;
1450 }
1451 EXPORT_SYMBOL(ipmi_set_my_address);
1452 
1453 int ipmi_get_my_address(struct ipmi_user *user,
1454 			unsigned int  channel,
1455 			unsigned char *address)
1456 {
1457 	int index, rv = 0;
1458 
1459 	user = acquire_ipmi_user(user, &index);
1460 	if (!user)
1461 		return -ENODEV;
1462 
1463 	if (channel >= IPMI_MAX_CHANNELS) {
1464 		rv = -EINVAL;
1465 	} else {
1466 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1467 		*address = user->intf->addrinfo[channel].address;
1468 	}
1469 	release_ipmi_user(user, index);
1470 
1471 	return rv;
1472 }
1473 EXPORT_SYMBOL(ipmi_get_my_address);
1474 
1475 int ipmi_set_my_LUN(struct ipmi_user *user,
1476 		    unsigned int  channel,
1477 		    unsigned char LUN)
1478 {
1479 	int index, rv = 0;
1480 
1481 	user = acquire_ipmi_user(user, &index);
1482 	if (!user)
1483 		return -ENODEV;
1484 
1485 	if (channel >= IPMI_MAX_CHANNELS) {
1486 		rv = -EINVAL;
1487 	} else {
1488 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1489 		user->intf->addrinfo[channel].lun = LUN & 0x3;
1490 	}
1491 	release_ipmi_user(user, index);
1492 
1493 	return rv;
1494 }
1495 EXPORT_SYMBOL(ipmi_set_my_LUN);
1496 
1497 int ipmi_get_my_LUN(struct ipmi_user *user,
1498 		    unsigned int  channel,
1499 		    unsigned char *address)
1500 {
1501 	int index, rv = 0;
1502 
1503 	user = acquire_ipmi_user(user, &index);
1504 	if (!user)
1505 		return -ENODEV;
1506 
1507 	if (channel >= IPMI_MAX_CHANNELS) {
1508 		rv = -EINVAL;
1509 	} else {
1510 		channel = array_index_nospec(channel, IPMI_MAX_CHANNELS);
1511 		*address = user->intf->addrinfo[channel].lun;
1512 	}
1513 	release_ipmi_user(user, index);
1514 
1515 	return rv;
1516 }
1517 EXPORT_SYMBOL(ipmi_get_my_LUN);
1518 
1519 int ipmi_get_maintenance_mode(struct ipmi_user *user)
1520 {
1521 	int mode, index;
1522 	unsigned long flags;
1523 
1524 	user = acquire_ipmi_user(user, &index);
1525 	if (!user)
1526 		return -ENODEV;
1527 
1528 	spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1529 	mode = user->intf->maintenance_mode;
1530 	spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1531 	release_ipmi_user(user, index);
1532 
1533 	return mode;
1534 }
1535 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1536 
1537 static void maintenance_mode_update(struct ipmi_smi *intf)
1538 {
1539 	if (intf->handlers->set_maintenance_mode)
1540 		intf->handlers->set_maintenance_mode(
1541 			intf->send_info, intf->maintenance_mode_enable);
1542 }
1543 
1544 int ipmi_set_maintenance_mode(struct ipmi_user *user, int mode)
1545 {
1546 	int rv = 0, index;
1547 	unsigned long flags;
1548 	struct ipmi_smi *intf = user->intf;
1549 
1550 	user = acquire_ipmi_user(user, &index);
1551 	if (!user)
1552 		return -ENODEV;
1553 
1554 	spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1555 	if (intf->maintenance_mode != mode) {
1556 		switch (mode) {
1557 		case IPMI_MAINTENANCE_MODE_AUTO:
1558 			intf->maintenance_mode_enable
1559 				= (intf->auto_maintenance_timeout > 0);
1560 			break;
1561 
1562 		case IPMI_MAINTENANCE_MODE_OFF:
1563 			intf->maintenance_mode_enable = false;
1564 			break;
1565 
1566 		case IPMI_MAINTENANCE_MODE_ON:
1567 			intf->maintenance_mode_enable = true;
1568 			break;
1569 
1570 		default:
1571 			rv = -EINVAL;
1572 			goto out_unlock;
1573 		}
1574 		intf->maintenance_mode = mode;
1575 
1576 		maintenance_mode_update(intf);
1577 	}
1578  out_unlock:
1579 	spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1580 	release_ipmi_user(user, index);
1581 
1582 	return rv;
1583 }
1584 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1585 
1586 int ipmi_set_gets_events(struct ipmi_user *user, bool val)
1587 {
1588 	unsigned long        flags;
1589 	struct ipmi_smi      *intf = user->intf;
1590 	struct ipmi_recv_msg *msg, *msg2;
1591 	struct list_head     msgs;
1592 	int index;
1593 
1594 	user = acquire_ipmi_user(user, &index);
1595 	if (!user)
1596 		return -ENODEV;
1597 
1598 	INIT_LIST_HEAD(&msgs);
1599 
1600 	spin_lock_irqsave(&intf->events_lock, flags);
1601 	if (user->gets_events == val)
1602 		goto out;
1603 
1604 	user->gets_events = val;
1605 
1606 	if (val) {
1607 		if (atomic_inc_return(&intf->event_waiters) == 1)
1608 			need_waiter(intf);
1609 	} else {
1610 		atomic_dec(&intf->event_waiters);
1611 	}
1612 
1613 	if (intf->delivering_events)
1614 		/*
1615 		 * Another thread is delivering events for this, so
1616 		 * let it handle any new events.
1617 		 */
1618 		goto out;
1619 
1620 	/* Deliver any queued events. */
1621 	while (user->gets_events && !list_empty(&intf->waiting_events)) {
1622 		list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1623 			list_move_tail(&msg->link, &msgs);
1624 		intf->waiting_events_count = 0;
1625 		if (intf->event_msg_printed) {
1626 			dev_warn(intf->si_dev, "Event queue no longer full\n");
1627 			intf->event_msg_printed = 0;
1628 		}
1629 
1630 		intf->delivering_events = 1;
1631 		spin_unlock_irqrestore(&intf->events_lock, flags);
1632 
1633 		list_for_each_entry_safe(msg, msg2, &msgs, link) {
1634 			msg->user = user;
1635 			kref_get(&user->refcount);
1636 			deliver_local_response(intf, msg);
1637 		}
1638 
1639 		spin_lock_irqsave(&intf->events_lock, flags);
1640 		intf->delivering_events = 0;
1641 	}
1642 
1643  out:
1644 	spin_unlock_irqrestore(&intf->events_lock, flags);
1645 	release_ipmi_user(user, index);
1646 
1647 	return 0;
1648 }
1649 EXPORT_SYMBOL(ipmi_set_gets_events);
1650 
1651 static struct cmd_rcvr *find_cmd_rcvr(struct ipmi_smi *intf,
1652 				      unsigned char netfn,
1653 				      unsigned char cmd,
1654 				      unsigned char chan)
1655 {
1656 	struct cmd_rcvr *rcvr;
1657 
1658 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1659 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1660 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1661 					&& (rcvr->chans & (1 << chan)))
1662 			return rcvr;
1663 	}
1664 	return NULL;
1665 }
1666 
1667 static int is_cmd_rcvr_exclusive(struct ipmi_smi *intf,
1668 				 unsigned char netfn,
1669 				 unsigned char cmd,
1670 				 unsigned int  chans)
1671 {
1672 	struct cmd_rcvr *rcvr;
1673 
1674 	list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link,
1675 				lockdep_is_held(&intf->cmd_rcvrs_mutex)) {
1676 		if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1677 					&& (rcvr->chans & chans))
1678 			return 0;
1679 	}
1680 	return 1;
1681 }
1682 
1683 int ipmi_register_for_cmd(struct ipmi_user *user,
1684 			  unsigned char netfn,
1685 			  unsigned char cmd,
1686 			  unsigned int  chans)
1687 {
1688 	struct ipmi_smi *intf = user->intf;
1689 	struct cmd_rcvr *rcvr;
1690 	int rv = 0, index;
1691 
1692 	user = acquire_ipmi_user(user, &index);
1693 	if (!user)
1694 		return -ENODEV;
1695 
1696 	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1697 	if (!rcvr) {
1698 		rv = -ENOMEM;
1699 		goto out_release;
1700 	}
1701 	rcvr->cmd = cmd;
1702 	rcvr->netfn = netfn;
1703 	rcvr->chans = chans;
1704 	rcvr->user = user;
1705 
1706 	mutex_lock(&intf->cmd_rcvrs_mutex);
1707 	/* Make sure the command/netfn is not already registered. */
1708 	if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1709 		rv = -EBUSY;
1710 		goto out_unlock;
1711 	}
1712 
1713 	smi_add_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1714 
1715 	list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1716 
1717 out_unlock:
1718 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1719 	if (rv)
1720 		kfree(rcvr);
1721 out_release:
1722 	release_ipmi_user(user, index);
1723 
1724 	return rv;
1725 }
1726 EXPORT_SYMBOL(ipmi_register_for_cmd);
1727 
1728 int ipmi_unregister_for_cmd(struct ipmi_user *user,
1729 			    unsigned char netfn,
1730 			    unsigned char cmd,
1731 			    unsigned int  chans)
1732 {
1733 	struct ipmi_smi *intf = user->intf;
1734 	struct cmd_rcvr *rcvr;
1735 	struct cmd_rcvr *rcvrs = NULL;
1736 	int i, rv = -ENOENT, index;
1737 
1738 	user = acquire_ipmi_user(user, &index);
1739 	if (!user)
1740 		return -ENODEV;
1741 
1742 	mutex_lock(&intf->cmd_rcvrs_mutex);
1743 	for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1744 		if (((1 << i) & chans) == 0)
1745 			continue;
1746 		rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1747 		if (rcvr == NULL)
1748 			continue;
1749 		if (rcvr->user == user) {
1750 			rv = 0;
1751 			rcvr->chans &= ~chans;
1752 			if (rcvr->chans == 0) {
1753 				list_del_rcu(&rcvr->link);
1754 				rcvr->next = rcvrs;
1755 				rcvrs = rcvr;
1756 			}
1757 		}
1758 	}
1759 	mutex_unlock(&intf->cmd_rcvrs_mutex);
1760 	synchronize_rcu();
1761 	release_ipmi_user(user, index);
1762 	while (rcvrs) {
1763 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_COMMANDS);
1764 		rcvr = rcvrs;
1765 		rcvrs = rcvr->next;
1766 		kfree(rcvr);
1767 	}
1768 
1769 	return rv;
1770 }
1771 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1772 
1773 unsigned char
1774 ipmb_checksum(unsigned char *data, int size)
1775 {
1776 	unsigned char csum = 0;
1777 
1778 	for (; size > 0; size--, data++)
1779 		csum += *data;
1780 
1781 	return -csum;
1782 }
1783 EXPORT_SYMBOL(ipmb_checksum);
1784 
1785 static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1786 				   struct kernel_ipmi_msg *msg,
1787 				   struct ipmi_ipmb_addr *ipmb_addr,
1788 				   long                  msgid,
1789 				   unsigned char         ipmb_seq,
1790 				   int                   broadcast,
1791 				   unsigned char         source_address,
1792 				   unsigned char         source_lun)
1793 {
1794 	int i = broadcast;
1795 
1796 	/* Format the IPMB header data. */
1797 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1798 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1799 	smi_msg->data[2] = ipmb_addr->channel;
1800 	if (broadcast)
1801 		smi_msg->data[3] = 0;
1802 	smi_msg->data[i+3] = ipmb_addr->slave_addr;
1803 	smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1804 	smi_msg->data[i+5] = ipmb_checksum(&smi_msg->data[i + 3], 2);
1805 	smi_msg->data[i+6] = source_address;
1806 	smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1807 	smi_msg->data[i+8] = msg->cmd;
1808 
1809 	/* Now tack on the data to the message. */
1810 	if (msg->data_len > 0)
1811 		memcpy(&smi_msg->data[i + 9], msg->data, msg->data_len);
1812 	smi_msg->data_size = msg->data_len + 9;
1813 
1814 	/* Now calculate the checksum and tack it on. */
1815 	smi_msg->data[i+smi_msg->data_size]
1816 		= ipmb_checksum(&smi_msg->data[i + 6], smi_msg->data_size - 6);
1817 
1818 	/*
1819 	 * Add on the checksum size and the offset from the
1820 	 * broadcast.
1821 	 */
1822 	smi_msg->data_size += 1 + i;
1823 
1824 	smi_msg->msgid = msgid;
1825 }
1826 
1827 static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1828 				  struct kernel_ipmi_msg *msg,
1829 				  struct ipmi_lan_addr  *lan_addr,
1830 				  long                  msgid,
1831 				  unsigned char         ipmb_seq,
1832 				  unsigned char         source_lun)
1833 {
1834 	/* Format the IPMB header data. */
1835 	smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1836 	smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1837 	smi_msg->data[2] = lan_addr->channel;
1838 	smi_msg->data[3] = lan_addr->session_handle;
1839 	smi_msg->data[4] = lan_addr->remote_SWID;
1840 	smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1841 	smi_msg->data[6] = ipmb_checksum(&smi_msg->data[4], 2);
1842 	smi_msg->data[7] = lan_addr->local_SWID;
1843 	smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1844 	smi_msg->data[9] = msg->cmd;
1845 
1846 	/* Now tack on the data to the message. */
1847 	if (msg->data_len > 0)
1848 		memcpy(&smi_msg->data[10], msg->data, msg->data_len);
1849 	smi_msg->data_size = msg->data_len + 10;
1850 
1851 	/* Now calculate the checksum and tack it on. */
1852 	smi_msg->data[smi_msg->data_size]
1853 		= ipmb_checksum(&smi_msg->data[7], smi_msg->data_size - 7);
1854 
1855 	/*
1856 	 * Add on the checksum size and the offset from the
1857 	 * broadcast.
1858 	 */
1859 	smi_msg->data_size += 1;
1860 
1861 	smi_msg->msgid = msgid;
1862 }
1863 
1864 static struct ipmi_smi_msg *smi_add_send_msg(struct ipmi_smi *intf,
1865 					     struct ipmi_smi_msg *smi_msg,
1866 					     int priority)
1867 {
1868 	if (intf->curr_msg) {
1869 		if (priority > 0)
1870 			list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1871 		else
1872 			list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1873 		smi_msg = NULL;
1874 	} else {
1875 		intf->curr_msg = smi_msg;
1876 	}
1877 
1878 	return smi_msg;
1879 }
1880 
1881 static void smi_send(struct ipmi_smi *intf,
1882 		     const struct ipmi_smi_handlers *handlers,
1883 		     struct ipmi_smi_msg *smi_msg, int priority)
1884 {
1885 	int run_to_completion = intf->run_to_completion;
1886 	unsigned long flags = 0;
1887 
1888 	if (!run_to_completion)
1889 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1890 	smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1891 
1892 	if (!run_to_completion)
1893 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1894 
1895 	if (smi_msg)
1896 		handlers->sender(intf->send_info, smi_msg);
1897 }
1898 
1899 static bool is_maintenance_mode_cmd(struct kernel_ipmi_msg *msg)
1900 {
1901 	return (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1902 		 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1903 		     || (msg->cmd == IPMI_WARM_RESET_CMD)))
1904 		|| (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST));
1905 }
1906 
1907 static int i_ipmi_req_sysintf(struct ipmi_smi        *intf,
1908 			      struct ipmi_addr       *addr,
1909 			      long                   msgid,
1910 			      struct kernel_ipmi_msg *msg,
1911 			      struct ipmi_smi_msg    *smi_msg,
1912 			      struct ipmi_recv_msg   *recv_msg,
1913 			      int                    retries,
1914 			      unsigned int           retry_time_ms)
1915 {
1916 	struct ipmi_system_interface_addr *smi_addr;
1917 
1918 	if (msg->netfn & 1)
1919 		/* Responses are not allowed to the SMI. */
1920 		return -EINVAL;
1921 
1922 	smi_addr = (struct ipmi_system_interface_addr *) addr;
1923 	if (smi_addr->lun > 3) {
1924 		ipmi_inc_stat(intf, sent_invalid_commands);
1925 		return -EINVAL;
1926 	}
1927 
1928 	memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1929 
1930 	if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1931 	    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1932 		|| (msg->cmd == IPMI_GET_MSG_CMD)
1933 		|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1934 		/*
1935 		 * We don't let the user do these, since we manage
1936 		 * the sequence numbers.
1937 		 */
1938 		ipmi_inc_stat(intf, sent_invalid_commands);
1939 		return -EINVAL;
1940 	}
1941 
1942 	if (is_maintenance_mode_cmd(msg)) {
1943 		unsigned long flags;
1944 
1945 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1946 		intf->auto_maintenance_timeout
1947 			= maintenance_mode_timeout_ms;
1948 		if (!intf->maintenance_mode
1949 		    && !intf->maintenance_mode_enable) {
1950 			intf->maintenance_mode_enable = true;
1951 			maintenance_mode_update(intf);
1952 		}
1953 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1954 				       flags);
1955 	}
1956 
1957 	if (msg->data_len + 2 > IPMI_MAX_MSG_LENGTH) {
1958 		ipmi_inc_stat(intf, sent_invalid_commands);
1959 		return -EMSGSIZE;
1960 	}
1961 
1962 	smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1963 	smi_msg->data[1] = msg->cmd;
1964 	smi_msg->msgid = msgid;
1965 	smi_msg->user_data = recv_msg;
1966 	if (msg->data_len > 0)
1967 		memcpy(&smi_msg->data[2], msg->data, msg->data_len);
1968 	smi_msg->data_size = msg->data_len + 2;
1969 	ipmi_inc_stat(intf, sent_local_commands);
1970 
1971 	return 0;
1972 }
1973 
1974 static int i_ipmi_req_ipmb(struct ipmi_smi        *intf,
1975 			   struct ipmi_addr       *addr,
1976 			   long                   msgid,
1977 			   struct kernel_ipmi_msg *msg,
1978 			   struct ipmi_smi_msg    *smi_msg,
1979 			   struct ipmi_recv_msg   *recv_msg,
1980 			   unsigned char          source_address,
1981 			   unsigned char          source_lun,
1982 			   int                    retries,
1983 			   unsigned int           retry_time_ms)
1984 {
1985 	struct ipmi_ipmb_addr *ipmb_addr;
1986 	unsigned char ipmb_seq;
1987 	long seqid;
1988 	int broadcast = 0;
1989 	struct ipmi_channel *chans;
1990 	int rv = 0;
1991 
1992 	if (addr->channel >= IPMI_MAX_CHANNELS) {
1993 		ipmi_inc_stat(intf, sent_invalid_commands);
1994 		return -EINVAL;
1995 	}
1996 
1997 	chans = READ_ONCE(intf->channel_list)->c;
1998 
1999 	if (chans[addr->channel].medium != IPMI_CHANNEL_MEDIUM_IPMB) {
2000 		ipmi_inc_stat(intf, sent_invalid_commands);
2001 		return -EINVAL;
2002 	}
2003 
2004 	if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
2005 		/*
2006 		 * Broadcasts add a zero at the beginning of the
2007 		 * message, but otherwise is the same as an IPMB
2008 		 * address.
2009 		 */
2010 		addr->addr_type = IPMI_IPMB_ADDR_TYPE;
2011 		broadcast = 1;
2012 		retries = 0; /* Don't retry broadcasts. */
2013 	}
2014 
2015 	/*
2016 	 * 9 for the header and 1 for the checksum, plus
2017 	 * possibly one for the broadcast.
2018 	 */
2019 	if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
2020 		ipmi_inc_stat(intf, sent_invalid_commands);
2021 		return -EMSGSIZE;
2022 	}
2023 
2024 	ipmb_addr = (struct ipmi_ipmb_addr *) addr;
2025 	if (ipmb_addr->lun > 3) {
2026 		ipmi_inc_stat(intf, sent_invalid_commands);
2027 		return -EINVAL;
2028 	}
2029 
2030 	memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
2031 
2032 	if (recv_msg->msg.netfn & 0x1) {
2033 		/*
2034 		 * It's a response, so use the user's sequence
2035 		 * from msgid.
2036 		 */
2037 		ipmi_inc_stat(intf, sent_ipmb_responses);
2038 		format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
2039 				msgid, broadcast,
2040 				source_address, source_lun);
2041 
2042 		/*
2043 		 * Save the receive message so we can use it
2044 		 * to deliver the response.
2045 		 */
2046 		smi_msg->user_data = recv_msg;
2047 	} else {
2048 		/* It's a command, so get a sequence for it. */
2049 		unsigned long flags;
2050 
2051 		spin_lock_irqsave(&intf->seq_lock, flags);
2052 
2053 		if (is_maintenance_mode_cmd(msg))
2054 			intf->ipmb_maintenance_mode_timeout =
2055 				maintenance_mode_timeout_ms;
2056 
2057 		if (intf->ipmb_maintenance_mode_timeout && retry_time_ms == 0)
2058 			/* Different default in maintenance mode */
2059 			retry_time_ms = default_maintenance_retry_ms;
2060 
2061 		/*
2062 		 * Create a sequence number with a 1 second
2063 		 * timeout and 4 retries.
2064 		 */
2065 		rv = intf_next_seq(intf,
2066 				   recv_msg,
2067 				   retry_time_ms,
2068 				   retries,
2069 				   broadcast,
2070 				   &ipmb_seq,
2071 				   &seqid);
2072 		if (rv)
2073 			/*
2074 			 * We have used up all the sequence numbers,
2075 			 * probably, so abort.
2076 			 */
2077 			goto out_err;
2078 
2079 		ipmi_inc_stat(intf, sent_ipmb_commands);
2080 
2081 		/*
2082 		 * Store the sequence number in the message,
2083 		 * so that when the send message response
2084 		 * comes back we can start the timer.
2085 		 */
2086 		format_ipmb_msg(smi_msg, msg, ipmb_addr,
2087 				STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2088 				ipmb_seq, broadcast,
2089 				source_address, source_lun);
2090 
2091 		/*
2092 		 * Copy the message into the recv message data, so we
2093 		 * can retransmit it later if necessary.
2094 		 */
2095 		memcpy(recv_msg->msg_data, smi_msg->data,
2096 		       smi_msg->data_size);
2097 		recv_msg->msg.data = recv_msg->msg_data;
2098 		recv_msg->msg.data_len = smi_msg->data_size;
2099 
2100 		/*
2101 		 * We don't unlock until here, because we need
2102 		 * to copy the completed message into the
2103 		 * recv_msg before we release the lock.
2104 		 * Otherwise, race conditions may bite us.  I
2105 		 * know that's pretty paranoid, but I prefer
2106 		 * to be correct.
2107 		 */
2108 out_err:
2109 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2110 	}
2111 
2112 	return rv;
2113 }
2114 
2115 static int i_ipmi_req_ipmb_direct(struct ipmi_smi        *intf,
2116 				  struct ipmi_addr       *addr,
2117 				  long			 msgid,
2118 				  struct kernel_ipmi_msg *msg,
2119 				  struct ipmi_smi_msg    *smi_msg,
2120 				  struct ipmi_recv_msg   *recv_msg,
2121 				  unsigned char          source_lun)
2122 {
2123 	struct ipmi_ipmb_direct_addr *daddr;
2124 	bool is_cmd = !(recv_msg->msg.netfn & 0x1);
2125 
2126 	if (!(intf->handlers->flags & IPMI_SMI_CAN_HANDLE_IPMB_DIRECT))
2127 		return -EAFNOSUPPORT;
2128 
2129 	/* Responses must have a completion code. */
2130 	if (!is_cmd && msg->data_len < 1) {
2131 		ipmi_inc_stat(intf, sent_invalid_commands);
2132 		return -EINVAL;
2133 	}
2134 
2135 	if ((msg->data_len + 4) > IPMI_MAX_MSG_LENGTH) {
2136 		ipmi_inc_stat(intf, sent_invalid_commands);
2137 		return -EMSGSIZE;
2138 	}
2139 
2140 	daddr = (struct ipmi_ipmb_direct_addr *) addr;
2141 	if (daddr->rq_lun > 3 || daddr->rs_lun > 3) {
2142 		ipmi_inc_stat(intf, sent_invalid_commands);
2143 		return -EINVAL;
2144 	}
2145 
2146 	smi_msg->type = IPMI_SMI_MSG_TYPE_IPMB_DIRECT;
2147 	smi_msg->msgid = msgid;
2148 
2149 	if (is_cmd) {
2150 		smi_msg->data[0] = msg->netfn << 2 | daddr->rs_lun;
2151 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rq_lun;
2152 	} else {
2153 		smi_msg->data[0] = msg->netfn << 2 | daddr->rq_lun;
2154 		smi_msg->data[2] = recv_msg->msgid << 2 | daddr->rs_lun;
2155 	}
2156 	smi_msg->data[1] = daddr->slave_addr;
2157 	smi_msg->data[3] = msg->cmd;
2158 
2159 	memcpy(smi_msg->data + 4, msg->data, msg->data_len);
2160 	smi_msg->data_size = msg->data_len + 4;
2161 
2162 	smi_msg->user_data = recv_msg;
2163 
2164 	return 0;
2165 }
2166 
2167 static int i_ipmi_req_lan(struct ipmi_smi        *intf,
2168 			  struct ipmi_addr       *addr,
2169 			  long                   msgid,
2170 			  struct kernel_ipmi_msg *msg,
2171 			  struct ipmi_smi_msg    *smi_msg,
2172 			  struct ipmi_recv_msg   *recv_msg,
2173 			  unsigned char          source_lun,
2174 			  int                    retries,
2175 			  unsigned int           retry_time_ms)
2176 {
2177 	struct ipmi_lan_addr  *lan_addr;
2178 	unsigned char ipmb_seq;
2179 	long seqid;
2180 	struct ipmi_channel *chans;
2181 	int rv = 0;
2182 
2183 	if (addr->channel >= IPMI_MAX_CHANNELS) {
2184 		ipmi_inc_stat(intf, sent_invalid_commands);
2185 		return -EINVAL;
2186 	}
2187 
2188 	chans = READ_ONCE(intf->channel_list)->c;
2189 
2190 	if ((chans[addr->channel].medium
2191 				!= IPMI_CHANNEL_MEDIUM_8023LAN)
2192 			&& (chans[addr->channel].medium
2193 			    != IPMI_CHANNEL_MEDIUM_ASYNC)) {
2194 		ipmi_inc_stat(intf, sent_invalid_commands);
2195 		return -EINVAL;
2196 	}
2197 
2198 	/* 11 for the header and 1 for the checksum. */
2199 	if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
2200 		ipmi_inc_stat(intf, sent_invalid_commands);
2201 		return -EMSGSIZE;
2202 	}
2203 
2204 	lan_addr = (struct ipmi_lan_addr *) addr;
2205 	if (lan_addr->lun > 3) {
2206 		ipmi_inc_stat(intf, sent_invalid_commands);
2207 		return -EINVAL;
2208 	}
2209 
2210 	memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
2211 
2212 	if (recv_msg->msg.netfn & 0x1) {
2213 		/*
2214 		 * It's a response, so use the user's sequence
2215 		 * from msgid.
2216 		 */
2217 		ipmi_inc_stat(intf, sent_lan_responses);
2218 		format_lan_msg(smi_msg, msg, lan_addr, msgid,
2219 			       msgid, source_lun);
2220 
2221 		/*
2222 		 * Save the receive message so we can use it
2223 		 * to deliver the response.
2224 		 */
2225 		smi_msg->user_data = recv_msg;
2226 	} else {
2227 		/* It's a command, so get a sequence for it. */
2228 		unsigned long flags;
2229 
2230 		spin_lock_irqsave(&intf->seq_lock, flags);
2231 
2232 		/*
2233 		 * Create a sequence number with a 1 second
2234 		 * timeout and 4 retries.
2235 		 */
2236 		rv = intf_next_seq(intf,
2237 				   recv_msg,
2238 				   retry_time_ms,
2239 				   retries,
2240 				   0,
2241 				   &ipmb_seq,
2242 				   &seqid);
2243 		if (rv)
2244 			/*
2245 			 * We have used up all the sequence numbers,
2246 			 * probably, so abort.
2247 			 */
2248 			goto out_err;
2249 
2250 		ipmi_inc_stat(intf, sent_lan_commands);
2251 
2252 		/*
2253 		 * Store the sequence number in the message,
2254 		 * so that when the send message response
2255 		 * comes back we can start the timer.
2256 		 */
2257 		format_lan_msg(smi_msg, msg, lan_addr,
2258 			       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
2259 			       ipmb_seq, source_lun);
2260 
2261 		/*
2262 		 * Copy the message into the recv message data, so we
2263 		 * can retransmit it later if necessary.
2264 		 */
2265 		memcpy(recv_msg->msg_data, smi_msg->data,
2266 		       smi_msg->data_size);
2267 		recv_msg->msg.data = recv_msg->msg_data;
2268 		recv_msg->msg.data_len = smi_msg->data_size;
2269 
2270 		/*
2271 		 * We don't unlock until here, because we need
2272 		 * to copy the completed message into the
2273 		 * recv_msg before we release the lock.
2274 		 * Otherwise, race conditions may bite us.  I
2275 		 * know that's pretty paranoid, but I prefer
2276 		 * to be correct.
2277 		 */
2278 out_err:
2279 		spin_unlock_irqrestore(&intf->seq_lock, flags);
2280 	}
2281 
2282 	return rv;
2283 }
2284 
2285 /*
2286  * Separate from ipmi_request so that the user does not have to be
2287  * supplied in certain circumstances (mainly at panic time).  If
2288  * messages are supplied, they will be freed, even if an error
2289  * occurs.
2290  */
2291 static int i_ipmi_request(struct ipmi_user     *user,
2292 			  struct ipmi_smi      *intf,
2293 			  struct ipmi_addr     *addr,
2294 			  long                 msgid,
2295 			  struct kernel_ipmi_msg *msg,
2296 			  void                 *user_msg_data,
2297 			  void                 *supplied_smi,
2298 			  struct ipmi_recv_msg *supplied_recv,
2299 			  int                  priority,
2300 			  unsigned char        source_address,
2301 			  unsigned char        source_lun,
2302 			  int                  retries,
2303 			  unsigned int         retry_time_ms)
2304 {
2305 	struct ipmi_smi_msg *smi_msg;
2306 	struct ipmi_recv_msg *recv_msg;
2307 	int rv = 0;
2308 
2309 	if (user) {
2310 		if (atomic_add_return(1, &user->nr_msgs) > max_msgs_per_user) {
2311 			/* Decrement will happen at the end of the routine. */
2312 			rv = -EBUSY;
2313 			goto out;
2314 		}
2315 	}
2316 
2317 	if (supplied_recv)
2318 		recv_msg = supplied_recv;
2319 	else {
2320 		recv_msg = ipmi_alloc_recv_msg();
2321 		if (recv_msg == NULL) {
2322 			rv = -ENOMEM;
2323 			goto out;
2324 		}
2325 	}
2326 	recv_msg->user_msg_data = user_msg_data;
2327 
2328 	if (supplied_smi)
2329 		smi_msg = supplied_smi;
2330 	else {
2331 		smi_msg = ipmi_alloc_smi_msg();
2332 		if (smi_msg == NULL) {
2333 			if (!supplied_recv)
2334 				ipmi_free_recv_msg(recv_msg);
2335 			rv = -ENOMEM;
2336 			goto out;
2337 		}
2338 	}
2339 
2340 	rcu_read_lock();
2341 	if (intf->in_shutdown) {
2342 		rv = -ENODEV;
2343 		goto out_err;
2344 	}
2345 
2346 	recv_msg->user = user;
2347 	if (user)
2348 		/* The put happens when the message is freed. */
2349 		kref_get(&user->refcount);
2350 	recv_msg->msgid = msgid;
2351 	/*
2352 	 * Store the message to send in the receive message so timeout
2353 	 * responses can get the proper response data.
2354 	 */
2355 	recv_msg->msg = *msg;
2356 
2357 	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
2358 		rv = i_ipmi_req_sysintf(intf, addr, msgid, msg, smi_msg,
2359 					recv_msg, retries, retry_time_ms);
2360 	} else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
2361 		rv = i_ipmi_req_ipmb(intf, addr, msgid, msg, smi_msg, recv_msg,
2362 				     source_address, source_lun,
2363 				     retries, retry_time_ms);
2364 	} else if (is_ipmb_direct_addr(addr)) {
2365 		rv = i_ipmi_req_ipmb_direct(intf, addr, msgid, msg, smi_msg,
2366 					    recv_msg, source_lun);
2367 	} else if (is_lan_addr(addr)) {
2368 		rv = i_ipmi_req_lan(intf, addr, msgid, msg, smi_msg, recv_msg,
2369 				    source_lun, retries, retry_time_ms);
2370 	} else {
2371 	    /* Unknown address type. */
2372 		ipmi_inc_stat(intf, sent_invalid_commands);
2373 		rv = -EINVAL;
2374 	}
2375 
2376 	if (rv) {
2377 out_err:
2378 		ipmi_free_smi_msg(smi_msg);
2379 		ipmi_free_recv_msg(recv_msg);
2380 	} else {
2381 		dev_dbg(intf->si_dev, "Send: %*ph\n",
2382 			smi_msg->data_size, smi_msg->data);
2383 
2384 		smi_send(intf, intf->handlers, smi_msg, priority);
2385 	}
2386 	rcu_read_unlock();
2387 
2388 out:
2389 	if (rv && user)
2390 		atomic_dec(&user->nr_msgs);
2391 	return rv;
2392 }
2393 
2394 static int check_addr(struct ipmi_smi  *intf,
2395 		      struct ipmi_addr *addr,
2396 		      unsigned char    *saddr,
2397 		      unsigned char    *lun)
2398 {
2399 	if (addr->channel >= IPMI_MAX_CHANNELS)
2400 		return -EINVAL;
2401 	addr->channel = array_index_nospec(addr->channel, IPMI_MAX_CHANNELS);
2402 	*lun = intf->addrinfo[addr->channel].lun;
2403 	*saddr = intf->addrinfo[addr->channel].address;
2404 	return 0;
2405 }
2406 
2407 int ipmi_request_settime(struct ipmi_user *user,
2408 			 struct ipmi_addr *addr,
2409 			 long             msgid,
2410 			 struct kernel_ipmi_msg  *msg,
2411 			 void             *user_msg_data,
2412 			 int              priority,
2413 			 int              retries,
2414 			 unsigned int     retry_time_ms)
2415 {
2416 	unsigned char saddr = 0, lun = 0;
2417 	int rv, index;
2418 
2419 	if (!user)
2420 		return -EINVAL;
2421 
2422 	user = acquire_ipmi_user(user, &index);
2423 	if (!user)
2424 		return -ENODEV;
2425 
2426 	rv = check_addr(user->intf, addr, &saddr, &lun);
2427 	if (!rv)
2428 		rv = i_ipmi_request(user,
2429 				    user->intf,
2430 				    addr,
2431 				    msgid,
2432 				    msg,
2433 				    user_msg_data,
2434 				    NULL, NULL,
2435 				    priority,
2436 				    saddr,
2437 				    lun,
2438 				    retries,
2439 				    retry_time_ms);
2440 
2441 	release_ipmi_user(user, index);
2442 	return rv;
2443 }
2444 EXPORT_SYMBOL(ipmi_request_settime);
2445 
2446 int ipmi_request_supply_msgs(struct ipmi_user     *user,
2447 			     struct ipmi_addr     *addr,
2448 			     long                 msgid,
2449 			     struct kernel_ipmi_msg *msg,
2450 			     void                 *user_msg_data,
2451 			     void                 *supplied_smi,
2452 			     struct ipmi_recv_msg *supplied_recv,
2453 			     int                  priority)
2454 {
2455 	unsigned char saddr = 0, lun = 0;
2456 	int rv, index;
2457 
2458 	if (!user)
2459 		return -EINVAL;
2460 
2461 	user = acquire_ipmi_user(user, &index);
2462 	if (!user)
2463 		return -ENODEV;
2464 
2465 	rv = check_addr(user->intf, addr, &saddr, &lun);
2466 	if (!rv)
2467 		rv = i_ipmi_request(user,
2468 				    user->intf,
2469 				    addr,
2470 				    msgid,
2471 				    msg,
2472 				    user_msg_data,
2473 				    supplied_smi,
2474 				    supplied_recv,
2475 				    priority,
2476 				    saddr,
2477 				    lun,
2478 				    -1, 0);
2479 
2480 	release_ipmi_user(user, index);
2481 	return rv;
2482 }
2483 EXPORT_SYMBOL(ipmi_request_supply_msgs);
2484 
2485 static void bmc_device_id_handler(struct ipmi_smi *intf,
2486 				  struct ipmi_recv_msg *msg)
2487 {
2488 	int rv;
2489 
2490 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2491 			|| (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2492 			|| (msg->msg.cmd != IPMI_GET_DEVICE_ID_CMD)) {
2493 		dev_warn(intf->si_dev,
2494 			 "invalid device_id msg: addr_type=%d netfn=%x cmd=%x\n",
2495 			 msg->addr.addr_type, msg->msg.netfn, msg->msg.cmd);
2496 		return;
2497 	}
2498 
2499 	if (msg->msg.data[0]) {
2500 		dev_warn(intf->si_dev, "device id fetch failed: 0x%2.2x\n",
2501 			 msg->msg.data[0]);
2502 		intf->bmc->dyn_id_set = 0;
2503 		goto out;
2504 	}
2505 
2506 	rv = ipmi_demangle_device_id(msg->msg.netfn, msg->msg.cmd,
2507 			msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
2508 	if (rv) {
2509 		dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
2510 		/* record completion code when error */
2511 		intf->bmc->cc = msg->msg.data[0];
2512 		intf->bmc->dyn_id_set = 0;
2513 	} else {
2514 		/*
2515 		 * Make sure the id data is available before setting
2516 		 * dyn_id_set.
2517 		 */
2518 		smp_wmb();
2519 		intf->bmc->dyn_id_set = 1;
2520 	}
2521 out:
2522 	wake_up(&intf->waitq);
2523 }
2524 
2525 static int
2526 send_get_device_id_cmd(struct ipmi_smi *intf)
2527 {
2528 	struct ipmi_system_interface_addr si;
2529 	struct kernel_ipmi_msg msg;
2530 
2531 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2532 	si.channel = IPMI_BMC_CHANNEL;
2533 	si.lun = 0;
2534 
2535 	msg.netfn = IPMI_NETFN_APP_REQUEST;
2536 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
2537 	msg.data = NULL;
2538 	msg.data_len = 0;
2539 
2540 	return i_ipmi_request(NULL,
2541 			      intf,
2542 			      (struct ipmi_addr *) &si,
2543 			      0,
2544 			      &msg,
2545 			      intf,
2546 			      NULL,
2547 			      NULL,
2548 			      0,
2549 			      intf->addrinfo[0].address,
2550 			      intf->addrinfo[0].lun,
2551 			      -1, 0);
2552 }
2553 
2554 static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
2555 {
2556 	int rv;
2557 	unsigned int retry_count = 0;
2558 
2559 	intf->null_user_handler = bmc_device_id_handler;
2560 
2561 retry:
2562 	bmc->cc = 0;
2563 	bmc->dyn_id_set = 2;
2564 
2565 	rv = send_get_device_id_cmd(intf);
2566 	if (rv)
2567 		goto out_reset_handler;
2568 
2569 	wait_event(intf->waitq, bmc->dyn_id_set != 2);
2570 
2571 	if (!bmc->dyn_id_set) {
2572 		if (bmc->cc != IPMI_CC_NO_ERROR &&
2573 		    ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
2574 			msleep(500);
2575 			dev_warn(intf->si_dev,
2576 			    "BMC returned 0x%2.2x, retry get bmc device id\n",
2577 			    bmc->cc);
2578 			goto retry;
2579 		}
2580 
2581 		rv = -EIO; /* Something went wrong in the fetch. */
2582 	}
2583 
2584 	/* dyn_id_set makes the id data available. */
2585 	smp_rmb();
2586 
2587 out_reset_handler:
2588 	intf->null_user_handler = NULL;
2589 
2590 	return rv;
2591 }
2592 
2593 /*
2594  * Fetch the device id for the bmc/interface.  You must pass in either
2595  * bmc or intf, this code will get the other one.  If the data has
2596  * been recently fetched, this will just use the cached data.  Otherwise
2597  * it will run a new fetch.
2598  *
2599  * Except for the first time this is called (in ipmi_add_smi()),
2600  * this will always return good data;
2601  */
2602 static int __bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2603 			       struct ipmi_device_id *id,
2604 			       bool *guid_set, guid_t *guid, int intf_num)
2605 {
2606 	int rv = 0;
2607 	int prev_dyn_id_set, prev_guid_set;
2608 	bool intf_set = intf != NULL;
2609 
2610 	if (!intf) {
2611 		mutex_lock(&bmc->dyn_mutex);
2612 retry_bmc_lock:
2613 		if (list_empty(&bmc->intfs)) {
2614 			mutex_unlock(&bmc->dyn_mutex);
2615 			return -ENOENT;
2616 		}
2617 		intf = list_first_entry(&bmc->intfs, struct ipmi_smi,
2618 					bmc_link);
2619 		kref_get(&intf->refcount);
2620 		mutex_unlock(&bmc->dyn_mutex);
2621 		mutex_lock(&intf->bmc_reg_mutex);
2622 		mutex_lock(&bmc->dyn_mutex);
2623 		if (intf != list_first_entry(&bmc->intfs, struct ipmi_smi,
2624 					     bmc_link)) {
2625 			mutex_unlock(&intf->bmc_reg_mutex);
2626 			kref_put(&intf->refcount, intf_free);
2627 			goto retry_bmc_lock;
2628 		}
2629 	} else {
2630 		mutex_lock(&intf->bmc_reg_mutex);
2631 		bmc = intf->bmc;
2632 		mutex_lock(&bmc->dyn_mutex);
2633 		kref_get(&intf->refcount);
2634 	}
2635 
2636 	/* If we have a valid and current ID, just return that. */
2637 	if (intf->in_bmc_register ||
2638 	    (bmc->dyn_id_set && time_is_after_jiffies(bmc->dyn_id_expiry)))
2639 		goto out_noprocessing;
2640 
2641 	prev_guid_set = bmc->dyn_guid_set;
2642 	__get_guid(intf);
2643 
2644 	prev_dyn_id_set = bmc->dyn_id_set;
2645 	rv = __get_device_id(intf, bmc);
2646 	if (rv)
2647 		goto out;
2648 
2649 	/*
2650 	 * The guid, device id, manufacturer id, and product id should
2651 	 * not change on a BMC.  If it does we have to do some dancing.
2652 	 */
2653 	if (!intf->bmc_registered
2654 	    || (!prev_guid_set && bmc->dyn_guid_set)
2655 	    || (!prev_dyn_id_set && bmc->dyn_id_set)
2656 	    || (prev_guid_set && bmc->dyn_guid_set
2657 		&& !guid_equal(&bmc->guid, &bmc->fetch_guid))
2658 	    || bmc->id.device_id != bmc->fetch_id.device_id
2659 	    || bmc->id.manufacturer_id != bmc->fetch_id.manufacturer_id
2660 	    || bmc->id.product_id != bmc->fetch_id.product_id) {
2661 		struct ipmi_device_id id = bmc->fetch_id;
2662 		int guid_set = bmc->dyn_guid_set;
2663 		guid_t guid;
2664 
2665 		guid = bmc->fetch_guid;
2666 		mutex_unlock(&bmc->dyn_mutex);
2667 
2668 		__ipmi_bmc_unregister(intf);
2669 		/* Fill in the temporary BMC for good measure. */
2670 		intf->bmc->id = id;
2671 		intf->bmc->dyn_guid_set = guid_set;
2672 		intf->bmc->guid = guid;
2673 		if (__ipmi_bmc_register(intf, &id, guid_set, &guid, intf_num))
2674 			need_waiter(intf); /* Retry later on an error. */
2675 		else
2676 			__scan_channels(intf, &id);
2677 
2678 
2679 		if (!intf_set) {
2680 			/*
2681 			 * We weren't given the interface on the
2682 			 * command line, so restart the operation on
2683 			 * the next interface for the BMC.
2684 			 */
2685 			mutex_unlock(&intf->bmc_reg_mutex);
2686 			mutex_lock(&bmc->dyn_mutex);
2687 			goto retry_bmc_lock;
2688 		}
2689 
2690 		/* We have a new BMC, set it up. */
2691 		bmc = intf->bmc;
2692 		mutex_lock(&bmc->dyn_mutex);
2693 		goto out_noprocessing;
2694 	} else if (memcmp(&bmc->fetch_id, &bmc->id, sizeof(bmc->id)))
2695 		/* Version info changes, scan the channels again. */
2696 		__scan_channels(intf, &bmc->fetch_id);
2697 
2698 	bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
2699 
2700 out:
2701 	if (rv && prev_dyn_id_set) {
2702 		rv = 0; /* Ignore failures if we have previous data. */
2703 		bmc->dyn_id_set = prev_dyn_id_set;
2704 	}
2705 	if (!rv) {
2706 		bmc->id = bmc->fetch_id;
2707 		if (bmc->dyn_guid_set)
2708 			bmc->guid = bmc->fetch_guid;
2709 		else if (prev_guid_set)
2710 			/*
2711 			 * The guid used to be valid and it failed to fetch,
2712 			 * just use the cached value.
2713 			 */
2714 			bmc->dyn_guid_set = prev_guid_set;
2715 	}
2716 out_noprocessing:
2717 	if (!rv) {
2718 		if (id)
2719 			*id = bmc->id;
2720 
2721 		if (guid_set)
2722 			*guid_set = bmc->dyn_guid_set;
2723 
2724 		if (guid && bmc->dyn_guid_set)
2725 			*guid =  bmc->guid;
2726 	}
2727 
2728 	mutex_unlock(&bmc->dyn_mutex);
2729 	mutex_unlock(&intf->bmc_reg_mutex);
2730 
2731 	kref_put(&intf->refcount, intf_free);
2732 	return rv;
2733 }
2734 
2735 static int bmc_get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc,
2736 			     struct ipmi_device_id *id,
2737 			     bool *guid_set, guid_t *guid)
2738 {
2739 	return __bmc_get_device_id(intf, bmc, id, guid_set, guid, -1);
2740 }
2741 
2742 static ssize_t device_id_show(struct device *dev,
2743 			      struct device_attribute *attr,
2744 			      char *buf)
2745 {
2746 	struct bmc_device *bmc = to_bmc_device(dev);
2747 	struct ipmi_device_id id;
2748 	int rv;
2749 
2750 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2751 	if (rv)
2752 		return rv;
2753 
2754 	return sysfs_emit(buf, "%u\n", id.device_id);
2755 }
2756 static DEVICE_ATTR_RO(device_id);
2757 
2758 static ssize_t provides_device_sdrs_show(struct device *dev,
2759 					 struct device_attribute *attr,
2760 					 char *buf)
2761 {
2762 	struct bmc_device *bmc = to_bmc_device(dev);
2763 	struct ipmi_device_id id;
2764 	int rv;
2765 
2766 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2767 	if (rv)
2768 		return rv;
2769 
2770 	return sysfs_emit(buf, "%u\n", (id.device_revision & 0x80) >> 7);
2771 }
2772 static DEVICE_ATTR_RO(provides_device_sdrs);
2773 
2774 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2775 			     char *buf)
2776 {
2777 	struct bmc_device *bmc = to_bmc_device(dev);
2778 	struct ipmi_device_id id;
2779 	int rv;
2780 
2781 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2782 	if (rv)
2783 		return rv;
2784 
2785 	return sysfs_emit(buf, "%u\n", id.device_revision & 0x0F);
2786 }
2787 static DEVICE_ATTR_RO(revision);
2788 
2789 static ssize_t firmware_revision_show(struct device *dev,
2790 				      struct device_attribute *attr,
2791 				      char *buf)
2792 {
2793 	struct bmc_device *bmc = to_bmc_device(dev);
2794 	struct ipmi_device_id id;
2795 	int rv;
2796 
2797 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2798 	if (rv)
2799 		return rv;
2800 
2801 	return sysfs_emit(buf, "%u.%x\n", id.firmware_revision_1,
2802 			id.firmware_revision_2);
2803 }
2804 static DEVICE_ATTR_RO(firmware_revision);
2805 
2806 static ssize_t ipmi_version_show(struct device *dev,
2807 				 struct device_attribute *attr,
2808 				 char *buf)
2809 {
2810 	struct bmc_device *bmc = to_bmc_device(dev);
2811 	struct ipmi_device_id id;
2812 	int rv;
2813 
2814 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2815 	if (rv)
2816 		return rv;
2817 
2818 	return sysfs_emit(buf, "%u.%u\n",
2819 			ipmi_version_major(&id),
2820 			ipmi_version_minor(&id));
2821 }
2822 static DEVICE_ATTR_RO(ipmi_version);
2823 
2824 static ssize_t add_dev_support_show(struct device *dev,
2825 				    struct device_attribute *attr,
2826 				    char *buf)
2827 {
2828 	struct bmc_device *bmc = to_bmc_device(dev);
2829 	struct ipmi_device_id id;
2830 	int rv;
2831 
2832 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2833 	if (rv)
2834 		return rv;
2835 
2836 	return sysfs_emit(buf, "0x%02x\n", id.additional_device_support);
2837 }
2838 static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2839 		   NULL);
2840 
2841 static ssize_t manufacturer_id_show(struct device *dev,
2842 				    struct device_attribute *attr,
2843 				    char *buf)
2844 {
2845 	struct bmc_device *bmc = to_bmc_device(dev);
2846 	struct ipmi_device_id id;
2847 	int rv;
2848 
2849 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2850 	if (rv)
2851 		return rv;
2852 
2853 	return sysfs_emit(buf, "0x%6.6x\n", id.manufacturer_id);
2854 }
2855 static DEVICE_ATTR_RO(manufacturer_id);
2856 
2857 static ssize_t product_id_show(struct device *dev,
2858 			       struct device_attribute *attr,
2859 			       char *buf)
2860 {
2861 	struct bmc_device *bmc = to_bmc_device(dev);
2862 	struct ipmi_device_id id;
2863 	int rv;
2864 
2865 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2866 	if (rv)
2867 		return rv;
2868 
2869 	return sysfs_emit(buf, "0x%4.4x\n", id.product_id);
2870 }
2871 static DEVICE_ATTR_RO(product_id);
2872 
2873 static ssize_t aux_firmware_rev_show(struct device *dev,
2874 				     struct device_attribute *attr,
2875 				     char *buf)
2876 {
2877 	struct bmc_device *bmc = to_bmc_device(dev);
2878 	struct ipmi_device_id id;
2879 	int rv;
2880 
2881 	rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2882 	if (rv)
2883 		return rv;
2884 
2885 	return sysfs_emit(buf, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2886 			id.aux_firmware_revision[3],
2887 			id.aux_firmware_revision[2],
2888 			id.aux_firmware_revision[1],
2889 			id.aux_firmware_revision[0]);
2890 }
2891 static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2892 
2893 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2894 			 char *buf)
2895 {
2896 	struct bmc_device *bmc = to_bmc_device(dev);
2897 	bool guid_set;
2898 	guid_t guid;
2899 	int rv;
2900 
2901 	rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, &guid);
2902 	if (rv)
2903 		return rv;
2904 	if (!guid_set)
2905 		return -ENOENT;
2906 
2907 	return sysfs_emit(buf, "%pUl\n", &guid);
2908 }
2909 static DEVICE_ATTR_RO(guid);
2910 
2911 static struct attribute *bmc_dev_attrs[] = {
2912 	&dev_attr_device_id.attr,
2913 	&dev_attr_provides_device_sdrs.attr,
2914 	&dev_attr_revision.attr,
2915 	&dev_attr_firmware_revision.attr,
2916 	&dev_attr_ipmi_version.attr,
2917 	&dev_attr_additional_device_support.attr,
2918 	&dev_attr_manufacturer_id.attr,
2919 	&dev_attr_product_id.attr,
2920 	&dev_attr_aux_firmware_revision.attr,
2921 	&dev_attr_guid.attr,
2922 	NULL
2923 };
2924 
2925 static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2926 				       struct attribute *attr, int idx)
2927 {
2928 	struct device *dev = kobj_to_dev(kobj);
2929 	struct bmc_device *bmc = to_bmc_device(dev);
2930 	umode_t mode = attr->mode;
2931 	int rv;
2932 
2933 	if (attr == &dev_attr_aux_firmware_revision.attr) {
2934 		struct ipmi_device_id id;
2935 
2936 		rv = bmc_get_device_id(NULL, bmc, &id, NULL, NULL);
2937 		return (!rv && id.aux_firmware_revision_set) ? mode : 0;
2938 	}
2939 	if (attr == &dev_attr_guid.attr) {
2940 		bool guid_set;
2941 
2942 		rv = bmc_get_device_id(NULL, bmc, NULL, &guid_set, NULL);
2943 		return (!rv && guid_set) ? mode : 0;
2944 	}
2945 	return mode;
2946 }
2947 
2948 static const struct attribute_group bmc_dev_attr_group = {
2949 	.attrs		= bmc_dev_attrs,
2950 	.is_visible	= bmc_dev_attr_is_visible,
2951 };
2952 
2953 static const struct attribute_group *bmc_dev_attr_groups[] = {
2954 	&bmc_dev_attr_group,
2955 	NULL
2956 };
2957 
2958 static const struct device_type bmc_device_type = {
2959 	.groups		= bmc_dev_attr_groups,
2960 };
2961 
2962 static int __find_bmc_guid(struct device *dev, const void *data)
2963 {
2964 	const guid_t *guid = data;
2965 	struct bmc_device *bmc;
2966 	int rv;
2967 
2968 	if (dev->type != &bmc_device_type)
2969 		return 0;
2970 
2971 	bmc = to_bmc_device(dev);
2972 	rv = bmc->dyn_guid_set && guid_equal(&bmc->guid, guid);
2973 	if (rv)
2974 		rv = kref_get_unless_zero(&bmc->usecount);
2975 	return rv;
2976 }
2977 
2978 /*
2979  * Returns with the bmc's usecount incremented, if it is non-NULL.
2980  */
2981 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2982 					     guid_t *guid)
2983 {
2984 	struct device *dev;
2985 	struct bmc_device *bmc = NULL;
2986 
2987 	dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2988 	if (dev) {
2989 		bmc = to_bmc_device(dev);
2990 		put_device(dev);
2991 	}
2992 	return bmc;
2993 }
2994 
2995 struct prod_dev_id {
2996 	unsigned int  product_id;
2997 	unsigned char device_id;
2998 };
2999 
3000 static int __find_bmc_prod_dev_id(struct device *dev, const void *data)
3001 {
3002 	const struct prod_dev_id *cid = data;
3003 	struct bmc_device *bmc;
3004 	int rv;
3005 
3006 	if (dev->type != &bmc_device_type)
3007 		return 0;
3008 
3009 	bmc = to_bmc_device(dev);
3010 	rv = (bmc->id.product_id == cid->product_id
3011 	      && bmc->id.device_id == cid->device_id);
3012 	if (rv)
3013 		rv = kref_get_unless_zero(&bmc->usecount);
3014 	return rv;
3015 }
3016 
3017 /*
3018  * Returns with the bmc's usecount incremented, if it is non-NULL.
3019  */
3020 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
3021 	struct device_driver *drv,
3022 	unsigned int product_id, unsigned char device_id)
3023 {
3024 	struct prod_dev_id id = {
3025 		.product_id = product_id,
3026 		.device_id = device_id,
3027 	};
3028 	struct device *dev;
3029 	struct bmc_device *bmc = NULL;
3030 
3031 	dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
3032 	if (dev) {
3033 		bmc = to_bmc_device(dev);
3034 		put_device(dev);
3035 	}
3036 	return bmc;
3037 }
3038 
3039 static DEFINE_IDA(ipmi_bmc_ida);
3040 
3041 static void
3042 release_bmc_device(struct device *dev)
3043 {
3044 	kfree(to_bmc_device(dev));
3045 }
3046 
3047 static void cleanup_bmc_work(struct work_struct *work)
3048 {
3049 	struct bmc_device *bmc = container_of(work, struct bmc_device,
3050 					      remove_work);
3051 	int id = bmc->pdev.id; /* Unregister overwrites id */
3052 
3053 	platform_device_unregister(&bmc->pdev);
3054 	ida_simple_remove(&ipmi_bmc_ida, id);
3055 }
3056 
3057 static void
3058 cleanup_bmc_device(struct kref *ref)
3059 {
3060 	struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
3061 
3062 	/*
3063 	 * Remove the platform device in a work queue to avoid issues
3064 	 * with removing the device attributes while reading a device
3065 	 * attribute.
3066 	 */
3067 	queue_work(remove_work_wq, &bmc->remove_work);
3068 }
3069 
3070 /*
3071  * Must be called with intf->bmc_reg_mutex held.
3072  */
3073 static void __ipmi_bmc_unregister(struct ipmi_smi *intf)
3074 {
3075 	struct bmc_device *bmc = intf->bmc;
3076 
3077 	if (!intf->bmc_registered)
3078 		return;
3079 
3080 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3081 	sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
3082 	kfree(intf->my_dev_name);
3083 	intf->my_dev_name = NULL;
3084 
3085 	mutex_lock(&bmc->dyn_mutex);
3086 	list_del(&intf->bmc_link);
3087 	mutex_unlock(&bmc->dyn_mutex);
3088 	intf->bmc = &intf->tmp_bmc;
3089 	kref_put(&bmc->usecount, cleanup_bmc_device);
3090 	intf->bmc_registered = false;
3091 }
3092 
3093 static void ipmi_bmc_unregister(struct ipmi_smi *intf)
3094 {
3095 	mutex_lock(&intf->bmc_reg_mutex);
3096 	__ipmi_bmc_unregister(intf);
3097 	mutex_unlock(&intf->bmc_reg_mutex);
3098 }
3099 
3100 /*
3101  * Must be called with intf->bmc_reg_mutex held.
3102  */
3103 static int __ipmi_bmc_register(struct ipmi_smi *intf,
3104 			       struct ipmi_device_id *id,
3105 			       bool guid_set, guid_t *guid, int intf_num)
3106 {
3107 	int               rv;
3108 	struct bmc_device *bmc;
3109 	struct bmc_device *old_bmc;
3110 
3111 	/*
3112 	 * platform_device_register() can cause bmc_reg_mutex to
3113 	 * be claimed because of the is_visible functions of
3114 	 * the attributes.  Eliminate possible recursion and
3115 	 * release the lock.
3116 	 */
3117 	intf->in_bmc_register = true;
3118 	mutex_unlock(&intf->bmc_reg_mutex);
3119 
3120 	/*
3121 	 * Try to find if there is an bmc_device struct
3122 	 * representing the interfaced BMC already
3123 	 */
3124 	mutex_lock(&ipmidriver_mutex);
3125 	if (guid_set)
3126 		old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, guid);
3127 	else
3128 		old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
3129 						    id->product_id,
3130 						    id->device_id);
3131 
3132 	/*
3133 	 * If there is already an bmc_device, free the new one,
3134 	 * otherwise register the new BMC device
3135 	 */
3136 	if (old_bmc) {
3137 		bmc = old_bmc;
3138 		/*
3139 		 * Note: old_bmc already has usecount incremented by
3140 		 * the BMC find functions.
3141 		 */
3142 		intf->bmc = old_bmc;
3143 		mutex_lock(&bmc->dyn_mutex);
3144 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3145 		mutex_unlock(&bmc->dyn_mutex);
3146 
3147 		dev_info(intf->si_dev,
3148 			 "interfacing existing BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3149 			 bmc->id.manufacturer_id,
3150 			 bmc->id.product_id,
3151 			 bmc->id.device_id);
3152 	} else {
3153 		bmc = kzalloc(sizeof(*bmc), GFP_KERNEL);
3154 		if (!bmc) {
3155 			rv = -ENOMEM;
3156 			goto out;
3157 		}
3158 		INIT_LIST_HEAD(&bmc->intfs);
3159 		mutex_init(&bmc->dyn_mutex);
3160 		INIT_WORK(&bmc->remove_work, cleanup_bmc_work);
3161 
3162 		bmc->id = *id;
3163 		bmc->dyn_id_set = 1;
3164 		bmc->dyn_guid_set = guid_set;
3165 		bmc->guid = *guid;
3166 		bmc->dyn_id_expiry = jiffies + IPMI_DYN_DEV_ID_EXPIRY;
3167 
3168 		bmc->pdev.name = "ipmi_bmc";
3169 
3170 		rv = ida_simple_get(&ipmi_bmc_ida, 0, 0, GFP_KERNEL);
3171 		if (rv < 0) {
3172 			kfree(bmc);
3173 			goto out;
3174 		}
3175 
3176 		bmc->pdev.dev.driver = &ipmidriver.driver;
3177 		bmc->pdev.id = rv;
3178 		bmc->pdev.dev.release = release_bmc_device;
3179 		bmc->pdev.dev.type = &bmc_device_type;
3180 		kref_init(&bmc->usecount);
3181 
3182 		intf->bmc = bmc;
3183 		mutex_lock(&bmc->dyn_mutex);
3184 		list_add_tail(&intf->bmc_link, &bmc->intfs);
3185 		mutex_unlock(&bmc->dyn_mutex);
3186 
3187 		rv = platform_device_register(&bmc->pdev);
3188 		if (rv) {
3189 			dev_err(intf->si_dev,
3190 				"Unable to register bmc device: %d\n",
3191 				rv);
3192 			goto out_list_del;
3193 		}
3194 
3195 		dev_info(intf->si_dev,
3196 			 "Found new BMC (man_id: 0x%6.6x, prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
3197 			 bmc->id.manufacturer_id,
3198 			 bmc->id.product_id,
3199 			 bmc->id.device_id);
3200 	}
3201 
3202 	/*
3203 	 * create symlink from system interface device to bmc device
3204 	 * and back.
3205 	 */
3206 	rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
3207 	if (rv) {
3208 		dev_err(intf->si_dev, "Unable to create bmc symlink: %d\n", rv);
3209 		goto out_put_bmc;
3210 	}
3211 
3212 	if (intf_num == -1)
3213 		intf_num = intf->intf_num;
3214 	intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", intf_num);
3215 	if (!intf->my_dev_name) {
3216 		rv = -ENOMEM;
3217 		dev_err(intf->si_dev, "Unable to allocate link from BMC: %d\n",
3218 			rv);
3219 		goto out_unlink1;
3220 	}
3221 
3222 	rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
3223 			       intf->my_dev_name);
3224 	if (rv) {
3225 		dev_err(intf->si_dev, "Unable to create symlink to bmc: %d\n",
3226 			rv);
3227 		goto out_free_my_dev_name;
3228 	}
3229 
3230 	intf->bmc_registered = true;
3231 
3232 out:
3233 	mutex_unlock(&ipmidriver_mutex);
3234 	mutex_lock(&intf->bmc_reg_mutex);
3235 	intf->in_bmc_register = false;
3236 	return rv;
3237 
3238 
3239 out_free_my_dev_name:
3240 	kfree(intf->my_dev_name);
3241 	intf->my_dev_name = NULL;
3242 
3243 out_unlink1:
3244 	sysfs_remove_link(&intf->si_dev->kobj, "bmc");
3245 
3246 out_put_bmc:
3247 	mutex_lock(&bmc->dyn_mutex);
3248 	list_del(&intf->bmc_link);
3249 	mutex_unlock(&bmc->dyn_mutex);
3250 	intf->bmc = &intf->tmp_bmc;
3251 	kref_put(&bmc->usecount, cleanup_bmc_device);
3252 	goto out;
3253 
3254 out_list_del:
3255 	mutex_lock(&bmc->dyn_mutex);
3256 	list_del(&intf->bmc_link);
3257 	mutex_unlock(&bmc->dyn_mutex);
3258 	intf->bmc = &intf->tmp_bmc;
3259 	put_device(&bmc->pdev.dev);
3260 	goto out;
3261 }
3262 
3263 static int
3264 send_guid_cmd(struct ipmi_smi *intf, int chan)
3265 {
3266 	struct kernel_ipmi_msg            msg;
3267 	struct ipmi_system_interface_addr si;
3268 
3269 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3270 	si.channel = IPMI_BMC_CHANNEL;
3271 	si.lun = 0;
3272 
3273 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3274 	msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
3275 	msg.data = NULL;
3276 	msg.data_len = 0;
3277 	return i_ipmi_request(NULL,
3278 			      intf,
3279 			      (struct ipmi_addr *) &si,
3280 			      0,
3281 			      &msg,
3282 			      intf,
3283 			      NULL,
3284 			      NULL,
3285 			      0,
3286 			      intf->addrinfo[0].address,
3287 			      intf->addrinfo[0].lun,
3288 			      -1, 0);
3289 }
3290 
3291 static void guid_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3292 {
3293 	struct bmc_device *bmc = intf->bmc;
3294 
3295 	if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3296 	    || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
3297 	    || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
3298 		/* Not for me */
3299 		return;
3300 
3301 	if (msg->msg.data[0] != 0) {
3302 		/* Error from getting the GUID, the BMC doesn't have one. */
3303 		bmc->dyn_guid_set = 0;
3304 		goto out;
3305 	}
3306 
3307 	if (msg->msg.data_len < UUID_SIZE + 1) {
3308 		bmc->dyn_guid_set = 0;
3309 		dev_warn(intf->si_dev,
3310 			 "The GUID response from the BMC was too short, it was %d but should have been %d.  Assuming GUID is not available.\n",
3311 			 msg->msg.data_len, UUID_SIZE + 1);
3312 		goto out;
3313 	}
3314 
3315 	import_guid(&bmc->fetch_guid, msg->msg.data + 1);
3316 	/*
3317 	 * Make sure the guid data is available before setting
3318 	 * dyn_guid_set.
3319 	 */
3320 	smp_wmb();
3321 	bmc->dyn_guid_set = 1;
3322  out:
3323 	wake_up(&intf->waitq);
3324 }
3325 
3326 static void __get_guid(struct ipmi_smi *intf)
3327 {
3328 	int rv;
3329 	struct bmc_device *bmc = intf->bmc;
3330 
3331 	bmc->dyn_guid_set = 2;
3332 	intf->null_user_handler = guid_handler;
3333 	rv = send_guid_cmd(intf, 0);
3334 	if (rv)
3335 		/* Send failed, no GUID available. */
3336 		bmc->dyn_guid_set = 0;
3337 	else
3338 		wait_event(intf->waitq, bmc->dyn_guid_set != 2);
3339 
3340 	/* dyn_guid_set makes the guid data available. */
3341 	smp_rmb();
3342 
3343 	intf->null_user_handler = NULL;
3344 }
3345 
3346 static int
3347 send_channel_info_cmd(struct ipmi_smi *intf, int chan)
3348 {
3349 	struct kernel_ipmi_msg            msg;
3350 	unsigned char                     data[1];
3351 	struct ipmi_system_interface_addr si;
3352 
3353 	si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3354 	si.channel = IPMI_BMC_CHANNEL;
3355 	si.lun = 0;
3356 
3357 	msg.netfn = IPMI_NETFN_APP_REQUEST;
3358 	msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
3359 	msg.data = data;
3360 	msg.data_len = 1;
3361 	data[0] = chan;
3362 	return i_ipmi_request(NULL,
3363 			      intf,
3364 			      (struct ipmi_addr *) &si,
3365 			      0,
3366 			      &msg,
3367 			      intf,
3368 			      NULL,
3369 			      NULL,
3370 			      0,
3371 			      intf->addrinfo[0].address,
3372 			      intf->addrinfo[0].lun,
3373 			      -1, 0);
3374 }
3375 
3376 static void
3377 channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
3378 {
3379 	int rv = 0;
3380 	int ch;
3381 	unsigned int set = intf->curr_working_cset;
3382 	struct ipmi_channel *chans;
3383 
3384 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3385 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3386 	    && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
3387 		/* It's the one we want */
3388 		if (msg->msg.data[0] != 0) {
3389 			/* Got an error from the channel, just go on. */
3390 			if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
3391 				/*
3392 				 * If the MC does not support this
3393 				 * command, that is legal.  We just
3394 				 * assume it has one IPMB at channel
3395 				 * zero.
3396 				 */
3397 				intf->wchannels[set].c[0].medium
3398 					= IPMI_CHANNEL_MEDIUM_IPMB;
3399 				intf->wchannels[set].c[0].protocol
3400 					= IPMI_CHANNEL_PROTOCOL_IPMB;
3401 
3402 				intf->channel_list = intf->wchannels + set;
3403 				intf->channels_ready = true;
3404 				wake_up(&intf->waitq);
3405 				goto out;
3406 			}
3407 			goto next_channel;
3408 		}
3409 		if (msg->msg.data_len < 4) {
3410 			/* Message not big enough, just go on. */
3411 			goto next_channel;
3412 		}
3413 		ch = intf->curr_channel;
3414 		chans = intf->wchannels[set].c;
3415 		chans[ch].medium = msg->msg.data[2] & 0x7f;
3416 		chans[ch].protocol = msg->msg.data[3] & 0x1f;
3417 
3418  next_channel:
3419 		intf->curr_channel++;
3420 		if (intf->curr_channel >= IPMI_MAX_CHANNELS) {
3421 			intf->channel_list = intf->wchannels + set;
3422 			intf->channels_ready = true;
3423 			wake_up(&intf->waitq);
3424 		} else {
3425 			intf->channel_list = intf->wchannels + set;
3426 			intf->channels_ready = true;
3427 			rv = send_channel_info_cmd(intf, intf->curr_channel);
3428 		}
3429 
3430 		if (rv) {
3431 			/* Got an error somehow, just give up. */
3432 			dev_warn(intf->si_dev,
3433 				 "Error sending channel information for channel %d: %d\n",
3434 				 intf->curr_channel, rv);
3435 
3436 			intf->channel_list = intf->wchannels + set;
3437 			intf->channels_ready = true;
3438 			wake_up(&intf->waitq);
3439 		}
3440 	}
3441  out:
3442 	return;
3443 }
3444 
3445 /*
3446  * Must be holding intf->bmc_reg_mutex to call this.
3447  */
3448 static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
3449 {
3450 	int rv;
3451 
3452 	if (ipmi_version_major(id) > 1
3453 			|| (ipmi_version_major(id) == 1
3454 			    && ipmi_version_minor(id) >= 5)) {
3455 		unsigned int set;
3456 
3457 		/*
3458 		 * Start scanning the channels to see what is
3459 		 * available.
3460 		 */
3461 		set = !intf->curr_working_cset;
3462 		intf->curr_working_cset = set;
3463 		memset(&intf->wchannels[set], 0,
3464 		       sizeof(struct ipmi_channel_set));
3465 
3466 		intf->null_user_handler = channel_handler;
3467 		intf->curr_channel = 0;
3468 		rv = send_channel_info_cmd(intf, 0);
3469 		if (rv) {
3470 			dev_warn(intf->si_dev,
3471 				 "Error sending channel information for channel 0, %d\n",
3472 				 rv);
3473 			intf->null_user_handler = NULL;
3474 			return -EIO;
3475 		}
3476 
3477 		/* Wait for the channel info to be read. */
3478 		wait_event(intf->waitq, intf->channels_ready);
3479 		intf->null_user_handler = NULL;
3480 	} else {
3481 		unsigned int set = intf->curr_working_cset;
3482 
3483 		/* Assume a single IPMB channel at zero. */
3484 		intf->wchannels[set].c[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
3485 		intf->wchannels[set].c[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
3486 		intf->channel_list = intf->wchannels + set;
3487 		intf->channels_ready = true;
3488 	}
3489 
3490 	return 0;
3491 }
3492 
3493 static void ipmi_poll(struct ipmi_smi *intf)
3494 {
3495 	if (intf->handlers->poll)
3496 		intf->handlers->poll(intf->send_info);
3497 	/* In case something came in */
3498 	handle_new_recv_msgs(intf);
3499 }
3500 
3501 void ipmi_poll_interface(struct ipmi_user *user)
3502 {
3503 	ipmi_poll(user->intf);
3504 }
3505 EXPORT_SYMBOL(ipmi_poll_interface);
3506 
3507 static ssize_t nr_users_show(struct device *dev,
3508 			     struct device_attribute *attr,
3509 			     char *buf)
3510 {
3511 	struct ipmi_smi *intf = container_of(attr,
3512 			 struct ipmi_smi, nr_users_devattr);
3513 
3514 	return sysfs_emit(buf, "%d\n", atomic_read(&intf->nr_users));
3515 }
3516 static DEVICE_ATTR_RO(nr_users);
3517 
3518 static ssize_t nr_msgs_show(struct device *dev,
3519 			    struct device_attribute *attr,
3520 			    char *buf)
3521 {
3522 	struct ipmi_smi *intf = container_of(attr,
3523 			 struct ipmi_smi, nr_msgs_devattr);
3524 	struct ipmi_user *user;
3525 	int index;
3526 	unsigned int count = 0;
3527 
3528 	index = srcu_read_lock(&intf->users_srcu);
3529 	list_for_each_entry_rcu(user, &intf->users, link)
3530 		count += atomic_read(&user->nr_msgs);
3531 	srcu_read_unlock(&intf->users_srcu, index);
3532 
3533 	return sysfs_emit(buf, "%u\n", count);
3534 }
3535 static DEVICE_ATTR_RO(nr_msgs);
3536 
3537 static void redo_bmc_reg(struct work_struct *work)
3538 {
3539 	struct ipmi_smi *intf = container_of(work, struct ipmi_smi,
3540 					     bmc_reg_work);
3541 
3542 	if (!intf->in_shutdown)
3543 		bmc_get_device_id(intf, NULL, NULL, NULL, NULL);
3544 
3545 	kref_put(&intf->refcount, intf_free);
3546 }
3547 
3548 int ipmi_add_smi(struct module         *owner,
3549 		 const struct ipmi_smi_handlers *handlers,
3550 		 void		       *send_info,
3551 		 struct device         *si_dev,
3552 		 unsigned char         slave_addr)
3553 {
3554 	int              i, j;
3555 	int              rv;
3556 	struct ipmi_smi *intf, *tintf;
3557 	struct list_head *link;
3558 	struct ipmi_device_id id;
3559 
3560 	/*
3561 	 * Make sure the driver is actually initialized, this handles
3562 	 * problems with initialization order.
3563 	 */
3564 	rv = ipmi_init_msghandler();
3565 	if (rv)
3566 		return rv;
3567 
3568 	intf = kzalloc(sizeof(*intf), GFP_KERNEL);
3569 	if (!intf)
3570 		return -ENOMEM;
3571 
3572 	rv = init_srcu_struct(&intf->users_srcu);
3573 	if (rv) {
3574 		kfree(intf);
3575 		return rv;
3576 	}
3577 
3578 	intf->owner = owner;
3579 	intf->bmc = &intf->tmp_bmc;
3580 	INIT_LIST_HEAD(&intf->bmc->intfs);
3581 	mutex_init(&intf->bmc->dyn_mutex);
3582 	INIT_LIST_HEAD(&intf->bmc_link);
3583 	mutex_init(&intf->bmc_reg_mutex);
3584 	intf->intf_num = -1; /* Mark it invalid for now. */
3585 	kref_init(&intf->refcount);
3586 	INIT_WORK(&intf->bmc_reg_work, redo_bmc_reg);
3587 	intf->si_dev = si_dev;
3588 	for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
3589 		intf->addrinfo[j].address = IPMI_BMC_SLAVE_ADDR;
3590 		intf->addrinfo[j].lun = 2;
3591 	}
3592 	if (slave_addr != 0)
3593 		intf->addrinfo[0].address = slave_addr;
3594 	INIT_LIST_HEAD(&intf->users);
3595 	atomic_set(&intf->nr_users, 0);
3596 	intf->handlers = handlers;
3597 	intf->send_info = send_info;
3598 	spin_lock_init(&intf->seq_lock);
3599 	for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
3600 		intf->seq_table[j].inuse = 0;
3601 		intf->seq_table[j].seqid = 0;
3602 	}
3603 	intf->curr_seq = 0;
3604 	spin_lock_init(&intf->waiting_rcv_msgs_lock);
3605 	INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
3606 	tasklet_setup(&intf->recv_tasklet,
3607 		     smi_recv_tasklet);
3608 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
3609 	spin_lock_init(&intf->xmit_msgs_lock);
3610 	INIT_LIST_HEAD(&intf->xmit_msgs);
3611 	INIT_LIST_HEAD(&intf->hp_xmit_msgs);
3612 	spin_lock_init(&intf->events_lock);
3613 	spin_lock_init(&intf->watch_lock);
3614 	atomic_set(&intf->event_waiters, 0);
3615 	intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3616 	INIT_LIST_HEAD(&intf->waiting_events);
3617 	intf->waiting_events_count = 0;
3618 	mutex_init(&intf->cmd_rcvrs_mutex);
3619 	spin_lock_init(&intf->maintenance_mode_lock);
3620 	INIT_LIST_HEAD(&intf->cmd_rcvrs);
3621 	init_waitqueue_head(&intf->waitq);
3622 	for (i = 0; i < IPMI_NUM_STATS; i++)
3623 		atomic_set(&intf->stats[i], 0);
3624 
3625 	mutex_lock(&ipmi_interfaces_mutex);
3626 	/* Look for a hole in the numbers. */
3627 	i = 0;
3628 	link = &ipmi_interfaces;
3629 	list_for_each_entry_rcu(tintf, &ipmi_interfaces, link,
3630 				ipmi_interfaces_mutex_held()) {
3631 		if (tintf->intf_num != i) {
3632 			link = &tintf->link;
3633 			break;
3634 		}
3635 		i++;
3636 	}
3637 	/* Add the new interface in numeric order. */
3638 	if (i == 0)
3639 		list_add_rcu(&intf->link, &ipmi_interfaces);
3640 	else
3641 		list_add_tail_rcu(&intf->link, link);
3642 
3643 	rv = handlers->start_processing(send_info, intf);
3644 	if (rv)
3645 		goto out_err;
3646 
3647 	rv = __bmc_get_device_id(intf, NULL, &id, NULL, NULL, i);
3648 	if (rv) {
3649 		dev_err(si_dev, "Unable to get the device id: %d\n", rv);
3650 		goto out_err_started;
3651 	}
3652 
3653 	mutex_lock(&intf->bmc_reg_mutex);
3654 	rv = __scan_channels(intf, &id);
3655 	mutex_unlock(&intf->bmc_reg_mutex);
3656 	if (rv)
3657 		goto out_err_bmc_reg;
3658 
3659 	intf->nr_users_devattr = dev_attr_nr_users;
3660 	sysfs_attr_init(&intf->nr_users_devattr.attr);
3661 	rv = device_create_file(intf->si_dev, &intf->nr_users_devattr);
3662 	if (rv)
3663 		goto out_err_bmc_reg;
3664 
3665 	intf->nr_msgs_devattr = dev_attr_nr_msgs;
3666 	sysfs_attr_init(&intf->nr_msgs_devattr.attr);
3667 	rv = device_create_file(intf->si_dev, &intf->nr_msgs_devattr);
3668 	if (rv) {
3669 		device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3670 		goto out_err_bmc_reg;
3671 	}
3672 
3673 	/*
3674 	 * Keep memory order straight for RCU readers.  Make
3675 	 * sure everything else is committed to memory before
3676 	 * setting intf_num to mark the interface valid.
3677 	 */
3678 	smp_wmb();
3679 	intf->intf_num = i;
3680 	mutex_unlock(&ipmi_interfaces_mutex);
3681 
3682 	/* After this point the interface is legal to use. */
3683 	call_smi_watchers(i, intf->si_dev);
3684 
3685 	return 0;
3686 
3687  out_err_bmc_reg:
3688 	ipmi_bmc_unregister(intf);
3689  out_err_started:
3690 	if (intf->handlers->shutdown)
3691 		intf->handlers->shutdown(intf->send_info);
3692  out_err:
3693 	list_del_rcu(&intf->link);
3694 	mutex_unlock(&ipmi_interfaces_mutex);
3695 	synchronize_srcu(&ipmi_interfaces_srcu);
3696 	cleanup_srcu_struct(&intf->users_srcu);
3697 	kref_put(&intf->refcount, intf_free);
3698 
3699 	return rv;
3700 }
3701 EXPORT_SYMBOL(ipmi_add_smi);
3702 
3703 static void deliver_smi_err_response(struct ipmi_smi *intf,
3704 				     struct ipmi_smi_msg *msg,
3705 				     unsigned char err)
3706 {
3707 	msg->rsp[0] = msg->data[0] | 4;
3708 	msg->rsp[1] = msg->data[1];
3709 	msg->rsp[2] = err;
3710 	msg->rsp_size = 3;
3711 	/* It's an error, so it will never requeue, no need to check return. */
3712 	handle_one_recv_msg(intf, msg);
3713 }
3714 
3715 static void cleanup_smi_msgs(struct ipmi_smi *intf)
3716 {
3717 	int              i;
3718 	struct seq_table *ent;
3719 	struct ipmi_smi_msg *msg;
3720 	struct list_head *entry;
3721 	struct list_head tmplist;
3722 
3723 	/* Clear out our transmit queues and hold the messages. */
3724 	INIT_LIST_HEAD(&tmplist);
3725 	list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
3726 	list_splice_tail(&intf->xmit_msgs, &tmplist);
3727 
3728 	/* Current message first, to preserve order */
3729 	while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
3730 		/* Wait for the message to clear out. */
3731 		schedule_timeout(1);
3732 	}
3733 
3734 	/* No need for locks, the interface is down. */
3735 
3736 	/*
3737 	 * Return errors for all pending messages in queue and in the
3738 	 * tables waiting for remote responses.
3739 	 */
3740 	while (!list_empty(&tmplist)) {
3741 		entry = tmplist.next;
3742 		list_del(entry);
3743 		msg = list_entry(entry, struct ipmi_smi_msg, link);
3744 		deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
3745 	}
3746 
3747 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
3748 		ent = &intf->seq_table[i];
3749 		if (!ent->inuse)
3750 			continue;
3751 		deliver_err_response(intf, ent->recv_msg, IPMI_ERR_UNSPECIFIED);
3752 	}
3753 }
3754 
3755 void ipmi_unregister_smi(struct ipmi_smi *intf)
3756 {
3757 	struct ipmi_smi_watcher *w;
3758 	int intf_num, index;
3759 
3760 	if (!intf)
3761 		return;
3762 	intf_num = intf->intf_num;
3763 	mutex_lock(&ipmi_interfaces_mutex);
3764 	intf->intf_num = -1;
3765 	intf->in_shutdown = true;
3766 	list_del_rcu(&intf->link);
3767 	mutex_unlock(&ipmi_interfaces_mutex);
3768 	synchronize_srcu(&ipmi_interfaces_srcu);
3769 
3770 	/* At this point no users can be added to the interface. */
3771 
3772 	device_remove_file(intf->si_dev, &intf->nr_msgs_devattr);
3773 	device_remove_file(intf->si_dev, &intf->nr_users_devattr);
3774 
3775 	/*
3776 	 * Call all the watcher interfaces to tell them that
3777 	 * an interface is going away.
3778 	 */
3779 	mutex_lock(&smi_watchers_mutex);
3780 	list_for_each_entry(w, &smi_watchers, link)
3781 		w->smi_gone(intf_num);
3782 	mutex_unlock(&smi_watchers_mutex);
3783 
3784 	index = srcu_read_lock(&intf->users_srcu);
3785 	while (!list_empty(&intf->users)) {
3786 		struct ipmi_user *user =
3787 			container_of(list_next_rcu(&intf->users),
3788 				     struct ipmi_user, link);
3789 
3790 		_ipmi_destroy_user(user);
3791 	}
3792 	srcu_read_unlock(&intf->users_srcu, index);
3793 
3794 	if (intf->handlers->shutdown)
3795 		intf->handlers->shutdown(intf->send_info);
3796 
3797 	cleanup_smi_msgs(intf);
3798 
3799 	ipmi_bmc_unregister(intf);
3800 
3801 	cleanup_srcu_struct(&intf->users_srcu);
3802 	kref_put(&intf->refcount, intf_free);
3803 }
3804 EXPORT_SYMBOL(ipmi_unregister_smi);
3805 
3806 static int handle_ipmb_get_msg_rsp(struct ipmi_smi *intf,
3807 				   struct ipmi_smi_msg *msg)
3808 {
3809 	struct ipmi_ipmb_addr ipmb_addr;
3810 	struct ipmi_recv_msg  *recv_msg;
3811 
3812 	/*
3813 	 * This is 11, not 10, because the response must contain a
3814 	 * completion code.
3815 	 */
3816 	if (msg->rsp_size < 11) {
3817 		/* Message not big enough, just ignore it. */
3818 		ipmi_inc_stat(intf, invalid_ipmb_responses);
3819 		return 0;
3820 	}
3821 
3822 	if (msg->rsp[2] != 0) {
3823 		/* An error getting the response, just ignore it. */
3824 		return 0;
3825 	}
3826 
3827 	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3828 	ipmb_addr.slave_addr = msg->rsp[6];
3829 	ipmb_addr.channel = msg->rsp[3] & 0x0f;
3830 	ipmb_addr.lun = msg->rsp[7] & 3;
3831 
3832 	/*
3833 	 * It's a response from a remote entity.  Look up the sequence
3834 	 * number and handle the response.
3835 	 */
3836 	if (intf_find_seq(intf,
3837 			  msg->rsp[7] >> 2,
3838 			  msg->rsp[3] & 0x0f,
3839 			  msg->rsp[8],
3840 			  (msg->rsp[4] >> 2) & (~1),
3841 			  (struct ipmi_addr *) &ipmb_addr,
3842 			  &recv_msg)) {
3843 		/*
3844 		 * We were unable to find the sequence number,
3845 		 * so just nuke the message.
3846 		 */
3847 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3848 		return 0;
3849 	}
3850 
3851 	memcpy(recv_msg->msg_data, &msg->rsp[9], msg->rsp_size - 9);
3852 	/*
3853 	 * The other fields matched, so no need to set them, except
3854 	 * for netfn, which needs to be the response that was
3855 	 * returned, not the request value.
3856 	 */
3857 	recv_msg->msg.netfn = msg->rsp[4] >> 2;
3858 	recv_msg->msg.data = recv_msg->msg_data;
3859 	recv_msg->msg.data_len = msg->rsp_size - 10;
3860 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3861 	if (deliver_response(intf, recv_msg))
3862 		ipmi_inc_stat(intf, unhandled_ipmb_responses);
3863 	else
3864 		ipmi_inc_stat(intf, handled_ipmb_responses);
3865 
3866 	return 0;
3867 }
3868 
3869 static int handle_ipmb_get_msg_cmd(struct ipmi_smi *intf,
3870 				   struct ipmi_smi_msg *msg)
3871 {
3872 	struct cmd_rcvr          *rcvr;
3873 	int                      rv = 0;
3874 	unsigned char            netfn;
3875 	unsigned char            cmd;
3876 	unsigned char            chan;
3877 	struct ipmi_user         *user = NULL;
3878 	struct ipmi_ipmb_addr    *ipmb_addr;
3879 	struct ipmi_recv_msg     *recv_msg;
3880 
3881 	if (msg->rsp_size < 10) {
3882 		/* Message not big enough, just ignore it. */
3883 		ipmi_inc_stat(intf, invalid_commands);
3884 		return 0;
3885 	}
3886 
3887 	if (msg->rsp[2] != 0) {
3888 		/* An error getting the response, just ignore it. */
3889 		return 0;
3890 	}
3891 
3892 	netfn = msg->rsp[4] >> 2;
3893 	cmd = msg->rsp[8];
3894 	chan = msg->rsp[3] & 0xf;
3895 
3896 	rcu_read_lock();
3897 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3898 	if (rcvr) {
3899 		user = rcvr->user;
3900 		kref_get(&user->refcount);
3901 	} else
3902 		user = NULL;
3903 	rcu_read_unlock();
3904 
3905 	if (user == NULL) {
3906 		/* We didn't find a user, deliver an error response. */
3907 		ipmi_inc_stat(intf, unhandled_commands);
3908 
3909 		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3910 		msg->data[1] = IPMI_SEND_MSG_CMD;
3911 		msg->data[2] = msg->rsp[3];
3912 		msg->data[3] = msg->rsp[6];
3913 		msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3914 		msg->data[5] = ipmb_checksum(&msg->data[3], 2);
3915 		msg->data[6] = intf->addrinfo[msg->rsp[3] & 0xf].address;
3916 		/* rqseq/lun */
3917 		msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3918 		msg->data[8] = msg->rsp[8]; /* cmd */
3919 		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3920 		msg->data[10] = ipmb_checksum(&msg->data[6], 4);
3921 		msg->data_size = 11;
3922 
3923 		dev_dbg(intf->si_dev, "Invalid command: %*ph\n",
3924 			msg->data_size, msg->data);
3925 
3926 		rcu_read_lock();
3927 		if (!intf->in_shutdown) {
3928 			smi_send(intf, intf->handlers, msg, 0);
3929 			/*
3930 			 * We used the message, so return the value
3931 			 * that causes it to not be freed or
3932 			 * queued.
3933 			 */
3934 			rv = -1;
3935 		}
3936 		rcu_read_unlock();
3937 	} else {
3938 		recv_msg = ipmi_alloc_recv_msg();
3939 		if (!recv_msg) {
3940 			/*
3941 			 * We couldn't allocate memory for the
3942 			 * message, so requeue it for handling
3943 			 * later.
3944 			 */
3945 			rv = 1;
3946 			kref_put(&user->refcount, free_user);
3947 		} else {
3948 			/* Extract the source address from the data. */
3949 			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3950 			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3951 			ipmb_addr->slave_addr = msg->rsp[6];
3952 			ipmb_addr->lun = msg->rsp[7] & 3;
3953 			ipmb_addr->channel = msg->rsp[3] & 0xf;
3954 
3955 			/*
3956 			 * Extract the rest of the message information
3957 			 * from the IPMB header.
3958 			 */
3959 			recv_msg->user = user;
3960 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3961 			recv_msg->msgid = msg->rsp[7] >> 2;
3962 			recv_msg->msg.netfn = msg->rsp[4] >> 2;
3963 			recv_msg->msg.cmd = msg->rsp[8];
3964 			recv_msg->msg.data = recv_msg->msg_data;
3965 
3966 			/*
3967 			 * We chop off 10, not 9 bytes because the checksum
3968 			 * at the end also needs to be removed.
3969 			 */
3970 			recv_msg->msg.data_len = msg->rsp_size - 10;
3971 			memcpy(recv_msg->msg_data, &msg->rsp[9],
3972 			       msg->rsp_size - 10);
3973 			if (deliver_response(intf, recv_msg))
3974 				ipmi_inc_stat(intf, unhandled_commands);
3975 			else
3976 				ipmi_inc_stat(intf, handled_commands);
3977 		}
3978 	}
3979 
3980 	return rv;
3981 }
3982 
3983 static int handle_ipmb_direct_rcv_cmd(struct ipmi_smi *intf,
3984 				      struct ipmi_smi_msg *msg)
3985 {
3986 	struct cmd_rcvr          *rcvr;
3987 	int                      rv = 0;
3988 	struct ipmi_user         *user = NULL;
3989 	struct ipmi_ipmb_direct_addr *daddr;
3990 	struct ipmi_recv_msg     *recv_msg;
3991 	unsigned char netfn = msg->rsp[0] >> 2;
3992 	unsigned char cmd = msg->rsp[3];
3993 
3994 	rcu_read_lock();
3995 	/* We always use channel 0 for direct messages. */
3996 	rcvr = find_cmd_rcvr(intf, netfn, cmd, 0);
3997 	if (rcvr) {
3998 		user = rcvr->user;
3999 		kref_get(&user->refcount);
4000 	} else
4001 		user = NULL;
4002 	rcu_read_unlock();
4003 
4004 	if (user == NULL) {
4005 		/* We didn't find a user, deliver an error response. */
4006 		ipmi_inc_stat(intf, unhandled_commands);
4007 
4008 		msg->data[0] = (netfn + 1) << 2;
4009 		msg->data[0] |= msg->rsp[2] & 0x3; /* rqLUN */
4010 		msg->data[1] = msg->rsp[1]; /* Addr */
4011 		msg->data[2] = msg->rsp[2] & ~0x3; /* rqSeq */
4012 		msg->data[2] |= msg->rsp[0] & 0x3; /* rsLUN */
4013 		msg->data[3] = cmd;
4014 		msg->data[4] = IPMI_INVALID_CMD_COMPLETION_CODE;
4015 		msg->data_size = 5;
4016 
4017 		rcu_read_lock();
4018 		if (!intf->in_shutdown) {
4019 			smi_send(intf, intf->handlers, msg, 0);
4020 			/*
4021 			 * We used the message, so return the value
4022 			 * that causes it to not be freed or
4023 			 * queued.
4024 			 */
4025 			rv = -1;
4026 		}
4027 		rcu_read_unlock();
4028 	} else {
4029 		recv_msg = ipmi_alloc_recv_msg();
4030 		if (!recv_msg) {
4031 			/*
4032 			 * We couldn't allocate memory for the
4033 			 * message, so requeue it for handling
4034 			 * later.
4035 			 */
4036 			rv = 1;
4037 			kref_put(&user->refcount, free_user);
4038 		} else {
4039 			/* Extract the source address from the data. */
4040 			daddr = (struct ipmi_ipmb_direct_addr *)&recv_msg->addr;
4041 			daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4042 			daddr->channel = 0;
4043 			daddr->slave_addr = msg->rsp[1];
4044 			daddr->rs_lun = msg->rsp[0] & 3;
4045 			daddr->rq_lun = msg->rsp[2] & 3;
4046 
4047 			/*
4048 			 * Extract the rest of the message information
4049 			 * from the IPMB header.
4050 			 */
4051 			recv_msg->user = user;
4052 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4053 			recv_msg->msgid = (msg->rsp[2] >> 2);
4054 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4055 			recv_msg->msg.cmd = msg->rsp[3];
4056 			recv_msg->msg.data = recv_msg->msg_data;
4057 
4058 			recv_msg->msg.data_len = msg->rsp_size - 4;
4059 			memcpy(recv_msg->msg_data, msg->rsp + 4,
4060 			       msg->rsp_size - 4);
4061 			if (deliver_response(intf, recv_msg))
4062 				ipmi_inc_stat(intf, unhandled_commands);
4063 			else
4064 				ipmi_inc_stat(intf, handled_commands);
4065 		}
4066 	}
4067 
4068 	return rv;
4069 }
4070 
4071 static int handle_ipmb_direct_rcv_rsp(struct ipmi_smi *intf,
4072 				      struct ipmi_smi_msg *msg)
4073 {
4074 	struct ipmi_recv_msg *recv_msg;
4075 	struct ipmi_ipmb_direct_addr *daddr;
4076 
4077 	recv_msg = msg->user_data;
4078 	if (recv_msg == NULL) {
4079 		dev_warn(intf->si_dev,
4080 			 "IPMI direct message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4081 		return 0;
4082 	}
4083 
4084 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4085 	recv_msg->msgid = msg->msgid;
4086 	daddr = (struct ipmi_ipmb_direct_addr *) &recv_msg->addr;
4087 	daddr->addr_type = IPMI_IPMB_DIRECT_ADDR_TYPE;
4088 	daddr->channel = 0;
4089 	daddr->slave_addr = msg->rsp[1];
4090 	daddr->rq_lun = msg->rsp[0] & 3;
4091 	daddr->rs_lun = msg->rsp[2] & 3;
4092 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4093 	recv_msg->msg.cmd = msg->rsp[3];
4094 	memcpy(recv_msg->msg_data, &msg->rsp[4], msg->rsp_size - 4);
4095 	recv_msg->msg.data = recv_msg->msg_data;
4096 	recv_msg->msg.data_len = msg->rsp_size - 4;
4097 	deliver_local_response(intf, recv_msg);
4098 
4099 	return 0;
4100 }
4101 
4102 static int handle_lan_get_msg_rsp(struct ipmi_smi *intf,
4103 				  struct ipmi_smi_msg *msg)
4104 {
4105 	struct ipmi_lan_addr  lan_addr;
4106 	struct ipmi_recv_msg  *recv_msg;
4107 
4108 
4109 	/*
4110 	 * This is 13, not 12, because the response must contain a
4111 	 * completion code.
4112 	 */
4113 	if (msg->rsp_size < 13) {
4114 		/* Message not big enough, just ignore it. */
4115 		ipmi_inc_stat(intf, invalid_lan_responses);
4116 		return 0;
4117 	}
4118 
4119 	if (msg->rsp[2] != 0) {
4120 		/* An error getting the response, just ignore it. */
4121 		return 0;
4122 	}
4123 
4124 	lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
4125 	lan_addr.session_handle = msg->rsp[4];
4126 	lan_addr.remote_SWID = msg->rsp[8];
4127 	lan_addr.local_SWID = msg->rsp[5];
4128 	lan_addr.channel = msg->rsp[3] & 0x0f;
4129 	lan_addr.privilege = msg->rsp[3] >> 4;
4130 	lan_addr.lun = msg->rsp[9] & 3;
4131 
4132 	/*
4133 	 * It's a response from a remote entity.  Look up the sequence
4134 	 * number and handle the response.
4135 	 */
4136 	if (intf_find_seq(intf,
4137 			  msg->rsp[9] >> 2,
4138 			  msg->rsp[3] & 0x0f,
4139 			  msg->rsp[10],
4140 			  (msg->rsp[6] >> 2) & (~1),
4141 			  (struct ipmi_addr *) &lan_addr,
4142 			  &recv_msg)) {
4143 		/*
4144 		 * We were unable to find the sequence number,
4145 		 * so just nuke the message.
4146 		 */
4147 		ipmi_inc_stat(intf, unhandled_lan_responses);
4148 		return 0;
4149 	}
4150 
4151 	memcpy(recv_msg->msg_data, &msg->rsp[11], msg->rsp_size - 11);
4152 	/*
4153 	 * The other fields matched, so no need to set them, except
4154 	 * for netfn, which needs to be the response that was
4155 	 * returned, not the request value.
4156 	 */
4157 	recv_msg->msg.netfn = msg->rsp[6] >> 2;
4158 	recv_msg->msg.data = recv_msg->msg_data;
4159 	recv_msg->msg.data_len = msg->rsp_size - 12;
4160 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4161 	if (deliver_response(intf, recv_msg))
4162 		ipmi_inc_stat(intf, unhandled_lan_responses);
4163 	else
4164 		ipmi_inc_stat(intf, handled_lan_responses);
4165 
4166 	return 0;
4167 }
4168 
4169 static int handle_lan_get_msg_cmd(struct ipmi_smi *intf,
4170 				  struct ipmi_smi_msg *msg)
4171 {
4172 	struct cmd_rcvr          *rcvr;
4173 	int                      rv = 0;
4174 	unsigned char            netfn;
4175 	unsigned char            cmd;
4176 	unsigned char            chan;
4177 	struct ipmi_user         *user = NULL;
4178 	struct ipmi_lan_addr     *lan_addr;
4179 	struct ipmi_recv_msg     *recv_msg;
4180 
4181 	if (msg->rsp_size < 12) {
4182 		/* Message not big enough, just ignore it. */
4183 		ipmi_inc_stat(intf, invalid_commands);
4184 		return 0;
4185 	}
4186 
4187 	if (msg->rsp[2] != 0) {
4188 		/* An error getting the response, just ignore it. */
4189 		return 0;
4190 	}
4191 
4192 	netfn = msg->rsp[6] >> 2;
4193 	cmd = msg->rsp[10];
4194 	chan = msg->rsp[3] & 0xf;
4195 
4196 	rcu_read_lock();
4197 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4198 	if (rcvr) {
4199 		user = rcvr->user;
4200 		kref_get(&user->refcount);
4201 	} else
4202 		user = NULL;
4203 	rcu_read_unlock();
4204 
4205 	if (user == NULL) {
4206 		/* We didn't find a user, just give up. */
4207 		ipmi_inc_stat(intf, unhandled_commands);
4208 
4209 		/*
4210 		 * Don't do anything with these messages, just allow
4211 		 * them to be freed.
4212 		 */
4213 		rv = 0;
4214 	} else {
4215 		recv_msg = ipmi_alloc_recv_msg();
4216 		if (!recv_msg) {
4217 			/*
4218 			 * We couldn't allocate memory for the
4219 			 * message, so requeue it for handling later.
4220 			 */
4221 			rv = 1;
4222 			kref_put(&user->refcount, free_user);
4223 		} else {
4224 			/* Extract the source address from the data. */
4225 			lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
4226 			lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
4227 			lan_addr->session_handle = msg->rsp[4];
4228 			lan_addr->remote_SWID = msg->rsp[8];
4229 			lan_addr->local_SWID = msg->rsp[5];
4230 			lan_addr->lun = msg->rsp[9] & 3;
4231 			lan_addr->channel = msg->rsp[3] & 0xf;
4232 			lan_addr->privilege = msg->rsp[3] >> 4;
4233 
4234 			/*
4235 			 * Extract the rest of the message information
4236 			 * from the IPMB header.
4237 			 */
4238 			recv_msg->user = user;
4239 			recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
4240 			recv_msg->msgid = msg->rsp[9] >> 2;
4241 			recv_msg->msg.netfn = msg->rsp[6] >> 2;
4242 			recv_msg->msg.cmd = msg->rsp[10];
4243 			recv_msg->msg.data = recv_msg->msg_data;
4244 
4245 			/*
4246 			 * We chop off 12, not 11 bytes because the checksum
4247 			 * at the end also needs to be removed.
4248 			 */
4249 			recv_msg->msg.data_len = msg->rsp_size - 12;
4250 			memcpy(recv_msg->msg_data, &msg->rsp[11],
4251 			       msg->rsp_size - 12);
4252 			if (deliver_response(intf, recv_msg))
4253 				ipmi_inc_stat(intf, unhandled_commands);
4254 			else
4255 				ipmi_inc_stat(intf, handled_commands);
4256 		}
4257 	}
4258 
4259 	return rv;
4260 }
4261 
4262 /*
4263  * This routine will handle "Get Message" command responses with
4264  * channels that use an OEM Medium. The message format belongs to
4265  * the OEM.  See IPMI 2.0 specification, Chapter 6 and
4266  * Chapter 22, sections 22.6 and 22.24 for more details.
4267  */
4268 static int handle_oem_get_msg_cmd(struct ipmi_smi *intf,
4269 				  struct ipmi_smi_msg *msg)
4270 {
4271 	struct cmd_rcvr       *rcvr;
4272 	int                   rv = 0;
4273 	unsigned char         netfn;
4274 	unsigned char         cmd;
4275 	unsigned char         chan;
4276 	struct ipmi_user *user = NULL;
4277 	struct ipmi_system_interface_addr *smi_addr;
4278 	struct ipmi_recv_msg  *recv_msg;
4279 
4280 	/*
4281 	 * We expect the OEM SW to perform error checking
4282 	 * so we just do some basic sanity checks
4283 	 */
4284 	if (msg->rsp_size < 4) {
4285 		/* Message not big enough, just ignore it. */
4286 		ipmi_inc_stat(intf, invalid_commands);
4287 		return 0;
4288 	}
4289 
4290 	if (msg->rsp[2] != 0) {
4291 		/* An error getting the response, just ignore it. */
4292 		return 0;
4293 	}
4294 
4295 	/*
4296 	 * This is an OEM Message so the OEM needs to know how
4297 	 * handle the message. We do no interpretation.
4298 	 */
4299 	netfn = msg->rsp[0] >> 2;
4300 	cmd = msg->rsp[1];
4301 	chan = msg->rsp[3] & 0xf;
4302 
4303 	rcu_read_lock();
4304 	rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
4305 	if (rcvr) {
4306 		user = rcvr->user;
4307 		kref_get(&user->refcount);
4308 	} else
4309 		user = NULL;
4310 	rcu_read_unlock();
4311 
4312 	if (user == NULL) {
4313 		/* We didn't find a user, just give up. */
4314 		ipmi_inc_stat(intf, unhandled_commands);
4315 
4316 		/*
4317 		 * Don't do anything with these messages, just allow
4318 		 * them to be freed.
4319 		 */
4320 
4321 		rv = 0;
4322 	} else {
4323 		recv_msg = ipmi_alloc_recv_msg();
4324 		if (!recv_msg) {
4325 			/*
4326 			 * We couldn't allocate memory for the
4327 			 * message, so requeue it for handling
4328 			 * later.
4329 			 */
4330 			rv = 1;
4331 			kref_put(&user->refcount, free_user);
4332 		} else {
4333 			/*
4334 			 * OEM Messages are expected to be delivered via
4335 			 * the system interface to SMS software.  We might
4336 			 * need to visit this again depending on OEM
4337 			 * requirements
4338 			 */
4339 			smi_addr = ((struct ipmi_system_interface_addr *)
4340 				    &recv_msg->addr);
4341 			smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4342 			smi_addr->channel = IPMI_BMC_CHANNEL;
4343 			smi_addr->lun = msg->rsp[0] & 3;
4344 
4345 			recv_msg->user = user;
4346 			recv_msg->user_msg_data = NULL;
4347 			recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
4348 			recv_msg->msg.netfn = msg->rsp[0] >> 2;
4349 			recv_msg->msg.cmd = msg->rsp[1];
4350 			recv_msg->msg.data = recv_msg->msg_data;
4351 
4352 			/*
4353 			 * The message starts at byte 4 which follows the
4354 			 * Channel Byte in the "GET MESSAGE" command
4355 			 */
4356 			recv_msg->msg.data_len = msg->rsp_size - 4;
4357 			memcpy(recv_msg->msg_data, &msg->rsp[4],
4358 			       msg->rsp_size - 4);
4359 			if (deliver_response(intf, recv_msg))
4360 				ipmi_inc_stat(intf, unhandled_commands);
4361 			else
4362 				ipmi_inc_stat(intf, handled_commands);
4363 		}
4364 	}
4365 
4366 	return rv;
4367 }
4368 
4369 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
4370 				     struct ipmi_smi_msg  *msg)
4371 {
4372 	struct ipmi_system_interface_addr *smi_addr;
4373 
4374 	recv_msg->msgid = 0;
4375 	smi_addr = (struct ipmi_system_interface_addr *) &recv_msg->addr;
4376 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4377 	smi_addr->channel = IPMI_BMC_CHANNEL;
4378 	smi_addr->lun = msg->rsp[0] & 3;
4379 	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
4380 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4381 	recv_msg->msg.cmd = msg->rsp[1];
4382 	memcpy(recv_msg->msg_data, &msg->rsp[3], msg->rsp_size - 3);
4383 	recv_msg->msg.data = recv_msg->msg_data;
4384 	recv_msg->msg.data_len = msg->rsp_size - 3;
4385 }
4386 
4387 static int handle_read_event_rsp(struct ipmi_smi *intf,
4388 				 struct ipmi_smi_msg *msg)
4389 {
4390 	struct ipmi_recv_msg *recv_msg, *recv_msg2;
4391 	struct list_head     msgs;
4392 	struct ipmi_user     *user;
4393 	int rv = 0, deliver_count = 0, index;
4394 	unsigned long        flags;
4395 
4396 	if (msg->rsp_size < 19) {
4397 		/* Message is too small to be an IPMB event. */
4398 		ipmi_inc_stat(intf, invalid_events);
4399 		return 0;
4400 	}
4401 
4402 	if (msg->rsp[2] != 0) {
4403 		/* An error getting the event, just ignore it. */
4404 		return 0;
4405 	}
4406 
4407 	INIT_LIST_HEAD(&msgs);
4408 
4409 	spin_lock_irqsave(&intf->events_lock, flags);
4410 
4411 	ipmi_inc_stat(intf, events);
4412 
4413 	/*
4414 	 * Allocate and fill in one message for every user that is
4415 	 * getting events.
4416 	 */
4417 	index = srcu_read_lock(&intf->users_srcu);
4418 	list_for_each_entry_rcu(user, &intf->users, link) {
4419 		if (!user->gets_events)
4420 			continue;
4421 
4422 		recv_msg = ipmi_alloc_recv_msg();
4423 		if (!recv_msg) {
4424 			rcu_read_unlock();
4425 			list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
4426 						 link) {
4427 				list_del(&recv_msg->link);
4428 				ipmi_free_recv_msg(recv_msg);
4429 			}
4430 			/*
4431 			 * We couldn't allocate memory for the
4432 			 * message, so requeue it for handling
4433 			 * later.
4434 			 */
4435 			rv = 1;
4436 			goto out;
4437 		}
4438 
4439 		deliver_count++;
4440 
4441 		copy_event_into_recv_msg(recv_msg, msg);
4442 		recv_msg->user = user;
4443 		kref_get(&user->refcount);
4444 		list_add_tail(&recv_msg->link, &msgs);
4445 	}
4446 	srcu_read_unlock(&intf->users_srcu, index);
4447 
4448 	if (deliver_count) {
4449 		/* Now deliver all the messages. */
4450 		list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
4451 			list_del(&recv_msg->link);
4452 			deliver_local_response(intf, recv_msg);
4453 		}
4454 	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
4455 		/*
4456 		 * No one to receive the message, put it in queue if there's
4457 		 * not already too many things in the queue.
4458 		 */
4459 		recv_msg = ipmi_alloc_recv_msg();
4460 		if (!recv_msg) {
4461 			/*
4462 			 * We couldn't allocate memory for the
4463 			 * message, so requeue it for handling
4464 			 * later.
4465 			 */
4466 			rv = 1;
4467 			goto out;
4468 		}
4469 
4470 		copy_event_into_recv_msg(recv_msg, msg);
4471 		list_add_tail(&recv_msg->link, &intf->waiting_events);
4472 		intf->waiting_events_count++;
4473 	} else if (!intf->event_msg_printed) {
4474 		/*
4475 		 * There's too many things in the queue, discard this
4476 		 * message.
4477 		 */
4478 		dev_warn(intf->si_dev,
4479 			 "Event queue full, discarding incoming events\n");
4480 		intf->event_msg_printed = 1;
4481 	}
4482 
4483  out:
4484 	spin_unlock_irqrestore(&intf->events_lock, flags);
4485 
4486 	return rv;
4487 }
4488 
4489 static int handle_bmc_rsp(struct ipmi_smi *intf,
4490 			  struct ipmi_smi_msg *msg)
4491 {
4492 	struct ipmi_recv_msg *recv_msg;
4493 	struct ipmi_system_interface_addr *smi_addr;
4494 
4495 	recv_msg = msg->user_data;
4496 	if (recv_msg == NULL) {
4497 		dev_warn(intf->si_dev,
4498 			 "IPMI SMI message received with no owner. This could be because of a malformed message, or because of a hardware error.  Contact your hardware vendor for assistance.\n");
4499 		return 0;
4500 	}
4501 
4502 	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
4503 	recv_msg->msgid = msg->msgid;
4504 	smi_addr = ((struct ipmi_system_interface_addr *)
4505 		    &recv_msg->addr);
4506 	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4507 	smi_addr->channel = IPMI_BMC_CHANNEL;
4508 	smi_addr->lun = msg->rsp[0] & 3;
4509 	recv_msg->msg.netfn = msg->rsp[0] >> 2;
4510 	recv_msg->msg.cmd = msg->rsp[1];
4511 	memcpy(recv_msg->msg_data, &msg->rsp[2], msg->rsp_size - 2);
4512 	recv_msg->msg.data = recv_msg->msg_data;
4513 	recv_msg->msg.data_len = msg->rsp_size - 2;
4514 	deliver_local_response(intf, recv_msg);
4515 
4516 	return 0;
4517 }
4518 
4519 /*
4520  * Handle a received message.  Return 1 if the message should be requeued,
4521  * 0 if the message should be freed, or -1 if the message should not
4522  * be freed or requeued.
4523  */
4524 static int handle_one_recv_msg(struct ipmi_smi *intf,
4525 			       struct ipmi_smi_msg *msg)
4526 {
4527 	int requeue = 0;
4528 	int chan;
4529 	unsigned char cc;
4530 	bool is_cmd = !((msg->rsp[0] >> 2) & 1);
4531 
4532 	dev_dbg(intf->si_dev, "Recv: %*ph\n", msg->rsp_size, msg->rsp);
4533 
4534 	if (msg->rsp_size < 2) {
4535 		/* Message is too small to be correct. */
4536 		dev_warn(intf->si_dev,
4537 			 "BMC returned too small a message for netfn %x cmd %x, got %d bytes\n",
4538 			 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
4539 
4540 return_unspecified:
4541 		/* Generate an error response for the message. */
4542 		msg->rsp[0] = msg->data[0] | (1 << 2);
4543 		msg->rsp[1] = msg->data[1];
4544 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
4545 		msg->rsp_size = 3;
4546 	} else if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4547 		/* commands must have at least 4 bytes, responses 5. */
4548 		if (is_cmd && (msg->rsp_size < 4)) {
4549 			ipmi_inc_stat(intf, invalid_commands);
4550 			goto out;
4551 		}
4552 		if (!is_cmd && (msg->rsp_size < 5)) {
4553 			ipmi_inc_stat(intf, invalid_ipmb_responses);
4554 			/* Construct a valid error response. */
4555 			msg->rsp[0] = msg->data[0] & 0xfc; /* NetFN */
4556 			msg->rsp[0] |= (1 << 2); /* Make it a response */
4557 			msg->rsp[0] |= msg->data[2] & 3; /* rqLUN */
4558 			msg->rsp[1] = msg->data[1]; /* Addr */
4559 			msg->rsp[2] = msg->data[2] & 0xfc; /* rqSeq */
4560 			msg->rsp[2] |= msg->data[0] & 0x3; /* rsLUN */
4561 			msg->rsp[3] = msg->data[3]; /* Cmd */
4562 			msg->rsp[4] = IPMI_ERR_UNSPECIFIED;
4563 			msg->rsp_size = 5;
4564 		}
4565 	} else if ((msg->data_size >= 2)
4566 	    && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
4567 	    && (msg->data[1] == IPMI_SEND_MSG_CMD)
4568 	    && (msg->user_data == NULL)) {
4569 
4570 		if (intf->in_shutdown)
4571 			goto out;
4572 
4573 		/*
4574 		 * This is the local response to a command send, start
4575 		 * the timer for these.  The user_data will not be
4576 		 * NULL if this is a response send, and we will let
4577 		 * response sends just go through.
4578 		 */
4579 
4580 		/*
4581 		 * Check for errors, if we get certain errors (ones
4582 		 * that mean basically we can try again later), we
4583 		 * ignore them and start the timer.  Otherwise we
4584 		 * report the error immediately.
4585 		 */
4586 		if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
4587 		    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
4588 		    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
4589 		    && (msg->rsp[2] != IPMI_BUS_ERR)
4590 		    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
4591 			int ch = msg->rsp[3] & 0xf;
4592 			struct ipmi_channel *chans;
4593 
4594 			/* Got an error sending the message, handle it. */
4595 
4596 			chans = READ_ONCE(intf->channel_list)->c;
4597 			if ((chans[ch].medium == IPMI_CHANNEL_MEDIUM_8023LAN)
4598 			    || (chans[ch].medium == IPMI_CHANNEL_MEDIUM_ASYNC))
4599 				ipmi_inc_stat(intf, sent_lan_command_errs);
4600 			else
4601 				ipmi_inc_stat(intf, sent_ipmb_command_errs);
4602 			intf_err_seq(intf, msg->msgid, msg->rsp[2]);
4603 		} else
4604 			/* The message was sent, start the timer. */
4605 			intf_start_seq_timer(intf, msg->msgid);
4606 		requeue = 0;
4607 		goto out;
4608 	} else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
4609 		   || (msg->rsp[1] != msg->data[1])) {
4610 		/*
4611 		 * The NetFN and Command in the response is not even
4612 		 * marginally correct.
4613 		 */
4614 		dev_warn(intf->si_dev,
4615 			 "BMC returned incorrect response, expected netfn %x cmd %x, got netfn %x cmd %x\n",
4616 			 (msg->data[0] >> 2) | 1, msg->data[1],
4617 			 msg->rsp[0] >> 2, msg->rsp[1]);
4618 
4619 		goto return_unspecified;
4620 	}
4621 
4622 	if (msg->type == IPMI_SMI_MSG_TYPE_IPMB_DIRECT) {
4623 		if ((msg->data[0] >> 2) & 1) {
4624 			/* It's a response to a sent response. */
4625 			chan = 0;
4626 			cc = msg->rsp[4];
4627 			goto process_response_response;
4628 		}
4629 		if (is_cmd)
4630 			requeue = handle_ipmb_direct_rcv_cmd(intf, msg);
4631 		else
4632 			requeue = handle_ipmb_direct_rcv_rsp(intf, msg);
4633 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4634 		   && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
4635 		   && (msg->user_data != NULL)) {
4636 		/*
4637 		 * It's a response to a response we sent.  For this we
4638 		 * deliver a send message response to the user.
4639 		 */
4640 		struct ipmi_recv_msg *recv_msg;
4641 
4642 		chan = msg->data[2] & 0x0f;
4643 		if (chan >= IPMI_MAX_CHANNELS)
4644 			/* Invalid channel number */
4645 			goto out;
4646 		cc = msg->rsp[2];
4647 
4648 process_response_response:
4649 		recv_msg = msg->user_data;
4650 
4651 		requeue = 0;
4652 		if (!recv_msg)
4653 			goto out;
4654 
4655 		recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
4656 		recv_msg->msg.data = recv_msg->msg_data;
4657 		recv_msg->msg_data[0] = cc;
4658 		recv_msg->msg.data_len = 1;
4659 		deliver_local_response(intf, recv_msg);
4660 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4661 		   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
4662 		struct ipmi_channel   *chans;
4663 
4664 		/* It's from the receive queue. */
4665 		chan = msg->rsp[3] & 0xf;
4666 		if (chan >= IPMI_MAX_CHANNELS) {
4667 			/* Invalid channel number */
4668 			requeue = 0;
4669 			goto out;
4670 		}
4671 
4672 		/*
4673 		 * We need to make sure the channels have been initialized.
4674 		 * The channel_handler routine will set the "curr_channel"
4675 		 * equal to or greater than IPMI_MAX_CHANNELS when all the
4676 		 * channels for this interface have been initialized.
4677 		 */
4678 		if (!intf->channels_ready) {
4679 			requeue = 0; /* Throw the message away */
4680 			goto out;
4681 		}
4682 
4683 		chans = READ_ONCE(intf->channel_list)->c;
4684 
4685 		switch (chans[chan].medium) {
4686 		case IPMI_CHANNEL_MEDIUM_IPMB:
4687 			if (msg->rsp[4] & 0x04) {
4688 				/*
4689 				 * It's a response, so find the
4690 				 * requesting message and send it up.
4691 				 */
4692 				requeue = handle_ipmb_get_msg_rsp(intf, msg);
4693 			} else {
4694 				/*
4695 				 * It's a command to the SMS from some other
4696 				 * entity.  Handle that.
4697 				 */
4698 				requeue = handle_ipmb_get_msg_cmd(intf, msg);
4699 			}
4700 			break;
4701 
4702 		case IPMI_CHANNEL_MEDIUM_8023LAN:
4703 		case IPMI_CHANNEL_MEDIUM_ASYNC:
4704 			if (msg->rsp[6] & 0x04) {
4705 				/*
4706 				 * It's a response, so find the
4707 				 * requesting message and send it up.
4708 				 */
4709 				requeue = handle_lan_get_msg_rsp(intf, msg);
4710 			} else {
4711 				/*
4712 				 * It's a command to the SMS from some other
4713 				 * entity.  Handle that.
4714 				 */
4715 				requeue = handle_lan_get_msg_cmd(intf, msg);
4716 			}
4717 			break;
4718 
4719 		default:
4720 			/* Check for OEM Channels.  Clients had better
4721 			   register for these commands. */
4722 			if ((chans[chan].medium >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
4723 			    && (chans[chan].medium
4724 				<= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
4725 				requeue = handle_oem_get_msg_cmd(intf, msg);
4726 			} else {
4727 				/*
4728 				 * We don't handle the channel type, so just
4729 				 * free the message.
4730 				 */
4731 				requeue = 0;
4732 			}
4733 		}
4734 
4735 	} else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
4736 		   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
4737 		/* It's an asynchronous event. */
4738 		requeue = handle_read_event_rsp(intf, msg);
4739 	} else {
4740 		/* It's a response from the local BMC. */
4741 		requeue = handle_bmc_rsp(intf, msg);
4742 	}
4743 
4744  out:
4745 	return requeue;
4746 }
4747 
4748 /*
4749  * If there are messages in the queue or pretimeouts, handle them.
4750  */
4751 static void handle_new_recv_msgs(struct ipmi_smi *intf)
4752 {
4753 	struct ipmi_smi_msg  *smi_msg;
4754 	unsigned long        flags = 0;
4755 	int                  rv;
4756 	int                  run_to_completion = intf->run_to_completion;
4757 
4758 	/* See if any waiting messages need to be processed. */
4759 	if (!run_to_completion)
4760 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4761 	while (!list_empty(&intf->waiting_rcv_msgs)) {
4762 		smi_msg = list_entry(intf->waiting_rcv_msgs.next,
4763 				     struct ipmi_smi_msg, link);
4764 		list_del(&smi_msg->link);
4765 		if (!run_to_completion)
4766 			spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4767 					       flags);
4768 		rv = handle_one_recv_msg(intf, smi_msg);
4769 		if (!run_to_completion)
4770 			spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4771 		if (rv > 0) {
4772 			/*
4773 			 * To preserve message order, quit if we
4774 			 * can't handle a message.  Add the message
4775 			 * back at the head, this is safe because this
4776 			 * tasklet is the only thing that pulls the
4777 			 * messages.
4778 			 */
4779 			list_add(&smi_msg->link, &intf->waiting_rcv_msgs);
4780 			break;
4781 		} else {
4782 			if (rv == 0)
4783 				/* Message handled */
4784 				ipmi_free_smi_msg(smi_msg);
4785 			/* If rv < 0, fatal error, del but don't free. */
4786 		}
4787 	}
4788 	if (!run_to_completion)
4789 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
4790 
4791 	/*
4792 	 * If the pretimout count is non-zero, decrement one from it and
4793 	 * deliver pretimeouts to all the users.
4794 	 */
4795 	if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
4796 		struct ipmi_user *user;
4797 		int index;
4798 
4799 		index = srcu_read_lock(&intf->users_srcu);
4800 		list_for_each_entry_rcu(user, &intf->users, link) {
4801 			if (user->handler->ipmi_watchdog_pretimeout)
4802 				user->handler->ipmi_watchdog_pretimeout(
4803 					user->handler_data);
4804 		}
4805 		srcu_read_unlock(&intf->users_srcu, index);
4806 	}
4807 }
4808 
4809 static void smi_recv_tasklet(struct tasklet_struct *t)
4810 {
4811 	unsigned long flags = 0; /* keep us warning-free. */
4812 	struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
4813 	int run_to_completion = intf->run_to_completion;
4814 	struct ipmi_smi_msg *newmsg = NULL;
4815 
4816 	/*
4817 	 * Start the next message if available.
4818 	 *
4819 	 * Do this here, not in the actual receiver, because we may deadlock
4820 	 * because the lower layer is allowed to hold locks while calling
4821 	 * message delivery.
4822 	 */
4823 
4824 	rcu_read_lock();
4825 
4826 	if (!run_to_completion)
4827 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4828 	if (intf->curr_msg == NULL && !intf->in_shutdown) {
4829 		struct list_head *entry = NULL;
4830 
4831 		/* Pick the high priority queue first. */
4832 		if (!list_empty(&intf->hp_xmit_msgs))
4833 			entry = intf->hp_xmit_msgs.next;
4834 		else if (!list_empty(&intf->xmit_msgs))
4835 			entry = intf->xmit_msgs.next;
4836 
4837 		if (entry) {
4838 			list_del(entry);
4839 			newmsg = list_entry(entry, struct ipmi_smi_msg, link);
4840 			intf->curr_msg = newmsg;
4841 		}
4842 	}
4843 
4844 	if (!run_to_completion)
4845 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4846 	if (newmsg)
4847 		intf->handlers->sender(intf->send_info, newmsg);
4848 
4849 	rcu_read_unlock();
4850 
4851 	handle_new_recv_msgs(intf);
4852 }
4853 
4854 /* Handle a new message from the lower layer. */
4855 void ipmi_smi_msg_received(struct ipmi_smi *intf,
4856 			   struct ipmi_smi_msg *msg)
4857 {
4858 	unsigned long flags = 0; /* keep us warning-free. */
4859 	int run_to_completion = intf->run_to_completion;
4860 
4861 	/*
4862 	 * To preserve message order, we keep a queue and deliver from
4863 	 * a tasklet.
4864 	 */
4865 	if (!run_to_completion)
4866 		spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
4867 	list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
4868 	if (!run_to_completion)
4869 		spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
4870 				       flags);
4871 
4872 	if (!run_to_completion)
4873 		spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
4874 	/*
4875 	 * We can get an asynchronous event or receive message in addition
4876 	 * to commands we send.
4877 	 */
4878 	if (msg == intf->curr_msg)
4879 		intf->curr_msg = NULL;
4880 	if (!run_to_completion)
4881 		spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
4882 
4883 	if (run_to_completion)
4884 		smi_recv_tasklet(&intf->recv_tasklet);
4885 	else
4886 		tasklet_schedule(&intf->recv_tasklet);
4887 }
4888 EXPORT_SYMBOL(ipmi_smi_msg_received);
4889 
4890 void ipmi_smi_watchdog_pretimeout(struct ipmi_smi *intf)
4891 {
4892 	if (intf->in_shutdown)
4893 		return;
4894 
4895 	atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
4896 	tasklet_schedule(&intf->recv_tasklet);
4897 }
4898 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
4899 
4900 static struct ipmi_smi_msg *
4901 smi_from_recv_msg(struct ipmi_smi *intf, struct ipmi_recv_msg *recv_msg,
4902 		  unsigned char seq, long seqid)
4903 {
4904 	struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
4905 	if (!smi_msg)
4906 		/*
4907 		 * If we can't allocate the message, then just return, we
4908 		 * get 4 retries, so this should be ok.
4909 		 */
4910 		return NULL;
4911 
4912 	memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
4913 	smi_msg->data_size = recv_msg->msg.data_len;
4914 	smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
4915 
4916 	dev_dbg(intf->si_dev, "Resend: %*ph\n",
4917 		smi_msg->data_size, smi_msg->data);
4918 
4919 	return smi_msg;
4920 }
4921 
4922 static void check_msg_timeout(struct ipmi_smi *intf, struct seq_table *ent,
4923 			      struct list_head *timeouts,
4924 			      unsigned long timeout_period,
4925 			      int slot, unsigned long *flags,
4926 			      bool *need_timer)
4927 {
4928 	struct ipmi_recv_msg *msg;
4929 
4930 	if (intf->in_shutdown)
4931 		return;
4932 
4933 	if (!ent->inuse)
4934 		return;
4935 
4936 	if (timeout_period < ent->timeout) {
4937 		ent->timeout -= timeout_period;
4938 		*need_timer = true;
4939 		return;
4940 	}
4941 
4942 	if (ent->retries_left == 0) {
4943 		/* The message has used all its retries. */
4944 		ent->inuse = 0;
4945 		smi_remove_watch(intf, IPMI_WATCH_MASK_CHECK_MESSAGES);
4946 		msg = ent->recv_msg;
4947 		list_add_tail(&msg->link, timeouts);
4948 		if (ent->broadcast)
4949 			ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4950 		else if (is_lan_addr(&ent->recv_msg->addr))
4951 			ipmi_inc_stat(intf, timed_out_lan_commands);
4952 		else
4953 			ipmi_inc_stat(intf, timed_out_ipmb_commands);
4954 	} else {
4955 		struct ipmi_smi_msg *smi_msg;
4956 		/* More retries, send again. */
4957 
4958 		*need_timer = true;
4959 
4960 		/*
4961 		 * Start with the max timer, set to normal timer after
4962 		 * the message is sent.
4963 		 */
4964 		ent->timeout = MAX_MSG_TIMEOUT;
4965 		ent->retries_left--;
4966 		smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4967 					    ent->seqid);
4968 		if (!smi_msg) {
4969 			if (is_lan_addr(&ent->recv_msg->addr))
4970 				ipmi_inc_stat(intf,
4971 					      dropped_rexmit_lan_commands);
4972 			else
4973 				ipmi_inc_stat(intf,
4974 					      dropped_rexmit_ipmb_commands);
4975 			return;
4976 		}
4977 
4978 		spin_unlock_irqrestore(&intf->seq_lock, *flags);
4979 
4980 		/*
4981 		 * Send the new message.  We send with a zero
4982 		 * priority.  It timed out, I doubt time is that
4983 		 * critical now, and high priority messages are really
4984 		 * only for messages to the local MC, which don't get
4985 		 * resent.
4986 		 */
4987 		if (intf->handlers) {
4988 			if (is_lan_addr(&ent->recv_msg->addr))
4989 				ipmi_inc_stat(intf,
4990 					      retransmitted_lan_commands);
4991 			else
4992 				ipmi_inc_stat(intf,
4993 					      retransmitted_ipmb_commands);
4994 
4995 			smi_send(intf, intf->handlers, smi_msg, 0);
4996 		} else
4997 			ipmi_free_smi_msg(smi_msg);
4998 
4999 		spin_lock_irqsave(&intf->seq_lock, *flags);
5000 	}
5001 }
5002 
5003 static bool ipmi_timeout_handler(struct ipmi_smi *intf,
5004 				 unsigned long timeout_period)
5005 {
5006 	struct list_head     timeouts;
5007 	struct ipmi_recv_msg *msg, *msg2;
5008 	unsigned long        flags;
5009 	int                  i;
5010 	bool                 need_timer = false;
5011 
5012 	if (!intf->bmc_registered) {
5013 		kref_get(&intf->refcount);
5014 		if (!schedule_work(&intf->bmc_reg_work)) {
5015 			kref_put(&intf->refcount, intf_free);
5016 			need_timer = true;
5017 		}
5018 	}
5019 
5020 	/*
5021 	 * Go through the seq table and find any messages that
5022 	 * have timed out, putting them in the timeouts
5023 	 * list.
5024 	 */
5025 	INIT_LIST_HEAD(&timeouts);
5026 	spin_lock_irqsave(&intf->seq_lock, flags);
5027 	if (intf->ipmb_maintenance_mode_timeout) {
5028 		if (intf->ipmb_maintenance_mode_timeout <= timeout_period)
5029 			intf->ipmb_maintenance_mode_timeout = 0;
5030 		else
5031 			intf->ipmb_maintenance_mode_timeout -= timeout_period;
5032 	}
5033 	for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
5034 		check_msg_timeout(intf, &intf->seq_table[i],
5035 				  &timeouts, timeout_period, i,
5036 				  &flags, &need_timer);
5037 	spin_unlock_irqrestore(&intf->seq_lock, flags);
5038 
5039 	list_for_each_entry_safe(msg, msg2, &timeouts, link)
5040 		deliver_err_response(intf, msg, IPMI_TIMEOUT_COMPLETION_CODE);
5041 
5042 	/*
5043 	 * Maintenance mode handling.  Check the timeout
5044 	 * optimistically before we claim the lock.  It may
5045 	 * mean a timeout gets missed occasionally, but that
5046 	 * only means the timeout gets extended by one period
5047 	 * in that case.  No big deal, and it avoids the lock
5048 	 * most of the time.
5049 	 */
5050 	if (intf->auto_maintenance_timeout > 0) {
5051 		spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
5052 		if (intf->auto_maintenance_timeout > 0) {
5053 			intf->auto_maintenance_timeout
5054 				-= timeout_period;
5055 			if (!intf->maintenance_mode
5056 			    && (intf->auto_maintenance_timeout <= 0)) {
5057 				intf->maintenance_mode_enable = false;
5058 				maintenance_mode_update(intf);
5059 			}
5060 		}
5061 		spin_unlock_irqrestore(&intf->maintenance_mode_lock,
5062 				       flags);
5063 	}
5064 
5065 	tasklet_schedule(&intf->recv_tasklet);
5066 
5067 	return need_timer;
5068 }
5069 
5070 static void ipmi_request_event(struct ipmi_smi *intf)
5071 {
5072 	/* No event requests when in maintenance mode. */
5073 	if (intf->maintenance_mode_enable)
5074 		return;
5075 
5076 	if (!intf->in_shutdown)
5077 		intf->handlers->request_events(intf->send_info);
5078 }
5079 
5080 static struct timer_list ipmi_timer;
5081 
5082 static atomic_t stop_operation;
5083 
5084 static void ipmi_timeout(struct timer_list *unused)
5085 {
5086 	struct ipmi_smi *intf;
5087 	bool need_timer = false;
5088 	int index;
5089 
5090 	if (atomic_read(&stop_operation))
5091 		return;
5092 
5093 	index = srcu_read_lock(&ipmi_interfaces_srcu);
5094 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5095 		if (atomic_read(&intf->event_waiters)) {
5096 			intf->ticks_to_req_ev--;
5097 			if (intf->ticks_to_req_ev == 0) {
5098 				ipmi_request_event(intf);
5099 				intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
5100 			}
5101 			need_timer = true;
5102 		}
5103 
5104 		need_timer |= ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
5105 	}
5106 	srcu_read_unlock(&ipmi_interfaces_srcu, index);
5107 
5108 	if (need_timer)
5109 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5110 }
5111 
5112 static void need_waiter(struct ipmi_smi *intf)
5113 {
5114 	/* Racy, but worst case we start the timer twice. */
5115 	if (!timer_pending(&ipmi_timer))
5116 		mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5117 }
5118 
5119 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
5120 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
5121 
5122 static void free_smi_msg(struct ipmi_smi_msg *msg)
5123 {
5124 	atomic_dec(&smi_msg_inuse_count);
5125 	/* Try to keep as much stuff out of the panic path as possible. */
5126 	if (!oops_in_progress)
5127 		kfree(msg);
5128 }
5129 
5130 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
5131 {
5132 	struct ipmi_smi_msg *rv;
5133 	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
5134 	if (rv) {
5135 		rv->done = free_smi_msg;
5136 		rv->user_data = NULL;
5137 		rv->type = IPMI_SMI_MSG_TYPE_NORMAL;
5138 		atomic_inc(&smi_msg_inuse_count);
5139 	}
5140 	return rv;
5141 }
5142 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
5143 
5144 static void free_recv_msg(struct ipmi_recv_msg *msg)
5145 {
5146 	atomic_dec(&recv_msg_inuse_count);
5147 	/* Try to keep as much stuff out of the panic path as possible. */
5148 	if (!oops_in_progress)
5149 		kfree(msg);
5150 }
5151 
5152 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
5153 {
5154 	struct ipmi_recv_msg *rv;
5155 
5156 	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
5157 	if (rv) {
5158 		rv->user = NULL;
5159 		rv->done = free_recv_msg;
5160 		atomic_inc(&recv_msg_inuse_count);
5161 	}
5162 	return rv;
5163 }
5164 
5165 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
5166 {
5167 	if (msg->user && !oops_in_progress)
5168 		kref_put(&msg->user->refcount, free_user);
5169 	msg->done(msg);
5170 }
5171 EXPORT_SYMBOL(ipmi_free_recv_msg);
5172 
5173 static atomic_t panic_done_count = ATOMIC_INIT(0);
5174 
5175 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
5176 {
5177 	atomic_dec(&panic_done_count);
5178 }
5179 
5180 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
5181 {
5182 	atomic_dec(&panic_done_count);
5183 }
5184 
5185 /*
5186  * Inside a panic, send a message and wait for a response.
5187  */
5188 static void ipmi_panic_request_and_wait(struct ipmi_smi *intf,
5189 					struct ipmi_addr *addr,
5190 					struct kernel_ipmi_msg *msg)
5191 {
5192 	struct ipmi_smi_msg  smi_msg;
5193 	struct ipmi_recv_msg recv_msg;
5194 	int rv;
5195 
5196 	smi_msg.done = dummy_smi_done_handler;
5197 	recv_msg.done = dummy_recv_done_handler;
5198 	atomic_add(2, &panic_done_count);
5199 	rv = i_ipmi_request(NULL,
5200 			    intf,
5201 			    addr,
5202 			    0,
5203 			    msg,
5204 			    intf,
5205 			    &smi_msg,
5206 			    &recv_msg,
5207 			    0,
5208 			    intf->addrinfo[0].address,
5209 			    intf->addrinfo[0].lun,
5210 			    0, 1); /* Don't retry, and don't wait. */
5211 	if (rv)
5212 		atomic_sub(2, &panic_done_count);
5213 	else if (intf->handlers->flush_messages)
5214 		intf->handlers->flush_messages(intf->send_info);
5215 
5216 	while (atomic_read(&panic_done_count) != 0)
5217 		ipmi_poll(intf);
5218 }
5219 
5220 static void event_receiver_fetcher(struct ipmi_smi *intf,
5221 				   struct ipmi_recv_msg *msg)
5222 {
5223 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5224 	    && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
5225 	    && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
5226 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5227 		/* A get event receiver command, save it. */
5228 		intf->event_receiver = msg->msg.data[1];
5229 		intf->event_receiver_lun = msg->msg.data[2] & 0x3;
5230 	}
5231 }
5232 
5233 static void device_id_fetcher(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
5234 {
5235 	if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
5236 	    && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
5237 	    && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
5238 	    && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
5239 		/*
5240 		 * A get device id command, save if we are an event
5241 		 * receiver or generator.
5242 		 */
5243 		intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
5244 		intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
5245 	}
5246 }
5247 
5248 static void send_panic_events(struct ipmi_smi *intf, char *str)
5249 {
5250 	struct kernel_ipmi_msg msg;
5251 	unsigned char data[16];
5252 	struct ipmi_system_interface_addr *si;
5253 	struct ipmi_addr addr;
5254 	char *p = str;
5255 	struct ipmi_ipmb_addr *ipmb;
5256 	int j;
5257 
5258 	if (ipmi_send_panic_event == IPMI_SEND_PANIC_EVENT_NONE)
5259 		return;
5260 
5261 	si = (struct ipmi_system_interface_addr *) &addr;
5262 	si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5263 	si->channel = IPMI_BMC_CHANNEL;
5264 	si->lun = 0;
5265 
5266 	/* Fill in an event telling that we have failed. */
5267 	msg.netfn = 0x04; /* Sensor or Event. */
5268 	msg.cmd = 2; /* Platform event command. */
5269 	msg.data = data;
5270 	msg.data_len = 8;
5271 	data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
5272 	data[1] = 0x03; /* This is for IPMI 1.0. */
5273 	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
5274 	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
5275 	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
5276 
5277 	/*
5278 	 * Put a few breadcrumbs in.  Hopefully later we can add more things
5279 	 * to make the panic events more useful.
5280 	 */
5281 	if (str) {
5282 		data[3] = str[0];
5283 		data[6] = str[1];
5284 		data[7] = str[2];
5285 	}
5286 
5287 	/* Send the event announcing the panic. */
5288 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5289 
5290 	/*
5291 	 * On every interface, dump a bunch of OEM event holding the
5292 	 * string.
5293 	 */
5294 	if (ipmi_send_panic_event != IPMI_SEND_PANIC_EVENT_STRING || !str)
5295 		return;
5296 
5297 	/*
5298 	 * intf_num is used as an marker to tell if the
5299 	 * interface is valid.  Thus we need a read barrier to
5300 	 * make sure data fetched before checking intf_num
5301 	 * won't be used.
5302 	 */
5303 	smp_rmb();
5304 
5305 	/*
5306 	 * First job here is to figure out where to send the
5307 	 * OEM events.  There's no way in IPMI to send OEM
5308 	 * events using an event send command, so we have to
5309 	 * find the SEL to put them in and stick them in
5310 	 * there.
5311 	 */
5312 
5313 	/* Get capabilities from the get device id. */
5314 	intf->local_sel_device = 0;
5315 	intf->local_event_generator = 0;
5316 	intf->event_receiver = 0;
5317 
5318 	/* Request the device info from the local MC. */
5319 	msg.netfn = IPMI_NETFN_APP_REQUEST;
5320 	msg.cmd = IPMI_GET_DEVICE_ID_CMD;
5321 	msg.data = NULL;
5322 	msg.data_len = 0;
5323 	intf->null_user_handler = device_id_fetcher;
5324 	ipmi_panic_request_and_wait(intf, &addr, &msg);
5325 
5326 	if (intf->local_event_generator) {
5327 		/* Request the event receiver from the local MC. */
5328 		msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
5329 		msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
5330 		msg.data = NULL;
5331 		msg.data_len = 0;
5332 		intf->null_user_handler = event_receiver_fetcher;
5333 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5334 	}
5335 	intf->null_user_handler = NULL;
5336 
5337 	/*
5338 	 * Validate the event receiver.  The low bit must not
5339 	 * be 1 (it must be a valid IPMB address), it cannot
5340 	 * be zero, and it must not be my address.
5341 	 */
5342 	if (((intf->event_receiver & 1) == 0)
5343 	    && (intf->event_receiver != 0)
5344 	    && (intf->event_receiver != intf->addrinfo[0].address)) {
5345 		/*
5346 		 * The event receiver is valid, send an IPMB
5347 		 * message.
5348 		 */
5349 		ipmb = (struct ipmi_ipmb_addr *) &addr;
5350 		ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
5351 		ipmb->channel = 0; /* FIXME - is this right? */
5352 		ipmb->lun = intf->event_receiver_lun;
5353 		ipmb->slave_addr = intf->event_receiver;
5354 	} else if (intf->local_sel_device) {
5355 		/*
5356 		 * The event receiver was not valid (or was
5357 		 * me), but I am an SEL device, just dump it
5358 		 * in my SEL.
5359 		 */
5360 		si = (struct ipmi_system_interface_addr *) &addr;
5361 		si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
5362 		si->channel = IPMI_BMC_CHANNEL;
5363 		si->lun = 0;
5364 	} else
5365 		return; /* No where to send the event. */
5366 
5367 	msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
5368 	msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
5369 	msg.data = data;
5370 	msg.data_len = 16;
5371 
5372 	j = 0;
5373 	while (*p) {
5374 		int size = strlen(p);
5375 
5376 		if (size > 11)
5377 			size = 11;
5378 		data[0] = 0;
5379 		data[1] = 0;
5380 		data[2] = 0xf0; /* OEM event without timestamp. */
5381 		data[3] = intf->addrinfo[0].address;
5382 		data[4] = j++; /* sequence # */
5383 		/*
5384 		 * Always give 11 bytes, so strncpy will fill
5385 		 * it with zeroes for me.
5386 		 */
5387 		strncpy(data+5, p, 11);
5388 		p += size;
5389 
5390 		ipmi_panic_request_and_wait(intf, &addr, &msg);
5391 	}
5392 }
5393 
5394 static int has_panicked;
5395 
5396 static int panic_event(struct notifier_block *this,
5397 		       unsigned long         event,
5398 		       void                  *ptr)
5399 {
5400 	struct ipmi_smi *intf;
5401 	struct ipmi_user *user;
5402 
5403 	if (has_panicked)
5404 		return NOTIFY_DONE;
5405 	has_panicked = 1;
5406 
5407 	/* For every registered interface, set it to run to completion. */
5408 	list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
5409 		if (!intf->handlers || intf->intf_num == -1)
5410 			/* Interface is not ready. */
5411 			continue;
5412 
5413 		if (!intf->handlers->poll)
5414 			continue;
5415 
5416 		/*
5417 		 * If we were interrupted while locking xmit_msgs_lock or
5418 		 * waiting_rcv_msgs_lock, the corresponding list may be
5419 		 * corrupted.  In this case, drop items on the list for
5420 		 * the safety.
5421 		 */
5422 		if (!spin_trylock(&intf->xmit_msgs_lock)) {
5423 			INIT_LIST_HEAD(&intf->xmit_msgs);
5424 			INIT_LIST_HEAD(&intf->hp_xmit_msgs);
5425 		} else
5426 			spin_unlock(&intf->xmit_msgs_lock);
5427 
5428 		if (!spin_trylock(&intf->waiting_rcv_msgs_lock))
5429 			INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
5430 		else
5431 			spin_unlock(&intf->waiting_rcv_msgs_lock);
5432 
5433 		intf->run_to_completion = 1;
5434 		if (intf->handlers->set_run_to_completion)
5435 			intf->handlers->set_run_to_completion(intf->send_info,
5436 							      1);
5437 
5438 		list_for_each_entry_rcu(user, &intf->users, link) {
5439 			if (user->handler->ipmi_panic_handler)
5440 				user->handler->ipmi_panic_handler(
5441 					user->handler_data);
5442 		}
5443 
5444 		send_panic_events(intf, ptr);
5445 	}
5446 
5447 	return NOTIFY_DONE;
5448 }
5449 
5450 /* Must be called with ipmi_interfaces_mutex held. */
5451 static int ipmi_register_driver(void)
5452 {
5453 	int rv;
5454 
5455 	if (drvregistered)
5456 		return 0;
5457 
5458 	rv = driver_register(&ipmidriver.driver);
5459 	if (rv)
5460 		pr_err("Could not register IPMI driver\n");
5461 	else
5462 		drvregistered = true;
5463 	return rv;
5464 }
5465 
5466 static struct notifier_block panic_block = {
5467 	.notifier_call	= panic_event,
5468 	.next		= NULL,
5469 	.priority	= 200	/* priority: INT_MAX >= x >= 0 */
5470 };
5471 
5472 static int ipmi_init_msghandler(void)
5473 {
5474 	int rv;
5475 
5476 	mutex_lock(&ipmi_interfaces_mutex);
5477 	rv = ipmi_register_driver();
5478 	if (rv)
5479 		goto out;
5480 	if (initialized)
5481 		goto out;
5482 
5483 	rv = init_srcu_struct(&ipmi_interfaces_srcu);
5484 	if (rv)
5485 		goto out;
5486 
5487 	remove_work_wq = create_singlethread_workqueue("ipmi-msghandler-remove-wq");
5488 	if (!remove_work_wq) {
5489 		pr_err("unable to create ipmi-msghandler-remove-wq workqueue");
5490 		rv = -ENOMEM;
5491 		goto out_wq;
5492 	}
5493 
5494 	timer_setup(&ipmi_timer, ipmi_timeout, 0);
5495 	mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
5496 
5497 	atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
5498 
5499 	initialized = true;
5500 
5501 out_wq:
5502 	if (rv)
5503 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5504 out:
5505 	mutex_unlock(&ipmi_interfaces_mutex);
5506 	return rv;
5507 }
5508 
5509 static int __init ipmi_init_msghandler_mod(void)
5510 {
5511 	int rv;
5512 
5513 	pr_info("version " IPMI_DRIVER_VERSION "\n");
5514 
5515 	mutex_lock(&ipmi_interfaces_mutex);
5516 	rv = ipmi_register_driver();
5517 	mutex_unlock(&ipmi_interfaces_mutex);
5518 
5519 	return rv;
5520 }
5521 
5522 static void __exit cleanup_ipmi(void)
5523 {
5524 	int count;
5525 
5526 	if (initialized) {
5527 		destroy_workqueue(remove_work_wq);
5528 
5529 		atomic_notifier_chain_unregister(&panic_notifier_list,
5530 						 &panic_block);
5531 
5532 		/*
5533 		 * This can't be called if any interfaces exist, so no worry
5534 		 * about shutting down the interfaces.
5535 		 */
5536 
5537 		/*
5538 		 * Tell the timer to stop, then wait for it to stop.  This
5539 		 * avoids problems with race conditions removing the timer
5540 		 * here.
5541 		 */
5542 		atomic_set(&stop_operation, 1);
5543 		del_timer_sync(&ipmi_timer);
5544 
5545 		initialized = false;
5546 
5547 		/* Check for buffer leaks. */
5548 		count = atomic_read(&smi_msg_inuse_count);
5549 		if (count != 0)
5550 			pr_warn("SMI message count %d at exit\n", count);
5551 		count = atomic_read(&recv_msg_inuse_count);
5552 		if (count != 0)
5553 			pr_warn("recv message count %d at exit\n", count);
5554 
5555 		cleanup_srcu_struct(&ipmi_interfaces_srcu);
5556 	}
5557 	if (drvregistered)
5558 		driver_unregister(&ipmidriver.driver);
5559 }
5560 module_exit(cleanup_ipmi);
5561 
5562 module_init(ipmi_init_msghandler_mod);
5563 MODULE_LICENSE("GPL");
5564 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
5565 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI interface.");
5566 MODULE_VERSION(IPMI_DRIVER_VERSION);
5567 MODULE_SOFTDEP("post: ipmi_devintf");
5568